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Abstract. The autocovariance of the semidiurnal internal
tide (IT) is examined in a 32 d segment of a global run of the
HYbrid Coordinate Ocean Model (HYCOM). This numer-
ical simulation, with 41 vertical layers and 1/25◦ horizon-
tal resolution, includes tidal and atmospheric forcing, allow-
ing for the generation and propagation of ITs to take place
within a realistic eddying general circulation. The HYCOM
data are in turn compared with global observations of the
IT around 1000 dbar, from Argo float park-phase data and
mooring records. HYCOM is found to be globally biased
low in terms of the IT variance and decay of the IT auto-
covariance over timescales shorter than 32 d. Except in the
Southern Ocean, where limitations in the model cause the
discrepancy with in situ measurements to grow poleward, the
spatial correlation between the Argo and HYCOM tidal vari-
ance suggests that the generation of low-mode semidiurnal
ITs is globally well captured by the model.

1 Introduction

Internal tides (ITs) are internal waves generated by the in-
teraction of tidal currents with rough bathymetry. The radi-
ated wave beams can travel thousands of kilometers (e.g.,
Zhao et al., 2016; Buijsman et al., 2020), over which they un-
dergo dissipative processes as they interact with the eddying
ocean and bottom topography to eventually break (MacKin-
non et al., 2017). The dissipation of ITs represents a major
source of vertical mixing in the ocean interior (de Lavergne
et al., 2020). As such, ITs have a key influence on the ocean

state (Melet et al., 2016) and therefore on the global climate
system (see Melet et al., 2022, for a review on the subject).

At any given position in a stationary medium, tidally
forced waves would have a constant phase difference to the
astronomical forcing. However, since they propagate within
the time-varying ocean circulation, ITs are subject to a va-
riety of mechanisms that cause their phase difference to
the tidal forcing at their generation site to shift with time
(Rainville and Pinkel, 2006; Shriver et al., 2014; Zaron and
Egbert, 2014; Buijsman et al., 2017). In other words, ITs
lose coherence by interacting with the eddying ocean. They
decorrelate: the autocovariance of a time series representing
the internal tide variability at a fixed position (away from the
source) inevitably decays with time lag (Caspar-Cohen et al.,
2022; Geoffroy and Nycander, 2022).

Only the coherent fraction of the IT energy decays with
time lag, that is the energy carried by waves with a constant
phase difference to the astronomical forcing. Conversely, the
incoherent fraction of the energy grows so that the total IT
energy, or variance, at a given location (the sum of the coher-
ent and incoherent components) is unaffected by the decor-
relation. For very long time lags, the coherent and the com-
plementary incoherent asymptotic limits are often called sta-
tionary and nonstationary variance, respectively. While the
global field of the stationary (low-mode) IT is widely con-
sidered to be well constrained by multiyear satellite altime-
try observations (Dushaw et al., 2011; Ray and Zaron, 2016;
Zaron, 2019; Zhao, 2019), the nonstationary component is
not.
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Some current high-resolution global ocean circulation
models enable the estimation of the barotropic and internal
tides concurrently with the ocean circulation (Arbic et al.,
2010; Shriver et al., 2012; Buijsman et al., 2020). Such fully
nonlinear numerical simulations also incorporate the inter-
actions of the generated ITs with the eddying ocean and
its boundaries. The model utilized in this study is the HY-
brid Coordinate Ocean Model (HYCOM; Chassignet et al.,
2006), with 41 vertical layers and 1/25◦ horizontal resolu-
tion. The literature on the validation of HYCOM with obser-
vations is already vast (see Buijsman et al., 2020, and Arbic,
2022, for recent accounts). In the latest developments, sur-
face drifters have been used to validate the geographical vari-
ability in the kinetic energy in various frequency bands at the
global scale (Arbic et al., 2022). While the global coverage
of drifter data is comparable to that of satellite altimetry, the
contribution from the baroclinic tides to the kinetic energy
observed by drifters has not been determined yet. Hence, un-
til recently, only altimetry could unveil the geographical vari-
ability in the ITs at the global scale.

The empirical mapping of ITs from altimetry remains
challenging for various reasons (Egbert and Ray, 2017).
Most notably, the long sampling intervals of altimeters and
the low signal-to-noise ratio preclude any direct estimation
in the time domain of the total IT variance at a single lo-
cation. Notwithstanding, Zaron (2017) analyzed along-track
wavenumber spectra of the sea surface height to map the to-
tal and nonstationary semidiurnal IT variance (for the baro-
clinic mode 1 only). The author found a global-mean ratio
of nonstationary to total semidiurnal IT variance of 44 %. He
also outlined the spatial inhomogeneity of the tidal variabil-
ity, with this ratio being larger than 50 % in much of the equa-
torial Pacific and Indian oceans (Zaron, 2017). In a compar-
ison with data from HYCOM, Nelson et al. (2019) showed
the “k-space” methodology of Zaron (2017) to miss a large
fraction of both the nonstationary and total variance. Never-
theless, the spatial correlation of the nonstationary fraction
(i.e., the ratio of the nonstationary to total variance) between
the model and altimetry suggests that the model at least qual-
itatively captures the generation of ITs and their interactions
with the background circulation (Nelson et al., 2019).

Recently, Geoffroy and Nycander (2022) used observa-
tions from Argo park-phase data (Argo, 2000) to empirically
map the variance of the semidiurnal IT at 1000 dbar. The
high sampling rate of the floats captures the total variance
of the IT, i.e., the autocovariance at short time lags, before
any significant loss of coherence occurs and after most of the
noise has decorrelated. On the other hand, the Lagrangian
sampling of the drifting floats results in decorrelating effects
on top of the decorrelation of the IT itself (Zaron and Elipot,
2021; Caspar-Cohen et al., 2022; Geoffroy and Nycander,
2022). Following Caspar-Cohen et al. (2022), we call the ef-
fects of the Lagrangian sampling on the autocovariance ap-
parent decorrelation. This apparent decorrelation cannot be
disentangled from the decorrelation of the IT (i.e., the decor-

relation due to interactions with the background circulation)
using Argo data only. Thus, to gain insights into the IT decor-
relation around 1000 dbar, one can instead apply the method-
ology of Geoffroy and Nycander (2022) to Eulerian observa-
tions from moorings. In the present work we compare obser-
vations of the (total) variance and decorrelation of the semid-
iurnal IT around 1000 dbar from Argo floats and moorings,
respectively, to data from a global HYCOM run. Contrarily
to other recent validations of HYCOM with mooring data
(e.g., Ansong et al., 2017; Luecke et al., 2020), the Eule-
rian component of our analysis is not meant as a standalone
point-to-point comparison. Rather, it is designed to bolster
and extend the main analysis of the Lagrangian data.

The remainder of this work is organized as follows: in
Sect. 2, the in situ datasets and the numerical simulation are
presented. In Sect. 3, we review the methodology of Geof-
froy and Nycander (2022) in an example location from the
Lagrangian and Eulerian perspectives. In Sect. 4, the main
results are presented. We compare the geographical variabil-
ity in the variance and decorrelation of the semidiurnal IT ob-
tained from the in situ data and numerical simulation. Then,
the model data are used to quantify the decorrelation induced
by the Lagrangian sampling. Finally, we outline the potential
biases affecting the datasets. We conclude in Sect. 5 by dis-
cussing the results and giving a summary.

2 Data

The different comparisons in this work are all done in terms
of vertical displacement of the isotherms. The measurable
variables needed to compute vertical isotherm displacement
at a fixed depth are the temperature anomaly and vertical
temperature gradient at that depth. In this section we briefly
describe the temperature time series from each dataset.

2.1 Argo floats with Iridium communication

We use data from a global collection of Argo Iridium
floats deployed by the University of Washington as part of
the National Ocean Partnership Program during the period
2004–2022. Between the descending and ascending profil-
ing phases, these floats also record temperature and pressure
with an hourly resolution while adrift at 1000 dbar. This so-
called park phase typically lasts 10 d. As in Hennon et al.
(2014) and Geoffroy and Nycander (2022), we use the pres-
sure records to correct for the small departures of a float from
its drifting control level during a park phase.

Stitching together data from successive cycles, by filling
the time between park phases (typically 6 h) with NaN (not
a number) values, one can construct longer time series. In
this study, we use segments of 32 d of data (i.e., the duration
of the segment of numerical simulation we are using). The
sampling period of the park phase can occasionally vary by
more than a few seconds. To ensure evenly spaced time se-
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ries, we linearly interpolate each concatenated record of 32 d
onto a time axis with a constant 1 h step. Any interpolated
value lying between two original records that are more than
1.5 h apart is replaced by NaN.

The position of the floats can only be determined when
they reach the surface. We assume straight trajectories be-
tween two successive surfacings (typically 10 d apart). This
assumption has been shown to be reasonable by Geoffroy
and Nycander (2022), especially since we discard segments
of data for which the mean speed of the float is larger than
0.1 m s−1. This criterion is primarily intended to avoid con-
tamination by lee waves: a flow with speed U ≈ 0.1 m s−1

passing over a bathymetric feature with horizontal length
scale λ≈ 10 km will generate lee waves with angular fre-
quency ω = (2π/λ)U rad s−1 of the order of the diurnal fre-
quency.

The Argo dataset used in this work is an updated version
of the one used by Geoffroy and Nycander (2022). After the
base processing and quality controls, we are left with 22 414
valid 32 d segments from 891 individual floats. A more de-
tailed description of the Argo data processing and quality
controls we employed is available from Hennon et al. (2014)
and Geoffroy and Nycander (2022).

2.2 Global Multi-Archive Current Meter Database
(GMACMD)

The Global Multi-Archive Current Meter Database
(GMACMD; Scott et al., 2011) compiles tens of thou-
sands of oceanographic time series from moorings. Previous
model–data validation efforts involving both HYCOM and
mooring data notably include Luecke et al. (2020), where
the authors compared the temperature variance and kinetic
energy over various frequency bands in realistic global
ocean simulations to more than 3800 instrumental records.

Here, we extracted 331 temperature time series spanning
1972–2010 and meeting the following criteria:

1. The mooring lies in water deeper than 2000 m.

2. The record is longer than 64 d, with a sampling interval
shorter than 3 h, for adequate resolution of the semidi-
urnal tidal signals.

3. The instrument depth is within ±200 from 1000 m.

One particular mooring is used as an example in Sect. 3.
It recorded during 366 d in the years 1982–1983 at the posi-
tion 28.00◦ N, 151.95◦W (north of the Hawaiian Ridge). As
previously documented by Alford and Zhao (2007), we re-
fer to the instrument at 1119 m depth as mooring no. 2. This
instrument sampled temperature with a 0.25 h resolution.

2.3 HYbrid Coordinate Ocean Model (HYCOM)

This study uses 32 d, from 20 May to 20 June 2019, of hourly
output at 1000 m depth from a global run of HYCOM, with

41 vertical layers and 1/25◦ horizontal resolution. The non-
data-assimilative simulation, designated “GLBy190.04”, in-
cludes realistic tidal and atmospheric forcing enabling the
generation and propagation of ITs within the eddying general
circulation. The high-resolution 2D fields are complemented
by monthly mean 3D fields of temperature and salinity sub-
sampled to 1◦.

A Lagrangian analysis of the simulation is used for a di-
rect model–data validation with Argo floats. The Argo quasi-
Lagrangian sampling is mimicked by releasing 41 644 par-
ticles randomly across the world oceans. We let the parti-
cles be advected by the 2D velocity field at 1000 m for 32 d
while sampling temperature with an hourly resolution. This
Lagrangian sampling of HYCOM is achieved using the soft-
ware Parcels (Van Sebille et al., 2021). The Lagrangian simu-
lation uses a classic Runge–Kutta method for computing the
advection of the particles (with 5 min integration time step).
As for the Argo data, we discard particles with a mean speed
larger than 0.1 m s−1. We also discard any particle crossing
the 1000 m isobath during the simulation.

3 Methods

In this section, we present a local example to introduce the
methods that are used in Sect. 4 for the global compari-
son. We start by comparing the Argo observations to the La-
grangian sampling of the HYCOM data. Next, we investigate
the effects of the drift by comparing Lagrangian and Eulerian
samplings of the numerical simulation. We end the section by
introducing the comparison between the Eulerian HYCOM
time series and mooring observations.

3.1 Lagrangian sampling of the isopycnal displacement
at 1000 dbar

As in Hennon et al. (2014) and Geoffroy and Nycander
(2022), we define the vertical isotherm displacement ob-
served by a Lagrangian particle ηL

1000 as

ηL
1000(t)=

T (t)− T

(dT/dP)1000(t)
, (1)

where T is the time average of the temperature measure-
ments T (t) over a particle trajectory, and (dT/dP)1000(t)

is the temperature gradient at 1000 dbar. Hence, the vertical
isotherm displacement is simply computed as the tempera-
ture anomaly recorded by a drifting particle at 1000 dbar di-
vided by the vertical temperature gradient at that depth. For
HYCOM particles, we compute (dT/dP)1000 as the mean,
between 900 and 1100 m, of the vertical gradient calculated
from the modeled monthly mean 3D temperature field. We
then linearly interpolate the temperature gradient in the hor-
izontal to the successive particle positions (hence the time
dependence). To avoid any spurious displacements, we set
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ηL
1000 to NaN whenever the magnitude of the temperature

gradient is smaller than 3× 10−5 ◦C dbar−1.
In the case of Argo floats, Eq. (1) is evaluated over each

park phase. T then represents the time average of the temper-
ature measurements T (t) over a park phase, and the vertical
temperature gradient is estimated from the average of the two
neighboring ascending profiles. Specifically, (dT/dP)1000(t)

is computed as the mean, within 100 dbar of the parking
pressure, of the vertical gradient calculated from the aver-
age temperature profile. As for the HYCOM particles, we
discarded the data from the whole park phase whenever
the magnitude of the temperature gradient is smaller than
3× 10−5 ◦C dbar−1. As explained in Sect. 2.1, ηL

1000 time
series from successive park phases are stitched together to
constitute 32 d time series.

For both Argo floats and HYCOM Lagrangian particles,
the low-frequency background activity is filtered out from
ηL

1000 using a fourth-order Butterworth filter with a cut-off
frequency of 0.3 cpd (cycles per day). The inertial peak is
not removed by this filter poleward of about ±10◦ latitude.

3.2 Averaging sample autocovariance series

The HYCOM-derived Lagrangian time series ηL
1000 can be

analyzed in the same way as in Geoffroy and Nycander
(2022). We illustrate the mapping process below. The geo-
graphical patch presented here is also described in Geoffroy
and Nycander (2022). For this example area, Fig. 1 shows
eight 32 d segments of Argo data and 13 HYCOM particles
selected using their median position. The circular patch of
200 km radius containing the latter median positions is cen-
tered on mooring no. 2.

From a finite time series η(t) one can calculate the sample
autocovariance R̂(τ ):

R̂(τ )=
1

N − τ

N−τ∑
t=1

(ηt − η̂)(ηt+τ − η̂), (2)

where N is the total number of observations, and η̂ is the
sample mean of the series. Note that R̂(0) is the sample vari-
ance of the series. Here, N is taken as the number of non-
missing observations, accounting for gaps in the Argo time
series (during the descent, main profiling, and surface trans-
mission phases of the float cycle or because of failed quality
controls). The sample autocovariance as defined in Eq. (2)
is an unbiased estimator of the “true” autocovariance (i.e.,
R̂(τ ) converges to the true value R(τ) for infinitely largeN ).
In the remainder of this article we only compute the variance
and autocovariance of vertical isotherm displacement time
series. For the sake of brevity, we simply refer to them as the
variance and autocovariance.

The sample autocovariances for all HYCOM particles
within the circular patch shown in Fig. 1 are averaged to ob-
tain a local-mean autocovariance R

L
HYCOM. The local-mean

autocovariance from the Argo data,RArgo, is computed in the

Figure 1. Example circular geographical patch of 200 km radius
(the white star denotes mooring no. 2 at the center). The median
positions of the segments of Argo data and of the HYCOM particles
are shown by white filled circles and white squares, respectively.
The dashed white curves represent the trajectories of the HYCOM
particles over the 32 d of numerical simulation. The binned Argo
segments were all recorded by the same float; its trajectory is shown
by the solid white curve, with white crosses denoting the starting
and ending points of the different 32 d segments. In the background
we show the amplitude of theM2 baroclinic sea level anomaly from
the High Resolution Empirical Tide model (HRET; Zaron, 2019).

same way. The standard error of the local-mean autocovari-
ance is computed as

SEM(τ )=
STD(τ )√

Np
, (3)

where STD is the standard deviation of the sample autoco-
variances over the subset, and Np is the number of parti-
cles in the subset. Figure 2a demonstrates the good agree-
ment of the two datasets until τ ≈ 200 h. Past this time lag
limit, RArgo falls under its 95 % confidence interval (95 %
C.I.=±2 SEM) and thus cannot be considered significantly
different from zero.

A handy tool for monitoring the evolution of the auto-
covariance of the semidiurnal IT is complex demodulation.
Here, it consists of the least squares fitting of Acos(ωSDτ)+

B sin(ωSDτ), where ωSD = (ωM2 +ωS2)/2 is the semidiur-
nal frequency, to the sample autocovariance in 48 h windows
with 75 % overlap. This is equivalent to fitting C cos(ωSDτ+

8), whereC and8 are the amplitude and phase, respectively.
We then define the complex demodulate as C =

√
A2+B2.

This positive definite amplitude follows the envelope of the
modulated sinusoidal with frequency ωSD. Note that this
definition differs from the complex demodulation used in
Geoffroy and Nycander (2022), where the authors fitted
C cos(ωSDτ), i.e., with 8= 0. In practice, we compute the
complex demodulate of the autocovariance following the har-
monic analysis method of Cherniawsky et al. (2001). The de-

Ocean Sci., 19, 811–835, 2023 https://doi.org/10.5194/os-19-811-2023



G. Geoffroy et al.: Validating the internal tides in HYCOM with Argo data 815

modulation over a given 48 h window is performed in two it-
erations. We first fit Acos(ωSDτ)+B sin(ωSDτ) to the signal
and compute the root mean square error (RMSE). We then
repeat the fitting with a trimmed signal that excludes values
outside of ±2 RMSE from the previously fitted curve.

Complex demodulation is just a convenient way of find-
ing the envelope of the sample estimate of an underlying true
oscillating function at a given frequency. However, as an es-
timate of the envelope of the true oscillating function, the
complex demodulate can be shown to be biased high (see
Appendix A). This bias is greatly mitigated (i) at short time
lags and (ii) when the sample size is large (e.g., when demod-
ulating regional- or global-mean autocovariances). Through-
out this paper we only rely on complex demodulation in one
case or the other. A conservative estimate of the uncertainty
in the envelope of the sample function (i.e., the uncertainty
in the demodulate) is the uncertainty in the sample function
itself. If this uncertainty range is larger than the envelope of
the sample function, the conclusion is not that the envelope of
the true function can be negative but that it is not significantly
different from zero. Here, we evaluate the uncertainty affect-
ing the complex demodulate of a mean autocovariance series
over a 48 h window by computing the median of the standard
error over that window, hereinafter denoted S̃EM. The corre-
sponding 95 % confidence intervals are taken as ±2 S̃EM.

Following Geoffroy and Nycander (2022), the semidiur-
nal IT variance can be estimated from the first 48 h demod-
ulate at the semidiurnal frequency. In Appendix B we in-
vestigate the potential contamination of the first demodulate
by the non-tidal variability (noise). We found that a back-
ground noise can contribute either positively or negatively
(a consequence of filtering the time series) to the ampli-
tude of the first demodulate, depending on its characteristic
timescale. Notwithstanding, for a typical signal-to-noise ra-
tio and timescale of the background noise observed by Argo
floats, the first demodulate was seen to remain a conserva-
tive estimate of the IT variance. The effects of the non-tidal
variability on the IT variance estimate as computed in Geof-
froy and Nycander (2022) thus do not put their results into
question.

Since HYCOM does not resolve the full spectrum of the
oceanic variability, in particular the variability associated
with short timescales, the corresponding stochastic noise is
expected to differ from the one captured by the in situ data
(in terms of both variance and characteristic timescale). The
contamination of the first demodulate by this noise would
therefore account for a systematic bias when comparing the
simulated data with observations. To limit this, we chose to
consistently subtract an estimate of the autocovariance of the
non-tidal variability from the sample mean autocovariance
before computing the complex demodulates. The way we ob-
tain such an estimate is described in Appendix C. Namely, we
fit a model of the autocovariance of a tidal variability on top
of a background noise to the sample autocovariance by non-

linear least squares. Besides the noise parameters, this also
provides us with an estimate of the tidal variance. Still, in
this work, we chose to perform the comparisons in terms of
the first demodulate for it is a conservative and more robust
estimate of the IT variance.

The result of the complex demodulation at the semidiurnal
frequency applied to our two (noise-corrected) mean autoco-
variance series is presented in Fig. 2b. The first 48 h complex
demodulate is taken as a direct estimate of the semidiurnal
IT variance. From the Argo data plotted in Fig. 2b we obtain
24.9 m2, with a 95 % C.I. of [16.7, 33.2]m2. For this local
example, the first demodulate of R

L
HYCOM is almost identical

to the first demodulate of RArgo. Apart from the first cou-
ple of demodulates, the HYCOM demodulate series appears
consistently smaller than the Argo one.

3.3 Eulerian perspective

The decay with time lag of the demodulates represented as
red crosses in Fig. 2b mirrors the decorrelation captured by
the Lagrangian sampling of the Argo floats. The motion of
the instruments results in decorrelating effects that cannot be
isolated from the loss of coherence of the IT. However, by an-
alyzing the HYCOM data within a Eulerian framework, one
can directly monitor the decorrelation of the IT. The Eulerian
HYCOM time series can then be compared with observations
from moorings.

In the Eulerian framework, our methods remain practically
unchanged. We now define the vertical isotherm displace-
ment at a given location as

ηE
1000(x,y, t)=

T (x,y, t)− T (x,y)

(dT/dP)1000(x,y)
, (4)

where T (x,y) is the time average of the temperature field
T (x,y, t), and (dT/dP)1000(x,y) is the temperature gradi-
ent at 1000 m, calculated from the modeled monthly mean
3D temperature field. As for the Lagrangian time series, we
apply a fourth-order Butterworth high-pass filter with a cut-
off frequency of 0.3 cpd on ηE

1000.
For each HYCOM particle, we compute 32 d long time

series of ηE
1000 at the successive positions of the particle sub-

sampled at a 12 h rate. We then calculate the sample auto-
covariance from each of these time series and average the
results over the particle’s trajectory. As in the Lagrangian
framework, the resulting averages can be averaged over dif-
ferent particles to compute local- and global-mean autoco-
variance series. By estimating the Eulerian autocovariance
along the Lagrangian trajectories we account for the geo-
graphic variability in the IT. Also, our Eulerian sample au-
tocovariance estimates contain many more degrees of free-
dom than their Lagrangian equivalents. As a result, the un-
certainty affecting the Eulerian autocovariance estimates is
much smaller.

https://doi.org/10.5194/os-19-811-2023 Ocean Sci., 19, 811–835, 2023
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Figure 2. (a) Local-mean autocovariance RL
HYCOM computed from the HYCOM particles (solid black curve) and local-mean autocovariance

RArgo computed from the 32 d segments of Argo data (solid red curve) and 95 % confidence interval of RArgo (light-blue shading). The data
are from the geographical patch shown in Fig. 1. (b) Complex demodulates at the semidiurnal frequency of the autocovariance series shown
in (a) and their 95 % C.I. The red and gray shadings highlight the 95 % C.I. for the Argo and Lagrangian HYCOM data, respectively.

Equation (4) is also used to compute vertical displacement
time series from the mooring temperature records. Here, the
vertical temperature gradient is computed from the annual-
mean climatology (WOA18; Boyer et al., 2018) as an average
of the temperature gradient within 100 m of the instruments’
depth. As for the HYCOM and Argo data, we discarded in-
struments for which the magnitude of the temperature gradi-
ent is smaller than 3× 10−5 ◦C dbar−1. Each mooring time
series is split into successive 32 d segments. We then com-
pute the sample autocovariance for each high-pass-filtered
segment and average them to obtain a mean autocovariance.

The Eulerian sampling serves two main purposes: (i) val-
idating the variance of the IT measured by the Lagrangian
particles and (ii) comparing the decorrelation of the IT in the
HYCOM data with mooring observations. We illustrate these
two aspects for the local example introduced in Sect. 3.2 in
Figs. 3 and 4, respectively.

Figure 3 shows the local-mean autocovariance series at
1000 dbar computed from both the Lagrangian ηL

1000 (solid
black curve) and Eulerian ηE

1000 (solid red curve). As ex-
pected, the two autocovariance series demonstrate a close
agreement at short time lags, before the motion of the parti-
cles causes the Lagrangian R

L
HYCOM to decay faster: the first

demodulate of the Eulerian R
E
HYCOM (red crosses in Fig. 3b),

reading 28.4 m2, with a 95 % C.I. of [27.6, 29.1]m2, is simi-
lar to the first demodulate of the Lagrangian R

L
HYCOM (black

crosses in Figs. 3b and in Fig. 2b). In contrast with R
L
HYCOM,

R
E
HYCOM is not affected by the apparent decorrelation, and

it remains close to the mean autocovariance computed from

the (Eulerian) mooring no. 2 time series RMoor at all time
lags (see Fig. 4). In conclusion, for this local example, the
model agrees very well with the in situ observations, in terms
of both variance and decorrelation of the semidiurnal IT at
1000 dbar.

4 Results

4.1 The semidiurnal IT variance at 1000 dbar

We bin the global collection of HYCOM particles based on
their median position using circular geographical patches of
200 km radius centered on a regular 2.5◦× 2.5◦ grid. Here,
we use only particles for which (i) the mean speed is lower
than 0.1 m s−1 (to avoid contamination by lee waves) and
(ii) the variance of ηL

1000 is lower than 1×104 m2. The second
criterion accounts for 41 discarded particles (out of 41 644)
that we consider to be outliers, most of which are located in
the Labrador Basin or in shallow water close to Antarctica.
Including it instead would only marginally affect our results.
We did not further investigate the cause of these extreme val-
ues.

As in Sect. 3.2 and 3.3, we compute an autocovariance
series for each HYCOM particle, in the Lagrangian and Eu-
lerian framework, separately. Then, we average these auto-
covariances over the corresponding patches to obtain local-
mean autocovariance series R

L
HYCOM and R

E
HYCOM. For each

geographical patch, we get local estimates of the semidiur-
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Figure 3. (a) Mean autocovariance computed from ηL
1000 (solid black curve, same as the solid black curve in Fig. 2a) and 95 % confidence

interval of RL
HYCOM (light-blue shading) and mean autocovariance computed from ηE

1000 (solid red curve). The data are from the geograph-
ical patch shown in Fig. 1. (b) Complex demodulates at the semidiurnal frequency of the autocovariance series shown in (a) and their 95 %
C.I. The red and gray shadings highlight the 95 % C.I. for the Eulerian and Lagrangian HYCOM data, respectively.

Figure 4. (a) Mean autocovariance computed from ηE
1000 (solid black curve, same as the solid red curve in Fig. 3a) and mean autocovariance

computed from eleven 32 d segments of the mooring no. 2 time series (solid red curve) and 95 % confidence interval of RMoor (light-blue
shading). (b) Complex demodulates at the semidiurnal frequency of the autocovariance series shown in (a) and their 95 % C.I. The red and
gray shadings highlight the 95 % C.I. for the mooring and Eulerian HYCOM data, respectively.

nal IT variance from the first 48 h complex demodulate of
R

L
HYCOM and R

E
HYCOM.

We start by checking how the Lagrangian sampling affects
the semidiurnal IT variance. Figure 5 shows the first 48 h
complex demodulate of R

E
HYCOM plotted as a function of the

first demodulate of R
L
HYCOM for our collection of geograph-

ical patches. The agreement is close to perfect (with a Pear-
son r squared or coefficient of determination r2

≈ 0.99 and
0.76 in the log–log and linear domain, respectively). Thus,
the motion of the Lagrangian particles, and therefore of the
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Figure 5. Semidiurnal IT variance estimated from the Eulerian HY-
COM data as a function of the semidiurnal IT variance estimated
from the Lagrangian HYCOM data for the unmasked bins in Fig. 6a.
A warmer color indicates a larger density.

Argo floats, has no significant impact on the measured vari-
ance of the IT.

We can then map the semidiurnal IT variance (here taken
as the first 48 h complex demodulate of R

L
HYCOM) and the

associated S̃EM on a 2.5◦× 2.5◦ grid (see Fig. 6a and b,
respectively). In each figure we show only the bins which
yield an IT variance larger than one S̃EM. Note that the lat-
ter criterion is less binding than the one used for the global
maps in Geoffroy and Nycander (2022) since the uncertain-
ties are smaller here, by definition. Figure 6a can be directly
compared with the global map of the semidiurnal IT variance
computed from Argo data (see Fig. 6c and d, updated from
Geoffroy and Nycander, 2022). As documented in Buijsman
et al. (2020), HYCOM is known to be subject to a thermo-
baric instability (TBI) in the North Pacific (dashed black rect-
angle in Fig. 6a). Since only a few patches of Argo data are
available at the edge of this TBI area, we do not exclude it
from the subsequent analysis.

The main patterns visible in Fig. 6a and c broadly agree,
with energy radiating away from low-mode IT generation
hotspots, namely near Madagascar, Hawaii, French Polyne-
sia, and the western South Pacific. In Fig. 7a we show the
Argo-derived semidiurnal IT variance plotted as a function
of the corresponding one from HYCOM. The two datasets
are well correlated (r2

= 0.52 and 0.38 in the log–log and
linear domain, respectively), but the semidiurnal IT variance
is systematically smaller in HYCOM than in the Argo data.

We investigate this bias by looking at the geographical dis-
tribution of the HYCOM-to-Argo semidiurnal IT variance
ratio. For presentation purposes, instead of the latter ratio
we plot the proxy σ 2

HYCOM/(σ
2
HYCOM+ σ

2
Argo) in Fig. 7b.

This statistic is robust to outliers and maps a pair of vari-
ances to the closed range [0, 1]. The ratio is relatively ho-

Table 1. Semidiurnal IT variance from the autocovariance series
plotted in Fig. 8.

Argo HYCOM HYCOM/Argo

σ 2
SD Global 37 m2 22 m2 0.58

North of 50◦ S 38 m2 26 m2 0.69
South of 50◦ S 37 m2 11 m2 0.29

mogeneous globally (in the range [0.25, 1.5], correspond-
ing to [0.2, 0.6] for our proxy), except over the Southern
Ocean, where the Argo-inferred IT variance is significantly
larger. Furthermore, we show the zonal mean of the Argo-
and HYCOM-derived semidiurnal IT variance as a function
of latitude in Fig. 7c. The zonal-mean variance from Argo is
generally larger, except around 40◦ N, where the HYCOM-
inferred zonal-mean variance peaks at 1.6 times the Argo
one. Discarding the data in the TBI area has virtually no
effect on this peak (not shown). More noteworthy than this
localized feature, the ratio of the HYCOM to Argo zonal-
mean variances decreases approaching the poles (poleward
of ±50◦ latitude, not shown). In contrast, equatorward of
±50◦, this ratio remains fairly constant, oscillating around
a mean value of 0.73 with a standard deviation of 0.26. The
global mean and standard deviation of the ratio are 0.61 and
0.33, respectively.

The representativity of the zonal-mean variances is smaller
north of 40◦ N because of the scarcity of available data (solid
red curve in Fig. 7c). We therefore focus on the pronounced
discrepancy affecting the Southern Ocean. We gather the data
available over the unmasked bins in Fig. 7b into two groups,
north and south of 50◦ S. For each group and the global col-
lection of bins, we compute a mean autocovariance by aver-
aging the corresponding Argo and HYCOM local-mean au-
tocovariance series (see Fig. 8). In Table 1, we summarize
the semidiurnal IT variance values computed as the first 48 h
demodulate of the mean autocovariance for each group. A
significant fraction of the divergence visible in the global-
mean autocovariance at short time lags (see Fig. 8a and b)
can be explained by the larger discrepancy south of 50◦ S
(see Fig. 8e and f). In this region, the Argo-derived semidiur-
nal IT variance is close to 3.5 times larger than the simulated
one. The agreement is better north of 50◦ S, where the cor-
responding factor is 1.5 (see Fig. 8c and d). In a separate
section we discuss possible explanations for both the lower
semidiurnal IT variance in HYCOM globally and the even
lower simulated IT variance in the Southern Ocean.

4.2 The decorrelation of the semidiurnal IT at
1000 dbar

In contrast to Argo floats, the Eulerian sampling of moorings
allows us to directly monitor the decorrelation of the IT. In
a procedure similar to that in Sect. 4.1, we bin the global
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Figure 6. (a) Atlas of the semidiurnal IT variance computed as the first 48 h complex demodulate of the local-mean autocovariance series
at 1000 dbar (RL

HYCOM) and (b) corresponding S̃EM. (c, d) Same as (a) and (b), respectively, but computed from the Argo data (RArgo).
Panels (c) and (d) are updated from Geoffroy and Nycander (2022). The area where the simulation is affected by the TBI is shown by the
dashed black rectangle in (a).

Figure 7. (a) Argo-derived semidiurnal IT variance as a function of the corresponding one from HYCOM for the collection of geograph-
ical bins shown in (b). A warmer color indicates a larger density. (b) Atlas of σ 2

HYCOM,SD/(σ
2
HYCOM,SD+ σ

2
Argo,SD), a proxy for the

HYCOM-to-Argo semidiurnal IT variance ratio at 1000 dbar. The value of this proxy is close to 0 where σ 2
HYCOM,SD� σ 2

Argo,SD, 0.5

where σ 2
HYCOM,SD ∼ σ

2
Argo,SD, and 1 where σ 2

HYCOM,SD� σ 2
Argo,SD. The ocean mask is colored in yellow for readability. (c) Zonal

mean of the semidiurnal IT variance from Argo (dash-dotted black curve) and HYCOM (solid black curve) as a function of latitude and their
respective 95 % C.I. (light-green and gray shading, respectively). The red curve represents the number of geographical bins used to compute
the zonal mean at a given latitude (red axis on the right). The vertical dashed red lines are placed at 50◦ S and 50◦ N.

collection of HYCOM particles based on their median po-
sition, but this time using geographical patches (of 200 km
radius) centered on the available moorings. We compute a
sample autocovariance in the Eulerian framework for each
particle and average them within the corresponding patches

to obtain local-mean autocovariance series R
E
HYCOM. The

mooring time series in a given patch is split into successive
32 d segments. We then compute a sample autocovariance for
each segment and average them to obtain a mean autocovari-
ance RMoor. Again, we use only particles for which (i) the
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Figure 8. (a) Global-mean autocovariance at 1000 dbar computed from Argo data (solid red curve) and Lagrangian HYCOM particles (solid
black curve) and (b) corresponding complex demodulates at the semidiurnal frequency. The uncertainties are vanishingly small (not shown).
(c, d) Same as (a) and (b), respectively, but using only data north of 50◦ S. (e, f) Same as (a) and (b), respectively, but using only data south
of 50◦ S. The Argo variance lies above the figure scale, here RArgo ≈ 173 m2. In this figure, we truncated τ at 500 h since past this limit the
autocovariance series are close to 0.

mean speed is lower than 0.1 m s−1 (to avoid contamination
by lee waves) and (ii) the variance of ηL

1000 is lower than
1×104 m2 (outliers). After some additional quality controls,
mainly discarding bins where either the mooring or HYCOM
complex demodulates fall under one S̃EM within 15 d of time
lag, we are left with 172 moored instruments and the corre-
sponding patches of simulated data.

For all the datasets used in this study, we found the prob-
ability distribution of the global collection of local-mean au-
tocovariance at any given time lag to be skewed (not shown).
This is not an issue when computing average statistics from
the Argo or the corresponding simulated data, since the num-
ber of samples (i.e., the number of geographical bins) is very
large, and the sample mean is therefore expected to be nor-
mally distributed, by virtue of the central limit theorem. In
contrast, geographical bins where mooring data are available
are fewer. Thus, the influence of the tail of the distribution
on the sample mean is larger when analyzing the relatively
small collection of bins where mooring data are available
than when considering the global collections of Argo and
HYCOM data. This precludes the use of statistics that as-
sume a normal distribution when describing regional or even
global averages of the autocovariances computed from moor-
ings. To limit the effects of skewness, we discard bins for
which either the mooring or the simulated first 48 h demod-
ulate is above the 95th percentile of its observed distribution
(here P 95

Moor ≈ 575 m2 and P 95
HYCOM ≈ 330 m2, respectively).

The latter criterion accounts for 12 additional discarded bins,
all located in moderate- to strong-mesoscale-activity areas.

Even after discarding these extreme samples, the data remain
highly skewed.

The moorings may not offer as much spatial coverage as
the Argo floats do, but they still provide an opportunity to
validate the geographical variability in the semidiurnal IT
variance in HYCOM. As in Sect. 4.1, we can get local es-
timates of the semidiurnal IT variance from R

E
HYCOM and

RMoor in each geographical patch centered on a mooring.
Figure 9a shows the scatterplot of the first 48 h complex de-
modulate of R

E
HYCOM as a function of the first demodulate

of RMoor for our collection of geographical bins. As with
the Lagrangian data (see Fig. 7a), the correlation is good
(r2
= 0.51 and 0.40 in the log–log and linear domain, re-

spectively), but the semidiurnal IT variance is systematically
smaller in HYCOM than in the mooring data. In Fig. 9b and c
we show the geographical location of the patches along with
a proxy for the HYCOM-to-mooring semidiurnal IT variance
ratio and the histogram of this proxy, respectively. The latter
histogram shows that the distribution of the proxy is centered
around 0.37, corresponding to a ratio of 0.6, approximately.

To measure the strength of the decorrelation affecting the
Eulerian mean autocovariances, we define the semidiurnal
coherent variance fraction (SCVF15) as the ratio between the
48 h demodulate at τ ≈ 15 d (i.e., one spring–neap period)
and the first demodulate. As it is calculated from the demod-
ulate at relatively long time lags, the SCVF15 is meaningful
only when estimated from a large enough sample size (i.e.,
with minimal uncertainty). Therefore, we start by consider-
ing all the data available over our global collection of geo-
graphical bins.
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Figure 9. (a) Semidiurnal IT variance derived from mooring data as a function of the semidiurnal IT variance computed from the Eulerian
HYCOM data. (b) Map of the 160 geographical bins presented in (a) along with the proxy σ 2

HYCOM,SD/(σ
2
HYCOM,SD+ σ

2
Moor,SD) for

the ratio of the semidiurnal IT variance computed from the Eulerian HYCOM and mooring data and (c) the histogram of this proxy. An
equivalent proxy was used in Fig. 7b. The dashed black line in (b) indicates 50◦ S.

Figure 10a displays the global-mean autocovariances cal-
culated from the mooring (RMoor, solid red curve) and HY-
COM data (RHYCOM, solid black curve), as the average of
the local-mean autocovariance series over the bins presented
in Fig. 9b. In Fig. 10b we show different statistics of the ob-
served distribution of the demodulates of the local-mean au-
tocovariances in the form of boxplots as a function of time
lag. Figure 10b suggests that the mooring records exhibit
both a larger semidiurnal IT variance and a stronger decor-
relation on average globally: the mean of the first demodu-
lates and the mean SCVF15 are 76 m2 and 0.47 as well as
and 41 m2 and 0.57 for the moorings and HYCOM data, re-
spectively. Using median values instead leads to the same
conclusions (not shown).

We investigate a potential latitudinal dependence by plot-
ting the mean autocovariance series computed separately
from the geographical bins lying north (149 instruments) and
south (11 instruments) of 50◦ S (see Figs. 10c and d, and
10e and f, respectively). The mean semidiurnal IT variance
and the mean SCVF15 for each group are shown in Table 2.
Again, the divergence between the two datasets appears en-
hanced south of 50◦ S. Moreover, the SCVF15 is larger in the
Southern Ocean than elsewhere for HYCOM but smaller for
the moorings. This indicates a weaker, or slower, decorrela-
tion of the IT in HYCOM in the Southern Ocean than in the
global ocean.

The slower decorrelation of the IT in the simulation can
be explained by some decorrelating processes, such as ed-
dies or submesoscale variability, being weaker in HYCOM

than in the real ocean. It could also be explained by the time
variability in certain decorrelating processes. Our numerical
simulation only spans 20 May to 20 June 2019. Therefore,
it is potentially missing processes that would specifically oc-
cur or intensify at another time of the year (or in a differ-
ent year). On the other hand, the mooring data span several
decades. Thus, our single month of data from HYCOM may
not be representative of the broader temporal sampling of the
mooring data.

The spatial distribution of the moorings is sparse and tends
to be denser in particular areas (e.g., the Gulf Stream re-
gion). This is all the more true south of 50◦ S, where much
fewer moorings are available than in the northern region and
where they are mostly located in the Drake Passage. For
both these reasons, the mean autocovariances computed from
moorings north and especially south of 50◦ S cannot be con-
sidered truly representative of the IT in these vast regions.
Nonetheless, they remain representative of the collection of
geographical bins used to construct them.

4.3 Apparent decorrelation

In Sect. 4.1 we demonstrated that the motion of the floats
has no significant impact on the measured total variance of
the IT. However, the Doppler effect and spatial decorrelation
induced by the Lagrangian sampling of the floats both act
as decorrelating processes causing the autocovariance to de-
cay with increasing time lag (Geoffroy and Nycander, 2022).
Following Caspar-Cohen et al. (2022), we call this mecha-
nism apparent decorrelation, as it is unrelated to the decor-
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Figure 10. (a) Global-mean autocovariance computed as the average of the local-mean autocovariance series from the HYCOM particles
over the geographical bins presented in Fig. 9b (solid black curve) and global-mean autocovariance from the moored instruments computed
in the same way (solid red curve). (b) Boxplots of the observed distribution of the complex demodulates at the semidiurnal frequency of the
local-mean autocovariances for the collection of geographical bins presented in Fig. 9b as a function of time lag. Each boxplot consists of
a rectangle extending from the first to the third quartile of the data, with a line at the median and a cross at the mean. For a given time lag,
the red and black boxplots, offset on either side of the time lag value, represent the distribution of the demodulates computed over the 48 h
window centered on that time lag value from moorings and HYCOM, respectively. (c, d) Same as (a) and (b), respectively, but using only
the 149 geographical bins north of 50◦ S. (e, f) Same as (a) and (b), respectively, but using only the 11 geographical bins south of 50◦ S.
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Table 2. Summarizing numerics of the autocovariance series plotted
in Fig. 10.

Mooring HYCOM HYCOM/
mooring

Global σ 2
SD 76 m2 41 m2 0.53

SCVF15 0.47 0.57 1.23

North of σ 2
SD 67 m2 39 m2 0.58

50◦ S SCVF15 0.50 0.58 1.15

South of σ 2
SD 201 m2 64 m2 0.32

50◦ S SCVF15 0.29 0.54 1.83

relation of the IT. Geoffroy and Nycander (2022) estimated
the apparent decorrelation timescale to be longer than that
of the autocovariance function observed by Argo floats, on
average globally. Thus, they concluded that the decay of the
global-mean autocovariance observed by Argo floats is pri-
marily due to the decorrelation of the IT.

The HYCOM data allow this to be studied by directly
comparing the global-mean autocovariance computed in the
Lagrangian and Eulerian frameworks (see Fig. 11a and b).
As expected, the Lagrangian (R

L
HYCOM, solid black curve in

Fig. 11a) and Eulerian (R
E
HYCOM, solid red curve) global-

mean autocovariances are virtually identical until τ ≈ 50 h.
Past this limit, the more rapid decay of R

L
HYCOM can only be

caused by the apparent decorrelation, while R
E
HYCOM contin-

ues to solely reflect the decorrelation of the IT. Our aim in
the present section is to find estimates for the characteristic
timescales of the apparent decorrelation and decorrelation of
the IT in HYCOM and compare them with observations.

Taking inspiration from Geoffroy and Nycander (2022)
and Caspar-Cohen et al. (2022), we try a simple model for
the complex demodulate at the semidiurnal frequency of the
Eulerian autocovariance computed over a time lag window
centered on τ :

CE
SD(τ )= σ

2
SD
(
α+ (1−α)exp(−τ/T )

)
+ σ 2

AM
(

cos(ωAMτ)− 1
)
. (5)

Here, σ 2
SD is the total semidiurnal internal tide variance; α is

the stationary fraction; T is the IT decorrelation timescale;
and σ 2

AM and ωAM are the variance and angular frequency of
an amplitude-modulating sinusoid, respectively. A heuristic
model for the demodulate of the corresponding Lagrangian
autocovariance is then

CL
SD(τ )= CE

SD(τ )exp(−τ/Tapp), (6)

where Tapp is the apparent decorrelation timescale.
A constrained least squares fit of the model Eq. (5) to

the complex demodulate series computed from R
E
HYCOM (red

crosses in Fig. 11b) yields T = 94 h. The fitted model and

Table 3. Summary of the parameters estimated from the simulated
Eulerian and Lagrangian data. These values are used to compute
CL

SD from the model Eq. (6) (solid black curve in Fig. 10b).

σ 2
SD α T σ 2

AM ωAM Tapp

Global 39 m2 0.60 94 h 4 m2 0.0185 h−1 209 h

the exponential decay due to the IT decorrelation (i.e., only
the term proportional to σ 2

SD) are represented in Fig. 11b
as the solid and dashed red curves, respectively. On aver-
age globally, 95 % of the decorrelation of the nonstationary
IT in HYCOM is therefore achieved within 3T ≈ 300 h (for
exp(−3)≈ 0.05), i.e., well under the 32 d of data.

By dividing R
L
HYCOM by R

E
HYCOM, we can isolate the ef-

fects of the apparent decorrelation on R
L
HYCOM. In Fig. 11c

we plot this ratio after applying a median filter with a win-
dow of 18 h (solid black curve). A least squares fit of a sim-
ple decaying exponential to the obtained curve yields an ap-
parent decorrelation timescale Tapp = 209 h (dashed black
curve). For verification, we compute the Lagrangian CL

SD
from Eq. (6) by multiplying the fitted model of CE

SD (solid
red curve in Fig. 11b) by the fitted exponential decay due to
the apparent decorrelation (dashed black curve in Fig. 11c).
The result (solid black curve in Fig. 11b) closely follows
the demodulated Lagrangian autocovariance (black crosses
in Fig. 11b). The different parameters obtained from the Eu-
lerian and Lagrangian simulated data are summarized in Ta-
ble 3. Note that the fitted amplitude-modulating sinusoid is
close to the spring–neap cycle, here ωAM = |ωM2 −ωS2 | ≈

0.0177 h−1.
We can compare the global-mean values of T and Tapp

obtained from the simulation with the Argo observations.
The geographical coverage of the Argo data is less than
that of HYCOM (roughly 55 % in area). Hence, instead of
the global collections of floats and Lagrangian particles, we
now consider the intersection of the two datasets taken as
the unmasked bins shown in Fig. 7b and the corresponding
local-mean autocovariances. These local-mean autocovari-
ances are averaged further to obtain a global-mean autoco-
variance for each dataset that is representative of a common
area. We then fit the model Eqs. (6) and (5) to the demod-
ulates of the Argo global-mean autocovariance (see Fig. 12,
updated from Geoffroy and Nycander, 2022). The parameters
fitted to the Argo observations, as well as the parameters ob-
tained by repeating the above procedure for the correspond-
ing simulated data, are gathered in Table 4. The values of Tapp
and T computed here, from Argo data only, are similar to
those reported by Geoffroy and Nycander (2022), where the
authors estimated them from a comparable collection of Argo
floats and HRET (in particular, the stationary limit was deter-
mined from HRET instead of by fitting). The fitted stationary
fraction α, however, is about 3 times larger than previously
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Figure 11. (a) Global-mean autocovariance at 1000 dbar computed from the global collection of HYCOM-derived ηL (solid black curve) and
ηE (solid red curve) time series and (b) corresponding complex demodulates at the semidiurnal frequency. The uncertainties are vanishingly
small (not shown). The solid and dashed red curves represent the result of fitting the model Eq. (5) to the Eulerian demodulates and the
underlying exponential decay due to the decorrelation of the IT, respectively. The solid black curve corresponds to the model Eq. (6) with the
different parameters set as described in the text. (c) Median filtered ratio of RL

HYCOM to RE
HYCOM (solid black curve) and fitted decaying

exponential with the apparent decorrelation timescale (dashed black curve). For reference, we overlay a decaying exponential with the IT
decorrelation timescale obtained by fitting the model Eq. (5) to the Eulerian demodulates (dashed red curve).

reported. This could be explained by a low-biased station-
ary variance (obtained by projecting HRET at 1000 dbar) in
Geoffroy and Nycander (2022). As from the simulated data,
fitting our model to the Argo global-mean demodulates yield
a T shorter than Tapp. While the Argo Tapp is almost identical
to the HYCOM value, T is about twice as small.

Similarly to Geoffroy and Nycander (2022), we conclude
that the decorrelation of the IT is more rapid than the ap-
parent decorrelation on average globally. Yet, according to
the simulated data, it is only more rapid by a factor of 2,
while this factor is 4 according to the Argo data. Hence, some
decorrelating processes appear to be weaker in the simulation
than in the real ocean. As explained in Sect. 4.2, the slower
decorrelation of the IT in HYCOM could also be explained
by certain decorrelating processes being weaker than usual
in the 20 May–20 June 2019 period of outputs used here.
Nevertheless, the decorrelation of the IT typically is at least
as important as the apparent decorrelation over the first few
days of time lag. This result might not hold true everywhere,

since the geographical variability in T and α is expected to
be large.

Lastly, Zaron (2022) provides a valuable comparison point
for the results above. Along the same lines as in this sec-
tion, he uses the spatially averaged frequency spectrum of sea
level observations from satellite altimetry to measure proper-
ties of both the baroclinic tidal peak and continuum (i.e., the
coherent and incoherent IT variability, respectively). For the
semidiurnal band, in the latitude range from 30◦ S to 30◦ N,
the author found that about 62 % of the IT variance eventu-
ally becomes decorrelated within 34 d. Assuming an expo-
nential decay as in the model Eq. (5), this would represent
a stationary fraction α ≈ 0.38 and a decorrelation timescale
T ≈ 163 h (for 99 % of the nonstationary IT to decorrelate
in 5T ). Repeating the fitting procedure above for data lim-
ited to the ±30◦ latitude range, we recover values in reason-
able agreement from the Argo observations: α ≈ 0.29 and
T ≈ 144 h (see Table 4). The HYCOM-fitted α ≈ 0.64 and
T ≈ 105 h agree less well with the results of Zaron (2022)
but still are in the same ballpark. In this latitude range, the

Ocean Sci., 19, 811–835, 2023 https://doi.org/10.5194/os-19-811-2023



G. Geoffroy et al.: Validating the internal tides in HYCOM with Argo data 825

Figure 12. Global-mean autocovariance at 1000 dbar computed from the Argo data over the unmasked bins in Fig. 7b (solid black curve)
and corresponding complex demodulates at the semidiurnal frequency (black crosses). The uncertainties are vanishingly small (not shown).
The solid red curve represents the result of fitting the model Eqs. (6) and (5) to the demodulates.

bins used for the fitting represent roughly 45 % of the oceanic
area.

4.4 Potential sources of bias

Why is the IT variance lower and IT decorrelation weaker in
HYCOM than in the observations, particularly in the South-
ern Ocean? At the time of writing we cannot think of a par-
ticular reason for either the Argo- or the mooring-derived IT
variance to be biased high globally. In particular, the cor-
rection accounting for the non-tidal variability we system-
atically subtract from the sample autocovariance precludes
any contamination of the first demodulate by the background
noise (see Appendix C).

We also investigated whether the bias in the Southern
Ocean could be related to the contamination of the first 48 h
demodulate at ωSD by near-inertial waves as we approach
the M2 critical latitude (where f = ωM2 , at about 74◦ S). To
check this, we can map the semidiurnal IT variance from the
Argo data anew (as shown in Fig. 6c), this time fitting an ad-
ditional cos(f τ), where f is the local Coriolis frequency, to
the local-mean autocovariances. The result of the fit becomes
unstable at 74◦ S, but the zonal mean of the demodulates at f
does reach a maximum around 60◦ S, while the zonal mean
of the demodulates at ωSD remains unaffected (not shown).
We conclude that the first 48 h demodulate at the semidiur-
nal frequency is not affected by near-inertial waves at any
latitude.

As for the model, the horizontal grid spacing limits the
number of vertical modes correctly resolved to the first five
modes, equatorward of ±50◦ latitude and for seafloor depths
deeper than 1250 m (Buijsman et al., 2020). Approaching the
poles, the number of model layers below the mixed layer, and
hence the vertical resolution, decreases. This further limits
the number of resolved modes in HYCOM south of 50◦ S:
roughly, modes 3 and 2 are only partially resolved poleward
of 60 and 65◦ S, respectively. Although the bulk of the IT
variance at 1000 dbar is likely related to mode-1 waves on

average globally (Geoffroy and Nycander, 2022), the con-
tribution from higher modes can become significant locally.
In principle, Argo floats, moorings, and HYCOM data in-
clude the effect of higher modes, but these are less well re-
solved in HYCOM, particularly in the Southern Ocean. To-
gether with the assumption that higher-mode ITs are less co-
herent (Egbert and Ray, 2017), this may explain the lower
IT variance and weaker IT decorrelation in HYCOM than in
the observations, both on average globally and more specifi-
cally in the Southern Ocean. It is also in line with the larger
mean SCVF15 computed from HYCOM data in the South-
ern Ocean compared with the rest of the globe (indicat-
ing a weaker decorrelation there), whereas for moorings the
SCVF15 is smaller in this region (see Table 2).

The mode-m vertical structure of the isopycnal displace-
ment 8m(z) is obtained by solving the Sturm–Liouville
problem

d28m(z)

dz2 +
N2(z)

c2
m

8m(z)= 0, (7)

with the boundary conditions8m(0)=8m(−H)= 0, where
H is the ocean depth,N(z) is the buoyancy frequency profile,
and−1/c2

m is the eigenvalue corresponding to the eigenfunc-
tion 8m(z) for mode-m (Gill, 1982). The modal partitioning
of the IT energy at a given location is mainly determined
by the conversion rate (both local and remote) and lifetime
of each mode (de Lavergne et al., 2019). Additionally, de-
pending on the local stratification and ocean depth, the park-
ing depth at 1000 dbar can be more or less close to the anti-
node (point of maximal displacement) and node (point of no
displacement) of the different vertical modes. Therefore, the
normalized contribution of mode-m relative to mode-1 waves
to the variance recorded at this depth is weighted by a coeffi-
cient γm1. In Appendix B of Geoffroy and Nycander (2022),
the authors derived an expression for this coefficient:

γm1(z)=
82
m(z)

∫ 0
−H
N282

1dz

82
1(z)

∫ 0
−H
N282

mdz
. (8)

https://doi.org/10.5194/os-19-811-2023 Ocean Sci., 19, 811–835, 2023



826 G. Geoffroy et al.: Validating the internal tides in HYCOM with Argo data

Table 4. Parameters from the fitting of the model Eq. (6) to the demodulates of (i) the global-mean autocovariance computed from the Argo
data over the unmasked bins in Fig. 7b (see Fig. 12) and (ii) the mean autocovariance computed from the same bins but limited to the latitude
range from 30◦ S to 30◦ N. These parameters are also estimated from the simulated Eulerian and Lagrangian data in the same locations.

σ 2
SD α T σ 2

AM ωAM Tapp

Argo Global 52 m2 0.43 51 h 4 m2 0.0177 h−1 207 h
±30◦ 51 m2 0.29 144 h 4 m2 0.0185 h−1 242 h

HYCOM Global 26 m2 0.62 94 h 3 m2 0.0185 h−1 199 h
±30◦ 37 m2 0.62 105 h 4 m2 0.0185 h−1 188 h

Figure 13. (a) Weight of the normalized contribution of mode-2
relative to mode-1 waves to the IT variance recorded at 1000 dbar,
computed from the WOA18 stratification. (b) Same as (a) but for
the relative contribution of mode-3 waves.

In Fig. 13a and b we plot the global maps of γ21 and γ31 at
1000 dbar, respectively, computed from Eq. (8) after solving
the eigenvalue problem Eq. (7) for the 1/4◦WOA18 summer
climatology. Here, we extrapolated the climatological data
down to the reference bathymetry from the General Bathy-
metric Chart of the Oceans 2019 (GEBCO, 2019) wherever
the bathymetry is deeper than the deepest valid climatologi-
cal record. A visual comparison with Fig. 7b in the Southern
Ocean suggests that low HYCOM-to-Argo IT variance ratios
(darker-blue pixels in Fig. 7b) spatially coincide with large
γ31 mostly or, to some extent, γ21 (especially in the Weddell
Sea). South of 60◦ S, either γ31 or γ21 is larger than unity;
hence the contribution from mode-3 or mode-2 waves to the
IT variance recorded at 1000 dbar is magnified compared to
the contribution from mode-1 waves. However, modes 2 and
higher are not well resolved in HYCOM at these latitudes.

The magnification of the contributions from modes 2 and
3 to the variance at 1000 dbar in the Southern Ocean only af-
fects how propagating ITs are perceived at the Argo parking
depth. This has no connection with the generation and dis-

sipation processes that set the underlying modal partitioning
of the IT energy. Additional explanations might be found by
examining whether the main parameters affecting the gener-
ation of ITs (namely the bottom topography, barotropic tidal
forcing, and stratification) are less accurate in this region than
in the rest of the globe.

The pattern of the enhanced discrepancies between Argo
and HYCOM in the Southern Ocean (darker blue in Fig. 7)
might be correlated with the distribution of bathymetric fea-
tures. For instance, the large values around 45◦ S, 105◦W,
in the South Pacific are centered on the Chile Rise, a known
IT generation area. To date, only about 19 % of the global
ocean seafloor has been mapped using shipborne techniques.
Therefore, global bathymetric products widely rely on depth
prediction from satellite gravimetry (Smith and Sandwell,
1994). Small-scale features such as abyssal hills are not re-
solved by this technique.

In the recent SRTM15+ bathymetry (Tozer et al., 2019),
gravity-predicted depths were estimated to have root mean
square (RMS) uncertainties and maximum error of the or-
der of ±150 and 1800 m, respectively (based on 50 cruises
distributed globally). With about 22 % seafloor coverage by
direct high-quality measurements, the International Bathy-
metric Chart of the Southern Ocean v2 (IBCSO; Dorschel
et al., 2022) is the state-of-the-art bathymetric chart south
of 50◦ S. A cell-by-cell comparison between IBCSO v2 and
SRTM15+ v2.2 showed marked disparities, in particular for
water depths between −4000 and −1000 m with differences
reaching up to 1700 m (Dorschel et al., 2022). Most of the
bathymetric errors only affect the generation of high-mode
ITs, which are bound to dissipate locally. Note that HYCOM
may not resolve these high-mode ITs anyway, as discussed in
the present section. Still, the less frequent errors of the order
of thousands of meters are likely to affect the generation of
low-mode ITs in the model.

Efforts have been made to improve the accuracy of the
M2 barotropic tides embedded in HYCOM. The simulation
used in this study incorporates the framework presented in
Ngodock et al. (2016) aiming at minimizing the tidal ele-
vation RMS errors with respect to TPXO, a state of the art
data-assimilative tide model (Egbert and Erofeeva, 2002).
However, the tidal elevations in TPXO itself also have er-
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rors. Both Stammer et al. (2014) and Zaron and Elipot (2021)
point at the imperfection of the modeled tidal elevations near
Antarctica (using data from GRACE and CryoSat-2, respec-
tively). On the other hand, it is not so much the sea surface
height that matters here, but the tidal currents. Zaron and
Elipot (2021) used surface drifter observations for evaluat-
ing TPXO-predicted tidal currents throughout much of the
global oceans. Unfortunately, the spatial density of observa-
tions is too poor to evaluate the model performance around
much of Antarctica.

Lastly, to assess the stratification in HYCOM, we compare
the phase speed of a mode-1 gravity wave in the model with
the phase speed determined from climatology. The phase
speed of a mode-m gravity wave cm is directly related to the
eigenvalue −1/c2

m obtained by solving the Sturm–Liouville
problem (Eq. 7). Having already solved Eq. (7) for the cli-
matology, we now solve it for our simulated monthly mean
3D fields of temperature and salinity (subsampled to 1◦). As
for the climatology, the HYCOM data were extended down
to the reference bathymetry from GEBCO 2019, wherever
deeper, by appending the stored bottom value. We then lin-
early interpolated the climatological phase speed of a mode-
1 gravity wave cWOA

1 at 1/4◦ resolution onto the coarser 1◦

HYCOM grid.
In Fig. 14a we plot the climatology-to-HYCOM phase

speed ratio. Most of the visible differences fall in the range
of expected interannual variability of less than 10 % (Chel-
ton et al., 1998). However, in a few areas around Antarctica
there are larger departures of the ratio from unity. Figure 14b
shows the zonal mean of the mode-1 phase speed from Argo
and HYCOM as a function of latitude. Equatorward of±60◦,
the two curves agree almost perfectly, and they also visually
agree with the results of Chelton et al. (1998) (not shown).
Poleward of 60◦ S and 60◦ N, however, differences steadily
grow. In the Southern Ocean, the zonal-mean-climatology-
to-HYCOM phase speed ratio peaks at 1.7 (see Fig. 14c).
Typically, weaker stratification (smaller phase speed) results
in smaller energy conversion.

5 Conclusions

In this work we compare a 32 d segment of a global run
of the HYCOM model, including realistic tidal and atmo-
spheric forcing, with in situ observations of the semidiurnal
IT around 1000 dbar. First, a Lagrangian sampling of the sim-
ulation was compared to park-phase data from Argo floats
to validate the geographical variability in the semidiurnal
IT variance in HYCOM (see Sect. 4.1). Then, the Eulerian
simulation outputs were directly compared to geographically
sparser mooring records, in terms of variance and decorrela-
tion of the IT (see Sect. 4.2).

The main spatial patterns of the simulated IT variance at
1000 dbar broadly agree with Argo observations, with energy
radiating away from low-mode IT generation hotspots (see

Fig. 6). Nonetheless, on average globally, the HYCOM data
exhibit a smaller semidiurnal IT variance than observed by
Argo floats, by a factor 0.58 (see Table 1). This is in line with
the results of Ansong et al. (2017) and Luecke et al. (2020),
who found HYCOM values to be biased low by a similar
factor when comparing the simulated M2 IT energy flux and
temperature variance to historical mooring observations.

While the difference between the model and Argo data
appears reasonably homogeneous across most of the world
ocean, it steadily increases towards the poles (see Fig. 7).
Because of the scarcity of Argo floats available in the north-
ernmost region, we focused on the Southern Ocean. On aver-
age, south of 50◦ S, we found that the simulated semidiurnal
IT variance is smaller than the variance observed by Argo
by a factor of 0.29. North of 50◦ S, this factor is 0.69 (see
Table 1).

The mooring data support the above results for the semid-
iurnal IT variance. Additionally, we found that the decorrela-
tion affecting the semidiurnal IT in HYCOM over a 32 d win-
dow is weaker than observed in the mooring records, on aver-
age (see Fig. 10 and Table 2). In other words, over timescales
shorter than 32 d, the semidiurnal IT in HYCOM is more co-
herent than in observations. This weaker decorrelation of the
IT in HYCOM can be explained by some decorrelating pro-
cesses being weaker in the model than in the real ocean. It
could also be explained by certain decorrelating processes
being unusually weak in the 20 May–20 June 2019 period
of outputs used in this work. Depending on the location, the
complete decorrelation of the nonstationary IT is not system-
atically observable in a 32 d duration. Longer time series are
thus needed to accurately describe the decorrelation of the IT.
Nonetheless, we found that the semidiurnal IT autocovari-
ance in HYCOM actually reaches its stationary limit within
approximately 300 h on average globally, i.e., well under our
32 d of simulated data (see Fig. 11). Put together, these re-
sults support the conclusions of Buijsman et al. (2020), who
found that the stationary (i.e., the long-term coherent) M2 IT
solution from HYCOM is too energetic compared with al-
timetry. Note that their comparison was based on 1-year sim-
ulated time series corrected for the duration difference with
17-year-long altimetry records.

We also investigated the effects of the Lagrangian sam-
pling inherent to the Argo floats. When comparing autoco-
variances computed from the HYCOM data sampled in the
Lagrangian and Eulerian frameworks, respectively, we found
the IT variance to be unaffected in the mean (see Fig. 5).
Moreover, the simulated apparent decorrelation (the decorre-
lation due to the motion of a Lagrangian particle) agrees very
well with the apparent decorrelation experienced by Argo
floats, on average globally (see Sect. 4.3). The (Eulerian)
decorrelation of the IT in the simulated data, on the other
hand, typically is half as rapid as the one inferred from Argo
observations. This would make the IT decorrelation at least
as important as the apparent one over the first few days of
time lag. However, the geographical variability in the dura-
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Figure 14. (a) Ratio of the phase speeds of a mode-1 gravity wave computed from the WOA18 and HYCOM stratification profiles. (b) Zonal
mean of the phase speed of a mode-1 gravity wave from WOA18 (solid red curve) and HYCOM (solid black curve) as a function of latitude.
(c) Same as (b) but zoomed in between 77 and 60◦ S.

tion and strength of the IT decorrelation is expected to be
large. Limiting the comparison to the latitude range from
30◦ S to 30◦ N, the Argo and HYCOM data lead to an IT
decorrelation timescale of about 4.5 and 6 d, respectively (see
Table 4), in reasonable agreement with the results of Zaron
(2022).

Finally, we discuss the potential sources of bias. We could
not think of a particular reason for the IT variance obtained
from either the Argo or the mooring data to be biased high,
particularly in the Southern Ocean. However, HYCOM is
subject to various limitations. First and foremost, the model
can only correctly resolve vertical modes up to 5 in most of
the global oceans. Approaching the poles, the reduced num-
ber of layers further limits the number of resolved modes.
While mode-1 ITs supposedly account for most of the tidal
variability at 1000 dbar on average globally (Geoffroy and
Nycander, 2022), in situ instruments also record the contribu-
tion from higher modes that can become significant locally.
This may explain why the IT variance is larger in the in situ
data than in HYCOM, particularly in the Southern Ocean.
Insufficient model stratification also seems to be a specific
problem in that very region. We have not been able to quan-
titatively explain the overall smaller IT variance in HYCOM
than in the in situ data over the global ocean. In principle, it
could be due to limitations in the bathymetry, barotropic tidal
forcing, or stratification.

Appendix A: Bias of the complex demodulate of a
sample mean function

We consider the function R(τ) on a 48 h interval. This is fit-
ted to the functionAcos(ωτ)+B sin(ωτ), and we then define

C =
√
A2+B2. (A1)

This procedure is a mapping from the space of functions R
to the positive number C, i.e., a functional. We can write this
symbolically as

C =8 [R] , (A2)

where 8 is the functional.
8 obviously has the property

8 [aR]= |a|8 [R] , (A3)

where a is a constant. 8 also has the property (proof here-
after)

8 [R1+R2]≤8 [R1]+8 [R2] , (A4)

with equality only if R1(τ ) and R2(τ ) are proportional, i.e.,
perfectly correlated with positive correlation.

Let [Ri(τ )] be an infinite series of functions drawn from
a stochastic distribution. We have access to only N of these
(typically around 10). Define the sample average

RN (τ )=
1
N

N∑
i=1

Ri(τ ). (A5)
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RN (τ ) is an unbiased estimate of the true average R(τ):

lim
N→∞

RN (τ )= R(τ). (A6)

We also want an estimate of 8
[
R
]
. Denote the true value by

C∞:

C∞ =8
[
R
]
. (A7)

A sample estimate might be

CN =8
[
RN

]
. (A8)

However, Eq. (A4) implies that this is biased. For example,
define

RM(τ )=
1
N

2N∑
i=N+1

Ri(τ ). (A9)

C2N =8
[
R2N

]
=8

[
RN +RM

2

]
≤

1
2
(8
[
RN

]
+8

[
RM

]
), (A10)

with equality only if RN and RM are proportional. But RN
and RM are stochastic functions drawn from the same dis-
tribution and therefore are almost never proportional. On av-
erage we also have 8

[
RN

]
=8

[
RM

]
; hence Eq. (A10) im-

plies

C2N < CN , (A11)

so thatCN is a decreasing function ofN . Thus, we expectCN
to be larger than C∞. In other words, the complex demodu-
late of the sample function RN (τ ), i.e., the fitting defined in
Eq. (A2), is a high-biased estimate of the envelope of the true
function R(τ).

We now show the inequality Eq. (A4). It resembles the
triangle inequality for two vectors:

|a+ b| ≤ |a| + |b| . (A12)

For 2D vectors a = (a1,a2), b = (b1,b2), this gives√
(a1+ b1)2+ (a2+ b2)2 ≤

√
a2

1 + a
2
2 +

√
b2

1 + b
2
2, (A13)

which is valid for arbitrary numbers a1, a2, b1, and b2.
Define a scalar product 〈f,g〉 between the functions f (τ)

and g(τ) as the integral of fg over the 48 h interval:

〈f,g〉 ≡

∫
f (τ)g(τ )dτ. (A14)

Suppose that the period of sin(ωτ) exactly fits this win-
dow (note that this is the case in the present work, where
4×2π/ωSD ≈ 48.8 h). Then sin(ωτ) and cos(ωτ) are orthog-
onal:

〈cos(ωτ),sin(ωτ)〉 = 0. (A15)

Any function f (τ) can be expanded in a Fourier series on the
interval. A least squares fit of f (τ) to Acos(ωτ)+B sin(ωτ)
is the same thing as projecting f (τ) on the basis functions
cos(ωτ) and sin(ωτ). Thus, the best fit is given by

A=
1
E
〈f (τ),cos(ωτ)〉 and

B =
1
E
〈f (τ),sin(ωτ)〉, (A16)

where E = 〈cos(ωτ),cos(ωτ)〉 = 〈sin(ωτ),sin(ωτ)〉. Con-
sider two functions f (τ) and g(τ), and denote

a1 =
1
E
〈f (τ),sin(ωτ)〉,

a2 =
1
E
〈f (τ),cos(ωτ)〉,

b1 =
1
E
〈g(τ),sin(ωτ)〉,

b2 =
1
E
〈g(τ),cos(ωτ)〉. (A17)

We then have

8
[
f
]
=

√
a2

1 + a
2
2, (A18)

8
[
g
]
=

√
b2

1 + b
2
2, (A19)

8
[
f + g

]
=

1
E

√
〈f + g,sin(ωτ)〉2+〈f + g,cos(ωτ)〉2

=

√
(a1+ b1)2+ (a2+ b2)2 . (A20)

Putting Eqs. (A18)–(A20) in Eq. (A13) gives Eq. (A4).

Appendix B: Effects of the non-tidal variability on the
complex demodulates

Two aspects of the processing originally used in Geof-
froy and Nycander (2022) are important in mitigating a po-
tential contamination of the first demodulate by the non-
tidal variability (noise). (i) The demodulation over a given
48 h window is performed in two iterations. Acos(ωSDτ)+

B sin(ωSDτ) is first fitted to the signal, and the root mean
square error (RMSE) is computed. The fitting is then re-
peated with a trimmed signal that excludes values outside
of ±2 RMSE from the previously fitted curve. (ii) The time
series are high-pass-filtered prior to computing their sam-
ple autocovariance. Suppose the non-tidal variability ρ(t) is
a first-order autoregressive process (AR1) characterized by
zero mean, the timescale τρ , and the white Gaussian noise
ερ(t) with zero mean and variance σ 2

ε, ρ . The variance and
autocovariance of an AR1 process are given by

σ 2
ρ =

σ 2
ε, ρ

1− exp(−2/τρ)
, Rρ(τ )= σ

2
ρ exp(−τ/τρ), (B1)
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respectively. For very short τρ , ρ(t) is close to a white noise,
i.e., showing a flat power spectrum. As τρ increases, ρ(t) re-
sembles a red noise with increasingly steep exponential de-
cay in spectral space. Therefore, as τρ increases, an increas-
ing fraction of σ 2

ρ is filtered out by the high-pass filter.
We can investigate this further using a simple model,

adapted from Geoffroy and Nycander (2022), of a tidal vari-
ability on top of a background noise:

h(t)= ρ(t)+
∑
i

Ai cos(ωi t +φ(t)). (B2)

Here, ωi and Ai are the angular frequency and the amplitude
of the tidal constituent i, respectively, where i ∈ [M2, S2].
φ(t) and ρ(t) are AR1 processes representing random phase
modulations and a non-tidal variability, respectively. These
AR1 processes can be defined by their variance and char-
acteristic time. We vary σ 2

ρ and τρ (the variance and char-
acteristic time of ρ(t), respectively) with the rest of the
variables set to realistic values: the tidal variance σ 2

SD =

(A2
M2
+A2

S2
)/2= 40 m2, and σ 2

φ = 1.19 rad2 and τφ = 150 h
(the variance and characteristic time of φ(t), respectively).
Since the tidal variance is fixed, varying σ 2

ρ is the same as
varying the signal-to-noise ratio S/N = σ 2

SD/σ
2
ρ . For refer-

ence, in Appendix C we estimate the global distribution of
the signal-to-noise ratio observed by Argo floats (not shown).
This distribution is skewed, with a median of 0.8 and a 5th
percentile of 0.2, approximately. We also estimate the me-
dian τρ ≈ 1 h from the global collection of floats.

We start by varying τρ for a fixed variance value of
σ 2
ρ = 200 m2, corresponding to the extreme S/N = 0.2. For

a given value of τρ , we generate one thousand 32 d long syn-
thetic time series h(t) following the model Eq. (B2). The
time series are high-pass-filtered using a fourth-order Butter-
worth filter with a cut-off frequency of 0.3 cpd. We then com-
pute a sample autocovariance from each filtered time series
and average these to obtain a mean autocovariance. Finally
we compute the 48 h demodulates of the mean autocovari-
ance following the complex demodulation method described
in Sect. 3.2.

In Fig. B1, we show the mean autocovariance and the cor-
responding 48 h demodulates for τρ = 0.1, 1, and 12 h. The
value of the first demodulate for τρ = 0.1 is essentially the
same as if there were no ρ(t) at all, namely C(τ = [0, 48])≈
34 m2. For longer τρ , the main difference with the previous
curve can be easily visualized from the first few demodulates.
In particular, the first demodulates C(τ = [0, 48])≈ 38 and
31 m2, corresponding to τρ = 1 and 12 h, are systematically
biased high and low, respectively.

We repeat the same experiment for τρ ranging from 0 to
48 h and focusing on the effects of the noise on the first de-
modulate. In Fig. B2, we plot the first demodulate as a func-
tion of τρ (solid curve). For any τρ , the first demodulate is
seen to remain lower than the true σ 2

SD = 40 m2. Moreover,
two regimes can be identified: (i) for τρ shorter than 5 h,
roughly, the contribution of the non-tidal variability to the

Figure B1. (a) Mean autocovariance computed from 1000 synthetic
time series generated following the model Eq. (C8) for τρ = 0.1, 1,
and 12 h (dash-dotted black, solid black, and solid red curve, re-
spectively) and a fixed S/N = 0.2. (b) Complex demodulates at the
semidiurnal frequency of the autocovariance series shown in (a).

Figure B2. First 48 h demodulate of the mean autocovariance com-
puted from 1000 synthetic time series generated following the
model Eq. (B2) as a function of τρ for fixed S/N = 0.2 (solid curve)
and 0.8 (dash-dotted curve).

first demodulate is positive and peaks for τρ = 1 h, where
C(τ = [0, 48])≈ 38 m2, and (ii) for longer τρ , this contri-
bution is negative, with a minimum C(τ = [0, 48])≈ 30 m2

at τρ = 11 h. For a more typical S/N = 0.8, i.e., setting
σ 2
ρ = 50 m2 in our synthetic time series, we found a similar

dependence of the first demodulate on τρ as previously but
with a much smaller span in amplitude (dash-dotted curve
in Fig. B2). The contribution of the non-tidal variability to
the first demodulate again peaks for τρ = 1 h, with C(τ =
[0, 48])≈ 35 m2, and the minimum occurs around τρ = 8 h,
where C(τ = [0, 48])≈ 33 m2.

Hence, for the typical S/N = 0.8 and τρ = 1 observed by
Argo floats, we estimate that the non-tidal variability can
lead to a first demodulate being biased high by roughly 3 %.
For the same characteristic timescale but S/N = 0.2 (the 5th
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Figure B3. Theoretical autocovariance of the AR1 process ρ(t)
with τρ = 12 h and σ 2

ρ = 200 m2 (solid black curve) and sample
mean autocovariance computed from 1000 non-filtered and 1000
high-pass-filtered synthetic time series of ρ(t) (solid and dash-
dotted red curve, respectively), constructed using the same parame-
ters.

Figure B4. First 48 h demodulate of the mean autocovariance com-
puted from 1000 synthetic time series generated following the
model Eq. (B2) as a function of S/N for fixed τρ = 1 (solid black
curve) and 12 h (solid red curve). The first demodulates of the cor-
responding noise-corrected autocovariances are shown as the black
and red dash-dotted curves, for τρ = 1 and 12 h, respectively.

percentile of the global S/N distribution sampled by Argo
floats), this bias can reach 10 %. Notwithstanding, even for
such an extreme S/N value, the first demodulate is seen to
remain a conservative estimate of the IT variance. The ef-
fects of the non-tidal variability on the IT variance estimate
as computed in Geoffroy and Nycander (2022) thus do not
put their results into question.

It is not straightforward to understand why the contribu-
tion of the non-tidal variability to the value of the first de-
modulate can be negative. Because of the way we defined
ρ(t), i.e., an AR1 process with a positive parameter, its au-
tocovariance should remain positive. Oscillations of Rρ(τ )

are actually a consequence of the high-pass filter applied
to the time series. We show this in Fig. B3, where we plot
the theoretical autocovariance of ρ(t) with τρ = 12 h and
σ 2
ρ = 200 m2 (solid black curve) and the sample mean au-

tocovariance from 1000 non-filtered and 1000 high-pass-
filtered synthetic time series (solid and dash-dotted red curve,
respectively) constructed using the same parameters.

As mentioned in Sect. 3.2, we expect the stochastic back-
ground noise affecting the simulated data to be different from
the one recorded by the in situ instruments. Therefore, to pre-
vent any systematic bias in the comparisons presented in this
work, we consistently correct the sample autocovariance by
subtracting an estimate of the autocovariance of the non-tidal
variability before performing the complex demodulation (see
Appendix C). We illustrate the effects of this correction in
Fig. B4. Here, we proceed in the same way as for Fig. B2, but
this time varying S/N (from 4× 10−2 to 4) for fixed τρ = 1
and 12 h. While the first demodulates of the non-corrected
mean autocovariances diverge for small S/N values (solid
curves), the first demodulates of the noise-corrected autoco-
variances are virtually constant (dash-dotted curves).

Appendix C: Estimating the autocovariance of the
non-tidal variability

In the present appendix, we derive a model for the autoco-
variance of a tidal variability on top of a high-pass-filtered
stochastic noise. In Appendix B we show that the autocovari-
ance of the non-tidal variability is affected by the high-pass
filter we apply on the original time series (see Fig. B3). This
consequence of filtering the time series was not taken into
account by Geoffroy and Nycander (2022) in the model of
the background noise they used.

Assume that the non-tidal variability ρ(t) is a first-order
autoregressive process (AR1) characterized by zero mean,
the timescale τρ , and the white Gaussian noise ερ(t) with
zero mean and variance σ 2

ε, ρ . In the time domain, the filtered
ρ′(t) can be modeled as the convolution of the unfiltered
ρ(t) with the impulse response of the filter h(t). We are,
however, interested in the autocovariance of ρ′(t), R′ρ(τ ),
which is closely related to the power spectrum (one is the
Fourier transform of the other). Luckily, it is much simpler
to perform this operation in the frequency domain, where the
power spectrum at the output of a linear filter, P ′ρ(z), is re-
lated to the power spectrum of the input stochastic process,
Pρ(z), by

P ′ρ(z)= |H(z)|2Pρ(z). (C1)

Here, H(z) is the system or transfer function of the filter,
and the z domain is limited to the unit circle z= exp(jω1t);
i.e., the z transform is equivalent to the discrete Fourier trans-
form, where ω is the angular frequency, and 1t is the con-
stant sampling interval (Kay and Marple, 1981). Moreover,

https://doi.org/10.5194/os-19-811-2023 Ocean Sci., 19, 811–835, 2023



832 G. Geoffroy et al.: Validating the internal tides in HYCOM with Argo data

the power spectrum of an AR1 process is a standard result:

Pρ(ω)=
σ 2
ε, ρ1t

1+ exp(−2/τρ)− 2exp(−1/τρ)cos(ω1t)
. (C2)

The Butterworth filter is linear in amplitude but not in
phase. As a workaround, we applied a second-order fil-
ter twice, once forward and once backward, to recover a
fourth-order filter with zero phase. The transfer function of
a second-order high-pass Butterworth filter in the z domain,
HB2(z), can be obtained from its Laplace transform:

HB2(s)=
1

(ωc/s)2+
√

2(ωc/s)+ 1
, (C3)

where ωc is the cut-off angular frequency (Schlichthärle,
2000). We use the bilinear transform, namely setting

s =
1
1t

ln(z)≈
2
1t

z− 1
z+ 1

(C4)

in Eq. (C3), to recover the expression

HB2(z)=
4− 8z−1

+ 4z−2

(ω2
c1t

2
+ 2
√

2ωc1t + 4)
+(2ω2

c1t
2
− 8)z−1

+(ω2
c1t

2
− 2
√

2ωc1t + 4)z−2

. (C5)

Hence, we can evaluate Eq. (C1) as

P ′ρ(ω)=
(∣∣HB2

(
z= exp(jω1t)

)∣∣2)2

Pρ(ω). (C6)

Since ρ′ is real-valued, the autocovariance R′ρ(τ ) is given
by the inverse discrete Fourier cosine transform of its power
spectrum P ′ρ(ω) (computed numerically).

As mentioned in Sect. 3.2, to limit any systematic bias we
consistently estimate and subtract the autocovariance of the
non-tidal variability from the sample autocovariance before
performing the complex demodulation. We obtain such an
estimate from the least squares fit of the model adapted from
Geoffroy and Nycander (2022),

Rm(τ )= R
′
ρf
(τ )+R′ρs

(τ )

+

∑
i

Ai

2
cos(ωiτ)exp(−σ 2

φ, i +Rφ, i(τ )), (C7)

corresponding to the autocovariance of a tidal variability af-
fected by a background noise:

m(t)= ρ′f(t)+ ρ
′
s(t)+

∑
i

Ai cos(ωi t +φi(t)). (C8)

Here, ωi and Ai are the angular frequency and the am-
plitude of the tidal constituent i, respectively, where i ∈
[M2,S2,K1,O1]. φi(t) is an AR1 process representing the
random phase modulations affecting the constituent i. For

Figure C1. (a) Atlas of the semidiurnal IT variance at 1000 dbar
computed from the fitting of the model Eq. (C7) to the same local-
mean autocovariance series as used in Fig. 6c. (b) Non-tidal vari-
ance from the same fitting as in (a). (c) Signal-to-noise ratio com-
puted as the ratio of (a) over (b). The ocean mask is colored in
yellow for readability.

the sake of simplicity, we assume that the decorrelating pro-
cesses act in the same manner on neighboring tidal frequen-
cies, that is, φM2(t)= φS2(t) and φK1(t)= φO1(t). Note that
the high-pass filter used in this work was designed so as not
to affect the tidal signal. ρ′f(t) and ρ′s(t) are high-pass-filtered
AR1 processes accounting for a fast and a slow non-tidal
variability, respectively. All the AR1 processes are charac-
terized by zero mean, the timescale τX, and the white Gaus-
sian noise εX(t) with zero mean and variance σ 2

ε,X, where
X ∈ [φ,ρf,ρs]. The variance and autocovariance of an AR1
process are

σ 2
X =

σ 2
ε,X

1− exp(−2/τX)
, RX(τ )= σ

2
X exp(−τ/τX), (C9)

respectively. The model Eq. (C7) does not take into account
the effects of the drift of the floats or Lagrangian particles.

We fit the full model Eq. (C7), containing 12 parameters,
to the sample autocovariance by nonlinear least squares, with
weights inversely proportional to the corresponding SEM,
and imposed bounds on the parameters (since we only fit pos-
itive timescales and variances). In particular, the timescales
of the fast and slow non-tidal variability are restricted to the
[0, 5] and [5, 48] h range, respectively. The autocovariance
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of the non-tidal variability is then computed as

R′ρ(τ )= R
′
ρf
(τ )+R′ρs

(τ ) (C10)

using the fitted parameters. Lastly, R′ρ(τ ) is subtracted from
the sample autocovariance to correct for the effects of the
filtered background noise.

The inclusion of a tidal variability in the model Eq. (C7)
primarily aims at limiting the projection of the observed tidal
variability onto our model for the background noise when fit-
ting. Nonetheless, the fitted parameters can be used to com-
pute an estimate of the semidiurnal IT variance σ 2

SD,LS =

(A2
M2
+A2

S2
)/2 and further to estimate the signal-to-noise

ratio characterizing the filtered Argo records as S/N =

σ 2
SD,LS/R

′
ρ(0). In Fig. C1 we show maps of σ 2

SD,LS, R′ρ(0),
and S/N computed from the same collection of local-mean
autocovariances as used in Fig. 6c. Note that σ 2

SD,LS and
R′ρ(0) are not correlated (r2

= 0.13 and 0.009 in the log–
log and linear domain, respectively). The least-squares-fitted
σ 2

SD,LS appears reasonable when compared with the first de-
modulates presented in Fig. 6c. The coefficient of determi-
nation r2

= 0.53 and 0.29 in the log–log and linear domain,
respectively, indicates a good agreement between the two es-
timates. Moreover, the global mean and median of their ratio
are 0.8 and 0.7, respectively, accounting for the decorrela-
tion of the IT taking place in the first 48 h. For such local-
mean autocovariances, however, the uncertainties are simply
to high to reliably estimate the parameters of the decorrelat-
ing process φi(t). Finally, we chose to perform the compar-
isons presented in this work in terms of the first demodulate,
for it is a conservative and more robust estimate of the IT
variance.

Code and data availability. Argo data were obtained from US
GDAC (ftp://usgodae.org/pub/outgoing/argo, last access: 11 Jan-
uary 2023, Argo, 2000). These data were collected and made
freely available by the international Argo program and the na-
tional programs that contribute to it (https://argo.ucsd.edu, https:
//www.ocean-ops.org, last access: 26 May 2023). The Argo
program is part of the Global Ocean Observing System. An
Argo Iridium float list is maintained by Stephen C. Riser (http:
//runt.ocean.washington.edu/argo/heterographs/rollcall.html, Riser
and Swift, 2023, last access: 11 January 2023). The code
used to download and process the Argo data is available
at https://doi.org/10.57669/geoffroy-2022-argoit-1.0.0 (Geoffroy,
2022a). A global map of the total semidiurnal internal tide
variance at 1000 dbar produced using the latter code is avail-
able at https://doi.org/10.17043/geoffroy-2022-argoit-1 (Geoffroy,
2022b). There is no long-term availability plan for the HY-
COM data used in this work. Climatological data were ob-
tained from the World Ocean Atlas 2018 (https://accession.
nodc.noaa.gov/NCEI-WOA18). Bathymetric data were obtained
from the GEBCO Compilation Group (https://www.gebco.net/
data_and_products/gridded_bathymetry_data/). The Global Multi-
Archive Current Meter Database is not publicly available but can
be obtained through request (http://stockage.univ-brest.fr/~scott/

GMACMD/gmacmd.html). NetCDF versions of the baroclinic tidal
harmonic constants from the High Resolution Empirical Tide
model are made available by Edward D. Zaron (https://ingria.ceoas.
oregonstate.edu/~zarone/downloads.html).
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