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Abstract 

 
Ensuring that intelligent vehicles do not cause fatal collisions remains a persistent 

challenge due to pedestrians' unpredictable movements and behavior. The potential for risky 

situations or collisions arising from even minor misunderstandings in vehicle-pedestrian 

interactions is a cause for great concern. Considerable research has been dedicated to the 

advancement of predictive models for pedestrian behavior through trajectory prediction, as well 

as the exploration of the intricate dynamics of vehicle-pedestrian interactions. Such endeavors aim 

to enhance the ability of intelligent vehicles to respond appropriately to the presence of pedestrians 

in their surroundings. Predicting pedestrian movements in crowded spaces is complex due to 

pedestrian interactions' continuous and forward-looking nature. While current methods fail to 

account for temporal correlations among these interactions, recurrent neural networks have been 

used to model social interactions. However, they are limited in capturing spatiotemporal 

interactions. Graph Neural Networks (GNNs) have been introduced to address this limitation but 

do not fully capture real-world social interactions as they consider the impact between traffic 

participants as fixed or symmetric. 

We propose a novel graph-based trajectory prediction model for vehicle-pedestrian 

interactions called Holistic Spatio-Temporal Graph Attention Trajectory Prediction (HSTGA) to 

address these limitations. HSTGA first extracts vehicle-pedestrian interaction spatial features 

using a multi-layer perceptron (MLP) sub-network and max pooling. Then, the vehicle-pedestrian 

interaction features are aggregated with the spatial features of pedestrians and vehicles to be fed 

into the LSTM. The LSTM is modified to learn the vehicle-pedestrian interaction adaptively. 
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Moreover, HSTGA models temporal interactions using an additional LSTM. Then, it models the 

spatial interactions among pedestrians and between pedestrians and vehicles using Graph Attention 

Networks (GATs) to combine the hidden states of the LSTMs. Then, the predicted trajectories of 

vehicles and pedestrians are used to design a vehicle-pedestrian conflict model. The conflict model 

is used to investigate safety-critical driving metrics, such as severity and near-miss metrics, as well 

as normal driving metrics, including vehicle speed, vehicle acceleration, vehicle heading angle, 

pedestrian speed, pedestrian acceleration, pedestrian heading angle, and distance distributions. 

Two safety indicators, namely Time-to-Collision (TTC) and Post-Encroachment Time (PET), are 

used to quantify the severity and near-miss conflicts between the vehicle and the pedestrian.    

We evaluate the performance of HSTGA on three different scenario datasets, including 

complex unsignalized roundabouts with no crosswalks and unsignalized intersections. Results 

show that HSTGA outperforms several state-of-the-art methods in predicting linear, curvilinear, 

and piece-wise linear paths of vehicles and pedestrians and can also predict collisions between 

pedestrians and vehicles several seconds before they occur. Our approach provides a more 

comprehensive understanding of social interactions, enabling more accurate trajectory prediction 

for safe vehicle navigation.
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Chapter 1 

Introduction 

1.1 Motivation 

Driving in an urban environment (Fig.1.1) is a challenging task that is associated with 

heavy mixed traffic flows. In mixed traffic flow, vehicles and vulnerable road users such as 

pedestrians, bicycles, and tricycles share the same road.  As a result, vehicle-pedestrian conflicts, 

vehicle-vehicle conflicts, and many other critical interactions may regularly occur. According to 

the U.S. National Highway Traffic Safety Administration (NHTSA) data, in 2020, 6,516 

pedestrians died in traffic accidents, and almost 55,000 pedestrians were injured nationwide [1]. 

 

Figure 1.1 Urban Environment Scenarios [85], [86]. 

The conflict between pedestrians and vehicles (Fig. 1.2) is an important safety issue not 

just in the U.S. but everywhere in the world. This issue is even worse in developing countries. For 

example, in a report by the World Health Organization (WHO) in 2007, around 40% of road crash 
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fatalities were pedestrians in countries such as Albania, Armenia, and Chile [2]. Moreover, in 

2007, over 50% of road crash fatalities were pedestrians in countries such as Bangladesh, Ethiopia, 

and Mozambique [2]. According to the World Health Organization (WHO), almost every one out 

of five road deadly accidents is with a pedestrian [3]. This means that around 300,000 of the nearly 

1.35 million individuals killed in traffic accidents each year are pedestrians [3]. Pedestrians are 

among the most vulnerable road users (VRUs) because they lack the physical protection to reduce 

accident consequences [4]. It is not surprising that pedestrians’ conflicts with vehicles are most 

problematic in urban areas since pedestrians’ activity is higher there. The problem of collision 

between vehicles and pedestrians has been the subject of deep study for a long time [5]-[12]. 

 

Figure 1.2 An Example of Vehicle-Pedestrian Conflicts. 

The meaning of traffic conflict can vary among research publications. In [13], the authors 

noted that operational definitions of traffic conflict could generally be categorized into two types: 

those based on evasive actions and those based on spatial-temporal proximity. A situation 

involving two or more road users in which one user's activity induces another user to perform an 

evasive move to avoid a collision is characterized as an evasive action-based traffic conflict [14]. 

Pedestrian-vehicle conflicts can occur when an incoming vehicle must quickly stop or swerve to 

avoid a pedestrian or when a pedestrian must take evasive action to prevent a collision. This term 
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focuses on either the driver's or the pedestrian's evasive actions. In contrast, proximity-based traffic 

conflict is characterized as a scenario in which two or more road users are so close in space and 

time that there is a chance of an accident if their movements do not alter [15]. This indicates that 

the closer the road users are to one other, either in time or space, the more likely an accident may 

occur. This is a conceptual (theoretical) definition that is operational since the time and space 

dimensions are quantifiable and can be monitored by traffic detectors [16].  

Several published studies have dealt with pedestrian-vehicle conflict, but they were limited 

to studying the factors influencing conflicts, such as personal characteristics, traffic conditions, 

and environmental factors at crosswalks [16]. From the first perspective, personal characteristics 

like age, gender, and disability have been studied. For example, Liu and Tung [17] found that 

elderly pedestrians exposed themselves to a higher risk of road crossing than young pedestrians 

due to their decline in walking ability. Yagil [18] found that men are less aware than women of 

their conflicts with vehicles when they cross the street. Tom and Granié [19] explored gender 

differences in pedestrian rule compliance both at signalized and unsignalized crossroads. In terms 

of traffic conditions, studies have looked at things like traffic volume and vehicle speed. Cheng 

[20] proposed that high vehicle volume can lead to more severe pedestrian-vehicle conflicts 

because pedestrians' protracted waiting time exceeds their tolerance limit, whilst high vehicle 

speed increases the chance of pedestrian-vehicle crashes. Cheng created models to investigate the 

links between pedestrian waiting time, vehicle volume, time of pedestrian-vehicle conflict, vehicle 

speed, traffic delay, and pedestrian volume. Himanen and Kulmala [21] examined 799 pedestrian-

vehicle conflict incidents and determined that the most relevant explanatory factors were the 

pedestrian distance from the curb, city size, number of people crossing concurrently, vehicle speed, 
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and vehicle platoon size. Furthermore, environmental factors such as city size, signal settings, road 

width, and lane delineation have been thoroughly researched. 

Traffic signals and crosswalks are the most important environmental factors in vehicle-

pedestrian conflict because pedestrians and drivers are expected to obey restrictions at these 

landmarks. At a non-signalized marked crosswalk, pedestrians have the right-of-way according to 

traffic regulations in the U.S., Europe, Japan, China, and many other places, and vehicles are 

expected to give the right-of-way to pedestrians. However, due to lack of training, familiarity, etc. 

vehicles do not always give right-of-way to pedestrians [22], which makes the crossing of a non-

signalized intersection more complex compared to those at signals. Many studies have tried to 

study whether particular traffic controls—such as a crosswalk, stop sign, or yield sign—have 

positive or negative effects on pedestrian safety. However, there is disagreement about the overall 

effectiveness of these traffic controls. On the one hand, intersections with traffic signals or stop 

signs are considered safer for pedestrians than intersections without these traffic controls [22]. 

Further, traffic signals help control traffic flow and prevent conflicts between vehicles and 

pedestrians and reduce the likelihood of accidents due to the less amount of time that people spend 

waiting at an intersection to cross. On the other hand, however, many studies have shown that 

traffic signals actually increase the risk of crashes because drivers tend to speed up to avoid traffic 

lights when there are no vehicles ahead. Some research suggests that traffic signals also increase 

traffic delays, which further exacerbates the speed-up issue and pedestrian risk. Furthermore, 

pedestrians cross a typical bidirectional crosswalk to the opposite side at signalized intersections 

in two stages (one direction, then the other), but at non-signalized crosswalks, the same crossing 

happens in four stages (lane by lane) [23]. Neither crossing behavior reflects the complex 
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interaction between pedestrians and vehicles at uncontrolled intersections that includes eye 

contact, head nods, hand waves, and slowing down [24]. 

This dissertation investigated pedestrian-vehicle conflict in non-signalized and non-

crosswalk scenarios, which makes it very distinct from previous related research. There is also 

another motivation, namely, autonomous vehicles.  

In order to ensure safe and seamless travel, people make significant and intuitive 

decisions when driving. These decisions result from actions and interactions with individuals and 

vehicles in a scene. For example, people driving vehicles can monitor the area and see if a 

pedestrian intends to cross the road. That information is fundamental for drivers but also a 

valuable tool in determining the next steps that need to be taken, such as slowing down, speeding 

up, or stopping. The drivers navigate through traffic not only by monitoring the movements of 

pedestrians and vehicles but also by anticipating the interdependence between pedestrians and 

other objects, such as vehicles or traffic lights. In contrast, machines do not possess the ability to 

perceive a person's judgment through simple gestures and interactions. As a result, autonomous 

vehicles are very conservative compared to human drivers.  

The automotive industry is currently focusing on pushing vehicle technology towards 

fully automated driving, with technology companies joining these efforts. Vehicle autonomy 

aims to make road traffic safer and more efficient by partially or wholly substituting the driver in 

the driving task [25]. The transition phase from manually-operated vehicles to fully automated 

vehicles is characterized by the degree of control over the driving task. Recent developments in 

the area of advanced driver assistance systems (ADAS) have shown vast improvements in the 

accessibility of autonomous driving. Many companies have raised their levels of autonomy over 

the last few years. Several projects are targeting SAE level 4 or higher. A list of the definition of 
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SAE levels of AVs is explained in [26] and is shown below. 

 

Figure 1.3 Summary of levels of driving automation for on-road vehicles [26], [27]. 

Since these systems cannot completely manage the driving task, the driver will partially 

have to support the system or take over control. Therefore, a lot of research is done to implement 

adequate take-over request strategies involving the driver as an additional sensor, for example, to 

extend the capabilities of the semiautonomous vehicles and to keep the driver in the loop [28], 

[29]. However, already existing systems (e.g., emergency stop assistants) and future systems will 

perform better than humans in more and more sub-areas of the driving task until they finally take 

over completely. This complex future artificial system, which perceives the environment and 

makes its own decisions, will be confronted by humans who are used to making decisions and 

actions in road traffic based on the perceived environment. If these two agents meet, situations will 

inevitably arise in which the automation's planned action contradicts the driver's desired action. 

With the advancements toward fully autonomous vehicles and the gradual removal of humans 

from the driving task, the social safety contract between vehicles and pedestrians is being 

reexamined [27]. Behavioral psychology studies have investigated the social aspects of driving 

and have shown the factors that can significantly impact road safety [24], [30]. These factors 

include pedestrian demographics, road conditions, social factors, and traffic characteristics [27]. 

Thus, a deep understanding of pedestrian crossing behavior, the factors influencing this behavior, 
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and how the factors might be inter-connected is required. Initial efforts have already been made to 

develop intent prediction algorithms that estimate the future movements of both pedestrians and 

drivers [27]. 

Fully or partially autonomous vehicles (AVs) must develop situational and behavioral 

awareness to operate effectively in complicated and crowded environments with a wide range of 

interacting traffic participants. In particular, such vehicles must be aware of their locations and the 

locations and positions of other vehicles and pedestrians in the vicinity. Previous research has 

suggested that vehicle-to-everything (V2X) communication, also known as V2V, V2P, and V2I 

communications, could be used to develop and improve situational awareness in such vehicles. 

However, it has also been observed that these types of communication are not always reliable due 

to several factors, including occlusion, interference, and network congestion [9]. Moreover, it is 

also difficult for vehicles to communicate with pedestrians and other vulnerable road users (VRUs) 

due to the unsuitability of V2V and V2I communication systems for V2P applications. Therefore, 

an alternative approach to developing and improving situational awareness in AVs around 

pedestrians is desired. Of particular interest are technologies that will assist AVs in perceiving and 

predicting the behavior of the VRUs that are in their immediate vicinity [9]. V2I communications 

have the potential to transform how cities interact with autonomous vehicles (AVs) and make cities 

a safe environment for driving. This technology holds a lot of promise in autonomous driving 

because it allows AVs to connect with different infrastructure elements, such as traffic lights, road 

signs, and surveillance cameras, in real-time. This technology can more easily monitor the 

environment to obtain information about the movement of various traffic participants in their field 

of regard and communicate this information reliably to AVs. Moreover, this technology can assist 

AVs in predicting the trajectories of surrounding road users, which will be crucial in ensuring safe 
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and efficient interactions between AVs and other road users. The following figure shows the fully 

and partially autonomous vehicle technology.  

 

Figure 1.4 Intelligent Vehicles: a) Connected Vehicle; b) Autonomous Vehicle [27]. 

In the realm of autonomous vehicles (AVs), the ability to anticipate the movement of 

pedestrians is of paramount significance, and the consequences of neglecting it could be 

catastrophic. This prediction enables AVs to chart safe routes while engaging in related driving 

tasks confidently. Unfortunately, the intricate nature of pedestrian motion creates significant 

challenges for long-term trajectory prediction. It is worth noting that pedestrians' movements are 

slower than those of vehicles but can change rapidly due to the complexities of human behavior. 

Furthermore, a pedestrian's gait can be subjective, depending on various factors such as personal 

characteristics, walking objectives, and the ever-changing environment. In this dissertation, we 

focus on predicting the trajectory of pedestrians when interacting with other pedestrians and 

vehicles. Trajectory prediction is crucial for autonomous vehicles because it allows them to 

estimate the movements of the surrounding road users several seconds into the future and make 

the right decision to avoid any critical conflicts. Achieving precise trajectory predictions requires 

the development of efficient algorithms that accurately model and replicate real-world scenarios. 
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Consequently, the design of such algorithms represents the most critical aspect of the task of 

accurate trajectory prediction. 

Predicting the trajectories of the vehicles is comparably simpler due to their well-

understood mechanics. Deep learning techniques, including LSTM models, have effectively 

achieved this objective [33]-[35]. However, predicting the movement of pedestrians is more 

difficult since their mechanics are not as readily modeled. Additionally, as mentioned earlier, 

pedestrians modify their "standard" actions when interacting with vehicles, mainly when they 

sense potential danger. A precise prediction of pedestrian and vehicle trajectories can assist 

autonomous vehicles or human drivers in making better decisions and avoiding obstacles and 

traffic buildup [36]. Furthermore, using intelligent technology to track vehicle and pedestrian 

movement can boost traffic safety and decrease traffic congestion [37], [38]. 

To achieve precise pedestrian trajectory prediction, it is imperative to obtain accurate 

measurements. This task, however, is quite difficult due to a number of factors that can introduce 

inaccuracies in the collected data. These factors include occlusions caused by large vehicles and 

illumination issues like shadows and glare [39], [40]. Additionally, pedestrians are physically 

smaller and lighter than most objects in their surroundings, and they can suddenly change their 

speed and direction, which further complicates trajectory prediction. This dissertation focuses on 

this challenging problem and aims to develop an efficient method for predicting pedestrian 

behavior via trajectory prediction. Accurate trajectory prediction assists autonomous vehicles in 

collision avoidance and can also be employed in smart intersections. The proposed method can 

also be extended to encompass the trajectory prediction of other vulnerable road users, such as 

bicycles, scooters, and others. 
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Researchers in the field of predictive analytics have looked deeply into the usage of deep 

learning for predicting pedestrian movements. Sequential models, which employ long short-term 

memory (LSTM) networks and LSTM-based generative adversarial networks (GANs) [41], [42], 

and non-sequential models, which use convolutional neural networks (CNNs) [43], [44], are the 

two most often used methodologies. LSTM networks are a form of recurrent neural network 

(RNN) that can handle sequential data such as time series or text. They are very effective for 

modeling long-term data relationships [41]. LSTM-based GANs is a generative model that 

generates realistic pedestrian trajectories through adversarial training [42]. CNNs, on the other 

hand, are a sort of feedforward neural network that is frequently employed for image identification 

[44]. They may also be used to handle non-image data, such as time series data as if it were a 2D 

picture. While these models show promise, they are not without flaws.  

In recent years, there has been an increasing interest in developing LSTM-based methods 

for capturing dynamic interactions of pedestrians. These methods utilize pooling and attention 

mechanisms to represent latent motion dynamics of pedestrians in local neighborhoods or the 

whole scene. While pooling collects motion dynamics of nearby pedestrians, attention assigns 

different importance to each pedestrian to better understand crowd behaviors based on spatial 

interactions. However, the temporal continuity of interactions in the crowd has been neglected in 

previous works. Pedestrians need to consider others' historical movements to determine their 

current motion behavior to avoid potential collisions in the future, making temporal correlations 

of interactions important. 

Many other studies on predicting pedestrian trajectories have been conducted. However, 

most of these studies fail to take into account one of the most important factors influencing 

pedestrian behavior: the presence of multiple surrounding vehicles and the interaction between 
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these vehicles and pedestrians. Although some recent studies, such as the one by Eiffert et al. [46], 

have attempted to incorporate such influences, they only considered a single vehicle in the 

presence of pedestrians. Furthermore, previous research that predicts the trajectories of 

heterogeneous traffic agents, such as pedestrians, has tended to focus on vehicles or motorcycles 

[47]-[50]. Additionally, it is challenging to evaluate the accuracy of pedestrian trajectory 

predictions due to the absence of datasets containing annotations for both pedestrian crowds and 

vehicles. The widely used ETH [51] and UCY [52] datasets, for example, do not include 

annotations for automobiles and are hence unsuitable for evaluating this job. As a result, there is a 

need for more research that considers the impact of various surrounding vehicles and pedestrians 

and captures the spatiotemporal interactions between them on pedestrian behavior, and develops 

more accurate algorithms for this task. Moreover, diverse datasets that have many vehicles and 

pedestrians should be used to investigate pedestrian trajectory prediction accurately.  

To address all the limitations mentioned above, in this dissertation, we build a novel 

Spatial-Temporal Graph Attention network called Holistic Spatio-Temporal Graph Attention 

Trajectory Prediction for Vehicle-Pedestrian Interaction (HSTGA), where the spatial and temporal 

interactions among pedestrians and among pedestrians and vehicles are encoded, respectively. 

Moreover, we use multiple datasets such as VCI-DUT [53], rounD [54], and uniD [55] datasets 

that have pedestrians and vehicles at the same time. This allows modeling the influence of 

pedestrian-vehicle conflict in the accurate prediction of pedestrian (and vehicle) trajectories.  

In order to measure pedestrian-vehicle conflicts, proximity measures such as time to 

collision (TTC) [56] and post-encroachment time (PET) [57] are commonly used. TTC is the 

expected time for two road users to collide if they remain on the same trajectory, while PET is the 

time between the moment the first road user leaves the conflict zone and the moment the second 
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road user reaches it. These measures are used to classify conflicts into different severity levels, 

with higher TTC and PET values indicating lower severity. Unlike TTC, PET does not consider a 

collision course criterion [16]. Pedestrian-vehicle conflicts are classified into discrete severity 

levels based on different thresholds of TTC and PET. For instance, a study analyzed pedestrian-

vehicle conflicts and traffic violations using TTC and PET indicators, where conflicts were 

classified into four levels from high to low risk [58]. Other studies used TTC, PET, and vehicle 

deceleration to divide the severity of conflicts into three different levels [59]. These levels are 

serious, slight, and potential conflicts.  

In this dissertation too, we adopt PET and TTC indicators to incorporate pedestrian-vehicle 

conflict in non-signalized non-crosswalk scenarios. The severity of conflict is divided into three 

categories: serious, slight, and potential according to the PET and TTC indicator levels. 

This dissertation makes four contributions: 

1. We develop a novel encoder-decoder interaction model called Holistic Spatio-

Temporal Graph Attention Trajectory Prediction for Vehicle-Pedestrian Interaction 

(HSTGA). HSTGA models pedestrian-vehicle interactions at non-signalized and 

non-crosswalk scenarios using a trajectory-based model for long-horizon 

pedestrian and vehicle trajectory prediction. 

2. We develop a vehicle-pedestrian interaction feature extraction model using a multi-

layer perceptron (MLP) sub-network and max pooling. 

3. We develop an LSTM network to learn the vehicle-pedestrian spatial interaction 

adaptively.  

4. We predict pedestrian and vehicle trajectories by modeling the spatial-temporal 

interactions between pedestrian-pedestrian, vehicle-vehicle, and vehicle-pedestrian 
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using only the historical trajectories of pedestrians and vehicles. This approach 

reduces the information requirements compared to other learning-based methods. 

5. We quantify pedestrian-vehicle conflicts at non-signalized non-crosswalk scenarios 

using safety indicators: PET and TTC.  

6. We use the evolution of PET and TTC indicators over time to predict future 

collisions between vehicles and pedestrians well before (several seconds before) 

they occur. 

The following publications have resulted from the underlying research performed to 

complete this dissertation:  

1. H. Alghodhaifi, S. Lakshmanan, S. Baek, and P. Richardson, “Autonomy modeling and 

validation in a highly uncertain environment,” in Proceedings of the 2018 Ground Vehicle 

Systems Engineering and Technology Symposium (GVSETS), 2018. 

2. S. Lakshmanan, Y. Yan, S. Baek, and H. Alghodhaifi, “Modeling and simulation of leader-

follower autonomous vehicles: environment effects,” in Unmanned systems technology 

XXI, SPIE, 2019, pp. 116–123. 

3. H. Alghodhaifi and S. Lakshmanan, “Safety model of automated vehicle-VRU conflict 

under uncertain weather conditions and sensors failure,” in Unmanned Systems 

Technology XXII, SPIE, 2020, pp. 56–65. 

4. H. Alghodhaifi and S. Lakshmanan, “Simulation-based model for surrogate safety 

measures analysis in automated vehicle-pedestrian conflict on an urban environment,” in 

Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 

2020, SPIE, 2020, pp. 8–21. 
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5. E. Cheek, H. Alghodhaifi, C. Adam, R. Andres, and S. Lakshmanan, “Dedicated short 

range communications used as fail-safe in autonomous navigation,” in Unmanned systems 

technology XXII, SPIE, 2020, pp. 159–177. 

6. H. Alghodhaifi and S. Lakshmanan, “Autonomous vehicle evaluation: A comprehensive 

survey on modeling and simulation approaches,” IEEE Access, vol. 9, pp. 151531–151566, 

2021. 

7. H. Alghodhaifi and S. Lakshman, “HSTGA: Holistic Spatio-Temporal Graph Attention 

Trajectory Prediction for Vehicle-Pedestrian Interaction,” Under preparation. I will submit 

it to MDPI Sensors on May 15th, 2023.  

8. H. Alghodhaifi and S. Lakshman, “A Novel Trajectory-based Approach for Intelligent 

Vehicle-Pedestrian Collision Avoidance System,” Under preparation. I will submit it to 

MDPI Imaging on May 20th, 2023.   

1.2 Related Work 

In this section, we review the existing work on trajectory prediction of vehicle and 

pedestrian and vehicle-pedestrian interactions with special emphasis on deep learning methods. 

Moreover, the vehicle-pedestrian conflicts-based approach is covered. 

1.2.1 Pedestrian Trajectory Prediction Methods  

Over the last few years, numerous techniques and algorithms have surfaced for predicting 

pedestrian trajectories, owing to their importance in creating a secure environment for autonomous 

vehicles and other applications. The research on this topic can be broadly classified into three 

groups [60], [61]:  

1.2.1.1 Physics-based models. 
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1.2.1.2 Planning-based models. 

1.2.1.3 Pattern-based models. 

1.2.1.1 Physics-Based Models 

Physics-based models leverage motion properties such as speed and location to predict 

future movements by applying physical laws. For example, Kim et al. utilized a Kalman filter and 

machine learning-based approach that used velocity-space reasoning to compute the desired 

velocity of pedestrians, which resulted in a good performance [62]. Zanlungo et al. proposed a 

social force-based model that predicted pedestrian locations while modeling walking behaviors 

using the social force paradigm and physical constraints. However, the model's performance could 

suffer when pedestrian density is low [63]. A. Martinelli et al. proposed a pedestrian dead 

reckoning method that relied on step length estimation [64]. Using the classification of walking 

behavior, the individual's step length was estimated and used to infer their position. Similarly, W. 

Kang et al. demonstrated a smartphone-based method for pedestrian position inference that used 

step length estimation-based inference, which was effective in indoor environments but accrued 

errors over long distances [65]. Additionally, Gao et al. developed a probabilistic method for 

indoor position estimation that relied on Wi-Fi signal fingerprints and smartphone signals, which 

improved accuracy and overcame signal changes [66]. However, most physics-based models rely 

on manually specified parameters or rules, which limits their application to scenarios such as 

predicting trajectories in a closed space. In contrast, our proposed graph attention model (HSTGA) 

learns trajectory patterns from historical trajectory profiles without relying on manually specified 

parameter values. 
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1.2.1.2 Planning-Based Models 

In the realm of pedestrian trajectory prediction, planning-based models are typically geared 

toward reaching a specific destination. Ziebart et al. [67] devised a planning-based model that 

incorporated a distribution of destinations and utilized a Markov decision process to plan and 

predict trajectories, outperforming a variable-length Markov model in predicting 3 seconds 

trajectories [68]. Deo and Trivedi implemented a probabilistic framework called the variational 

Gaussian mixture model (VGMM) [69] that utilized trajectory clustering to predict pedestrian 

paths, outperforming a monolithic VGMM. Rehder et al. utilized deep neural networks in their 

planning-based approach, inferring a mixture density function for possible destinations to conduct 

goal-directed planning [70]. However, this method may not perform well in long-term horizon 

predictions. Dendorfer et al. proposed a two-phase strategy called goal-GAN, which estimated 

goals and generated predicted trajectories [71]. Yao et al. improved the performance of their model 

using a bidirectional multi-modal setting to condition pedestrian trajectory prediction on goal 

estimation [72]. Tran et al. separated their model into two sub-processes: a goal process and a 

movement process, enabling good performance in long-term trajectory prediction [73]. However, 

these models' reliance on guessing a pedestrian's future goals may hinder their performance in 

longer horizon predictions, unlike our proposed model, which does not speculate future goals or 

destinations, thus improving prediction accuracy and generalization ability. 

1.2.1.3 Pattern-Based Models 

In recent years, pattern-based models have gained popularity thanks to advances in deep 

learning. Most studies have focused on creating modules to learn about the interactions and social 

features between pedestrians, which contribute directly to individuals’ movements. One notable 

model is the social LSTM, proposed by Alahi et al., which can predict human trajectories in 
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crowded spaces with high accuracy [41]. It captures social interactions by using a social pooling 

strategy to identify patterns, and it assumes that interactions between pedestrians can be captured 

with pooling layers in the model's architecture. In a comparable manner, authors in [74] 

implemented a distinct scaling technique to apprehend the impact of the surroundings on a 

particular pedestrian. Another model, social GAN, was introduced by Gupta et al., which used 

generative adversarial networks (GAN) to learn about interaction patterns between pedestrians and 

predict their trajectories [42]. This model predicted multiple possible future trajectories and chose 

the best one. Zhang et al. proposed the state refinement module SR-LSTM to decode implicit social 

behaviors among pedestrians [75], while Zhao et al. suggested the multi-agent tensor fusion model 

(MATF) to identify social and interactive relationships by aligning spatial encoding with agent 

encoding [76]. The multi-agent fusion model (MATF) synchronized the spatial encoding of scenes 

with the encoding of each agent present within the scene and then utilized a GAN model to acquire 

knowledge of patterns and make predictions.  

Nikhil and Morris also presented a CNN-based model that was computationally efficient 

and allowed fast parallel processing with competitive performance [44]. Huang et al. extended the 

temporal correlation concept to produce more socially plausible trajectories [77]. Xu et al. devised 

a cutting-edge methodology hinged on deep neural networks that harnesses the intricate nature of 

social behaviors to anticipate pedestrian movements [78]. The researchers deftly employ encoding 

schemes to distinguish the varying degrees of influence exerted by different social interactions on 

the trajectory of passersby. Song et al. came up with a complex LSTM network that uses deep 

convolutional techniques [79]. This algorithm utilizes tensors to represent environmental features 

and incorporates a specially designed convolutional LSTM to predict sequences of trajectories. 

Quan et al. introduced an innovative perspective in trajectory forecasting using a model based on 
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Long Short-Term Memory (LSTM) [80]. Their approach featured a distinctive LSTM mechanism 

that accurately identified pedestrians' intentions and generated corresponding trajectory 

predictions. 

Existing models require information from all pedestrians on the scene but don’t consider 

the impact of surrounding vehicles and the interaction between these vehicles and pedestrians on 

pedestrian trajectory prediction. Our approach considers these factors and uses minimal 

information and a decentralized method, only utilizing the pedestrian's trajectory profile for whom 

the prediction is being made. The model assumes all other factors affecting the pedestrian's 

movement are unknown or uncertain, and it learns to adapt accordingly. This decentralized 

approach ensures that our model can provide high-quality predictions in various environments, not 

just crowded spaces, making it an ideal choice for practical pedestrian safety applications. 

1.2.2 Vehicles-Pedestrians Interaction 

Limited research has been done on the interaction between pedestrians and vehicles in 

trajectory prediction. Previous works have mostly focused on social interaction between 

pedestrians [41]-[43] and interaction with the environment [74], [81], [83]. However, the 

interaction between pedestrians and vehicles is an equally important factor that needs to be 

considered. Some researchers have tried to include vehicle information in pedestrian trajectory 

prediction, but their methods have limitations. Eiffert et al. [46] improved pedestrian trajectory 

prediction by encoding interactions between pedestrians and a single vehicle using a feature 

learning network called the "Graph pedestrian-vehicle Attention Network." However, this method 

only considered a single vehicle on the road, not multiple vehicles. On the other hand, Chandra et 

al. [47]-[49] and Carrasco et al. [50] proposed models that predict the trajectories of heterogeneous 

traffic agents, including pedestrians, but their primary focus was on vehicles and motorcycles 
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rather than pedestrians. Therefore, there is still a need for more research on the interaction between 

pedestrians and vehicles in trajectory prediction. 

1.2.3 Intelligent Vehicle Trajectory Prediction 

The use of perception systems, cameras, and intelligent vehicular systems has made 

obtaining data from driving agents and the environment easier. However, relying solely on a 

traffic agent's trajectory history for prediction can lead to errors, especially in complex scenarios. 

Interaction-aware approaches that consider inter-agent interactions and behavior dependencies 

lead to higher prediction accuracy [84].  In this section, we center our attention on trajectory 

prediction studies that prioritize interaction awareness. 

1.2.3.1 Interaction-Aware Trajectory Prediction 

Numerous studies have endeavored to enhance interaction awareness for trajectory 

prediction approaches by modeling inter-agent correlations among all agents in a driving scene. 

The early literature on interaction-awareness employed traditional approaches, such as classical 

machine learning models, for example, Hidden Markov Models (HMM), Support Vector Machines 

(SVM), and Bayesian networks [87]-[90]. Nevertheless, these conventional methodologies exhibit 

suboptimal performance in long-term predictions, particularly for intricate scenarios, and are ill-

suited for real-time analysis [91].  

The employment of deep learning models, specifically Recurrent Neural Networks 

(RNNs), Temporal Convolutional Neural Networks (CNNs), and Graph Neural Networks (GNNs), 

has captured the interest of scholars owing to their effectiveness and versatility in various research 

fields, notably in predicting vehicle trajectories in complex settings. Additionally, the literature 

proposes a variety of techniques to model the inter-agent interactions for vehicle trajectory 
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prediction. One such approach involves explicitly incorporating the trajectory history of the Target 

Agent (TA) and its Surrounding Agents (SAs) into the model [92]–[97], in order to consider the 

impact of SAs. For instance, Dai et al. [92] propose a two-group LSTM-based RNNs approach to 

model the interactions between the TA and each of its neighbors, and subsequently predict the 

future trajectory of the TA based on its trajectory history. Another approach, TrafficPredict, is 

introduced by Ma et al. [93], wherein a system architecture with two layers of LSTM recurrent 

units is designed to obtain the motion patterns of traffic participants and identify similar behavior 

among the same group of traffic participants, such as vehicles or bicycles. These methods have 

limitations as they fail to account for the effect of the environment and traffic regulations on the 

TA's behavior. 

A potential alternative strategy for modeling social interactions among a large number of 

traffic participants in a given scenario involves the implementation of a social pooling mechanism 

[41], [42], [98]. This mechanism permits neighboring agents' LSTM units to share knowledge with 

one another. Alahi et al. [41] propose the S-LSTM method, which enables the recurrent units 

associated with SAs to connect with one another via the design of a pooling layer between each 

existing LSTM cell. This method facilitates the sharing of hidden states among the agents in an 

occupancy grid. To model pair-wise interactions between all SAs in a given scene, Gupta et al. 

[42] propose another pooling technique (S-GAN) based on Multi-Layer Perceptron (MLP) and 

max pooling. This method computes a global pooling vector for each TA based on relative 

coordinates between the TA and all of its SAs, as well as their hidden states. Deo et al. [98] 

introduce an encoder architecture, CS-LSTM, for vehicle trajectory prediction. This architecture 

employs convolution and max pooling operations over a spatial grid that depicts the TA's 

surroundings. However, the vehicles' extracted representations are independent of their states, and 
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the local computations are inefficient. Messaoud et al. [99], [100] propose using the Multi-Head 

Attention (MHA) pooling method to address this issue. They generate a representation vector for 

each vehicle using an LSTM-based encoder. An MHA module is then employed to consider the 

inter-vehicle correlations between the target vehicle and its SAs within a spatial grid. It has been 

demonstrated that MHA reduces the number of local computations. Nevertheless, these methods' 

lack of efficiency in addressing complex spatiotemporal correlations among traffic participants is 

a significant drawback. Additionally, the performance of these methods can be affected by the 

distance used to generate the occupancy grid or the number of SAs considered. 

1.2.3.2 Graph-Based Interaction Reasoning 

Recently, the research area of trajectory prediction has seen a growing interest in graph-

based interaction reasoning as an alternative approach to address the limitations of interaction-

aware path prediction methods, as discussed in the previous section. Graph-based approaches have 

focused on modeling interactions between various agents within a driving scene as graphs, where 

nodes represent agents and edges represent inter-agent interactions. This allows for simultaneous 

consideration of spatial and temporal inter-agent correlations. For instance, Diehl et al. represented 

a highway-driving scene as a directed graph and compared the performance of GAT and GCN for 

traffic prediction, considering a fixed number of surrounding vehicles [101]. However, the 

homogeneous graph generated by the authors disregards the dynamics and types of vehicles. Li et 

al. generated a homogeneous undirected graph to represent inter-vehicle interactions and used 

graph convolutions to extract underlying features within the data [102]. The future trajectory of 

the vehicles was predicted using an LSTM-based decoder. Nonetheless, the method shares the 

aforementioned limitation. Azadani et al. utilized undirected spatiotemporal graphs to model inter-

vehicle interactions and analyzed the trajectory history of target vehicles and their surrounding 
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vehicles using graph and temporal gated convolutions [103]. The future trajectory of the vehicle 

agents was then predicted using temporal convolutions applied to the extracted latent 

representations.  

In recent research, Wu et al. [104] have proposed an encoder-decoder architecture that 

takes into account temporal interdependencies using Multi-Head Attention (MHA) and spatial 

interactions with Graph Attention (GAT) modules. The resulting outputs from these separate 

modules are then aggregated and fed into a Long Short-Term Memory (LSTM)-based decoder. 

Similarly, Li et al. [105] have introduced the STG-DAT system, which comprises three key 

modules, namely feature extraction using Multilayer Perceptron (MLP), representation extraction 

using GAT as an encoder, and path generation employing Gated Recurrent Units (GRU) while 

considering the kinematic constraints.  

Furthermore, Mo et al. [106] have developed a directed graph for various groups of agents, 

wherein individual encoders are considered for different types of agents within the driving scene, 

as the unique behavior of each agent type can affect their future trajectory patterns. In a similar 

vein, Sheng et al. [107] have constructed a distance-based weighted graph for the target agent (TA) 

and its surrounding vehicles. The spatial graph is then analyzed using Graph Convolutional 

Networks (GCN), while GRU units are utilized to generate the future trajectory of the vehicles. 

Moreover, Gao et al. [108] have created heterogeneous sub-graphs for each agent and a high-order 

graph to model the inter-agent interactions. However, the generated dense graph overlooks the 

spatial and edge features among the agents. These recent advancements in modeling temporal and 

spatial interactions among agents have shown promising results in predicting future trajectories in 

complex environments. 
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Prior research on trajectory prediction has yielded interaction-aware approaches that are 

customized for particular contexts and representations. These methods often overlook certain 

spatial and temporal considerations or rely on dense undirected graphs to depict the inter-agent 

interactions. Such graphs assume that every vehicle interacts with all other surrounding agents 

with equal impact. In contrast, our research introduces the HSTGA system, which adopts an 

asymmetric social interaction reasoning approach that utilizes sparse directed graphs for both 

vehicles and pedestrians. This innovative system aims to address the aforementioned challenges 

and enhance the accuracy of trajectory prediction. 

1.2.4 Conflict Analysis of Vehicle-Pedestrian Interactions 

Perkins and Harris [110] conducted a pioneering study aimed at devising a means to predict 

road accidents, which can provide valuable insights into causal factors related to traffic safety 

issues. The authors identified various potential accident situations, which they classified as traffic 

conflicts, and distinguished over twenty types of traffic conflicts that arise between road users, 

primarily by analyzing evasive actions such as swerving, stopping, and braking. In the context of 

traffic conflicts based on evasive actions, Johnsson et al. [111] discussed various surrogate 

measures of safety found in the literature, with few of these indicators focusing on aspects that are 

useful in investigating issues pertaining to Vulnerable Road Users (VRUs). The authors evaluated 

various safety indicators based on their ability to consider both injury risk and collision risk, taking 

evasive actions into account. Their study revealed that several indicators concentrate on braking 

as a critical indicator to define hazardous traffic situations while disregarding other types of 

evasive actions, such as running or swerving. The use of non-crash situations to examine road 

safety is rooted in the assumption that there is a relationship between the severity and frequency 

of traffic events [112]. Hyden [109] introduced the concept of a "safety pyramid," which refers to 
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a hierarchical representation of traffic events, with the most severe events located at the top, 

typically defined as "accidents," followed by traffic conflicts, which are categorized into severe, 

slight, or potential conflicts based on their level of risk. Finally, the vast majority of traffic 

encounters are considered natural events. Fig. 1.5 presents the safety pyramid with the severity 

levels of traffic events [109].  

 

Figure 1.5 Conceptual Safety Pyramid [109]. 

Surrogate safety measures (SSMs) have been introduced to produce more analysis without 

relying on accident statistics alone. Moreover, the future goal is that these safety analysis measures 

will also be utilized to design autonomous driving algorithms. The term "surrogate" denotes that 

the indicators utilized in traffic safety analysis do not rely on crash databases. Instead, they are 

intended to be supplementary tools for historical records analysis. Throughout the 1970s and 

1980s, several researchers proposed and developed various indicators. Several traffic safety 

indicators have been suggested and developed in recent years, including those associated with 

vulnerable road users (VRUs). Given the existence of numerous issues related to VRU safety 

analysis, such as underreporting of VRU crashes, transport modes have become increasingly 

cognizant of this matter [111]. Several studies have described, summarized, and compared a group 

of safety indicators. For instance, Laureshyn et al. [113], [114] provided an overview of nearness-

to-collision and severity indicators. Zheng et al. [13] clarified traffic situations' temporal and 
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spatial proximity characteristics. Whether a particular situation is classified as a traffic conflict is 

contingent on the proximity in the distance and/or time of the relevant road users. Ceunynck [115] 

presented previous research on the application of safety indicators and examined their frequency 

of use. He organized the safety indicators into groups based on the Time-To-Collision (TTC), the 

Post-Encroachment Time (PET), the deceleration families, other groups, and unspecified 

indicators. According to Ceunynck's [115] research, safety indicators originating from the TTC 

family are most commonly utilized in safety analysis, followed by those from the PET family. 

According to Hayward's [116] definition, Time to Collision (TTC) refers to the duration 

required for two vehicles to collide while maintaining their current speed and trajectory. TTC at 

the onset of braking, referred to as TTCbr, denotes the available space for maneuvering at the 

moment of evasive action initiation. The minimum TTC attained during the approach of two 

vehicles on a collision course (TTCmin) indicates encounter severity. Lower TTCmin values 

indicate higher collision risk. Van der Horst [117] provides a comprehensive account of TTC 

calculation procedures. TTC is a crucial factor in various fields, such as smart transportation, 

robotics, and autonomous vehicle safety. Therefore, numerous researchers have dedicated their 

efforts to investigating and developing effective TTC estimation methods [119]-[122]. 

Tarko et al. [123] presented a white paper that underscored the significance of the 

observability or measurability of a surrogate measure in the traffic system. A measure that has 

garnered considerable attention in this regard is post-encroachment time (PET), as it offers a 

consistent and reliable means of measurement across different observers and locations. PET, which 

is defined as the time difference between the end of encroachment of the first vehicle and the entry 

of the second vehicle into the area of conflict, is a simple yet effective measure that facilitates the 

differentiation of crash from non-crash events [124]. In particular, a PET value of 0 indicates a 
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collision, while non-zero values indicate crash proximity. Although PET does not capture the 

initial stage of the conflict or the actions of the involved drivers, it provides a measure of the 

closeness to a collision at the final stage. Post-encroachment time (PET) has gained significant 

attention in recent years, and numerous studies have investigated its potential applications [125]-

[127].
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Chapter 2  

Vehicle-Pedestrian Interaction Problem 

2.1 Problem Statement 

Given the trajectories of pedestrians and vehicles in the past 𝑚𝑚 frames, our goal is to predict 

their trajectories in the future ℎ frames and then use these trajectories to design a conflict-based 

model for vehicle-pedestrian interaction. Both the prediction and the model are critical to 

predicting conflicts between vehicles and pedestrians well before they occur.  

2.2 Trajectory Prediction 

Anticipating the future trajectories of pedestrians is essential for the safe navigation of 

connected and autonomous vehicles and also for the safety of pedestrians crossing the road. 

Accurate prediction of pedestrians' future trajectories enables connected and autonomous vehicles 

to have more reaction time to take action, which is one of the key advantages of intelligent system 

technology. Overall, anticipating the future trajectories of pedestrians is crucial for ensuring all 

road users' safety, efficiency, and comfort. By effectively predicting and responding to pedestrian 

behavior, connected and autonomous vehicles can navigate the environment more effectively and 

reduce the risk of collisions. 

The problem of predicting the future trajectories of pedestrians is challenging due to their 

stochastic behavior patterns. One of the challenges connected and autonomous vehicles face when 

interacting with pedestrians is that pedestrians can be unpredictable. For example, a pedestrian 

may suddenly step into the road without looking or may start running across the street to catch a 
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bus. These types of behaviors can be difficult for human drivers to anticipate, let alone respond to 

quickly enough to avoid a collision. The problem of predicting pedestrians' future trajectories also 

includes many other factors that can impact their behavior, such as the movement of surrounding 

pedestrians and vehicles. Therefore, understanding the pedestrian-pedestrian, vehicle-pedestrian, 

and vehicle-vehicle interactions are critical in achieving accurate pedestrian trajectory prediction.   

The pedestrian-pedestrian, vehicle-pedestrian, and vehicle-vehicle interactions in a dense 

environment is a multilayer task. At the same time step t, the spatial and temporal continuity of 

interactions must be captured. As seen in Fig. 2.1, three pedestrians 𝑝𝑝1, 𝑝𝑝2, and 𝑝𝑝3 are crossing in 

front of two vehicles, 𝑣𝑣1, and 𝑣𝑣2. A serious conflict could readily arise in this kind of situation. 

We must correctly anticipate their trajectories by taking into account a variety of factors that affect 

their movements, such as timing, speed, visibility, distance, and human behavior, in order to 

determine whether there will be a crucial conflict. Timing is an important consideration because 

we need to know if vehicles and pedestrians are passing an area at the same time. A critical conflict 

is highly likely when both are crossing at the same moment. The risk is reduced if they cross at 

separate times, though. 

 Speed is also an important element because fast-moving vehicles can cover more ground 

in a shorter amount of time, which increases the possibility of a serious collision. Conversely, 

pedestrians who move slowly across the street or those who have already traversed it face less 

danger. A significant factor in avoiding collisions is visibility. A critical conflict is more likely to 

occur if the area is dimly lit or blocked by structures, trees, or other items. Another important factor 

is the distance between pedestrians and vehicles. This factor has a major impact on defining the 

type of interactions. A small distance between pedestrians and vehicles is an important indicator 

of a higher probability of critical conflicts. In many ADAS applications, the minimum distance is 
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used widely as a safety indicator. The last factor is pedestrian behavior, which is one of the most 

challenging factors to predict. To ultimately avoid deadly conflicts, connected and autonomous 

vehicles must predict pedestrian behavior several seconds into the future. The future prediction of 

pedestrian behavior will give connected and autonomous vehicles more time to react and take 

appropriate action to avoid collisions. In general, predicting pedestrian behavior for a normal 

pedestrian is a difficult job. Pedestrians who are distracted are more likely to make errors or take 

unnecessary risks. This will also make behavior modeling and prediction more challenging. 

Therefore, one way to tackle this problem is to incorporate all aforementioned factors into the 

pedestrian behavior prediction task. Moreover, we also need to capture the spatial and temporal 

interactions between pedestrians themselves and between pedestrians and vehicles at the same 

time-step t to model and predict the behavior of pedestrians and vehicles accurately. 

In order to comprehensively apprehend the complex dynamics present in Fig. 2.1, it is 

imperative to capture the intricate and interdependent spatial and temporal interactions between 

all objects therein. The movements of both pedestrians and vehicles are not only interdependent 

but also intricately linked, with each exerting a profound influence on the other. Without capturing 

the spatial and temporal interactions between pedestrians and vehicles, our understanding of the 

multifaceted dynamics of their movements and the factors that impel their behavior remains 

incomplete. This is precisely why connecting and automating vehicles necessitates a better 

understanding of the interactions that exist between these entities and how they can be harnessed 

to make more precise predictions about their trajectories, as well as the likelihood of conflicts or 

accidents.  However, it is vital to recognize that considering solely the positions and velocities of 

pedestrians and vehicles at a given time is inadequate. This simplistic approach ignores the critical 

information that spatial and temporal interactions between these entities can provide. Thus, by 
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capturing the spatial and temporal interactions between pedestrians and vehicles, we can gain a 

more in-depth understanding of how they will move and interact with one another in the future. 

Some specific examples of spatial and temporal interactions that need to be captured include 

pedestrian-vehicle, pedestrian-pedestrian, and vehicle-vehicle interactions.  

Pedestrian-vehicle interactions exemplify the intricate and multifaceted ways in which 

pedestrians and vehicles interdependently influence each other's movements. A classic example is 

when a vehicle is rapidly approaching a group of pedestrians, where the pedestrians, in response, 

alter their movement, forcing the vehicle to adapt its trajectory and decelerate to avoid colliding 

with them. Such intricate interactions serve as an essential component in understanding the 

dynamics of pedestrian and vehicle movements. Similarly, pedestrian-pedestrian interactions play 

a significant role in shaping the complex dynamics of pedestrian movements. For instance, abrupt 

halts by a pedestrian will force other pedestrians behind them to make quick adjustments to avoid 

collisions. These interactions are often unpredictable, leading to the possibility of accidents, and 

hence need to be comprehensively captured to avoid any future mishaps. A vital aspect of capturing 

the complex movements of pedestrians and vehicles involves fully comprehending the nuances of 

vehicle-vehicle interactions, where the movements of two vehicles can have a profound impact on 

each other. For instance, consider a scenario where two vehicles confront each other while 

approaching an area where three pedestrians are crossing in different directions simultaneously. 

This presents a formidable challenge as both vehicles will need to make quick, precise adjustments, 

such as decelerating or changing direction, to avoid a calamitous collision. The sheer complexity 

of this interaction highlights the imperative need to accurately capture the spatial and temporal 

interactions between the vehicles in Fig. 2.1. Failing to do so could result in grave accidents and 

underscore the urgency to comprehensively address these interactions. By capturing these types of 
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interactions, we can create more accurate models and simulations of pedestrian and vehicle 

movements and make better predictions about their trajectories and use these trajectories to 

forecast potential conflicts or accidents. This information can be used to develop strategies to 

reduce the likelihood of accidents and improve the safety of pedestrians and connected and 

autonomous vehicles in a given scenario. 

As our cities grow and become more crowded, ensuring the safety of pedestrians has 

become an increasingly important concern. This is particularly true when it comes to predicting 

pedestrian trajectories, where the ability to accurately capture the spatial and temporal interactions 

between pedestrians and vehicles is crucial. At the heart of this challenge lies the need to capture 

these interactions at the same time step t. This is important because pedestrians and vehicles move 

in complex and dynamic ways, with each influencing the other's movement. Without this 

synchronized data, our ability to accurately predict pedestrian trajectories is severely 

compromised. Moreover, the intricate and complex dynamics of urban environments necessitate a 

deep understanding of the spatial and temporal interactions between pedestrians and vehicles. It's 

essential for each pedestrian and vehicle to plan its future moves at each time step t in a way that 

ensures safety and reduces any critical conflicts. As shown in Fig. 2.1, vehicles, 𝑣𝑣1 and 𝑣𝑣2, should 

be aware of the presence of pedestrians and adjust their speed and trajectory accordingly to avoid 

any potential collisions. Vehicles should also be prepared to stop if necessary to avoid hitting a 

pedestrian. 
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Figure 2.1 Illustration of pedestrian-vehicle interactions in the crowd. The same color on trajectories means the 
same time-step t. 

The pedestrians, denoted by the labels 𝑝𝑝1, 𝑝𝑝2, and 𝑝𝑝3, must maintain a heightened sense of 

awareness regarding the presence of vehicles and strategically plan their crossing maneuvers 

accordingly. This entails meticulously scanning their surroundings and preemptively evaluating 

the feasibility of their trajectories. The pedestrians must be prepared to dynamically adjust their 

planned paths should any exigent circumstances arise, aiming to circumvent any potential collision 

points. The safety and well-being of all the objects involved in this scenario hinge on their 

collective capacity to remain cognizant of each other's presence and adroitly adapt to their 

surroundings. Achieving this outcome necessitates a concerted effort by each object to attentively 

process the surrounding stimuli and rapidly execute the most prudent course of action. 

For example, as shown in Fig. 2.2, the pedestrian 𝑝𝑝1 needs to consider the historical 

movements of pedestrians 𝑝𝑝2 and 𝑝𝑝3 to determine his/her current and future motion behavior to 

avoid critical conflicts before they occur. Moreover, the pedestrian 𝑝𝑝1 should also consider the 

historical movements of vehicles 𝑣𝑣1 and 𝑣𝑣2 to decide his/her future moves. At each time step 𝑡𝑡, 

the trajectory of pedestrian 𝑝𝑝1 is impacted by the motion of other objects in the environment. For 

example, if one of the vehicles (𝑣𝑣1 or 𝑣𝑣2) changes its velocity or direction of motion, it can impact 

the trajectory of pedestrian 𝑝𝑝1. Similarly, if another pedestrian (𝑝𝑝1 or 𝑝𝑝2) changes their speed or 

direction, it can also impact the trajectory of pedestrian 𝑝𝑝1. Thus, predicting the trajectory of all 
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other objects and ensuring the safety of pedestrian 𝑝𝑝1 as he/she navigates a scenario with multiple 

objects is a challenging endeavor that involves the combination of several cognitive and physical 

abilities. Moreover, predicting the behavior of pedestrian 𝑝𝑝1 under these conditions is a complex 

task.   

 

Figure 2.2 Pedestrian-pedestrian, vehicle-pedestrian, and vehicle-vehicle interactions. 

To investigate the above problem, let’s assume that prior image processing has already 

been applied to a raw video feed to extract the position and pose of individual pedestrians and 

vehicles in each video frame. We assume there are 𝑁𝑁 pedestrians and 𝑀𝑀 vehicles present in a video 

frame, represented as 𝑝𝑝1,𝑝𝑝2, . . . , 𝑝𝑝𝑁𝑁 for pedestrians and 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑀𝑀 for vehicles.  

The state of pedestrians 𝑝𝑝𝑖𝑖 (𝑖𝑖 ∈  [1,𝑁𝑁]) and vehicles 𝑣𝑣𝑘𝑘 (𝑘𝑘 ∈ [1,𝑀𝑀]) at time-step, 𝑡𝑡 is 

denoted as follows: 

𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 = [𝑃𝑃1𝑡𝑡,   𝑃𝑃2𝑡𝑡 , … ,   𝑃𝑃𝑁𝑁𝑡𝑡 ]                                  (2.1) 

 
𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 = [𝑉𝑉1𝑡𝑡 ,   𝑉𝑉2𝑡𝑡, … ,   𝑉𝑉𝑀𝑀𝑡𝑡 ]                                (2.2) 

where 𝑃𝑃𝑖𝑖𝑡𝑡 and 𝑉𝑉𝑘𝑘𝑡𝑡 are the lateral and longitudinal positions with the heading angle of pedestrian 𝑖𝑖 

and vehicle 𝑘𝑘, respectively, at time-step 𝑡𝑡. The number of pedestrians 𝑖𝑖 and vehicles 𝑘𝑘 are variables 

in equations 2.1 and 2.2 because different datasets/ scenarios are used to evaluate this study. Eqs. 
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1 and 2 are the observed trajectories that will be used as input to our deep learning model.  𝑃𝑃𝑖𝑖𝑡𝑡 and 

𝑉𝑉𝑘𝑘𝑡𝑡 are expressed as follows: 

𝑃𝑃𝑖𝑖𝑡𝑡 = (𝑥𝑥𝑖𝑖𝑡𝑡,   𝑦𝑦𝑖𝑖𝑡𝑡,   𝜃𝜃𝑖𝑖𝑡𝑡)                                    (2.3) 
𝑉𝑉𝑘𝑘𝑡𝑡 = (𝑥𝑥𝑘𝑘𝑡𝑡 ,   𝑦𝑦𝑘𝑘𝑡𝑡 ,   𝜃𝜃𝑘𝑘𝑡𝑡)                                    (2.4) 

In Eqs. 2.3 and 2.4, 𝑥𝑥𝑖𝑖𝑡𝑡,  𝑥𝑥𝑘𝑘𝑡𝑡 ,  𝑦𝑦𝑖𝑖𝑡𝑡, 𝑦𝑦𝑘𝑘𝑡𝑡 , 𝜃𝜃𝑖𝑖𝑡𝑡, and 𝜃𝜃𝑘𝑘𝑡𝑡  are the position coordinates and the heading 

angles of pedestrians and vehicles at each time-step 𝑡𝑡. The positions of the vehicles and pedestrians 

are relative to the world space. 

Using the observed trajectories 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡  and 𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡  in the past  𝑚𝑚 frames at time-steps 𝑡𝑡 =

1, . . ,𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, our goal is to predict the future trajectories 𝐴𝐴𝑓𝑓𝑡𝑡  and 𝐵𝐵𝑓𝑓𝑡𝑡 several seconds ahead in the future 

ℎ frames at time-steps 𝑡𝑡 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + 1, . . . ,𝑇𝑇𝑓𝑓 as follows: 

𝐴𝐴𝑓𝑓𝑡𝑡 = [𝑃𝑃1𝑡𝑡 +ℎ,   𝑃𝑃2𝑡𝑡+ℎ, … ,   𝑃𝑃𝑁𝑁𝑡𝑡+ℎ]                                   (2.5) 

 
𝐵𝐵𝑓𝑓𝑡𝑡 = [𝑉𝑉1𝑡𝑡+ℎ,   𝑉𝑉2𝑡𝑡+ℎ, … ,   𝑉𝑉𝑀𝑀𝑡𝑡+ℎ]                                     (2.6) 

To forecast future trajectories through optimization and to learn pedestrians-vehicles 

spatiotemporal interaction, our goal is to learn the distribution 𝑝𝑝(𝐴𝐴𝑓𝑓|𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜), 𝑝𝑝(𝐵𝐵𝑓𝑓|𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜), 

𝑝𝑝(𝐴𝐴𝑓𝑓|𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜), and 𝑝𝑝(𝐵𝐵𝑓𝑓|𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜). 

2.3 Vehicle-Pedestrian Conflict-Based Model 

Transportation is an important component of everyday living in our modern world. 

Vehicle-pedestrian interactions have become more regular and complicated as cities have grown 

in size. It is critical to have a clear knowledge of these interactions and be able to anticipate possible 

disputes in order to guarantee the safety and efficiency of the transportation system. Conflict-based 

models for vehicle and pedestrian interactions are proposed to investigate this type of interaction. 

A conflict-based model is a simulation framework that predicts vehicle and pedestrian conflict 
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encounters in common spaces such as roads and junctions. The model considers a variety of 

variables, including both vehicles' and pedestrians' behavior and choices, real natural limitations, 

and traffic rules and regulations. By simulating potential conflicts, the model can help identify 

areas where safety risks are high and suggest measures to mitigate these risks. 

The model can be used to assess how well various traffic control measures, including 

roundabouts, crosswalks, and traffic signals, promote secure and successful exchanges between 

vehicles and pedestrians. Understanding the conflicts between pedestrians and vehicles helps in 

designing and managing roadways, intersections, and pedestrian facilities. Urban planning is a 

significant area where conflict-based models are used. The intricate interactions that occur between 

vehicles and pedestrians in urban settings must be taken into account when designing a public 

transportation system. 

The advancement of intelligent vehicles has also raised the significance of models that 

focus on conflict. In shared areas, intelligent vehicles must be able to communicate securely with 

infrastructure and potentially with pedestrians. Moreover, intelligent vehicle developers can assess 

these vehicles during the design and deployment in a simulation and real-world scenarios by using 

conflict-based models. Furthermore, they can create algorithms to guarantee the safe operation of 

these vehicles on public roads. Vehicle and pedestrian conflict-based models are essential tools for 

assuring the safety and effectiveness of the transportation system. Moreover, the vehicle-

pedestrian conflict-based model is an essential block in providing valuable information for traffic 

experts, urban planners, and creators of intelligent vehicles. Thus, conflict-based modeling will 

make transit networks safer and more effective for all users, including vehicles and pedestrians. 

To design an accurate conflict-based model for vehicle-pedestrian interactions, the 

movements of the vehicles and pedestrians at the same time-step should be fed into the conflict 
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model. Feeding this type of data assists in investigating if there is any critical conflict between 

vehicles and pedestrians at each time step. The movements at each time-step can be represented as 

the trajectories of the vehicle and pedestrian at each time-step. Thus, designing the conflict-based 

model requires accurate prediction of vehicle and pedestrian trajectories under highly uncertain 

environments. Therefore, the conflict-based model has two stages namely, the trajectory prediction 

stage and the conflict-based stage.    

Using the predicted trajectories 𝐴𝐴𝑓𝑓𝑡𝑡  and 𝐵𝐵𝑓𝑓𝑡𝑡 from the trajectory prediction stage, a conflict-

based model is required to avoid any deadly conflicts several seconds into the future. Using the 

predicted trajectories from Eq. 2.5 and Eq. 2.6, we assume that we have a traffic network consisting 

of a road network for each agent such as a pedestrian or a vehicle. The road network of each agent 

is defined based on its predicted trajectory from the trajectory prediction stage. Two types of 

interactions are already considered in the trajectory prediction stage, namely vehicle-vehicle, and 

pedestrian-pedestrian interactions to predict the trajectories of the vehicle and pedestrian 

accurately and then design an efficient conflict-based model for vehicle-pedestrian interaction. 

The pedestrians' road networks and the vehicles' road networks interact in a scenario where 

pedestrians' trajectories and vehicles' trajectories can conflict. This type of scenario has no 

pedestrian crosswalk and no traffic lights. The two networks are expressed as shown below. 

𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴𝑓𝑓𝑡𝑡 ,𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝)                                                   (2.7) 

𝐺𝐺𝑣𝑣𝑝𝑝ℎ(𝐵𝐵𝑓𝑓𝑡𝑡, 𝐿𝐿𝑣𝑣𝑝𝑝ℎ)                                                    (2.8) 

𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝(. ) and 𝐺𝐺𝑣𝑣𝑝𝑝ℎ(. ) in Eqs. 2.7 and 2.8 are the two graph road networks for pedestrians and 

vehicles at each time-step t. Aft and Bft denote the predicted trajectories from the trajectory 

prediction stage in Eqs. 2.5 and 2.6 represented as nodes at each time-step 𝑡𝑡. 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐿𝐿𝑣𝑣𝑝𝑝ℎ are the 

edge set or the link set between nodes as shown below in Fig. 2.3. The edge or link set can provide 
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extensive information to understand the interaction between pedestrians-pedestrian, vehicle-

vehicle, and vehicle-pedestrian. For example, as shown in Fig. 2.3, the vehicle 𝑣𝑣1 has four edges 

or links which means this vehicle interacts with four agents at the same time step. The four directed 

edges or links are namely, between vehicles 𝑣𝑣1 and 𝑣𝑣2, 𝑣𝑣1 and 𝑝𝑝1, 𝑣𝑣1 and 𝑝𝑝2, and between 𝑣𝑣1 and 

𝑝𝑝3.  

The goal is to investigate and predict vehicle-pedestrian conflict under a highly uncertain 

environment in the conflict region 𝐶𝐶𝑖𝑖𝑖𝑖 (Fig. 2.3). As shown in Fig. 2.3, the two vehicles 𝑣𝑣1 and 𝑣𝑣2 

will potentially have a conflict with 𝑝𝑝1, 𝑝𝑝2, and 𝑝𝑝3 under highly uncertain conditions. Furthermore, 

the spatiotemporal interactions between vehicle-pedestrian, vehicle-vehicle, and pedestrian-

pedestrian should be captured during the trajectory prediction stage to be able to estimate the 

vehicle-pedestrian conflict in the conflict region 𝐶𝐶𝑖𝑖𝑖𝑖. Figures 2.4, 2.5, and 2.6 present vehicle-

pedestrian, vehicle-vehicle, and pedestrian-pedestrian interactions with the associated road 

networks for each object.  
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Figure 2.3 Pedestrian-vehicle conflict zone. 

 

Figure 2.4 Pedestrian and vehicle road networks interact to create traffic graph networks. 
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Figure 2.5 Two vehicles' road networks interact to create traffic graph networks. 

 

Figure 2.6 Two pedestrians' road networks interact to create traffic graph networks. 

Our goal is to track pedestrians and vehicles at the same time step 𝑡𝑡 and identify when and 

where the vehicle and pedestrian have a future conflict by calculating safety measures indicators 

at each time step 𝑡𝑡.  
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Chapter 3  

Holistic Spatial-Temporal Graph Attention Trajectory Prediction 

for Vehicle-Pedestrian Interaction 

3.1 Introduction 

The development of advanced intelligent driving systems requires accurate prediction of 

pedestrian and vehicle trajectories in complex urban scenarios. This task becomes even more 

challenging in non-signalized and non-crosswalk scenarios where pedestrians and vehicles interact 

in a highly dynamic and complex manner. We introduce a novel encoder-decoder interaction 

model called Holistic Spatial-Temporal Graph Attention Trajectory Prediction for Vehicle-

Pedestrian Interaction (HSTGA) to address this challenge.  

HSTGA is a trajectory-based model that predicts long-horizon pedestrian and vehicle 

trajectories by modeling the social interactions between pedestrians themselves and between 

pedestrians and vehicles. Unlike other learning-based methods that require extensive amounts of 

data and detailed scene understanding, HSTGA only utilizes the historical trajectories of 

pedestrians and vehicles to predict their future movements. This approach significantly reduces 

the information requirements and computational costs while maintaining high prediction accuracy.  

Our model considers various factors that affect pedestrian-vehicle interactions, such as pedestrian 

crossing intentions, vehicle speeds, and spatial constraints. We model these interactions as a 

holistic spatiotemporal graph that captures the social interactions between pedestrians and 
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vehicles. HSTGA uses directed graph attention mechanisms to dynamically weigh the importance 

of different nodes and edges in the graph based on their contextual relevance.  

Overall, the proposed HSTGA model represents a significant step forward in accurately 

and efficiently predicting pedestrian and vehicle trajectories in non-signalized and non-crosswalk 

scenarios or any other scenario. This model can potentially enhance the safety and reliability of 

autonomous driving systems and improve the overall driving experience for pedestrians and 

drivers. The main contributions of this research are as follows: 

1. We develop a novel encoder-decoder interaction model called Holistic Spatio-Temporal 

Graph Attention Trajectory Prediction for Vehicle-Pedestrian Interaction (HSTGA). 

HSTGA models pedestrian-vehicle interactions at non-signalized and non-crosswalk 

scenarios using a trajectory-based model for long-horizon pedestrian and vehicle trajectory 

prediction. 

2. We develop a vehicle-pedestrian interaction feature extraction model using a multi-layer 

perceptron (MLP) sub-network and max pooling. 

3. We develop an LSTM network to learn the vehicle-pedestrian spatial interaction 

adaptively.  

4. We predict pedestrian and vehicle trajectories by modeling the spatial-temporal 

interactions between pedestrian-pedestrian, vehicle-vehicle, and vehicle-pedestrian using 

only the historical trajectories of pedestrians and vehicles. This approach reduces the 

information requirements compared to other learning-based methods. 

5. We extensively evaluate the proposed model on diverse datasets featuring numerous 

challenging scenarios involving the interactions between vehicles and pedestrians. 
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3.2 Problem Definition 

The problem statement is already discussed in chapter 2 section 2.2.  

3.3 Methodology 

This section provides a general overview of our multi-trajectory prediction model’s key 

components and architecture design, HSTGA. We also delve into the specifics of each module 

within the framework.  

3.3.1 HSTGA Overview 

In order to anticipate the trajectories and interactions of pedestrians and vehicles within a 

given scene, a vehicle-pedestrian features extraction model and a Graph Attention Network (GAT) 

are employed in conjunction with two separate long short-term memory (LSTM) models, as 

depicted in Figure 3.1. The first LSTM, referred to as SLSTM, handles the individual trajectories 

of both vehicles and pedestrians. The GAT, situated between the SLSTM and the second model 

known as TLSTM, is responsible for capturing interactions between the two objects within the 

scene. Conversely, the TLSTM is designed to capture the temporal interactions between vehicles 

and pedestrians. 
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Figure 3.1 Illustration of the vehicle-pedestrian interaction model. 

3.3.2 Vehicle-Pedestrian Interaction (VPI) Features Extraction 

The interaction between vehicles and pedestrians is a significant factor in predicting their 

future trajectories. The process of extracting features related to vehicle-pedestrian interaction 

involves two sections, and every section has two stages, as depicted in Figure 3.2.  
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Figure 3.2 Vehicle-Pedestrian Interaction Feature Extraction Model. 

The first section extracts the vehicle-pedestrian interaction feature when considering 

vehicle spatial influence on pedestrians. This section feature is then used with the pedestrian's 

motion state feature (spatial feature) to be fed to the SLSTM for each pedestrian. In the first stage 

of this section, the interaction weights between the vehicle and pedestrian are learned using their 

calculated relative positions. Next, a separate embedding module is used to extract the movement 

state of the vehicle. Finally, the two stages are combined to obtain the features related to vehicle-

pedestrian interaction, which are then fed to the SLSTM for trajectory prediction. On the other 

hand, the second section extracts the vehicle-pedestrian interaction feature when considering the 

pedestrian spatial influence on vehicles. The resulting feature from this section is then fed with the 

vehicle’s motion state (spatial feature) to the SLSTM. Stages one and two of both sections are 

discussed below.    
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In stage one, the vehicle-pedestrian interaction attention weights 𝑣𝑣𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡  between the 𝑖𝑖𝑡𝑡ℎ 

pedestrian and the 𝑗𝑗𝑡𝑡ℎ vehicle is calculated using Max pooling as shown in Eq. 3.1. 

𝑣𝑣𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 �𝑀𝑀𝐿𝐿𝑃𝑃�𝜙𝜙 �𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡  ;𝑊𝑊𝑝𝑝�;𝑊𝑊𝑎𝑎��, 𝑖𝑖 ∈ {1, … ,𝑁𝑁}, 𝑗𝑗 ∈ {1, … ,𝑀𝑀}      (3.1) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃(∙ ) here is the pooling layer, and 𝑀𝑀𝐿𝐿𝑃𝑃(∙) is the multi-layer perceptron sub-

network with weight 𝑊𝑊𝑎𝑎. Moreover, 𝜙𝜙(∙) is the embedding layer with weights. 𝑊𝑊𝑝𝑝. Finally, the 

relative position (𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡 ) between the pedestrian and the vehicle is then calculated. Eq. 2.3 and 2.4 

are used to calculate the relative position using the 𝑥𝑥 and 𝑦𝑦 coordinates and the heading angle 𝜃𝜃 as 

shown in Eq. 3.2. 

𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡 = �𝑥𝑥𝑖𝑖
𝑣𝑣𝑝𝑝ℎ,𝑡𝑡 − 𝑥𝑥𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡,𝑦𝑦𝑖𝑖
𝑣𝑣𝑝𝑝ℎ,𝑡𝑡 − 𝑦𝑦𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡,𝜃𝜃𝑖𝑖
𝑣𝑣𝑝𝑝ℎ,𝑡𝑡 −  𝜃𝜃𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡�,                      (3.2) 

 𝑖𝑖 ∈ {1, … ,𝑁𝑁},  𝑗𝑗 ∈ {1, … ,𝑀𝑀}                           

In equation 3.2, 𝑁𝑁 and 𝑀𝑀 are the numbers of pedestrians and vehicles, respectively. To 

predict pedestrian trajectories accurately, we must consider the motion state of the 𝑗𝑗𝑡𝑡ℎ vehicle and 

then aggregate the vehicle-pedestrian interaction weights 𝑣𝑣𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡  and the vehicle motion states 𝑚𝑚𝑖𝑖
𝑣𝑣𝑝𝑝ℎ,𝑡𝑡 

of the vehicle to obtain the vehicle-pedestrian interaction features or vehicle impact. We calculate 

the vehicle's motion state using the equation below:  

𝑚𝑚𝑖𝑖
𝑣𝑣𝑝𝑝ℎ_𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 =  𝜙𝜙�Δ𝑉𝑉𝑖𝑖𝑡𝑡 ;𝑊𝑊𝑚𝑚𝑣𝑣𝑣𝑣ℎ_𝑝𝑝𝑣𝑣𝑝𝑝�, 𝑗𝑗 ∈ {1, … ,𝑀𝑀}                                                   (3.3) 

In equation 3.3, 𝜙𝜙 (∙) component is the embedding with weights 𝑊𝑊𝑚𝑚𝑣𝑣𝑣𝑣ℎ_𝑝𝑝𝑣𝑣𝑝𝑝  and Δ𝑉𝑉𝑖𝑖𝑡𝑡 is the 

relative position of the 𝑗𝑗𝑡𝑡ℎ vehicle between the current and last time-step. The final step is 

aggregating the vehicle-pedestrian interaction weights 𝑣𝑣𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡  and the vehicle motion states 

𝑚𝑚𝑖𝑖
𝑣𝑣𝑝𝑝ℎ_𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 as follows: 

𝑣𝑣𝑖𝑖𝑡𝑡 = 𝐴𝐴𝐺𝐺𝐺𝐺𝑉𝑉𝑉𝑉𝑉𝑉�𝑚𝑚𝑖𝑖
𝑣𝑣𝑝𝑝ℎ_𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡, 𝑣𝑣𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡 �, 𝑖𝑖 ∈ {1, … ,𝑁𝑁}, 𝑗𝑗 ∈ {1, … ,𝑀𝑀}          (3.4) 
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Eq. 3.4 is the vehicle-pedestrian interaction feature when considering the vehicle influence. 

This feature is then aggregated with the motion state of the individual pedestrian and fed to the 

SLSTM. For the vehicle-pedestrian interaction feature, when considering the pedestrian influence, 

the motion state of the pedestrian 𝑚𝑚𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝_𝑣𝑣𝑝𝑝ℎ,𝑡𝑡 should be calculated and then aggregated with the 

vehicle-pedestrian interaction weights 𝑣𝑣𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡  to get the following equation: 

𝑝𝑝𝑖𝑖𝑡𝑡 = 𝐴𝐴𝐺𝐺𝐺𝐺𝑉𝑉𝑉𝑉𝑉𝑉�𝑚𝑚𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝_𝑣𝑣𝑝𝑝ℎ,𝑡𝑡,𝑣𝑣𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡 �, 𝑖𝑖 ∈ {1, … ,𝑁𝑁}, 𝑗𝑗 ∈ {1, … ,𝑀𝑀}          (3.5) 

𝑝𝑝𝑖𝑖𝑡𝑡 is then aggregated with the motion state of the individual vehicle and fed to the SLSTM 

network.  

3.3.3 Trajectory Encoding 

LSTMs have been used widely to capture the motion state of pedestrians [41], [45], [77], 

[78], [130]. We build on this prior work. The precise predicting of forthcoming trajectories based 

solely on past trajectories poses a formidable challenge, primarily due to the inherent uncertainty 

that accompanies future trajectories, even when past trajectories are indistinguishable. To 

surmount this challenge, supplementary information cues, such as pedestrian intention, vehicle 

speed, and global scene dynamics, play a critical role in advancing the accuracy of future trajectory 

prediction, as these cues exhibit strong correlations with pedestrian trajectory prediction. To 

further augment the intrinsic interactions among these cues, we propose the integration of an 

additional memory cell and dynamic rescaling of the output gate in response to changes in vehicle-

pedestrian spatial interaction. One LSTM is used for each pedestrian and each vehicle. The 

architecture of the proposed Long Short-Term Memory (LSTM) and a conventional LSTM are 

compared in Figure 3.3. 
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Figure 3.3 (a). The structure of a standard LSTM neuron. (b) The structure of our proposed LSTM. 

3.3.3.1 Pedestrian Trajectory Encoding 

The implementation has two steps as follows: 

1. We first calculate each pedestrian's relative position and pose to the previous time step. 

∆𝑥𝑥𝑖𝑖𝑡𝑡  =  𝑥𝑥𝑖𝑖𝑡𝑡  – 𝑥𝑥𝑖𝑖𝑡𝑡−1                                    (3.6) 

∆𝑦𝑦𝑖𝑖𝑡𝑡  =  𝑦𝑦𝑖𝑖𝑡𝑡 – 𝑦𝑦𝑖𝑖𝑡𝑡−1                                   (3.7) 

   For the relative pose: 

∆𝜃𝜃𝑖𝑖𝑡𝑡  =  𝜃𝜃𝑖𝑖𝑡𝑡 – 𝜃𝜃𝑖𝑖𝑡𝑡−1                                   (3.8) 

2. The calculated relative positions and pose are then embedded into a fixed-length vector 𝑒𝑒𝑖𝑖𝑡𝑡 

for every time step, which is called the spatial feature of the pedestrian. 

      𝑒𝑒𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡  = 𝜙𝜙 (Δ𝑥𝑥𝑖𝑖𝑡𝑡 ,Δ𝑦𝑦𝑖𝑖𝑡𝑡 ,Δ 𝜃𝜃𝑖𝑖𝑡𝑡 ;  𝑊𝑊𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝)      (3.9)  

 𝜙𝜙(. ) is an embedding function and 𝑊𝑊𝑒𝑒 is the embedding weight. This vector 𝑒𝑒𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑡𝑡 is then 

aggregated with the vehicle-pedestrian interaction feature 𝑣𝑣𝑖𝑖𝑡𝑡 from equation 3.4 and then fed to the 

SLSTM network.  

  𝑚𝑚𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡  =  𝑆𝑆𝐿𝐿𝑆𝑆𝑇𝑇𝑀𝑀�𝑚𝑚𝑖𝑖

𝑡𝑡−1 , 𝑒𝑒𝑖𝑖𝑡𝑡 , 𝑣𝑣𝑖𝑖𝑡𝑡  ;  𝑊𝑊𝑚𝑚𝑝𝑝𝑣𝑣𝑝𝑝�   (3.10) 
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 𝑚𝑚𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑡𝑡 is the hidden state of the SLSTM at time step t; 𝑊𝑊𝑚𝑚𝑝𝑝𝑒𝑒𝑑𝑑 is the weight of the SLSTM cell. 

3.3.3.2 Vehicle Trajectory Encoding 

The methodology for encoding vehicle trajectories is identical to the pedestrian section. 

The following two steps are followed: 

1. We first calculate each vehicle's relative position and pose to the previous time step. 

∆𝑥𝑥𝑖𝑖𝑡𝑡  =  𝑥𝑥𝑖𝑖𝑡𝑡  – 𝑥𝑥𝑖𝑖𝑡𝑡−1                                    (3.11) 

∆𝑦𝑦𝑖𝑖𝑡𝑡  =  𝑦𝑦𝑖𝑖𝑡𝑡 –  𝑦𝑦𝑖𝑖𝑡𝑡−1                                   (3.12) 

   For the relative pose: 

∆𝜃𝜃𝑖𝑖𝑡𝑡  =  𝜃𝜃𝑖𝑖𝑡𝑡 –  𝜃𝜃𝑖𝑖𝑡𝑡−1                                   (3.13) 

2. The calculated relative positions and pose are then embedded into a fixed-length vector 

𝑒𝑒𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑡𝑡 for every time step, which is called the spatial feature of the vehicle. 

      𝑒𝑒𝑖𝑖
𝑣𝑣𝑝𝑝ℎ,𝑡𝑡  = 𝜙𝜙 (Δ𝑥𝑥𝑖𝑖𝑡𝑡 ,Δ𝑦𝑦𝑖𝑖𝑡𝑡 ,Δ 𝜃𝜃𝑖𝑖𝑡𝑡 ;  𝑊𝑊𝑝𝑝𝑣𝑣𝑣𝑣ℎ)      (3.14)  

 𝜙𝜙(. ) is an embedding function and 𝑊𝑊𝑒𝑒𝑣𝑣𝑒𝑒ℎ is the embedding weight. This vector 𝑒𝑒𝑖𝑖
𝑣𝑣𝑒𝑒ℎ,𝑡𝑡 is 

then aggregated with the vehicle-pedestrian interaction feature 𝑝𝑝𝑖𝑖𝑡𝑡 from equation 11 and then fed 

to the SLSTM network.  

  𝑚𝑚𝑖𝑖
𝑣𝑣𝑝𝑝ℎ,𝑡𝑡  =  𝑆𝑆𝐿𝐿𝑆𝑆𝑇𝑇𝑀𝑀�𝑚𝑚𝑖𝑖

𝑡𝑡−1 , 𝑒𝑒𝑖𝑖
𝑣𝑣𝑝𝑝ℎ,𝑡𝑡,𝑝𝑝𝑖𝑖𝑡𝑡  ;  𝑊𝑊𝑚𝑚𝑣𝑣𝑣𝑣ℎ�   (3.15) 

 𝑚𝑚𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑡𝑡 is the hidden state of the SLSTM at time step t; 𝑊𝑊𝑚𝑚𝑣𝑣𝑒𝑒ℎ is the weight of the SLSTM cell. 

3.3.4 Interaction Modeling and Prediction 

Employing one LSTM with the VPI feature extraction model for each pedestrian and 

vehicle trajectory fails to capture the intricate and temporal interactions between humans and 

vehicles. To address this shortcoming and enable more information sharing across different 
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pedestrians and vehicles in crowded environments, we propose treating pedestrians and vehicles 

as nodes on a directed graph and utilizing the recent advances in Graph Neural Networks (GNNs). 

By assigning varying levels of importance to different nodes, Graph Attention Network (GAT) 

models enable us to aggregate information from neighbors. Thus, we adopt GAT as the sharing 

mechanism in our approach. As demonstrated in Figure 3.4, pedestrians and vehicles are 

represented as nodes in the graph, and GAT serves as the sharing mechanism. 

 

Figure 3.4 Interaction as a directed graph. Pedestrians and vehicles are nodes. The edges are the interaction 
between these objects. 

 
Graph Attention Network (GAT) is designed to process graph-structured data and compute 

node features by attending to the features of their neighboring nodes based on a self-attention 

mechanism [131]. Multiple graph attention layers can be stacked to form the complete GAT model 

[131]. A single graph attention layer is illustrated in Figure 3.5. 
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Figure 3.5 Graph Attention Network [131]. 

The input of the graph attention layer is ℎ = {ℎ1����⃗ , ℎ2����⃗ , … , ℎ𝑁𝑁����⃗ } where ℎ𝑖𝑖���⃗  ∈ 𝑅𝑅𝐹𝐹, 𝑁𝑁 is the 

number of nodes, and 𝐹𝐹 is the feature dimension of each node. The output is ℎ′���⃗ = {ℎ1
′����⃗ ,ℎ2

′����⃗ , … ,ℎ𝑁𝑁
′�����⃗ } 

where ℎ𝑖𝑖
′���⃗  ∈  𝑅𝑅𝐹𝐹

′
. 𝐹𝐹′and 𝐹𝐹 can be unequal.  

In the observation period of 𝑚𝑚𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑡𝑡 where 𝑡𝑡 =  1, . . . ,𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 is fed to the graph attention layer. 

The coefficients in the attention mechanism of the node pair (𝑖𝑖, 𝑗𝑗) can be computed by: 

𝛼𝛼𝑖𝑖𝑗𝑗𝑡𝑡   =  
exp (𝐿𝐿𝑒𝑒𝐿𝐿𝑘𝑘𝑦𝑦𝑅𝑅𝑒𝑒𝐿𝐿𝐿𝐿(𝐿𝐿𝑇𝑇[𝑊𝑊 𝑚𝑚𝑖𝑖

𝑝𝑝𝑒𝑒𝑑𝑑,𝑡𝑡 �𝑊𝑊 𝑚𝑚𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑡𝑡 ] )

∑ exp (𝐿𝐿𝑒𝑒𝐿𝐿𝑘𝑘𝑦𝑦𝑅𝑅𝑒𝑒𝐿𝐿𝐿𝐿 (𝐿𝐿𝑇𝑇[𝑊𝑊 𝑚𝑚𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑡𝑡 �𝑊𝑊 𝑚𝑚𝑗𝑗

𝑣𝑣𝑒𝑒ℎ,𝑡𝑡 ] )𝑘𝑘 ∈ 𝒩𝒩
           (3.16) 

where ∥ is the concatenation operation, {⋅}𝑇𝑇represents transposition, 𝛼𝛼𝑖𝑖𝑗𝑗𝑡𝑡  is the attention coefficient 

of node 𝑗𝑗 to 𝑖𝑖 at timestep 𝑡𝑡, 𝒩𝒩 represents the neighbors of node 𝑖𝑖 on the graph. 𝑊𝑊 ∈  𝑅𝑅𝐹𝐹′×𝐹𝐹 is the 

weight matrix of a shared linear transformation that is applied to each node (𝐹𝐹 is the dimension of 

 𝑚𝑚𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡,  𝐹𝐹′ is the dimension of output), and 𝐿𝐿 ∈ 𝑅𝑅2𝐹𝐹′is the weight vector of a single-layer 

feedforward neural network. It is normalized by a softmax function with LeakyReLU. 

After getting the normalized attention coefficients, the output of one graph attention layer 

for node 𝑖𝑖 at 𝑡𝑡 is given by: 
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    𝑚𝑚�𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡   = 𝜎𝜎 � � 𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡  𝑾𝑾

𝑖𝑖 ∈ 𝒩𝒩 
𝑚𝑚𝑖𝑖
𝑣𝑣𝑝𝑝ℎ,𝑡𝑡�           (3.17) 

where 𝜎𝜎 is a nonlinear function. Eq. 3.16 and Eq. 3.17 show how a single graph attention layer 

works. In our implementation, two graph attention layers are adopted.  𝑚𝑚� 𝑖𝑖
𝑡𝑡 (the result after two 

graph attention layers) is the aggregated hidden state for pedestrian 𝑖𝑖 at 𝑡𝑡, which contains the spatial 

influence of other pedestrians and vehicles. 

To capture the temporal correlations between interactions, another LSTM called TLSTM 

is used as shown below: 

𝑃𝑃𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑡𝑡 = 𝑇𝑇𝐿𝐿𝑆𝑆𝑇𝑇𝑀𝑀�𝑃𝑃𝑖𝑖

𝑝𝑝𝑒𝑒𝑑𝑑,𝑡𝑡−1,𝑚𝑚� 𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑡𝑡,𝑊𝑊𝑃𝑃𝑝𝑝𝑒𝑒𝑑𝑑�                    (3.18) 

𝑃𝑃𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑡𝑡 = 𝑇𝑇𝐿𝐿𝑆𝑆𝑇𝑇𝑀𝑀�𝑃𝑃𝑗𝑗

𝑣𝑣𝑒𝑒ℎ,𝑡𝑡−1,𝑚𝑚� 𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑡𝑡,𝑊𝑊𝑃𝑃𝑣𝑣𝑒𝑒ℎ�                    (3.19) 

where 𝑚𝑚� 𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑡𝑡 is from Eq. 3.17. 𝑊𝑊𝑃𝑃𝑝𝑝𝑒𝑒𝑑𝑑 is the TLSTM weight and is shared among all the sequences. 

In our proposed method, SLSTM is used to model the motion pattern of each pedestrian and each 

vehicle in the scene. Moreover, another LSTM called TLSTM is used to model the temporal 

correlations of interactions. These two LSTMs are part of the encoder structure. Then, these two 

LSTMs are utilized to fuse the spatial and temporal data.  

At time-step 𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜, there are two hidden variables (𝑚𝑚𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜 ,  𝑃𝑃𝑖𝑖

𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜) from two LSTMs of 

each pedestrian. In our implementation, these two variables are fed to two different multilayer 

perceptrons (𝛿𝛿1(·) and 𝛿𝛿2(·)) before getting concatenated: 

𝑚𝑚�𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 =  𝛿𝛿1�𝑚𝑚𝑖𝑖

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜�                      (3.20) 

�̅�𝑃𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 =  𝛿𝛿2�𝑃𝑃𝑖𝑖

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜�                       (3.21) 

ℎ𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑚𝑚�𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 ∥  �̅�𝑃𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝                   (3.22) 
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Furthermore, at each time step 𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜, there are also two hidden variables 

(𝑚𝑚𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜 ,  𝑃𝑃𝑗𝑗

𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜) for each vehicle. Then, these two variables are fed to two different 

perceptrons (𝛿𝛿1(·) and 𝛿𝛿2(·)) before getting concatenated: 

𝑚𝑚�𝑖𝑖𝑣𝑣𝑝𝑝ℎ =  𝛿𝛿1�𝑚𝑚𝑖𝑖
𝑣𝑣𝑝𝑝ℎ,𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜�                      (3.23) 

�̅�𝑃𝑖𝑖𝑣𝑣𝑝𝑝ℎ =  𝛿𝛿2�𝑃𝑃𝑖𝑖
𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜�                         (3.24) 

ℎ𝑣𝑣𝑝𝑝ℎ =  𝑚𝑚�𝑖𝑖𝑣𝑣𝑝𝑝ℎ ∥  �̅�𝑃𝑖𝑖𝑣𝑣𝑝𝑝ℎ                         (3.25) 

Using real-world data, our goal is to mimic pedestrians' and vehicles' motions and the 

interaction between them. Three parts are representing the intermediate state vector of our model 

namely, hidden variables of SLSTM, hidden variables of TLSTM, and the noise added (as shown 

in Fig. 3.1). The intermediate state vector is calculated as: 

𝑑𝑑𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜 = ℎ𝑖𝑖

𝑝𝑝𝑒𝑒𝑑𝑑 ∥  𝑧𝑧                         (3.26) 

𝑑𝑑𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜 = ℎ𝑗𝑗

𝑣𝑣𝑒𝑒ℎ ∥  𝑧𝑧                         (3.27) 

where 𝑧𝑧 represents noise, ℎ𝑖𝑖 
𝑝𝑝𝑝𝑝𝑝𝑝and ℎ𝑖𝑖𝑣𝑣𝑝𝑝ℎ are from Eq. 3.22 and Eq. 3.25. The intermediate state 

vectors 𝑑𝑑𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜and 𝑑𝑑𝑗𝑗

𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜  then act as the initial hidden state of the decoder LSTM (termed as 

DLSTM). The pedestrian and vehicle predicted relative positions are shown below: 

𝑑𝑑𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜+1 = 𝐷𝐷𝐿𝐿𝑆𝑆𝑇𝑇𝑀𝑀�𝑑𝑑𝑖𝑖

𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜 ,𝑒𝑒𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜;𝑊𝑊𝑑𝑑𝑝𝑝𝑒𝑒𝑑𝑑�                     (3.28) 

𝑑𝑑𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜+1 = 𝐷𝐷𝐿𝐿𝑆𝑆𝑇𝑇𝑀𝑀�𝑑𝑑𝑗𝑗

𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜 ,𝑒𝑒𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜;𝑊𝑊𝑑𝑑𝑣𝑣𝑒𝑒ℎ�                      (3.29) 

�Δ𝑥𝑥𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜+1,Δ𝑦𝑦𝑖𝑖

𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜+1,Δ𝜃𝜃𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜� =  𝛿𝛿3 �𝑑𝑑𝑖𝑖

𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜�            (3.30) 

�Δ𝑥𝑥𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜+1,Δ𝑦𝑦𝑗𝑗

𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜+1,Δ𝜃𝜃𝑗𝑗
𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜� =  𝛿𝛿3 �𝑑𝑑𝑗𝑗

𝑣𝑣𝑒𝑒ℎ,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜�               (3.31)  

where 𝑊𝑊𝑑𝑑 is DLSTM weight, 𝛿𝛿3(・) is a linear layer, 𝑒𝑒𝑖𝑖
𝑝𝑝𝑒𝑒𝑑𝑑,𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜  is from Eq. 3.9. After getting the 

predicted relative position at time-step 𝑇𝑇𝑃𝑃𝑜𝑜𝑜𝑜 + 1, the subsequent inputs of DLSTM are calculated 
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based on the last predicted relative position according to Eq. 3.9. And it’s easy to convert relative 

positions to absolute positions for computing loss. The variety loss from [42] works as follows: 

for each pedestrian and each vehicle, the model produces multiple predicted trajectories by 

randomly sampling 𝑧𝑧 from 𝒩𝒩(0,1) (the standard normal distribution). Then it chooses the 

trajectory that has the smallest distance to ground truth as the model output to compute the loss: 

𝐿𝐿𝑣𝑣𝑎𝑎𝑣𝑣𝑖𝑖𝑝𝑝𝑡𝑡𝑣𝑣
𝑝𝑝𝑝𝑝𝑝𝑝 = min

𝑘𝑘𝑝𝑝𝑣𝑣𝑝𝑝
�𝑌𝑌𝑖𝑖 −  𝑌𝑌�𝑖𝑖𝑘𝑘

𝑝𝑝𝑣𝑣𝑝𝑝
�
2

          (3.32) 

𝐿𝐿𝑣𝑣𝑎𝑎𝑣𝑣𝑖𝑖𝑝𝑝𝑡𝑡𝑣𝑣𝑣𝑣𝑝𝑝ℎ = min
𝑘𝑘𝑣𝑣𝑣𝑣ℎ

�𝑌𝑌𝑖𝑖 −  𝑌𝑌�𝑖𝑖𝑘𝑘
𝑣𝑣𝑣𝑣ℎ
�
2

          (3.33) 

In Eq. 3.32, 𝑌𝑌𝑖𝑖 is the ground-truth trajectory of pedestrian 𝑖𝑖, 𝑌𝑌�𝑖𝑖
𝑘𝑘𝑝𝑝𝑒𝑒𝑑𝑑 is the trajectory produced 

by our model, and 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝 is a hyperparameter. By considering only the best trajectory, this loss 

encourages the network to cover the space of outputs that conform to the past trajectory. In Eq. 

3.33, 𝑌𝑌𝑗𝑗 is the ground-truth trajectory of vehicle 𝑗𝑗, 𝑌𝑌�𝑗𝑗
𝑘𝑘𝑣𝑣𝑒𝑒ℎ is the trajectory produced by our model, 

and 𝑘𝑘𝑣𝑣𝑝𝑝ℎ is a hyperparameter.   

3.4 Implementation Details 

In our implementation, each LSTM consists of only one layer. In Eqs. 3.9 and 3.14, the 

dimension of 𝑒𝑒𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 and 𝑒𝑒𝑖𝑖

𝑣𝑣𝑝𝑝ℎ,𝑡𝑡 are set to 256 and the dimension of 𝑚𝑚𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 and 𝑚𝑚𝑖𝑖

𝑣𝑣𝑝𝑝ℎ,𝑡𝑡in Eqs. 3.10 

and 3.15 are set to 64. The weight matrix 𝑊𝑊 (Eq. 3.16) for the first graph attention layer has a 

shape of 32×32, while for the second layer, it has a shape of 32 × 64. The dimension of the attention 

coefficient matrix 𝐿𝐿 in Eq. 3.16 is set to 32 for the first graph attention layer and 64 for the second 

layer. Batch normalization is applied to the input of the graph attention layer. In Eqs. 3.18 and 

3.19, the dimension of 𝑃𝑃𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 and 𝑃𝑃𝑖𝑖

𝑣𝑣𝑝𝑝ℎ,𝑡𝑡is set to 32. The activation function 𝛿𝛿1 (. ) (Eqs. 3.20 and 

3.23) contains three layers with ReLU activation functions. The number of hidden nodes in these 
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layers is 32, 64, and 24, respectively. Similarly, the activation function 𝛿𝛿2 (. ) (Eqs. 3.21 and 3.24) 

contains three layers with ReLU activation functions, and the number of hidden nodes is 32, 64, 

and 16, respectively. The dimension of 𝑧𝑧 in Eq. 3.26 and Eq. 3.27 is set to 16. We trained the 

network using the Adam optimizer with a learning rate of 0.01 and a batch size of 64. 

3.5 Experiments 

3.5.1 Dataset 

Datasets play a crucial role in developing and assessing deep learning models. For example, 

researchers frequently employ the widely-used ETH [51] and UCY [52] datasets to evaluate the 

efficacy of pedestrian trajectory prediction. However, these datasets are not specifically designed 

for urban traffic scenarios. We employed the VCI-DUT [53] and inD datasets [128] to overcome 

this limitation to train and evaluate our proposed HSTGA model. These datasets contain large 

numbers of real-world vehicle-pedestrian trajectories, encompassing various human-human, 

human-vehicle, and vehicle-vehicle interactions. Additionally, we compared our model against 

state-of-the-art pedestrian trajectory prediction models on several pedestrian datasets, including 

ETH, UCY, and Stanford Drone Dataset (SDD) [129]. 

The VCI-DUT dataset comprises real-world pedestrian and vehicle trajectories collected 

from two locations on China's Dalian University of Technology (DUT) campus, as depicted in 

Figure 3.6. The first location consists of a pedestrian crosswalk at an intersection without traffic 

signals, where the right-of-way is not prioritized for either pedestrians or vehicles. The second 

location is a relatively large shared space near a roundabout where pedestrians and vehicles have 

free movement. Similar to the CITR dataset, the recordings were captured using a DJI Mavic Pro 

Drone equipped with a downward-facing camera, which was positioned high enough to go 
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unnoticed by pedestrians and vehicles. The footage has a resolution of 1920×1080 with a frame 

rate of 23.98 fps. The dataset primarily comprises trajectories of college students leaving their 

classrooms and regular cars passing through the campus. The dataset comprises 17 clips of 

crosswalk scenarios and 11 clips of shared space scenarios, including 1793 trajectories. Some of 

the clips involve multiple VCIs, i.e., more than two vehicles simultaneously interacting with 

pedestrians, as illustrated in Figure 3.6. 

 

Figure 3.6 VCI-DUT Dataset with trajectories of vehicles (red dashed line) and pedestrians (colorful solid lines). 
Upper: Intersection. Lower: Roundabout [53]. 

The second dataset utilized in this study is the inD dataset, as depicted in Figure 3.7. This 

new dataset contains naturalistic vehicle trajectories captured at intersections in Germany. 

Traditional data collection methods are prone to limitations such as occlusions; however, by using 

a drone, these obstacles are overcome. Traffic at four distinct locations was recorded, and the 

trajectory for each road user was extracted, along with their corresponding type. State-of-the-art 

computer vision algorithms were used to obtain positional errors, typically less than 10 

centimeters. The inD dataset is applicable to numerous tasks, including road user prediction, driver 
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modeling, scenario-based safety validation of automated driving systems, and data-driven 

development of highly automated driving (HAD) system components. 

 
Figure 3.7  inD dataset [128]. 

 

3.5.2 Evaluation Metrics 

Following the same as prior works [41], [45], [77], [78], [130], we use two error metrics 

to report prediction errors: 

• Average Displacement Error (ADE): The mean distance between the actual and predicted 

trajectories over all predicted time steps, as specified by Equation 3.34. 

• Final Displacement Error (FDE): The mean distance between the actual and predicted 

trajectories at the last predicted time-step, which is expressed in Equation 3.35. 

𝐴𝐴𝐷𝐷𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝 =  
∑ ∑ ��𝑌𝑌𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 − 𝑌𝑌�𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡��

2
 𝑇𝑇𝑓𝑓

𝑡𝑡=𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜+1𝑖𝑖∈𝑁𝑁

𝑁𝑁 × (𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)
                          (3.34) 

𝐹𝐹𝐷𝐷𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝 =  
∑ ��𝑌𝑌𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡 − 𝑌𝑌�𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝,𝑡𝑡��

2
 𝑖𝑖∈𝑁𝑁

𝑁𝑁
, 𝑡𝑡 = 𝑇𝑇𝑓𝑓                             (3.35) 
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In Eqs. 3.34 and 3.35, 𝑁𝑁 is the number of pedestrians. To find the 𝐴𝐴𝐷𝐷𝐸𝐸 and 𝐹𝐹𝐷𝐷𝐸𝐸 for 

vehicles, 𝑁𝑁 will be replaced by 𝑀𝑀, which is the number of vehicles.  

3.6 Results and Analysis 

3.6.1 Quantitative Results 

Our model is trained and evaluated on the VCI-DUT, and inD datasets. Moreover, we 

evaluated our model on additional datasets such as ETH, UCY, HOTEL, ZARA1, and ZARA2. 

The ADE and FDE results (in meters) for 12 time-step predictions are shown in Table 3.1; lower 

results are better. The bold font represents the best results. The proposed model outperforms the 

previous approaches Social-LSTM [41], Social Attention [133], Social-GAN [132], CIDNN [78], 

STGAT [77], and Step Attention [61] on both ADE and FDE. The proposed model outperforms 

all previous approaches as shown in Table 3.1. The results demonstrate that the use of human-

human, human-vehicle, and vehicle-vehicle information improves the accuracy of pedestrian 

trajectory prediction. 



58 
 

Table 3.1 Quantitative results of all the baselines and our model. Two evaluation metrics namely, ADE and FDE 
are presented (lower results are the best). 

 

Table 3.2 presents a comparative analysis of the factors that influence pedestrian trajectory 

in LSTM-based models and our proposed method. We investigate the influence of the social 

interaction (SI), the pedestrian-vehicle interaction (VPI), and different inputs including the relative 

position (RP), the relative velocity (RV), and learning the vehicle-pedestrian interaction adaptively 

(LIA).  

Table 3.2 Interaction and Influencing Factors of LSTM-based Models. 
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In Table 3.3, we demonstrate the evaluation outcomes of our method on the VCI-DUT and 

inD datasets, and compare them with baseline techniques, including the state-of-the-art DNN-

based pedestrian prediction methods. 

• Constant Velocity (CV) [134]: The pedestrian is assumed to travel at a constant velocity. 

• Social GAN (SGAN) [132]: A GAN architecture using a permutation invariant pooling 

module to capture pedestrian interactions at different scales. 

• Multi-Agent Tensor Fusion (MATF) [76]: A GAN architecture using a global pooling 

layer to combine trajectory and semantic information.  

•Off the Sidewalk Predictions (OSP) [134]: The probabilistic interaction model introduced 

in [330].  

Table 3.3 Quantitative results on DUT and inD datasets. 

Metric Dataset CV [134] SGAN [132] MATF-S [76] OSP [134] HSTGA (our) 
ADE DUT 0.39 0.62 1.65 0.22 0.11 
FDE DUT 0.38 0.66 1.87 0.30 0.16 
ADE inD 0.50 0.98 1.01 0.42 0.23 
FDE inD 0.50 1.09 1.12 0.50 0.29 

 
As shown in Table 3.3, the proposed method HSTGA outperforms previous works in 

both the shared spaces of DUT and un-signalized intersections of inD. 

3.6.2 Qualitative Results 

To qualitatively analyze the performance of the HSTGA model, we plot the predicted 

trajectories against the ground truth. The following scenarios show the qualitative results of our 

model where pedestrians interact with vehicles in a very challenging environment.   
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Scenario 1:  

 

Figure 3.8 The output trajectories of the model on the DUT scenario. Left: Visual of the scene; Right: Trajectory 
model and prediction – Pedestrians: Red (observed trajectory), blue (ground truth), green (predicted trajectory). 

Vehicles: Turquoise (observed trajectory), yellow (ground truth), and pink (predicted trajectory). 

Scenario 2:  

  
Figure 3.9 The output trajectories of the model on the DUT scenario. Left: Visual of the scene; Right: Trajectory 
model and prediction – Pedestrians: Red (observed trajectory), blue (ground truth), green (predicted trajectory). 

Vehicles: Turquoise (observed trajectory), yellow (ground truth), and pink (predicted trajectory). 
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Scenario 3:  

  

Figure 3.10 The output trajectories of the model on the DUT scenario. Left: Visual of the scene; Right: Trajectory 
model and prediction – Pedestrians: Red (observed trajectory), blue (ground truth), green (predicted trajectory). 

Vehicles: Turquoise (observed trajectory), yellow (ground truth), and pink (predicted trajectory). 

Scenario 4:  

  
Figure 3.11 The output trajectories of the model on the DUT scenario. Left: Visual of the scene; Right: Trajectory 
model and prediction – Pedestrians: Red (observed trajectory), blue (ground truth), green (predicted trajectory). 

Vehicles: Turquoise (observed trajectory), yellow (ground truth), and pink (predicted trajectory). 
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Scenario 5:  

  

Figure 3.12 The output trajectories of the model on the DUT scenario. Left: Visual of the scene; Right: Trajectory 
model and prediction – Pedestrians: Red (observed trajectory), blue (ground truth), green (predicted trajectory). 

Vehicles: Turquoise (observed trajectory), yellow (ground truth), and pink (predicted trajectory). 

Our investigation involved a rigorous evaluation of the predictive capacities of our model, 

which entailed the projection of future outcomes across a range of distinct time steps. Specifically, 

we examined the predictive accuracy at time steps 8, 12, 14, 16, 18, 20, 22, and 24 steps ahead. 

These chosen time steps were critical in assessing the model's efficacy in forecasting future events. 

To illustrate our findings, we present a series of figures that offer a comprehensive depiction of 

the obtained results for each designated time step. Importantly, the data presented in these figures 

pertain specifically to the 5th scenario, ensuring a focused and contextually relevant analysis. 
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Figure 3.13 Predicted trajectories at 8, 12, 14, and 16-time steps. 
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Figure 3.14 Predicted trajectories at 18, 20, 22, and 24-time steps. 

Using the output trajectories, we used the predicted trajectories to see if the pedestrian 

and vehicle would have a critical interaction. We investigate this in Chapter 4.  

3.7 Summary 

In this study, we propose a novel encoder-decoder interaction model named Holistic 

Spatio-Temporal Graph Attention Trajectory Prediction for Vehicle-Pedestrian Interaction 

(HSTGA). HSTGA aims to predict long-horizon pedestrian and vehicle trajectories by modeling 

the pedestrian-vehicle interactions in non-signalized and non-crosswalk scenarios. The proposed 

model uses a trajectory-based approach to capture the complex interactions between pedestrians 
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and vehicles. HSTGA integrates a holistic spatiotemporal graph attention mechanism that learns 

the attention weights of spatial and temporal features of pedestrians and vehicles. The proposed 

method outperforms state-of-the-art pedestrian trajectory prediction models on various benchmark 

datasets, highlighting the effectiveness of the HSTGA model. 

In order to effectively capture the interaction features between pedestrians and vehicles, a 

vehicle-pedestrian interaction feature extraction model utilizing a multi-layer perceptron (MLP) 

sub-network and max pooling has been proposed. The MLP sub-network is responsible for 

extracting the features of both pedestrians and vehicles, while the max pooling operation 

aggregates these features into a singular vector. The extracted features are then inputted into an 

LSTM network to predict the trajectories of both pedestrians and vehicles. This feature extraction 

model enhances the model's ability to capture the intricate interactions between pedestrians and 

vehicles, resulting in heightened prediction accuracy. 

Compared to other methods, the proposed approach reduces both computational and data 

requirements, rendering it suitable for real-time applications. The MLP sub-network extracts 

features in parallel, reducing the overall time complexity of the model. The max pooling operation 

combines the features of pedestrians and vehicles into a single vector, thereby decreasing the 

number of input parameters required for the LSTM network. Furthermore, the proposed approach 

solely utilizes the historical trajectories of pedestrians and vehicles, thus eliminating the need for 

external data sources. Extensive evaluations conducted on diverse datasets containing numerous 

challenging scenarios involving the interactions between vehicles and pedestrians demonstrate the 

effectiveness and efficiency of the proposed approach.
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Chapter 4  

Vehicle-Pedestrian Conflict Model 

4.1 Introduction 

Transportation has become an essential aspect of our everyday life. As cities continue to 

grow, interactions between vehicles and pedestrians have become increasingly complex and 

frequent. To ensure safety and efficiency in the transportation system, it is crucial to have a clear 

understanding of these interactions and be able to anticipate possible conflicts. Conflict-based 

models offer an approach to studying these interactions by simulating potential vehicle-pedestrian 

conflicts in shared spaces such as roads and intersections. These models consider various factors 

such as natural limitations, traffic rules, and the behavior and choices of vehicles and pedestrians. 

Identifying high-risk areas and proposing measures to mitigate them can significantly improve 

transportation safety. 

Conflict-based models may be used to assess the performance of various traffic 

management devices such as roundabouts, crosswalks, and traffic signals in fostering safe and 

successful vehicle-pedestrian interactions. Urban planning is an important field where conflict-

based models are employed. When building a public transportation system, the complex 

interactions that occur between vehicles and pedestrians in metropolitan contexts must be 

considered. 

The rise of intelligent vehicles has further underscored the importance of conflict-based 

models. In shared areas, intelligent vehicles must be able to communicate securely with 
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infrastructure and potentially with pedestrians. Developers of intelligent vehicles can use conflict-

based models to assess these vehicles during design and deployment in simulation and real-world 

scenarios. The utilization of conflict-based model simulation presents a distinctive advantage in 

the evaluation of intelligent vehicles, particularly in its ability to capture and test rare events with 

enhanced flexibility. Unlike traditional testing methods, which often rely on predetermined 

scenarios and well-defined parameters, the conflict-based model simulation introduces a dynamic 

and adaptable framework that can replicate a wide range of complex real-world situations. By 

incorporating a multitude of potential conflicts, including unexpected behavior from other road 

users, this simulation approach facilitates the evaluation of intelligent vehicles in scenarios that 

are infrequent yet crucial for assessing their robustness and safety. The inherent flexibility of the 

conflict-based model simulation thus ensures a more comprehensive and realistic evaluation of 

intelligent vehicles' capabilities, enabling researchers and developers to better understand and 

address rare events that may significantly impact their performance on the road. Additionally, they 

can create algorithms to ensure the safe operation of these vehicles on public roads.  

Vehicle and pedestrian conflict-based models are vital tools in ensuring the safety and 

effectiveness of the transportation system. Furthermore, the vehicle-pedestrian conflict-based 

model provides critical information to traffic experts, urban planners, and intelligent vehicle 

creators. Therefore, conflict-based modeling can improve transit networks' safety and 

effectiveness for all users, including pedestrians and vehicles. 

To create an accurate conflict-based model for vehicle-pedestrian interactions, the 

movements of vehicles and pedestrians at the same time-step must be input into the conflict model. 

This data assists in investigating any critical conflicts between vehicles and pedestrians at each 

time step. The movements at each time step can be represented as vehicle and pedestrian 
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trajectories. Designing the conflict-based model requires accurate vehicle and pedestrian trajectory 

prediction under highly uncertain environments. Therefore, the conflict-based model has two 

stages, the trajectory prediction stage, and the conflict-based stage. 

4.2 Problem Statement 

The problem statement is already discussed in chapter 2 section 2.3.  

4.3 Research Methodology 

Historically, researchers have utilized road accident data and surrogate safety measures 

(SSM) to examine and evaluate the safety of diverse road amenities. In this study, a conflict-based 

approach is employed to investigate the conduct of pedestrian-vehicle conflict through trajectory 

data. The demeanor of this conflict is contingent on which road user traverses the conflict zone 

first. If a vehicle passes first, the pedestrian may withdraw, slow down, or stop until the vehicle 

has passed, or may alter its trajectory and move to the rear of the vehicle. Conversely, the vehicle 

may hasten and traverse the conflict zone before the pedestrian's arrival. In the event that a 

pedestrian passes first, the vehicle may decelerate, stop, or alter its path, whereas the pedestrian 

may accelerate and traverse the conflict zone before the vehicle's arrival. 

Following our prior works in [27], and [138]-[142], we propose a conflict-based model to 

investigate these behaviors and extract valuable data, such as normal and safety-critical driving 

metrics. The normal and safety-critical metrics such as vehicle speed, pedestrian speed, time-to-

collision (TTC), and post-encroachment time (PET) are important indicators to help categorize 

events into different patterns. Whereas minimum values of TTC and PET were used to get severity 

levels to evaluate the safety between a vehicle and a pedestrian. Finally, the TTC and PET 
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thresholds are used to design Autonomous Emergency Braking (AEB) algorithm. Fig. 4.1 

illustrates the architecture of the proposed model. 

 

Figure 4.1 Vehicle-pedestrian conflict-based model. 

4.4 Data Acquisition 

As shown in Figure 4.1, the input to the conflict-based model is the predicted trajectories 

from our HSTGA deep learning model in Chapter 3. We train and evaluate our HSTGA model 

using the VCI-DUT [53] and inD datasets [128]. These datasets contain thousands of real-world 

vehicle-pedestrian trajectories and cover rich human-human, human-vehicle, and vehicle-vehicle 

interactions. Moreover, we also evaluate our HSTGA model using many pedestrian datasets such 
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as  ETH [51], UCY [52], and Stanford Drone Dataset (SDD) [129].  More details on datasets are 

listed in Chapter 3, section 3.5.1.   

4.5 Interactive Pedestrian and Vehicle Motion 

4.5.1 Pedestrian Dynamic Model 

For pedestrian dynamics, we only use the trajectory data to control the pedestrian 

dynamics.  

4.5.2 Vehicle Dynamic Model 

The kinematic Bicycle Model is used to model the vehicle dynamics. Then, the vehicle-

predicted trajectory data from our HSTGA model is then integrated into the vehicle dynamics 

model. Specifically, the 𝑥𝑥 and 𝑦𝑦 coordinates of the vehicle's position at each time step are extracted 

from the vehicle trajectory data and used to update the vehicle's position. The vehicle speed is also 

calculated using the trajectory data by computing the distance traveled between consecutive time 

steps and dividing it by the time step. This speed is then used in the vehicle dynamics calculations 

to update the vehicle's position and orientation in the next time step. 

4.6 Results and Analysis 

To assess the accuracy and real-world representation of the model being proposed, we 

carefully analyze a set of statistical measures. These metrics cover a range of driving behaviors, 

including both everyday driving measures and those related to safety-critical situations. To provide 

a clear understanding of each metric, we will introduce their detailed definitions in the upcoming 

sections.  
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4.6.1 Safety-Critical Driving Metrics  

The primary obstacle to the advancement of intelligent vehicles, particularly autonomous 

vehicles, lies in the management of safety-critical driving scenarios encountered in actual 

environments. As such, the conflict-based model necessitates the ability to accurately recognize 

these infrequent, high-risk occurrences. This segment will evaluate the effectiveness of our 

conflict-based model in generating safety-critical metrics, exclusively encompassing proximity-

based indicators like Time-to-Collision (TTC) and Post-Encroachment Time (PET). 

4.6.1.1 Time-to-Collision (TTC) Estimation 

The computational methodology detailed in references [135] and [136] has been selected 

for the purpose of calculating the Time-to-Collision (TTC) between the vehicle and the pedestrian. 

This approach has been identified as an advanced technique for determining the TTC as compared 

to the previous methodology proposed in reference [137]. The improved method incorporates the 

understanding that, during a collision between two objects, one of the objects' corners will make 

initial contact unless the impact occurs perpendicularly, in which case both corners will make 

contact simultaneously. Therefore, by evaluating the intersection points that align with the corners 

of both objects, the first point of intersection can be computed. The intersection point is determined 

using the subsequent formula: 

𝑥𝑥+ =  
(𝑦𝑦2 − 𝑦𝑦1) − (𝑥𝑥2  ∙ 𝑡𝑡𝐿𝐿𝑃𝑃𝜃𝜃2 − 𝑥𝑥1  ∙ 𝑡𝑡𝐿𝐿𝑃𝑃𝜃𝜃1)

𝑡𝑡𝐿𝐿𝑃𝑃𝜃𝜃1 − 𝑡𝑡𝐿𝐿𝑃𝑃𝜃𝜃2
                    (4.1) 

𝑦𝑦+ =  
(𝑥𝑥2 − 𝑥𝑥1) − (𝑦𝑦2  ∙ 𝑐𝑐𝑃𝑃𝑡𝑡𝜃𝜃2 − 𝑦𝑦1  ∙ 𝑐𝑐𝑃𝑃𝑡𝑡𝜃𝜃1)

𝑐𝑐𝑃𝑃𝑡𝑡𝜃𝜃1 − 𝑐𝑐𝑃𝑃𝑡𝑡𝜃𝜃2
                    (4.2) 

The variables 𝑥𝑥+ and 𝑦𝑦+ denote the conflicts or intersections coordinates while 𝑥𝑥1, 𝑦𝑦1, 𝑥𝑥2, 

and 𝑦𝑦2 denote the corner coordinates. The variables 𝑞𝑞1 and 𝑞𝑞2 represent the respective directions 
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of the vehicle and the pedestrian. As shown in Fig. 4.2, we represent the vehicle and pedestrian 

with a rectangular shape. 

 

Figure 4.2 Time-to-Collision Estimation. 

 

Using an example conflict between a vehicle and pedestrian from the following scenario 

(Figure 4.3), we build the vehicle-pedestrian conflict-based simulation model using the predicted 

trajectories from our HSTGA model of the vehicle in the red circle and the pedestrian in the yellow 

circle. Moreover, the vehicle dynamic is integrated with the predicted trajectories to mimic the 

real-world motion of the vehicle. The predicted trajectories for 16-time steps are used to generate 

the future conflict between the vehicle and the pedestrian.  
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Figure 4.3 Vehicle-pedestrian conflict scenario. The red circle is the vehicle and the yellow circle is the pedestrian. 

The following figure shows the vehicle-pedestrian conflict–based simulation that is created 

as discussed in section 4.5. 

 

Figure 4.4 Vehicle-pedestrian conflict-based simulation. 

The time-to-collision plot (Fig. 4.5) is generated using the above technique (Fig. 4.2) and 

using the vehicle-pedestrian simulation shown in Fig. 4.4. 
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Figure 4.5 Time-to-Collision. 

Below is the histogram depicting the time-to-collision for the vehicle and pedestrian 

illustrated in Figure 4.3. The histogram reveals their close proximity, indicating a potential future 

collision between the two entities.  

 

Figure 4.6 Time-to-collision histogram. 
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4.6.1.2 Post-Encroachment Time (PET) Estimation 

Using the following technique as shown in Figure 4.7, we plot the PET histogram 

between the vehicle and pedestrian in Figure 4.8.   

 

 

Figure 4.7 PET Estimation. 

The PET histogram is presented in Figure 4.8. The greater the proximity and the shorter 

the PET (Post-Encroachment Time), the higher the level of danger in the situation. 
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Figure 4.8 PET Histogram. 

4.6.2 Normal Driving Metrics  

During the simulation of the conflict-based model, various standard driving metrics are 

recorded, including the speeds of the vehicle and pedestrian, the accelerations of both entities, their 

respective heading angles, and the distance between them. These metrics provide crucial 

information regarding the dynamics of the simulated scenario as shown in the following figures. 

Due to the complex nature of the scenario we set out to investigate, the vehicle and pedestrian 

change their speeds and accelerations rapidly and frequently. This dynamic is primarily attributed 

to their close proximity to each other, demanding swift adjustments to their respective speeds and 

rates of acceleration. 
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Figure 4.9 Acceleration Profile. 

 

Figure 4.10 Velocity Profile. 
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Figure 4.11 Heading Angle Profile. 

 

Figure 4.12 Distance histogram. 
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4.7 Summary 

We propose a conflict-based model to study driving behaviors and extract valuable data, 

including normal and safety-critical driving metrics. These metrics include vehicle speed, 

pedestrian speed, time-to-collision (TTC), and post-encroachment time (PET), which serve as 

essential indicators to categorize events into various patterns. The minimum values of TTC and 

PET are used to evaluate the severity of the interaction between the vehicle and the pedestrian. 

The proposed model aims to enhance the safety of the driving system by designing an Autonomous 

Emergency Braking (AEB) algorithm based on TTC and PET thresholds. Our future works will 

focus more on testing and improving the AEB algorithm.  

By utilizing the conflict-based model, our approach offers a comprehensive understanding 

of the interaction between vehicles and pedestrians. The extracted metrics provide valuable 

insights into driving behaviors and aid in identifying normal and critical scenarios. The proposed 

approach's TTC and PET thresholds ensure the safety of pedestrians and drivers and reduce the 

likelihood of accidents. The AEB algorithm designed based on these metrics can assist in the 

development of advanced driving assistance systems, enhancing the overall driving experience. 

The proposed model's architecture is highly adaptable, making it suitable for real-time 

applications, such as autonomous driving systems, where prompt action is critical. 
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Chapter 5  

Conclusion and Future Work 

This research presents a novel encoder-decoder interaction model, named Holistic Spatio-

Temporal Graph Attention Trajectory Prediction for Vehicle-Pedestrian Interaction (HSTGA), 

which aims to predict long-horizon pedestrian and vehicle trajectories in non-signalized and non-

crosswalk scenarios. The proposed model utilizes a trajectory-based approach to capture the 

complex interactions between pedestrians and vehicles, integrating a holistic spatiotemporal graph 

attention mechanism that learns the attention weights of spatial and temporal features of 

pedestrians and vehicles. The HSTGA model outperforms state-of-the-art pedestrian trajectory 

prediction models on various benchmark datasets, demonstrating its effectiveness. 

To effectively capture the interaction features between pedestrians and vehicles, a vehicle-

pedestrian interaction feature extraction model has been proposed. This model employs a multi-

layer perceptron (MLP) sub-network and max pooling to extract features of both pedestrians and 

vehicles, which are then aggregated into a singular vector and inputted into an LSTM network to 

predict the trajectories of both pedestrians and vehicles. This feature extraction model enhances 

the model's ability to capture the intricate interactions between pedestrians and vehicles, resulting 

in heightened prediction accuracy. 

Compared to other methods, the proposed approach reduces both computational and data 

requirements, making it suitable for real-time applications. The MLP sub-network extracts features 

in parallel, reducing the overall time complexity of the model. The max pooling operation 

combines the features of pedestrians and vehicles into a single vector, thereby decreasing the 
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number of input parameters required for the LSTM network. Furthermore, the proposed approach 

solely utilizes the historical trajectories of pedestrians and vehicles, thus eliminating the need for 

external data sources. Extensive evaluations conducted on diverse datasets containing numerous 

challenging scenarios involving the interactions between vehicles and pedestrians demonstrate the 

effectiveness and efficiency of the proposed approach. 

In the past, road accident data and surrogated safety measures (SSM) have been utilized by 

researchers to evaluate the safety of various road amenities. In this study, we employ a conflict-

based approach to investigate pedestrian-vehicle conflicts through trajectory data. The behavior of 

these conflicts depends on which road user traverses the conflict zone first. If a vehicle passes first, 

the pedestrian may withdraw, slow down, or stop until the vehicle has passed, or may alter its 

trajectory and move to the rear of the vehicle. Conversely, the vehicle may hasten and traverse the 

conflict zone before the pedestrian's arrival. If a pedestrian passes first, the vehicle may decelerate, 

stop, or alter its path, whereas the pedestrian may accelerate and traverse the conflict zone before 

the vehicle's arrival. 

We propose a conflict-based model to investigate these behaviors and extract valuable data, 

such as normal and safety-critical driving metrics. These metrics, including vehicle speed, 

pedestrian speed, time-to-collision (TTC), and post-encroachment time (PET), are important 

indicators used to categorize events into different patterns. The minimum values of TTC and PET 

are used to determine severity levels to evaluate the safety between a vehicle and a pedestrian. 

Finally, the TTC and PET thresholds are used to design an Autonomous Emergency Braking 

(AEB) algorithm. The utilization of TTC and PET values proved to be valuable indicators in 

detecting critical conflicts. The AEB algorithm successfully managed to govern the ego vehicle 

with the aid of TTC values, resulting in a favorable outcome. 
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Our future work will involve improving and implementing advanced models for predicting 

pedestrian and vehicle trajectories in non-signalized and non-crosswalk scenarios. Our future work 

will also involve improving the conflict-based models to investigate pedestrian-vehicle conflicts 

and extract valuable data to evaluate the safety between a vehicle and a pedestrian. Additionally, 

we will improve the design and the implementation of the Autonomous Emergency Braking (AEB) 

algorithms to govern the ego vehicle and prevent critical conflicts, making them suitable for real-

time applications. 
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