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S1. CT MELS transfer functions including re-dissociation and reverse intersystem 

crossing 

The possibility of CT state re-dissociation can be accounted for in the MELS transfer function 

by including an Onsager-Braun
[52]

 style dissociation rate,   , in Equation (1):  
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Making use of the same time harmonic representations for  ,  , and   , along with the 

assumption that    , it is straightforward to derive their small-signal complex amplitudes: 
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that in turn lead to the MELS response,  ̃    ̃  ̃⁄ , as described in the main text. Note, the 

DC carrier density in this case is the same as before,    (      ⁄ )  ⁄ . When    is small 

compared to both the electron-hole recombination rate (    
       ) and the natural CT state 

decay rate (   
  ), Equation (S2) yields the same result as Equation (4). 

 The existence of intersystem and reverse intersystem crossing (ISC and RISC, 

respectively) between singlet and triplet CT states can be treated in similar fashion. Assuming 

triplet CT states have a negligible natural decay rate, the differential equations in this case are: 
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where    and    are the singlet and triplet CT state densities,    is the fraction of electron-

hole recombination events that form a singlet, and      and       are the intersystem and 

reverse intersystem crossing rates, respectively. Solving as above, the small signal charge 

density is the same as for Equation (1a) and the emissive singlet density is: 
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(S4) 

Although ISC and RISC is well-established in MTDATA:BPhen
[32]

 and the 

photoluminescence transient in Section S2 below helps constrain the values of      and      , 

fits to the MELS data in Figure 2c,d are still not well constrained and therefore we opt to use 

the simplified model in the main text for the sake of transparency. 
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S2. Inhomogeneous broadening and the failure of quasi-equilibrium 

 

Figure S1. Illustration of a quasi-equilibrium picture of CT occupation, where the overlap of 

the CT occupation function (   (   )) with the CT DOS yields the density of occupied CT 

states (DOOS). Radiative CT state decay at each energy leads to a homogeneously-broadened 

emission contribution that collectively lead to the observed CT emission spectrum. If 

inhomogeneous broadening (i.e. the width of the DOOS) were negligible, then the observed 

emission spectrum would exhibit the homogeneous linewidth and all photon energies would 

have the same MELS response since they originate from the same CT state, opposite to what 

is observed. Similarly, if the DOOS were in quasi-equilibrium, then modulating the 

voltage/current of the device would modulate the entire CT occupation function (e.g. by 

changing its chemical potential), causing CT states at all energies in the DOOS to respond in 

unison and thereby contribute emission with the same phase in the MELS spectrum. The 

observation of dispersive CT EL therefore confirms that inhomogeneous broadening is non-

negligible, and that the CT DOOS does not exist in quasi-equilibrium. 
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S3. Transient photoluminescence 

Figure S2a shows the spectrally-resolved CT PL transient recorded for a 1:1 

MTDATA:BPhen film using a streak camera. The PL spectrum exhibits a dynamic red-shift 

over the first few µs (Figure S2b) along with a faster decay rate of the high energy spectral 

components as shown in Figure S2c. The bi-exponential form of the transient is consistent 

with that expected for ISC and RISC based on the solution of Equation S3b,c (without the 

generation terms
[53]

), and the lifetime of the longer-lived component is comparable to the 

value of     used to fit the MELS data in Figure 3.  

 

Figure S2. (a) Streak camera image of the PL transient of a 1:1 MTDATA:BPhen film 

deposited on a Si substrate. (b) Spectra integrated over different time intervals (green bars) in 

the streak image from panel (a). (c) Decay transient for the high (480-540 nm; blue) and low 

(580-650 nm; red) energy spectral components in the streak image. The dark solid lines are 
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biexponential fits to the data with lifetime components of 0.2 µs and 2.3 µs for the blue side 

of the spectrum and 0.2 µs and 3.8 µs for the red side. (d) Schematic showing two possible 

mechanisms that could lead to the dynamic red-shift and energy-dependent decay rate shown 

in (b) and (c). High energy CT states can relax geminately (i.e. the electron and hole remain 

bound throughout the process) via path 1, or they may dissociate faster than low energy CT 

states as indicated by path 2. 

 

Figure S2b,c clearly demonstrates that high energy CT states in the DOS decay more 

rapidly than those at low energy. This could either be due to geminate CT state relaxation 

(path 1 in Figure S2d), energy-dependent CT state dissociation (path 2 in Figure S2d), or 

some combination of both. The former is known to occur in systems very similar to 

MTDATA:BPhen
[16]

, and the latter is expected since high energy CT states have many lower 

energy hopping sites that can facilitate separation of the electron and hole
[3,54]

. 

 

S4. Summary of fit parameters 

The parameters used to fit the data in Figure 2 and Figure 3 are summarized in Tables 1 and 2 

below. 

Table 1. Parameters used to fit the impedance and MELS data in Figure 2. 

Current density (mA cm
-2

) 0.01
 

     

      

0.1 1 4 

     (µs) 226 53 6.7 2.6 

    (µs) 12 9 8 3.5 

   (Ω cm
2
) 120 120 120 120 

     (kΩ cm
2
) 370 96 25 11 
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Table 2. Parameters used to fit the energy-dependent MELS data in Figure 3. 

Filter wavelength (nm) 488 510 540 

 

580 640 710 

  0.79 0.89 1.02 1.1 1.13 1.13 

     (µs) 58 58 58 58 58 58 

 
    (µs) 4 4 4 4 4 4 

 

 

S5. Planar heterojunction device data 

Figure S3 shows the MELS spectra for a planar heterojunction (PHJ) device consisting of 

ITO/MTDATA (60 nm)/Bphen (60 nm)/LiF (0.5 nm)/Al (100 nm). The DC EL spectrum 

shown in the inset of Figure S3a is similar to that of the BHJ device shown in Figure 3a of the 

main text. Importantly, the PHJ MELS response is also dispersive and exhibits the same 

general trend with emission energy as observed for the BHJ case. 
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Figure S3. (a) Magnitude of the PHJ MELS response measured at different photon energies 

across the CT EL spectrum shown in the inset. The bias corresponds to a DC current density 

of 4 mA cm
-2

. (b) Corresponding MELS phase response. The sharp fall-off in phase angle at 

high frequency is an artifact associated with low signal per the magnitude roll-off in (a). 

 

 

 

S6. Cole-Davidson time constant distribution 

As discussed in the main text, including a Cole-Davidson parameter,  , in the recombination 

term of the MELS transfer function implies a distribution of different recombination time 
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constants. Specifically, the Cole-Davidson pole in  ̃     given by (        )
   is 

associated with the distribution of time constants,  , given by 

 ( )  (     ) [  (     ⁄   ) ]⁄  for        and  ( )    for        
[35,36]

. As shown 

in Figure S4, this distribution function is very broad and weights toward smaller time 

constants as   decreases.  

 

Figure S4. Distribution of time constants associated with the Cole-Davidson parameter,  , 

assuming a nominal recombination time constant,         µs. 

 

 Beyond simply reflecting that smaller   is indicative of a growing contribution of 

shorter time constant recombination processes, one should not attach too much meaning to the 

exact functional form of the distribution since there are other distribution functions that can 

yield a similar frequency response. However, as emphasized in Ref. 
[37]

, the statistical 

moments of the distribution expressed in terms of the logarithmic time constant,    , are 

fairly unique for a given frequency response. Analytically, the average is 〈   〉         

 ( )      , the variance is     
    ( )     ⁄ , and the skewness is           ( )  

   , where  ,   , and     are the di-, tri-, and tetragamma functions, respectively. An added 
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advantage of working in terms of     is that, if the distribution of   is associated with a 

distribution of activation energies,  (  ), where   relates to    in Arrhenius fashion (i.e. 

       (     ⁄ )), then the moments above also yield the moments of the activation 

energy distribution
[37]

, with the average given by 〈  〉     (〈   〉      ) and the standard 

deviation given by    
        . 

 

S7. Derivation of MELS model for energy-dependent recombination 

Including the energy-dependent recombination rate given by Equation (5) in the MELS model 

from the main text leads to an energy-dependent version of Equation (1a) for the small-signal 

amplitudes given by: 
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Assuming symmetry between the electron and hole densities and mobilities as in Figure 5b, 

the right-hand bracketed term simplifies to    (  ) ̃(  ). The second equality in Equation 

(5a) subsequently makes use of   
  (     )  (  ⁄ )[  (  )    (  )]  (  ), which is the 

inverse lifetime of an electron at energy    due to recombination with holes at energy   . The 

energy-dependent version of Equation (1b) for the small signal CT state density is thus: 

  ̃(   )

  
 ∑

  ̃(  )

  (     )  

 
 ̃(   )

   
   

(S5b) 

Solving both equations in the frequency domain then yields: 
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from which it is evident that there is a distribution of CT state formation time constants in 

Equation (S6b) – one for each bracketed term in the sum on   . The associated weights of 

each term are obtained by assuming that the energy-dependent electron recombination current 

distribution,  ̃ (  ), is proportional to the energy-dependent electron conductivity,   (  )  

   (  )  (  )
[41]

. The net recombination rate of an electron at energy,   , with holes at all 

other energies,             , is     
  (  )  ∑    

  (     )  
, where the factor of two 

results from the energetic symmetry of the electron and hole densities per Figure 5b. In simple 

language, Equation (S6a) reflects the net recombination rate of an electron at energy,   , with 

holes at all other energies,    (and vice versa due to the assumed symmetry of the problem), 

while Equation (S6b) reflects the formation of CT states from all of those recombination rates 

where             . 

The average of the distribution of logarithmic recombination time constants for all of 

these pathways that lead to CT state formation at     is: 

 〈      (   )〉  
∑    (      )   (    (  ))  

∑    (      )  

   
(S7) 

where the weights in the summation,    , are given by    (      )    (  )  
  (     ) and 

the hole energy is related to the electron energy via             . Because 

homogeneous broadening (with lineshape   (  ) given in the main text) mixes the response 

functions from multiple CT state energies at a given observed photon energy,   , the 

experimentally-relevant MELS transfer function is obtained via discrete convolution: 

 ̃    (    )   ̃(   )    (  ). The average logarithmic recombination lifetime at a given 

photon energy is therefore: 
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〈      (  )〉  
∑ ∑    (      )   (    (  ))  (      )     

∑ ∑    (      )  (      )     

   
(S8) 

The model is implemented assuming a Gaussian DOS for both holes and electrons given by 

    (    )      (      
 )

   ⁄
   [ (         )

 
     

 ⁄ ], where      is the molecular 

density,      are the LUMO and HOMO energies (Figure 5a), and      are the corresponding 

standard deviations. Electron and hole occupation within each respective DOS is given by 

their corresponding Fermi-Dirac functions,   (  )  (   ((      )    ⁄ )   )   and 

  (  )    (   ((      )    ⁄ )   )
  

, which depend on the electron and hole quasi-

Fermi levels,     and    , as well as the thermal energy,    . Assuming that the resistive 

voltage drop is negligible, the quasi-Fermi level splitting (centered about mid gap due to the 

symmetry of the problem) is equal to the applied bias,           . So long as the 

Boltzmann approximation holds (    V in this case), the DC CT EL spectrum is essentially 

independent of bias, though the corner frequency of the MELS spectrum does change due the 

associated variation in current density. Finally, the energy-dependent electron and hole 

mobility is calculated as described in Refs. 
[41,42]

 based on the hopping attempt frequency    

and inverse wavefunction decay length  . Table 3 below summarizes the parameter values 

employed in this model to produce Figire 5b,c and Figure 6.  
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Table 3. Energy-dependent recombination model parameters used in Figure 5b,c and Figure 6. 

Parameter Symbol Value 

DOS parameters 

   

1.75 

1.9 

1.9 

Molecular density (cm
-3

)      10
21 

2.09 

2.09 

DOS standard deviation (eV)       0.05 

         

         

HOMO energy (eV)    0 

2.33 

2.33 

2.33 

LUMO energy (eV)    2.8 

2.33 

2.33 

2.33 

CT state binding energy (eV)    0.2 

 

2.33 

2.33 

2.33 

Mobility parameters 

   

1.75 

1.9 

1.9 

Hopping attempt frequency (s
-1

)    10
11 

2.09 

2.09 

Inverse wavefunction decay length (nm
-1

)   0.5 

         

         

Device parameters 

 
Recombination zone width (nm)   10 

Relative dielectric constant   3 

Bias (V)   1.9 

CT state parameters 

 
Reorganization energy (eV)   0.3 

CT state natural lifetime (µs)     10 

 

S8. Fermi-Dirac approximation to non-equilibrium CT state distribution 

Assuming that the CT state decay rate is energy-independent and that re-dissociation is 

negligible, the rate equation for the CT state density is: 

  (   )

  
     (   )  

 (   )

   
   

(S9) 

In steady-state, the density of occupied CT states within a small energy interval (    ) 

centered about energy,    , is therefore directly proportional to the electron-hole 

recombination rate from Equation (5): 
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  (   )         (   )       (S10) 

Alternatively, the density of occupied CT states can be represented in terms of the CT DOS 

and a CT state occupation function,    (   ), which for a quasi-equilibrium system, is just the 

Fermi-Dirac function (i.e.    (   )  (   ((       )    ⁄ )   )  , where     is the CT 

state chemical potential
[55]

). Thus, from this this perspective, the CT state distribution is given 

by: 

  (   )     (   )   (   )    . (S11) 

  

 

Figure S5. Normalized CT DOS (black line) together with the density of occupied states 

determined using Equation (S10) versus Equation (S11). Using constant mobilities, the 

kinetic- and occupation-determined distributions are the same at       K (light blue and 

dashed blue lines). However, in the energy-dependent mobility case, an effective temperature 

of       K is required for the peak of the occupation-based distribution (light red and 

dashed red lines) to match the peak of the       K kinetically-determined distribution 

(solid blue line). 
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Figure S5 shows that when the electron and hole mobilities used to calculate     (   ) 

are constant (i.e. energy-independent), the kinetically-determined CT state distribution 

(Equation (S10)) is the same as that given by the occupation function-determined CT state 

distribution (Equation (S11)) as expected. When the electron and hole mobilities depend on 

energy as in Figure 5b, the peak of the kinetically-determined distribution shifts to higher 

energy (solid blue line). This shift can be approximated for the occupation function-

determined distribution by using an elevated effective temperature of 420 K in     (red lines), 

though the width of the distribution in this case is clearly too large. Thus, the CT state 

distribution associated with the energy-dependent Langevin coefficient in Equation (5) is not 

only non-thermal, but also non-equilibrium insofar as it cannot be described by the Fermi-

Dirac form of     using any effective temperature. 

 

S9. Contribution of inhomogeneous broadening to the CT EL linewidth 

In the model from Figure 5, the distribution of CT states (i.e. inhomogeneous broadening) 

accounts for roughly 12% of the emission linewidth. This is based on a homogeneous 

Gaussian full-width half-max (FWHM) linewidth of 0.295 eV (i.e. from Equation 6 based on 

      eV and           eV in Table 3) and a ~0.15 eV FWHM of the calculated CT 

state distribution (  (   )      (   ) per Sec. S8 above), both of which are shown in Figure 

S6 below. The convolution of these functions gives the CT emission spectrum,    (  ) as 

described in the main text, which has a FWHM of 0.33 eV (comparable to the experimental 

FWHM linewidth of 0.37 eV in Figure 1b). The linewidth of the emission spectrum is 

therefore ~12% larger than it would be if homogenous broadening were the sole contribution. 

We emphasize that, although this result is based on the use of representative material 

parameters in our model, the fractional contribution of inhomogeneous broadening is 

nevertheless tightly constrained by the amount of CT EL dispersion (e.g. degrees of phase 
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shift as a function of emission energy at a given modulation frequency). A substantially lower 

contribution (i.e. narrower   (   )) leads to no dispersion (red lines in Figure 6a,b), whereas a 

substantially higher contribution leads to more dispersion than is observed in Figure 3a,b. 

Hence, the ~1:2 ratio of inhomogeneous to homogeneous linewidth contributions (0.15 eV 

and 0.295 eV FWHM, respectively) that emerges from this model is probably close to the 

actual ratio for MTDATA:BPhen. 

 

Figure S6. Normalized CT emission spectrum (   (  )), distribution of occupied CT states 

(  (   )), and homogeneous linewidth (  (  ), from Equation 6) based on the model from 

Figure 5 in the main text. The spectra have been centered to facilitate comparison of their 

linewidth. 
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