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Longitudinal outcomes are prevalent in clinical studies, where the presence
of missing data may make the statistical learning of individualized treatment
rules (ITRs) a much more challenging task. We analyzed a longitudinal calcium
supplementation trial in the ELEMENT Project and established a novel ITR
to reduce the risk of adverse outcomes of lead exposure on child growth and
development. Lead exposure, particularly in the form of in utero exposure, can
seriously impair children’s health, especially their cognitive and neurobehav-
ioral development, which necessitates clinical interventions such as calcium
supplementation intake during pregnancy. Using the longitudinal outcomes
from a randomized clinical trial of calcium supplementation, we developed a
new ITR for daily calcium intake during pregnancy to mitigate persistent lead
exposure in children at age 3 years. To overcome the technical challenges posed
by missing data, we illustrate a new learning approach, termed longitudinal
self-learning (LS-learning), that utilizes longitudinal measurements of child’s
blood lead concentration in the derivation of ITR. Our LS-learning method relies
on a temporally weighted self-learning paradigm to synergize serially correlated
training data sources. The resulting ITR is the first of this kind in precision nutri-
tion that will contribute to the reduction of expected blood lead concentration
in children aged 0-3 years should this ITR be implemented to the entire study
population of pregnant women.
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1 INTRODUCTION

This article presents an applied statistical contribution to the emerging field of precision nutrition. Barker’s hypothesis
on the “Developmental Origins of Health and Disease (DOHaD)” postulates a key conceptual paradigm for the impact of
the perinatal environment on the future health of offspring. That is, prenatal exposure to environmental toxicants may
impair the developmental health of children during their infancy and childhood, and even later in their adulthood.1 A vast
literature has unveiled that excessive exposure to lead is detrimental on children’s neurobehavioral and cognitive develop-
ment.2,3 Both blood and bone lead levels in children have been shown to be inversely associated with their intelligence.4,5

All these adverse health outcomes make it necessary to control lead exposure to children. The DOHaD hypothesis empha-
sizes the critical role of lead exposure in utero on the health of children, which may be intervened during pregnancy.
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The two major sources contributing to maternal blood lead levels include: (i) the mother’s immediate environmental
exposure to lead, and (ii) the mobilization of cumulative lead storage from mother’s bones into blood circulation.6,7

Therefore, reducing the amount of lead released into the maternal blood circulation during pregnancy is an important
preventive measure to minimize lead exposure to children, since the fetus’ prenatal lead exposure comes exclusively from
mother. In clinical practice, blood lead control may be achieved with calcium, a lead blocking agent.8-10

In precision nutrition, a central task is to establish individualized treatment rules (ITRs) for subjects who respond dif-
ferently to nutrient supplements for benefit. In this study to reduce maternal lead exposure to children, not all pregnant
women will benefit from taking calcium supplementation. This may be due to two major reasons: first, some pregnant
women already consume enough calcium from their diet, and second, excessive blood calcium may increase the risk of
miscarriage.11 Therefore, an ITR that can guide pregnant women to take calcium supplements is of great importance in
precision nutrition. The derivation of such an ITR is usually aimed at maximizing the expectation of the desired out-
come. In this article, we focus on the longitudinal calcium supplementation trial from the Early Life Exposure in Mexico
to ENvironmental Toxicants (ELEMENT) Project, an over 25-year cohort designed to study the effect of maternal lead
exposure on child health outcomes. This longitudinal trial collected repeated measurements of blood lead concentration
for children (PBC; “PB” represents lead and “C” represents children) at month 3, 6, 12, 18, 24, 30, and 36. In particu-
lar, the primary outcome for ITR derivation in this study is PBC36 because we are interested in persistent maternal lead
exposure to children at 36 months of age. The observations of PBC36 is incomplete (36.7% missing) due to intermittent
missing data or dropouts, which would result in a reduced sample size if only the endpoint outcome is used. As a result,
the reliability and reproducibility of the resulting ITR would be compromised. Therefore, a natural solution is to utilize
longitudinal data of blood concentrations prior to PBC36 to construct our ITR.

The core of ITR is based on certain decision functions that map individual characteristics to treatment choices. Statis-
tical methods for estimating decision functions in the field of precision medicine are abundant, including Q-learning,12

outcome weighted learning (OWL),13 and residual weighted learning (RWL),14 to name a few. Unfortunately, all these
current learning methods are only applicable to one-dimensional cross-sectional outcome related to health benefits. The
work of Huling15 focused on the estimation of time-varying treatment effects for closer time points via the fused lasso reg-
ularization. The resulting ITR is to maximize the average expected improvement in the benefit outcome throughout the
entire treatment period. However, this proposed method did not consider missing data in their work. Therefore, it lacks
suitable methods in the literature to exploit temporally correlated outcomes and to deal with missing data in the estima-
tion and optimization of ITRs. To analyze the longitudinal calcium supplementation trial, we propose and demonstrate
a new machine learning approach, termed longitudinal self-learning (LS-learning), which not only allows for flexible
incorporation of longitudinal outcomes, but also to handles incomplete data in ITR derivation. This new LS-learning
approach provides a useful extension to support vector machine (SVM) that serves as the optimization engine in OWL.
LS-learning works in a weighted self-learning paradigm through an effective training data augmentation scheme that
builds on the assumption that the relevance of longitudinal outcomes increases over time toward the primary endpoint.
In addition, estimated subgroup labels learned from longitudinal outcomes measured prior to the primary endpoint
are iteratively calibrated with the labels determined by the primary endpoint. The relative contribution of longitudinal
outcomes is tuned by minimizing the sum of squared errors (SSE) in predicting treatment benefits. To handle missing
data, we follow the concept of pattern mixture model16 by stratifying subjects into subgroups based on their missing
data patterns. To deal with potential computational burden of tuning parameter selection, we employ a scalable tuning
procedure that incorporates the nature of longitudinal data collection. We also discuss the problem of algorithmic conver-
gence for LS-learning. Meanwhile, through extensive simulation experiments, we illustrate and confirm that LS-learning
can numerically achieve high classification rates for treatment subgroups, high estimated value functions for expected
outcomes, and high computational efficiency.

Applying our new LS-learning approach to derive an ITR in the calcium supplementation trial, we found that
LS-learning would yield the greatest benefit in reducing children’s exposure to blood lead concentration at 36 months if
the resulting ITR were implemented for the entire study population of pregnant women compared to other ITRs derived
from standard OWL. This improvement is clinically meaningful and was achieved in our analysis by means of longitudinal
data augmentation, which demonstrates a useful approach to delivering more informative solutions in precision nutri-
tion. Several biomarkers that play an important role in the formation of ITR were also identified. Interestingly, dietary
calcium and fiber intake affect the assignment of calcium supplements, suggesting a complex set of interactions involving
different nutrients.

The rest of the article is organized as follows. Section 2 introduces the calcium supplementation trial. Section 3
presents the LS-learning method, including its algorithmic convergence and parameter tuning method. Data analysis
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is detailed in Section 4. Section 5 deals with the evaluation of LS-learning through simulation experiments. Section 6
contains some concluding remarks. The proof of the algorithmic convergence of LS-learning is given in Appendix.

2 APPLICATION: CALCIUM SUPPLEMENTATION TRIAL

This article plans to analyze an important calcium supplementation trial conducted in the third cohort of the ELEMENT
study. This clinical trial included a total of 376 women who were recruited during their first trimester of pregnancy in
Mexico City between 2001 and 2003, of whom 190 mothers were randomly assigned to receive a daily dose of 1200 mg
calcium supplement and 186 were randomly assigned to receive placebo,17 all of whom had complete baseline information
collected. These mothers were followed both prenatally and postnatally. Demographic information and biological samples
from both mothers and children (ie, mother-child pairs) are collected for clinical measurements. The primary outcome
of interest is PBC36, an endpoint of clinical importance because of its known effects on neurobehavioral development in
children.18,19 In addition to this primary outcome, six repeated PBC measurements were collected during the follow-up
visits as part of the longitudinal study, and for convenience are denoted by PBC3, PBC6, … , PBC30. Figure 1 shows
the longitudinal trajectory of PBC values in the calcium supplementation and placebo groups. Rather than removing
mother-child pairs missing measurements of the primary endpoint PBC36, we propose to borrow longitudinal PBC values
measured prior to month 36 into ITR derivation, resulting in an improved ITR by avoiding data attrition. We propose to
stratify mother-child pairs according to their missing data patterns, resulting in subgroups defined by their subject-specific
last observation that is considered as a surrogate or an approximate lead exposure endpoint, measured at an earlier time
point than month 36. For example, if PBC is measured in a child at month 3, 12, 18, and 30, then that individual’s last
PBC observation, PBC30, is used as a surrogate endpoint for ITR derivation. Figure 2 shows the stratification of subgroups
with different individual endpoints.

Among many demographic and clinical variables, the following biomarkers were selected for ITR derivation through
consultation with collaborators of the ELEMENT study, including baseline measurements of maternal age (year), mater-
nal weight (kg), total years of maternal schooling, marital status (married: yes/no), total number of pregnancies, maternal
dietary intake of calcium (mg/day), fiber (g/day), iron (mg/day), zinc (mg/day), and vitamin C (mg/day), and mater-
nal hemoglobin (HgB) concentration (g/dL). Maternal blood lead concentration (𝜇g/dL) measured in the first trimester

F I G U R E 1 Trajectory of PBC values in the calcium supplementation and placebo groups. Black summary lines are fitted by the
generalized additive model (GAM).



ZHOU and SONG 3035

F I G U R E 2 Missing PBC values at different visit times. (A) Percentage of missing and observed PBC values at months 3, 6, 12, 18, 24,
30, and 36. (B) Stratification of mother-child pairs into different missing patterns according to individual endpoints.

T A B L E 1 Summary statistics of the biomarkers included for ITR derivation from the calcium supplementation trial.

Biomarker Calcium Placebo P-value

Age 26.9 (5.7) 25.9 (5.4) 7.10 × 10−2

Weight 62.0 (11.3) 61.6 (9.6) 7.17 × 10−1

Years in school 10.8 (2.9) 10.7 (2.9) 6.00 × 10−1

Marital status 0.695 0.677 8.02 × 10−1

Number of pregnancies 2.1 (1.0) 2.1 (1.1) 8.67 × 10−1

HgB concentration 13.2 (1.0) 13.2 (1.0) 8.00 × 10−1

Dietary intake of calcium 1115.5 (489.3) 1078.6 (552.5) 4.93 × 10−1

Dietary intake of fiber 24.4 (10.0) 22.8 (9.0) 1.25 × 10−1

Dietary intake of iron 13.7 (5.9) 12.9 (5.5) 2.23 × 10−1

Dietary intake of zinc 9.8 (3.5) 9.3 (3.6) 1.73 × 10−1

Dietary intake of vitamin C 178.1 (92.1) 172.7 (80.4) 5.48 × 10−1

PBM concentration 4.7 (2.7) 5.3 (3.7) 7.00 × 10−2

Note: Mean (SD) and percentage values are shown for numeric and categorical variables, where P-values are obtained from Wilcoxon rank-sum test and
chi-square test for numeric and categorical variables, respectively.

(PBM; “M” represents mother) is also included as a baseline reference for maternal lead exposure level. Summary statis-
tics of these biomarkers in the calcium supplementation and placebo groups are listed in Table 1. Not surprisingly, none
of these biomarkers are marginally significant due to randomization.

3 FORMULATION

This section presents the details of LS-learning, which will be used to derive an ITR using longitudinal data with missing
outcomes.
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3.1 Notation

Denote by  = {(Xi,Ai, tij,Bij,Rij), i = 1, … ,n, j = 0, … ,mi} the longitudinal data collected from a two-armed random-
ized clinical trial (eg, the calcium supplementation trial). Let i and j denote the indexes of subject (ie, mother-child pair)
i and follow-up visit j, respectively. These two indices i or j can be suppressed in the absence of confusion. In the remain-
der of this article, “subject” stands for “mother” when referring to baseline biomarker measurements and “child” when
referring to outcome measurements (ie, longitudinal PBC values). There is a total of n mother-child pairs and mi repeated
measurements for subject i in addition to the baseline visit prior to treatment randomization, which is denoted as j = 0. For
ease of exposition, we consider a longitudinal trial with outcomes measured at common visit times j = 0, … ,m, where
j = m represents the time to measure the primary endpoint (ie, PBC36). Consequently, visit times tij ≡ tj, j = 0, … ,m.
The treatment randomly assigned at the beginning of the trial is denoted as Ai ∈  = {−1, 1}, where Ai = 1 represents
the new treatment (ie, calcium supplementation) and Ai = −1 represents placebo. Xi ∈ Rd is the d-dimensional vector of
biomarkers measured at baseline. The outcome of interest, denoted by Bij, is repeatedly measured at time tj for subject
i. Note that the baseline measurement B0 is always collected as a reference line and will not be considered as an out-
come benefit in ITR derivation. It is assumed that the larger the value of B, the greater the health benefit. Specifically, the
outcome Bm is used as the primary outcome for the derivation of ITR according to the clinical study. All the other inter-
mittent measurements, B1, … ,Bm−1, are considered as surrogate outcomes, providing relevant and auxiliary information
on the benefit trajectory reaching the endpoint Bm. Some individuals in the trial are not measured at the last visit tm due
to dropout or other reasons, resulting in missing data for Bm. For those subjects who do not complete the trial, we do
not remove them from the analysis but select certain surrogate endpoints so that they can remain in our ITR derivation.
Let Rij ∈ {0, 1} denote the missingness of the outcome Bij, with Rij = 1 representing “observed” and Rij = 0 representing
“missing.”

3.2 Outcome weighted learning

The central goal of precision nutrition is to derive a decision function D ∶  → , which is a mapping from the space of
prognostic variables to the space of treatments. In the case of a one-dimensional outcome B, OWL13 is a seminal work
enabling the estimation of an optimal ITR D∗ that maximizes the expected clinical benefit E(D) = E{ I(A=D(X))

P(A|X)
B}, where

I(⋅) is an indicator function of whether the randomly assigned treatment A is equal to the estimated treatment D(X),
and P(A|X) is the propensity score for obtaining treatment A in the clinical trial based on feature vector X. Although
E(D) can generally be computed, the following three assumptions are required in the literature to estimate causal effects:
(a) consistency: the observed benefit B = I(A = 1)B(1) + I(A = −1)B(−1), where B(a) is the potential clinical benefit of
receiving treatment a; (b) no unmeasured confounding: A⊥{B(a)}a∈|X, indicating that X contains all relevant confound-
ing factors; (c) positivity: 0 < P(A = a|X) < 1,∀a ∈ .20 The maximization problem of OWL becomes a minimization
problem if we change the indicator function from equality to inequality, resulting in D∗ ∈ argmin

D
E{ I(A≠D(X))

P(A|X)
B}. The

term I(A≠D(X))
P(A|X)

is actually a weighted classification error, making OWL a weighted classification problem. With a set of
i.i.d observations {(Xi,Ai,Bi), i = 1, … ,n}, we can approximate the optimization problem by its empirical value D∗ ∈
argmin

D

1
n

∑n
i=1

Bi
P(Ai|Xi)

I(Ai ≠ D(Xi)). Since D(X) can always be expressed as sign(f (X)) for some decision function f , where

D(X) = 1 if f (X) > 0 and D(X) = −1 otherwise, the optimization problem is equivalent to f ∗ ∈ argmin
f

1
n

∑n
i=1

Bi
P(Ai|Xi)

I(Ai ≠

sign(f (Xi))). The challenge in solving this optimization problem is that it is a weighted sum of 0-1 loss, which is neither
convex nor continuous. Therefore, OWL uses a convex surrogate hinge loss x+ = max(0, x) to replace the 0-1 loss. To fur-
ther penalize the complexity of the decision function f to avoid overfitting, OWL adds a l2 penalty into the optimization
problem. The final function that OWL aims to minimize is 1

n

∑n
i=1

Bi
P(Ai|Xi)

(1 − Aif (Xi))+ + 𝜅n||f ||2, where 𝜅n is the regular-
ization parameter of the l2 penalty and 𝜉i = (1 − Aif (Xi))+ is the slack variable. If we assume that the decision rule f is a
linear function f (X) = 𝝎⊤X + b, OWL can be formulated as a weighted classification problem in that SVM is invoked to
solve the following constrained optimization:

min
𝝎,b,𝝃

1
2
||𝝎||2 + C

n∑

i=1

Bi

P(Ai|Xi)
𝜉i

s.t. Ai(𝝎⊤Xi + b) ≥ 1 − 𝜉i and 𝜉i ≥ 0, i = 1, … ,n, (1)
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where C = 1
2n𝜅n

is a tuning parameter of SVM. The main difference between OWL and standard SVM is that OWL penal-

izes 𝜉i via a propensity score scaled outcome, Bi
P(Ai|Xi)

. The problem (1) can be generalized by allowing nonlinear decision
rules through a kernel function ∶  ×  → R in the context of reproducing kernel Hilbert space (RKHS).21 For sim-
plicity, we focus on linear decision rules in this article, while LS-learning can be easily extended to nonlinear decision
rules.

3.3 Longitudinal self-learning

To overcome the limitation that OWL is only applicable to a single cross-sectional outcome, we propose an extension to
address the methodological needs in ITR deviation with longitudinal outcomes. This requires new algorithms to solve a
multi-view problem similar to but more difficult than problem (1) with multiple outcomes. We perform this extension in
the context of multiple training datasets obtained by stratifying the missing data patterns in a clinical trial with dropouts.
For patients who miss certain measurements in the follow-up visits of a clinical trial, we use indicator Rij ∈ {0, 1} to denote
the missingness of the corresponding outcome Bij, where Rij = 1 represents “observed” and Rij = 0 represents “missing.”
Define m = {(Xi,Ai, tm,Bim), i|I(Rim = 1) = 1} as the subset of completers who are measured at the endpoint time for
their primary benefit outcome Bm, and j = {(Xi,Ai, tj,Bij), i|I(Rij = 1)

∏m
l=j+1I(Ril = 0) = 1} as the subset of incompleters

who are missing at the endpoint time with their subject-specific last observations Bij, j ∈  = {1, … ,m − 1}. In this arti-
cle, we primarily focus on the benefit outcome Bm measured at the primary endpoint, and it seems clinically sensible to use
the surrogate benefit outcome Bij, j ∈  measured at a timepoint closest to the designed endpoint under the assumption
that the quality or relevance of benefit outcome increases when it approaches the endpoint time. To estimate ITR, we
plan to apply LS-learning to integrate the subset of completers m with all the other subsets j, j ∈  in a systematic way.

In Section 3.2, we have illustrated the derivation of the objective function (1). When longitudinal outcomes are
available, the expected clinical benefit that needs to be maximized for the completers is E{ I(A=D(X))

P(A,Rm=1|X)
BmI(Rm = 1)},

resulting in the objective function min
𝝎,b,𝝃

1
2
||𝝎||2 + C

∑
i∈m

Bim
pim
𝜉i, s.t. Ai(𝝎⊤Xi + b) ≥ 1 − 𝜉i and 𝜉i ≥ 0, i ∈ m, with pim =

P(Ai,Rim = 1|Xi) being the probability of subject i assigned to treatment Ai and contributing benefit Bim for ITR
derivation. Integrating the other subsetsj, j ∈  with auxiliary information Bj into ITR derivation requires the maximiza-
tion of the expected clinical benefit E{ I(A=D(X))

P(A,Rj=1,Rj+1=0,… ,Rm=0|X)
BjI(Rj = 1)

∏m
l=j+1I(Rl = 0)}, leading to the objective func-

tion min
𝝎,b,𝝃

1
2
||𝝎||2 + C

∑
i∈j

Bij

pij
𝜉ij, s.t. Ai(𝝎⊤Xi + b) ≥ 1 − 𝜉ij and 𝜉ij ≥ 0, i ∈ j, with pij = P(Ai,Rij = 1,Rij+1 = 0, … ,Rim =

0|Xi) being the probability of subject i assigned to treatment Ai and contributing benefit Bij for ITR derivation. The ITR
derivation based on a simple sum of these objective functions is not feasible for two main reasons. First, the quality of
information contributed to ITR derivation varies for each benefit outcome. Second, if some outcome Bj is completely
untrustworthy, excluding it completely from the derivation of ITR would result in information loss, since the feature
vector Xi, i ∈ j also contains information useful for ITR derivation. To address these challenges, we propose an itera-
tive LS-learning algorithm in a generic manner. Prior to the detailed illustration of the algorithm, we first provide the
condition required for LS-learning.

3.3.1 Missing data mechanisms

To establish LS-learning, we postulate Condition 1: (i) the missing data mechanism follows missing at random (MAR),
where (A,Rj,Rj+1, … ,Rm)⊥(Bj,Bj+1, … ,Bm)|X; and (ii) A⊥Rj,Rj+1, … ,Rm|X. For a specific subgroup j, j = 1, … ,

m − 1, the calculation of the benefit expectation that we want to maximize can be formulated as

E

{
I(A = D(X))

P(A,Rj = 1,Rj+1 = 0, … ,Rm = 0|X)
BjI(Rj = 1)

m∏

l=j+1
I(Rl = 0)

}

=
∫ ∫

· · ·
∫

I(A = D(X))
P(A,Rj = 1,Rj+1 = 0, … ,Rm = 0|X)

BjI(Rj = 1)
m∏

l=j+1
I(Rl = 0)×

f (Bj,Bj+1, … ,Bm,Rj,Rj+1, … ,Rm,A|X,𝜽, 𝜼,𝝓)d𝜇(Bj)d𝜇(Bj+1) · · · d𝜇(Bm)d𝜇(Rj)d𝜇(Rj+1) · · · d𝜇(Rm)d𝜇(A),
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where 𝜇(⋅) is a generic notation for a certain dominated measure (either Lebesgue or counting measure). The param-
eters 𝜽, 𝜼,𝝓 are those involved in the missing data process, the propensity score modeling, and the outcome data
process, respectively. Benefits B1, … ,Bj−1 are not included in the density function due to the marginalization of
integration. Since the treatment A, the missing indicators Rj,Rj+1, … ,Rm, and the benefit Bj are observed and the
decision function D(X) is a function of the feature X, the multiple integration does not involve the missing bene-
fits except for the density f (Bj,Bj+1, … ,Bm,Rj,Rj+1, … ,Rm,A|X,𝜽, 𝜼,𝝓). Based on the conditional probability, we have
the density equal to f (A,Rj,Rj+1, … ,Rm|Bj,Bj+1, … ,Bm,X,𝜽, 𝜼)f (Bj,Bj+1, … ,Bm|X,𝝓). It follows from Condition 1
that

f (A,Rj,Rj+1, … ,Rm|Bj,Bj+1, … ,Bm,X,𝜽, 𝜼) = f (A,Rj,Rj+1, … ,Rm|X,𝜽, 𝜼) = f (A|X, 𝜼)f (Rj,Rj+1, … ,Rm|X,𝜽).

Therefore, the probability P(A,Rj = 1,Rj+1 = 0, … ,Rm = 0|X) = P(A|X)P(Rj = 1,Rj+1 = 0, … ,Rm = 0|X). This leads
to an inverse probability weighting scheme in a manner similar to the propensity score. These probabilities
can be estimated by means of logistic regression. With these derivations, the only part of the final calcula-
tion of the multiple integration that involves the missing benefits is f (Bj,Bj+1, … ,Bm|X,𝝓), which is equal to
f (Bj+1, … ,Bm|Bj,X,𝝓)f (Bj|X,𝝓). Since only Bj is involved in the formula for the benefit expectation, the multiple integra-
tion ∫ ∫ · · · ∫ Bjf (Bj+1, … ,Bm|Bj,X,𝝓)f (Bj|X,𝝓)d𝜇(Bj)d𝜇(Bj+1) · · · d𝜇(Bm) = ∫ Bjf (Bj|X,𝝓)d𝜇(Bj). This implies that all
missing benefit outcomes are integrated out and have no impact on the calculation of the expected benefit. Therefore,
deriving ITR by maximizing the expected benefit based on the observed training data produces valid solutions in the sense
that no additional model is needed for the missing benefit outcomes.

3.3.2 Algorithm of LS-learning

The predicted label ŷ(k)ij is the prediction of the underlying optimal treatment assignment y(k)ij (ie, y(k)ij = sign{f (k)(Xi)})
for each subject i in the subgroup j at iteration k, where f (k)(X) = 𝝎(k)⊤X + b(k) is the ITR derived by weighted SVM at
iteration k. The tuning parameter 𝜆j ∈ [0, 1] is included in the objective function (2) to characterize the relative impor-
tance of the auxiliary benefit Bj compared to the primary outcome Bm. When 𝜆j = 1, we believe that Bj has the same
quality as Bm. When 0 < 𝜆j < 1, Bj is assumed to have lower quality than Bm, but still provides useful information for
ITR derivation. On the contrary, when 𝜆j = 0, we consider Bj to be completely untrustworthy and should be excluded
from ITR derivation. Selection of the tuning parameter 𝜆j is discussed in the following Section 3.5. Note that when Bj
is completely untrustworthy, its contribution to optimization is reduced to zero under 𝜆j = 0. However, the informa-
tion contained in the feature vector X is good and useful. To use X of subjects in j, we introduced the predicted label
ŷ(k−1)

ij to engage X in the optimal decision making. It is known that the predicted label ŷ(k−1)
ij provides some informa-

tion about the classification hyperplane, which may be further sharpened by the valuable information from the feature
vector X. This sharpening of the classifier is carried out through the added loss function

∑
i∈ (k)j

𝜏Bj𝜉ij in SVM with a

constraint ŷ(k−1)
ij (𝝎⊤Xi + b) ≤ 1 − 𝜉ij. In this way, we do not waste any good data X for ITR derivation, even if the asso-

ciated benefit Bj has no value. Moreover, adding the predicted labels may help the algorithm converge as the tuning
can reduce the disagreement between the primary outcomes and the surrogate outcomes with respect to the ITR. The
parameter 𝜏Bj is a constant summary statistic (eg, sample mean) of Bij

pij
. Since this is a minimization problem, unbalanced

magnitude between
∑

i∈ (k)j

Bij

pij
𝜉ij and

∑
i∈ (k)j

𝜉ij due to the lack of weights in the latter will result in a certain improper

𝜆j value (ie, smaller values of 𝜆j may be incorrectly favored due to the large weight Bij

pij
for 𝜉ij), leading to ill-weighted

contributions between the second and third terms to the objective function. Therefore, we add a constant 𝜏Bj to bal-
ance the magnitude between

∑
i∈ (k)j

Bij

pi
𝜉ij and

∑
i∈ (k)j

𝜉ij to derive apt tuning of 𝜆j. We suggest choosing this quantity in
advance for the purpose of properly scaling the third term. Since 𝜏Bj is a constant without any information on individ-
ual benefits, and ŷ(k−1)

ij is the estimated underlying optimal label not the randomized treatment from the clinical trial,
the third term added in (2) actually represents a standard SVM problem of maximizing the classification accuracy with
respect to the optimal treatment assignment of subjects in j rather than an OWL problem maximizing the clinical
benefit.
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3.4 Algorithmic convergence

We establish the algorithmic convergence of LS-learning in the following theorem with the proof given in Appendix.

Theorem 1. The objective function h(𝝎̂(k), 𝝃̂(k)) of LS-learning at iteration k satisfies the descending property
over iterations, namely h(𝝎̂(k), 𝝃̂(k)) ≤ h(𝝎̂(k−1)

, 𝝃̂
(k−1)) for k ≥ 2. The equality occurs when the algorithm

converges.

Note that the problem of maximizing the expected benefit E{ I(A=D(X))
P(A|X)

B} is converted to an equivalent problem of

minimizing E{ I(A≠D(X))
P(A|X)

B}, and the latter being suitable for formulating the SVM algorithm. In other words, the actual opti-
mization implemented in OWL is to minimize objective (1). This same trick is applied to the optimization in LS-learning.
Consequently, our algorithmic convergence is established for a consistent decrease of the LS-learning objective function
h(⋅) over iterations.

Algorithm 1. Suppose we have a set of completersm = {(Xi,Ai, tm,Bim), i|I(Rim = 1) = 1}with outcome Bm and multiple
sets of incompleters j = {(Xi,Ai, tj,Bij), i|I(Rij = 1)

∏m
l=j+1I(Ril = 0) = 1} with outcome Bj, j ∈  . It is assumed that Bm is

of higher quality than Bj in ITR derivation. Let pim = P(Ai,Rim = 1|Xi) and pij = P(Ai,Rij = 1,Rij+1 = 0, … ,Rim = 0|Xi)
be the probabilities of being assigned to treatment A and having Bm or Bj observed for ITR derivation, i ∈ m and i ∈ j,
respectively

S1 Estimate ITR by OWL using m and get the initial estimates (𝝎̂(0), b̂(0), 𝝃̂(0)). Then predict labels for subjects in
m−1⋃

j=1
j.

Denote the predicted labels as ŷ(0)ij , i ∈ j, j ∈  .
S2 The kth (k ≥ 1) iteration runs through the following steps S2.1–S2.3.

S2.1 Define an augmented training dataset  (k) = m ∪  (k)1 ∪ · · · ∪  (k)m−1, where individuals in  (k)j have their pre-
dicted labels from the previous iteration k − 1, resulting in  (k)j = {(X i,Ai, tj,Bij, ŷ(k−1)

ij ), i = 1,… ,nj}. Note that the
subjects in j and  (k)j are the same.  (k)j is created to emphasize the additionally included information ŷ(k−1)

ij .
S2.2 Solve the following optimization problem using  (k):

min
𝝎,b,𝝃

1
2
||𝝎||2 + C

⎡
⎢
⎢
⎢
⎣

∑

i∈m

Bim

pim
𝜉i +

m−1∑

j=1

⎧
⎪
⎨
⎪
⎩

𝜆j
∑

i∈ (k)j

Bij

pij
𝜉ij + (1 − 𝜆j)

∑

i∈ (k)j

𝜏Bj𝜉ij

⎫
⎪
⎬
⎪
⎭

⎤
⎥
⎥
⎥
⎦

s.t. Ai(𝝎⊤X i + b) ≥ 1 − 𝜉i and 𝜉i ≥ 0, i ∈ m,

Ai(𝝎⊤X i + b) ≥ 1 − 𝜉ij and 𝜉ij ≥ 0, i ∈  (k)j , j ∈  ,

ŷ(k−1)
ij (𝝎⊤X i + b) ≥ 1 − 𝜉ij and 𝜉ij ≥ 0, i ∈  (k)j , j ∈  . (2)

Denote the estimates of the parameters as (𝝎̂(k), b̂(k), 𝝃̂(k)) at iteration k. Also, the predicted labels for (k)j are updated
as ŷ(k)ij , i ∈ 

(k)
j , j ∈  .

S2.3 Calculate the objective function with the estimates (𝝎̂(k), b̂(k), 𝝃̂(k)) as

h(𝝎̂(k), 𝝃̂(k)) = 1
2
||𝝎̂(k)||2 + C

⎡
⎢
⎢
⎢
⎣

∑

i∈m

Bim

pim
𝜉
(k)
i +

m−1∑

j=1

⎧
⎪
⎨
⎪
⎩

𝜆j
∑

i∈ (k)j

Bij

pij

̂̃
𝜉
(k)
ij + (1 − 𝜆j)

∑

i∈ (k)j

𝜏Bj
̂̌
𝜉
(k)
ij

⎫
⎪
⎬
⎪
⎭

⎤
⎥
⎥
⎥
⎦

.

S3 The algorithm stops if |h(𝝎̂(k),𝝃̂(k))−h(𝝎̂(k−1)
,𝝃̂
(k−1))|

h(𝝎̂(k−1),𝝃̂(k−1))
<𝜖 for a pre-determined precision constant 𝜖, say 10−4. The convergence

values of (𝝎̂(k), b̂(k)) are denoted by (𝝎̂, b̂), and the predicted labels at convergence for the whole training data  are
denoted as ŷi, i = 1,… ,n.
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3.5 Tuning parameter selection

In order to perform LS-learning, we need to determine the tuning parameters C and 𝝀 = {𝜆j, j = 1, … ,m − 1}. Param-
eter selection can be made by performing a grid search on the entire dataset  =

⋃m
j=1 j for C and 𝝀. We propose

to choose values of C and 𝝀 at which the sum of squared errors (SSE) of the predicted benefit values is minimized.
The reason we tune the parameters according to the minimization of SSE is discussed in Section 6. SSE is defined
as SSE =

∑m
j=1

{∑nj

i=1(Bij − B̂ij)2
}

, where the predicted benefit value B̂ij is given by a stratum-specific regression model

Bj = 𝜙j(X, s(tj),Af̂ (X)) + 𝜖j, with 𝜙j(a, b, c) = gj(a) + hj(b) + 𝛽jc for some function gj(⋅) and hj(⋅).22 f̂ (⋅) is the decision func-
tion estimated by LS-learning, and 𝜖j is the error term. Note that inclusion of the third term Af̂ (X) in the regression model
Bj = 𝜙(X, s(tj),Af̂ (X)) + 𝜖j is motivated by treating f̂ as an estimate of the conditional treatment effect (CTE).23-25 Multiple
linear regression models or more flexible models, such as the generalized additive model (GAM), can be invoked to build
the prediction rule 𝜙j(⋅). In the analysis of the calcium trial discussed in Section 4, and in the simulation experiments
described in Section 5, we choose the GAM for 𝜙j to predict the outcomes.

Each auxiliary datasetj introduces a 𝜆j for tuning, and the strategy of greedy search may make parameter tuning com-
putationally expensive and time-consuming. To alleviate this computational burden, we propose a scaled tuning method
by specifying 𝜆j as a function of the standardized time t̃j = tj∕tm, that is, 𝜆j = 𝜓(t̃j|𝜽) with parameter 𝜽. The rationale for
this systematic tuning is that the quality of Bj decreases when the time of the current measurement is far from the measur-
ing time tm of the primary endpoint. As a result, this tuning procedure requires fewer parameters 𝜽 to be tuned compared
to the grid search. Various 𝜓(⋅) functions can be specified based on some preliminary understanding of the underlying
longitudinal relationship between time and the relative quality of outcomes. Some examples of 𝜓(⋅) are given as follows.
Their time-course relevance to the endpoint is shown in Figure 3:

1. (Linear) 𝜓(t̃j|𝜃) = (1 − 𝜃) + 𝜃t̃j, with constraint 𝜃 ∈ [0, 1].
2. (Exponential) 𝜓(t̃j|𝜽) = 𝜃1e𝜃2 t̃j , with constraint 𝜃1 ∈ (0, 1] and 𝜃1e𝜃2 = 1.
3. (Polynomial) 𝜓(t̃j|𝜽) = 𝜃1 t̃2

j + 𝜃2 t̃j + 𝜃3, with constraint 𝜃3 ∈ [0, 1] and 𝜃1 + 𝜃2 + 𝜃3 = 1.

Parameter tuning is a crucial part of machine learning methods, including our LS-learning approach, in which the
optimal treatment assignment in the training and validation datasets is unknown. In the seminal paper of OWL,13

cross-validation was used for parameter tuning in SVM, which is not suitable for our case where the data of the pri-
mary benefit outcome had a small sample size, resulting in low sensitivity of cross-validation. This is because the low
resolution of the estimated value function makes parameter tuning a challenging task, especially in the case of sparse
data. Therefore, our experience suggested that cross-validation with limited data in LS-learning did not provide reliable
tuning parameter selection. To overcome this challenge, we proposed to minimize the SSE of the predicted benefits in
a spirit similar to Q-learning.12 Since we had little knowledge of the true benefit outcome model, in principle, the pre-
diction model should be specified with a great deal of flexibility. We modeled the longitudinal benefit outcomes with

F I G U R E 3 Change of the tuning parameter 𝜆j according to standardized time t̃j.
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Bj = 𝜙j(X, s(tj),Af̂ (X)) + 𝜖j, and following the work of Diggle and Zeger,22 we took𝜙j(a, b, c) = gj(a) + hj(b) + 𝛽jc. The inter-
action term Af̂ (X) is used to model the feature-driven treatment effects on outcome Bj, adjusting for the major effects
through functions gj(⋅) and hj(⋅) of feature vector X and the time trend tj, respectively. In the Supporting Information
section, we also showed the performance of SSE minimization-based parameter tuning compared to other tuning meth-
ods, including F-statistic, robust F-statistic, and truncated F-statistic, which are popular tuning criteria in classification
analyses.26 Their performances were found to be inferior to that of the SSE-based tuning procedure. In addition, we inves-
tigated the value information criterion (VIC) and the concordance information criterion (CIC)27 for parameter tuning
and model selection. In short, VIC and CIC are defined as VIC(𝜷) = nV̂𝜷 − 𝜅n||𝜷||0 and CIC(𝜷) = nĈ(𝜷) − 𝜅n(𝜷), where
V̂(𝜷) and Ĉ(𝜷) are the estimated value and concordance function with parameter 𝜷. Parameter 𝜅n is a tuning param-
eter and ||𝜷||0 is the number of nonzero elements of 𝜷. If robust learning is used for ITR estimation, cross-validation
can be applied to determine the value of the tuning parameter 𝜅n to select the best model that maximizes VIC and CIC.
This additional parameter tuning step is needed when dimension reduction from high-dimensional features is used in
ITR derivation, which is not the setting considered in our calcium supplementation trial. In our low-dimensional case,
this additional cross-validation tuning step increases the complexity of the algorithm and is unstable due to small train-
ing dataset. Therefore, we chose not to use these VIC and CIC information criteria to tune the C and 𝝀 parameters
in the proposed LS-learning algorithm. Nevertheless, simulation results also showed that the VIC-based tuning pro-
duced inferior results compared to the SSE-based tuning procedure (results are included in the Supporting Information
section).

4 DERIVATION OF ITR FOR THE CALCIUM SUPPLEMENTATION TRIAL

We applied the LS-learning method with the scaled-tuning scheme to analyze the calcium supplementation trial in the
ELEMENT Project. The central objective of our analysis was to derive an ITR that could guide pregnant women to take
calcium supplements to minimize their children’s persistent lead exposure at age of 3 years. The PBC values were mea-
sured repeatedly at a total of seven different follow-up times, denoted as B1, … ,B7, where B7 was designed as the primary
endpoint of interest. It is reasonable to assume that the quality of these longitudinal outcomes increases as the PBC was
measured closer to month 36. LS-learning is proposed based on ranked benefit values, where the larger the magnitude
of the outcome, the greater the clinically desirable benefit. Therefore, to fit this framework, we reversed the direction of
lead concentration by a transformation, max

i
(Bij) − Bij, i ∈ j, j = 1, … , 7. A total of 376 mother-child pairs with no miss-

ing data at the baseline visit were used for our ITR derivation, with 190 mothers taking calcium supplements and 186
mothers taking placebo.

The mother-child pairs in the two treatment groups are not perfectly balanced due to subgroup stratification, so
propensity scores were estimated by a logistic regression model with all the major effects of the biomarkers. After weight-
ing the PBC values with the estimated propensity scores, we used standardized mean difference (SMD) to access the
balance of the propensity scores and, more importantly, the balance of the distribution of the individual biomarkers.
Figure 4 shows that the distribution balance of biomarkers is satisfactorily achieved.

We now derive the ITR for the daily intake of calcium supplementation. We perform (i) a standard OWL on the
completer group 7 with B7; (ii) a standard OWL on the entire training data  with missing information imputed by
multiple imputation using predictive mean matching (PMM) via the R package MICE.28 A total of 50 imputed datasets
were created, from which the average statistics of OWL performances were calculated; (iii) a standard OWL on the
entire training data  with missing information replaced by the subject-specific last observed PBC under the last obser-
vation carried forward (LOCF) strategy.29 In effect, LOCF implies that the subject-specific last observed PBC is used as
the endpoint outcome for ITR derivation. Apparently, this approach ignores the different relevance of longitudinal out-
comes in reference to the primary endpoint B7. From the perspective of tuning parameter, this is equivalent to naively
setting 𝜆j = 1, j = 1, … , 6; (iv) LS-learning with the scaled tuning scheme on the entire training data  , which takes
into account differences among longitudinal outcomes Bj, j = 1, … , 6 in terms of their relevance to B7. In LS-learning,
we use the linear kernel in the optimization function (2) to train the ITR, tuned with the utility of the exponential
scaling function (the middle panel of Figure 3). We set C ∈ {1∕128, 1∕64, … , 1∕2, 1} and 𝜃1 ∈ {0.1, 0.2, … , 0.9, 1.0}
as the tuning parameter choices. The 3-fold cross-validation method was used to select the optimal tuning parame-
ters in the derivation of ITRs. The loading coefficients for the biomarkers in the four estimated ITRs are listed in
Table 2.
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F I G U R E 4 (A) Distributional balance of the propensity scores before and after weighting. (B) Balance of individual biomarkers before
and after weighting adjusted by SMD at a threshold of 0.1, which are indicated by the vertical dashed lines.

T A B L E 2 Estimated intercepts and coefficients of the biomarkers in the estimated ITRs derived by the four different methods.

Biomarker OWL on m OWL (PMM) OWL (LOCF) LS-learning

Intercept 0.46 0.05 −0.05 0.39

Age 0.33 0.25 0.24 0.29

Weight 0.02 0.08 0.05 0.01

Years in school −0.08 −0.06 −0.09 −0.05

Marital status 0.24 0.13 0.17 0.19

Number of pregnancies −0.57 0.15 0.23 −0.23

HgB concentration 0.10 0.08 0.08 0.04

Dietary intake of calcium −0.47 −0.25 −0.34 −0.37

Dietary intake of fiber 0.28 0.23 0.26 0.30

Dietary intake of iron −0.15 0.10 0.02 −0.13

Dietary intake of zinc 0.38 0.27 0.39 0.41

Dietary intake of vitamin C −0.02 −0.26 −0.28 −0.14

PBM concentration −0.37 −0.33 −0.33 −0.20

According to the exponential scaling procedure, we obtain a tuning parameter 𝜃1 = 0.4, which, when ITR derivation is
performed by LS-learning, generates 𝜆1 = 0.432, 𝜆2 = 0.466, 𝜆3 = 0.543, 𝜆4 = 0.632, 𝜆5 = 0.737, and 𝜆6 = 0.858. The tun-
ing parameter 𝜃2 is not tuned because it satisfies a constrain 𝜃1e𝜃2 = 1 due to the reason that at the standardized time t̃j = 1,
the measured benefit is actually the primary benefit Bm, leading to 𝜃1e𝜃2 t̃j = 𝜃1e𝜃2 = 1. As a result, when 𝜃1 is selected, 𝜃2
is given by 𝜃2 = ln(1∕𝜃1). In this LS-learning process, we use two tuning parameters C and 𝜃1, each with 8 and 10 differ-
ent values, resulting in a total of 80 different pairs of C and 𝜃1. In contrast, if we use the greedy tuning strategy under
𝜆j ∈ {0, 0.1, … , 1.0}, j = 1, … , 6, we would have to deal with a total of 8 × 116 = 14 172 488 pairs in the tuning. Thus,
our scaling procedure has saved 177 156 folds of computational runs.

Applying each of the four estimated decision rules above, we allocate a pregnant woman to take calcium supplement
if f̂ > 0; otherwise, not to take the calcium supplement. Among the 376 mothers, the ITRs derived from OWL onm, OWL
using PMM imputation, OWL using LOCF imputation and LS-learning would designate 239 (63.6%), 236 (62.8%), 235
(62.5%), and 251 (66.8%) pregnant women taking calcium supplements, respectively, all higher than the 50% randomly
assigned. In particular, comparing between ITRs derived from complete randomization and by LS-learning, we see sig-
nificant differences in the reallocation of calcium supplementation (see Table 3). Our McNemar test for the hypothesis of
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T A B L E 3 Treatment assignment comparison between complete randomization and the ITR derived by LS-learning.

LS-learning

Placebo Calcium Total

Randomization Placebo 57 129 186

Calcium 68 122 190

Total 125 251 376

T A B L E 4 Estimated value functions at each visit and the average based on the estimated ITRs derived by the four different methods in
the calcium supplementation trial.

ITR V̂ (B1) V̂ (B2) V̂ (B3) V̂ (B4) V̂ (B5) V̂ (B6) V̂ (B7) Average

OWL on m 6.79 3.39 5.49 7.33 7.84 7.92 8.24 6.714

OWL (PMM) 6.79 3.39 5.49 7.37 8.09 7.90 8.23 6.751

OWL (LOCF) 6.79 7.16 5.49 7.33 8.46 8.01 8.24 7.354

LS-learning 9.19 7.19 6.36 7.59 8.55 8.06 8.33 7.896

homogeneous allocation yields a P-value of 1.39 × 10−5, indicating that there is a significant difference between the two
allocation rules; in other words, these different treatment allocations do not occur by chance.

Furthermore, to compare the performance of the four estimated ITRs based on the different algorithms for minimiz-
ing continuous lead exposure at different time points, we calculate the estimated value functions V̂(Bj) of Bj, j = 1, … , 7
using E

∗
n[I(A = D(X))B∕P(A,R = 1|X)]∕E∗

n[I(A = D(X))∕P(A,R = 1|X)].30 The estimated value functions of the longitudi-
nal outcomes for each visit time and their average values are summarized in Table 4. Clearly, the LS-learning method
gives the highest average estimated value function, yielding the lowest continuous lead exposure compared to the other
three decision rules derived by standard OWL. This suggests that the utility of longitudinal auxiliary data via surrogate
outcomes Bj, j = 1, … , 6 arguably improves the estimated ITR to maximize the benefit to children’s growth and devel-
opment. This improvement is rooted in the successful use of the ordering of time-course relevance among longitudinal
outcomes in the multi-view extension of OWL with multiple training datasets.

We also compare the distribution of individual biomarkers between the two resulting treatment groups by using the
ITR derived from LS-learning; see Table 5, by which we identify those biomarkers that are significantly different between
the two groups. We found that mothers assigned to take calcium supplementation, as specified by the LS-learning-derived
ITR, are significantly older. That is, children of older mothers are more likely to benefit from maternal calcium supple-
mentation to reduce persistent lead exposure at age 3. In addition, pregnant women assigned to calcium supplement
via the LS-learning-derived ITR have significantly longer years in school, lower dietary intake of calcium, higher dietary
intake of fiber, and lower maternal blood lead concentration (PBM) at the first trimester. Notably, mothers assigned to the
calcium supplementation group via the LS-learning-derived ITR do have a significant difference in their calcium intake
from food compared to mothers assigned to the placebo group (1059.6 (521.2) vs 1172.9 (514.9)). This suggests that the
maternal dietary calcium intake at baseline does influence child’s persistent lead exposure at age 3 years. This finding has
clinical value and is consistent with our common sense that calcium supplementation should be specified for pregnant
women who do not receive adequate calcium intake from their daily diet. In contrast, no significant differences are identi-
fied between the two resulting allocation groups in terms of maternal weight, marital status, total number of pregnancies,
HgB concentration, dietary intake of iron, zinc, and vitamin C for the ITR derived by the LS-learning method.

5 SIMULATION EXPERIMENT

5.1 Simulation setting

This section reports a simulation experiment to illustrate the finite sample performance of scaled-tuned LS-learning in the
derivation of ITR using longitudinal trial data with missing information. We randomly generate a 10-dimensional feature
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T A B L E 5 Summary statistics of the biomarkers based on treatment allocation according to the derived ITR by LS-learning.

Biomarker Calcium Placebo P-value

Age 27.5 (5.4) 24.2 (5.1) 2.94 × 10−8

Weight 62.6 (10.7) 60.4 (10.1) 5.19 × 10−2

Years in school 11.0 (3.0) 10.3 (2.7) 2.72 × 10−3

Marital status 0.721 0.616 5.10 × 10−2

Number of pregnancies 2.1 (1.1) 2.0 (1.0) 6.20 × 10−1

HgB concentration 13.3 (0.9) 13.1 (1.2) 9.37 × 10−1

Dietary intake of calcium 1059.6 (521.2) 1172.9 (514.9) 2.37 × 10−2

Dietary intake of fiber 24.5 (9.8) 21.8 (8.7) 1.10 × 10−2

Dietary intake of iron 13.6 (5.8) 12.7 (5.5) 1.45 × 10−1

Dietary intake of zinc 9.7 (3.7) 9.0 (3.3) 1.15 × 10−1

Dietary intake of vitamin C 178.2 (87.5) 169.8 (84.4) 4.55 × 10−1

PBM concentration 4.7 (3.1) 5.5 (3.5) 3.70 × 10−3

Note: Mean (SD) and percentage values are shown, where P-values are obtained from Wilcoxon rank-sum test and chi-square test for numeric and categorical
variables, respectively.

vector X = (X1, … ,X10)⊤ ∈ R10 for each subject, with each feature X𝜈 ∼ U(0, 1), 𝜈 = 1, … , 10 and Corr(X𝜈,X𝜈′ ) = 0.2, 𝜈 ≠
𝜈
′. Treatment A ∈ {−1, 1} is randomly assigned to each subject with equal probability, P(A = 1|X) = P(A = −1|X) = 0.5.

In addition to a baseline visit, subjects are measured at m = 5 follow-up times, with a scaled time of tj = j∕m and
a standardized time t̃j = tj∕tm, j = 1, … ,m. A set of cubic spline plus basis function s(tj) with three knots is speci-
fied at k1 = 0.4, k2 = 0.6 and k3 = 0.8, resulting in seven basis functions s(tj) = (1, tj, t2

j , t
3
j , (tj − k1)3+, (tj − k2)3+, (tj − k3)3+)⊤

at visit j to represent the time trajectory. The term s(tj) is created to model the nonparametric effect of time on
the influence of benefit outcome Bj. The underlying true decision function f is specified as f (X) = 1 + X1 − log(X2 +
1) + 2X3

3 − exp(X4). The outcomes measured of subject i at time tj is generated by an equation: Bij = 0.01 + 0.02Xi,1 +
s(tj)⊤𝜷3 + {s(tj)⊤𝜷4}{0.1(0.4Xi,5 + 0.6Xi,6 − Xi,7)} + 3Aif (Xi) + 𝛾i + 𝜖ij, where 𝜷3 = 𝜷4 = (3, 0.5, 0.5,−3.5,−2,−2,−0.1)⊤,
random intercepts 𝛾i

i.i.d∼ N(0, 0.5) and random errors 𝝐i
i.i.d∼ MVN(0,𝚺) with 𝚺(𝜌) being an AR(1) correlation matrix and

correlation coefficient 𝜌 = 0.5. The missing outcome indicator Rij for each outcome Bij is generated independently accord-
ing to a Bernoulli distribution with probability (a) P(Ri1 = 0) = 0.01 for the first measurement Bi1 and (b) logit P(Rij =
0) = 1 + 2t̃j − 1 for j = 2, … ,m. Based on the missing patterns, subjects can be stratified into subgroups j, j = 1, … ,m
based on the subject-specific last observation. The propensity score of treatment assignment for each subject is estimated
by a logistic regression model with all the major effects of the covariates X. The total sample size for the training data
 = 1 ∪ · · · ∪ m is set to n ∈ {500,800, 1000, 1200}. In addition, an independent test dataset with a sample size of 10 000,
with the optimal treatment assignment determined by f (X) > 0 or not, is generated as external validation data. An ITR
is derived using the LS-learning method under linear kernel. Scaled tuning was performed via an exponential function
𝜓(t̃j|𝜽) = 𝜃1e𝜃2 t̃j with 𝜃2 = log(1∕𝜃1) to characterize the relevant time course of the outcomes to the primary endpoint ben-
efit measured at visit m. We set two tuning parameter pools C ∈ {1∕128, 1∕64, … , 1∕2, 1} and 𝜃1 ∈ {0.1, 0.2, … , 0.9, 1.0}
for tuning parameter selection, respectively. GAM regression with B-spline basis functions (four degrees of freedom for
each variable) was used to estimate the mean prediction functions gj(X) and hj(s(tj)) for parameter tuning. The simulation
is repeated 200 times to produce summary statistics.

5.2 Simulation results

We compare the predictive accuracy of the five methods on the validation dataset for the underlying optimal treatment
assignment. They are (M1) OWL on the entire training data  with no missing information. The endpoint Bm is fully
observed and used for ITR derivation based on the standard OWL. This serves as the gold standard and is referred to as
the super oracle method for comparison purposes. Note that endpoint benefit Bm is often not available in practice due
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T A B L E 6 Average prediction accuracy (mean (SD)) calculated using ITRs derived by the five different methods.

n M1: super oracle M2: LS-learning M3: OWL (LOCF) M4: OWL (PMM) M5: OWL on m

500 0.783 (0.049) 0.769 (0.057) 0.740 (0.059) 0.710 (0.064) 0.605 (0.092)

800 0.816 (0.037) 0.799 (0.045) 0.774 (0.051) 0.751 (0.057) 0.641 (0.096)

1000 0.832 (0.032) 0.812 (0.036) 0.794 (0.046) 0.776 (0.052) 0.658 (0.087)

1200 0.838 (0.032) 0.818 (0.037) 0.803 (0.041) 0.785 (0.047) 0.670 (0.086)

to missing data. (M2) LS-learning with scaled tuning on the entire training data  with missing information. It incorpo-
rates auxiliary benefits Bj, j = 1, … ,m − 1 prior to the endpoint Bm using subject stratification. We derive ITR using the
LS-learning method that takes into account the relevance of the time-course outcomes. (M3) OWL on the entire train-
ing data  with missing data imputed by the method of LOCF. It differs from M2 in that it ignores the incorporation
of time course outcomes. (M4) OWL on the whole training data with missing data imputed by the method of PMM.
The imputed endpoint Bm is used for ITR derivation via the standard OWL. A total of 50 imputed datasets were cre-
ated using all available data for X,A and the observed benefits, from which the average statistics of OWL performances
were calculated. (M5) OWL on the training data of available endpoint benefits from those who are the completers of
the clinical trial. All standard OWL-based methods, including M1, M3, M4, and M5, use 5-fold cross-validation with
respect to the maximization of the estimated value function for tuning parameter selection as performed in Reference
13. Tuning of the proposed LS-learning method M2 was performed according to the minimization of SSE as discussed in
Section 3.5.

Table 6 lists the average prediction accuracy and the SD of the underlying optimal treatment assignment on the vali-
dation dataset obtained by the five different ITR derivation methods. The results show that, as expected, the super oracle
M1 method always gives the highest prediction accuracy because it uses the complete information to derive the ITR. How-
ever, M1 is not feasible for use in practice in the presence of missing data. The LS-learning method M2, developed with
missing information, gives a slightly lower prediction accuracy compared to M1. Obviously, M3, M4, and M5 give much
lower prediction accuracy than M2. In addition to the prediction accuracy, we also calculated the estimated value func-
tions evaluated at the five outcomes V̂(Bj) on the validation dataset (see Table 7). It is shown that the super oracle M1
method always gives the highest estimated value function as expected. The LS-learning method M2 with scaled tuning
method gives higher estimated value functions compared to the other three OWL methods M3, M4, and M5.

In LS-learning, the mean and (SD) values of the selected tuning parameters 𝜃1 and 𝜃2 in the exponential function,
as well as the resulting 𝜆j, j = 1, 2, 3, 4 corresponding to B1 to B4 are shown in Table 8. There is no tuning parameter for
B5 since it is the primary benefit outcome used for ITR derivation. Table 8 shows a decreasing trend for the relevance
of outcomes from the endpoint to the time of the first visit. But the relevance remains strong since 𝜆1 > 0.7, which is a
relatively large weight of overlap for B1 with B5. It is meaningful to compare the computation time of LS-learning with
greedy tuning and LS-learning with the proposed scaled tuning. Scaled tuning is proposed to save the computation and
cost of LS-learning by reducing the number of tuning parameters. In this simulation, with greedy tuning, we need to tune
a total of four 𝜆 values (𝜆j, j = 1, … , 4), which are reduced to one (𝜃1) by scaled tuning. The latter takes an average of
267.60 s (ie, 4.46 min) when the sample size of the training data equals 1000, while greedy tuning is estimated to take
391 793.2 s (ie, 4.53 days) under four grid sequences 𝜆j ∈ {0, 0.1,′ … , 1.0}, j = 1, … , 4. It is clear that the computational
efficiency of the scaled tuning method makes LS-learning practically feasible.

6 CONCLUDING REMARKS

In this article, we utilize a new learning approach, called LS-learning, to establish ITRs in that we integrate longitu-
dinal data sources with time-varying relevance to the primary clinical endpoint as well as with dropouts. The term
“self-learning” is used to describe the process whereby the algorithm uses the primary benefit outcome Bm to predict the
optimal treatment assignment ŷ(k−1)

ij , which is then used as part of the objective function to exercise a self-examination.
Our method provides a useful extension to the existing one-dimensional cross-sectional OWL by allowing for temporally
correlated outcomes in the search for the optimal ITR. To synergize different training data sources with different degrees
of relevance to the primary data source, we introduce additional tuning parameters in SVM. The interpretation of the new
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T A B L E 7 Estimated value functions V̂(B1) to V̂(B5) calculated using ITRs derived by the five different methods.

n M1: super oracle M2: LS-learning M3: OWL (LOCF) M4: OWL (PMM) M5: OWL on m

V̂(B1) 500 11.00 (0.45) 10.97 (0.47) 10.89 (0.47) 10.80 (0.49) 10.45 (0.54)

800 11.09 (0.44) 11.05 (0.45) 10.99 (0.46) 10.93 (0.47) 10.58 (0.51)

1000 11.09 (0.44) 11.05 (0.45) 11.01 (0.45) 10.96 (0.46) 10.61 (0.53)

1200 11.11 (0.43) 11.07 (0.43) 11.03 (0.43) 10.99 (0.43) 10.65 (0.50)

V̂(B2) 500 10.97 (0.45) 10.93 (0.47) 10.85 (0.47) 10.76 (0.48) 10.41 (0.54)

800 11.06 (0.44) 11.02 (0.45) 10.96 (0.46) 10.89 (0.47) 10.54 (0.51)

1000 11.06 (0.44) 11.02 (0.45) 10.97 (0.45) 10.92 (0.46) 10.57 (0.53)

1200 11.07 (0.43) 11.03 (0.43) 11.00 (0.43) 10.95 (0.43) 10.62 (0.50)

V̂(B3) 500 10.62 (0.45) 10.58 (0.47) 10.50 (0.47) 10.41 (0.49) 10.07 (0.54)

800 10.71 (0.44) 10.67 (0.45) 10.61 (0.46) 10.54 (0.47) 10.20 (0.51)

1000 10.71 (0.44) 10.67 (0.45) 10.62 (0.45) 10.57 (0.46) 10.23 (0.53)

1200 10.72 (0.43) 10.68 (0.43) 10.65 (0.43) 10.60 (0.43) 10.27 (0.50)

V̂(B4) 500 9.70 (0.45) 9.66 (0.47) 9.58 (0.47) 9.49 (0.49) 9.14 (0.54)

800 9.79 (0.44) 9.75 (0.45) 9.69 (0.46) 9.62 (0.47) 9.27 (0.51)

1000 9.79 (0.44) 9.74 (0.45) 9.70 (0.45) 9.65 (0.46) 9.30 (0.53)

1200 9.80 (0.43) 9.76 (0.43) 9.73 (0.43) 9.68 (0.43) 9.34 (0.50)

V̂(B5) 500 7.85 (0.46) 7.81 (0.47) 7.74 (0.47) 7.64 (0.49) 7.30 (0.54)

800 7.94 (0.44) 7.90 (0.45) 7.84 (0.46) 7.78 (0.47) 7.43 (0.51)

1000 7.94 (0.44) 7.90 (0.45) 7.86 (0.45) 7.81 (0.46) 7.46 (0.53)

1200 7.95 (0.43) 7.91 (0.43) 7.88 (0.43) 7.83 (0.43) 7.50 (0.50)

T A B L E 8 The selected tuning parameter 𝜃1 and 𝜃2 in LS-learning and the resulting 𝜆j, j = 1, 2, 3, 4 values corresponding to the
surrogate outcomes B1 to B4.

n 𝜽1 𝜽2 𝝀1 𝝀2 𝝀3 𝝀4

500 0.663 (0.314) 0.583 (0.669) 0.705 (0.284) 0.755 (0.244) 0.818 (0.189) 0.898 (0.111)

800 0.730 (0.290) 0.446 (0.598) 0.765 (0.261) 0.807 (0.222) 0.858 (0.171) 0.921 (0.100)

1000 0.727 (0.294) 0.453 (0.596) 0.762 (0.264) 0.804 (0.225) 0.856 (0.173) 0.920 (0.101)

1200 0.783 (0.277) 0.357 (0.568) 0.812 (0.249) 0.845 (0.212) 0.886 (0.163) 0.937 (0.095)

tuning parameters is intuitive: the closer the tuning parameter is to 1, the higher the relevance of the corresponding auxil-
iary data source with the primary one. The proposed approach is particularly attractive in practical clinical studies where
repeated measurements are often collected, which can lead to data attrition and loss of statistical power if appropriate
strategies are not employed to handle this problem.

We applied LS-learning to derive an ITR for pregnant women in their daily calcium supplement intake to reduce
persistent lead exposure in their children at age 3 years. The main difficulty in analyzing the data from this clinical trial is
the large number of missing values for PBC during the 3 years of the study. LS-learning stratifies subjects into subgroups
of different outcomes according to their respective missing patterns in a manner similar to that considered in the pattern
mixture model proposed by Little.16 It is shown that the new ITR derived by LS-learning would lead to a greater reduction
of persistent lead exposure to children compared to other ITRs given by the standard OWL learning if it were implemented
for the whole population of pregnant women throughout the study. In addition to the real data application, comprehensive
simulation experiments in Section 5 show that LS-learning outperforms standard OWL in ITR estimation with respect
to the prediction accuracy as well as the estimated value function. In the meantime, we have identified several baseline
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biomarkers that may play an important role in the allocation of calcium supplements, including maternal age, total years
in school, and maternal blood lead concentration at the first trimester. In addition, dietary intake of calcium and fiber
may affect ITR for the allocation of calcium supplementation.

A limitation of our data analysis is the use of the linear kernel for ITR derivation because of its ease in illustrating the
estimated ITRs. The nonlinear kernel can also be applied to derive more flexible decision rules, which may be further
explored as a future extension. Another challenge relates to the imbalance of treatment assignment in the cleaned data,
mainly caused by missing baseline biomarkers. We used the means of propensity score via inverse probability weight-
ing to adjust for treatment allocation bias. Other methods, like augmented inverse probability weighting31 and overlap
weighting,32 are worth further exploration to overcome treatment assignment bias in the ITR analysis of the calcium
supplementation clinical trial.
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APPENDIX A. PROOF OF THEOREM 1

Proof of Theorem 1. According to Algorithm 1, at iteration k (k ≥ 2), (𝝎̂(k), b̂
(k)
, 𝝃̂
(k)) is the optimal solution of

the optimization problem (2). First we prove that (𝝎̂(k−1)
, b̂
(k−1)

, 𝝃̂
(k−1)) is a feasible solution of (2). It immedi-

ately follows that h(𝝎̂(k), 𝝃̂(k)) ≤ h(𝝎̂(k−1)
, 𝝃̂
(k−1)) due to the fact that (𝝎̂(k), b̂

(k)
, 𝝃̂
(k)) is the optimal solution for

(2). The equality holds when h(𝝎̂(k−1)
, 𝝃̂
(k−1)) reaches the minimum. To proceed, it is sufficient to show that

the following conditions hold,

Ai(𝝎̂(k−1)⊤Xi + b̂
(k−1)

) ≥ 1 − 𝜉(k−1)
i , and 𝜉

(k−1)
i ≥ 0, i ∈ m,

Ai(𝝎̂(k−1)⊤Xi + b̂
(k−1)

) ≥ 1 − ̂̃𝜉
(k−1)
ij , and ̂̃

𝜉

(k−1)
ij ≥ 0, i ∈  (k)j , j ∈  ,

ŷ(k−1)
ij (𝝎̂(k−1)⊤Xi + b̂

(k−1)
) ≥ 1 − ̂̌

𝜉

(k−1)
ij , and ̂̌

𝜉

(k−1)
ij ≥ 0, i ∈  (k)j , j ∈  . (A1)

Note that at iteration k − 1, (𝝎̂(k−1)
, b̂
(k−1)

, 𝝃̂
(k−1)) is the solution of problem (2) with k − 1 replaced by k − 2.

min
𝝎,b,𝝃

1
2
||𝝎||2 + C

⎡
⎢
⎢
⎢
⎣

∑

i∈m

Bim

pi
𝜉i +

m−1∑

j=1

⎧
⎪
⎨
⎪
⎩

𝜆j
∑

i∈ (k−1)
j

Bij

pi
𝜉ij + (1 − 𝜆j)

∑

i∈ (k−1)
j

𝜏Bj𝜉ij

⎫
⎪
⎬
⎪
⎭

⎤
⎥
⎥
⎥
⎦

s.t. Ai(𝝎⊤Xi + b) ≥ 1 − 𝜉i and 𝜉i ≥ 0, i ∈ m,

Ai(𝝎⊤Xi + b) ≥ 1 − 𝜉ij and 𝜉ij ≥ 0, i ∈  (k−1)
j , j ∈  ,

ŷ(k−2)
ij (𝝎⊤Xi + b) ≥ 1 − 𝜉ij and 𝜉ij ≥ 0, i ∈  (k−1)

j , j ∈  .
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Therefore, we have

Ai(𝝎̂(k−1)⊤Xi + b̂
(k−1)

) ≥ 1 − 𝜉(k−1)
i , and 𝜉

(k−1)
i ≥ 0, i ∈ m

Ai(𝝎̂(k−1)⊤Xj + b̂
(k−1)

) ≥ 1 − ̂̃𝜉
(k−1)
ij , and ̂̃

𝜉

(k−1)
ij ≥ 0, i ∈  (k−1)

j , j ∈  .

That is, the constraints involving treatment A in (A1) are satisfied by (𝝎̂(k−1)
, b̂
(k−1)

, 𝝃̂
(k−1)). In addition, we have

ŷ(k−2)
ij (𝝎̂(k−1)⊤Xi + b̂

(k−1)
) ≥ 1 − ̂̌

𝜉

(k−1)
ij , and ̂̌

𝜉

(k−1)
ij ≥ 0, i ∈  (k−1)

j , j ∈  . (A2)

To prove the constraints involving ŷ(k−1)
ij in (A1), we consider two scenarios between ŷ(k−1)

ij and ŷ(k−2)
ij for subject

i ∈ j. First, if ŷ(k−1)
ij = ŷ(k−2)

ij is true, we have

ŷ(k−1)
ij (𝝎̂(k−1)TXi + b̂

(k−1)
) = ŷ(k−2)

ij (𝝎̂(k−1)TXi + b̂
(k−1)

) ≥ 1 − ̂̌
𝜉

(k−1)
ij .

Second, if ŷ(k−1)
ij ≠ ŷ(k−2)

ij is true, then

ŷ(k−1)
ij (𝝎̂(k−1)TXi + b̂

(k−1)
) > ŷ(k−2)

ij (𝝎̂(k−1)TXi + b̂
(k−1)

) ≥ 1 − ̂̌
𝜉

(k−1)
ij .

This is because labels are binary and can only take values from {−1, 1}. Therefore, we must have ŷ(k−1)
ij =

−ŷ(k−2)
ij if ŷ(k−1)

ij ≠ ŷ(k−2)
ij . Also, from the definition of ŷ(k−1)

ij , we have ŷ(k−1)
ij (𝝎̂(k−1)TXi + b̂

(k−1)
) > 0. Therefore,

ŷ(k−2)
ij (𝝎̂(k−1)TXi + b̂

(k−1)
) < 0.

Combines the above two cases, we obtain

ŷ(k−1)
ij (𝝎̂(k−1)TXi + b̂

(k−1)
) ≥ 1 − ̂̌

𝜉

(k−1)
ij , i ∈  (k)j , j ∈  ,

where the equality only occurs when the algorithm converges with the predicted labels ŷij stopping changing
between two adjacent iterations k − 1 and k − 2.

Thus, all constraints in (A2) have been proven to hold. This implies that all constraints in (A1) hold. This
completes the proof of the descending property h(𝝎̂(k), 𝝃̂(k)) < h(𝝎̂(k−1)

, 𝝃̂
(k−1)) when k ≥ 2. ▪
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