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Summary

Longitudinal outcomes are prevalent in clinical studies, where the presence of miss-
ing data may make the statistical learning of individualized treatment rules (ITRs)
a much more challenging task. We analyzed a longitudinal calcium supplementa-
tion trial in the ELEMENT Project and established a novel ITR to reduce the risk
of adverse outcomes of lead exposure on child growth and development. Lead expo-
sure, particularly in the form of in utero exposure, can seriously impair children’s
health, especially their cognitive and neurobehavioral development, which necessi-
tates clinical interventions such as calcium supplementation intake during pregnancy.
Using the longitudinal outcomes from a randomized clinical trial of calcium supple-
mentation, we developed a new ITR for daily calcium intake during pregnancy to
mitigate persistent lead exposure in children at age 3 years. To overcome the techni-
cal challenges posed by missing data, we illustrate a new learning approach, termed
longitudinal self-learning (LS-learning), that utilizes longitudinal measurements of
child’s blood lead concentration in the derivation of ITR. Our LS-learning method
relies on a temporally weighted self-learning paradigm to synergize serially corre-
lated training data sources. The resulting ITR is the first of this kind in precision
nutrition that will contribute to the reduction of expected blood lead concentration
in children aged 0-3 years should this ITR be implemented to the entire study popu-
lation of pregnant women.
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1 INTRODUCTION

This paper presents an applied statistical contribution to the emerging field of precision nutrition. Barker’s hypothesis on the
“Developmental Origins of Health and Disease (DOHaD)" postulates a key conceptual paradigm for the impact of the perinatal
environment on the future health of offspring. That is, prenatal exposure to environmental toxicants may impair the develop-
mental health of children during their infancy and childhood, and even later in their adulthood.1 A vast literature has unveiled
that excessive exposure to lead is detrimental on children’s neurobehavioral and cognitive development.2,3 Both blood and bone
lead levels in children have been shown to be inversely associated with their intelligence.4,5 All these adverse health outcomes
make it necessary to control lead exposure to children. The DOHaD hypothesis emphasizes the critical role of lead exposure
in utero on the health of children, which may be intervened during pregnancy. The two major sources contributing to maternal
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blood lead levels include: i) the mother’s immediate environmental exposure to lead, and ii) the mobilization of cumulative lead
storage from mother’s bones into blood circulation.6,7 Therefore, reducing the amount of lead released into the maternal blood
circulation during pregnancy is an important preventive measure to minimize lead exposure to children, since the fetus’ prenatal
lead exposure comes exclusively from mother. In clinically practice, blood lead control may be achieved with calcium, a lead
blocking agent.8,9,10

In precision nutrition, a central task is to establish individualized treatment rules (ITRs) for subjects who respond differently to
nutrient supplements for benefit. In this study to reduce maternal lead exposure to children, not all pregnant women will benefit
from taking calcium supplementation. This may be due to two major reasons: first, some pregnant women already consume
enough calcium from their diet, and second, excessive blood calcium may increase the risk of miscarriage.11 Therefore, an ITR
that can guide pregnant women to take calcium supplements is of great importance in precision nutrition. The derivation of such
an ITR is usually aimed at maximizing the expectation of the desired outcome. In this paper, we focus on the longitudinal calcium
supplementation trial from the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project, an over 25-
year cohort designed to study the effect of maternal lead exposure on child health outcomes. This longitudinal trial collected
repeated measurements of blood lead concentration for children (PBC; “PB" represents lead and “C" represents children) at
month 3, 6, 12, 18, 24, 30 and 36. In particular, the primary outcome for ITR derivation in this study is PBC36 because we
are interested in persistent maternal lead exposure to children at 36 months of age. The observations of PBC36 is incomplete
(36.7% missing) due to intermittent missing data or dropouts, which would result in a reduced sample size if only the endpoint
outcome is used. As a result, the reliability and reproducibility of the resulting ITR would be compromised. Therefore, a natural
solution is to utilize longitudinal data of blood concentrations prior to PBC36 to construct our ITR.

The core of ITR is based on certain decision functions that map individual characteristics to treatment choices. Statistical
methods for estimating decision functions in the field of precision medicine are abundant, including Q-learning,12 outcome
weighted learning (OWL),13 and residual weighted learning (RWL),14 to name a few. Unfortunately, all these current learn-
ing methods are only applicable to one-dimensional cross-sectional outcome related to health benefits. The work of Huling15
focused on the estimation of time-varying treatment effects for closer time points via the fused lasso regularization. The resulting
ITR is to maximize the average expected improvement in the benefit outcome throughout the entire treatment period. However,
this proposed method did not consider missing data in their work. Therefore, it lacks suitable methods in the literature to exploit
temporally correlated outcomes and to deal with missing data in the estimation and optimization of ITRs. To analyze the lon-
gitudinal calcium supplementation trial, we propose and demonstrate a new machine learning approach, termed longitudinal
self-learning (LS-learning), which not only allows for flexible incorporation of longitudinal outcomes, but also to handles incom-
plete data in ITR derivation. This new LS-learning approach provides a useful extension to support vector machine (SVM) that
serves as the optimization engine in OWL. LS-learning works in a weighted self-learning paradigm through an effective training
data augmentation scheme that builds on the assumption that the relevance of longitudinal outcomes increases over time toward
the primary endpoint. In addition, estimated subgroup labels learned from longitudinal outcomes measured prior to the primary
endpoint are iteratively calibrated with the labels determined by the primary endpoint. The relative contribution of longitudinal
outcomes are tuned by minimizing the sum of squared errors (SSE) in predicting treatment benefits. To handle missing data, we
follow the concept of pattern mixture model16 by stratifying subjects into subgroups based on their missing data patterns. To
deal with potential computational burden of tuning parameter selection, we employ a scalable tuning procedure that incorporates
the nature of longitudinal data collection. We also discuss the problem of algorithmic convergence for LS-learning. Meanwhile,
through extensive simulation experiments, we illustrate and confirm that LS-learning can numerically achieve high classification
rates for treatment subgroups, high estimated value functions for expected outcomes, and high computational efficiency.

Applying our new LS-learning approach to derive an ITR in the calcium supplementation trial, we found that LS-learning
would yield the greatest benefit in reducing children’s exposure to blood lead concentration at 36 months if the resulting ITR
were implemented for the entire study population of pregnant women compared to other ITRs derived from standard OWL.
This improvement is clinically meaningful and was achieved in our analysis by means of longitudinal data augmentation, which
demonstrates a useful approach to delivering more informative solutions in precision nutrition. Several biomarkers that play an
important role in the formation of ITR were also identified. Interestingly, dietary calcium and fiber intake affects the assignment
of calcium supplements, suggesting a complex set of interactions involving different nutrients.

The rest of the paper is organized as follows. Section 2 introduces the calcium supplementation trial. Section 3 presents the
LS-learning method, including its algorithmic convergence and parameter tuning method. Data analysis is detailed in Section 4.
Section 5 deals with the evaluation of LS-learning through simulation experiments. Section 6 contains some concluding remarks.
The proof of the algorithmic convergence of LS-learning is given in Appendix.
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FIGURE 1 Trajectory of PBC values in the calcium supplementation and placebo groups. Black summary lines are fitted by
the generalized additive model (GAM).

FIGURE 2 Missing PBC values at different visit times. (a) Percentage of missing and observed PBC values at months 3, 6, 12,
18, 24, 30, and 36. (b) Stratification of mother-child pairs into different missing patterns according to individual endpoints.

2 APPLICATION: CALCIUM SUPPLEMENTATION TRIAL

This paper plans to analyze an important calcium supplementation trial conducted in the third cohort of the ELEMENT study.
This clinical trial included a total of 376 women who were recruited during their first trimester of pregnancy in Mexico City
between 2001 and 2003, of whom 190 mothers were randomly assigned to receive a daily dose of 1200 mg calcium supplement
and 186 were randomly assigned to receive placebo,17 all of whom had complete baseline information collected. These mothers
were followed both prenatally and postnatally. Demographic information and biological samples from both mothers and children
(i.e., mother-child pairs) are collected for clinical measurements. The primary outcome of interest is PBC36, an endpoint of
clinical importance because of its known effects on neurobehavioral development in children.18,19 In addition to this primary
outcome, six repeated PBC measurements were collected during the follow-up visits as part of the longitudinal study, and for
convenience are denoted by PBC3, PBC6, ..., PBC30. Figure 1 shows the longitudinal trajectory of PBC values in the calcium
supplementation and placebo groups. Rather than removing mother-child pairs missing measurements of the primary endpoint
PBC36, we propose to borrow longitudinal PBC values measured prior to month 36 into ITR derivation, resulting in an improved
ITR by avoiding data attrition. We propose to stratify mother-child pairs according to their missing data patterns, resulting in
subgroups defined by their subject-specific last observation that is considered as a surrogate or an approximate lead exposure
endpoint, measured at an earlier time point than month 36. For example, if PBC is measured in a child at month 3, 12, 18, and
30, then that individual’s last PBC observation, PBC30, is used as a surrogate endpoint for ITR derivation. Figure 2 shows the
stratification of subgroups with different individual endpoints.

Among many demographic and clinical variables, the following biomarkers were selected for ITR derivation through con-
sultation with collaborators of the ELEMENT study, including baseline measurements of maternal age (year), maternal weight
(kg), total years of maternal schooling, marital status (married: yes/no), total number of pregnancies, maternal dietary intake of
calcium (mg/day), fiber (g/day), iron (mg/day), zinc (mg/day), and vitamin C (mg/day), and maternal hemoglobin (HgB) con-
centration (g/dL). Maternal blood lead concentration (𝜇g/dL) measured in the first trimester (PBM; "M" represents mother) is
also included as a baseline reference for maternal lead exposure level. Summary statistics of these biomarkers in the calcium
supplementation and placebo groups are listed in Table 1. Not surprisingly, none of these biomarkers are marginally significant
due to randomization.

3 FORMULATION

This section presents the details of LS-learning, which will be used to derive an ITR using longitudinal data with missing
outcomes.

3.1 Notation
Denote by  = {(𝑿𝑖, 𝐴𝑖, 𝑡𝑖𝑗 , 𝐵𝑖𝑗 , 𝑅𝑖𝑗), 𝑖 = 1,… , 𝑛, 𝑗 = 0,… , 𝑚𝑖} the longitudinal data collected from a two-armed randomized
clinical trial (e.g., the calcium supplementation trial). Let 𝑖 and 𝑗 denote the indexes of subject (i.e., mother-child pair 𝑖) and
follow-up visit 𝑗, respectively. These two indices 𝑖 or 𝑗 can be suppressed in the absence of confusion. In the remainder of this
paper, “subject" stands for “mother" when referring to baseline biomarker measurements and “child" when referring to outcome
measurements (i.e., longitudinal PBC values). There is a total of 𝑛mother-child pairs and 𝑚𝑖 repeated measurements for subject
𝑖 in addition to the baseline visit prior to treatment randomization, which is denoted as 𝑗 = 0. For ease of exposition, we consider
a longitudinal trial with outcomes measured at common visit times 𝑗 = 0,… , 𝑚, where 𝑗 = 𝑚 represents the time to measure
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the primary endpoint (i.e., PBC36). Consequently, visit times 𝑡𝑖𝑗 ≡ 𝑡𝑗 , 𝑗 = 0,… , 𝑚. The treatment randomly assigned at the
beginning of the trial is denoted as𝐴𝑖 ∈  = {−1, 1}, where𝐴𝑖 = 1 represents the new treatment (i.e., calcium supplementation)
and 𝐴𝑖 = −1 represents placebo. 𝑿𝑖 ∈ ℝ𝑑 is the 𝑑-dimensional vector of biomarkers measured at baseline. The outcome
of interest, denoted by 𝐵𝑖𝑗 , is repeatedly measured at time 𝑡𝑗 for subject 𝑖. Note that the baseline measurement 𝐵0 is always
collected as a reference line and will not be considered as an outcome benefit in ITR derivation. It is assumed that the larger the
value of 𝐵, the greater the health benefit. Specifically, the outcome 𝐵𝑚 is used as the primary outcome for the derivation of ITR
according to the clinical study. All the other intermittent measurements, 𝐵1,… , 𝐵𝑚−1, are considered as surrogate outcomes,
providing relevant and auxiliary information on the benefit trajectory reaching the endpoint 𝐵𝑚. Some individuals in the trial
are not measured at the last visit 𝑡𝑚 due to dropout or other reasons, resulting in missing data for 𝐵𝑚. For those subjects who do
not complete the trial, we do not remove them from the analysis but select certain surrogate endpoints so that they can remain
in our ITR derivation. Let 𝑅𝑖𝑗 ∈ {0, 1} denote the missingness of the outcome 𝐵𝑖𝑗 , with 𝑅𝑖𝑗 = 1 representing “observed" and
𝑅𝑖𝑗 = 0 representing “missing".

3.2 Outcome Weighted Learning (OWL)
The central goal of precision nutrition is to derive a decision function 𝐷 ∶  → , which is a mapping from the space of
prognostic variables to the space of treatments. In the case of a one-dimensional outcome 𝐵, OWL13 is a seminal work enabling
the estimation of an optimal ITR 𝐷∗ that maximizes the expected clinical benefit 𝐸(𝐷) = 𝐸{ 𝐼(𝐴=𝐷(𝑿))

𝑃 (𝐴|𝑿)
𝐵}, where 𝐼(⋅) is an

indicator function of whether the randomly assigned treatment 𝐴 is equal to the estimated treatment 𝐷(𝑿), and 𝑃 (𝐴|𝑿) is
the propensity score for obtaining treatment 𝐴 in the clinical trial based on feature vector 𝑿. Although 𝐸(𝐷) can generally be
computed, the following three assumptions are required in the literature to estimate causal effects: (a) consistency: the observed
benefit 𝐵 = 𝐼(𝐴 = 1)𝐵(1) + 𝐼(𝐴 = −1)𝐵(−1), where 𝐵(𝑎) is the potential clinical benefit of receiving treatment 𝑎; (b)
no unmeasured confounding: 𝐴 ⟂ {𝐵(𝑎)}𝑎∈|𝑿, indicating that 𝑿 contains all relevant confounding factors; (c) positivity:
0 < 𝑃 (𝐴 = 𝑎|𝑿) < 1,∀𝑎 ∈ .20 The maximization problem of OWL becomes a minimization problem if we change
the indicator function from equality to inequality, resulting in 𝐷∗ ∈ argmin

𝐷
𝐸{ 𝐼(𝐴≠𝐷(𝑿))

𝑃 (𝐴|𝑿)
𝐵}. The term 𝐼(𝐴≠𝐷(𝑿))

𝑃 (𝐴|𝑿)
is actually a

weighted classification error, making OWL a weighted classification problem. With a set of 𝑖.𝑖.𝑑 observations {(𝑿𝑖, 𝐴𝑖, 𝐵𝑖), 𝑖 =
1,… , 𝑛}, we can approximate the optimization problem by its empirical value 𝐷∗ ∈ argmin

𝐷

1
𝑛

∑𝑛
𝑖=1

𝐵𝑖
𝑃 (𝐴𝑖|𝑿𝑖)

𝐼(𝐴𝑖 ≠ 𝐷(𝑿𝑖)).
Since𝐷(𝑿) can always be expressed as sign(𝑓 (𝑿)) for some decision function 𝑓 , where𝐷(𝑿) = 1 if 𝑓 (𝑿) > 0 and𝐷(𝑿) = −1
otherwise, the optimization problem is equivalent to 𝑓 ∗ ∈ argmin

𝑓

1
𝑛

∑𝑛
𝑖=1

𝐵𝑖
𝑃 (𝐴𝑖|𝑿𝑖)

𝐼(𝐴𝑖 ≠ sign(𝑓 (𝑿𝑖))). The challenge in solving
this optimization problem is that it is a weighted sum of 0-1 loss, which is neither convex nor continuous. Therefore, OWL uses
a convex surrogate hinge loss 𝑥+ = max(0, 𝑥) to replace the 0-1 loss. To further penalize the complexity of the decision function
𝑓 to avoid overfitting, OWL adds a 𝑙2 penalty into the optimization problem. The final function that OWL aims to minimize is
1
𝑛

∑𝑛
𝑖=1

𝐵𝑖
𝑃 (𝐴𝑖|𝑿𝑖)

(1 − 𝐴𝑖𝑓 (𝑿𝑖))+ + 𝜅𝑛||𝑓 ||2, where 𝜅𝑛 is the regularization parameter of the 𝑙2 penalty and 𝜉𝑖 = (1 − 𝐴𝑖𝑓 (𝑿𝑖))+

is the slack variable. If we assume that the decision rule 𝑓 is a linear function 𝑓 (𝑿) = 𝝎⊤𝑿 + 𝑏, OWL can be formulated as a
weighted classification problem in that SVM is invoked to solve the following constrained optimization:

min
𝝎,𝑏,𝝃

1
2
||𝝎||2 + 𝐶

𝑛
∑

𝑖=1

𝐵𝑖
𝑃 (𝐴𝑖|𝑿𝑖)

𝜉𝑖

s.t.𝐴𝑖(𝝎⊤𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛
(1)

where 𝐶 = 1
2𝑛𝜅𝑛

is a tuning parameter of SVM. The main difference between OWL and standard SVM is that OWL penalizes
𝜉𝑖 via a propensity score scaled outcome, 𝐵𝑖

𝑃 (𝐴𝑖|𝑿𝑖)
. The problem (1) can be generalized by allowing a nonlinear decision rules

through a kernel function  ∶  ×  → 𝑅 in the context of reproducing kernel Hilbert space (RKHS) .21 For simplicity,
we focus on linear decision rules in this paper, while LS-learning can be easily extended to nonlinear decision rules.

3.3 Longitudinal Self-learning (LS-learning)
To overcome the limitation that OWL is only applicable to a single cross-sectional outcome, we propose an extension to address
the methodological needs in ITR deviation with longitudinal outcomes. This requires new algorithms to solve a multi-view
problem similar to but more difficult than the problem (1) with multiple outcomes. We perform this extension in the context
of multiple training datasets obtained by stratifying the missing data patterns in a clinical trial with dropouts. For patients who
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miss certain measurements in the follow-up visits of a clinical trial, we use indicator 𝑅𝑖𝑗 ∈ {0, 1} to denote the missingness
of the corresponding outcome 𝐵𝑖𝑗 , where 𝑅𝑖𝑗 = 1 represents “observed" and 𝑅𝑖𝑗 = 0 represents “missing". Define 𝑚 =
{(𝑿𝑖, 𝐴𝑖, 𝑡𝑚, 𝐵𝑖𝑚), 𝑖|𝐼(𝑅𝑖𝑚 = 1) = 1} as the subset of completers who are measured at the endpoint time for their primary benefit
outcome 𝐵𝑚, and 𝑗 = {(𝑿𝑖, 𝐴𝑖, 𝑡𝑗 , 𝐵𝑖𝑗), 𝑖|𝐼(𝑅𝑖𝑗 = 1)

∏𝑚
𝑙=𝑗+1 𝐼(𝑅𝑖𝑙 = 0) = 1} as the subset of incompleters who are missing at

the endpoint time with their subject-specific last observations 𝐵𝑖𝑗 , 𝑗 ∈  . In this paper, we primarily focus the benefit outcome
𝐵𝑚 measured at the primary endpoint, and it seems clinically sensible to use the surrogate benefit outcome 𝐵𝑖𝑗 , 𝑗 ∈  measured
at a timepoint closest to the designed endpoint under the assumption that the quality or relevance of benefit outcome increases
when it approaches to the endpoint time. To estimate ITR, we plan to apply LS-learning to integrate the subset of completers
𝑚 with all the other subsets 𝑗 , 𝑗 ∈  in a systematic way.

In Section 3.2, we have illustrated the derivation of the objective function (1). When longitudinal outcomes are available,
the expected clinical benefit that needs to be maximized for the completers is 𝐸{ 𝐼(𝐴=𝐷(𝑿))

𝑃 (𝐴,𝑅𝑚=1|𝑿)
𝐵𝑚𝐼(𝑅𝑚 = 1)}, resulting in the

objective function min
𝝎,𝑏,𝝃

1
2
||𝝎||2 + 𝐶

∑

𝑖∈𝑚
𝐵𝑖𝑚
𝑝𝑖𝑚
𝜉𝑖, s.t.𝐴𝑖(𝝎⊤𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0, 𝑖 ∈ 𝑚, with 𝑝𝑖𝑚 = 𝑃 (𝐴𝑖, 𝑅𝑖𝑚 = 1|𝑿𝑖)

being the probability of subject 𝑖 assigned to treatment 𝐴𝑖 and contributing benefit 𝐵𝑖𝑚 for ITR derivation. Integrating the
other subsets 𝑗 , 𝑗 ∈  with auxiliary information 𝐵𝑗 into ITR derivation requires the maximization of the expected clin-
ical benefit 𝐸{ 𝐼(𝐴=𝐷(𝑿))

𝑃 (𝐴,𝑅𝑗=1,𝑅𝑗+1=0,…,𝑅𝑚=0|𝑿)
𝐵𝑗𝐼(𝑅𝑗 = 1)

∏𝑚
𝑙=𝑗+1 𝐼(𝑅𝑙 = 0)}, leading to the objective function min

𝝎,𝑏,𝝃
1
2
||𝝎||2 +

𝐶
∑

𝑖∈𝑗
𝐵𝑖𝑗
𝑝𝑖𝑗
𝜉𝑖𝑗 , s.t.𝐴𝑖(𝝎⊤𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖𝑗 and 𝜉𝑖𝑗 ≥ 0, 𝑖 ∈ 𝑗 , with 𝑝𝑖𝑗 = 𝑃 (𝐴𝑖, 𝑅𝑖𝑗 = 1, 𝑅𝑖𝑗+1 = 0,… , 𝑅𝑖𝑚 = 0|𝑿𝑖) being the

probability of subject 𝑖 assigned to treatment 𝐴𝑖 and contributing benefit 𝐵𝑖𝑗 for ITR derivation. The ITR derivation based on a
simple sum of these objective functions is not feasible for two main reasons. First, the quality of information contributed for ITR
derivation varies for each benefit outcome. Second, if some outcome 𝐵𝑗 is completely untrustworthy, excluding it completely
from the derivation of ITR would result in information loss, since the feature vector 𝑿𝑖, 𝑖 ∈ 𝑗 also contains information useful
for ITR derivation. To address these challenges, we propose an iterative LS-learning algorithm in a generic manner. Prior to the
detailed illustration of the algorithm, we first provide the condition required for LS-learning.

3.3.1 Missing Data Mechanisms
To establish LS-learning, we postulate Condition 1: (i) the missing data mechanism follows missing at random (MAR), where

(𝐴,𝑅𝑗 , 𝑅𝑗+1,… , 𝑅𝑚) ⟂ (𝐵𝑗 , 𝐵𝑗+1,… , 𝐵𝑚)|𝑿; and (ii) 𝐴 ⟂ 𝑅𝑗 , 𝑅𝑗+1,… , 𝑅𝑚|𝑿. For a specific subgroup 𝑗 , 𝑗 = 1,… , 𝑚 − 1,
the calculation of the benefit expectation that we want to maximize can be formulated as

𝐸{
𝐼(𝐴 = 𝐷(𝑿))

𝑃 (𝐴,𝑅𝑗 = 1, 𝑅𝑗+1 = 0,… , 𝑅𝑚 = 0|𝑿)
𝐵𝑗𝐼(𝑅𝑗 = 1)

𝑚
∏

𝑙=𝑗+1
𝐼(𝑅𝑙 = 0)}

=∫ ∫ ⋯∫
𝐼(𝐴 = 𝐷(𝑿))

𝑃 (𝐴,𝑅𝑗 = 1, 𝑅𝑗+1 = 0,… , 𝑅𝑚 = 0|𝑿)
𝐵𝑗𝐼(𝑅𝑗 = 1)

𝑚
∏

𝑙=𝑗+1
𝐼(𝑅𝑙 = 0)×

𝑓 (𝐵𝑗 , 𝐵𝑗+1,… , 𝐵𝑚, 𝑅𝑗 , 𝑅𝑗+1,… , 𝑅𝑚, 𝐴|𝑿,𝜽, 𝜼,𝝓)𝑑𝜇(𝐵𝑗)𝑑𝜇(𝐵𝑗+1)⋯ 𝑑𝜇(𝐵𝑚)𝑑𝜇(𝑅𝑗)𝑑𝜇(𝑅𝑗+1)⋯ 𝑑𝜇(𝑅𝑚)𝑑𝜇(𝐴),
where 𝜇(⋅) is a generic notation for a certain dominated measure (either Lebesgue or counting measure). The parame-
ters 𝜽, 𝜼,𝝓 are those involved in the missing data process, the propensity score modeling, and the outcome data pro-
cess, respectively. Benefits 𝐵1,… , 𝐵𝑗−1 are not included in the density function due to the marginalization of integration.
Since the treatment 𝐴, the missing indicators 𝑅𝑗 , 𝑅𝑗+1,… , 𝑅𝑚, and the benefit 𝐵𝑗 are observed and the decision function
𝐷(𝑿) is a function of the feature 𝑿, the multiple integration does not involve the missing benefits except for the den-
sity 𝑓 (𝐵𝑗 , 𝐵𝑗+1,… , 𝐵𝑚, 𝑅𝑗 , 𝑅𝑗+1,… , 𝑅𝑚, 𝐴|𝑿,𝜽, 𝜼,𝝓). Based on the conditional probability, we have the density equal to
𝑓 (𝐴,𝑅𝑗 , 𝑅𝑗+1,… , 𝑅𝑚|𝐵𝑗 , 𝐵𝑗+1,… , 𝐵𝑚,𝑿,𝜽, 𝜼)𝑓 (𝐵𝑗 , 𝐵𝑗+1,… , 𝐵𝑚|𝑿,𝝓). It follows from Condition 1 that
𝑓 (𝐴,𝑅𝑗 , 𝑅𝑗+1,… , 𝑅𝑚|𝐵𝑗 , 𝐵𝑗+1,… , 𝐵𝑚,𝑿,𝜽, 𝜼) = 𝑓 (𝐴,𝑅𝑗 , 𝑅𝑗+1,… , 𝑅𝑚|𝑿,𝜽, 𝜼) = 𝑓 (𝐴|𝑿, 𝜼)𝑓 (𝑅𝑗 , 𝑅𝑗+1,… , 𝑅𝑚|𝑿,𝜽).

Therefore, the probability 𝑃 (𝐴,𝑅𝑗 = 1, 𝑅𝑗+1 = 0,… , 𝑅𝑚 = 0|𝑿) = 𝑃 (𝐴|𝑿)𝑃 (𝑅𝑗 = 1, 𝑅𝑗+1 = 0,… , 𝑅𝑚 =
0|𝑿). This leads to an inverse probability weighting scheme in a manner similar to the propensity score. These prob-
abilities can be estimated by means of logistic regression. With these derivations, the only part of the final cal-
culation of the multiple integration that involves the missing benefits is 𝑓 (𝐵𝑗 , 𝐵𝑗+1,… , 𝐵𝑚|𝑿,𝝓), which is equal to
𝑓 (𝐵𝑗+1,… , 𝐵𝑚|𝐵𝑗 ,𝑿,𝝓)𝑓 (𝐵𝑗|𝑿,𝝓). Since only 𝐵𝑗 is involved in the formula for the benefit expectation, the multiple integra-
tion ∫ ∫ ⋯ ∫ 𝐵𝑗𝑓 (𝐵𝑗+1,… , 𝐵𝑚|𝐵𝑗 ,𝑿,𝝓)𝑓 (𝐵𝑗|𝑿,𝝓)𝑑𝜇(𝐵𝑗)𝑑𝜇(𝐵𝑗+1)⋯ 𝑑𝜇(𝐵𝑚) = ∫ 𝐵𝑗𝑓 (𝐵𝑗|𝑿,𝝓)𝑑𝜇(𝐵𝑗). This implies that



6 Zhou, Y. and Song, P. X.K.

all missing benefit outcomes are integrated out and have no impact on the calculation of the expected benefit. Therefore, deriv-
ing ITR by maximizing the expected benefit based on the observed training data produces valid solutions in the sense that no
additional model is needed for the missing benefit outcomes.

3.3.2 Algorithm of LS-learning
Algorithm 1. Suppose we have a set of completers 𝑚 = {(𝑿𝑖, 𝐴𝑖, 𝑡𝑚, 𝐵𝑖𝑚), 𝑖|𝐼(𝑅𝑖𝑚 = 1) = 1} with outcome 𝐵𝑚 and multiple
sets of incompleters 𝑗 = {(𝑿𝑖, 𝐴𝑖, 𝑡𝑗 , 𝐵𝑖𝑗), 𝑖|𝐼(𝑅𝑖𝑗 = 1)

∏𝑚
𝑙=𝑗+1 𝐼(𝑅𝑖𝑙 = 0) = 1} with outcome 𝐵𝑗 , 𝑗 ∈  . It is assumed that 𝐵𝑚

is of higher quality than𝐵𝑗 in ITR derivation. Let 𝑝𝑖𝑚 = 𝑃 (𝐴𝑖, 𝑅𝑖𝑚 = 1|𝑿𝑖) and 𝑝𝑖𝑗 = 𝑃 (𝐴𝑖, 𝑅𝑖𝑗 = 1, 𝑅𝑖𝑗+1 = 0,… , 𝑅𝑖𝑚 = 0|𝑿𝑖)
be the probabilities of being assigned to treatment 𝐴 and having 𝐵𝑚 or 𝐵𝑗 observed for ITR derivation, 𝑖 ∈ 𝑚 and 𝑖 ∈ 𝑗 ,
respectively.

S1 Estimate ITR by OWL using 𝑚 and get the initial estimates (�̂�(0), �̂�(0), �̂�(0)). Then predict labels for subjects in
𝑚−1
⋃

𝑗=1
𝑗 .

Denote the predicted labels as �̂�(0)𝑖𝑗 , 𝑖 ∈ 𝑗 , 𝑗 ∈  .
S2 The 𝑘-th (𝑘 ≥ 1) iteration runs through the following steps S2.1-S2.3.

S2.1 Define an augmented training dataset  (𝑘) = 𝑚 ∪  (𝑘)
1 ∪⋯ ∪  (𝑘)

𝑚−1, where individuals in  (𝑘)
𝑗 have their predicted

labels from the previous iteration 𝑘 − 1, resulting in  (𝑘)
𝑗 = {(𝑿𝑖, 𝐴𝑖, 𝑡𝑗 , 𝐵𝑖𝑗 , �̂�

(𝑘−1)
𝑖𝑗 ), 𝑖 = 1,… , 𝑛𝑗}. Note that the

subjects in 𝑗 and  (𝑘)
𝑗 are the same.  (𝑘)

𝑗 is created to emphasize the additionally included information �̂�(𝑘−1)𝑖𝑗 .
S2.2 Solve the following optimization problem using  (𝑘):

min
𝝎,𝑏,𝝃

1
2
||𝝎||2 + 𝐶

⎡

⎢

⎢

⎢

⎣

∑

𝑖∈𝑚

𝐵𝑖𝑚
𝑝𝑖𝑚

𝜉𝑖 +
𝑚−1
∑

𝑗=1

⎧

⎪

⎨

⎪

⎩

𝜆𝑗
∑

𝑖∈ (𝑘)
𝑗

𝐵𝑖𝑗
𝑝𝑖𝑗
𝜉𝑖𝑗 + (1 − 𝜆𝑗)

∑

𝑖∈ (𝑘)
𝑗

𝜏𝐵𝑗𝜉𝑖𝑗

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

s.t. 𝐴𝑖(𝝎⊤𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0, 𝑖 ∈ 𝑚,
𝐴𝑖(𝝎⊤𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖𝑗 and 𝜉𝑖𝑗 ≥ 0, 𝑖 ∈  (𝑘)

𝑗 , 𝑗 ∈  ,

�̂�(𝑘−1)𝑖𝑗 (𝝎⊤𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖𝑗 and 𝜉𝑖𝑗 ≥ 0, 𝑖 ∈  (𝑘)
𝑗 , 𝑗 ∈  .

(2)

Denote the estimates of the parameters as (�̂�(𝑘), �̂�(𝑘), �̂�(𝑘)) at iteration 𝑘. Also, the predicted labels for  (𝑘)
𝑗 are updated

as �̂�(𝑘)𝑖𝑗 , 𝑖 ∈  (𝑘)
𝑗 , 𝑗 ∈  .

S2.3 Calculate the objective function with the estimates (�̂�(𝑘), �̂�(𝑘), �̂�(𝑘)) as

ℎ(�̂�(𝑘), �̂�(𝑘)) = 1
2
||�̂�(𝑘)

||

2 + 𝐶

⎡

⎢

⎢

⎢

⎣

∑

𝑖∈𝑚

𝐵𝑖𝑚
𝑝𝑖𝑚

𝜉(𝑘)𝑖 +
𝑚−1
∑

𝑗=1

⎧

⎪

⎨

⎪

⎩

𝜆𝑗
∑

𝑖∈ (𝑘)
𝑗

𝐵𝑖𝑗
𝑝𝑖𝑗

̂̃𝜉
(𝑘)

𝑖𝑗 + (1 − 𝜆𝑗)
∑

𝑖∈ (𝑘)
𝑗

𝜏𝐵𝑗
̂̌𝜉(𝑘)𝑖𝑗

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

S3 The algorithm stops if |ℎ(�̂�(𝑘),�̂�(𝑘))−ℎ(�̂�(𝑘−1),�̂�(𝑘−1))|
ℎ(�̂�(𝑘−1),�̂�(𝑘−1))

< 𝜖 for a pre-determined precision constant 𝜖, say 10−4. The convergence
values of (�̂�(𝑘), �̂�(𝑘)) are denoted by (�̂�, �̂�), and the predicted labels at convergence for the whole training data are denoted
as �̂�𝑖, 𝑖 = 1,… , 𝑛.

The predicted label �̂�(𝑘)𝑖𝑗 is the prediction of the underlying optimal treatment assignment 𝑦(𝑘)𝑖𝑗 (i.e., 𝑦(𝑘)𝑖𝑗 = sign{𝑓 (𝑘)(𝑿𝑖)})
for each subject 𝑖 in the subgroup 𝑗 at iteration 𝑘, where 𝑓 (𝑘)(𝑿) = 𝝎(𝑘)⊤𝑿 + 𝑏(𝑘) is the ITR derived by weighted SVM at
iteration 𝑘. The tuning parameter 𝜆𝑗 ∈ [0, 1] is included in the objective function (2) to characterize the relative importance
of the auxiliary benefit 𝐵𝑗 compared to the primary outcome 𝐵𝑚. When 𝜆𝑗 = 1, we believe that 𝐵𝑗 has the same quality as
𝐵𝑚. When 0 < 𝜆𝑗 < 1, 𝐵𝑗 is assumed to have lower quality than 𝐵𝑚, but still provides useful information for ITR derivation.
On the contrary, when 𝜆𝑗 = 0, we consider 𝐵𝑗 to be completely untrustworthy and should be excluded from ITR derivation.
Selection of the tuning parameter 𝜆𝑗 is discussed in the following Section 3.5. Note that when 𝐵𝑗 is completely untrustworthy,
its contribution to optimization is reduced to zero under 𝜆𝑗 = 0. However, the information contained in the feature vector 𝑿
is good and useful. To use 𝑿 of subjects in 𝑗 , we introduced the predicted label �̂�(𝑘−1)𝑖𝑗 to engage 𝑿 in the optimal decision
making. It is known that the predicted label �̂�(𝑘−1)𝑖𝑗 provides some information about the classification hyperplane, which may be
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further sharpened by the valuable information from the feature vector 𝑿. This sharpening of the classifier is carried out through
the added loss function ∑

𝑖∈ (𝑘)
𝑗
𝜏𝐵𝑗𝜉𝑖𝑗 in SVM with a constraint �̂�(𝑘−1)𝑖𝑗 (𝝎⊤𝑿𝑖+𝑏) ≤ 1−𝜉𝑖𝑗 . In this way, we do not waste any good

data 𝑿 for ITR derivation, even if the associated benefit 𝐵𝑗 has no value. Moreover, adding the predicted labels may help the
algorithm converge as the tuning can reduce the disagreement between the primary outcomes and the surrogate outcomes with
respect to the ITR. The parameter 𝜏𝐵𝑗 is a constant summary statistic (e.g., sample mean) of 𝐵𝑖𝑗

𝑝𝑖𝑗
. Since this is a minimization

problem, unbalanced magnitude between ∑

𝑖∈ (𝑘)
𝑗

𝐵𝑖𝑗
𝑝𝑖𝑗
𝜉𝑖𝑗 and ∑

𝑖∈ (𝑘)
𝑗
𝜉𝑖𝑗 due to the lack of weights in the latter will result in a

certain improper 𝜆𝑗 value (i.e., smaller values of 𝜆𝑗 may be incorrectly favored due to the large weight 𝐵𝑖𝑗
𝑝𝑖𝑗

for 𝜉𝑖𝑗), leading to ill-
weighted contributions between the second and third terms to the objective function. Therefore, we add a constant 𝜏𝐵𝑗 to balance
the magnitude between ∑

𝑖∈ (𝑘)
𝑗

𝐵𝑖𝑗
𝑝𝑖
𝜉𝑖𝑗 and ∑

𝑖∈ (𝑘)
𝑗
𝜉𝑖𝑗 to derive apt tuning of 𝜆𝑗 . We suggest choosing this quantity in advance for

the purpose of properly scaling the third term. Since 𝜏𝐵𝑗 is a constant without any information on individual benefits, and �̂�(𝑘−1)𝑖𝑗is the estimated underlying optimal label not the randomized treatment from the clinical trial, the third term added in (2) actually
represents a standard SVM problem of maximizing the classification accuracy with respect to the optimal treatment assignment
of subjects in 𝑗 rather than an OWL problem maximizing the clinical benefit.

3.4 Algorithmic Convergence
We establish the algorithmic convergence of LS-learning in the following theorem with the proof given in Appendix.
Theorem 1. The objective function ℎ(�̂�(𝑘), �̂�(𝑘)) of LS-learning at iteration 𝑘 satisfies the descending property over iterations,
namely ℎ(�̂�(𝑘), �̂�(𝑘)) ≤ ℎ(�̂�(𝑘−1), �̂�(𝑘−1)) for 𝑘 ≥ 2. The equality occurs when the algorithm converges.

Note that the problem of maximizing the expected benefit 𝐸{ 𝐼(𝐴=𝐷(𝑿))
𝑃 (𝐴|𝑿)

𝐵} is converted to an equivalent problem of minimiz-
ing 𝐸{ 𝐼(𝐴≠𝐷(𝑿))

𝑃 (𝐴|𝑿)
𝐵}, and the latter being suitable for formulating the SVM algorithm. In other words, the actual optimization

implemented in OWL is to minimize objective (1). This same trick is applied to the optimization in LS-learning. Consequently,
our algorithmic convergence is established for a consistent decrease of the LS-learning objective function ℎ(⋅) over iterations.

3.5 Tuning Parameter Selection
In order to perform LS-learning, we need to determine the tuning parameters 𝐶 and 𝝀 = {𝜆𝑗 , 𝑗 = 1,… , 𝑚 − 1}. Parameter
selection can be done by performing a grid search on the entire dataset  =

𝑚
⋃

𝑗=1
𝑗 for 𝐶 and 𝝀. We propose to choose values

of 𝐶 and 𝝀 at which the sum of squared errors (SSE) of the predicted benefit values is minimized. The reason we tune the
parameters according to the minimization of SSE is discussed in Section 6. SSE is defined as SSE =

∑𝑚
𝑗=1

{

∑𝑛𝑗
𝑖=1(𝐵𝑖𝑗 − �̂�𝑖𝑗)

2
}

,
where the predicted benefit value �̂�𝑖𝑗 is given by a stratum-specific regression model 𝐵𝑗 = 𝜙𝑗(𝑿, 𝒔(𝑡𝑗), 𝐴𝑓 (𝑿)) + 𝜖𝑗 , with
𝜙𝑗(𝑎, 𝑏, 𝑐) = 𝑔𝑗(𝑎) + ℎ𝑗(𝑏) + 𝛽𝑗𝑐 for some function 𝑔𝑗(⋅) and ℎ𝑗(⋅)22. 𝑓 (⋅) is the decision function estimated by LS-learning,
and 𝜖𝑗 is the error term. Note that inclusion of the third term 𝐴𝑓 (𝑿) in the regression model 𝐵𝑗 = 𝜙(𝑿, 𝒔(𝑡𝑗), 𝐴𝑓 (𝑿)) + 𝜖𝑗
is motivated by treating 𝑓 as an estimate of the conditional treatment effect (CTE).23,24,25 Multiple linear regression models or
more flexible models, such as the generalized additive model (GAM), can be invoked to build the prediction rule 𝜙𝑗(⋅). In the
analysis of the calcium trial discussed in Section 4, and in the simulation experiments described in Section 5, we choose the
GAM for 𝜙𝑗 to predict the outcomes.

Each auxiliary dataset 𝑗 introduces a 𝜆𝑗 for tuning, and the strategy of greedy search may make parameter tuning computa-
tionally expensive and time consuming. To alleviate this computational burden, we propose a scaled tuning method by specifying
𝜆𝑗 as a function of the standardized time 𝑡𝑗 = 𝑡𝑗∕𝑡𝑚, i.e., 𝜆𝑗 = 𝜓(𝑡𝑗|𝜽) with parameter 𝜽. The rationale for this systematic tuning
is that the quality of 𝐵𝑗 decreases when the time of the current measurement is far from the measuring time 𝑡𝑚 of the primary
endpoint. As a result, this tuning procedure requires fewer parameters 𝜽 to be tuned compared to the grid search. Various 𝜓(⋅)
functions can be specified based on some preliminary understanding of the underlying longitudinal relationship between time
and the relative quality of outcomes. Some examples of 𝜓(⋅) are given as follows. Their time-course relevance to the endpoint
are shown in Figure 3:

1. (Linear) 𝜓(𝑡𝑗|𝜃) = (1 − 𝜃) + 𝜃𝑡𝑗 , with constraint 𝜃 ∈ [0, 1].
2. (Exponential) 𝜓(𝑡𝑗|𝜽) = 𝜃1𝑒𝜃2𝑡𝑗 , with constraint 𝜃1 ∈ (0, 1] and 𝜃1𝑒𝜃2 = 1.
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FIGURE 3 Change of the tuning parameter 𝜆𝑗 according to standardized time 𝑡𝑗 .

3. (Polynomial) 𝜓(𝑡𝑗|𝜽) = 𝜃1𝑡2𝑗 + 𝜃2𝑡𝑗 + 𝜃3, with constraint 𝜃3 ∈ [0, 1] and 𝜃1 + 𝜃2 + 𝜃3 = 1.
Parameter tuning is a crucial part of machine learning methods, including our LS-learning approach, in which the optimal

treatment assignment in the training and validation datasets are unknown. In the seminal paper of OWL,13 cross-validation was
used for parameter tuning in SVM, which is not suitable for our case where the data of the primary benefit outcome had a small
sample size, resulting in low sensitivity of cross-validation. This is because the low resolution of the estimated value function
makes parameter tuning a challenging task, especially in the case of sparse data. Therefore, our experience suggested that cross-
validation with limited data in LS-learning did not provide reliable tuning parameter selection. To overcome this challenge,
we proposed to minimize the sum of squared errors (SSE) of the predicted benefits in a spirit similar to Q-learning.12 Since
we had little knowledge of the true benefit outcome model, in principle, the prediction model should be specified with a great
deal of flexibility. We modeled the longitudinal benefit outcomes with 𝐵𝑗 = 𝜙𝑗(𝑿, 𝑠(𝑡𝑗), 𝐴𝑓 (𝑿)) + 𝜖𝑗 , and following the work
of Diggle and Zeger,22 we took 𝜙𝑗(𝑎, 𝑏, 𝑐) = 𝑔𝑗(𝑎) + ℎ𝑗(𝑏) + 𝛽𝑗𝑐. The interaction term 𝐴𝑓 (𝑿) is used to model the feature-
driven treatment effects on outcome 𝐵𝑗 , adjusting for the major effects through functions 𝑔𝑗(⋅) and ℎ𝑗(⋅) of feature vector 𝑿 and
the time trend 𝑡𝑗 , respectively. In the Supporting Information section, we also showed the performance of SSE minimization-
based parameter tuning compared to other tuning methods, including F-statistic, robust F-statistic, and truncated F-statistic,
which are popular tuning criteria in classification analyses.26 Their performances were found to be inferior to that of the SSE-
based tuning procedure. In addition, we investigated the value information criterion (VIC) and the concordance information
criterion (CIC)27 for parameter tuning and model selection. In short, VIC and CIC are defined as VIC(𝜷) = 𝑛𝑉 𝜷 −𝜅𝑛||𝜷||0 and
CIC(𝜷) = 𝑛�̂�(𝜷) −𝜅𝑛(𝜷), where 𝑉 (𝜷) and �̂�(𝜷) are the estimated value and concordance function with parameter 𝜷. Parameter
𝜅𝑛 is a tuning parameter and ||𝜷||0 is the number of nonzero elements of 𝜷. If robust learning is used for ITR estimation, cross-
validation can be applied to determine the value of the tuning parameter 𝜅𝑛 to select the best model that maximizes VIC and
CIC. This additional parameter tuning step is needed when dimension reduction from high-dimensional features is used in ITR
derivation, which is not the setting considered in our calcium supplementation trial. In our low-dimensional case, this additional
cross-validation tuning step increases the complexity of the algorithm and is unstable due to small training dataset. Therefore, we
chose not to use these VIC and CIC information criteria to tune the 𝐶 and 𝝀 parameters in the proposed LS-learning algorithm.
Nevertheless, simulation results also showed that the VIC-based tuning produced inferior results compared to the SSE-based
tuning procedure (results are included in the Supporting Information section).

4 DERIVATION OF ITR FOR THE CALCIUM SUPPLEMENTATION TRIAL

We applied the LS-learning method with the scaled-tuning scheme to analyze the calcium supplementation trial in the ELE-
MENT Project. The central objective of our analysis was to derive an ITR that could guide pregnant women to take calcium
supplements to minimize their children’s persistent lead exposure at age of 3 years. The PBC values were measured repeatedly
at a total of seven different follow-up times, denoted as 𝐵1,… , 𝐵7, where 𝐵7 was designed as the primary endpoint of interest.
It is reasonable to assume that the quality of these longitudinal outcomes increases as the PBC was measured closer to month
36. LS-learning is proposed based on ranked benefit values, where the larger the magnitude of the outcome, the greater the clin-
ically desirable benefit. Therefore, to fit this framework, we reversed the direction of lead concentration by a transformation,
max
𝑖
(𝐵𝑖𝑗) − 𝐵𝑖𝑗 , 𝑖 ∈ 𝑗 , 𝑗 = 1,… , 7. A total of 376 mother-child pairs with no missing data at the baseline visit were used for

our ITR derivation, with 190 mothers taking calcium supplements and 186 mothers taking placebo.
The mother-child pairs on the two treatment groups are not perfectly balanced due to subgroup stratification, so propensity

scores were estimated by a logistic regression model with all the major effects of the biomarkers. After weighting the PBC values
with the estimated propensity scores, we used standardized mean difference (SMD) to access the balance of the propensity
scores and, more importantly the balance of the distribution of the individual biomarkers. Figure 4 shows that the distribution
balance of biomarkers is satisfactorily achieved.

We now derive the ITR for the daily intake of calcium supplementation. We perform (i) a standard OWL on the completer
group 7 with 𝐵7; (ii) a standard OWL on the entire training data  with missing information imputed by multiple imputation
using predictive mean matching (PMM) via the R package MICE28. A total of 50 imputed datasets were created, from which
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FIGURE 4 (a) Distributional balance of the propensity scores before and after weighting. (b) Balance of individual biomarkers
before and after weighting adjusted by SMD at a threshold of 0.1, which are indicated by the vertical dashed lines.

the average statistics of OWL performances were calculated; (iii) a standard OWL on the entire training data  with missing
information replaced by the subject-specific last observed PBC under the last observation carried forward (LOCF) strategy.29
In effect, LOCF implies that the subject-specific last observed PBC is used as endpoint outcome for ITR derivation. Apparently,
this approach ignores the different relevance of longitudinal outcomes in the reference to the primary endpoint 𝐵7. From the
perspective of tuning parameter, this is equivalent to naively setting 𝜆𝑗 = 1, 𝑗 = 1,… , 6; (iv) LS-learning with the scaled tuning
scheme on the entire training data  , which takes into account differences among longitudinal outcomes 𝐵𝑗 , 𝑗 = 1,… , 6 in
terms of their relevance to 𝐵7. In LS-learning, we use the linear kernel in the optimization function (2) to train the ITR, tuned
with the utility of the exponential scaling function (the middle panel of Figure 3). We set 𝐶 ∈ {1∕128, 1∕64,… , 1∕2, 1} and
𝜃1 ∈ {0.1, 0.2,… , 0.9, 1.0} as the tuning parameter choices. The 3-fold cross-validation method was used to select the optimal
tuning parameters in the derivation of ITRs. The loading coefficients for the biomarkers in the four estimated ITRs are listed in
Table 2.

According to the exponential scaling procedure, we obtain a tuning parameter 𝜃1 = 0.4, which, when ITR derivation is
performed by LS-learning, generates 𝜆1 = 0.432, 𝜆2 = 0.466, 𝜆3 = 0.543, 𝜆4 = 0.632, 𝜆5 = 0.737 and 𝜆6 = 0.858. The
tuning parameter 𝜃2 is not tuned because it satisfies a constrain 𝜃1𝑒𝜃2 = 1 due to the reason that at the standardized time
𝑡𝑗 = 1, the measured benefit is actually the primary benefit 𝐵𝑚, leading to 𝜃1𝑒𝜃2𝑡𝑗 = 𝜃1𝑒𝜃2 = 1. As a result, when 𝜃1 is
selected, 𝜃2 is given by 𝜃2 = ln(1∕𝜃1). In this LS-learning process, we use two tuning parameters 𝐶 and 𝜃1, each with 8 and
10 different values, resulting in a total of 80 different pairs of 𝐶 and 𝜃1. In contrast, if we use the greedy tuning strategy under
𝜆𝑗 ∈ {0, 0.1,… , 1.0}, 𝑗 = 1,… , 6, we would have to deal with a total of 8 × 116 = 14, 172, 488 pairs in the tuning. Thus, our
scaling procedure has saved 177,156 folds of computational runs.

Applying each of the four estimated decision rules above, we allocate a pregnant woman to take calcium supplement if
𝑓 > 0; otherwise, not to take the calcium supplement. Among the 376 mothers, the ITRs derived from OWL on 𝑚, OWL
using PMM imputation, OWL using LOCF imputation and LS-learning would designate 239 (63.6%), 236 (62.8%), 235 (62.5%)
and 251 (66.8%) pregnant women taking calcium supplements, respectively, all higher than the 50% randomly assigned. In
particular, comparing between ITRs derived from complete randomization and by LS-learning, we see significant differences
in the reallocation of calcium supplementation (See Table 3). Our McNemar test for the hypothesis of homogeneous allocation
yields a 𝑝-value of 1.39 × 10−5, indicating that there is a significant difference between the two allocation rules; in other words,
these different treatment allocations do not occur by chance.

Furthermore, to compare the performance of the four estimated ITRs based on the different algorithms for minimizing con-
tinuous lead exposure at different time points, we calculate the estimated value functions 𝑉 (𝐵𝑗) of 𝐵𝑗 , 𝑗 = 1,… , 7 using
𝔼∗
𝑛[𝐼(𝐴 = 𝐷(𝑿))𝐵∕𝑃 (𝐴,𝑅 = 1|𝑿)]∕𝔼∗

𝑛[𝐼(𝐴 = 𝐷(𝑿))∕𝑃 (𝐴,𝑅 = 1|𝑿)].30 The estimated value functions of the longitudinal
outcomes for each visit time and their average values are summarized in Table 4. Clearly, the LS-learning method gives the high-
est average estimated value function, yielding the lowest continuous lead exposure compared to the other three decision rules
derived by standard OWL. This suggests that the utility of longitudinal auxiliary data via surrogate outcomes 𝐵𝑗 , 𝑗 = 1,… , 6
arguably improves the estimated ITR to maximize the benefit to children’s growth and development. This improvement is rooted
in the successful use on the ordering of time-course relevance among longitudinal outcomes in the multi-view extension of OWL
with multiple training datasets.

We also compare the distribution of individual biomarkers between the two resulting treatment groups by using the ITR
derived from LS-learning; see Table 5, by which we identify those biomarkers that are significantly different between the two
groups. We found that mothers assigned to take calcium supplementation, as specified by the LS-learning-derived ITR, are
significantly older. That is, children of older mother are more likely to benefit from maternal calcium supplementation to reduce
persistent lead exposure at age 3. In addition, pregnant women assigned to calcium supplement via the LS-learning-derived
ITR have significantly longer years in school, lower dietary intake of calcium, higher dietary intake of fiber, and lower maternal
blood lead concentration (PBM) at the first trimester. Notably, mothers assigned to the calcium supplementation group via the
LS-learning-derived ITR do have a significant difference in their calcium intake from food compared to mothers assigned to the
placebo group (1059.6 (521.2) versus 1172.9 (514.9)). This suggests that the maternal dietary calcium intake at baseline does
influence child’s persistent lead exposure at age 3 years. This finding has clinical value and is consistent with our common sense
that calcium supplementation should be specified for pregnant women who do not receive adequate calcium intake from their
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daily diet. In contrast, no significant differences are identified between the two resulting allocation groups in terms of maternal
weight, marital status, total number of pregnancies, HgB concentration, dietary intake of iron, zinc, and vitamin C for the ITR
derived by the LS-learning method.

5 SIMULATION EXPERIMENT

5.1 Simulation Setting
This section reports a simulation experiment to illustrate the finite sample performance of scaled-tuned LS-learning in the
derivation of ITR using longitudinal trial data with missing information. We randomly generate a 10-dimensional feature vector
𝑿 = (𝑋1,… , 𝑋10)⊤ ∈ ℝ10 for each subject, with each feature 𝑋𝜈 ∼ 𝑈 (0, 1), 𝜈 = 1,… , 10 and 𝐶𝑜𝑟𝑟(𝑋𝜈 , 𝑋𝜈′) = 0.2, 𝜈 ≠ 𝜈′.
Treatment 𝐴 ∈ {−1, 1} is randomly assigned to each subject with equal probability, 𝑃 (𝐴 = 1|𝑿) = 𝑃 (𝐴 = −1|𝑿) = 0.5. In
addition to a baseline visit, subjects are measured at 𝑚 = 5 follow-up times, with a scaled time of 𝑡𝑗 = 𝑗∕𝑚 and a standardized
time 𝑡𝑗 = 𝑡𝑗∕𝑡𝑚, 𝑗 = 1,… , 𝑚. A set of cubic spline plus basis function 𝒔(𝑡𝑗) with three knots is specified at 𝑘1 = 0.4, 𝑘2 = 0.6
and 𝑘3 = 0.8, resulting in seven basis functions 𝒔(𝑡𝑗) = (1, 𝑡𝑗 , 𝑡2𝑗 , 𝑡

3
𝑗 , (𝑡𝑗 − 𝑘1)

3
+, (𝑡𝑗 − 𝑘2)

3
+, (𝑡𝑗 − 𝑘3)

3
+)
⊤ at visit 𝑗 to represent the

time trajectory. The term 𝒔(𝑡𝑗) is created to model the nonparametric effect of time on the influence of benefit outcome 𝐵𝑗 . The
underlying true decision function 𝑓 is specified as 𝑓 (𝑿) = 1 + 𝑋1 − log(𝑋2 + 1) + 2𝑋3

3 − exp(𝑋4). The outcomes measured
of subject 𝑖 at time 𝑡𝑗 is generated by an equation: 𝐵𝑖𝑗 = 0.01 + 0.02𝑋𝑖,1 + 𝒔(𝑡𝑗)⊤𝜷3 + {𝒔(𝑡𝑗)⊤𝜷4}{0.1(0.4𝑋𝑖,5 + 0.6𝑋𝑖,6 −
𝑋𝑖,7)} + 3𝐴𝑖𝑓 (𝑿𝑖) + 𝛾𝑖 + 𝜖𝑖𝑗 , where 𝜷3 = 𝜷4 = (3, 0.5, 0.5,−3.5,−2,−2,−0.1)⊤, random intercepts 𝛾𝑖 𝑖.𝑖.𝑑∼ 𝑁(0, 0.5) and
random errors 𝝐𝑖 𝑖.𝑖.𝑑∼ 𝑀𝑉𝑁(𝟎,𝚺) with 𝚺(𝜌) being an AR(1) correlation matrix and correlation coefficient 𝜌 = 0.5. The missing
outcome indicator 𝑅𝑖𝑗 for each outcome 𝐵𝑖𝑗 is generated independently according to a Bernoulli distribution with probability
(a) 𝑃 (𝑅𝑖1 = 0) = 0.01 for the first measurement 𝐵𝑖1 and (b) logit 𝑃 (𝑅𝑖𝑗 = 0) = 1 + 2𝑡𝑗 − 1 for 𝑗 = 2,… , 𝑚. Based on the
missing patterns, subjects can be stratified into subgroups 𝑗 , 𝑗 = 1,… , 𝑚 based on the subject-specific last observation. The
propensity score of treatment assignment for each subject is estimated by a logistic regression model with all the majors effects
of the covariates 𝑿. The total sample size for the training data  = 1∪⋯∪𝑚 is set to 𝑛 ∈ {500, 800, 1000, 1200}. In addition,
an independent test dataset with a sample size of 10,000, with the optimal treatment assignment determined by 𝑓 (𝑿) > 0 or
not, is generated as external validation data. An ITR is derived using the LS-learning method under linear kernel. Scaled tuning
was performed via an exponential function 𝜓(𝑡𝑗|𝜽) = 𝜃1𝑒𝜃2𝑡𝑗 with 𝜃2 = log(1∕𝜃1) to characterize the relevant time course of the
outcomes to the primary endpoint benefit measured at visit𝑚. We set two tuning parameter pools𝐶 ∈ {1∕128, 1∕64,… , 1∕2, 1}
and 𝜃1 ∈ {0.1, 0.2,… , 0.9, 1.0} for tuning parameter selection, respectively. GAM regression with B-spline basis functions
(four degrees of freedom for each variable) was used to estimate the mean prediction functions 𝑔𝑗(𝑿) and ℎ𝑗(𝒔(𝑡𝑗)) for parameter
tuning. The simulation is repeated for 200 times to produce summary statistics.

5.2 Simulation Results
We compared the predictive accuracy of the five methods on the validation dataset for the underlying optimal treatment assign-
ment. They are (M1) OWL on the entire training data  with no missing information. The endpoint𝐵𝑚 is fully observed and used
for ITR derivation based on the standard OWL. This serves as the gold standard and is referred to as the super oracle method
for comparison purposes. Note that endpoint benefit 𝐵𝑚 is often not available in practice due to missing data. (M2) LS-learning
with scaled tuning on the entire training data  with missing information. It incorporates auxiliary benefits 𝐵𝑗 , 𝑗 = 1,… , 𝑚−1
prior to the endpoint 𝐵𝑚 using subject stratification. We derive ITR using the LS-learning method that takes into account the
relevance of the time-course outcomes. (M3) OWL on the entire training data  with missing data imputed by the method of
LOCF. It differs from M2 in that it ignores the incorporation of time course outcomes. (M4) OWL on the whole training data
with missing data imputed by the method of PMM. The imputed endpoint 𝐵𝑚 is used for ITR derivation via the standard OWL.
A total of 50 imputed datasets were created using all available data for 𝑿, 𝐴 and the observed benefits, from which the average
statistics of OWL performances were calculated. (M5) OWL on the training data of available endpoint benefits from those who
are the completers of the clinical trial. All standard OWL-based methods, including M1, M3, M4, and M5, use 5-fold cross-
validation with respect to the maximization of estimated value function for tuning parameter selection as performed in.13 Tuning
of the proposed LS-learning method M2 was performed according to the minimization of SSE as discussed in Section 3.5.

Table 6 lists the average prediction accuracy and the standard deviation (sd) of the underlying optimal treatment assignment
on the validation dataset obtained by the five different ITR derivation methods. The results show that, as expected, the super
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oracle M1 method always gives the highest prediction accuracy because it uses the complete information to derive the ITR.
However, M1 is not feasible for use in practice in the presence of missing data. The LS-learning method M2, developed with
missing information, gives a slightly lower prediction accuracy compared to M1. Obviously, M3, M4, and M5 give much lower
prediction accuracy than M2. In addition to the prediction accuracy, we also calculated the estimated value functions evaluated
at the five outcomes 𝑉 (𝐵𝑗) on the validation dataset (see Table 7). It is shown that the super oracle M1 method always gives the
highest estimated value function as expected. The LS-learning method M2 with scaled tuning method gives higher estimated
value functions compared to the other three OWL methods M3, M4, and M5.

In LS-learning, the mean and (sd) values of the selected tuning parameters 𝜃1 and 𝜃2 in the exponential function, as well as
the resulting 𝜆𝑗 , 𝑗 = 1, 2, 3, 4 corresponding to 𝐵1 to 𝐵4 are shown in Table 8. There is no tuning parameter for 𝐵5 since it is
the primary benefit outcome used for ITR derivation. Table 8 shows a decreasing trend for the relevance of outcomes from the
endpoint to the time of the first visit. But the relevance remains strong since x𝜆1 > 0.7, which is a relatively large weight of
overlap for 𝐵1 with 𝐵5. It is meaningful to compare the computation time of LS-learning with greedy tuning and LS-learning
with the proposed scaled tuning. Scaled tuning is proposed to save the computation and cost of LS-learning by reducing the
number of tuning parameters. In this simulation, with greedy tuning, we need to tune a total of four 𝜆 values (𝜆𝑗 , 𝑗 = 1,… , 4),
which are reduced to one (𝜃1) by scaled tuning. The latter takes an average of 267.60 seconds (i.e., 4.46 minutes) when the
sample size of the training data equals 1,000, while greedy tuning is estimated to take 391,793.2 seconds (i.e., 4.53 days) under
four grid sequences 𝜆𝑗 ∈ {0, 0.1,′ … , 1.0}, 𝑗 = 1,… , 4. It is clear that the computational efficiency of the scaled tuning method
makes LS-learning practically feasible.

6 CONCLUDING REMARKS

In this article, we utilize a new learning approach, called longitudinal self-learning (LS-learning), to establish ITRs in that we
integrate longitudinal data sources with time-varying relevance to the primary clinical endpoint as well as with dropouts. The
term “self-learning” is used to describe the process whereby the algorithm uses the primary benefit outcome 𝐵𝑚 to predict the
optimal treatment assignment �̂�(𝑘−1)𝑖𝑗 , which is then used as part of the objective function to exercise a self-examination. Our
method provides a useful extension to the existing one-dimensional cross-sectional OWL by allowing for temporally correlated
outcomes in the search for the optimal ITR. To synergize different training data sources with different degrees of relevance to
the primary data source, we introduce additional tuning parameters in SVM. The interpretation of the new tuning parameters
is intuitive: the closer the tuning parameter is to 1, the higher the relevance of the corresponding auxiliary data source with
the primary one. The proposed approach is particularly attractive in practical clinical studies where repeated measurements are
often collected, which can lead to data attrition and loss of statistical power if appropriate strategies are not employed to handle
this problem.

We applied LS-learning to derive an ITR for pregnant women in their daily calcium supplement intake to reduce persistent
lead exposure in their children at age 3 years. The main difficulty in analyzing the data from this clinical trial is the large number
of missing values for PBC during the three years of the study. LS-learning stratifies subjects into subgroups of different outcomes
according to their respective missing patterns in a manner similar to that considered in the pattern mixture model proposed by.16
It is shown that the new ITR derived by LS-learning would lead to a greater reduction of persistent lead exposure to children
compared to other ITRs given by the standard OWL learning if it were implemented for the whole population of pregnant women
throughout the study. In addition to the real data application, comprehensive simulation experiments in Section 5 show that LS-
learning outperforms standard OWL in ITR estimation with respect to the prediction accuracy as well as the estimated value
function. In the meantime, we have identified several baseline biomarkers that may play an important role in the allocating of
calcium supplements, including maternal age, total years in school, and maternal blood lead concentration at the first trimester.
In addition, dietary intake of calcium and fiber may affect ITR for the allocation of calcium supplementation.

A limitation of our data analysis is the use of the linear kernel for ITR derivation because of its ease in illustrating the
estimated ITRs. The nonlinear kernel can also be applied to derive more flexible decision rules, which may be further explored
as a future extension. Another challenge relates to the imbalance of treatment assignment in the cleaned data, mainly caused
by missing baseline biomarkers. We used the means of propensity score via inverse probability weighting (IPW) to adjust for
treatment allocation bias. Other methods, like augmented inverse probability weighting (AIPW)31 and overlap weighting,32 are
worth further exploration to overcome treatment assignment bias in the ITR analysis of calcium supplementation clinical trial.



12 Zhou, Y. and Song, P. X.K.

ACKNOWLEDGMENTS

The authors would like to thank the co-editor, the associate editor, and two anonymous referees for their valuable comments that
helped improve this article significantly.

Conflict of interest
The authors declare no potential conflict of interests.

Data Availability Statement
The data used in this paper cannot be freely shared with the public since restrictions apply to the availability of these data, which
were used under license for this study. Readers who want to analyze the data should contact the ELEMENT project manager via
the corresponding author.

Supporting Information
Codes for simulations described in Section 5 are available as part of the online article. Simulation results showing the prediction
accuracy of the optimal treatment assignment based on different tuning procedures are also included.

APPENDIX

PROOF OF THEOREM 1

Proof of Theorem 1. According to Algorithm 1, at iteration 𝑘 (𝑘 ≥ 2), (�̂�(𝑘), �̂�(𝑘), �̂�(𝑘)) is the optimal solution of the optimization
problem (2). First we prove that (�̂�(𝑘−1), �̂�(𝑘−1), �̂�(𝑘−1)) is a feasible solution of (2). It immediately follows that ℎ(�̂�(𝑘), �̂�(𝑘)) ≤
ℎ(�̂�(𝑘−1), �̂�(𝑘−1)) due to the fact that (�̂�(𝑘), �̂�(𝑘), �̂�(𝑘)) is the optimal solution for (2). The equality holds when ℎ(�̂�(𝑘−1), �̂�(𝑘−1))
reaches the minimum. To proceed, it is sufficient to show that the following conditions hold,

𝐴𝑖(�̂�
(𝑘−1)⊤𝑿𝑖 + �̂�(𝑘−1)) ≥ 1 − 𝜉(𝑘−1)𝑖 , and 𝜉(𝑘−1)𝑖 ≥ 0, 𝑖 ∈ 𝑚,

𝐴𝑖(�̂�
(𝑘−1)⊤𝑿𝑖 + �̂�(𝑘−1)) ≥ 1 − ̂̃𝜉

(𝑘−1)

𝑖𝑗 , and ̂̃𝜉
(𝑘−1)

𝑖𝑗 ≥ 0, 𝑖 ∈  (𝑘)
𝑗 , 𝑗 ∈  ,

�̂�(𝑘−1)𝑖𝑗 (�̂�(𝑘−1)⊤𝑿𝑖 + �̂�(𝑘−1)) ≥ 1 − ̂̌𝜉(𝑘−1)𝑖𝑗 , and ̂̌𝜉(𝑘−1)𝑖𝑗 ≥ 0, 𝑖 ∈  (𝑘)
𝑗 , 𝑗 ∈  .

(1)

Note that at iteration 𝑘 − 1, (�̂�(𝑘−1), �̂�(𝑘−1), �̂�(𝑘−1)) is the solution of problem (2) with 𝑘 − 1 replaced by 𝑘 − 2.

min
𝝎,𝑏,𝝃

1
2
||𝝎||2 + 𝐶

⎡

⎢

⎢

⎢

⎣

∑

𝑖∈𝑚

𝐵𝑖𝑚
𝑝𝑖
𝜉𝑖 +

𝑚−1
∑

𝑗=1

⎧

⎪

⎨

⎪

⎩

𝜆𝑗
∑

𝑖∈ (𝑘−1)
𝑗

𝐵𝑖𝑗
𝑝𝑖
𝜉𝑖𝑗 + (1 − 𝜆𝑗)

∑

𝑖∈ (𝑘−1)
𝑗

𝜏𝐵𝑗𝜉𝑖𝑗

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

s.t. 𝐴𝑖(𝝎⊤𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0, 𝑖 ∈ 𝑚,
𝐴𝑖(𝝎⊤𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖𝑗 and 𝜉𝑖𝑗 ≥ 0, 𝑖 ∈  (𝑘−1)

𝑗 , 𝑗 ∈  ,

�̂�(𝑘−2)𝑖𝑗 (𝝎⊤𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖𝑗 and 𝜉𝑖𝑗 ≥ 0, 𝑖 ∈  (𝑘−1)
𝑗 , 𝑗 ∈  .

Therefore, we have
𝐴𝑖(�̂�

(𝑘−1)⊤𝑿𝑖 + �̂�(𝑘−1)) ≥ 1 − 𝜉(𝑘−1)𝑖 , and 𝜉(𝑘−1)𝑖 ≥ 0, 𝑖 ∈ 𝑚

𝐴𝑖(�̂�
(𝑘−1)⊤𝑿𝑗 + �̂�(𝑘−1)) ≥ 1 − ̂̃𝜉

(𝑘−1)

𝑖𝑗 , and ̂̃𝜉
(𝑘−1)

𝑖𝑗 ≥ 0, 𝑖 ∈  (𝑘−1)
𝑗 , 𝑗 ∈  .

That is, the constraints involving treatment 𝐴 in (1) are satisfied by (�̂�(𝑘−1), �̂�(𝑘−1), �̂�(𝑘−1)). In addition, we have
�̂�(𝑘−2)𝑖𝑗 (�̂�(𝑘−1)⊤𝑿𝑖 + �̂�(𝑘−1)) ≥ 1 − ̂̌𝜉(𝑘−1)𝑖𝑗 , and ̂̌𝜉(𝑘−1)𝑖𝑗 ≥ 0, 𝑖 ∈  (𝑘−1)

𝑗 , 𝑗 ∈  . (2)



Zhou, Y. and Song, P. X.K. 13

To prove the constraints involving �̂�(𝑘−1)𝑖𝑗 in (1), we consider two scenarios between �̂�(𝑘−1)𝑖𝑗 and �̂�(𝑘−2)𝑖𝑗 for subject 𝑖 ∈ 𝑗 . First,
if �̂�(𝑘−1)𝑖𝑗 = �̂�(𝑘−2)𝑖𝑗 is true, we have

�̂�(𝑘−1)𝑖𝑗 (�̂�(𝑘−1)𝑇𝑿𝑖 + �̂�(𝑘−1)) = �̂�(𝑘−2)𝑖𝑗 (�̂�(𝑘−1)𝑇𝑿𝑖 + �̂�(𝑘−1)) ≥ 1 − ̂̌𝜉(𝑘−1)𝑖𝑗 .

Second, if �̂�(𝑘−1)𝑖𝑗 ≠ �̂�(𝑘−2)𝑖𝑗 is true, then
�̂�(𝑘−1)𝑖𝑗 (�̂�(𝑘−1)𝑇𝑿𝑖 + �̂�(𝑘−1)) > �̂�

(𝑘−2)
𝑖𝑗 (�̂�(𝑘−1)𝑇𝑿𝑖 + �̂�(𝑘−1)) ≥ 1 − ̂̌𝜉(𝑘−1)𝑖𝑗 .

This is because labels are binary and can only take values from {−1, 1}. Therefore, we must have �̂�(𝑘−1)𝑖𝑗 = −�̂�(𝑘−2)𝑖𝑗 if �̂�(𝑘−1)𝑖𝑗 ≠
�̂�(𝑘−2)𝑖𝑗 . Also, from the definition of �̂�(𝑘−1)𝑖𝑗 , we have �̂�(𝑘−1)𝑖𝑗 (�̂�(𝑘−1)𝑇𝑿𝑖 + �̂�(𝑘−1)) > 0. Therefore, �̂�(𝑘−2)𝑖𝑗 (�̂�(𝑘−1)𝑇𝑿𝑖 + �̂�(𝑘−1)) < 0.

Combines the above two cases, we obtain
�̂�(𝑘−1)𝑖𝑗 (�̂�(𝑘−1)𝑇𝑿𝑖 + �̂�(𝑘−1)) ≥ 1 − ̂̌𝜉(𝑘−1)𝑖𝑗 , 𝑖 ∈  (𝑘)

𝑗 , 𝑗 ∈  ,

where the equality only occurs when the algorithm converges with the predicted labels �̂�𝑖𝑗 stopping changing between two
adjacent iterations 𝑘 − 1 and 𝑘 − 2.

Thus, all constraints in (2) have been proved to hold. This implies that all constraints in (1) hold. This completes the proof of
the descending property ℎ(�̂�(𝑘), �̂�(𝑘)) < ℎ(�̂�(𝑘−1), �̂�(𝑘−1)) when 𝑘 ≥ 2. □

References

1. Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: brief history of the approach
and current focus on epigenetic mechanisms. In: . 27. © Thieme Medical Publishers. ; 2009: 358–368.

2. Hornung RW, Lanphear BP, Dietrich KN. Age of greatest susceptibility to childhood lead exposure: a new statistical
approach. Environ Health Perspect 2009; 117(8): 1309–1312.

3. Téllez-Rojo MM, Bellinger DC, Arroyo-Quiroz C, et al. Longitudinal associations between blood lead concentrations lower
than 10 𝜇g/dL and neurobehavioral development in environmentally exposed children in Mexico City. Pediatrics 2006;
118(2): e323–e330.

4. Jusko TA, Henderson Jr CR, Lanphear BP, Cory-Slechta DA, Parsons PJ, Canfield RL. Blood lead concentrations< 10
𝜇g/dL and child intelligence at 6 years of age. Environ Health Perspect 2008; 116(2): 243–248.

5. Canfield RL, Henderson Jr CR, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual impairment in children with
blood lead concentrations below 10 𝜇g per deciliter. N Engl J Med 2003; 348(16): 1517–1526.

6. Gulson B, Mahaffey K, Mizon K, Korsch M, Cameron M, Vimpani G. Contribution of tissue lead to blood lead in adult
female subjects based on stable lead isotope methods.. J Lab Clin Med 1995; 125(6): 703–712.

7. Gulson BL, Mizon KJ, Korsch MJ, Palmer JM, Donnelly JB. Mobilization of lead from human bone tissue during pregnancy
and lactation—a summary of long-term research. Sci Total Environ 2003; 303(1-2): 79–104.

8. Ettinger AS, Hu H, Hernandez-Avila M. Dietary calcium supplementation to lower blood lead levels in pregnancy and
lactation. J Nutr Biochem 2007; 18(3): 172–178.

9. Gulson BL, Mizon KJ, Palmer JM, Korsch MJ, Taylor AJ, Mahaffey KR. Blood lead changes during pregnancy and
postpartum with calcium supplementation. Environ Health Perspect 2004; 112(15): 1499–1507.

10. Téllez-Rojo M, Lamadrid-Figueroa H, Mercado-García A, et al. A randomized controlled trial of calcium supplementation
to reduce blood lead levels (and fetal lead exposure) in pregnant women. Epidemiology 2006; 17(6): S123.

11. Norman J, Politz D, Politz L. Hyperparathyroidism during pregnancy and the effect of rising calcium on pregnancy loss: a
call for earlier intervention. Clin Endocrinol (Oxf) 2009; 71(1): 104–109.

12. Qian M, Murphy SA. Performance guarantees for individualized treatment rules. Ann Stat 2011; 39(2): 1180.



14 Zhou, Y. and Song, P. X.K.

13. Zhao Y, Zeng D, Rush AJ, Kosorok MR. Estimating individualized treatment rules using outcome weighted learning. J Am
Stat Assoc 2012; 107(499): 1106–1118.

14. Zhou X, Mayer-Hamblett N, Khan U, Kosorok MR. Residual weighted learning for estimating individualized treatment
rules. J Am Stat Assoc 2017; 112(517): 169–187.

15. Huling JD, Yu M, Smith M. Fused comparative intervention scoring for heterogeneity of longitudinal intervention effects.
The Annals of Applied Statistics 2019; 13(2): 824–847.

16. Little RJ. Selection and pattern-mixture models. Longitudinal data analysis 2008: 409–431.
17. Zhang A, Hu H, Sánchez BN, et al. Association between prenatal lead exposure and blood pressure in children. Environ

Health Perspect 2012; 120(3): 445–450.
18. Wasserman GA, Staghezza-Jaramillo B, Shrout P, Popovac D, Graziano J. The effect of lead exposure on behavior problems

in preschool children.. Am J Public Health 1998; 88(3): 481–486.
19. Mendelsohn AL, Dreyer BP, Fierman AH, et al. Low-level lead exposure and behavior in early childhood. Pediatrics 1998;

101(3): e10–e10.
20. Robins JM. Marginal structural models. 1997.
21. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273–297.
22. Zeger SL, Diggle PJ. Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV

seroconverters. Biometrics 1994: 689–699.
23. Imai K, Ratkovic M. Estimating treatment effect heterogeneity in randomized program evaluation. 2013.
24. Lin Y. Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery 2002; 6:

259–275.
25. Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of

Statistics 2004; 32(1): 56–85.
26. Fisher RA. The use of multiple measurements in taxonomic problems. Annals of eugenics 1936; 7(2): 179–188.
27. Shi C, Song R, Lu W. Concordance and value information criteria for optimal treatment decision. Ann Stat 2021; 49(1):

49–75.
28. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. J Stat Softw 2011; 45(3):

1-67.
29. Molnar FJ, Hutton B, Fergusson D. Does analysis using “last observation carried forward” introduce bias in dementia

research?. CMAJ 2008; 179(8): 751–753.
30. Murphy SA, Laan v. dMJ, Robins JM, Group CPPR. Marginal mean models for dynamic regimes. J Am Stat Assoc 2001;

96(456): 1410–1423.
31. Glynn AN, Quinn KM. An introduction to the augmented inverse propensity weighted estimator. Polit Anal 2010: 36–56.
32. Thomas LE, Li F, Pencina MJ. Overlap weighting: a propensity score method that mimics attributes of a randomized clinical

trial. JAMA 2020; 323(23): 2417–2418.



Zhou, Y. and Song, P. X.K. 15

TABLE 1 Summary statistics of the biomarkers included for ITR derivation from the calcium supplementation trial. Mean (sd)
and percentage values are shown for numeric and categorical variables, where 𝑝-values are obtained from Wilcoxon rank-sum
test and chi-aquare test for numeric and categorical variables, respectively.

Biomarker Calcium Placebo 𝑝-value
age 26.9 (5.7) 25.9 (5.4) 7.10 × 10−2

weight 62.0 (11.3) 61.6 (9.6) 7.17 × 10−1

years in school 10.8 (2.9) 10.7 (2.9) 6.00 × 10−1

marital status 0.695 0.677 8.02 × 10−1

number of pregnancies 2.1 (1.0) 2.1 (1.1) 8.67 × 10−1

HgB concentration 13.2 (1.0) 13.2 (1.0) 8.00 × 10−1

dietary intake of calcium 1115.5 (489.3) 1078.6 (552.5) 4.93 × 10−1

dietary intake of fiber 24.4 (10.0) 22.8 (9.0) 1.25 × 10−1

dietary intake of iron 13.7 (5.9) 12.9 (5.5) 2.23 × 10−1

dietary intake of zinc 9.8 (3.5) 9.3 (3.6) 1.73 × 10−1

dietary intake of vitamin C 178.1 (92.1) 172.7 (80.4) 5.48 × 10−1

PBM concentration 4.7 (2.7) 5.3 (3.7) 7.00 × 10−2

TABLE 2 Estimated intercepts and coefficients of the biomarkers in the estimated ITRs derived by the four different methods.
Biomarker OWL on 𝑚 OWL (PMM) OWL (LOCF) LS-learning
intercept 0.46 0.05 -0.05 0.39
age 0.33 0.25 0.24 0.29
weight 0.02 0.08 0.05 0.01
years in school -0.08 -0.06 -0.09 -0.05
marital status 0.24 0.13 0.17 0.19
number of pregnancies -0.57 0.15 0.23 -0.23
HgB concentration 0.10 0.08 0.08 0.04
dietary intake of calcium -0.47 -0.25 -0.34 -0.37
dietary intake of fiber 0.28 0.23 0.26 0.30
dietary intake of iron -0.15 0.10 0.02 -0.13
dietary intake of zinc 0.38 0.27 0.39 0.41
dietary intake of vitamin C -0.02 -0.26 -0.28 -0.14
PBM concentration -0.37 -0.33 -0.33 -0.20

TABLE 3 Treatment assignment comparison between complete randomization and the ITR derived by LS-learning.
LS-learning

placebo calcium total
randomization placebo 57 129 186

calcium 68 122 190
total 125 251 376
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TABLE 4 Estimated value functions at each visit and the average based on the estimated ITRs derived by the four different
methods in the calcium supplementation trial.

ITR 𝑉 (𝐵1) 𝑉 (𝐵2) 𝑉 (𝐵3) 𝑉 (𝐵4) 𝑉 (𝐵5) 𝑉 (𝐵6) 𝑉 (𝐵7) Average
OWL on 𝑚 6.79 3.39 5.49 7.33 7.84 7.92 8.24 6.714
OWL (PMM) 6.79 3.39 5.49 7.37 8.09 7.90 8.23 6.751
OWL (LOCF) 6.79 7.16 5.49 7.33 8.46 8.01 8.24 7.354
LS-learning 9.19 7.19 6.36 7.59 8.55 8.06 8.33 7.896

TABLE 5 Summary statistics of the biomarkers based on treatment allocation according to the derived ITR by LS-learning.
Mean (sd) and percentage values are shown, where 𝑝-values are obtained from Wilcoxon rank-sum test and chi-aquare test for
numeric and categorical variables, respectively.

Biomarker Calcium Placebo 𝑝-value
age 27.5 (5.4) 24.2 (5.1) 2.94 × 10−8

weight 62.6 (10.7) 60.4 (10.1) 5.19 × 10−2

years in school 11.0 (3.0) 10.3 (2.7) 2.72 × 10−3

marital status 0.721 0.616 5.10 × 10−2

number of pregnancies 2.1 (1.1) 2.0 (1.0) 6.20 × 10−1

HgB concentration 13.3 (0.9) 13.1 (1.2) 9.37 × 10−1

dietary intake of calcium 1059.6 (521.2) 1172.9 (514.9) 2.37 × 10−2

dietary intake of fiber 24.5 (9.8) 21.8 (8.7) 1.10 × 10−2

dietary intake of iron 13.6 (5.8) 12.7 (5.5) 1.45 × 10−1

dietary intake of zinc 9.7 (3.7) 9.0 (3.3) 1.15 × 10−1

dietary intake of vitamin C 178.2 (87.5) 169.8 (84.4) 4.55 × 10−1

PBM concentration 4.7 (3.1) 5.5 (3.5) 3.70 × 10−3

TABLE 6 Average prediction accuracy (mean (sd)) calculated using ITRs derived by the five different methods.
𝑛 M1: super oracle M2: LS-learning M3: OWL (LOCF) M4: OWL (PMM) M5: OWL on 𝑚
500 0.783 (0.049) 0.769 (0.057) 0.740 (0.059) 0.710 (0.064) 0.605 (0.092)
800 0.816 (0.037) 0.799 (0.045) 0.774 (0.051) 0.751 (0.057) 0.641 (0.096)
1000 0.832 (0.032) 0.812 (0.036) 0.794 (0.046) 0.776 (0.052) 0.658 (0.087)
1200 0.838 (0.032) 0.818 (0.037) 0.803 (0.041) 0.785 (0.047) 0.670 (0.086)
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TABLE 7 Estimated value functions 𝑉 (𝐵1) to 𝑉 (𝐵5) calculated using ITRs derived by the five different methods.
𝑛 M1: super oracle M2: LS-learning M3: OWL (LOCF) M4: OWL (PMM) M5: OWL on 𝑚

𝑉 (𝐵1) 500 11.00 (0.45) 10.97 (0.47) 10.89 (0.47) 10.80 (0.49) 10.45 (0.54)
800 11.09 (0.44) 11.05 (0.45) 10.99 (0.46) 10.93 (0.47) 10.58 (0.51)
1000 11.09 (0.44) 11.05 (0.45) 11.01 (0.45) 10.96 (0.46) 10.61 (0.53)
1200 11.11 (0.43) 11.07 (0.43) 11.03 (0.43) 10.99 (0.43) 10.65 (0.50)

𝑉 (𝐵2) 500 10.97 (0.45) 10.93 (0.47) 10.85 (0.47) 10.76 (0.48) 10.41 (0.54)
800 11.06 (0.44) 11.02 (0.45) 10.96 (0.46) 10.89 (0.47) 10.54 (0.51)
1000 11.06 (0.44) 11.02 (0.45) 10.97 (0.45) 10.92 (0.46) 10.57 (0.53)
1200 11.07 (0.43) 11.03 (0.43) 11.00 (0.43) 10.95 (0.43) 10.62 (0.50)

𝑉 (𝐵3) 500 10.62 (0.45) 10.58 (0.47) 10.50 (0.47) 10.41 (0.49) 10.07 (0.54)
800 10.71 (0.44) 10.67 (0.45) 10.61 (0.46) 10.54 (0.47) 10.20 (0.51)
1000 10.71 (0.44) 10.67 (0.45) 10.62 (0.45) 10.57 (0.46) 10.23 (0.53)
1200 10.72 (0.43) 10.68 (0.43) 10.65 (0.43) 10.60 (0.43) 10.27 (0.50)

𝑉 (𝐵4) 500 9.70 (0.45) 9.66 (0.47) 9.58 (0.47) 9.49 (0.49) 9.14 (0.54)
800 9.79 (0.44) 9.75 (0.45) 9.69 (0.46) 9.62 (0.47) 9.27 (0.51)
1000 9.79 (0.44) 9.74 (0.45) 9.70 (0.45) 9.65 (0.46) 9.30 (0.53)
1200 9.80 (0.43) 9.76 (0.43) 9.73 (0.43) 9.68 (0.43) 9.34 (0.50)

𝑉 (𝐵5) 500 7.85 (0.46) 7.81 (0.47) 7.74 (0.47) 7.64 (0.49) 7.30 (0.54)
800 7.94 (0.44) 7.90 (0.45) 7.84 (0.46) 7.78 (0.47) 7.43 (0.51)
1000 7.94 (0.44) 7.90 (0.45) 7.86 (0.45) 7.81 (0.46) 7.46 (0.53)
1200 7.95 (0.43) 7.91 (0.43) 7.88 (0.43) 7.83 (0.43) 7.50 (0.50)

TABLE 8 The selected tuning parameter 𝜃1 and 𝜃2 in LS-learning and the resulting 𝜆𝑗 , 𝑗 = 1, 2, 3, 4 values corresponding to
the surrogate outcomes 𝐵1 to 𝐵4.

𝑛 𝜃1 𝜃2 𝜆1 𝜆2 𝜆3 𝜆4
500 0.663 (0.314) 0.583 (0.669) 0.705 (0.284) 0.755 (0.244) 0.818 (0.189) 0.898 (0.111)
800 0.730 (0.290) 0.446 (0.598) 0.765 (0.261) 0.807 (0.222) 0.858 (0.171) 0.921 (0.100)
1000 0.727 (0.294) 0.453 (0.596) 0.762 (0.264) 0.804 (0.225) 0.856 (0.173) 0.920 (0.101)
1200 0.783 (0.277) 0.357 (0.568) 0.812 (0.249) 0.845 (0.212) 0.886 (0.163) 0.937 (0.095)
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