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Abstract
Background: In treatment planning, beam angle optimization (BAO) refers to
the selection of a subset with a given number of beam angles from all avail-
able angles that provides the best plan quality. BAO is a NP-hard combinatorial
problem. Although exhaustive search (ES) can exactly solve BAO by exploring
all possible combinations, ES is very time-consuming and practically infeasible.
Purpose: To the best of our knowledge, (1) no optimization method has been
demonstrated that can provide the exact solution to BAO, and (2) no study has
validated an optimization method for solving BAO by benchmarking with the
optimal BAO solution (e.g.,via ES),both of which will be addressed by this work.
Methods: This work considers BAO for proton therapy,for example,the selection
of 2–4 beam angles for IMPT. The optimal BAO solution is obtained via ES
and serves as the ground truth. A new BAO algorithm, namely angle generation
(AG) method, is proposed, and demonstrated to provide nearly-exact solutions
for BAO in reference to the ES solution. AG iteratively optimizes the angular
set via group-sparsity (GS) regularization, until the planning objective does not
decrease further.
Results: Since GS alone can also solve BAO, AG was validated and compared
with GS for 2-angle brain, 3-angle lung, and 4-angle brain cases, in reference
to the optimal BAO solutions obtained by ES: the AG solution had the rank
(1/276,1/2024,4/10 626),while the GS solution had the rank (42/276,279/2024,
4328/10 626).
Conclusions: A new BAO algorithm called AG is proposed and shown to
provide substantially improved accuracy for BAO from current methods with
nearly-exact solutions to BAO, in reference to the ground truth of optimal BAO
solution via ES.
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1 INTRODUCTION

Radiation therapy (RT) for treating cancer patients is
delivered to tumor targets often with multiple beam
angles, such as IMRT1 and IMPT.2 Beam angle opti-
mization (BAO) refers to the optimization problem of
selecting an optimal subset of beam angles from all
available beam angles in terms of treatment plan

Haozheng Shen and Gezhi Zhang are co-first authors with equal contributions.

quality.3 Especially for proton RT, IMPT treatment plan-
ning often consists of a few beam angles,2 where the
change of any of these angles may have a great
impact on treatment plan quality, for example, the avoid-
ance of a specific organ-at-risk (OAR). Therefore, the
selection of appropriate beam angles is important for
proton RT. However, the BAO problem is a NP-hard
problem,4 where the computational complexity grows
exponentially with respect to the number of angles.
Although exhaustive search (ES) can solve BAO exactly
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by exploring all possible combinations, ES is very time-
consuming and practically infeasible. This motivates the
development of efficient BAO methods, for which this
work will propose a new BAO algorithm called the angle
generation (AG) method.

Existing BAO methods can be classified into non-
iterative methods,5–7 stochastic methods,8–11 and local-
search methods.12–17 All methods are heuristic and AG
is a local-search method. In terms of angle update
strategy, Ehrgott et al.13 starts with a desired num-
ber of beam angles and then iteratively replaces one
angle with improved scoring function value. In contrast,
one can also start with many angles and subsequently
decrease to the desired number12 or start with an empty
set and subsequently add to the desired number.14 In
this sense, AG is similar to Ehrgott and Johnston.13

This choice is motivated by that empirical templates
are often available for various tumor sites from clinical
experiences,2 such as two lateral opposed beams (90◦,
270◦) for prostate, and X beam arrangement (45◦, 135◦,
225◦, 315◦) for head-and-neck, and these existing tem-
plates should boost the BAO quality if serving as initial
guesses given the combinatorial nature of BAO. How-
ever,AG is different from Ehrgott and Johnston13 in three
aspects: first, the initial guess does not have to be a set
of equidistant beams, which was desirable in Ehrgott
and Johnston13 since the candidate angle for update
was searched around existing angles; second, there is
no restriction of the search region for a candidate angle,
which is global, that is, to find a complementary angle to
the stationary angles in terms of objective function val-
ues via a group-sparsity (GS) optimization with respect
to the entire angle set; third, the scores are objective
function values from IMPT that are consistent with the
angle replacement procedure by solving GS-regularized
IMPT (GS-IMPT).

On the other hand, GS can be used to directly solve
BAO,17–20 for example, the heterogeneity-weighted
GS with novel sensitivity regularization for robust
optimization.20 That is, with sufficiently large GS term,
the number of beams decreases during iterations and
the algorithm terminates when the number of beams
reaches a desired number of beams. However, although
GS alone works well for selecting a non-small set of
angles (e.g., 10 out of 24), but not for selecting a small
set of angles (e.g., 3 out of 24).17 Another problem
with the direct GS approach is that a M1-beam BAO
set is always a subset of M2-beam BAO set for M1≤M2
using the alternating direction method of multipliers
(ADMM).21 While the latter is not the case for the
proximal method,22 for example, the so-called Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA),23

the proximal solution is highly sensitive to the choice
of parameters, which can be problematic in choosing
the optimal solution. Note that ADMM and proximal
methods are two commonly used optimization methods

for nonsmooth and constrained problems, such as
GS-IMPT.

Although AG is a general method, this work will focus
on IMPT for proton RT, since (1) IMPT often consists of
2–4 beam angles, each of which can be significant, and
(2) IMPT is becoming the dominant method for deliver-
ing proton RT.2 In comparison, IMRT for photon RT often
consists of 7−11 beam angles, and many patients are
treated with VMAT instead of IMRT.1 Therefore, there is
a greater need of BAO for IMPT, which is the focus of
this study.

To the best of our knowledge, (1) no optimization
method has been shown that can solve BAO exactly,and
(2) no study has validated a BAO algorithm by bench-
marking with optimal BAO solution. This work will aim to
address these two unsolved problems with the proposed
AG method. That is, the AG method will be developed
for BAO and shown to provide nearly-exact solutions to
BAO, compared to optimal BAO solutions via ES as the
ground truth.

2 METHODS AND MATERIALS

The BAO problem is formulated in Section 2.1. The AG
method for solving BAO is introduced in Section 2.2.The
angle replacement (AR) algorithm for updating beam
angles during AG, by solving group-sparsity-regularized
IMPT (GS-IMPT) problem, is presented in Section 2.3.
ADMM based optimization algorithm for solving GS-
IMPT is developed in Section 2.4. The validation plan
of AG is outlined in Section 2.5, using the optimal BAO
solution via ES as the ground truth. In terms of con-
nections between these algorithms, (1) AG (Algorithm 1
in Section 2.2) is the overall algorithm that solves BAO;
(2) AR (Algorithm 2 in Section 2.3) is Step 2 of AG; (3)
ADMM (Algorithm 3 in Section 2.4) solves the GS-IMPT
problem in Step 1 of AR.

2.1 Beam angle optimization

Let us consider the IMPT optimization problem for a set
of beam angles S = {θi|i≤B}, where B is the number of
beam angles available for optimization.The optimization
is with respect to proton spot weights x = {xi|i≤B} with
xi = {xij|j≤Ni},where Ni is the number of proton spots for
the ith angle.

The general form of total planning objective F includ-
ing dose-volume constraints24–28 is

FS(x) =
1
2

C∑
m=1

wm

∑
k∈Ωm

(∑
𝜃i∈S

Ni∑
j=1

Dk,ijxij − dm

)2

=
1
2
|| ∑
𝜃i∈S

Dixi − d||2 = 1
2
||Dx − d||2. (1)
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In Equation (1), there are C planning objectives: wm is
the objective weight, dm is the dose constraint,Ωm is the
patient volume or active volume for the mth objective.For
dose-volume constraints, the active volumeΩm depends
on dose map within the structure corresponding to the
mth objective, which in turn depends on x. Therefore, the
optimization with dose-volume constraints is nonconvex,
for which iterative convex relaxation method26–29 can
handle and iteratively update Ω based on x during itera-
tions. D is the dose influence matrix, Di corresponds to
the ith angle and Dk,ij is the dose contribution from jth spot
xij of the ith beam to the kth patient voxel. To simplify the
notation, F is denoted formally by the last least-square
term in Equation (1).

In order for IMPT to be deliverable, we con-
sider minimum-monitor-unit (MMU) optimization
problem30–34 on x, that is,

fS (x∗) = min
x

FS (x)

s.t.x ∈ {0} ∪ [Gmin,+∞)
. (2)

Here Gmin is the MMU threshold and the weight of
deliverable nonzero x has to be at least Gmin. In Equa-
tion (2), x* and f denote spot weights and total objective
respectively after optimization.

Then the BAO problem is to select a subset of M
angles from all available angles, with the best plan
quality, that is, the smallest optimization objective.

S∗ = arg min
S∈𝕊

fS. (3)

Here Θ denotes the set of all available angles for opti-
mization,and 𝕊 is a set containing all possible selections
of M angles from Θ, that is, 𝕊 = {S⊂Θ|#(S) = M}. BAO
is a NP-hard problem. ES can solve BAO exactly by
exploring all possible combinations. Although ES is very
time-consuming and practically infeasible. ES works for
BAO problems of small number of angles, which will be
considered in this work for the validation purpose. In the
following, we will introduce a new method AG for solving
BAO. The effectiveness of AG for BAO will be validated
against the optimal BAO solution obtained by ES, which
solves IMPT Equation (2) for all possible sets S in 𝕊
and thus provides the ground truth for the BAO prob-
lem. ADMM based optimization algorithm for solving the
IMPT problem is provided in Appendix A.

2.2 Angle generation method

To solve BAO Equation (3), that is, by finding the best
M angles with the smallest planning objective, the AG
method starts with an initial set S0 = {θ0 i|i≤M} of M
angles,and then iteratively updates this set, for example,
Sn = {θn i|i≤M}, until no better plan can be found. During
each iteration of AG, a current angle called “the pivot

angle” in the set Sn is substituted be an angle called “the
replacement angle”outside of Sn.Specifically, the nth AG
iteration consists of the following steps.

∙ Step 1: The angle an = θn i∈Sn, i≡n(mod M) is
selected as “the pivot angle”;

∙ Step 2: “The replacement angle”an+1 ∉Sn is identified
via the AR algorithm (Section 2.3);

∙ Step 3:S’ n = (Sn\{an})∪{an+1} is generated by replac-
ing an with an+1, and Sn+1 is the smaller of Sn and S’
n in terms of IMPT optimization objective;

∙ Step 4: The stopping criteria is given by either n≤nmax
for a given max iteration number nmax or Sn = Sn-M+1
that implies Sn is optimal and no better angle set than
Sn will be found.

The AG algorithm is summarized as follows, with
corresponding aforementioned steps.

Algorithm 1. Angle Generation (AG) algorithm

while Sn ≠ Sn−M+1 and n ≤ nmax do

an = 𝜃n
i , i ≡ n(modM) (Step 1)

an+1 = AR(an) (Step 2)

S′
n = (Sn∖{an}) ∪ {an+1}(Step 3)

if fS′n ≤ fSn then (Step 4) Sn+1 = S′
n

Else

Sn+1 = Sn
end if

n = n + 1

end while

2.3 Angle replacement algorithm

For the purpose of BAO, that is, to select a small set of M
angles from Θ of many angles, mathematically the GS
regularization can minimize the number of angles (i.e.,to
sparsify with respect to the index i in Equation (1)), but
not the number of spots per angle (i.e., not to sparsify
with respect to the index j in Equation (1)). Therefore,
the GS regularization has been utilized for solving BAO
directly.18,19,25

However, the GS alone is not sufficient, because
(1) the optimal GS solution may not be optimal for
BAO, owing to the nonconvexity of BAO; (2) for ADMM,
although ADMM is insensitive to the values of GS regu-
larization parameter 𝜆, the optimal set of M1 angles is
always a subset of M2 angles for M1 ≤ M2, which is
not true from the perspective of treatment planning; (3)
while (2) is not for the proximal method (e.g., FISTA),
the proximal method is highly sensitive to the values of
𝜆, which makes it difficult in choosing the optimal solu-
tion unless going through the exhaustive searching with
respect to 𝜆.

In contrast, for AG, we will show (1) the optimal set of
M1 angles does not have to be a subset of M2 angles for
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M1 ≤ M2, which is an advantage from FISTA; (2) AG is
not sensitive to the values of 𝜆 which is an advantage
from ADMM; (3) AG can outperform GS and achieve
nearly-optimal BAO solution, in reference to the optimal
BAO solution via ES as the ground truth.

Although the step of replacement angle selection
during AG utilizes GS, the difference is that the GS
regularization in AG only applies to “the working set”
Wn = Θ/Tn instead of the entire Θ, where Tn = Sn/{an}
is “the fixed set” by removing the pivot angle an from
the current set Sn. That is the fixed set Tn is not penal-
ized by GS and thus remains to contribute to the plan
optimized with GS regularization, regardless of what
is left or removed in the working set Wn by GS. This
is motivated by the purpose of AG, that is, to find the
replacement angle that is better than the pivot angle, in
terms of their compatibility to the rest of angles in Sn.
That is,AG utilizes GS to find the best candidates for the
replacement angle an+1 that are most complementary to
the current set Sn excluding an, in terms of optimal plan
quality.

Mathematically, the GS-IMPT problem is the following:

x∗ = arg min
x

FΘ (x) +
∑
i∈W

𝜆i ‖xi‖p
2, (4)

where ||xi||2p = (∑jxij
2)p/2 is the L2, p-norm GS regular-

ization.
In Equation (4), the total plan objective FΘ is from all

angles in Θ, while the GS regularization term with L2,
p-norm (0 < p ≤ 1) is only with respect to the working
set W, for example, Wn during the nth AG iteration as
explained earlier. We have compared and found negligi-
ble difference between p = 1/2 and p = 1, and therefore
used p= 1 that is simpler in this work.On the other hand,
the GS parameter 𝜆i is to balance the contribution from
each beam per spot,18 that is,

𝜆i = 𝜆

⎛⎜⎜⎝
‖‖‖DPTV,i1

‖‖‖2

Ni

⎞⎟⎟⎠
p
2

, (5)

where D PTV,i is the dose influence matrix from the ith

beam angle to PTV for beam angle b, and 𝜆 is a tuning
parameter that is constant for all angles.

It is a concern that when larger 𝜆 is needed to spar-
sify the angles, the contribution from planning objective
F in Equation (4) is less and therefore the iterative
process for solving Equation (4) may not sufficiently
account of plan quality. Therefore, we consider another
formulation of GS-IMPT,35 where the planning objec-
tive F is constantly controlled under a small value ɛ,
that is,

x∗ = arg min
x

∑
i∈W 𝜆i ‖xi‖p

2

s.t.FΘ (x) ≤ 𝜀
. (6)

However, we have compared and found negligible dif-
ference between Equations (4) and (6), and therefore
used the original formulation Equation (4) in this work.

The AR step of AG, that is, Step 2 in Algorithm 1,
consists of the following steps:

∙ Step 1: x* is derived by solving the GS-IMPT prob-
lem Equation (4) for the working set Wn, which is
determined by an, that is,Wn = Θ/Tn with Tn = Sn/{an};

∙ Step 2: A candidate angle set C = {θn i∈Wn|i≤Nc} is
selected that consists of the largest Nc angles in the
L2, p-norm value (Nc = 3 in this work);

∙ Step 3: The IMPT problems corresponding to each
angle set Qi = Tn∪{θn i} for θn i∈C are solved, for
which optimized objective value is denoted by fQi;

∙ Step 4: θn i with the minimal fQi is selected as the
replacement angle an+1.

The AR algorithm is summarized as follows, with
corresponding aforementioned steps.

Algorithm 2. Angle Replacement (AR) algorithm for
an+1 = AR(an)

x∗ = GS − IMPT(an) (Step 1)

C = {𝜃n
i ∈ Wn|max ‖x∗i ‖p

2,#C = Nc} (Step 2)

for 𝜃n
i ∈ C (Step 3)

Qi = Tn ∪ {𝜃n
i }

fQi = IMPT(Qi)

end for

an+1 = {𝜃n
i ∈ C|max fQi ,#C = 1} (Step 4)

2.4 Solving GS-IMPT via ADMM

This section presents the solution algorithm for GS-
IMPT problem Equation (4) using ADMM.21,36–37

ADMM is a general optimization method for solving a
variety of problems, and is particularly suitable for deal-
ing with nonconvex constraints and non-differentiable
regularization (e.g., GS) through the variable splitting.
For example, we have developed ADMM algorithms
for solving convex problems with linear data fidelity,
such as image reconstruction in 4D CT,38 spectral CT,39

MRI,40 4D cone-beam CT,41 mega-voltage CT,42 CT,43

and breast CT,44,45 and nonconvex problems with non-
linear data fidelity, such as image reconstruction in
quantitative photoacoustic tomography,46–48 and cine
cone-beam CT.49,50

Note that IMPT and GS-IMPT can also be efficiently
solved by the state-of -the-art proximal method such as
FISTA.18,23 However,we have compared and found neg-
ligible difference between ADMM and FISTA for the
purpose of AG. ADMM based solution algorithm is pro-
vided here, while FISTA based solution algorithm is
provided in Gu et al.18



3262 BAO VIA ANGLE GENERATION METHOD

Equation (4) is recapped here for the convenience of
the presentation

min
x

‖Dx − d‖2
+
∑

i∈W 𝜆i ‖xi‖p
2

s.t.x ∈ {0} ∪ [Gmin,+∞)
, (7)

where the GS term is only applied to the angles in the
work set W.

Similar to Appendix A, a dummy variable z1 is intro-
duced, that is, z1 = x, to decouple the MMU constraint.
Another dummy variable z2 is introduced, that is, z2 = x,
to decouple the GS term. As a result, the constrained
problem Equation (7) can be decoupled into an uncon-
strained problem of x with planning objectives, and two
constrained problems of z1 and z2, respectively that
have no planning objectives and thus can be solved
analytically.

We start with the augmented Lagrangian function of
Equation (7)

L (x, z1, u1, z2, u2) = ‖Dx − d‖2
+

∑
i∈W

𝜆i ‖z2i‖p
2

+𝜇1 ‖x − z1 + u1‖2
2 + 𝜇2 ‖x − z2 + u2‖2

2

s.t.z ∈ {0} ∪ [Gmin,+∞) . (8)

Here u1 is the dual variable of z1, and μ1 is the relax-
ation parameter for the constraint z1 = x; u2 is the dual
variable of z2, and μ2 is the relaxation parameter for the
constraint z2 = x.

From Equation (8), the ADMM solution to Equation (7)
consists of the following iterations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xn+1 = argmin
x

L
(
x, zn

1, zn
2, un

1, un
2

)
zn+1

1 = argmin
z1∈{0}∪[Gmin,+∞)

L
(
xn+1, z1, zn

2, un
1, un

2

)
zn+1

2 = argmin
z2

L
(

xn+1, zn+1
1 , z2, un

1, un
2

)
un+1

1 = un
1 + xn+1 − zn+1

1

un+1
2 = un

2 + xn+1 − zn+1
2

. (9)

In Equation (9), the x-problem and z1-problem can be
handled similarly to Equations (A4) and (A5), respec-
tively; the z2-problem is separable and has analytic
solution z2

n+1 = St(xn+1+u2
n) with t = λ/2μ2 and

St given by the followings for p = 1 and p = 1/2,51

respectively.

St,1 (x) = x − x ⋅ min
(

t‖x‖2
, 1

)
(10)

St,1∕2 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, t ‖x‖−1.5
2 >

2
√

6

9

x

√
2√
3

sin
(

1

3

(
arccos

(
3
√

3

4
t ‖x‖−1.5

2

)
+

𝜋

2

))
,

otherwise

(11)

Note that the GS updates Equations (10) and (11) are
group-wise instead of element-wise:that is the spots per
beam angle are jointly updated together.

The ADMM algorithm for solving GS-IMPT is summa-
rized as follows.

Algorithm 3. x∗ = GS − IMPT(an)

while n ≤ nmax,GS−IMPT do

xn+1 = (DT D + 𝜇1 + 𝜇2)−1(DT d + 𝜇1(zn
1 − un

1) + 𝜇2(zn
2 − un

2))
(x-problem in Equation (9) solved by CG)

zn+1
1 = S(xn+1 + un

1) (Equation A5)

zn+1
2 = S𝜆∕2𝜇(xn+1 + un

2) (Equations (10) or (11))

un+1
1 = un

1 + xn+1 − zn+1
1

un+1
2 = un

2 + xn+1 − zn+1
2

n = n + 1

end while

2.5 Comparative planning study

We considered BAO for a brain case with M= 2 (“2-angle
brain”) and M = 4 (“4-angle brain”), respectively, and a
lung case with M = 3 (“3-angle lung”). First we consider
the scenario with the full angular set Θ of 24 evenly-
distributed coplanar beam angles. The BAO problem
was to select the best M angles from Θ. The choice of
a relatively small number B = 24 is because it allows
us to solve all possible IMPT solutions via ES to find the
optimal BAO solution.On the other hand,as one reduces
angular spacing to increase number of beam angles, the
angles get closer to each other and the incremental gain
of plan quality with increasing number angles starts to
diminish.

For the validation purpose, the optimal BAO solu-
tion was attained using ES by solving all possi-
ble combinations of angles, which serves as the
group truth for BAO. ES was equivalent to solve
24 × 23/2 = 276 IMPT problems for 2-angle brain case,
24 × 23 × 22/(3 × 2) = 2024 IMPT problems for 3-angle
lung case, 24 × 23 × 22 × 21/(4 × 3 × 2) = 10 626 IMPT
problems for 4-angle brain case, for which the best solu-
tion was selected as the ES solution and also the ground
truth.

In benchmark to the ES solution, the proposed angle
generation method (“AG”) was validated in comparison
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F IGURE 1 Comparison of planning objective values optimized with AG and GS via ADMM for B = 24. In each plot, planning objective
values for all possible combinations are solved via ES and plotted in the ascending order. AG is marked in red and GS is marked in black, with
their (rank, planning objective value) in the bracket.

with the GS method (“GS”) that directly solved BAO.17–19

In terms of computational time, AG (equivalent to solv-
ing a few IMPT problems) or GS (equivalent to solving 1
IMPT problem) was negligible compared to ES.For opti-
mizing plan quality, after GS or AG was solved for the
best M angle, the IMPT problem for selected M angles
was solved as the final solution.Thus, the solutions from
GS, AG and ES were consistent with each other as they
were from the same IMPT solution algorithm, with the
only difference in the choice of beam angles. More-
over, all plans were normalized after optimization with
D95 = 100% at PTV.

Next we also consider BAO with a relatively large
number B = 72. In this case, ES was not performed due
to the size of the problem, and AG was compared with
GS. To demonstrate the generality of AG, the solution
algorithms for solving IMPT and GS-IMPT in this case of
B = 72 were based on FISTA,18,23 which was primarily
based on ADMM for B = 24.21,36–37

MatRad52 was used to generate dose influence matri-
ces using 5 mm lateral spacing, and 3 mm longitudinal
spacing (energy), on 3 mm-resolution dose grid. All the
experiments were performed with i9-10900K CPU, for
which AG took 7−25 min.

Robust optimization was also considered for the
lung case with 5 mm for setup uncertainty and 3.5%
for range uncertainty via probabilistic formulation.53,26

The plan was normalized with respect to the nom-
inal case. The dose and DVH plots in Figures 12
and 13 were based on average dose of all uncertainty
scenarios.

In the tables, the conformity index (CI) is defined as
V100

2/(V×V′100) (V100: PTV volume receiving ≥100%
of prescription dose; V: PTV volume; V′100: total vol-
ume receiving ≥100% of prescription dose). The value
of CI is between 0 and 1, with optimal being 1. S*
is the set of selected angles; f is the optimized plan
objective value; rank is the ranking of f in all ES
solutions.

TABLE 1 Comparison of GS and AG in benchmark to ES via
ADMM with B = 24.

Case Parameters GS AG ES

2-
angle
brain

CI 0.60 0.62 0.62

Dmax, brainstem (Gy) 17.82 17.75 17.75

V10Gy, brainstem (cc) 3.11 2.75 2.75

S* (7,19) (5,20) (5,20)

F 1.23 1.11 1.11

Rank 42 1 1

3-
angle
lung

CI 0.90 0.92 0.92

Dmean, lung (Gy) 1.89 1.57 1.57

S* (13,14,22) (14,19,22) (14,19,22)

F 0.14 0.12 0.12

Rank 279 1 1

4-
angle
brain

CI 0.65 0.68 0.64

Dmax, brainstem (Gy) 18.05 17.29 17.13

V10Gy, brainstem (cc) 2.62 2.40 2.70

S* (6,7,19,20) (5,7,12,20) (5,7,11,20)

f 1.04 0.95 0.94

rank 4328 4 1

3 RESULTS

3.1 AG vs. ES: Nearly-exact BAO
solution via AG

ES was used to solve IMPT problems Equation (2)
for all possible combinations of angles, that is, in
𝕊 = {S⊂Θ|#(S) = M}. IMPT planning objectives of all
plans were sorted in the ascending order in Figure 1,
for which the smaller rank corresponds to smaller objec-
tive values and thus better plan quality. Since ES solved
BAO Equation (3) exactly, the optimal ES solution was
the optimal BAO solution, which had the smallest rank
(i.e., 1). As shown in Figure 1 and Table 1, the AG
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F IGURE 2 Comparison of DVH plots between GS (red curves) and AG (blue curves) via ADMM with B = 24.

solution was ranked 1 for both 2-angle brain and 3-angle
lung, and 4 for 4-angle lung. Therefore, AG provided the
nearly-exact solution to BAO.In contrast, the GS solution
was ranked 42/276 (i.e.,42 of 276 total plans) for 2-angle
brain, 279/2024 for 3-angle lung, and 4328/10 626 for
4-angle brain, respectively.

3.2 AG vs. GS: AG improved plan
quality from GS

Compared to GS, AG improved rank and plan objec-
tive values in Figure 1 and Table 1, which implies AG
improved plan quality from GS. The improved plan qual-
ity via AG from GS was also confirmed by comparison
of dosimetric parameters in Table 1,comparison of DVH
plots in Figure 2 and comparison of dose plots in Fig-
urse 3–5. For example, as shown in Table 1, compared
to GS, AG improved target dose conformity quantified
by CI, from 0.6 to 0.62 for 2-angle brain, from 0.9 to 0.92
for 3-angle lung, and from 0.65 to 0.68 for 4-angle brain,
respectively.

3.3 Solution convergence of AG

By the design of AG algorithm, the solution converges
with non-increasing plan objectives during AG iterations,
which was experimentally confirmed and presented in

Figure 6. Based on Algorithm 1, AG found the opti-
mal solution and terminated the optimization in 3, 5,
and 14 AG iterations respectively for 2-angle brain, 3-
angle lung, and 4-angle lung respectively, as shown in
Figure 6.

3.4 AG was insensitive to the initial
guess

To test the sensitivity of AG to the initial guess (B = 24),
for 2-angle brain,we ran AG with eight randomly-chosen
initial angular set S0, that is, (1,2), (3,9), (5,18), (2,24),
(15,19), (11,13), (17,22), and (7,9), which all converged
to (5,20) that ranked 1/276; for 3-angle lung, we ran AG
with eight randomly-chosen S0, that is, (1,2,3), (1,3,9),
(1,10,18), (2,17,24), (3,15,18), (7,11,13), (12,17,22), and
(2,7,9), which all converged to (14,19,22) that ranked
1/2024;for 4-angle brain,we ran AG with eight randomly-
chosen S0, that is, (1,2,3,4), (1,15,19,24), (1,5,7,20),
(1,9,10,13), (3,7,12,18), (5,8,11,14), (6,12,17,21), and
(6,7,19,20), are all (5,7,12,20), which all converged to
(5,7,12,20) that ranked 4/10 626.

To test the sensitivity of AG to the initial guess
(B = 72), for 2-angle brain, we ran AG with 16 randomly-
chosen initial angular set S0, that is, (1,2), (18,55),
(55,56), (9,42), (4,7), (2,15), (25,56), (16,30), (44,55),
(38,39), (70,71), (9,44), (5,18), (33,71), (14,28), and
(6,66), and these all converged to (13,58), that is,



BAO VIA ANGLE GENERATION METHOD 3265

F IGURE 3 Comparison of dose plots for 2-angle brain via ADMM with B = 24, for which the optimal ES solution is available as the ground
truth. ES is the same as AG, as AG exactly solved BAO. The dose plot window is [0%, 110%]. Total of 100% isodose line, 80% isodose line and
CTV are highlighted in dose plots.

F IGURE 4 Comparison of dose plots for 3-angle lung via ADMM with B = 24, for which the optimal ES solution is available as the ground
truth. ES is the same as AG, as AG exactly solved BAO. The dose plot window is [0%, 110%]. Total of 100% isodose line, 80% isodose line and
CTV are highlighted in dose plots.

(60◦,285◦), which is the same as the result with B = 24;
for 3-angle lung, we ran AG with 16 randomly-chosen
S0, that is, (1,25,49), (2,31,41), (3,21,51), (7,17,66),
(7,19,29) (7,32,72), (9,36,69), (10,56,67), (10,59,65),
(12,13,40), (12,39,60), (12,70,71), (13,23,39), (13,29,
48), (13,48,49), and (14,55,57), and these converged
to (37,46,60), (42,51,60), (42,51,60), (42,51,60), (42,51,
60), (42,51,60), (42,51,60), (42,51,60), (42,55,65),
(42,51,60), (42,51,60), (42,51,60), (42,51,60), (37,46,
60), (42,51,60), and (42,51,64), respectively, which
are very close to the corresponding B = 24 result
(14,19,22), that is, (195◦,270◦,315◦); for 4-angle
brain, we ran AG with 16 randomly-chosen S0,
that is, (5,14,18,31), (18,29,30,56), (14,22,40,54),

(23,32,33,36), (16,22,43,45), (15,17,34,61), (11,13,17,
32), (19,20,30,43), (22,24,31,37), (36,42,53,67),
(17,36,38,45), (31,57,66,69), (28,32,55,57), (19,37,51,
54), (13,23,39,57), and (13,19,38,56), and these con-
verged to (13,19,31,56), (13,19,30,57), (14,22,40,54),
(13,19,36,56), (13,19,45,58), (13,19,34,58), (13,19,32,
56), (13,19,30,57), (13,21,37,58), (13,19,36,56), (13,19,
38,56), (13,19,31,56), (13,19,28,57), (13,19,37,56),
(13,19,39,58), and (13,19,38,56), respectively, which
are very close to the corresponding B = 24 result
(5,7,12,20),that is, (60◦,90◦,165◦,285◦).

Therefore, the AG solution was insensitive to the initial
guess S0, and the results with B = 72 were similar to
those with B = 24.
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F IGURE 5 Comparison of dose plots for 4-angle brain via ADMM with B = 24, for which the optimal ES solution is available as the ground
truth. The dose plot window is [0%, 110%]. Total of 100% isodose line, 80% isodose line and CTV are highlighted in dose plots.

F IGURE 6 The planning objective values are monotonically non-increasing during AG iterations.

3.5 ADMM versus FISTA for GS

GS can be solved by either ADMM or FISTA. The com-
parison of ADMM and FISTA are presented in Table 2
and Figure 7. While ADMM was insensitive to λ except
for large values of λ, FISTA was sensitive to λ and
the case-by-case tuning or ES seems to be needed to
obtain good FISTA solutions. The sensitivity of FISTA to
λ can be problematic for choosing the optimal solution
unless using ES with respect to λ,which is however time-

consuming. In Table 2, the FISTA results were from the
best scenario via ES with respect to λ: FISTA was worse
than ADMM for 2-angle brain, but better than ADMM for
3-angle lung and 4-angle brain.

3.6 ADMM versus FISTA for AG

To investigate the algorithm dependence of AG, we
ran AG with both ADMM and FISTA. The results
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F IGURE 7 Comparison of ADMM and FISTA in dependence of ranks of optimized plan quality with respect to the values of λ in
Equation (5). While ADMM is insensitive to λ except for large values of λ, FISTA is sensitive to λ, which can be problematic for choosing the
optimal solution.

TABLE 2 Comparison of ADMM and FISTA for GS.

Case Parameters ADMM FISTA

2-
angle
brain

CI 0.60 0.60

Dmax, brainstem (Gy) 17.82 17.91

V10Gy, brainstem (cc) 3.11 2.73

S* (7,19) (19,21)

F 1.23 1.24

rank 42 51

3-
angle
lung

CI 0.90 0.90

Dmean, lung (Gy) 0.52 0.56

S* (13,14,22) (14,19,24)

F 0.14 0.13

rank 279 12

4-
angle
brain

CI 0.65 0.66

Dmax, brainstem (Gy) 18.05 18.11

V10Gy, brainstem (cc) 2.62 2.40

S* (6,7,19,20) (4,6,12,22)

F 1.04 1.00

rank 4328 1693

Note: The FISTA results here are from the best scenario by exhaustively
searching the values of λ.

TABLE 3 Comparison of ADMM and FISTA for AG using
3-angle lung.

Parameters ADMM FISTA

CI 0.92 0.92

S* (14,19,22) (15,19,22)

f 0.12 0.12

Rank 1 1

summarized in Table 3 suggest that there was nearly
no difference in solving AG by ADMM or FISTA, despite
that (1) FISTA was sensitive to λ and (2) a M1-beam
BAO set is always a subset of M2-beam BAO set for
M1≤M2 when solving GS via ADMM. Note that although
(14,19.22) was ranked 1/2024 for ADMM based ES and

TABLE 4 Comparison of two GS-IMPT formulations
Equations (4) and (6) for AG using 3-angle lung.

Parameters Equation (4) Equation (6)

CI 0.92 0.90

S* (14,19,22) (14,16,19)

f 0.12 0.12

Rank 1 36

(15,19.22) was ranked 1/2024 for FISTA based ES, both
ADMM based AG and FISTA based AG found the opti-
mal BAO solution.Moreover,the difference in plan quality
between (14,19.22) and (15,19.22) was negligible, with
both being 0.12 in two-decimal rounding.

3.7 Comparison of two GS-IMPT
formulations for AG

The comparison of two GS-IMPT formulations Equa-
tions (4) and (6) for AG was presented in Table 4, which
suggest that Equation (6) was not as expected to be
better than, but turned out to be slightly worse than
Equation (4) for AG.

3.8 L2,1/2-norm versus L2,1-norm for
AG

We compared the use of L2,1/2-norm (p = 1/2) and
L2,1-norm (p= 1) in GS Equation (4) for AG.The angular
sets during iterations are summarized in Table 5, which
shows that p = 1/2 and p = 1 found the same angular
set, while p = 1/2 had one fewer iteration than p = 1.

3.9 AG versus GS with B = 72

For B = 72,despite of missing of ES as the ground truth,
AG again improved plan quality from GS. For example,
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TABLE 5 Comparison of p = 1/2 and p = 1 in GS for AG using
3-angle lung.

Iteration

p = 1/2 p = 1
S f Rank S f Rank

Initialization (1,2,3) 0.24 1963 (1,2,3) 0.24 1963

1 (1,19,3) 0.15 467 (1,13,3) 0.16 940

2 (1,19,14) 0.13 14 (1,13,21) 0.14 229

3 (22,19,14) 0.12 1 (19,13,21) 0.13 74

4 (22,19,14) 0.12 1 (19,14,22) 0.12 1

5 (22,19,14) 0.12 1 (19,14,22) 0.12 1

6 – – – (19,14,22) 0.12 1

TABLE 6 Comparison of GS and AG via FISTA with B = 72.

Case Parameters GS AG

2-
angle
Brain

CI 0.82 0.84

Dmax, brainstem (Gy) 18.15 17.80

V10Gy, brainstem (cc) 3.35 2.78

S* (36,57) (13,58)

F 1.12 1.11

3-
angle
Lung

CI 0.92 0.92

Dmean, lung (Gy) 0.55 0.52

S* (41,55,70) (42,55,66)

F 0.13 0.12

4-
angle
Brain

CI 0.86 0.87

Dmax, brainstem (Gy) 17.25 16.88

V10Gy, brainstem (cc) 2.92 2.48

S* (18,19,36,57) (13,36,56,63)

F 1.01 0.94

AG had smaller optimized plan objective values, better
CI values, smaller OAR dosimetric parameters than GS
as shown in Table 6. This improvement in plan quality
was evident by comparing DVH plots in Figure 8, and
dose plots in Figures 9–11.

3.10 AG versus GS under robust
optimization

The comparison of dosimetric parameters, DVH, and
dose plots are presented in Table 7, Figures 12 and 13,
respectively, using robust optimization for the lung case,
for which ES was solved as the reference for the ground
truth. As shown in Table 7, the AG solution was ranked
2, and thus AG still provided the nearly-exact solution to
BAO under robust optimization, in reference to the ES
solution. On the other hand, the GS solution was ranked
175 out of 2024. In comparison to GS, AG substantially
improved the solution ranking, which was reflected in
plan quality as presented in Table 7, Figures 12 and 13,

TABLE 7 Comparison of GS and AG in benchmark to ES from
robust optimization via ADMM with B = 24 using 3-angle lung.

Parameters GS AG ES

CI 0.63 0.66 0.64

Dmean, lung (Gy) 0.93 0.79 0.80

S* (13,14,24) (14,19,24) (14,20,24)

F 8.13 5.94 5.83

Rank 175 2 1

for example, improved dose conformity by increasing CI
from 0.63 to 0.66.

4 DISCUSSION

While GS can directly solve BAO,17–19 the direct GS
method via either ADMM or FISTA is imperfect consid-
ering physics perspective of treatment planning. With
ADMM, for GS, the optimal set of M1 angles is always
a subset of M2 angles for M1 ≤ M2, while in prac-
tice the optimal set of M1 angles does not have to
be a subset of M2 angles since BAO is a nonconvex
problem. With FISTA, the optimal solution is highly sen-
sitive to the GS regularization parameter λ and therefore
is practically difficult to achieve without going through
exhaustive searching in λ, which is time-consuming. In
comparison, the AG method makes more sense than
the direct GS method, since (1) AG is insensitive to the
value of λ, and (2) M1-optimal angular set does not
have to be a subset of M2-optimal angular set for AG.
For example, the optimal angular set via the direct GS
method was (7,19), (7,19,20), (6,7,19,20) for 2-angle,
3-angle, 4-angle brain respectively, while the optimal
angular set via AG was (5,20), (6,13,20), (5,7,12,20) for
2-angle,3-angle,4-angle brain, respectively;on the other
hand, the rank of GS solutions was 42/276, 521/2024,
4328/10 626, respectively,while the rank of AG solutions
was 1/276, 3/2024, 4/10 626, respectively.

Although AG provided nearly-exact solutions to the
BAO problem, we do not claim that AG exactly solves
BAO, because BAO is a nonconvex NP-hard problem.
The experiments in this work were limited to BAO to
select 2−4 beam angles, that is, M = 2, 3, 4, and the
number of all angles available for optimization was
limited to 24, that is, B = 24, in order to run ES as the
ground truth for BAO.However, it is expected that AG will
still outperform the direct GS method for larger M and
larger B, for example, the results with B = 72 as shown
in Section 3.9. For example, the angular set from the
direct GS method can be used as initial guess for AG,
and the plan objective will be non-increasing throughout
the AG iterations as demonstrated in Figure 6. Because
of the nonconvexity of BAO, a thorough investigation of
degree of improvement via AG from GS is to be carried
out in a future work, for example, with non-coplanar
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F IGURE 8 Comparison of DVH plots between GS and AG via FISTA with B = 72.

F IGURE 9 Comparison of dose plots for 2-angle brain via FISTA with B = 72, for which no ES solution is available as the ground truth. The
dose plot window is [0%, 110%]. Total of 100% isodose line, 80% isodose line and CTV are highlighted in dose plots.

beams, for which however the exact BAO solution may
not be available as the ground truth since the number
of beams can be too big for ES to solve.

The AG method can be regarded as a general frame-
work for BAO. Although in this work the update to the
angular set is based on GS, other methods such as col-
umn generation method54 or deep learning method55

can be potentially used to update the angular set for
AG. The integration of these methods to AG will be of
interest as future works.

In current AG method, the update to the angular set
is limited to one angle per AG iteration. Due to the non-
convex nature of BAO, it is possible that the update of
multiple angles to the angular set per AG iteration may
further improve the optimality of AG solutions.For exam-
ple, for BAO to select M angles, the strategy to update
up to two angles to the angular set per AG iteration can
include M updates of one angle at a time and M(M-1)/2
updates of two angles at a time, which however should
be computationally expensive.
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F IGURE 10 Comparison of dose plots for 3-angle lung via FISTA with B = 72, for which no ES solution is available as the ground truth. The
dose plot window is [0%, 110%]. Total of 100% isodose line, 80% isodose line and CTV are highlighted in dose plots.

F IGURE 11 Comparison of dose plots for 4-angle brain via FISTA with B = 72, for which no ES solution is available as the ground truth.
The dose plot window is [0%, 110%]. Total of 100% isodose line, 80% isodose line and CTV are highlighted in dose plots.

F IGURE 12 Comparison of DVH plots for 3-angle lung between GS and AG via ADMM with B = 24 from robust optimization.
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F IGURE 13 Comparison of dose plots for 3-angle lung from robust optimization via ADMM with B = 24, for which the optimal ES solution is
available as the ground truth. The dose plot window is [0%, 110%]. Total of 100% isodose line, 80% isodose line and CTV are highlighted in
dose plots.

As presented in Table 2–4, respectively, it was found
that the performance of AG was not sensitive to the
choice of the optimization algorithm (ADMM or FISTA),
the GS-IMPT formulation (Equations (4) or (6)), and the
p value (1/2 or 1). It was also found that the perfor-
mance of AG was not sensitive to whether it was the
MMU constraint (Gmin > 0) or the nonnegative constraint
(Gmin = 0). Because the MMU constraint is nonconvex
and the nonnegative constraint is convex, the presented
results were with the MMU constraint instead of the
nonnegative constraint to demonstrate the effective-
ness of AG, even in the presence of nonconvex MMU
constraint.

Spot-scanning arc therapy is an emerging proton
modality56 and rapidly developing57–60 as a viable alter-
native to fixed-beam IMPT that can potentially offer a
combination of advantages in plan quality and delivery
efficiency, compared to fixed beam IMPT. But currently
fixed-beam IMPT remains to be the mainstream for
proton treatments, for which BAO is still relevant.

5 CONCLUSION

We have developed a new BAO algorithm called the
AG method, which was shown to provide substantially
improved accuracy for BAO from current methods (e.g.,
GS or FISTA) with nearly-exact solutions to BAO, in
reference to the ground truth of optimal BAO solution
via ES. It was found that (1) AG is relatively insensi-
tive to the initial guess, compared to GS or FISTA; (2)
AG is stable with respect to the choice of optimiza-

tion engine (e.g., GS or FISTA) for solving the GS-IMPT
problem.
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A PPENDIX A: SO LV IN G IM P T V IA A DMM
This section presents ADMM based solution algorithm
for the IMPT problem Equation (2). For the conve-
nience of presentation, the IMPT problem is recapped
here

min
x

‖Dx − d‖2

s.t.x ∈ {0} ∪ [Gmin,+∞)
. (A1)

With ADMM, a standard trick to handle the constrained
optimization problem such as Equation (A1) is to intro-
duce a dummy variable z for the constraint, that is,
z = x, so that the constrained problem Equation (A1)
can be decoupled into an unconstrained problem of
x with planning objectives and a constrained problem
of z that has no planning objectives and thus can be
solved by an analytic formula, which will become clear
shortly.

To derive ADMM solutions, we start with the aug-
mented Lagrangian function of Equation (A1)

L (x, z, u) = ‖Dx − d‖2
+ 𝜇 ‖x − z + u‖2

2

s.t.z ∈ {0} ∪ [Gmin,+∞)
, (A2)

where u is the dual variable of z, and μ is the relaxation
parameter for the constraint z = x.

From Equation (A2), the ADMM solution to Equa-
tion (A1) consists of the following iterations

⎧⎪⎪⎨⎪⎪⎩

xn+1 = argmin
x

L (x, zn, un)

zn+1 = argmin
z∈{0}∪[Gmin,+∞)

L
(
xn+1, z, un

)
un+1 = un + xn+1 − zn+1

. (A3)

As explained in,21,36 the purpose of u-update is to relax
the need of increasing μ during iterations to enforce
z = x: a fixed value of μ instead of an increasing
sequence is sufficient for Equation (A3) to converge,
which avoids numerical instability owing to large μ.

The x-problem of Equation (A3) is a standard least-
square problem, which has the optimal condition(

DTD + 𝜇
)

xn+1 = DTd + 𝜇 (zn − un) , (A4)

which is solved here by conjugate gradient (CG) method
without explicit matrix inversion.

The z-problem of Equation (A3) is separable and has
point-wise analytic solution zn+1 = S(xn+1+un) with S
given by

S(x) =

{
0, x ≤ Gmin∕2

max(Gmin, x), x > Gmin∕2
(A5)

The ADMM algorithm for solving IMPT is summarized
as follows.

Algorithm A1. fS = IMPT(S)

while n ≤ nmax,IMPT do

xn+1 = (DT D + 𝜇)−1(DT d + 𝜇(zn − un)) (Equation (A4) solved by
CG)

zn+1 = S(xn+1 + un) (Equation (A5))

un+1 = un + xn+1 − zn+1

n = n + 1

end while
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