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Background: In treatment planning, beam angle optimization (BAO) refers to the selection of a 

subset with a given number of beam angles from all available angles that provides the best plan 

quality. BAO is a NP-hard combinatorial problem. Although exhaustive search (ES) can exactly solve 

BAO by exploring all possible combinations, ES is very time-consuming and practically infeasible.  

Purpose: To the best of our knowledge, (1) no optimization method has been demonstrated that can 

provide the exact solution to BAO, and (2) no study has validated an optimization method for solving 

BAO by benchmarking with the optimal BAO solution (e.g., via ES), both of which will be addressed 

by this work. 
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Methods: This work considers BAO for proton therapy, e.g., the selection of 2 to 4 beam angles for 

IMPT. The optimal BAO solution is obtained via ES and serves as the ground truth. A new BAO 

algorithm, namely angle generation (AG) method, is proposed, and demonstrated to provide nearly-

exact solutions for BAO in reference to the ES solution. AG iteratively optimizes the angular set via 

group-sparsity (GS) regularization, until the planning objective does not decrease further.  

Results: Since GS alone can also solve BAO, AG was validated and compared with GS for 2-angle 

brain, 3-angle lung, and 4-angle brain cases, in reference to the optimal BAO solutions obtained by 

ES: the AG solution had the rank (1/276, 1/2024, 4/10626), while the GS solution had the rank 

(42/276, 279/2024, 4328/10626).  

Conclusions: A new BAO algorithm called AG is proposed and shown to provide substantially 

improved accuracy for BAO from current methods with nearly-exact solutions to BAO, in reference 

to the ground truth of optimal BAO solution via ES. 

Key words: beam angle optimization, group sparsity, IMPT 

1. Introduction 

Radiation therapy (RT) for treating cancer patients is delivered to tumor targets often with multiple 

beam angles, such as IMRT [1] and IMPT [2]. Beam angle optimization (BAO) refers to the 

optimization problem of selecting an optimal subset of beam angles from all available beam angles in 

terms of treatment plan quality [3]. Especially for proton RT, IMPT treatment planning often consists 

of a few beam angles [2], where the change of any of these angles may have a great impact on 

treatment plan quality, e.g., the avoidance of a specific organ-at-risk (OAR). Therefore, the selection 

of appropriate beam angles is important for proton RT. However, the BAO problem is a NP-hard 

problem [53], where the computational complexity grows exponentially with respect to the number of 

angles. Although exhaustive search (ES) can solve BAO exactly by exploring all possible 

combinations, ES is very time-consuming and practically infeasible. This motivates the development 

of efficient BAO methods, for which this work will propose a new BAO algorithm called the angle 

generation (AG) method. 
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Existing BAO methods can be classified into non-iterative methods [4-6], stochastic methods [7-

10], and local-search methods [11-16]. All methods are heuristic and AG is a local-search method. In 

terms of angle update strategy, Ehrgott et al [12] starts with a desired number of beam angles and then 

iteratively replaces one angle with improved scoring function value. In contrast, one can also start 

with many angles and subsequently decrease to the desired number [11] or start with an empty set and 

subsequently add to the desired number [13]. In this sense, AG is similar to [12]. This choice is 

motivated by that empirical templates are often available for various tumor sites from clinical 

experiences [2], such as two lateral opposed beams (90°, 270°) for prostate, and X beam arrangement 

(45°, 135°, 225°, 315°) for head-and-neck, and these existing templates should boost the BAO quality 

if serving as initial guesses given the combinatorial nature of BAO. However, AG is different from 

[12] in three aspects: first, the initial guess does not have to be a set of equidistant beams, which was 

desirable in [12] since the candidate angle for update was searched around existing angles; second, 

there is no restriction of the search region for a candidate angle, which is global, i.e., to find a 

complementary angle to the stationary angles in terms of objective function values via a group-

sparsity (GS) optimization with respect to the entire angle set; third, the scores are objective function 

values from IMPT that are consistent with the angle replacement procedure by solving GS-regularized 

IMPT (GS-IMPT).  

On the other hand, GS can be used to directly solve BAO [16-18,60], e.g., the heterogeneity-

weighted GS with novel sensitivity regularization for robust optimization [60]. That is, with 

sufficiently large GS term, the number of beams decreases during iterations and the algorithm 

terminates when the number of beams reaches a desired number of beams. However, although GS 

alone works well for selecting a non-small set of angles (e.g., 10 out of 24), but not for selecting a 

small set of angles (e.g., 3 out of 24) [16]. Another problem with the direct GS approach is that a M1-

beam BAO set is always a subset of M2-beam BAO set for M1≤M2 using alternating direction method 

of multipliers (ADMM) [31]. While the latter is not the case for the proximal method [54], e.g., the 

so-called Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [47], the proximal solution is 

highly sensitive to the choice of parameters, which can be problematic in choosing the optimal 
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solution. Note that ADMM and proximal methods are two commonly used optimization methods for 

nonsmooth and constrained problems, such as GS-IMPT. 

Although AG is a general method, this work will focus on IMPT for proton RT, since (1) IMPT 

often consists of 2 to 4 beam angles, each of which can be significant, and (2) IMPT is becoming the 

dominant method for delivering proton RT [2]. In comparison, IMRT for photon RT often consists of 

7-11 beam angles, and many patients are treated with VMAT instead of IMRT [1]. Therefore, there is 

a greater need of BAO for IMPT, which is the focus of this study. 

To the best of our knowledge, (1) no optimization method has been shown that can solve BAO 

exactly, and (2) no study has validated a BAO algorithm by benchmarking with optimal BAO 

solution. This work will aim to address these two unsolved problems with the proposed AG method. 

That is, the AG method will be developed for BAO and shown to provide nearly-exact solutions to 

BAO, compared to optimal BAO solutions via ES as the ground truth. 

2. Methods and Materials 

The BAO problem is formulated in Section 2.1. The AG method for solving BAO is introduced in 

Section 2.2. The angle replacement (AR) algorithm for updating beam angles during AG, by solving 

group-sparsity-regularized IMPT (GS-IMPT) problem, is presented in Section 2.3. ADMM based 

optimization algorithm for solving GS-IMPT is developed in Section 2.4. The validation plan of AG 

is outlined in Section 2.5, using the optimal BAO solution via ES as the ground truth. In terms of 

connections between these algorithms, (1) AG (Algorithm 1 in Section 2.2) is the overall algorithm 

that solves BAO; (2) AR (Algorithm 2 in Section 2.3) is Step 2 of AG; (3) ADMM (Algorithm 3 in 

Section 2.4) solves the GS-IMPT problem in Step 1 of AR. 

2.1. Beam Angle Optimization 

Let us consider the IMPT optimization problem for a set of beam angles S={θi|i≤B}, where B is the 

number of beam angles available for optimization. The optimization is with respect to proton spot 

weights x={xi|i≤B} with xi={xij|j≤Ni}, where Ni is the number of proton spots for the ith angle.  
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The general form of total planning objective F including dose-volume constraints [19-23] is 

  2

,

1 1

2 2

1
( )

2

1 1
|| || || ||

2 2

i

m i

i

NC

S m k ij ij m

m k S j

i i

S

F x w D x d

D x d Dx d





   



 

   

  



.                                    (1) 

In Eq. (1), there are C planning objectives: wm is the objective weight, dm is the dose constraint, Ωm is 

the patient volume or active volume for the mth objective. For dose-volume constraints, the active 

volume Ωm depends on dose map within the structure corresponding to the mth objective, which in turn 

depends on x. Therefore, the optimization with dose-volume constraints is nonconvex, for which 

iterative convex relaxation method [21-24] can handle and iteratively update Ω based on x during 

iterations. D is the dose influence matrix, Di corresponds to the ith angle and Dk,ij is the dose 

contribution from jth spot xij of the ith beam to the kth patient voxel. To simplify the notation, F is 

denoted formally by the last least-square term in Eq. (1). 

In order for IMPT to be deliverable, we consider minimum-monitor-unit (MMU) optimization 

problem [25-29] on x, i.e., 
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Here Gmin is the MMU threshold and the weight of deliverable nonzero x has to be at least Gmin. In Eq. 

(2), x* and f denote spot weights and total objective respectively after optimization. 

Then the BAO problem is to select a subset of M angles from all available angles, with the best 

plan quality, i.e., the smallest optimization objective. 

 
* arg min S

S

S f


 . (3) 

Here Θ denotes the set of all available angles for optimization, and 𝕊 is a set containing all possible 

selections of M angles from Θ, i.e., 𝕊={S⊂Θ|#(S)=M}. BAO is a NP-hard problem. ES can solve 

BAO exactly by exploring all possible combinations. Although ES is very time-consuming and 
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practically infeasible. ES works for BAO problems of small number of angles, which will be 

considered in this work for the validation purpose. In the following, we will introduce a new method 

AG for solving BAO. The effectiveness of AG for BAO will be validated against the optimal BAO 

solution obtained by ES, which solves IMPT Eq. (2) for all possible sets S in 𝕊 and thus provides the 

ground truth for the BAO problem. ADMM based optimization algorithm for solving the IMPT 

problem is provided in Appendix A.  

2.2. Angle Generation Method 

To solve BAO Eq. (3), i.e., by finding the best M angles with the smallest planning objective, the AG 

method starts with an initial set S0={θ
0 

i |i≤M} of M angles, and then iteratively updates this set, e.g., 

Sn={θ
n 

i |i≤M}, until no better plan can be found. During each iteration of AG, a current angle called 

“the pivot angle” in the set Sn is substituted be an angle called “the replacement angle” outside of Sn. 

Specifically, the nth AG iteration consists of the following steps. 

 Step 1: The angle an=θ
n 

i ∈Sn, i≡n(mod M) is selected as “the pivot angle”; 

 Step 2: “The replacement angle” an+1 ∉Sn is identified via the AR algorithm (Section 2.3); 

 Step 3: S
’ 

n=(Sn\{an})∪{an+1} is generated by replacing an with an+1, and Sn+1 is the smaller of Sn 

and S
’ 

n in terms of IMPT optimization objective; 

 Step 4: The stopping criteria is given by either n≤nmax for a given max iteration number nmax or 

Sn=Sn-M+1 that implies Sn is optimal and no better angle set than Sn will be found. 

The AG algorithm is summarized as follows, with corresponding aforementioned steps.  

 

Algorithm 1: Angle Generation (AG) algorithm 

while 1n n MS S    and maxn n  do 

  , modn

n ia i n M   (Step 1) 

  1 ARn na a   (Step 2) 
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     '

1\n n n nS S a a   (Step 3) 

  if '
nn

SS
f f  then (Step 4) 

   
'

1n nS S   

  Else 

   1n nS S   

  end if 

 1n n   

end while 

  

2.3. Angle Replacement Algorithm 

For the purpose of BAO, i.e., to select a small set of M angles from Θ of many angles, mathematically 

the GS regularization can minimize the number of angles (i.e., to sparsify with respect to the index i in 

Eq. (1)), but not the number of spots per angle (i.e., not to sparsify with respect to the index j in Eq. 

(1)). Therefore, the GS regularization has been utilized for solving BAO directly [17, 18, 20].  

However, the GS alone is not sufficient, because (1) the optimal GS solution may not be optimal 

for BAO, owing to the nonconvexity of BAO; (2) for ADMM, although ADMM is insensitive to the 

values of GS regularization parameter 𝜆, the optimal set of M1 angles is always a subset of M2 angles 

for M1≤M2, which is not true from the perspective of treatment planning; (3) while (2) is not for the 

proximal method (e.g., FISTA), the proximal method is highly sensitive to the values of 𝜆, which 

makes it difficult in choosing the optimal solution unless going through the exhaustive searching with 

respect to 𝜆.  

In contrast, for AG, we will show (1) the optimal set of M1 angles does not have to be a subset of 

M2 angles for M1≤M2, which is an advantage from FISTA; (2) AG is not sensitive to the values of 𝜆 

which is an advantage from ADMM; (3) AG can outperform GS and achieve nearly-optimal BAO 

solution, in reference to the optimal BAO solution via ES as the ground truth. 

Although the step of replacement angle selection during AG utilizes GS, the difference is that the 
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GS regularization in AG only applies to “the working set” Wn=Θ\Tn instead of the entire Θ, where 

Tn=Sn\{an} is “the fixed set” by removing the pivot angle an from the current set Sn. That is the fixed 

set Tn is not penalized by GS and thus remains to contribute to the plan optimized with GS 

regularization, regardless of what is left or removed in the working set Wn by GS. This is motivated by 

the purpose of AG, i.e., to find the replacement angle that is better than the pivot angle, in terms of 

their compatibility to the rest of angles in Sn. That is, AG utilizes GS to find the best candidates for the 

replacement angle an+1 that are most complementary to the current set Sn excluding an, in terms of 

optimal plan quality. 

Mathematically, the GS-IMPT problem is the following: 

  
2

arg min
p

i i
x i W

x F x x





  , (4) 

where ||xi||2
p=(∑jxij

2)p/2 is the L2, p-norm GS regularization. 

In Eq. (4), the total plan objective FΘ is from all angles in Θ, while the GS regularization term 

with L2, p-norm (0<p≤1) is only with respect to the working set W, e.g., Wn during the nth AG 

iteration as explained earlier. We have compared and found negligible difference between p=1/2 and 

p=1, and therefore used p=1 that is simpler in this work. On the other hand, the GS parameter 𝜆i is to 

balance the contribution from each beam per spot [18], i.e.,  
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where D
 

PTV,i is the dose influence matrix from the ith beam angle to PTV for beam angle b, and 𝜆 is a 

tuning parameter that is constant for all angles. 

It is a concern that when larger 𝜆 is needed to sparsify the angles, the contribution from planning 

objective F in Eq. (4) is less and therefore the iterative process for solving Eq. (4) may not sufficiently 

account of plan quality. Therefore, we consider another formulation of GS-IMPT [30], where the 

planning objective F is constantly controlled under a small value ɛ, i.e., 
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However, we have compared and found negligible difference between Eq. (4) and Eq. (6), and 

therefore used the original formulation Eq. (4) in this work. 

The AR step of AG, i.e., Step 2 in Algorithm 1, consists of the following steps: 

 Step 1: x* is derived by solving the GS-IMPT problem Eq. (4) for the working set Wn, which is 

determined by an, i.e., Wn=Θ\Tn with Tn=Sn\{an}; 

 Step 2: A candidate angle set C={θ
n 

i ∈Wn|i≤Nc} is selected that consists of the largest Nc angles in 

the L2, p-norm value (Nc =3 in this work); 

 Step 3: The IMPT problems corresponding to each angle set Qi=Tn∪{θ
n 

i } for θ
n 

i ∈C are solved, 

for which optimized objective value is denoted by fQi; 

 Step 4: θ
n 

i  with the minimal fQi is selected as the replacement angle an+1.  

The AR algorithm is summarized as follows, with corresponding aforementioned steps.  

Algorithm 2: Angle Replacement (AR) algorithm for  1 ARn na a   

 GS-IMPT nx a   (Step 1) 

2
{ | max ,# }

p
n

i n i cC W x C = N    (Step 2) 

for 
n

i C   (Step 3) 

  n

i n iQ T    

  IMPT
iQ if Q  

end for 

1 { | max ,# 1}
i

n

n i Qa C f C =    (Step 4) 

 

2.4. Solving GS-IMPT via ADMM 
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This section presents the solution algorithm for GS-IMPT problem Eq. (4) using ADMM [31-33].  

ADMM is a general optimization method for solving a variety of problems, and is particularly 

suitable for dealing with nonconvex constraints and non-differentiable regularization (e.g., GS) 

through the variable splitting. For example, we have developed ADMM algorithms for solving convex 

problems with linear data fidelity, such as image reconstruction in 4D CT [34], spectral CT [35], MRI 

[36], 4D cone-beam CT [37], mega-voltage CT [38], CT [39], and breast CT [40, 41], and nonconvex 

problems with nonlinear data fidelity, such as image reconstruction in quantitative photoacoustic 

tomography [42–44], and cine cone-beam CT [45, 46].  

Note that IMPT and GS-IMPT can also be efficiently solved by the state-of-the-art proximal 

method such as FISTA [18, 47]. However, we have compared and found negligible difference 

between ADMM and FISTA for the purpose of AG. ADMM based solution algorithm is provided 

here, while FISTA based solution algorithm is provided in [18]. 

Eq. (4) is recapped here for the convenience of the presentation 
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,                               (7) 

where the GS term is only applied to the angles in the work set W. 

Similar to Appendix A, a dummy variable z1 is introduced, i.e., z1=x, to decouple the MMU 

constraint. Another dummy variable z2 is introduced, i.e., z2=x, to decouple the GS term. As a result, 

the constrained problem Eq. (7) can be decoupled into an unconstrained problem of x with planning 

objectives, and two constrained problems of z1 and z2 respectively that have no planning objectives 

and thus can be solved analytically. 

We start with the augmented Lagrangian function of Eq. (7) 
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Here u1 is the dual variable of z1, and μ1 is the relaxation parameter for the constraint z1=x; u2 is the 

dual variable of z2, and μ2 is the relaxation parameter for the constraint z2=x. 

From Eq. (8), the ADMM solution to Eq. (7) consists of the following iterations 
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In Eq. (9), the x-problem and z1-problem can be handled similarly to Eq. (A4) and (A5) 

respectively; the z2-problem is separable and has analytic solution z2
n+1=St(x

n+1+u2
n) with t=λ/2µ2 and 

St given by the followings for p=1 and p=1/2 [48] respectively. 
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Note that the GS updates Eq. (10) and (11) are group-wise instead of element-wise: that is the spots 

per beam angle are jointly updated together. 

The ADMM algorithm for solving GS-IMPT is summarized as follows.  

Algorithm 3:  GS-IMPT nx a   

while 
max,GS IMPTn n   do 

       
1

1 2 1

n+1 T T n n n n

1 1 2 2 2x D D D d z -u + z -u   


     (x-problem in Eq. (9) solved by 

CG) 
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1

1 1( )n n+1 nz S x u    (Eq. (A5)) 

         
1

2 /2 2( )n n+1 nz S x u 

    (Eq. (10) or (11)) 

 
n+1 n n+1 n+1

1 1 1u =u +x - z  

 
n+1 n n+1 n+1

2 2 2u =u +x - z  

 1n n   

end while 

 

2.5. Comparative Planning Study 

We considered BAO for a brain case with M=2 (“2-angle brain”) and M=4 (“4-angle brain”) 

respectively, and a lung case with M=3 (“3-angle lung”). First we consider the scenario with the full 

angular set Θ of 24 evenly-distributed coplanar beam angles. The BAO problem was to select the best 

M angles from Θ. The choice of a relatively small number B=24 is because it allows us to solve all 

possible IMPT solutions via ES to find the optimal BAO solution. On the other hand, as one reduces 

angular spacing to increase number of beam angles, the angles get closer to each other and the 

incremental gain of plan quality with increasing number angles starts to diminish. 

For the validation purpose, the optimal BAO solution was attained using ES by solving all 

possible combinations of angles, which serves as the group truth for BAO. ES was equivalent to solve 

24x23/2=276 IMPT problems for 2-angle brain case, 24x23x22/(3x2)=2024 IMPT problems for 3-

angle lung case, 24x23x22x21/(4x3x2)=10626 IMPT problems for 4-angle brain case, for which the 

best solution was selected as the ES solution and also the ground truth.  

In benchmark to the ES solution, the proposed angle generation method (“AG”) was validated in 

comparison with the GS method (“GS”) that directly solved BAO [16-18]. In terms of computational 

time, AG (equivalent to solving a few IMPT problems) or GS (equivalent to solving 1 IMPT problem) 

was negligible compared to ES. For optimizing plan quality, after GS or AG was solved for the best 

M angle, the IMPT problem for selected M angles was solved as the final solution. Thus, the solutions 

from GS, AG and ES were consistent with each other as they were from the same IMPT solution 
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algorithm, with the only difference in the choice of beam angles. Moreover, all plans were normalized 

after optimization with D95=100% at PTV. 

Next we also consider BAO with a relatively large number B=72. In this case, ES was not 

performed due to the size of the problem, and AG was compared with GS. To demonstrate the 

generality of AG, the solution algorithms for solving IMPT and GS-IMPT in this case of B=72 were 

based on FISTA [18, 47], which was primarily based on ADMM for B=24 [31-33]. 

MatRad [49] was used to generate dose influence matrices using 5 mm lateral spacing, and 3 mm 

longitudinal spacing (energy), on 3 mm-resolution dose grid. All the experiments were performed 

with i9-10900K CPU, for which AG took 7-25 minutes. 

Robust optimization was also considered for the lung case with 5mm for setup uncertainty and 

3.5% for range uncertainty via probabilistic formulation [52,21]. The plan was normalized with 

respect to the nominal case. The dose and DVH plots in Fig. 12 and 13 were based on average dose of 

all uncertainty scenarios.  

In the tables, the conformity index (CI) is defined as V100
2/(V×Vʹ100) (V100: PTV volume receiving 

≥100% of prescription dose; V: PTV volume; Vʹ100: total volume receiving ≥100% of prescription 

dose). The value of CI is between 0 and 1, with optimal being 1. S* is the set of selected angles; f is 

the optimized plan objective value; rank is the ranking of f in all ES solutions. 

3. Results 

3.1. AG v.s. ES: nearly-exact BAO solution via AG 

ES was used to solve IMPT problems Eq. (2) for all possible combinations of angles, i.e., in 

𝕊={S⊂Θ|#(S)=M}. IMPT planning objectives of all plans were sorted in the ascending order in Fig.1, 

for which the smaller rank corresponds to smaller objective values and thus better plan quality. Since 

ES solved BAO Eq. (3) exactly, the optimal ES solution was the optimal BAO solution, which had the 

smallest rank (i.e., 1). As shown in Fig. 1 and Table 1, the AG solution was ranked 1 for both 2-angle 

brain and 3-angle lung, and 4 for 4-angle lung. Therefore, AG provided the nearly-exact solution to 
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BAO. In contrast, the GS solution was ranked 42/276 (i.e., 42 of 276 total plans) for 2-angle brain, 

279/2024 for 3-angle lung, and 4328/10626 for 4-angle brain respectively. 

3.2. AG v.s. GS: AG improved plan quality from GS 

Compared to GS, AG improved rank and plan objective values in Fig. 1 and Table 1, which implies 

AG improved plan quality from GS. The improved plan quality via AG from GS was also confirmed 

by comparison of dosimetric parameters in Table 1, comparison of DVH plots in Fig. 2 and 

comparison of dose plots in Fig. 3-5. For example, as shown in Table 1, compared to GS, AG 

improved target dose conformity quantified by CI, from 0.6 to 0.62 for 2-angle brain, from 0.9 to 0.92 

for 3-angle lung, and from 0.65 to 0.68 for 4-angle brain respectively. 

3.3. Solution convergence of AG 

By the design of AG algorithm, the solution converges with non-increasing plan objectives during AG 

iterations, which was experimentally confirmed and presented in Fig. 6. Based on Algorithm 1, AG 

found the optimal solution and terminated the optimization in 3, 5 and 14 AG iterations respectively 

for 2-angle brain, 3-angle lung, and 4-angle lung respectively, as shown in Fig. 6. 

3.4. AG was insensitive to the initial guess 

To test the sensitivity of AG to the initial guess (B=24), for 2-angle brain, we ran AG with 8 

randomly-chosen initial angular set S0, i.e., (1,2), (3,9), (5,18), (2,24), (15,19), (11,13), (17,22) and 

(7,9), which all converged to (5,20) that ranked 1/276; for 3-angle lung, we ran AG with 8 randomly-

chosen S0, i.e., (1,2,3), (1,3,9), (1,10,18), (2,17,24), (3,15,18), (7,11,13), (12,17,22) and (2,7,9), which 

all converged to (14,19,22) that ranked 1/2024; for 4-angle brain, we ran AG with 8 randomly-chosen 

S0, i.e., (1,2,3,4), (1,15,19,24), (1,5,7,20), (1,9,10,13), (3,7,12,18), (5,8,11,14), (6,12,17,21) and 

(6,7,19,20), are all (5,7,12,20), which all converged to (5,7,12,20) that ranked 4/10626. 

To test the sensitivity of AG to the initial guess (B=72), for 2-angle brain, we ran AG with 16 

randomly-chosen initial angular set S0, i.e., (1,2), (18,55), (55,56), (9,42), (4,7), (2,15), (25,56), 

(16,30), (44,55), (38,39), (70,71), (9,44), (5,18), (33,71), (14,28) and (6,66), and these all converged 
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to (13,58), i.e., (60°,285°), which is the same as the result with B=24; for 3-angle lung, we ran AG 

with 16 randomly-chosen S0, i.e., (1,25,49), (2,31,41), (3,21,51), (7,17,66), (7,19,29) (7,32,72), 

(9,36,69), (10,56,67), (10,59,65), (12,13,40), (12,39,60), (12,70,71), (13,23,39), (13,29,48), (13,48,49) 

and (14,55,57) , and these converged to (37,46,60), (42,51,60), (42,51,60), (42,51,60), (42,51,60), 

(42,51,60), (42,51,60), (42,51,60), (42,55,65), (42,51,60), (42,51,60), (42,51,60), (42,51,60), 

(37,46,60), (42,51,60) and (42,51,64) respectively, which are very close to the corresponding B=24 

result (14,19,22), i.e., (195°,270°,315°); for 4-angle brain, we ran AG with 16 randomly-chosen S0, 

i.e., (5,14,18,31), (18,29,30,56), (14,22,40,54), (23,32,33,36), (16,22,43,45), (15,17,34,61), 

(11,13,17,32), (19,20,30,43), (22,24,31,37), (36,42,53,67), (17,36,38,45), (31,57,66,69), 

(28,32,55,57), (19,37,51,54), (13,23,39,57) and (13,19,38,56), and these converged to (13,19,31,56), 

(13,19,30,57), (14,22,40,54), (13,19,36,56), (13,19,45,58), (13,19,34,58), (13,19,32,56), 

(13,19,30,57), (13,21,37,58), (13,19,36,56), (13,19,38,56), (13,19,31,56), (13,19,28,57), 

(13,19,37,56), (13,19,39,58) and (13,19,38,56) respectively, which are very close to the corresponding 

B=24 result (5,7,12,20), i.e., (60°,90°,165°,285°).  

Therefore, the AG solution was insensitive to the initial guess S0, and the results with B=72 were 

similar to those with B=24. 

3.5. ADMM v.s. FISTA for GS 

GS can be solved by either ADMM or FISTA. The comparison of ADMM and FISTA are presented 

in Table 2 and Fig. 7. While ADMM was insensitive to λ except for large values of λ, FISTA was 

sensitive to λ and the case-by-case tuning or ES seems to be needed to obtain good FISTA solutions. 

The sensitivity of FISTA to λ can be problematic for choosing the optimal solution unless using ES 

with respect to λ, which is however time-consuming. In Table 2, the FISTA results were from the best 

scenario via ES with respect to λ: FISTA was worse than ADMM for 2-angle brain, but better than 

ADMM for 3-angle lung and 4-angle brain. 

3.6. ADMM v.s. FISTA for AG 

To investigate the algorithm dependence of AG, we ran AG with both ADMM and FISTA. The 
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results summarized in Table 3 suggest that there was nearly no difference in solving AG by ADMM 

or FISTA, despite that (1) FISTA was sensitive to λ and (2) a M1-beam BAO set is always a subset of 

M2-beam BAO set for M1≤M2 when solving GS via ADMM. Note that although (14,19.22) was 

ranked 1/2024 for ADMM based ES and (15,19.22) was ranked 1/2024 for FISTA based ES, both 

ADMM based AG and FISTA based AG found the optimal BAO solution. Moreover, the difference 

in plan quality between (14,19.22) and (15,19.22) was negligible, with both being 0.12 in two-decimal 

rounding. 

3.7. Comparison of two GS-IMPT formulations for AG 

The comparison of two GS-IMPT formulations Eq. (4) and Eq. (6) for AG was presented in Table 4, 

which suggest that Eq. (6) was not as expected to be better than, but turned out to be slightly worse 

than Eq. (4) for AG.  

3.8. L2,1/2-norm v.s. L2,1-norm for AG 

We compared the use of L2,1/2-norm (p=1/2) and L2,1-norm (p=1) in GS Eq. (4) for AG. The 

angular sets during iterations are summarized in Table 5, which shows that p=1/2 and p=1 found the 

same angular set, while p=1/2 had 1 fewer iteration than p=1. 

3.9. AG v.s. GS with B=72 

For B=72, despite of missing of ES as the ground truth, AG again improved plan quality from GS. For 

example, AG had smaller optimized plan objective values, better CI values, smaller OAR dosimetric 

parameters than GS as shown in Table 6. This improvement in plan quality was evident by comparing 

DVH plots in Fig. 8, and dose plots in Fig. 9-11.  

3.10. AG v.s. GS under robust optimization 

The comparison of dosimetric parameters, DVH, and dose plots are presented in Table 7, Fig. 12, and 

13 respectively, using robust optimization for the lung case, for which ES was solved as the reference 

for the ground truth. As shown in Table 7, the AG solution was ranked 2, and thus AG still provided 

the nearly-exact solution to BAO under robust optimization, in reference to the ES solution. On the 
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other hand, the GS solution was ranked 175 out of 2024. In comparison to GS, AG substantially 

improved the solution ranking, which was reflected in plan quality as presented in Table 7, Fig. 12, 

and 13, e.g., improved dose conformity by increasing CI from 0.63 to 0.66. 

4. Discussion 

While GS can directly solve BAO [16-18], the direct GS method via either ADMM or FISTA is 

imperfect considering physics perspective of treatment planning. With ADMM, for GS, the optimal 

set of M1 angles is always a subset of M2 angles for M1≤M2, while in practice the optimal set of M1 

angles does not have to be a subset of M2 angles since BAO is a nonconvex problem. With FISTA, the 

optimal solution is highly sensitive to the GS regularization parameter λ and therefore is practically 

difficult to achieve without going through exhaustive searching in λ, which is time-consuming. In 

comparison, the AG method makes more sense than the direct GS method, since (1) AG is insensitive 

to the value of λ, and (2) M1-optimal angular set does not have to be a subset of M2-optimal angular 

set for AG. For example, the optimal angular set via the direct GS method was (7,19), (7,19,20), 

(6,7,19,20) for 2-angle, 3-angle, 4-angle brain respectively, while the optimal angular set via AG was 

(5,20), (6,13,20), (5,7,12,20) for 2-angle, 3-angle, 4-angle brain respectively; on the other hand, the 

rank of GS solutions was 42/276, 521/2024, 4328/10626 respectively, while the rank of AG solutions 

was 1/276, 3/2024, 4/10626 respectively. 

Although AG provided nearly-exact solutions to the BAO problem, we do not claim that AG 

exactly solves BAO, because BAO is a nonconvex NP-hard problem. The experiments in this work 

were limited to BAO to select 2-4 beam angles, i.e., M=2, 3, 4, and the number of all angles available 

for optimization was limited to 24, i.e., B=24, in order to run ES as the ground truth for BAO. 

However, it is expected that AG will still outperform the direct GS method for larger M and larger B, 

e.g., the results with B=72 as shown in Section 3.9. For example, the angular set from the direct GS 

method can be used as initial guess for AG, and the plan objective will be non-increasing throughout 

the AG iterations as demonstrated in Fig. 6. Because of the nonconvexity of BAO, a thorough 

investigation of degree of improvement via AG from GS is to be carried out in a future work, e.g., 

with non-coplanar beams, for which however the exact BAO solution may not be available as the 
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ground truth since the number of beams can be too big for ES to solve.  

The AG method can be regarded as a general framework for BAO. Although in this work the 

update to the angular set is based on GS, other methods such as column generation method [50] or 

deep learning method [51] can be potentially used to update the angular set for AG. The integration of 

these methods to AG will be of interest as future works. 

In current AG method, the update to the angular set is limited to one angle per AG iteration. Due 

to the nonconvex nature of BAO, it is possible that the update of multiple angles to the angular set per 

AG iteration may further improve the optimality of AG solutions. For example, for BAO to select M 

angles, the strategy to update up to two angles to the angular set per AG iteration can include M 

updates of one angle at a time and M(M-1)/2 updates of two angles at a time, which however should 

be computationally expensive. 

As presented in Table 2-4 respectively, it was found that the performance of AG was not sensitive 

to the choice of the optimization algorithm (ADMM or FISTA), the GS-IMPT formulation (Eq. (4) or 

(6)), and the p value (1/2 or 1). It was also found that the performance of AG was not sensitive to 

whether it was the MMU constraint (Gmin>0) or the nonnegative constraint (Gmin=0). Because the 

MMU constraint is nonconvex and the nonnegative constraint is convex, the presented results were 

with the MMU constraint instead of the nonnegative constraint to demonstrate the effectiveness of 

AG, even in the presence of nonconvex MMU constraint. 

Spot-scanning arc therapy is an emerging proton modality [55] and rapidly developing [56-59] as 

a viable alternative to fixed-beam IMPT that can potentially offer a combination of advantages in plan 

quality and delivery efficiency, compared to fixed beam IMPT. But currently fixed-beam IMPT 

remains to be the mainstream for proton treatments, for which BAO is still relevant.  

5. Conclusion 

We have developed a new BAO algorithm called the AG method, which was shown to provide 

substantially improved accuracy for BAO from current methods (e.g., GS or FISTA) with nearly-

exact solutions to BAO, in reference to the ground truth of optimal BAO solution via ES. It was found 



 

This article is protected by copyright. All rights reserved. 

that (1) AG is relatively insensitive to the initial guess, compared to GS or FISTA, (2) AG is stable 

with respect to the choice of optimization engine (e.g., GS or FISTA) for solving the GS-IMPT 

problem. 

Appendix A: Solving IMPT via ADMM 

This section presents ADMM based solution algorithm for the IMPT problem Eq. (2). For the 

convenience of presentation, the IMPT problem is recapped here 
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With ADMM, a standard trick to handle the constrained optimization problem such as Eq. (A1) 

is to introduce a dummy variable z for the constraint, i.e., z=x, so that the constrained problem Eq. 

(A1) can be decoupled into an unconstrained problem of x with planning objectives and a constrained 

problem of z that has no planning objectives and thus can be solved by an analytic formula, which will 

become clear shortly. 

To derive ADMM solutions, we start with the augmented Lagrangian function of Eq. (A1)  
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where u is the dual variable of z, and μ is the relaxation parameter for the constraint z=x. 

From Eq. (A2), the ADMM solution to Eq. (A1) consists of the following iterations 
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As explained in [31,32], the purpose of u-update is to relax the need of increasing μ during iterations 

to enforce z=x: a fixed value of μ instead of an increasing sequence is sufficient for Eq. (A3) to 
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converge, which avoids numerical instability owing to large μ. 

The x-problem of Eq. (A3) is a standard least-square problem, which has the optimal condition 

    T n+1 T n nD D x D d z - u    , (A4) 

which is solved here by conjugate gradient (CG) method without explicit matrix inversion.  

The z-problem of Eq. (A3) is separable and has point-wise analytic solution zn+1=S(xn+1+un) with 

S given by 

min

min min
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The ADMM algorithm for solving IMPT is summarized as follows.  

Algorithm A1:  IMPTSf S  

while 
max,IMPTn n  do 

     
1

n+1 T T n nx D D D d z - u 


    (Eq. (A4) solved by CG) 

         ( )n+1 n+1 nz S x u   (Eq. (A5)) 

 
n+1 n n+1 n+1u = u +x - z  

 1n n   

end while 

 

Table 1. Comparison of GS and AG in benchmark to ES via ADMM with B=24.  

Case Parameters GS AG ES 

2-angle 

brain 

CI 0.60 0.62 0.62 

Dmax, brainstem (Gy) 17.82 17.75 17.75 

V10Gy, brainstem (cc) 3.11 2.75 2.75 

S* (7,19) (5,20) (5,20) 

F 1.23 1.11 1.11 

Rank 42 1 1 

3-angle 

lung 

CI 0.90 0.92 0.92 

Dmean, lung (Gy) 1.89 1.57 1.57 

S* (13,14,22) (14,19,22) (14,19,22) 

F 0.14 0.12 0.12 

Rank 279 1 1 

4-angle CI 0.65 0.68 0.64 
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brain Dmax, brainstem (Gy) 18.05 17.29 17.13 

V10Gy, brainstem (cc) 2.62 2.40 2.70 

S* (6,7,19,20) (5,7,12,20) (5,7,11,20) 

f 1.04 0.95 0.94 

rank 4328 4 1 

 

Table 2. Comparison of ADMM and FISTA for GS. The FISTA results here are from the best 

scenario by exhaustively searching the values of λ. 

Case Parameters ADMM FISTA 

2-angle 

brain 

CI 0.60 0.60 

Dmax, brainstem (Gy) 17.82 17.91 

V10Gy, brainstem (cc) 3.11 2.73 

S* (7,19) (19,21) 

F 1.23 1.24 

rank 42 51 

3-angle 

lung 

CI 0.90 0.90 

Dmean, lung (Gy) 0.52 0.56 

S* (13,14,22) (14,19,24) 

F 0.14 0.13 

rank 279 12 

4-angle 

brain 

CI 0.65 0.66 

Dmax, brainstem (Gy) 18.05 18.11 

V10Gy, brainstem (cc) 2.62 2.40 

S* (6,7,19,20) (4,6,12,22) 

F 1.04 1.00 

rank 4328 1693 

Table 3. Comparison of ADMM and FISTA for AG using 3-angle lung. 

Parameters ADMM FISTA 

CI 0.92 0.92 

S* (14,19,22) (15,19,22) 

f 0.12 0.12 

rank 1 1 

 

Table 4. Comparison of two GS-IMPT formulations Eq. (4) and (6) for AG using 3-angle lung. 

Parameters Eq. (4)  Eq. (6)  

CI 0.92 0.90 

S* (14,19,22) (14,16,19) 

f 0.12 0.12 

rank 1 36 

 

Table 5. Comparison of p=1/2 and p=1 in GS for AG using 3-angle lung. 

Iteration 
p=1/2 p=1 

S f rank S f rank 

Initialization (1,2,3) 0.24 1963 (1,2,3) 0.24 1963 

1 (1,19,3) 0.15 467 (1,13,3) 0.16 940 

2 (1,19,14) 0.13 14 (1,13,21) 0.14 229 
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3 (22,19,14) 0.12 1 (19,13,21) 0.13 74 

4 (22,19,14) 0.12 1 (19,14,22) 0.12 1 

5 (22,19,14) 0.12 1 (19,14,22) 0.12 1 

6 - - - (19,14,22) 0.12 1 

 

Table 6. Comparison of GS and AG via FISTA with B=72.  

Case Parameters GS AG 

2-angle  

brain 

CI 0.82 0.84 

Dmax, brainstem (Gy) 18.15 17.80 

V10Gy, brainstem (cc) 3.35 2.78 

S* (36,57) (13,58) 

F 1.12 1.11 

3-angle  

lung 

CI 0.92 0.92 

Dmean, lung (Gy) 0.55 0.52 

S* (41,55,70) (42,55,66) 

F 0.13 0.12 

4-angle  

brain 

CI 0.86 0.87 

Dmax, brainstem (Gy) 17.25 16.88 

V10Gy, brainstem (cc) 2.92 2.48 

S* (18,19,36,57) (13,36,56,63) 

F 1.01 0.94 

 

Table 7. Comparison of GS and AG in benchmark to ES from robust optimization via ADMM with 

B=24 using 3-angle lung.  

Parameters GS AG ES 

CI 0.63 0.66 0.64 

Dmean, lung (Gy) 0.93 0.79 0.80 

S* (13,14,24) (14,19,24) (14,20,24) 

F 8.13 5.94 5.83 

Rank 175 2 1 

 

 

Figure 1. Comparison of planning objective values optimized with AG and GS via ADMM for B=24. 

In each plot, planning objective values for all possible combinations are solved via ES and plotted in 
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the ascending order. AG is marked in red and GS is marked in black, with their (rank, planning 

objective value) in the bracket. 

 

Figure 2. Comparison of DVH plots between GS (red curves) and AG (blue curves) via ADMM with 

B=24. 

 

Figure 3. Comparison of dose plots for 2-angle brain via ADMM with B=24, for which the optimal 
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ES solution is available as the ground truth. ES is the same as AG, as AG exactly solved BAO. The 

dose plot window is [0%, 110%]. 100% isodose line, 80% isodose line and CTV are highlighted in 

dose plots. 

 

Figure 4. Comparison of dose plots for 3-angle lung via ADMM with B=24, for which the optimal ES 

solution is available as the ground truth. ES is the same as AG, as AG exactly solved BAO. The dose 

plot window is [0%, 110%]. 100% isodose line, 80% isodose line and CTV are highlighted in dose 

plots. 
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Figure 5. Comparison of dose plots for 4-angle brain via ADMM with B=24, for which the optimal 

ES solution is available as the ground truth. The dose plot window is [0%, 110%]. 100% isodose line, 

80% isodose line and CTV are highlighted in dose plots. 

 

Figure 6. The planning objective values are monotonically non-increasing during AG iterations. 
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Figure 7. Comparison of ADMM and FISTA in dependence of ranks of optimized plan quality with 

respect to the values of λ in Eq. (5). While ADMM is insensitive to λ except for large values of λ, 

FISTA is sensitive to λ, which can be problematic for choosing the optimal solution. 

 

Figure 8. Comparison of DVH plots between GS and AG via FISTA with B=72. 
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Figure 9. Comparison of dose plots for 2-angle brain via FISTA with B=72, for which no ES solution 

is available as the ground truth. The dose plot window is [0%, 110%]. 100% isodose line, 80% 

isodose line and CTV are highlighted in dose plots. 

 

Figure 10. Comparison of dose plots for 3-angle lung via FISTA with B=72, for which no ES solution 

is available as the ground truth. The dose plot window is [0%, 110%]. 100% isodose line, 80% 

isodose line and CTV are highlighted in dose plots. 
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Figure 11. Comparison of dose plots for 4-angle brain via FISTA with B=72, for which no ES 

solution is available as the ground truth. The dose plot window is [0%, 110%]. 100% isodose line, 

80% isodose line and CTV are highlighted in dose plots. 

 

Figure 12. Comparison of DVH plots for 3-angle lung between GS and AG via ADMM with B=24 

from robust optimization. 
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Figure 13. Comparison of dose plots for 3-angle lung from robust optimization via ADMM with 

B=24, for which the optimal ES solution is available as the ground truth. The dose plot window is 

[0%, 110%]. 100% isodose line, 80% isodose line and CTV are highlighted in dose plots. 
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