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Abstract
We consider three equilibrium concepts proposed in
the literature for time-inconsistent stopping problems,
including mild equilibria (introduced in Huang and
Nguyen-Huu (2018)), weak equilibria (introduced in
Christensen and Lindensjö (2018)), and strong equilib-
ria (introduced in Bayraktar et al. (2021)). The discount
function is assumed to be log subadditive and the under-
lying process is one-dimensional diffusion. We first
provide necessary and sufficient conditions for the char-
acterization ofweak equilibria. The smooth-fit condition
is obtained as a by-product. Next, based on the charac-
terization of weak equilibria, we show that an optimal
mild equilibrium is also weak. Then we provide con-
ditions under which a weak equilibrium is strong. We
further show that an optimal mild equilibrium is also
strong under a certain condition. Finally, we provide
several examples including one showing a weak equi-
librium may not be strong, and another one showing a
strong equilibrium may not be optimal mild.
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1 INTRODUCTION

On a filtered probability space, (Ω, , (𝑡)𝑡≥0, ℙ) consider the optimal stopping problem,
sup
𝜏∈
𝔼[𝛿(𝜏)𝑓(𝑋𝜏)], (1)

where 𝛿(⋅) is a discount function, 𝑋 = (𝑋𝑡)𝑡 is a time-homogeneous one-dimensional strong
Markov process, and 𝑓(⋅) is a payoff function. It is well known that when 𝛿(⋅) is not exponential,
the problem can be time-inconsistent in the sense that an optimal stopping rule obtained today
may no longer be optimal from a future’s perspective.
One way to deal with this time-inconsistency is to consider the precommitted strategy, that

is, to derive a policy that is optimal with respect to the initial preference and stick to it over
the whole planning horizon even if the preference changes later; see, for example, Agram and
Djehiche (2021); Miller (2017). Another approach to address the time-inconsistency is to look for
a subgame perfect Nash equilibrium; given the future selves follow the equilibrium strategy, the
current self has no incentive to deviate from it. For equilibrium strategies, we refer to the works
(Björk et al., 2021; Ekeland & Lazrak, 2010; Ekeland & Pirvu, 2008; He & Jiang, 2021; Ekeland
& Lazrak, 2006; Hernández & Possamaï, 2020; Hamaguchi, 2021; Huang & Zhou, 2021; Wang
& Yong, 2021; Wei et al., 2017) among others for time-inconsistent control, and Christensen and
Lindensjö (2020a, 2020b); Ebert and Strack (2018); He and Zhou (2022); Huang and Nguyen-Huu
(2018); Liang and Yuan (2021); Tan et al. (2021); Bodnariu et al. (2022); Ebert et al. (2020), and the
references therein for time-inconsistent stopping.
How to properly define the notion of an equilibrium is quite subtle in continuous time. There

are mainly two streams of research for equilibrium strategies of time-inconsistent stopping prob-
lems in continuous time. In the first stream of research, the following notion of equilibrium is
considered.

Definition 1.1. A closed set 𝑆 ⊂ 𝕏 is said to be a mild equilibrium, if{
𝑓(𝑥) ≤ 𝐽(𝑥, 𝑆), ∀𝑥 ∉ 𝑆, (2)
𝑓(𝑥) ≥ 𝐽(𝑥, 𝑆), ∀𝑥 ∈ 𝑆, (3)

where

𝐽(𝑥, 𝑆) ∶= 𝔼𝑥[𝛿(𝜌𝑆)𝑓(𝑋𝜌𝑆 )] with 𝜌𝑆 ∶= inf {𝑡 > 0 ∶ 𝑋𝑡 ∈ 𝑆} and 𝔼𝑥[⋅] = 𝔼[⋅|𝑋0 = 𝑥]. (4)

This kind of equilibrium is first proposed and studied in stopping problems in the context of
nonexponential discounting in Huang and Nguyen-Huu (2018). It is called mild equilibrium in
Bayraktar et al. (2021) to distinguish from other equilibrium concepts. Mild equilibria are further
considered in Huang et al. (2020) and Huang & Yu (2021) where the time inconsistency is caused
by probability distortion and model uncertainty, respectively.
Note that 𝑓(𝑥) is the value for immediate stopping, and 𝐽(𝑥, 𝑆) = 𝔼𝑥[𝛿(𝜌𝑆)𝑓(𝑋𝜌𝑆 )] is the value

for continuing as 𝜌𝑆 is the first time to enter 𝑆 after time 0. As a result, the economic meaning
of mild equilibria appears to be clear: in Equation (2) when 𝑥 ∉ 𝑆, it is better to continue and get
the value 𝐽 rather than to stop and get the value 𝑓. In other words, there is no incentive to deviate
from the action of “continuing.” The same reasoning seems to also apply to the other case 𝑥 ∈ 𝑆
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in Equation (3), that is, no incentive for changing the action from “stopping” to “continuing.”
However, this is not really captured inEquation (3) after a second thought: In the one-dimensional
diffusion (and continuous-timeMarkov chain) setting, under some very nonrestrictive condition,
we have 𝜌𝑆 = 0 a.s., and thus Equation (3) holds trivially.1 That is, there is no actual deviation
from stopping to continuing captured in Equation (3).
Because of this issue, mild equilibria are indeed too “mild”: the whole state space is always a

mild equilibrium; in most of the examples provided in Huang and Nguyen-Huu (2018); Huang
and Zhou (2020); Huang & Yu (2021), there is a continuum of mild equilibria. As there are often
too many mild equilibria in various models, it is natural to consider the problem of equilibrium
selection.

Definition 1.2. Amild equilibrium 𝑆 is said to be optimal, if for any other mild equilibrium 𝑅,

𝔼𝑥[𝛿(𝜌𝑆)𝑓(𝑋𝜌𝑆 )] ≥ 𝔼𝑥[𝛿(𝜌𝑅)𝑓(𝑋𝜌𝑅)], ∀ 𝑥 ∈ 𝕏.
Note that the optimality of a mild equilibrium is defined in the sense of pointwise dominance,

which is a very strong condition. The existence of optimal equilibria is first established in Huang
and Zhou (2019) in discrete time models. The existence result is further extended to diffusion
models for one-dimensional case inHuang and Zhou (2020) andmultidimensional case inHuang
and Wang (2021). In particular, for the one-dimensional diffusion case, Huang and Zhou (2020)
shows that under some general assumptions an optimal mild equilibrium exists and is given by
the intersection of all mild equilibria (also see Lemma 4.1 below). Huang and Zhou (2020) also
provide an example indicating that, in general, there may exist multiple optimal mild equilibria.
In the second stream of the research for equilibrium strategies for time-inconsistent stopping

in continuous time, the following notion of equilibrium is introduced.

Definition 1.3. A closed set 𝑆 ⊂ 𝕏 is said to be a weak equilibrium, if

⎧⎪⎨⎪⎩
𝑓(𝑥) ≤ 𝐽(𝑥, 𝑆), ∀𝑥 ∉ 𝑆, (5)

lim inf
𝜀↘0

𝑓(𝑥) − 𝔼𝑥[𝛿(𝜌𝜀𝑆)𝑓(𝑋𝜌𝜀𝑆 )]

𝜀
≥ 0, ∀𝑥 ∈ 𝑆, (6)

where

𝜌𝜀𝑆 ∶= inf {𝑡 ≥ 𝜀 ∶ 𝑋𝑡 ∈ 𝑆}.
The weak equilibrium concept for time inconsistent stopping is proposed in Christensen and

Lindensjö (2018), and further studied in Christensen and Lindensjö (2020a); Liang and Yuan
(2021); Tan et al. (2021). Obviously, as Equation (3) trivially holds for one-dimensional process,
a weak equilibrium is also mild. Compared to mild equilibria, the condition (3) is replaced by
Equation (6) for weak equilibria using a first-order condition. This is analog to the first-order
condition criterion in time-inconsistent control. As 𝜌𝜀𝑆 ≥ 𝜀 > 0, the condition (6) does capture
the deviation from stopping to continuing, and is much stronger than Equation (3). However,

1 In multidimensional setting, if 𝑥 ∈ 𝑆𝑜 , then 𝜌𝑆 = 0, ℙ𝑥-a.s.; if 𝑥 ∈ 𝜕𝑆, then the identity 𝜌𝑆 = 0 requires some regularity
of 𝜕𝑆, and consequently, the verification of Equation (3) on the boundary may not be trivial.
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there is still a drawback for Equation (6): when the limit is equal to zero, it is possible that for
all 𝜀 > 0, we have 𝑓(𝑥) < 𝔼𝑥[𝛿(𝜌𝜀𝑆)𝑓(𝑋𝜌𝜀𝑆 )], and thus there is an incentive to deviate (see Björk
et al. (2017, Remark 3.5), Huang & Zhou (2021); Bayraktar et al. (2021); He & Jiang (2021) for more
details). Roughly speaking, this is similar to a critical point not necessarily being a localmaximum
in calculus.
Recently, Bayraktar et al. (2021) investigated the relation between the equilibrium concepts in

these two streams of researchwe described above, and proposed an additional notion of equilibria.

Definition 1.4. A closed set 𝑆 ⊂ 𝕏 is said to be a strong equilibrium, if{
𝑓(𝑥) ≤ 𝐽(𝑥, 𝑆), ∀𝑥 ∉ 𝑆,

∃𝜀(𝑥) > 0, s.t. ∀𝜀′ ≤ 𝜀(𝑥), 𝑓(𝑥) − 𝔼𝑥[𝛿(𝜌𝜀′𝑆 )𝑓(𝑋𝜌𝜀′𝑆 )] ≥ 0, ∀𝑥 ∈ 𝑆.
(7)

Note that in the definition of strong equilibrium, the first-order condition (6) is replaced by a
local maximum condition (7). This remedies the issue of weak equilibria mentioned in the above,
and captures the economic meaning of “equilibrium” more accurately. Such kind of equilibria is
also studied in Huang and Zhou (2021); He and Jiang (2021) for time inconsistent control. Obvi-
ously, a strong equilibriummust beweak. InBayraktar et al. (2021) under continuous-timeMarkov
chain models with nonexponential discounting, a complete relation between mild, optimal mild,
weak, and strong equilibria is obtained:

optimal mild ⫋ strong ⫋ weak ⫋mild. (8)

In this paper, we aim to establish the result (8) for one-dimensional diffusion models under non-
exponential discounting. Compared to Bayraktar et al. (2021), the analysis in this paper is much
more delicate. The proof in Bayraktar et al. (2021) crucially relies on the discrete state space of the
Markov chain setting, and many critical ideas and steps therein cannot be applied in our diffu-
sion framework, where novel approaches are needed for the characterizations of weak and strong
equilibria. Here we list the main contributions of our paper as follows.

∙ We provide a complete characterization (necessary and sufficient conditions) of weak equilib-
ria. As a by-product, we show that any weak equilibrium must satisfy the smooth-fit condition
when the pay-off function 𝑓 is smooth. This gives a much sharper result in a much more gen-
eral setting as compared to the smooth-fit result obtained in Tan et al. (2021). (See Remark 3.3
for more details.) Moreover, in our paper 𝑓 need not to be smooth, and our result also indi-
cates that the smooth-fit condition is a special case of the “local convexity” property of weak
equilibria. See Remark 3.4. Undoubtedly, such results related to smooth-fit condition have no
correspondence in the Markov chain framework in Bayraktar et al. (2021).

∙ We show that an optimal mild equilibrium is also a weak equilibrium. This proves that the
set of weak equilibria is not empty. In terms of the mathematical method, in Bayraktar et al.
(2021), the technique for the proof of such result relies on the fact that removing a point from
a stopping region changes the stopping time, which is no longer applicable in the diffusion
context. A different approach is developed to overcome this difficulty.

∙ We provide a sufficient condition under which a weak equilibrium is also strong. The condi-
tion is easy to verify as suggested by our examples. We also show that one may remove some
“inessential” part of an optimal mild equilibrium, and the remaining part is still optimal mild
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F IGURE 1 Relations between results in Sections 3–5 of this paper. 𝐴 → 𝐵 means that statement 𝐴 is used in
the proof of statement 𝐵.

(and thus weak), and in fact strong under an additional assumption. In particular, this result
implies that the smallest mild equilibrium essentially has no “inessential” parts and thus is
strong. See Theorem 5.2 and Remark 5.3.

The rest of the paper is organized as follows. Section 2 introduces the notation and main
assumptions, as well as some auxiliary results that will be used frequently throughout the paper.
In Section 3, we provide a complete characterization of a weak equilibrium. In Section 4, we show
that an optimal mild equilibrium is a weak equilibrium. Next, in Section 5, we provide a sufficient
condition for a weak equilibrium to be strong. We also demonstrate how to construct a strong
equilibrium from an optimal mild equilibrium by removing “inessential” parts. In particular, we
show that the smallest mild equilibrium is strong under a mild assumption. Finally, three exam-
ples are provided in Section 6. The first example shows that a weak equilibriummay not be strong,
while the second example shows that a strong equilibrium may not be optimal mild. The final
example is about finding equilibria for the stopping problem of an American put option, which
is used to demonstrate the usefulness of the results in Section 5. Figure 1 summarizes relations
between the results in this paper.

2 SETUP AND SOME AUXILIARY RESULTS

Let (Ω,  , (𝑡)𝑡≥0, ℙ) be a filtered probability space, which supports a standard Brownian motion
𝑊 = (𝑊𝑡)𝑡≥0. Let 𝑋 = (𝑋𝑡)𝑡≥0 be a one-dimensional diffusion process with the dynamics

𝑑𝑋𝑡 = 𝜇(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝑊𝑡, (9)
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and take values in an interval𝕏 ⊂ ℝ. Let ℙ𝑥 be the probability measure given 𝑋0 = 𝑥 and denote
𝔼𝑥[⋅] = 𝔼[⋅|𝑋0 = 𝑥]. Let 𝐿𝑥𝑡 be the local time of 𝑋 at point 𝑥 up to time 𝑡. Denote by  the set of
stopping times.
Let  be the family of all Borel subsets within 𝕏. For any 𝐴 ∈ , denote 𝐴𝑐 ∶= 𝕏 ⧵ 𝐴 and

𝜕𝐴 ∶= 𝐴 ⧵ 𝐴◦, where𝐴◦ is the interior of𝐴 and𝐴 is the closure of𝐴 under the Euclidean topology
within 𝕏. Denote 𝐵(𝑥, 𝑟) ∶= (𝑥 − 𝑟, 𝑥 + 𝑟) ∩ 𝕏. For 𝐴 ∈ , we define the first hitting and exit
times

𝜌𝐴 ∶= inf {𝑡 > 0 ∶ 𝑋𝑡 ∈ 𝐴} and 𝜏𝐴 ∶= inf {𝑡 > 0 ∶ 𝑋𝑡 ∉ 𝐴} = 𝜌𝐴𝑐 . (10)

Given a stopping region 𝐴 ∈ , we define the value function 𝑉(𝑡, 𝑥, 𝐴) ∶ [0,∞) × 𝕏 → ℝ as

𝑉(𝑡, 𝑥, 𝐴) ∶= 𝔼𝑥[𝛿(𝑡 + 𝜌𝐴)𝑓(𝑋𝜌𝐴)]. (11)

Recall function 𝐽 defined in Equation (4), we have 𝐽(𝑥, 𝐴) = 𝑉(0, 𝑥, 𝐴).
Denote ℕ ∶= {1, 2, …} and ℤ ∶= {0, ±1, ±2, …}. Given 𝐸 ∈  and 𝑘 ∈ ℕ ∪ {0}, denote by

1,𝑘([0,∞) × 𝐸) the family of functions 𝑣(𝑡, 𝑥) that are continuously differentiable with respect to
(w.r.t.) 𝑡 and 𝑘-times continuously differentiable w.r.t. 𝑥 when restricted to [0,∞) × 𝐸, and 𝑘(𝐸)
the family of functions 𝑣(𝑥) that are 𝑘-times continuously differentiable when restricted to𝐸.2 For
a function 𝑣(𝑡, 𝑥) ∶ [0,∞) × 𝐸 → ℝ, 𝑣𝑥, 𝑣𝑥𝑥 (resp. 𝑣𝑡) denote the first- and second-order deriva-
tives w.r.t 𝑥 (resp. the first-order derivative w.r.t. 𝑡) if the derivatives exist. Moreover, denote by
𝑣𝑥(𝑡, 𝑥−) (resp. 𝑣𝑥(𝑡, 𝑥+)) the left (resp. right) derivative of 𝑣 w.r.t. 𝑥 at point (𝑡, 𝑥). Similar nota-
tion applies to 𝑣𝑥𝑥(𝑡, 𝑥−), 𝑣𝑥𝑥(𝑡, 𝑥+). For convenience, we denote 𝑣𝑡(0, 𝑥) as the right derivative
w.r.t. 𝑡 at time 𝑡 = 0. We further define the parabolic operator

𝑣(𝑡, 𝑥) ∶= 𝑣𝑡(𝑡, 𝑥) + 𝜇(𝑥)𝑣𝑥(𝑡, 𝑥) + 12𝜎2(𝑥)𝑣𝑥𝑥(𝑡, 𝑥) for a function 𝑣 ∈ 1,2([0,∞) × 𝐸).
Let us also use the following notation involving left or right derivatives w.r.t. 𝑥:

𝑣(𝑡, 𝑥±) ∶= 𝑣𝑡(𝑡, 𝑥) + 𝜇(𝑥)𝑣𝑥(𝑡, 𝑥±) + 12𝜎2(𝑥)𝑣𝑥𝑥(𝑡, 𝑥±), ∀𝑡 ≥ 0.
We now introduce the main assumptions in this paper. The first assumption concerns 𝜇 and 𝜎.

Assumption 2.1.

(i) 𝜇, 𝜎 ∶ 𝕏 → ℝ are Lipschitz continuous.
(ii) 𝜎2(𝑥) > 0 for all 𝑥 ∈ 𝕏.

Remark 2.2. Assumption 2.1(i) guarantees that Equation (9) has a unique strong solution given
𝑋0 = 𝑥 ∈ 𝕏. Assumption 2.1(i)(ii) together imply that for any 𝑥 ∈ 𝕏 and 𝑡 > 0,

ℙ𝑥
(
min
0≤𝑠≤𝑡 𝑋𝑠 < 𝑥

)
= ℙ𝑥

(
max
0≤𝑠≤𝑡 𝑋𝑠 > 𝑥

)
= 1, and thus 𝜌{𝑥} = 0, ℙ𝑥-a.s.. (12)

2 Continuous differentiability is extended to the boundary in a natural way if the boundary is included in 𝐸. For example,
given [𝑎, 𝑏] ⊂ 𝕏, we say 𝑔 ∈ 1,2([0,∞) × [𝑎, 𝑏]), if 𝑔 = 𝑔1 on [0,∞) × [𝑎, 𝑏] for some 𝑔1 ∈ 1,2([0,∞) × 𝕏).
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A quick proof for Equation (12) is relegated in Appendix A.

Notice that a (time-homogeneous Markovian) stopping policy can be characterized by a stop-
ping region 𝑆 ⊂ 𝕏. For 𝑆 ∈ , Equation (12) implies that 𝜌𝑆 = 𝜌𝑆 ℙ

𝑥-a.s. for any 𝑥 ∈ 𝕏. Also,
𝑓(𝑥) = 𝐽(𝑥, 𝑆) for all 𝑥 ∈ 𝑆, and a boundary point 𝑥 of 𝑆 corresponds to the action “immediate
stopping,” not matter 𝑥 belongs to 𝑆 or not. Therefore, it suffices to work on stopping regions that
are closed.

Definition 2.3. 𝑆 ∈  is called an admissible stopping policy, if 𝑆 is closed (w.r.t the Euclidean
topology within𝕏) and for any 𝑥 ∈ 𝜕𝑆, one the following two cases holds:

(a ) 𝑥 ∈ 𝜕(𝑆◦), that is, ∃ℎ > 0 such that either (𝑥 − ℎ, 𝑥) ⊂ 𝑆◦ and (𝑥, 𝑥 + ℎ) ⊂ 𝑆𝑐, or (𝑥 − ℎ, 𝑥) ⊂
𝑆𝑐 and (𝑥, 𝑥 + ℎ) ⊂ 𝑆◦;

(b ) 𝑥 is an isolated point, that is, 𝐵(𝑥, ℎ) ⧵ {𝑥} ⊂ 𝑆𝑐 for some ℎ > 0.

Remark 2.4. Except cases (a) and (b), the rest situation for a boundary point 𝑥 ∈ 𝜕𝑆 is the
following:

(c ) There exist two sequences (𝑥𝑛)𝑛∈ℕ ⊂ 𝑆 and (𝑦𝑛)𝑛∈ℕ ⊂ 𝑆𝑐 such that both (𝑥𝑛)𝑛∈ℕ and (𝑦𝑛)𝑛∈ℕ
approach to 𝑥 from the left, or both approach to 𝑥 from the right.3

Stopping regions containing boundary case (c) lack economic meaning, since it is not practical
for an agent to follow a stopping policy classified as case (c). Mathematically, the regularity of
𝑉(𝑡, 𝑥, 𝑆)may also be missing when 𝑆 contains boundary case (c), for example, 𝑉𝑥(𝑡, 0+, 𝑆)may
not exist for 𝑆 being the cantor set on [0,1]; this would cause serious issue to establish our main
results later as they crucially rely on the regularity of 𝑉(𝑡, 𝑥, 𝑆) (e.g., the characterization of weak
equilibria).
Focusing on admissible stopping policies is also well-aligned with the literature, and a stopping

policy containing boundary case (c) is rarely studied in applications. For instance, all the case stud-
ies in Bodnariu et al. (2022); Tan et al. (2021); Christensen and Lindensjö (2018); Ebert et al. (2020);
Huang et al. (2020) only focus on threshold-type equilibria. The results in Ebert and Strack (2018)
mainly focus on two threshold stopping regions. The mild equilibria in all the examples of Huang
and Nguyen-Huu (2018) have boundaries of cases only (a) and (b). All mild equilibria provided in
Huang and Zhou (2020, Sections 6.1 and 6.2) are all admissible, so are the mild equilibria in the
case study of Huang & Yu (2021, Section 4).
Let us also point out that all the interesting equilibria (i.e., optimal mild, weak, strong equi-

libria) provided in all the examples in this paper are admissible. Specifically, in the case study in
Section 6.3, which can be thought of as a continuation of Huang and Zhou (2020, Sections 6.3),
all the weak, strong, and optimal mild equilibria are admissible, and any mild equilibria is either
admissible or has an admissible alternative (see Remark 6.6).
To sumup, focusing on cases (a) and (b) is economicallymeaningful,mathematically necessary,

well-aligned with the literature, and general enough for applications.

3 Indeed, let 𝑥 ∈ 𝜕𝑆. Suppose 𝑥 does not satisfy case (c). Then there exists ℎ > 0 such that either (𝑥 − ℎ, 𝑥) ⊂ 𝑆 or (𝑥 −
ℎ, 𝑥) ⊂ 𝑆𝑐 , so is the interval (𝑥, 𝑥 + ℎ). If (𝑥 − ℎ, 𝑥) ⊂ 𝑆𝑐 and (𝑥, 𝑥 + ℎ) ⊂ 𝑆𝑐 , then 𝑥 satisfies case (b); otherwise 𝑥 satisfies
case (a).
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Let 𝛿(⋅) ∶ [0,∞) → [0, 1] be a discount function that is nonincreasing, continuously differen-
tiable, and 𝛿(0) = 1, 𝛿(𝑡) < 1 for 𝑡 > 0. We assume that 𝛿 satisfies the following condition.

Assumption 2.5. 𝛿 is log subadditive:

𝛿(𝑡 + 𝑠) ≥ 𝛿(𝑡)𝛿(𝑠), ∀𝑠, 𝑡 ≥ 0. (13)

Remark 2.6. Condition (13) can be interpreted as the so-called decreasing impatience in finance
and economics. Many nonexponential discount functions, including hyperbolic, generalized
hyperbolic, and pseudo-exponential discounting, satisfy Equation (13). See the discussion below
(Huang and Nguyen-Huu, 2018, Assumption 3.12) for a more detailed explanation.

Recall that 𝛿′(0) denotes the right derivative of 𝛿(𝑡) at 𝑡 = 0. The following lemma is a quick
result for 𝛿 and the proof is relegated in the Appendix A.

Lemma 2.7. Let Assumption 2.5 hold. Then,

𝛿′(𝑡) ≥ 𝛿(𝑡)𝛿′(0), and 1 − 𝛿(𝑡) ≤ |𝛿′(0)|𝑡, ∀𝑡 ≥ 0.
Let the payoff function 𝑓(𝑥) ∶ 𝕏 → ℝ be non-negative and continuous.We further assume that

𝑓 satisfies the following assumptions.

Assumption 2.8. (i) For any 𝑥 ∈ 𝕏,

lim
𝑡→∞
𝛿(𝑡)𝑓(𝑋𝑡) = 0, ℙ

𝑥 − 𝑎.𝑠., (14)

and there exists 𝜁 > 0 such that

𝔼𝑥
[
sup
𝑡≥0 (𝛿(𝑡)𝑓(𝑋𝑡))

1+𝜁
]
< ∞. (15)

(ii) 𝑓(𝑥) belongs to 2 piecewisely. That is, there exists an either finite or countable set (𝜃𝑛)𝑛∈𝐼 ⊂
𝕏, with 𝐼 ⊂ ℤ and 𝜃𝑛 < 𝜃𝑛+1 for all 𝑛 ∈ 𝐼, such that 𝑓 ∈ 2([𝜃𝑛, 𝜃𝑛+1]) for any 𝑛 ∈ 𝐼. We also
assume that inf𝑛∈𝐼(𝜃𝑛+1 − 𝜃𝑛) > 0 and denote

 ∶= 𝕏 ⧵ {𝜃𝑛 ∶ 𝑛 ∈ 𝐼}. (16)

Remark 2.9. The assumption (15) will be used for Lemma 3.8, which is an essential lemma for all
the main results in the paper. Moreover, Equation (15) implies that

𝔼𝑥
[
sup
𝑡≥0 𝛿(𝑡)𝑓(𝑋𝑡)

]
< ∞, ∀𝑥 ∈ 𝕏. (17)
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This together with Equation (14) guarantees the well-posedness of 𝑉(𝑡, 𝑥, 𝑆) for any stopping pol-
icy 𝑆.4 Equations (17) and (14) will also be used for applying the dominated convergence theorem
in some localization arguments in the proofs later. Furthermore, Equations (17) and (14) also
ensure the existence of an optimal mild equilibrium as demonstrated in Huang and Zhou (2020,
Theorem 4.12) (also see Lemma 4.1 in this paper).

Let us make an assumption on 𝑉(𝑡, 𝑥, 𝑆).

Assumption 2.10. For any admissible stopping policy 𝑆 and 𝑎, 𝑏 ∈ 𝕏with 𝑎 < 𝑏 and (𝑎, 𝑏) ⊂ 𝑆𝑐,
𝑉(𝑡, 𝑥, 𝑆) defined in Equation (11) (with 𝐴 = 𝑆) belongs to 1,2([0,∞) × [𝑎, 𝑏]), and

lim sup
𝑡↘0

1√
𝑡
|𝑉𝑥(𝑡, 𝑥±, 𝑆) − 𝑉𝑥(0, 𝑥±, 𝑆)| = 0, ∀ 𝑥 ∈ 𝕏. (18)

Remark 2.11. It turns out that Assumption 2.10 is quite general. A sufficient condition for Assump-
tion 2.10 is that 𝛿(𝑡) is a weighted discount function as shown in the lemma below. One may also
directly verify this assumption given the probability density functions of exit time

𝑝(𝑥, 𝑡) ∶= ℙ𝑥
(
𝜏(𝑐,𝑑) ∈ 𝑑𝑡, 𝑋𝜏(𝑐,𝑑) = 𝑐

)
and 𝑞(𝑥, 𝑡) ∶= ℙ𝑥

(
𝜏(𝑐,𝑑) ∈ 𝑑𝑡, 𝑋𝜏(𝑐,𝑑) = 𝑑

)
(19)

being regular enough. For example, if 𝑋 is a Brownian motion on𝕏 = ℝ, 𝛿(𝑡) = 1

1+𝑡
, and 𝑓(𝑥) =

0 ∨ 𝑥, then we can verify that Assumption 2.10 holds by using Equation (19) for the Brownian
motion. Providing a more general sufficient condition for Assumption 2.10 is out of the scope of
this paper.

Lemma 2.12. Let Assumption 2.1 hold and 𝑓 be bounded on𝕏. Suppose 𝛿(𝑡) is aweighted discount
function of the following form:

𝛿(𝑡) = ∫
∞

0
𝑒−𝑟𝑡𝑑𝐹(𝑟), (20)

where 𝐹(𝑟) ∶ [0,∞) → [0, 1] is a cumulative distribution function satisfying ∫ ∞
0
𝑟𝑑𝐹(𝑟) < ∞ and

lim
𝑡↘0

1√
𝑡 ∫

∞

0
𝑟(1 − 𝑒−𝑟𝑡)𝑑𝐹(𝑟) = 0. (21)

Then, Assumption 2.10 holds.

The proof of Lemma 2.12 is included in Appendix A.

Remark 2.13. In Ebert et al. (2020), weighted discount functions are studied in detail. Tan et al.
(2021) investigates weak equilibria and the smooth-fit condition for time-inconsistent stopping
in a weighted discounting setting. Many discount functions, including exponential, hyperbolic,

4 Equation (14) is used for the well-posedness of 𝑉(𝑡, 𝑥, 𝑆) because otherwise 𝛿(𝑡)𝑓(𝑋𝑡) is not well-defined on 𝜌𝑆 = ∞
(unless we do some extension, e.g., by considering the upper limit lim sup𝑡→∞ 𝛿(𝑡)𝑓(𝑋𝑡).
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generalized hyperbolic, and pseudo-exponential discounting, satisfy Equations (20) and (21). For
example, a generalized hyperbolic discount function can be written as

𝛿(𝑡) =
1

(1 + 𝛽𝑡)
𝛾

𝛽

= ∫
∞

0
𝑒−𝑟𝑡
𝑟
𝛾

𝛽
−1
𝑒
−
𝑟

𝛽

𝛽
𝛾

𝛽 Γ(
𝛾

𝛽
)

𝑑𝑟 = ∫
∞

0
𝑒−𝑟𝑡𝑑𝐹(𝑟), with

𝑑𝐹(𝑟)
𝑑𝑟

=
𝑟
𝛾

𝛽
−1
𝑒
−
𝑟

𝛽

𝛽
𝛾

𝛽 Γ(
𝛾

𝛽
)

,

where 𝛽, 𝛾 > 0 are constants and Γ(⋅) is the gamma function (see Tan et al. (2021, Section 2.1)). A
direct calculation shows that

∫
∞

0
𝑟(1 − 𝑒−𝑟𝑡)𝑑𝐹(𝑟) = ∫

∞

0
𝑟(1 − 𝑒−𝑟𝑡)

𝑟
𝛾

𝛽
−1
𝑒
−
𝑟

𝛽

𝛽
𝛾

𝛽 Γ(
𝛾

𝛽
)

𝑑𝑟 = 𝛾 − 𝛾
1

(1 + 𝛽𝑡)
𝛾

𝛽
+1

≤ 𝛾(𝛾 + 𝛽)𝑡 ∀𝑡 > 0,

which implies Equation (21).

The next lemma summarizes several preliminary properties of 𝑉(𝑡, 𝑥, 𝑆), which will be used to
establish the main results in later sections.

Lemma 2.14. Let Assumptions 2.1, 2.5, 2.8(ii), 2.10 hold and 𝑆 be an admissible stopping policy.
Then,

(a) 𝑉(𝑡, 𝑥, 𝑆) belongs to 1,2([0,∞) × 𝑆𝑐), and 𝑉(𝑡, 𝑥, 𝑆) = 𝛿(𝑡)𝑓(𝑥) for any (𝑡, 𝑥) ∈ [0,∞) × 𝑆.
Moreover,

𝑉(𝑡, 𝑥, 𝑆) ≡ 0, ∀(𝑡, 𝑥) ∈ [0,∞) × 𝑆𝑐. (22)

(b) 𝑉(𝑡, 𝑥±, 𝑆) exists for all (𝑡, 𝑥) ∈ [0,∞) × 𝕏. For anyℎ > 0 and𝑥0 ∈ 𝕏 such that𝐵(𝑥0, ℎ) ⊂ 𝕏,
we have that

sup
(𝑡,𝑥)∈[0,∞)×𝐵(𝑥0,ℎ)

|𝑉(𝑡, 𝑥±, 𝑆)| < ∞.
The proof of Lemma 2.14 is provided in Appendix A. Throughout this paper, we will keep using

the following local time integral formula provided in Peskir (2007).

Lemma 2.15. Let 𝑎, 𝑥0, 𝑏 ∈ ℝ with 𝑎 < 𝑥0 < 𝑏. Suppose 𝑔(𝑡, 𝑦) ∶ [0,∞) × ℝ → ℝ such that 𝑔 ∈
1,2((0,∞) × (𝑎, 𝑥0]), 𝑔 ∈ 1,2((0,∞) × [𝑥0, 𝑏)). Then, for 𝑋0 = 𝑥 ∈ (𝑎, 𝑏), we have that

𝑔(𝑡, 𝑋𝑡) = 𝑔(0, 𝑥) + ∫
𝑡

0

1
2
(𝑔(𝑠, 𝑋𝑠−) + 𝑔(𝑠, 𝑋𝑠+))𝑑𝑠 + ∫

𝑡

0
𝑔𝑥(𝑠, 𝑋𝑠)𝜎(𝑋𝑠) ⋅ 1{𝑋𝑠≠𝑥0}𝑑𝑊𝑠

+
1
2 ∫

𝑡

0
(𝑔𝑥(𝑠, 𝑥0+) − 𝑔𝑥(𝑠, 𝑥0−))𝑑𝐿

𝑥0
𝑠 ∀0 ≤ 𝑡 ≤ 𝜏(𝑎,𝑏).
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3 CHARACTERIZATION FORWEAK EQUILIBRIA

In this section, we provide the characterization for weak equilibria. Such characterization is crit-
ical to study of the relations between mild, weak, and strong equilibria. Below is the main result
of this section.

Theorem 3.1. Let Assumptions 2.1–2.10 hold. Suppose 𝑆 is an admissible stopping policy. Then 𝑆 is
a weak equilibrium if and only if the followings are satisfied.

𝑉(0, 𝑥, 𝑆) ≥ 𝑓(𝑥) ∀𝑥 ∉ 𝑆; (23)

𝑉𝑥(0, 𝑥−, 𝑆) ≥ 𝑉𝑥(0, 𝑥+, 𝑆) ∀𝑥 ∈ 𝑆; (24)

𝑉(0, 𝑥−, 𝑆) ∨ 𝑉(0, 𝑥+, 𝑆) ≤ 0 ∀𝑥 ∈ 𝕏. (25)

The proof of Theorem 3.1 will be presented in the next subsection. A consequence of
Theorem 3.11 is the following smooth-fit condition of 𝑉 at the boundary 𝜕𝑆 when 𝑓 is smooth.

Corollary 3.2 (Smooth-fit condition for weak equilibria when 𝑓 is smooth). Let Assumptions 2.1–
2.10 hold, and let 𝑆 be an admissible stopping policy. Suppose 𝑆 is a weak equilibrium. Then for any
𝑥 ∈ 𝜕𝑆, if 𝑓′(𝑥) exists, then 𝑉𝑥(0, 𝑥−, 𝑆) = 𝑉𝑥(0, 𝑥+, 𝑆).

Proof. Take an arbitrary 𝑥 ∈ 𝜕𝑆. Take 𝑥 ∈ 𝜕𝑆. By Theorem 3.11, it suffices to prove that
𝑉𝑥(0, 𝑥−, 𝑆) ≤ 𝑉𝑥(0, 𝑥+, 𝑆) for both boundary cases (a) and (b).
Recall  defined in Equation (16). For boundary case (a), without loss of generality, we

assume (𝑥, 𝑥 + ℎ) ⊂ (𝑆◦ ∩ ) and (𝑥 − ℎ, 𝑥) ⊂ 𝑆𝑐 for some ℎ > 0. Since 𝑉(0, 𝑥, 𝑆) ≥ 𝑓(𝑥) on 𝑆𝑐 by
Equation (5) and 𝑉(0, 𝑥, 𝑆) = 𝑓(𝑥) on 𝑆 by Lemma 2.14 (a), we have that for 𝜀 > 0 small enough,

𝑉(0, 𝑥 − 𝜀, 𝑆) − 𝑉(0, 𝑥, 𝑆)
𝜀

≥ 𝑓(𝑥 − 𝜀) − 𝑓(𝑥)
𝜀

.

By the differentiability of 𝑉 on [0,∞) × 𝑆𝑐 (due to Lemma 2.14(a)) and existence of 𝑓′(𝑥), the
above inequalities implies that

𝑉𝑥(0, 𝑥−, 𝑆) ≤ 𝑓′(𝑥−) = 𝑓′(𝑥+) = 𝑉𝑥(0, 𝑥+, 𝑆),
where the last equality follows from 𝑉(0, 𝑥, 𝑆) = 𝑓(𝑥) on (𝑥, 𝑥 + ℎ) ⊂ (𝑆◦ ∩ ).
For boundary case (b),we can choose a constantℎ > 0 such that (𝐵(𝑥, ℎ) ⧵ {𝑥}) ⊂ (𝑆𝑐 ∩ ). Then

𝑉(0, 𝑦, 𝑆) ≥ 𝑓(𝑦) for all 𝑦 ∈ 𝐵(𝑥, ℎ) ⧵ {𝑥}, which implies that
𝑉𝑥(0, 𝑥−, 𝑆) ≤ 𝑓′(𝑥−) = 𝑓′(𝑥+) ≤ 𝑉𝑥(0, 𝑥+, 𝑆)

by an argument similar to that for boundary case (a). □

Remark 3.3. In Tan et al. (2021), it is shown that with the underlying process being a geometric
Brownianmotion, the smooth-fit condition together with some inequalities provides a weak equi-
librium; in addition, the real options example in Tan et al. (2021) indicates that when smooth-fit
condition fails, there is no weak equilibrium. This, however, does not indicate whether any weak
equilibrium must satisfy the smooth-fit condition. Here, we are able to provide a much sharper
result in a much more general setting: given 𝑓 is smooth, any weak equilibrium must satisfy the
smooth-fit condition, and may be constructed by the smooth-fit condition together with some
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other related inequalities. Let us also mention that smooth-fit result is also established in a very
recent paper (Bodnariu et al., 2022) for mixed weak equilibrium under a general setting.

Remark 3.4. In our paper, the payoff function 𝑓 is only required to be piecewisely smooth. The
inequality in Equation (24) and Corollary 3.2 show that the smooth-fit condition is a specially
case of the “local convexity” property for a weak equilibrium 𝑆: the left derivative w.r.t. 𝑥 of the
value function 𝑉(0, 𝑥, 𝑆) must be bigger than or equal to its right derivative for any 𝑥 ∈ 𝑆. In
particular, if the payoff function is smooth at a point 𝑥 ∈ 𝑆, such convexity property is reduced to
the smooth-fit condition.

Remark 3.5. Suppose the discount function is exponential in the current one-dimensional diffu-
sion context. Then Equations (23) and (25) together yield the variational inequalities. As is well
known in classical optimal stopping theory, (under suitable assumptions) the optimal stopping
value and strategy can be characterized by variational inequalities. Therefore, when the discount
function is exponential, Theorem 3.1 indicates that any weak equilibrium is an optimal stopping
region in the classical sense, so are strong and optimalmild equilibrium (aswewill show later that
an optimal mild equilibrium is also weak). On the other hand, a mild equilibrium is not necessar-
ily a classical optimal stopping region, for example, the whole state space𝕏 is a mild equilibrium
but may not be an optimal stopping region in general.

3.1 Proof of Theorem 3.1

To characterize a weak equilibrium, one shall consider the two conditions (5) and (6) in
Definition 1.3. Equation (5) is the same as Equation (23) and thus we will focus on condition
(6). By 𝑉 defined in Equation (11), Equation (6) can be rewritten as

lim sup
𝜀↘0

1
𝜀

(
𝔼𝑥[𝛿(𝜌𝜀𝑆)𝑓(𝑋𝜌𝜀𝑆 )] − 𝑓(𝑥)

)
= lim sup

𝜀↘0

1
𝜀
(𝔼𝑥[𝑉(𝜀, 𝑋𝜀, 𝑆)] − 𝑉(0, 𝑥, 𝑆)) ≤ 0, 𝑥 ∈ 𝑆.

(26)
Since 𝑋𝜀 and thus 𝑉(𝜀, 𝑋𝜀, 𝑆) are not uniformly bounded, we will apply some localization argu-
ment and restrict 𝑋 within a bounded ball 𝐵(𝑥, ℎ). Moreover, as 𝑥 ↦ 𝑉(𝑡, ⋅, 𝑆) is only piecewisely
smooth, we will choose ℎ > 0 small enough, such that 𝑉𝑥 is only (possibly) discontinuous at the
center of the ball 𝐵(𝑥, ℎ), in order to apply Lemma 2.15 to 𝑉 in Equation (26). By doing so, we will
end up with

𝔼𝑥[𝑉(𝜀, 𝑋𝜀, 𝑆) − 𝑉(0, 𝑥, 𝑆)] ≈𝔼
𝑥[𝑉(𝜀 ∧ 𝜏𝐵(𝑥,ℎ), 𝑋𝜀∧𝜏𝐵(𝑥,ℎ) ) − 𝑉(0, 𝑥, 𝑆)] (27)

= 𝔼𝑥
[
∫
𝜀∧𝜏𝐵(𝑥,ℎ)

0

1
2
(𝑉(𝑠, 𝑋𝑠−, 𝑆) + 𝑉(𝑠, 𝑋𝑠+, 𝑆))𝑑𝑠

]
+ 𝔼𝑥

[
1
2 ∫

𝜀∧𝜏𝐵(𝑥,ℎ)

0
(𝑉𝑥(𝑠, 𝑥+, 𝑆) − 𝑉𝑥(𝑠, 𝑥−, 𝑆))𝑑𝐿

𝑥
𝑠

]
. (28)

where the approximation in Equation (27) will be made rigorous in Lemma 3.8, which is built
on Lemma 3.6, and Equation (28) is due to Lemma 2.15. Then the condition (26) boils down to
comparing the two integral terms on the right-hand side (RHS) of Equation (28). This requires
estimates for the expected local time𝔼𝑥[𝐿𝑥𝜀∧𝜏𝐵(𝑥,ℎ) ] (see Lemma 3.9, which is built uponLemmas 3.6
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and 3.7) and the growth of 𝑉𝑥(𝑡, 𝑥±, 𝑆) w.r.t. 𝑡 (see Lemma 3.10). This is the overall idea on how
we obtain Theorem 3.1.
Throughout this section, we shall also take advantage of the following standard estimate for

moments of diffusions (see, e.g., Karatzas and Shreve (1991, Problem 3.15 on page 306)): Given a
process 𝑍𝑡 satisfying 𝑑𝑍𝑡 = 𝛽(𝑍𝑡)𝑑𝑡 + 𝛿(𝑍𝑡)𝑑𝑊𝑡 with 𝛽, 𝛿 being Lipschitz and 𝑍0 = 𝑧 ∈ 𝕏, for all
0 ≤ 𝜀 ≤ 1 and𝑚 ≥ 1, it holds that

𝔼𝑥
[
sup
0≤𝑠≤𝑡 |𝑍𝑠|2𝑚

]
< ∞ ∀𝑡 ∈ (0,∞), (29)

𝔼𝑥
[|𝑍𝜀 − 𝑧|2𝑚] ≤ 𝐾(1 + |𝑧|2𝑚)𝜀𝑚, (30)

where 𝐾 is a constant independent of 𝜀.
We first provide two Lemmas dealing with the probability of𝑋 exiting a ball, and the first-order

moment related to 𝑋 over a small time horizon 𝜀. They will be used for proofs in both the current
and later sections.

Lemma 3.6. Let Assumption 2.1 hold. For any fixed 𝑎 > 0 we have that

ℙ𝑥(𝜏𝐵(𝑥,ℎ) ≤ 𝜀) = 𝑜(𝜀𝑎), for 𝜀 > 0 small enough. (31)

Proof. Fix 𝑎 > 0. We invoke the “change of space” method in Peskir and Shiryaev (2006,
Section 5.2). Consider the process

𝑌𝑡 ∶= 𝜙(𝑋𝑡), 𝑌0 ∶= 𝜙(𝑥) with 𝜙(𝑦) ∶= ∫
𝑦

0
exp

(
−∫

𝑙

0

2𝜇(𝑧)

𝜎2(𝑧)
𝑑𝑧

)
𝑑𝑙. (32)

Thanks to Assumption 2.1, 𝜙 is well-defined, strictly increasing, and has first and second deriva-
tives. A direct calculation shows that 𝑑𝑌𝑡 = 𝜎(𝑋𝑡)𝜙′(𝑋𝑡)𝑑𝑊𝑡, and the exit time to 𝐵(𝑥, ℎ) of 𝑋𝑡 is
equivalent to the exit time of 𝑌𝑡 to the interval [𝜙(𝑥 − ℎ), 𝜙(𝑥 + ℎ)]. Set ℎ̃ ∶= (𝜙(𝑥 + ℎ) − 𝜙(𝑥)) ∧
(𝜙(𝑥) − 𝜙(𝑥 − ℎ)) > 0 and 𝑎̃ ∶= 𝑎 + 1. Let 0 < 𝜀 ≤ 1. We have that

ℙ𝑥(𝜏𝐵(𝑥,ℎ) ≤ 𝜀) ≤ ℙ𝑌0
(
sup
0≤𝑡≤𝜀 |𝑌𝑡 − 𝑌0| ≥ ℎ̃

)
= ℙ𝑌0

(
sup
0≤𝑡≤𝜀 |𝑌𝑡 − 𝑌0|2𝑎̃ ≥ ℎ̃2𝑎̃

)
. (33)

Notice that 𝑌 is a martigale (within the interval 𝐵(𝜙(𝑥), ℎ̃)), we can then apply the Doob’s
submartingale inequality to the RHS of Equation (33) to conclude that

ℙ𝑌0
(
sup
0≤𝑡≤𝜀 |𝑌𝑡 − 𝑌0|2𝑎̃ ≥ ℎ̃2𝑎̃

)
≤ 𝔼𝑌0[|𝑌𝜀 − 𝑌0|2𝑎̃]

ℎ̃2𝑎̃
≤ 𝐾̃(1 + 𝜙2𝑎̃(𝑥))𝜀𝑎̃

ℎ̃2𝑎̃
, (34)

where the last inequality follows from Equation (30), and 𝐾̃ is a positive constant independent of
𝜀. Then Equation (31) follows from Equations (33) and (34) and the fact that 𝑎̃ > 𝑎. □

Lemma 3.7. Let Assumption 2.1(i) hold. For 𝜀 > 0 small enough we have that

𝔼𝑥[|𝑋̄𝜀|] = 𝑂(𝜀), with 𝑋𝑡 ∶= 𝑥 + 𝜇(𝑥)𝑡 + 𝜎(𝑥)𝑊𝑡 and 𝑋̄𝑡 ∶= 𝑋𝑡 − 𝑋𝑡. (35)
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Proof. Throughout the proof, 𝐶 will serve as a generic constant may change from line to line but
is independent of 𝜀. Let 0 < 𝜀 ≤ 1. First, we have

𝔼𝑥|𝑋̄𝜀| ≤ 𝔼𝑥|||||∫
𝜀

0
(𝜇(𝑋𝑡) − 𝜇(𝑥))𝑑𝑡

||||| + 𝔼𝑥
|||||∫

𝜀

0
(𝜎(𝑋𝑡) − 𝜎(𝑥))𝑑𝑊𝑡

|||||. (36)

By applying Equation (30) on 𝑋𝑡 with𝑚 = 1, we have 𝔼𝑥[|𝑋𝜀 − 𝑥|2] ≤ 𝐶𝜀. This together with the
Lipschitz continuity of 𝜇 implies

𝔼𝑥
|||||∫

𝜀

0
(𝜇(𝑋𝑡) − 𝜇(𝑥))𝑑𝑡

||||| ≤ 𝔼𝑥
[
∫
𝜀

0

1
2
(1 + |𝜇(𝑋𝑡) − 𝜇(𝑥)|2)𝑑𝑡]

≤ 1
2
𝜀 +
1
2 ∫

𝜀

0
𝐶𝔼𝑥[|𝑋𝑡 − 𝑥|2]𝑑𝑡 = 𝑂(𝜀).

(37)

Similarly, we can estimate the second term in Equation (36) as follows:

𝔼𝑥
|||||∫

𝜀

0
(𝜎(𝑋𝑡) − 𝜎(𝑥))𝑑𝑊𝑡

||||| ≤
(
𝔼𝑥

[
∫
𝜀

0
(𝜎(𝑋𝑡) − 𝜎(𝑥))

2𝑑𝑡

])1∕2

≤
(
∫
𝜀

0
𝐶𝔼𝑥[|𝑋𝑡 − 𝑥|2]𝑑𝑡)1∕2 = 𝑂(𝜀)

(38)

Then, by plugging Equations (37) and (38) into Equation (36), we have 𝔼𝑥[|𝑋̄𝜀|] = 𝑂(𝜀). □

The next lemma concerns the approximation in Equation (27).

Lemma 3.8. Let Assumptions 2.1 and 2.8(i) hold. Let 𝑆 ∈ , 𝑥 ∈ 𝕏 and ℎ > 0. Then, for 𝜀 > 0 small
enough,

𝔼𝑥[𝑉(𝜀, 𝑋𝜀, 𝑆)] = 𝔼
𝑥[𝑉(𝜀 ∧ 𝜏𝐵(𝑥,ℎ), 𝑋𝜀∧𝜏𝐵(𝑥,ℎ) , 𝑆)] + 𝑜(𝜀). (39)

Proof. Let ℎ > 0 and 𝑥 ∈ 𝕏. Recall the constant 𝜁 in Equation (15). We have that

0 ≤𝔼𝑥[𝑉(𝜀, 𝑋𝜀, 𝑆) ⋅ 1{𝜀>𝜏𝐵(𝑥,ℎ)}]

≤(𝔼𝑥[𝑉1+𝜁(𝜀, 𝑋𝜀, 𝑆)]) 1

1+𝜁 ⋅

(
𝔼𝑥

[
1

1+𝜁

𝜁

{𝜀>𝜏𝐵(𝑥,ℎ)}

]) 𝜁

1+𝜁

≤
(
𝔼𝑥

[
sup
𝑡≥0 (𝛿(𝑡)𝑓(𝑋𝑡))

1+𝜁

]) 1

1+𝜁

⋅
(
𝔼𝑥

[
1{𝜀>𝜏𝐵(𝑥,ℎ)}

]) 𝜁

1+𝜁

≤𝑂(1) ⋅ (ℙ𝑥(𝜏𝐵(𝑥,ℎ) ≤ 𝜀)) 𝜁

1+𝜁 ,

(40)

where the first inequality follows from𝑓 ≥ 0, the second inequality follows fromHölder’s inequal-
ity, the third inequality follows from Jensen’s inequality, and the last inequality follows from
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Equation (15). Applying Lemma 3.6 with 𝑎 = 1+𝜁
𝜁
to Equation (40), we have

𝔼𝑥
[
𝑉(𝜀, 𝑋𝜀, 𝑆) ⋅ 1{𝜀>𝜏𝐵(𝑥,ℎ)}

]
= 𝑜(𝜀). (41)

Similarly, we can show that

𝔼𝑥
[
𝑉(𝜀 ∧ 𝜏𝐵(𝑥,ℎ), 𝑋𝜀∧𝜏𝐵(𝑥,ℎ) , 𝑆) ⋅ 1{𝜀>𝜏𝐵(𝑥,ℎ)}

]
= 𝑜(𝜀).

This together with Equation (41) implies Equation (39). □

Recall that 𝐿𝑥𝑡 is the local time of 𝑋 at position 𝑥 up to time 𝑡. We have the following result.

Lemma 3.9. Let Assumption 2.1 hold. Then, for any 𝑥 ∈ 𝕏 and ℎ > 0,

lim
𝜀↘0

𝔼𝑥
[
𝐿𝑥𝜀∧𝜏𝐵(𝑥,ℎ)

]
√
𝜀

=

√
2
𝜋
⋅ |𝜎(𝑥)|. (42)

Proof. Let ℎ > 0 and 𝑥 ∈ 𝕏. Thanks to Assumption 2.1(i) and (29) (with 𝑚 = 𝑝+2
2
> 1), it holds

for any 𝑝, 𝑡 > 0 that

𝔼𝑥
[
sup
0≤𝑠≤𝑡 |𝑋𝑠|𝑝

]
≤ 1 + 𝔼𝑥

[
sup
0≤𝑠≤𝑡 |𝑋𝑠|𝑝+2

]
< ∞.

This enables us to apply an argument similar to the proof of Lemma 3.8 and get that

𝔼𝑥[|𝑋𝜀 − 𝑥|] + 𝑜(𝜀) = 𝔼𝑥[|𝑋𝜀∧𝜏𝐵(𝑥,ℎ) − 𝑥|]. (43)

Applying Lemma 2.15 on [0, 𝜀 ∧ 𝜏𝐵(𝑥,ℎ)] with 𝑔(𝑡, 𝑦) ∶= |𝑦 − 𝑥| and then taking expectation, and
using Equation (43), we have that

𝔼𝑥[|𝑋𝜀 − 𝑥|] + 𝑜(𝜀) = 𝔼𝑥[∫ 𝜀∧𝜏𝐵(𝑥,ℎ)

0
sgn(𝑋𝑠 − 𝑥)𝜇(𝑋𝑠)𝑑𝑠

]
+ 𝔼𝑥

[
𝐿𝑥𝜀∧𝜏𝐵(𝑥,ℎ)

]
. (44)

By Assumption 2.1(i), the first term on the RHS of Equation (44) can be estimated as follows:|||||𝔼𝑥
[
∫
𝜀∧𝜏𝐵(𝑥,ℎ)

0
sgn(𝑋𝑠 − 𝑥)𝜇(𝑋𝑠)𝑑𝑠

]||||| ≤ sup
𝑦∈𝐵(𝑥,ℎ)

|𝜇(𝑦)|𝜀 = 𝑂(𝜀). (45)

As for the left-hand side (LHS) of Equation (44), by Lemma 3.7 we have that

𝔼𝑥[|𝑋𝜀 − 𝑥|] = 𝔼𝑥[|𝑋𝜀 − 𝑥|] + 𝑂(𝜀) = 𝔼𝑥[|𝜇(𝑥)𝜀 + 𝜎(𝑥)𝑊𝜀|] + 𝑂(𝜀)
= |𝜎(𝑥)|𝔼[|𝑊𝜀|] + 𝑂(𝜀) = |𝜎(𝑥)|𝔼[|𝑊1|]√𝜀 + 𝑂(𝜀) = |𝜎(𝑥)|√ 2

𝜋

√
𝜀 + 𝑂(𝜀). (46)

Then Equation (42) follows from plugging Equations (45) and (46) into Equation (44). □
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Lemma 3.10. Let Assumptions 2.1, 2.5, 2.10 hold. Let 𝑆 ∈  and 𝑥 ∈ 𝜕𝑆, and suppose (𝑥 − ℎ, 𝑥) ⊂
𝑆𝑐 (resp. (𝑥, 𝑥 + ℎ) ⊂ 𝑆𝑐) for some ℎ > 0. Then,

𝑉𝑥(𝑡, 𝑥−, 𝑆) ≤ 𝛿(𝑡)𝑉𝑥(0, 𝑥−, 𝑆) (resp. 𝑉𝑥(𝑡, 𝑥+, 𝑆) ≥ 𝛿(𝑡)𝑉𝑥(0, 𝑥+, 𝑆)). (47)

Proof. Notice that Assumption 2.10 gives the existence of 𝑉𝑥(𝑡, 𝑦−, 𝑆) for 𝑦 ∈ (𝑥 − ℎ, 𝑥] (resp.
𝑉𝑥(𝑡, 𝑦+, 𝑆) for 𝑦 ∈ [𝑥, 𝑥 + ℎ)) when (𝑥 − ℎ, 𝑥) ⊂ 𝑆𝑐 (resp. when (𝑥, 𝑥 + ℎ) ⊂ 𝑆𝑐). For any 𝑦 ∈
𝕏, 𝑡 ≥ 0, by the non-negativity of 𝑓 and Equation (13),

𝑉(𝑡, 𝑦, 𝑆) = 𝔼𝑦[𝛿(𝑡 + 𝜌𝑆)𝑓(𝑋𝜌𝑆 )] ≥ 𝛿(𝑡)𝔼𝑦[𝛿(𝜌𝑆)𝑓(𝑋𝜌𝑆 )] = 𝛿(𝑡)𝑉(0, 𝑦, 𝑆).
Suppose (𝑥 − ℎ, 𝑥) ⊂ 𝑆𝑐. Then by the fact that 𝑉(𝑡, 𝑥, 𝑆) = 𝛿(𝑡)𝑓(𝑥) (due to Lemma 2.14 (a)) and
the above inequality, we have that

𝑉𝑥(𝑡, 𝑥−, 𝑆) = lim
𝜀↘0

1
𝜀
(𝑉(𝑡, 𝑥, 𝑆) − 𝑉(𝑡, 𝑥 − 𝜀, 𝑆))

≤ lim
𝜀↘0

1
𝜀
(𝛿(𝑡)(𝑓(𝑥) − 𝑉(0, 𝑥 − 𝜀, 𝑆))) = 𝛿(𝑡)𝑉𝑥(0, 𝑥−, 𝑆).

Similar argument is applied for the result of 𝑉𝑥(𝑡, 𝑥+, 𝑆) when (𝑥, 𝑥 + ℎ) ⊂ 𝑆𝑐. □

Lemmas 3.9 and 3.10 together indicate that, as long as𝑉𝑥(0, 𝑥+, 𝑆) − 𝑉𝑥(0, 𝑥−, 𝑆) ≠ 0, the local
time integral is the dominating term on the RHS of Equation (28). Thus, to make the LHS of
Equation (28) nonpositive in the limit, 𝑉𝑥(0, 𝑥+, 𝑆) − 𝑉𝑥(0, 𝑥−, 𝑆) shall be nonpositive. Based on
this and recalling Equation (26), we now prove the necessary conditions for a weak equilibrium
in the following proposition. The sufficiency part follows next.

Proposition 3.11. Let Assumptions 2.1–2.10 hold. Suppose 𝑆 is an admissible stopping policy. If 𝑆 is
a weak equilibrium, then {

𝑉𝑥(0, 𝑥+, 𝑆) ≤ 𝑉𝑥(0, 𝑥−, 𝑆) ∀𝑥 ∈ 𝑆,

𝑉(0, 𝑥+, 𝑆) ∨ 𝑉(0, 𝑥−, 𝑆) ≤ 0 ∀𝑥 ∈ 𝕏.
(48)

Proof. We verify the first inequality in Equation (48) by contradiction. Take 𝑥 ∈ 𝑆 and suppose

𝑎 ∶= 𝑉𝑥(0, 𝑥+, 𝑆) − 𝑉𝑥(0, 𝑥−, 𝑆) > 0. (49)

Recall  defined in Equation (16). Choose ℎ > 0 such that (𝑥 − ℎ, 𝑥) ∪ (𝑥, 𝑥 + ℎ) is contained in
( ∩ 𝑆◦) ∪ 𝑆𝑐. By Lemma 2.14(a) and Assumption 2.8(ii), 𝑉 ∈ 1,2([0,∞) × (𝑥 − ℎ, 𝑥]) and 𝑉 ∈
1,2([0,∞) × [𝑥, 𝑥 + ℎ)). Then, we can apply Lemma 2.15 to get

𝑉(𝜀 ∧ 𝜏𝐵(𝑥,ℎ), 𝑋𝜀∧𝜏𝐵(𝑥,ℎ) , 𝑆) − 𝑉(0, 𝑥, 𝑆) =∫
𝜀∧𝜏𝐵(𝑥,ℎ)

0

1
2
(𝑉(𝑠, 𝑋𝑠−, 𝑆) + 𝑉(𝑠, 𝑋𝑠+, 𝑆))𝑑𝑠

+ ∫
𝜀∧𝜏𝐵(𝑥,ℎ)

0
𝑉𝑥(𝑠, 𝑋𝑠, 𝑆)𝜎(𝑋𝑠) ⋅ 1{𝑋𝑠≠𝑥}𝑑𝑊𝑠

+
1
2 ∫

𝜀∧𝜏𝐵(𝑥,ℎ)

0
(𝑉𝑥(𝑠, 𝑥+, 𝑆) − 𝑉𝑥(𝑠, 𝑥−, 𝑆))𝑑𝐿

𝑥
𝑠 .

(50)
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Let 𝜀 ∈ (0, 1), notice that the diffusion integrand above is bounded on [0, 1] × 𝐵(𝑥, ℎ). Taking
expectation on both sides of Equation (50) and then applying Lemma 3.8, we have that

𝔼𝑥[𝑉(𝜀, 𝑋𝜀, 𝑆) − 𝑉(0, 𝑥, 𝑆)] = 𝔼
𝑥

[
∫
𝜀∧𝜏𝐵(𝑥,ℎ)

0

1
2
(𝑉(𝑠, 𝑋𝑠−, 𝑆) + 𝑉(𝑠, 𝑋𝑠+, 𝑆))𝑑𝑠

]
+ 𝔼𝑥

[
1
2 ∫

𝜀∧𝜏𝐵(𝑥,ℎ)

0
(𝑉𝑥(𝑠, 𝑥+, 𝑆) − 𝑉𝑥(𝑠, 𝑥−, 𝑆))𝑑𝐿

𝑥
𝑠

]
+ 𝑜(𝜀).

(51)

By Lemma 3.10 and Equation (49),

𝑉𝑥(𝑡, 𝑥+, 𝑆) − 𝑉𝑥(𝑡, 𝑥−, 𝑆) ≥ 𝛿(𝑡)(𝑉𝑥(0, 𝑥+, 𝑆) − 𝑉𝑥(0, 𝑥−, 𝑆)) = 𝑎𝛿(𝑡), ∀𝑡 ≥ 0.
By the above inequality and the continuity of 𝛿, we can take 𝑇 > 0 such that

𝑉𝑥(𝑠, 𝑥+, 𝑆) − 𝑉𝑥(𝑠, 𝑥−, 𝑆) ≥ 𝑎2 , ∀𝑠 ∈ [0, 𝑇].
Then, for 𝜀 ∈ [0, 𝑇 ∧ 1], the second term on the RHS of Equation (51) can be estimated as follows:

𝔼𝑥
[
1
2 ∫

𝜀∧𝜏𝐵(𝑥,ℎ)

0
(𝑉𝑥(𝑠, 𝑥+, 𝑆) − 𝑉𝑥(𝑠, 𝑥−, 𝑆))𝑑𝐿

𝑥
𝑠

]
≥ 𝑎
4
𝔼𝑥[𝐿𝑥𝜏𝐵(𝑥,ℎ)∧𝜀]. (52)

By Lemma 2.14(b), we have

sup
(𝑡,𝑦)∈[0,1]×𝐵(𝑥,ℎ)

|𝑉(𝑡, 𝑦−, 𝑆) + 𝑉(𝑡, 𝑦+, 𝑆)| < ∞,
and thus the first term on the RHS of Equation (51) is of order 𝑂(𝜀). Plugging this and Equation
(52) into Equation (51) and then applying Lemma 3.9, we have

lim inf
𝜀↘0

1
𝜀
𝔼𝑥[𝑉(𝜀, 𝑋𝜀, 𝑆) − 𝑉(0, 𝑥, 𝑆)] ≥ 𝑂(1) + 𝑎4 lim inf𝜀↘0

1
𝜀
𝔼𝑥[𝐿𝑥𝜏𝐵(𝑥,ℎ)∧𝜀] = ∞,

which contradicts 𝑆 being a weak equilibrium. Hence, 𝑉𝑥(0, 𝑥+, 𝑆) − 𝑉𝑥(0, 𝑥−, 𝑆) ≤ 0.
Next, we verify the second inequality in Equation (48). Take 𝑥 ∈ 𝕏 andwe consider three cases.
Case (i) 𝑥 ∈ 𝑆𝑐. Lemma 2.14(a) shows that 𝑉(0, 𝑥, 𝑆) = 0.
Case (ii) 𝑥 ∈  ∩ 𝑆◦. Choose ℎ > 0 such that 𝐵(𝑥, ℎ) ⊂  ∩ 𝑆◦. Notice that 𝑉(𝑡, 𝑦, 𝑆) = 𝛿(𝑡)𝑓(𝑦)

for 𝑦 ∈ 𝑆◦. Then, by Assumptions 2.1(i) and 2.8(ii), we have𝑉(𝑡, 𝑦, 𝑆) ∈ 1,2([0,∞) × 𝐵(𝑥, ℎ)) and
(𝑡, 𝑦) ↦ 𝑉(𝑡, 𝑦, 𝑆) is continuous on [0,∞) × 𝐵(𝑥, ℎ). Thus,

lim
𝜀→0

1
𝜀 ∫

𝜀∧𝜏𝐵(𝑥,ℎ)

0
𝑉(𝑠, 𝑋𝑠, 𝑆)𝑑𝑠 = 𝑉(0, 𝑥, 𝑆), ℙ𝑥 − a.s..

By Lemma 2.14(b), sup
(𝑡,𝑦)∈[0,∞)×𝐵(𝑥,ℎ)

|𝑉(𝑡, 𝑦, 𝑆)| < ∞. Then, we can apply the dominated
convergence theorem to derive

lim
𝜀→0

1
𝜀
𝔼𝑥

[
∫
𝜀∧𝜏𝐵(𝑥,ℎ)

0
𝑉(𝑠, 𝑋𝑠, 𝑆)𝑑𝑠

]
= 𝑉(0, 𝑥, 𝑆). (53)
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Notice that Equation (51) is valid and the local time integral term in Equation (51) vanishes in this
case. Then, Equations (51) and (53) together lead to

lim
𝜀↘0

1
𝜀
𝔼𝑥[𝑉(𝜀, 𝑋𝜀, 𝑆) − 𝑉(0, 𝑥, 𝑆)] = lim

𝜀↘0

1
𝜀
𝔼𝑥

[
∫
𝜀∧𝜏𝐵(𝑥,ℎ)

0
𝑉(𝑠, 𝑋𝑠, 𝑆)𝑑𝑠

]
= 𝑉(0, 𝑥, 𝑆).

Since 𝑆 is a weak equilibrium, we have 𝑉(0, 𝑥, 𝑆) ≤ 0.
Case (iii) 𝑥 ∈ 𝑆 ⧵ ( ∩ 𝑆◦). As 𝑆 is admissible, we can pick ℎ > 0 such that (𝑥 − ℎ, 𝑥) is con-

tained in either  ∩ 𝑆◦ or 𝑆𝑐. By the results in Cases (i) and (ii), as well as the continuity of
𝑥 ↦ 𝑉(0, 𝑥−, 𝑆) on (𝑥 − ℎ, 𝑥], we have that

𝑉(0, 𝑥−, 𝑆) = lim
𝜀↘0

𝑉(0, (𝑥 − 𝜀)−, 𝑆) ≤ 0.
Similarly, 𝑉(0, 𝑥+, 𝑆) ≤ 0. □

Proof of Theorem 3.1. The necessity is implied by Proposition 3.11. Let us prove the sufficiency.
Take 𝑥 ∈ 𝑆. Since 𝑆 is admissible, by Lemma 2.14 and Assumption 2.8(ii), no matter 𝑥 ∈ 𝑆◦

or 𝑥 ∈ 𝜕𝑆, we can choose ℎ > 0 such that 𝑉(𝑡, 𝑥, 𝑆) ∈ 1,2([0,∞) × (𝑥 − ℎ, 𝑥]) and 𝑉(𝑡, 𝑥, 𝑆) ∈
1,2([0,∞) × [𝑥, 𝑥 + ℎ)). By a similar argument as that for Equation (51) (with Lemmas 2.15 and
3.8 applied), we have that

1
𝜀
(𝔼𝑥[𝑉(𝜀, 𝑋𝜀, 𝑆)] − 𝑉(0, 𝑥, 𝑆)) =

1
𝜀
𝔼𝑥

[
∫
𝜀∧𝜏𝐵(𝑥,ℎ)

0

1
2
(𝑉(𝑠, 𝑋𝑠−, 𝑆) + 𝑉(𝑠, 𝑋𝑠+, 𝑆))𝑑𝑠

]
+
1
𝜀
𝔼𝑥

[
1
2 ∫

𝜀∧𝜏𝐵(𝑥,ℎ)

0
(𝑉𝑥(𝑠, 𝑥+, 𝑆) − 𝑉𝑥(𝑠, 𝑥−, 𝑆))𝑑𝐿

𝑥
𝑠

]
+ 𝑜(1)

(54)
By Equation (25) and the (left/right) continuity of (𝑠, 𝑦) ↦ 𝑉(𝑠, 𝑦±, 𝑆) at (0, 𝑥), for ℙ-a.s. 𝜔 ∈ Ω,

lim sup
𝑠↘0

1
2
(𝑉(𝑠, 𝑋𝑠(𝜔)−, 𝑆) + 𝑉(𝑠, 𝑋𝑠(𝜔)+, 𝑆)) ≤ 0,

which leads to

lim sup
𝜀↘0

1
𝜀 ∫

𝜀∧𝜏𝐵(𝑥,ℎ)

0

1
2
(𝑉(𝑠, 𝑋𝑠(𝜔)−, 𝑆) + 𝑉(𝑠, 𝑋𝑠(𝜔)+, 𝑆))𝑑𝑠 ≤ 0. (55)

By Lemma 2.14 (b),

sup
(𝑡,𝑦)∈[0,1]×𝐵(𝑥,ℎ)

|𝑉(𝑡, 𝑦−, 𝑆) + 𝑉(𝑡, 𝑦+, 𝑆)| < ∞.
This enables us to apply Fatou’s lemma for Equation (55) and get

lim sup
𝜀↘0

1
𝜀
𝔼𝑥

[
∫
𝜀∧𝜏𝐵(𝑥,ℎ)

0

1
2
(𝑉(𝑠, 𝑋𝑠−, 𝑆) + 𝑉(𝑠, 𝑋𝑠+, 𝑆))𝑑𝑠

]
≤ 0. (56)

By Equation (18),

𝑉𝑥(𝑡, 𝑥+, 𝑆) − 𝑉𝑥(𝑡, 𝑥−, 𝑆) ≤ 𝑉𝑥(0, 𝑥+, 𝑆) − 𝑉𝑥(0, 𝑥−, 𝑆) + 𝑜(
√
𝑡).
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This together with Equation (24) implies that

1
𝜀
𝔼𝑥

[
1
2 ∫

𝜀∧𝜏𝐵(𝑥,ℎ)

0
(𝑉𝑥(𝑠, 𝑥+, 𝑆) − 𝑉𝑥(𝑠, 𝑥−, 𝑆))𝑑𝐿

𝑥
𝑠

]
≤ 1
𝜀
𝔼𝑥

[
1
2 ∫

𝜀∧𝜏𝐵(𝑥,ℎ)

0
(𝑉𝑥(0, 𝑥+, 𝑆) − 𝑉𝑥(0, 𝑥−, 𝑆) + 𝑜(

√
𝜀))𝑑𝐿𝑥𝑠

]
≤ 1
2𝜀
⋅ 𝑜(

√
𝜀) ⋅ 𝔼𝑥

[
𝐿𝑥𝜀∧𝜏𝐵(𝑥,ℎ)

]
=
1
2𝜀
⋅ 𝑜(

√
𝜀) ⋅ 𝑂(

√
𝜀) = 𝑜(1),

(57)

where the last line follows from Lemma 3.9. Then by Equations (54), (56), and (57), we have that

lim sup
𝜀↘0

1
𝜀
(𝔼𝑥[𝑉(𝜀, 𝑋𝜀, 𝑆)] − 𝑉(0, 𝑥, 𝑆)) ≤ 0.

□

4 OPTIMALMILD EQUILIBRIA AREWEAK EQUILIBRIA

In this section, we show that an optimal mild equilibrium is a weak equilibrium.
To begin with, let us point out that optimalmild equilibria exist for one-dimensional diffusions.

Such existence result is provided in Huang and Zhou (2020, Theorem 4.12), and we summarize it
in the current context as follows.

Lemma 4.1. Let Assumptions 2.1, 2.5, and Equations (14) and (17) hold. Then,

𝑆∗ ∶= ∩𝑆∈𝑆 (58)

is an optimal mild equilibrium, where  is the set containing all mild equilibria.
Remark 4.2. Notice that Equation (12) is assumed in Huang and Zhou (2020, Theorem 4.12)
for 𝑆∗ being an optimal mild equilibrium, which is guaranteed by Assumption 2.1 as stated in
Remark 2.2. Also, Equation (17) can be deduced from Assumption 2.8(i) as stated in Remark 2.9.

Below is the main result of this section.

Theorem 4.3. Let Assumptions 2.1–2.10 hold and 𝑆 be an admissible stopping policy. If 𝑆 is an
optimal mild equilibrium, then it is also a weak equilibrium.

By Lemma 4.1 and Theorem 4.3, we have the following.

Corollary 4.4. Let Assumptions 2.1–2.10 hold. Suppose 𝑆∗ is admissible. Then 𝑆∗ is also weak.
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Remark 4.5. The above corollary also provides the existence of weak equilibria (ignoring admis-
sibility) as a by-product. Moreover, since any weak equilibrium is also mild, we can see that 𝑆∗ is
optimal among all mild and weak equilibria.

4.1 Proof of Theorem 4.3

To show that an optimal mild equilibrium 𝑆 is a weak equilibrium, by Theorem 3.1 it suffices to
verify Equations (24) and (25) for 𝑆. Equation (24) will be proved in Proposition 4.7 by contradic-
tion. In particular, if we assume 𝑉𝑥(0, 𝑥0+, 𝑆) − 𝑉𝑥(0, 𝑥0−, 𝑆) > 0, then a mild equilibrium better
than 𝑆 can be construct by “digging a small hole 𝐵(𝑥0, ℎ)” out of 𝑆. The proof of Equation (25) is
also carried out via contradiction by finding a bettermild equilibrium.
Such construction of a bettermild equilibrium requires the comparison between the expectation

of a local time integral before the exit time 𝜏𝐵(𝑥,ℎ) and the expectation of 𝜏𝐵(𝑥,ℎ) for small ℎ, which
is stated in the following lemma.

Lemma 4.6. Suppose Assumptions 2.1 and 2.5 hold. For 𝑥0 ∈ 𝕏, we have that

𝔼𝑥0+𝑟ℎ
[∫ 𝜏𝐵(𝑥0,ℎ)
0

𝛿(𝑡)𝑑𝐿
𝑥0
𝑡

]
⋅ ℎ

𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]

ℎ↘0
⟶

𝜎2(𝑥0)

1 + |𝑟| uniformly for 𝑟 ∈ (−1, 1). (59)

Proof. We first prove

𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]

(1 − 𝑟2)ℎ2
ℎ↘0
⟶

1

𝜎2(𝑥0)
uniformly for 𝑟 ∈ (−1, 1) (60)

by using an argument similar to that for Christensen and Lindensjö (2020a, Lemma A.5). Pick a
constant 𝑎 and consider the function 𝑔(𝑡, 𝑧) ∶= 𝑎(𝑧 − 𝑥0)2 − 𝑡. We have that

𝑔(𝑡, 𝑧) = −1 + 𝑎𝜎2(𝑧) + 𝜇(𝑧)2𝑎(𝑧 − 𝑥0).
By Assumption 2.1(ii), 𝜎2(𝑥0) > 0. For any constant 𝑎 >

1

𝜎2(𝑥0)
, by the continuity of 𝜇(𝑥) and 𝜎(𝑥),

we can find ℎ > 0, which only depends on 𝑎, such that𝑔(𝑡, 𝑧) ≥ 0 for any 𝑧 ∈ 𝐵(𝑥0, ℎ). Applying
Ito’s formula to 𝑔(𝑡, 𝑋𝑡), we have that

𝑎𝔼𝑦
[
(𝑋𝜏𝐵(𝑥0,ℎ) − 𝑥0)

2
]
− 𝔼𝑦[𝜏𝐵(𝑥0,ℎ)] − 𝑎(𝑦 − 𝑥0)

2 = 𝔼𝑦
[
∫
𝜏𝐵(𝑥0,ℎ)

0
𝑔(𝑡, 𝑋𝑡)𝑑𝑡

]
≥ 0, ∀𝑦 ∈ 𝐵(𝑥0, ℎ).

For 𝑦 ∈ 𝐵(𝑥0, ℎ), rewrite 𝑦 = 𝑥0 + 𝑟ℎ for some 𝑟 ∈ (−1, 1). Then the above inequality leads to

𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)] ≤ 𝑎𝔼𝑥0+𝑟ℎ
[
(𝑋𝜏𝐵(𝑥0,ℎ) − 𝑥0)

2
]
− 𝑎(𝑟ℎ)2 = 𝑎ℎ2 − 𝑎𝑟2ℎ2 = 𝑎(1 − 𝑟2)ℎ2, ∀𝑟 ∈ (−1, 1).

(61)
Similarly, for any constant 0 < 𝑎̃ < 1

𝜎2(𝑥0)
, we can find ℎ̃, which only depends on 𝑎̃, such that

𝑔(𝑡, 𝑧) ≤ 0 on 𝐵(𝑥0, ℎ̃), and
𝔼𝑥0+𝑟ℎ̃[𝜏𝐵(𝑥0,ℎ̃)] ≥ 𝑎̃(1 − 𝑟2)ℎ̃2, ∀𝑟 ∈ (−1, 1). (62)
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By (61) and (62), for any𝐻 ∈ (0, ℎ ∧ ℎ̃] we have that

𝑎̃ ≤ 𝔼
𝑥0+𝑟𝐻[𝜏𝐵(𝑥0,𝐻)]

(1 − 𝑟2)𝐻2
≤ 𝑎, for all 𝑟 ∈ (−1, 1), 𝑎̃ ∈

(
0,

1

𝜎2(𝑥0)

)
and 𝑎 > 1

𝜎2(𝑥0)
.

Let 𝑎̃ = 1

𝜎2(𝑥0)
− 𝜀 and 𝑎 = 1

𝜎2(𝑥0)
+ 𝜀 for any 𝜀 > 0 and then take 𝐻 ↘ 0 for the above inequality.

By the arbitrariness of 𝜀, Equation (60) follows.
Next, we prove Equation (59). Consider the function 𝔤(𝑡, 𝑧) ∶= 𝛿(𝑡)|𝑧 − 𝑥0|. For ℎ > 0 and 𝑦 ∈

𝐵(𝑥0, ℎ), applying Lemma 2.15 to 𝔤(𝑡, 𝑋𝑡), we have that

𝔼𝑦[𝛿(𝜏𝐵(𝑥0,ℎ))|𝑋𝜏𝐵(𝑥0,ℎ) − 𝑥0|] − |𝑦 − 𝑥0| = 𝔼𝑦[∫ 𝜏𝐵(𝑥0,ℎ)

0

1
2
(𝔤(𝑡, 𝑋𝑡−) + 𝔤(𝑡, 𝑋𝑡+))𝑑𝑡

]
+ 𝔼𝑦

[
∫
𝜏𝐵(𝑥0,ℎ)

0

1
2
(1 − (−1))𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
.

(63)

By Lemma 2.7, |𝛿′(𝑡)| ≤ |𝛿′(0)|𝛿(𝑡) ≤ |𝛿′(0)|. This implies that||||12(𝔤(𝑡, 𝑧−) + 𝔤(𝑡, 𝑧+))|||| ≤|𝛿′(𝑡)| ⋅ |𝑧 − 𝑥0| + 𝛿(𝑡)|𝜇(𝑧)| ≤ |𝛿′(0)| ⋅ |𝑧 − 𝑥0| + |𝜇(𝑧)|. (64)

By Equations (63) and (64), we have that

ℎ𝔼𝑦[𝛿(𝜏𝐵(𝑥0,ℎ))] − |𝑦 − 𝑥0| − 𝔼𝑦[∫ 𝜏𝐵(𝑥0,ℎ)

0
(|𝛿′(0)||𝑋𝑡 − 𝑥0| + |𝜇(𝑋𝑡)|)𝑑𝑡]

≤ 𝔼𝑦
[
∫
𝜏𝐵(𝑥0,ℎ)

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
≤ ℎ𝔼𝑦[𝛿(𝜏𝐵(𝑥0,ℎ))] − |𝑦 − 𝑥0| + 𝔼𝑦[∫ 𝜏𝐵(𝑥0,ℎ)

0
(|𝛿′(0)||𝑋𝑡 − 𝑥0| + |𝜇(𝑋𝑡)|)𝑑𝑡].

(65)

Notice that |𝑋𝑡 − 𝑥| ≤ ℎ for 𝑡 ≤ 𝜏𝐵(𝑥0,ℎ) and sup𝑧∈𝐵(𝑥0,1) |𝜇(𝑧)| ≤ 𝐾 for some constant 𝐾 > 0 that
depends on 𝑥0. Then, for ℎ ≤ 1, by rewriting 𝑦 = 𝑥0 + 𝑟ℎ in Equation (65) we have that

ℎ𝔼𝑥0+𝑟ℎ[𝛿(𝜏𝐵(𝑥0,ℎ))] − ℎ|𝑟| − (ℎ|𝛿′(0)| + 𝐾) ⋅ 𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]
≤ 𝔼𝑥0+𝑟ℎ

[
∫
𝜏𝐵(𝑥0,ℎ)

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
≤ ℎ𝔼𝑥0+𝑟ℎ[𝛿(𝜏𝐵(𝑥0,ℎ))] − ℎ|𝑟| + (ℎ|𝛿′(0)| + 𝐾) ⋅ 𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)], ∀𝑟 ∈ (−1, 1).

Then,

ℎ2(𝔼𝑥0+𝑟ℎ[𝛿(𝜏𝐵(𝑥0,ℎ))] − |𝑟|)
𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]

−
(|𝛿′(0)|ℎ2 + 𝐾ℎ) ⋅ 𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]

𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]

≤
(
ℎ𝔼𝑥0+𝑟ℎ

[
∫
𝜏𝐵(𝑥0,ℎ)

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

])
∕
(
𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]

)
≤ ℎ

2(𝔼𝑥0+𝑟ℎ[𝛿(𝜏𝐵(𝑥0,ℎ))] − |𝑟|)
𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]

+
(|𝛿′(0)|ℎ2 + 𝐾ℎ) ⋅ 𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]

𝔼[𝜏𝐵(𝑥0,ℎ)]
, ∀𝑟 ∈ (−1, 1).

(66)
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By the second inequality in Lemma 2.7, it holds uniformly in 𝑟 ∈ (−1, 1) that

|𝔼𝑥0+𝑟ℎ[𝛿(𝜏𝐵(𝑥0,ℎ))] − 1| = 𝔼𝑥0+𝑟ℎ[1 − 𝛿(𝜏𝐵(𝑥0,ℎ))] ≤ |𝛿′(0)| ⋅ 𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)] ℎ↘0⟶ 0.

This together with Equation (60) implies that

ℎ2(𝔼𝑥0+𝑟ℎ[𝛿(𝜏𝐵(𝑥0,ℎ))] − |𝑟|)
𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)]

ℎ↘0
⟶

𝜎2(𝑥0)

1 − 𝑟2
⋅ (1 − |𝑟|) = 𝜎2(𝑥0)

1 + |𝑟| uniformly for 𝑟 ∈ (−1, 1). (67)

Notice that limℎ↘0(|𝛿′(0)|ℎ2 + 𝐾ℎ) = 0. This together with Equations (66) and (67) implies
Equation (59). □

Now we are ready to deal with Equation (24) in the following proposition. The verification for
Equation (25) follows next.

Proposition 4.7. Let Assumptions 2.1–2.10 hold and 𝑆 be an admissible stopping policy. If 𝑆 is an
optimal mild equilibrium, then

𝑉𝑥(0, 𝑥−, 𝑆) ≥ 𝑉𝑥(0, 𝑥+, 𝑆) ∀𝑥 ∈ 𝑆.
Proof. Notice that Assumption 2.8(ii) and Lemma 2.14 guarantees the existence of 𝑉𝑥(𝑡, 𝑥±, 𝑆)
and 𝑉(𝑡, 𝑥±, 𝑆) for any (𝑡, 𝑥) ∈ [0,∞) × 𝕏. We prove the desired result by contradiction. Take
𝑥0 ∈ 𝑆 and suppose

𝑎 ∶= 𝑉𝑥(0, 𝑥0+, 𝑆) − 𝑉𝑥(0, 𝑥0−, 𝑆) > 0. (68)

Recall  defined in Equation (16). To reach to a contradiction, we will construct a new mild
equilibrium, which is strictly better than 𝑆, for each of the three cases:

(i) 𝑥0 ∈ 𝜕𝑆 for boundary case (a);
(ii) 𝑥0 ∈ 𝜕𝑆 for boundary case (b);
(iii) 𝑥0 ∈ 𝑆◦.

Case (i) 𝑥0 ∈ 𝜕𝑆 for boundary case (a). Without loss of generality, we assume that (𝑥0, 𝑥0 +
ℎ0) ⊂ (𝑆

◦ ∩ ) and (𝑥0 − ℎ0, 𝑥0) ⊂ 𝑆𝑐 for some ℎ0 > 0. Denote 𝑙 ∶= sup{𝑦 ≤ 𝑥0 − ℎ0 ∶ 𝑦 ∈ 𝑆}, and
note that 𝑙 can be −∞. We proceed the proof for this case in three steps.
Step 1. We show that there exists ℎ ∈ (0, ℎ0) such that,

𝔼𝑦
[
𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)

]
− 𝑓(𝑦) > 0, ∀𝑦 ∈ (𝑥0 − ℎ, 𝑥0 + ℎ). (69)

Notice from Lemma 3.10 and Equation (68) that

𝑉𝑥(𝑡, 𝑥0+, 𝑆) − 𝑉𝑥(𝑡, 𝑥0−, 𝑆) ≥ 𝛿(𝑡)(𝑉𝑥(0, 𝑥0+, 𝑆) − 𝑉(0, 𝑥0−, 𝑆)) = 𝑎𝛿(𝑡), ∀𝑡 ≥ 0. (70)

Fix ℎ ∈ (0, ℎ0) and pick an arbitrary 𝑥 ∈ 𝐵(𝑥0, ℎ). For all 𝑛 ∈ ℕ, write

𝜏𝑛 ∶= 𝜏𝐵(𝑥0,ℎ) ∧ 𝑛 (71)
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for short. We apply Lemma 2.15 to 𝑉(𝑡, 𝑋𝑡, 𝑆) on [0, 𝜏𝑛] and take expectation; the diffusion
term vanishes under expectation due to Lemma 2.14 and continuity of 𝜎. Then combining with
Equation (70), we have that

𝔼𝑥
[
𝑉
(
𝜏𝑛, 𝑋𝜏𝑛 , 𝑆

)]
− 𝑉(0, 𝑥, 𝑆)

≥ 𝔼𝑥
[
∫
𝜏𝑛

0

1
2
(𝑉(𝑡, 𝑋𝑡−, 𝑆) + 𝑉(𝑡, 𝑋𝑡+, 𝑆))𝑑𝑡

]
+ 𝑎𝔼𝑥

[
∫
𝜏𝑛

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
.

(72)

By Lemma 2.14(b), we have

𝑀 ∶= sup
(𝑡,𝑦)∈[0,∞)×𝐵(𝑥0,ℎ0)

1
2
(|𝑉(𝑡, 𝑦−, 𝑆)| + |𝑉(𝑡, 𝑦+, 𝑆)|) < ∞.

This together with Equation (72) implies that

𝔼𝑥[𝑉(𝜏𝑛, 𝑋𝜏𝑛 , 𝑆)] − 𝑉(0, 𝑥, 𝑆) ≥ −𝑀𝔼𝑥[𝜏𝑛] + 𝑎𝔼𝑥
[
∫
𝜏𝑛

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
∀𝑛 ∈ ℕ. (73)

For the LHS of Equation (73), Equation (17) readily implies that

lim
𝑛→∞

𝔼𝑥0[𝑉(𝜏𝑛, 𝑋𝜏𝑛 , 𝑆) = 𝔼
𝑥0[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)]. (74)

Indeed, set 𝜂𝑛 ∶= inf {𝑡 ≥ 𝜏𝑛, 𝑋𝑡 ∈ 𝑆} for all 𝑛 ∈ ℕ, and 𝜂 ∶= inf {𝑡 ≥ 𝜏𝐵(𝑥0,ℎ), 𝑋𝑡 ∈ 𝑆}. We
have 𝔼𝑥[𝑉(𝜏𝑛, 𝑋𝜏𝑛 , 𝑆)] = 𝔼

𝑥[𝔼𝑥[𝛿(𝜂𝑛)𝑓(𝑋𝜂𝑛)|𝜏𝑛 ]] = 𝔼𝑥[𝛿(𝜂𝑛)𝑓(𝑋𝜂𝑛)] for all 𝑛 ∈ ℕ, and
𝔼𝑥0[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)] = 𝔼

𝑥0[𝛿(𝜂)𝑓(𝑋𝜂)]. As 𝑛 → ∞, 𝜂𝑛 → 𝜂, ℙ𝑥-a.s.. Then by Assumption
2.8, we can apply the dominated convergence theorem to get lim𝑛→∞ 𝔼𝑥0[𝛿(𝜂𝑛)𝑓(𝑋𝜂𝑛)] =
𝔼𝑥0[𝛿(𝜂)𝑓(𝑋𝜂)], that is, Equation (74) holds. (Note that Equation (14) is used on {𝜂 = ∞}.)
Applying themonotone convergence theorem to the RHS of Equation (73) and combining with

Equation (74), we have that

𝔼𝑥[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝐵(𝑥0,ℎ), 𝑆)] − 𝑉(0, 𝑥, 𝑆) ≥ −𝑀𝔼𝑥[𝜏𝐵(𝑥0,ℎ)] + 𝑎𝔼𝑥
[
∫
𝜏𝐵(𝑥0,ℎ)

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
. (75)

By the arbitrariness of 𝑥 ∈ 𝐵(𝑥0, ℎ),

𝔼𝑥0+𝑟ℎ[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝐵(𝑥0,ℎ), 𝑆)] − 𝑉(0, 𝑥0 + 𝑟ℎ, 𝑆)

≥ −𝑀𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)] + 𝑎𝔼𝑥0+𝑟ℎ
[
∫
𝜏𝐵(𝑥0,ℎ)

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
, ∀𝑟 ∈ (−1, 1).

(76)

By Lemma 4.6 and |𝜎(𝑥0)| > 0, we can choose the above ℎ small enough such that
𝔼𝑥0+𝑟ℎ

[
∫
𝜏𝐵(𝑥0,ℎ)

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
≥
(
𝑀
𝑎
+ 1

)
𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)], ∀𝑟 ∈ (−1, 1).

Consequently, Equation (76) leads to

𝔼𝑥0+𝑟ℎ[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)] − 𝑉(0, 𝑥0 + 𝑟ℎ, 𝑆) ≥ 𝑎𝔼𝑥0+𝑟ℎ[𝜏𝐵(𝑥0,ℎ)] > 0, ∀𝑟 ∈ (−1, 1),
which gives Equation (69).
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Step 2. In the rest part of case (i), we take ℎ such that Equation (69) holds and write 𝑆ℎ ∶=
𝑆 ⧵ 𝐵(𝑥0, ℎ) for short. In this step, we prove by contradiction that

𝐽(𝑦, 𝑆ℎ) ≥ 𝔼𝑦[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)], ∀𝑦 ∈ [𝑥0, 𝑥0 + ℎ). (77)

Suppose

𝛼 ∶= inf
𝑦∈[𝑥0,𝑥0+ℎ]

(
𝐽(𝑦, 𝑆ℎ) − 𝔼

𝑦[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)]
)
< 0. (78)

As 𝑥0 + ℎ ∈ 𝑆◦, by Lemma 2.14(a),

𝐽(𝑥0 + ℎ, 𝑆ℎ) = 𝑓(𝑥0 + ℎ) = 𝔼
𝑥0+ℎ[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)].

By the continuity of functions 𝑦 ↦ 𝐽(𝑦, 𝑆ℎ) and 𝑦 ↦ 𝔼𝑦[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)] on [𝑥0, 𝑥0 + ℎ],
there exists 𝑧∗ ∈ [𝑥0, 𝑥0 + ℎ) such that the infimum in Equation (78) is attained at 𝑧∗, that is,

𝐽(𝑧∗, 𝑆ℎ) − 𝔼
𝑧∗[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)] = 𝛼. (79)

Define

𝜈 ∶= inf {𝑡 ≥ 𝜏𝐵(𝑥0,ℎ) ∶ 𝑋𝑡 ∈ 𝑆} and 𝐴 ∶= {𝑋𝜏𝐵(𝑥0,ℎ) = 𝑥0 − ℎ, 𝑋𝜈 = 𝑥0, 𝜈 < ∞}.

Notice that 𝜌𝑆ℎ = 𝜈, ℙ
𝑧∗ -a.s. on both sets {𝑋𝜏𝐵(𝑥0,ℎ) = 𝑥0 + ℎ} and {𝑋𝜏𝐵(𝑥0,ℎ) = 𝑥0 − ℎ,𝑋𝜈 < 𝑥0}. We

have that

𝐽(𝑧∗, 𝑆ℎ) − 𝔼
𝑧∗[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)] = 𝔼

𝑧∗
[
1𝐴 ⋅

(
𝛿(𝜌𝑆ℎ)𝑓(𝑋𝜌𝑆ℎ

) − 𝛿(𝜈)𝑓(𝑋𝜈)
)]

≥ 𝔼𝑧∗[1𝐴𝛿(𝜈) ⋅ (𝔼𝑧∗[𝛿(𝜌𝑆ℎ − 𝜈)𝑓(𝑋𝜌𝑆ℎ ) ∣ 𝜈] − 𝑓(𝑋𝜈))]
= 𝔼𝑧

∗
[1𝐴𝛿(𝜈)] ⋅ (𝐽(𝑥0, 𝑆ℎ) − 𝑓(𝑥0))

> 𝔼𝑧
∗
[1𝐴𝛿(𝜈)] ⋅

(
𝐽(𝑥0, 𝑆ℎ) − 𝔼

𝑥0[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)]
)

≥ 𝔼𝑧∗[1𝐴𝛿(𝜈)] ⋅ 𝛼
> 𝛼,

where the second (in)equality follows from Equation (13) and 𝑓 ≥ 0, the third (in)equality follows
from the strong Markov property of 𝑋 and the fact that 𝑋𝑣 = 𝑥0 on 𝐴, the fourth (in)equality
follows from Equation (69) with 𝑦 = 𝑥0, the fifth (in)equality follows from the definition of 𝛼 in
Equation (78), and the last (in)equality follows from the fact that 𝜈 ≥ 𝜏𝐵(𝑥0,ℎ) > 0 and 𝛿(𝑡) < 1 for
𝑡 > 0. This contradicts Equation (79). Therefore, Equation (77) holds.
Step 3. Now we prove that 𝑆ℎ is a mild equilibrium and is strictly better than 𝑆. By Equations

(69) and (77) and noticing that (𝑥0, 𝑥0 + ℎ) ⊂ 𝑆◦, we have

𝐽(𝑦, 𝑆ℎ) > 𝑓(𝑦) = 𝐽(𝑦, 𝑆), ∀𝑦 ∈ [𝑥0, 𝑥0 + ℎ). (80)

Then for any 𝑦 ∈ (𝑙, 𝑥0), we have that
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𝐽(𝑦, 𝑆ℎ) − 𝐽(𝑦, 𝑆) = 𝔼
𝑦
[
1{𝑋𝜌𝑆=𝑥0, 𝜌𝑆<∞}

(
𝛿(𝜌𝑆ℎ)𝑓(𝑋𝜌𝑆ℎ

) − 𝛿(𝜌𝑆)𝑓(𝑥0)
)]

≥ 𝔼𝑦 [1{𝑋𝜌𝑆=𝑥0, 𝜌𝑆<∞}𝛿(𝜌𝑆)(𝔼𝑦[𝛿(𝜌𝑆ℎ − 𝜌𝑆)𝑓(𝑋𝜌𝑆ℎ )||𝜌𝑆] − 𝑓(𝑥0))]
= 𝔼𝑦

[
1{𝑋𝜌𝑆=𝑥0, 𝜌𝑆<∞}𝛿(𝜌𝑆)(𝐽(𝑥0, 𝑆ℎ) − 𝑓(𝑥0))

]
≥ 0. (81)

where the second (in)equality follows again from Equation (13) and the non-negativity of 𝑓, the
third (in)equality follows from the strong Markov property of 𝑋, and the last (in)equality follows
from Equation (80) with 𝑦 = 𝑥0. As 𝑆 is a mild equilibrium, above inequality implies

𝐽(𝑦, 𝑆ℎ) ≥ 𝐽(𝑦, 𝑆) ≥ 𝑓(𝑦), ∀𝑦 ∈ (𝑙, 𝑥0). (82)

This together with Equation (80) and the fact 𝐽(⋅, 𝑆ℎ) = 𝐽(⋅, 𝑆) on𝕏 ⧵ (𝑙, 𝑥0 + ℎ) implies that 𝑆ℎ is
a mild equilibrium and is strictly better than 𝑆.
Case (ii) 𝑥0 ∈ 𝜕𝑆 for boundary case (b). We denote

𝑙 ∶= sup{𝑦 < 𝑥0, 𝑦 ∈ 𝑆}, 𝑟 ∶= inf {𝑦 > 𝑥0, 𝑦 ∈ 𝑆}, and 𝜏̃𝑛 ∶= 𝜏((𝑙,𝑟)∩𝐵(𝑥0,𝑛)) ∧ 𝑛 for 𝑛 ∈ ℕ.

By a similar discussion through Equations (70)–(72) (with Lemmas 2.15 and 3.10 applied), we have
that

𝔼𝑥0[𝑉(𝜏̃𝑛, 𝑋𝜏̃𝑛 , 𝑆)] − 𝑉(0, 𝑥0, 𝑆)

≥ 𝔼𝑥0
[
∫
𝜏̃𝑛

0

1
2
(𝑉(𝑠, 𝑋𝑠−, 𝑆) + 𝑉(𝑠, 𝑋𝑠+, 𝑆))𝑑𝑠

]
+ 𝑎𝔼𝑥0

[
∫
𝜏̃𝑛

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
.

(83)

By Lemma 2.14(a), 𝑉(𝑡, 𝑥, 𝑆) = 0 for any (𝑡, 𝑥) ∈ [0,∞) × 𝑆𝑐, and thus the first term on the RHS
of Equation (83) vanishes for all 𝑛 ∈ ℕ. As a result, we can rewrite Equation (83) as

𝔼𝑥0[𝑉(𝜏̃𝑛, 𝑋𝜏̃𝑛 , 𝑆)] − 𝑉(0, 𝑥0, 𝑆) ≥ 𝑎𝔼𝑥0
[
∫
𝜏̃𝑛

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
≥ 𝑎𝔼𝑥0

[
∫
𝜏̃1

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
> 0, ∀𝑛 ∈ ℕ.

Meanwhile, similar to Equation (74), Assumption 2.8 implies that 𝔼𝑥0[𝑉(𝜏̃𝑛, 𝑋𝜏̃𝑛 , 𝑆)] →
𝔼𝑥0[𝑉(𝜏(𝑙,𝑟), 𝑋𝜏(𝑙,𝑟) , 𝑆)] as 𝑛 → ∞. This together with the above inequality implies that

𝐽(𝑥0, 𝑆 ⧵ {𝑥0}) − 𝑓(𝑥0) = 𝔼
𝑥0[𝑉(𝜏(𝑙,𝑟), 𝑋𝜏(𝑙,𝑟) , 𝑆)] − 𝑉(0, 𝑥0, 𝑆) ≥ 𝑎𝔼𝑥0

[
∫
𝜏̃1

0
𝛿(𝑡)𝑑𝐿

𝑥0
𝑡

]
> 0.

(84)
Now set 𝑆 ∶= 𝑆 ⧵ {𝑥0} and pick any 𝑦 ∈ (𝑙, 𝑟). We can apply an argument similar to that in
Equation (81), by using Equation (84) and replacing 𝑆ℎ with 𝑆, to reach that 𝐽(𝑦, 𝑆) − 𝐽(𝑦, 𝑆) ≥ 0.
Hence, 𝐽(𝑦, 𝑆) ≥ 𝑓(𝑦) for 𝑦 ∈ (𝑙, 𝑟). As 𝐽(⋅, 𝑆) = 𝐽(⋅, 𝑆) on 𝕏 ⧵ (𝑙, 𝑟), we have that 𝑆 is a mild
equilibrium. Due to Equation (84), 𝑆 is strictly better than 𝑆.
Case (iii) 𝑥0 ∈ 𝑆◦. Choose ℎ0 > 0 such that 𝐵(𝑥0, ℎ0) ⧵ {𝑥0} ⊂ ( ∩ 𝑆◦). Following the argu-

ment in Step 1 of case (i), we can again reach Equation (69) for some 0 < ℎ ≤ ℎ0, which
indicates

𝐽(𝑦, 𝑆 ⧵ 𝐵(𝑥0, ℎ)) > 𝑓(𝑦), ∀𝑦 ∈ 𝐵(𝑥0, ℎ).
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As 𝐽(⋅, 𝑆 ⧵ 𝐵(𝑥0, ℎ)) = 𝐽(⋅, 𝑆) on 𝕏 ⧵ 𝐵(𝑥0, ℎ), we have that 𝑆 ⧵ 𝐵(𝑥0, ℎ) is a mild equilibrium and
is strictly better than 𝑆. □

Proof of Theorem 4.3. Thanks to Lemma 2.14(a), Theorem 3.1, and Proposition 4.7, we only need
to show Equation (25) for 𝑥 ∈ 𝑆. Recall  defined in Equation (16). Let 𝑥0 ∈ 𝑆 and we consider
three cases: (i) 𝑥0 ∈ (𝑆◦ ∩ ), (ii) 𝑥0 = 𝜃𝑛 ∈ 𝑆◦ ⧵  for some 𝑛 ∈ 𝐼, and (iii) 𝑥0 ∈ 𝜕𝑆.
Case (i) 𝑥0 ∈ (𝑆◦ ∩ ). We prove Equation (25) by contradiction. Suppose 𝑉(0, 𝑥0, 𝑆) = 𝑎 >

0. By Assumption 2.8(ii), we can choose ℎ > 0 such that 𝑉(𝑡, 𝑥, 𝑆) = 𝛿(𝑡)𝑓(𝑥) ∈ 1,2(𝐵(𝑥0, ℎ) ×
(0,∞)) and

𝑉(0, 𝑥, 𝑆) = 𝛿′(0)𝑓(𝑥) + 𝜇(𝑥)𝑓′(𝑥) + 1
2
𝜎2(𝑥)𝑓′′(𝑥) ≥ 𝑎

2
, ∀𝑥 ∈ 𝐵(𝑥0, ℎ). (85)

Then for any (𝑡, 𝑥) ∈ [0,∞) × 𝐵(𝑥0, ℎ), we have that

𝑉(𝑡, 𝑥, 𝑆) =𝛿′(𝑡)𝑓(𝑥) + 𝛿(𝑡)
(
𝜇(𝑥)𝑓′(𝑥) +

1
2
𝜎2(𝑥)𝑓′′(𝑥)

)
≥𝛿(𝑡)

(
𝛿′(0)𝑓(𝑥) + 𝜇(𝑥)𝑓′(𝑥) +

1
2
𝜎2(𝑥)𝑓′′(𝑥)

)
≥ 𝛿(𝑡)𝑎

2
,

(86)

where the first inequality above follows from Lemma 2.7 and the non-negativity of 𝑓. Let us reuse
the notation 𝜏𝑛 defined in Equation (71). By Equation (86) and an argument similar to that for
Equations (72) and (74) (notice that the local time integral in Lemma 2.15 vanishes in the current
case), we have that for any 𝑥 ∈ 𝐵(𝑥0, ℎ),{
𝔼𝑥[𝑉(𝜏𝑛, 𝑋𝜏𝑛 , 𝑆)] − 𝑉(0, 𝑥, 𝑆) = 𝔼

𝑥
[∫ 𝜏𝑛
0

𝑉(𝑠, 𝑋𝑠, 𝑆)
] ≥ 𝔼𝑥[∫ 𝜏𝑛

0
𝛿(𝑡)

𝑎

2
𝑑𝑡
]
> 0, ∀𝑛 ∈ ℕ,

𝔼𝑥[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)] = lim𝑛→∞ 𝔼
𝑥[𝑉(𝜏𝑛, 𝑋𝜏𝑛 , 𝑆)]

This implies that

𝔼𝑥[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆) − 𝑉(0, 𝑥, 𝑆)] ≥ 𝔼𝑥
[
∫
𝜏𝐵(𝑥0,ℎ)

0
𝛿(𝑡)
𝑎
2
𝑑𝑡

]
> 0, ∀𝑥 ∈ 𝐵(𝑥0, ℎ).

Now consider 𝑆 = 𝑆 ⧵ 𝐵(𝑥0, ℎ). The above inequality implies

𝐽(𝑥, 𝑆) − 𝑓(𝑥) = 𝔼𝑥[𝑉(𝜏𝐵(𝑥0,ℎ), 𝑋𝜏𝐵(𝑥0,ℎ) , 𝑆)] − 𝑉(0, 𝑥, 𝑆) > 0 ∀𝑥 ∈ 𝐵(𝑥0, ℎ). (87)

Obviously, 𝐽(⋅, 𝑆) = 𝐽(⋅, 𝑆) on 𝕏 ⧵ 𝐵(𝑥0, ℎ). This together with Equation (87) shows that 𝑆 is an
equilibrium and is strictly better than 𝑆, a contradiction. Hence, 𝑉(0, 𝑥0, 𝑆) ≤ 0, as desired.
Case (ii) 𝑥0 = 𝜃𝑛 ∈ 𝑆◦ ⧵  for some 𝑛 ∈ 𝐼. Without loss of generality, we assume

𝑉(0, 𝑥0+, 𝑆) = 𝑎 > 0. Then we can pick ℎ > 0 such that (𝑥0, 𝑥0 + ℎ) ⊂ 𝑆◦ ∩ (𝜃𝑛, 𝜃𝑛+1). By the
continuity of 𝑥 → 𝑉(0, 𝑥+, 𝑆) on [𝑥0, 𝑥0 + ℎ) (due to Assumptions 2.1(i), 2.8(ii), and the fact that
𝑉(𝑡, 𝑥, 𝑆) = 𝛿(𝑡)𝑓(𝑥) for 𝑥 ∈ 𝑆), we can find 0 < ℎ̃ < ℎ such that𝑉(0, 𝑦, 𝑆) ≥ 𝑎∕2 > 0 for all 𝑦 ∈
(𝑥0, 𝑥0 + ℎ̃). Set 𝑥̃ ∶= (2𝑥0 + ℎ̃)∕2. Then 𝐵(𝑥̃, ℎ̃∕4) ⊂ (𝑥0, 𝑥0 + ℎ̃) ⊂ 𝑆◦ ∩ , and a contradiction
can be reached by the same argument as in case (i).
Case (iii) 𝑥0 ∈ 𝜕𝑆. For boundary case (a), suppose again that 𝑉(0, 𝑥0−, 𝑆) ∨ 𝑉(0, 𝑥0+, 𝑆) >

0. Without loss of generality, we assume (𝑥0, 𝑥0 + ℎ0) ⊂ (𝑆◦ ∩ ) and (𝑥0 − ℎ0, 𝑥0) ⊂ 𝑆𝑐 for some
ℎ0 > 0. By Lemma 2.14(a), 𝑉(0, 𝑥−, 𝑆) ≡ 0 on (𝑥0 − ℎ0, 𝑥0], and therefore, 𝑉(0, 𝑥0+, 𝑆) > 0.
Then the same argument as in case (ii) can be applied to get a contradiction.
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For boundary case (b), Lemma 2.14(a) directly tells that 𝑉(0, 𝑥−, 𝑆) ∨ 𝑉(0, 𝑥+, 𝑆) = 0, and
the proof is complete. □

5 WHENWEAK OR OPTIMALMILD EQUILIBRIA ARE STRONG

After establishing the relation between optimal mild and weak equilibria, we take a further step
to study whether a weak or optimal mild equilibrium is strong.
We already know that an admissible weak or optimal mild equilibrium 𝑆 satisfies the two con-

ditions (24) and (25) in Theorem 3.1. To make 𝑆 a strong equilibrium, the first-order condition (6)
needs to be upgraded to the local maximum condition (7). Recall the discussion at the beginning
of Section 3.1. Intuitively, a sufficient condition for Equation (7) is the LHS of Equation (28) being
negative for all 𝜀 small enough. As a result, if at least one of the two inequalities (24) and (25) is
strict for all the points in the weak or optimal equilibrium 𝑆, then 𝑆 should also be strong. To this
end, let us define for any admissible 𝑆 ∈ ,
𝔖𝑆 ∶={𝑥 ∈ 𝑆 ∶ 𝑉(0, 𝑥−, 𝑆 ∧ 𝑉(0, 𝑥+, 𝑆) < 0} ∪ {𝑥 ∈ 𝑆 ∶ 𝑉𝑥(0, 𝑥−, 𝑆) > 𝑉𝑥(0, 𝑥+, 𝑆)}.

(88)
Theorems 5.1 and 5.2 are the main results of this section, and their proofs are provided in the next
subsection. The first main result concerns when a weak equilibrium is strong.

Theorem 5.1. Let Assumptions 2.1–2.10 hold and 𝑆 be an admissible weak equilibrium. If 𝑆 = 𝔖𝑆 ,
then 𝑆 is also strong.

The next result regards the relation between optimal mild and strong equilibria.

Theorem 5.2. Let Assumptions 2.1–2.10 hold.

(a) For any admissible optimal mild equilibrium 𝑆, if 𝔖𝑆 is admissible and closed, then 𝔖𝑆 is a
strong equilibrium.

(b) Recall 𝑆∗ defined in Equation (58). We have𝔖𝑆∗ = 𝑆∗. Hence, if𝔖𝑆∗ is closed and admissible,
then 𝑆∗ is a strong equilibrium.

Remark 5.3. Theorem 5.2 indicates that 𝑆∗ and𝔖𝑆∗ are almost the same, and roughly speaking, 𝑆∗
is a strong equilibrium possibly except some points in𝔖𝑆∗ ⧵ 𝔖𝑆∗ . In many cases, we indeed have
𝑆∗ = 𝔖𝑆∗ , as a result of which 𝑆∗ is strong. This is demonstrated in all the examples in Section 6.

Remark 5.4. Suppose Assumptions 2.1–2.10 hold and 𝑆∗ is admissible. Then 𝑆∗ cannot contain
an isolated point at which 𝑓 is continuously differentiable. Indeed, suppose 𝑥 is an isolated
point of 𝑆∗ = 𝔖𝑆∗ and 𝑓 is smooth at 𝑥. Then 𝑥 ∈ 𝔖𝑆∗ . On the other hand, since (0, 𝑥−, 𝑆∗) =(0, 𝑥+, 𝑆∗) = 0 by Lemma 2.14(a), and 𝑉𝑥(0, 𝑥−, 𝑆∗) = 𝑉𝑥(0, 𝑥+, 𝑆) by Corollary 3.2, we would
have 𝑥 ∉ 𝔖𝑆∗ , a contradiction.
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5.1 Proofs of Theorems 5.1 and 5.2

As discussed above, we aim to achieve the negativity in the RHS of Equation (28) for 𝜀 small
enough; when 𝑉𝑥(𝑠, 𝑥+, 𝑆) − 𝑉𝑥(𝑠, 𝑥−, 𝑆) = 0, the integral on

1

2
(𝑉(𝑠, 𝑋𝑠−, 𝑆) + 𝑉(𝑠, 𝑋𝑠+, 𝑆))

on the RHS of Equation (28) should be negative. Since only one of the two values 𝑉(𝑠, 𝑋𝑠±, 𝑆) is
required to be negative in the definition of𝔖𝑆 , we will estimate the probability that 𝑋 goes to the
left/right from the starting point. Such probability estimation is provided in the following lemma.

Lemma 5.5. Let Assumption 2.1 hold. Then,

lim
𝑡↘0
ℙ𝑥0(𝑋𝑡 > 𝑥0) = lim

𝑡↘0
ℙ𝑥0(𝑋𝑡 < 𝑥0) =

1
2
, ∀𝑥0 ∈ 𝕏. (89)

Proof. Let 𝑋0 = 𝑥0 ∈ 𝕏. Recall 𝑋 and 𝑋̄ defined in Equation (35). Denote 𝑅𝜀 ∶= 𝜇(𝑥0)𝜀 + 𝑋̄𝜀.
Then,

𝑋𝜀 = 𝑥0 + 𝑅𝜀 + 𝜎(𝑥0)𝑊𝜀. (90)

By Lemma 3.7, there exists some constant 𝐶 > 0 such that for any 𝜀 > 0 small enough, 𝔼𝑥0[|𝑅𝜀|] ≤
𝐶𝜀, which leads to

ℙ𝑥0
(|𝑅𝜀| ≥ 12𝜀3∕4

)
≤ 2𝔼𝑥0[|𝑅𝜀|]

𝜀3∕4
≤ 2𝐶 ⋅ 𝜀1∕4. (91)

By Equations (90) and (91), for 𝜀 > 0 small enough

ℙ𝑥0(𝑋𝜀 > 𝑥0) ≥ ℙ𝑥0
(
𝜎(𝑥0)𝑊𝜀 > 𝜀

3∕4, 𝑅𝜀 > −
1
2
𝜀3∕4

)

≥ ℙ𝑥0(𝜎(𝑥0)𝑊𝜀 > 𝜀3∕4) − ℙ𝑥0(𝑅𝜀 ≤ −12𝜀3∕4
)

≥ 1 − Φ
(

𝜀3∕4

𝜎(𝑥0)
√
𝜀

)
− ℙ𝑥0

(|𝑅𝜀| ≥ 12𝜀3∕4
)

≥ 1 − Φ
(
𝜀1∕4

𝜎(𝑥0)

)
− 2𝐶𝜀1∕4 → 1 − Φ(0) − 0 =

1
2
, as 𝜀 ↘ 0,

where Φ is the cumulative distribution function for the standard normal distribution. There-
fore, lim inf 𝑡↘0 ℙ𝑥0(𝑋𝑡 > 𝑥0) ≥ 1

2
. Similarly, lim inf 𝑡↘0 ℙ𝑥0(𝑋𝑡 < 𝑥0) ≥ 1

2
. Thus, Equation (89)

holds. □

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. To prove the desired result, we need to verify that for any 𝑥0 ∈ 𝑆,

∃𝜀(𝑥0) > 0, s.t. ∀𝜀′ ≤ 𝜀(𝑥0), 𝑓(𝑥0) − 𝔼𝑥0[𝛿(𝜌𝜀′𝑆 )𝑓(𝑋𝜌𝜀′𝑆 )] ≥ 0. (92)

Since 𝑆 is a weak equilibrium, by Theorem 3.1,

𝑉𝑥(0, 𝑥0−, 𝑆) − 𝑉𝑥(0, 𝑥0+, 𝑆) ≥ 0, ∀𝑥0 ∈ 𝑆.
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Recall Equation (88) and  defined in Equation (16). Pick 𝑥0 ∈ 𝔖𝑆 , and we shall verify
Equation (92) for two cases: (i) 𝑉𝑥(0, 𝑥0−, 𝑆) − 𝑉𝑥(0, 𝑥0+, 𝑆) > 0, and (ii) 𝑉𝑥(0, 𝑥0−, 𝑆) −
𝑉𝑥(0, 𝑥0+, 𝑆) = 0.
Case (i) Suppose 𝑎 ∶= 𝑉𝑥(0, 𝑥0−, 𝑆) − 𝑉𝑥(0, 𝑥0+, 𝑆) > 0. By the continuity of 𝑡 ↦

𝑉𝑥(𝑡, 𝑥0±, 𝑆), we take 𝜀 > 0 small enough such that 𝛿(𝑡) >
1

2
for all 𝑡 ∈ (0, 𝜀), and

𝑉𝑥(𝑡, 𝑥0+, 𝑆) − 𝑉𝑥(𝑡, 𝑥0−, 𝑆) < −
𝑎
2
, ∀ 𝑡 ∈ (0, 𝜀). (93)

Let ℎ > 0 such that both (𝑥0 − ℎ, 𝑥0) and (𝑥0, 𝑥0 + ℎ) belong to . Then for 𝜀 small enough,
𝔼𝑥0[𝑉(𝜀, 𝑋𝜀, 𝑆)] − 𝑉(0, 𝑥0, 𝑆) + 𝑜(𝜀) = 𝔼

𝑥0[𝑉(𝜀 ∧ 𝜏𝐵(𝑥0,ℎ), 𝑋𝜀∧𝜏𝐵(𝑥0,ℎ) , 𝑆)] − 𝑉(0, 𝑥0, 𝑆)

≤ 𝔼𝑥0
[
∫
𝜀∧𝜏𝐵(𝑥0,ℎ)

0

1
2
(𝑉(𝑠, 𝑋𝑠−, 𝑆) + 𝑉(𝑠, 𝑋𝑠+, 𝑆))𝑑𝑠

]
−
𝑎
4
𝔼𝑥0[𝐿

𝑥0
𝜏𝐵(𝑥0,ℎ)∧𝜀

],
(94)

where the first (in)equality follows from Lemma 3.8, the second (in)equality follows from
Lemma 2.15 and Equation (93) (the diffusion term vanishes after taking expectation due to the
boundedness of 𝑉𝑥𝜎 on [0, 𝜀] × 𝐵(𝑥0, ℎ)). By Lemma 2.14(b), there exists a constant 𝐾 > 0 such
that

sup
(𝑡,𝑦)∈[0,1]×𝐵(𝑥0,ℎ)

1
2
|𝑉(𝑡, 𝑦+, 𝑆) + 𝑉(𝑡, 𝑦−, 𝑆)| ≤ 𝐾,

Then by Lemma 3.9 and |𝜎(𝑥0)| > 0, we can take 𝜀0 ∈ (0, 1) such that for any 𝜀 ∈ (0, 𝜀0),
𝑎

4𝜀
𝔼𝑥0[𝐿

𝑥0
𝜏𝐵(𝑥0,ℎ)∧𝜀

] ≥ (𝐾 + 1) and the term 𝑜(𝜀) in Equation (94) satisfies |𝑜(𝜀)| ≤ 1

2
𝜀. Hence,

Equation (94) leads to

𝔼𝑥0[𝛿(𝜌𝜀𝑆)𝑓(𝑋𝜌𝜀𝑆 )] − 𝑓(𝑥0) = 𝔼
𝑥0[𝑉(𝜀, 𝑋𝜀, 𝑆)] − 𝑉(0, 𝑥0, 𝑆)

≤ 𝐾𝜀 − 𝑎
4
𝔼𝑥0[𝐿

𝑥0
𝜏𝐵(𝑥0,ℎ)∧𝜀

] +
1
2
𝜀 ≤ −1

2
𝜀, ∀𝜀 ≤ 𝜀0.

Case (ii) Suppose 𝑉𝑥(0, 𝑥0−, 𝑆) − 𝑉𝑥(0, 𝑥0+, 𝑆) = 0. Then, by Equation (18),

|𝑉𝑥(𝑡, 𝑥0+, 𝑆) − 𝑉𝑥(𝑡, 𝑥0−, 𝑆)| = 𝑜(√𝑡) for 𝑡 > 0 small enough.

This together with Lemma 3.9 leads to

𝔼𝑥0
|||||12 ∫

𝜀∧𝜏𝐵(𝑥0,ℎ)

0
(𝑉𝑥(𝑠, 𝑥0+, 𝑆) − 𝑉𝑥(𝑠, 𝑥0−, 𝑆))𝑑𝐿

𝑥0
𝑠

||||| = 𝑜(
√
𝜀) ⋅ 𝔼𝑥0

[
𝐿
𝑥0
𝜀∧𝜏𝐵(𝑥0,ℎ)

]
= 𝑜(𝜀). (95)

Choose ℎ0 > 0 such that (𝑥0 − ℎ0, 𝑥0) ∪ (𝑥0, 𝑥0 + ℎ0) is contained in (𝑆◦ ∩ ) ∪ (𝕏 ⧵ 𝑆). For
any ℎ ∈ (0, ℎ0), similar to Equation (94), we apply Lemmas 2.15, 3.8 and then combine with
Equation (95) to get

𝔼𝑥0[𝑉(𝜀, 𝑋𝜀, 𝑆)] − 𝑉(0, 𝑥0, 𝑆) =𝔼
𝑥0[𝑉(𝜏𝐵(𝑥0,ℎ) ∧ 𝜀, 𝑋𝜏𝐵(𝑥0,ℎ)∧𝜀, 𝑆)] − 𝑉(0, 𝑥0, 𝑆) + 𝑜(𝜀)

=𝔼𝑥0
[
∫
𝜏𝐵(𝑥0,ℎ)∧𝜀

0
𝑉(𝑠, 𝑋𝑠, 𝑆)𝑑𝑠

]
+ 𝑜(𝜀).

(96)
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Since 𝑉𝑥(0, 𝑥0−, 𝑆) − 𝑉𝑥(0, 𝑥0+, 𝑆) = 0 and 𝑥0 ∈ 𝔖𝑆 , we have

𝑉(0, 𝑥0−, 𝑆) ∧ 𝑉(0, 𝑥0+, 𝑆) < 0. (97)

Without loss of generality, we can assume that

−𝐴 ∶= 𝑉(0, 𝑥0+, 𝑆) < 0 and 𝑉(0, 𝑥0−, 𝑆) ≤ 0.
By the (left/right) continuity of (𝑡, 𝑥) ↦ 𝑉(𝑡, 𝑥±, 𝑆) at (0, 𝑥0), we can choose ℎ ∈ (0, ℎ0) and 𝜀0 >
0 small enough, such that for any 𝑡 ∈ [0, 𝜀0], 𝑥 ∈ (𝑥0, 𝑥0 + ℎ) and 𝑦 ∈ (𝑥0 − ℎ, 𝑥0),

𝑉(𝑡, 𝑥, 𝑆) = 𝑉(𝑡, 𝑥+, 𝑆) ≤ −𝐴
2

and 𝑉(𝑡, 𝑦, 𝑆) = 𝑉(𝑡, 𝑦−, 𝑆) ≤ 𝐴
8
. (98)

Then for 𝜀 ∈ (0, 𝜀0) small enough, the first inequality in Equation (98) implies that

𝔼𝑥0
[
∫
𝜏𝐵(𝑥0,ℎ)∧𝜀

0
𝑉(𝑡, 𝑋𝑡, 𝑆)1{𝑋𝑡>𝑥0}𝑑𝑡

]
≤ −𝐴

2
𝔼𝑥0

[
∫
𝜏𝐵(𝑥0,ℎ)∧𝜀

0
1{𝑋𝑡>𝑥0}𝑑𝑡

]

= −
𝐴
2
𝔼𝑥0

[
∫
𝜀

0
1{𝑋𝑡>𝑥0}𝑑𝑡

]
+
𝐴
2
𝔼𝑥0

[
∫
𝜀

𝜏𝐵(𝑥0,ℎ)∧𝜀
1{𝑋𝑡>𝑥0}𝑑𝑡

]

= −
𝐴
2 ∫

𝜀

0
ℙ𝑥0(𝑋𝑡 > 𝑥0)𝑑𝑡 +

𝐴
2
𝔼𝑥0

[
(𝜀 − 𝜏𝐵(𝑥0,ℎ))1{𝜏𝐵(𝑥0,ℎ)<𝜀}

]
≤ −𝐴

5
𝜀 +
𝐴
2
𝔼𝑥0

[
(𝜀 − 𝜏𝐵(𝑥0,ℎ))1{𝜏𝐵(𝑥0,ℎ)<𝜀}

]
≤ −𝐴

5
𝜀 +
𝐴
2
𝜀ℙ𝑥0

(
𝜏𝐵(𝑥0,ℎ) < 𝜀

)
= −
𝐴
5
𝜀 +
𝐴
2
𝜀 ⋅ 𝑜(𝜀) ≤ −𝐴

6
𝜀,

(99)

where the forth (in)equality above follows from Lemma 5.5, and the sixth (in)equality follows
from Lemma 3.6. In addition, the second inequality in Equation (98) implies

𝔼𝑥0
[
∫
𝜏𝐵(𝑥0,ℎ)∧𝜀

0
𝑉(𝑡, 𝑋𝑡, 𝑆)1{𝑋𝑡<𝑥0}𝑑𝑡

]
≤ 𝐴
8
𝜀. (100)

Therefore, by plugging Equations (99) and (100) into Equation (96), we have that for 𝜀 > 0 small
enough,

𝔼𝑥0[𝛿(𝜌𝜀𝑆)𝑓(𝑋𝜌𝜀𝑆 )] − 𝑓(𝑥0) = 𝔼
𝑥0[𝑉(𝜀, 𝑋𝜀, 𝑆)] − 𝑉(0, 𝑥0, 𝑆) ≤ −𝐴6 𝜀 +

𝐴
8
𝜀 + 𝑜(𝜀) < −

𝐴𝜀
25
,

and the proof is complete. □

To prepare for the proof of Theorem 5.2, let us illustrate a property of an arbitrary optimal mild
equilibrium 𝑆, which says that 𝔖𝑆 actually forms the “essential” part of 𝑆, and by removing the
“inessential” part from 𝑆, the remaining part is still optimal mild.

Proposition 5.6. Let Assumptions 2.1–2.10 hold. For any admissible optimal mild equilibrium 𝑆,
𝔖𝑆 is also optimal mild. In addition, if𝔖𝑆 is admissible, then𝔖𝑆 is a weak equilibrium.
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Proof. Step 1. We first characterize 𝑆 ⧵ 𝔖𝑆 . As 𝑆 is admissible, we can write 𝑆 as a union of disjoint
closed intervals

𝑆 = ∪𝑛∈Λ1[𝛼2𝑛−1, 𝛼2𝑛], where 𝛼2𝑛−1 ≤ 𝛼2𝑛 < 𝛼2𝑛+1.5 (101)

where Λ1 ⊂ ℤ is either a finite or countable subset. Since 𝑆 is closed, we have that 𝔖𝑆 ⊂ 𝑆.
For each 𝑛 ∈ Λ1, by the closeness of 𝔖𝑆 , we can see that [𝛼2𝑛−1, 𝛼2𝑛] ⧵ 𝔖𝑆 consists of at most
countably many disjoint intervals (𝐼𝑛𝑘 )𝑘 of the following four forms:

1. [𝛼2𝑛−1, 𝛾); 2. (𝛾′, 𝛼2𝑛]; 3. (𝛽, 𝛽′); 4. [𝛼2𝑛−1, 𝛼2𝑛]. (102)

For each 𝐼𝑛𝑘 of the four forms in Equation (102), we define an open interval (𝑙𝑛𝑘 , 𝑟𝑛𝑘 ) as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1. 𝑙𝑛𝑘 ∶= sup{𝑦 < 𝛼2𝑛−1, 𝑦 ∈ 𝔖𝑆}, 𝑟𝑛𝑘 ∶= 𝛾;

2. 𝑙𝑛𝑘 ∶= 𝛾
′, 𝑟𝑛𝑘 ∶= inf {𝑦 > 𝛼2𝑛, 𝑦 ∈ 𝔖𝑆};

3. 𝑙𝑛𝑘 = 𝛽, 𝑟𝑛𝑘 ∶= 𝛽
′;

4. 𝑙𝑛𝑘 ∶= sup{𝑦 < 𝛼2𝑛−1, 𝑦 ∈ 𝔖𝑆}, 𝑟𝑛𝑘 ∶= inf {𝑦 > 𝛼2𝑛, 𝑦 ∈ 𝔖𝑆},

(103)

and set sup ∅ ∶= inf 𝕏 and inf ∅ ∶= sup𝕏 if it happens. Notice that each two of those open inter-
vals ((𝑙𝑛𝑘 , 𝑟𝑛𝑘 ))𝑛,𝑘 are either disjoint or identical, and 𝑙𝑛𝑘 can be−∞ (resp. 𝑟𝑛𝑘 can be∞). Since the
total number of these intervals ((𝑙𝑛𝑘 , 𝑟𝑛𝑘 ))𝑛,𝑘 is at most countable, we omit the repeating ones and
re-index them as ((𝑙𝑘, 𝑟𝑘))𝑘∈Λ such that they are disjoint and Λ ⊂ ℤ is either a finite or countable
subset. Then 𝑆 ⧵ (∪𝑘∈Λ(𝑙𝑘, 𝑟𝑘)) = 𝔖𝑆 .
Step 2. We prove that for each 𝑘 ∈ Λ,

𝐽(𝑥, 𝑆 ⧵ (𝑙𝑘, 𝑟𝑘)) = 𝐽(𝑥, 𝑆), ∀𝑥 ∈ (𝑙𝑘, 𝑟𝑘). (104)

Fix 𝑘 ∈ Λ. Step 1 tells that for any 𝑥 ∈ (𝑙𝑘, 𝑟𝑘), 𝑥 either belongs to 𝑆 ⧵ 𝔖𝑆 or belongs to 𝑆𝑐.
(1) If 𝑥 ∈ 𝑆𝑐 or 𝑥 ∈ 𝜕𝑆 for boundary case (b), Lemma 2.14 tells that

𝑉(𝑡, 𝑥+, 𝑆) ≡ 𝑉(𝑡, 𝑥−, 𝑆) ≡ 0 ∀𝑡 ∈ [0,∞). (105)

(2) Suppose𝑥 ∈ 𝑆◦ ⧵ 𝔖𝑆 . By the fact that𝑆 is an admissible optimalmild equilibrium,Theorem4.3
tells that 𝑆 is also weak. Then, Equation (25) together with the definition of𝔖𝑆 leads to

𝑉(0, 𝑥−, 𝑆) = 𝑉(0, 𝑥+, 𝑆) = 0; 𝑉(𝑡, 𝑥, 𝑆) = 𝛿(𝑡)𝑓(𝑥) ∀𝑡 ≥ 0.
Then by a similar argument as in Equation (86) (with 𝑎

2
replaced by 0), we reach that

𝑉(𝑡, 𝑥−, 𝑆) ∧ 𝑉(𝑡, 𝑥+, 𝑆) ≥ 0 ∀𝑡 ∈ [0,∞). (106)

(3) Otherwise, 𝑥 ∈ 𝜕𝑆 ⧵ 𝔖𝑆 of boundary case (a), and for this case, we can also deduce Equation
(106) by a combination of cases (1) and (2).

5 These intervals are understood as the ones restricted in 𝕏 in a natural way, for example, one [𝛼2𝑛−1, 𝛼2𝑛] could be
[𝛼2𝑛−1,∞) if sup𝕏 = ∞.
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In sum, we have

1
2
(𝑉(𝑡, 𝑥−, 𝑆) + 𝑉(𝑡, 𝑥+, 𝑆)) ≥ 0 ∀(𝑡, 𝑥) ∈ [0,∞) × (𝑙𝑘, 𝑟𝑘). (107)

Recall (𝜃𝑖)𝑖∈𝐼 defined in Assumption 2.8(ii). By Proposition 4.7 and the definition of 𝔖𝑆 ,
𝑉𝑥(0, 𝜃𝑖+, 𝑆) = 𝑉𝑥(0, 𝜃𝑖−, 𝑆) for each 𝜃𝑖 ∈ ((𝑙𝑘, 𝑟𝑘) ∩ 𝑆). Then for any 𝑛 ∈ ℕ and 𝜃𝑖 ∈ (𝑙𝑘, 𝑟𝑘) ∩
𝐵(𝑥0, 𝑛), no matter 𝜃𝑖 belongs to 𝑆 ⧵ 𝔖𝑆 or 𝑆𝑐, from the fact that 𝑉(𝑥, 𝑡, 𝑆) = 𝛿(𝑡)𝑓(𝑥) for 𝑥 ∈ 𝑆
and Lemma 3.10, we have that

𝑉𝑥(𝑡, 𝜃𝑖+, 𝑆) − 𝑉𝑥(𝑡, 𝜃𝑖−, 𝑆) ≥ 𝛿(𝑡)(𝑉𝑥(0, 𝜃𝑖+, 𝑆) − 𝑉𝑥(0, 𝜃𝑖−, 𝑆)) = 0, ∀𝑡 ≥ 0. (108)

Note that for each 𝑛 ∈ ℕ the interval 𝐵(𝑥0, 𝑛) ∩ (𝑙𝑘, 𝑟𝑘) contains at most finite points 𝜃𝑖 . Now take
𝑥0 ∈ (𝑙𝑘, 𝑟𝑘) and denote 𝜏𝑛 ∶= 𝜏(𝑙𝑘,𝑟𝑘)∩𝐵(𝑥0,𝑛) ∧ 𝑛 for 𝑛 ∈ ℕ. By Lemma 2.15,

𝑉(𝜏𝑛, 𝑋𝜏𝑛 , 𝑆) − 𝑉(0, 𝑥0, 𝑆) = ∫
𝜏𝑛

0

1
2
(𝑉(𝑡, 𝑋𝑡−, 𝑆) + 𝑉(𝑡, 𝑋𝑡+, 𝑆))𝑑𝑡

+ ∫
𝜏𝑛

0
𝑉𝑥(𝑡, 𝑋𝑡, 𝑆)𝜎(𝑋𝑠) ⋅ 1{𝑋𝑡≠𝜃𝑖 ,∀ 𝑖}𝑑𝑊𝑡 +

1
2

∑
𝜃𝑖∈(𝑙𝑘,𝑟𝑘)

∫
𝜏𝑛

0
(𝑉𝑥(𝑡, 𝜃𝑖+, 𝑆) − 𝑉𝑥(𝑡, 𝜃𝑖−, 𝑆))𝑑𝐿

𝜃𝑖
𝑡 ,

Taking expectation for the above and combining with Equations (107) and (108), we have that

𝔼𝑥0[𝑉(𝜏𝑛, 𝑋𝜏𝑛 , 𝑆)] − 𝑉(0, 𝑥0, 𝑆) ≥ 0.
Similar to Equation (74), we can show that lim𝑛→∞ 𝔼𝑥0[𝑉(𝜏𝑛, 𝑋𝜏𝑛 , 𝑆)] = 𝔼

𝑥0[𝑉(𝜏(𝑙𝑘,𝑟𝑘), 𝑋𝜏(𝑙𝑘 ,𝑟𝑘)
, 𝑆)].

This together with the above inequality implies that

𝐽(𝑥0, 𝑆 ⧵ (𝑙𝑘, 𝑟𝑘)) − 𝐽(𝑥0, 𝑆) = 𝔼
𝑥0[𝑉(𝜏(𝑙𝑘,𝑟𝑘), 𝑋𝜏(𝑙𝑘 ,𝑟𝑘)

, 𝑆)] − 𝑉(0, 𝑥0, 𝑆) ≥ 0.
By the arbitrariness of 𝑥0 ∈ (𝑙𝑘, 𝑟𝑘), we have 𝐽(𝑥, 𝑆 ⧵ (𝑙𝑘, 𝑟𝑘)) ≥ 𝐽(𝑥, 𝑆) for all 𝑥 ∈ (𝑙𝑘, 𝑟𝑘). Mean-
while, 𝐽(𝑥, 𝑆 ⧵ (𝑙𝑘, 𝑟𝑘)) = 𝐽(𝑥, 𝑆) for 𝑥 ∈ 𝕏 ⧵ (𝑙𝑘, 𝑟𝑘). Then by the optimality of 𝑆, 𝑆 ⧵ (𝑙𝑘, 𝑟𝑘) is also
an optimal mild equilibrium, and thus Equation (104) follows.
Step 3. We show that𝔖𝑆 is optimal mild. By Step 2, Equation (104) holds for all 𝑘 ∈ Λ. From the

construction of the intervals (𝑙𝑘, 𝑟𝑘)𝑘∈Λ in Equation (103), we can see that removing one of them
does not change the values of function 𝐽 on the rest parts, that is, for any 𝑘 ∈ Λ,

𝐽(𝑥,𝔖𝑆) = 𝐽(𝑥, 𝑆 ⧵ (𝑙𝑘, 𝑟𝑘)) ∀𝑥 ∈ (𝑙𝑘, 𝑟𝑘).

Hence, we can conclude that for any 𝑘 ∈ Λ,

𝐽(𝑥,𝔖𝑆) = 𝐽(𝑥, 𝑆 ⧵ (𝑙𝑘, 𝑟𝑘)) = 𝐽(𝑥, 𝑆), ∀𝑥 ∈ (𝑙𝑘, 𝑟𝑘).

As 𝐽(𝑥,𝔖𝑆) = 𝑓(𝑥) = 𝐽(𝑥, 𝑆) for all 𝑥 ∈ 𝔖𝑆 ,

𝐽(𝑥,𝔖𝑆) = 𝐽(𝑥, 𝑆), ∀𝑥 ∈ 𝕏.

This implies that𝔖𝑆 is an optimal mild equilibrium. By Theorem 4.3, if𝔖𝑆 is admissible then it
is also a weak equilibrium. □

Thanks to Theorem 5.1 and Proposition 5.6, we are ready to prove Theorem 5.2.
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Proof of Theorem 5.2. Part (a): Suppose 𝑆 is an optimal mild equilibrium and 𝔖𝑆 is closed and
admissible. Proposition 5.6 tells that 𝔖𝑆 = 𝔖𝑆 is both an optimal mild and weak equilibrium.
Then by Theorem 5.1, to prove that 𝔖𝑆 is strong, it is sufficient to verify that 𝔖𝑆 = 𝔖𝔖𝑆 . Notice
that𝔖𝔖𝑆 ⊂ 𝔖𝑆 . Take𝑥0 ∈ 𝔖𝑆 andwe show𝑥0 ∈ 𝔖𝔖𝑆 . If𝑉𝑥(0, 𝑥0,𝔖𝑆) > 𝑉𝑥(0, 𝑥0,𝔖𝑆), then𝑥0 ∈
𝔖𝔖𝑆 . Otherwise, 𝑉𝑥(0, 𝑥0,𝔖𝑆) = 𝑉𝑥(0, 𝑥0,𝔖𝑆), and it remains to verify that

𝑉(0, 𝑥0−,𝔖𝑆) ∧ 𝑉(0, 𝑥0+,𝔖𝑆) < 0. (109)

Since both 𝑆 and𝔖𝑆 are optimal mild, we have

𝑉(0, 𝑥,𝔖𝑆) ≡ 𝐽(𝑥,𝔖𝑆) ≡ 𝐽(𝑥,𝔖𝑆) ≡ 𝐽(𝑥, 𝑆) ≡ 𝑉(0, 𝑥, 𝑆) ∀𝑥 ∈ 𝕏.
Then,

𝑉𝑥(0, 𝑥0−, 𝑆) − 𝑉𝑥(0, 𝑥0+, 𝑆) = 𝑉𝑥(0, 𝑥0−,𝔖𝑆) − 𝑉𝑥(0, 𝑥0+,𝔖𝑆) = 0. (110)

Since 𝑥0 ∈ 𝔖𝑆 , by the definition of𝔖𝑆 , Equation (110) leads to that

𝑉(0, 𝑥0−, 𝑆) ∧ 𝑉(0, 𝑥0+, 𝑆) < 0. (111)

This together with Equation (22) implies that 𝑥0 cannot be an isolated point of 𝑆. We consider the
following two cases.
(1) Suppose 𝑥0 ∈ 𝑆◦. Note that 𝑉(𝑡, 𝑥, 𝑆) = 𝛿(𝑡)𝑓(𝑥) on 𝑆. Then by Equation (111), without

loss of generality, we assume 𝑉(0, 𝑥0+, 𝑆) = (𝛿𝑓)(0, 𝑥0+) < 0. By the right continuity of 𝑥 ↦(𝛿𝑓)(0, 𝑥+) at 𝑥0, we can find ℎ > 0 small enough such that [𝑥0, 𝑥0 + ℎ) ⊂ (𝑆◦ ∩ ) (recall 
defined in Equation 16) and

(𝛿𝑓)(0, 𝑥+) < 0, ∀𝑥 ∈ [𝑥0, 𝑥0 + ℎ). (112)

Hence, [𝑥0, 𝑥0 + ℎ) ⊂ 𝔖𝑆 , and thus 𝑉(0, 𝑥0+,𝔖𝑆) = (𝛿𝑓)(0, 𝑥+) < 0.
(2) Otherwise, 𝑥0 ∈ 𝜕(𝑆◦) for boundary case (a). Without loss of generality, we assume

(𝑥0, 𝑥0 + ℎ) ⊂ (𝑆
◦ ∩ ) for ℎ > 0 small enough. Then by Equations (111) and (22), we again have

𝑉(0, 𝑥0+, 𝑆) = (𝛿𝑓)(0, 𝑥0+) < 0. A similar discussion as in case (1) implies 𝑉(0, 𝑥0+,𝔖𝑆) =(𝛿𝑓)(0, 𝑥0+) < 0.
In sum, Equation (109) holds, and the proof of part (a) is complete.
Part (b): Lemma 4.1 indicates that 𝑆∗ is an optimal mild equilibrium. Then by Proposition 5.6,

𝔖𝑆∗ ⊂ 𝑆
∗ is an optimal mild equilibrium. As 𝑆∗ is the smallest optimal mild equilibrium,𝔖𝑆∗ =

𝑆∗. The rest statement directly follows from part (a). □

6 EXAMPLES

In this section,we provide three examples to demonstrate our results. In the first example, we have
two strong equilibria, one of which is not optimal mild. This indicates that an strong equilibrium
may not be optimal mild. In the second example, we show that a weak equilibrium may not be
strong. The third example is the stopping for an American put option on a geometric Brownian
motion, in which we provide all three types of equilibria.
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6.1 An example showing optimal mild ⫋ strong

In this subsection, we construct an example where the set of optimal mild equilibria is strictly
contained (i.e.,⫋) in the set of strong equilibria. Let 𝑑𝑋𝑡 = 𝑑𝑊𝑡 and thus 𝑋 is a Brownian motion
with𝕏 = ℝ. Take discount function 𝛿(𝑡) = 1

1+𝛽𝑡
. Let 𝑎 < 𝑏, 0 < 𝑐 < 𝑑 such that

∫ ∞
0
𝑒−𝑠

√
2𝛽𝑠

sinh((𝑏−𝑎)
√
2𝛽𝑠)
𝑑𝑠√

𝜋𝛽

2
+ ∫ ∞
0
𝑒−𝑠

√
2𝛽𝑠 coth((𝑏 − 𝑎)

√
2𝛽𝑠)𝑑𝑠

<
𝑐
𝑑
< ∫

∞

0
𝑒−(𝑠+(𝑏−𝑎)

√
2𝛽𝑠)𝑑𝑠. (113)

Notice that such parameters do exist, for example, let 𝑏 − 𝑎 = 1, then for Equation (113), we have
LHS ≈ 0.3952 < 𝑐

𝑑
< 0.4544 ≈ RHS.

Define

𝐽𝑏(𝑥) ∶= 𝑑𝔼
𝑥[𝛿(𝜌{𝑏})] = 𝑑 ∫

∞

0

𝑝(𝑡)

1 + 𝛽𝑡
𝑑𝑡 = 𝑑 ∫

∞

0 ∫
∞

0
𝑒−(1+𝛽𝑡)𝑠𝑝(𝑡)𝑑𝑠𝑑𝑡

= 𝑑 ∫
∞

0
𝑒−𝑠𝔼𝑥[𝑒−𝛽𝑠𝜌{𝑏} ]𝑑𝑠 = 𝑑 ∫

∞

0
𝑒−𝑠𝑒−|𝑥−𝑏|√2𝛽𝑠𝑑𝑠, 𝑥 ∈ 𝕏. (114)

where the second line uses the formula in Borodin and Salminen (2002, 2.0.1 on page 204). We
further define

𝐽𝑎𝑏(𝑥) ∶= 𝑐𝔼
𝑥[𝛿(𝜌{𝑎,𝑏}) ⋅ 1{𝜌{𝑎,𝑏}=𝑎}] + 𝑑𝔼

𝑥[𝛿(𝜌{𝑎,𝑏}) ⋅ 1{𝜌{𝑎,𝑏}=𝑏}]

=

⎧⎪⎪⎨⎪⎪⎩
𝑐 ∫ ∞
0
𝑒−𝑠𝑒−|𝑥−𝑎|√2𝛽𝑠𝑑𝑠, 𝑥 < 𝑎,

𝑐 ∫ ∞
0
𝑒−𝑠

sinh((𝑏−𝑥)
√
2𝛽𝑠)

sinh((𝑏−𝑎)
√
2𝛽𝑠)
𝑑𝑠 + 𝑑 ∫ ∞

0
𝑒−𝑠

sinh((𝑥−𝑎)
√
2𝛽𝑠)

sinh((𝑏−𝑎)
√
2𝛽𝑠)
𝑑𝑠, 𝑎 ≤ 𝑥 ≤ 𝑏,

𝐽𝑏(𝑥), 𝑥 > 𝑏.

(115)

where the expression for 𝐽𝑎𝑏 on [𝑎, 𝑏] is obtained by the formula in Borodin and Salminen (2002,
3.0.5 (a) and (b) on page 218) combined with an argument similar to that in Equation (114). Let 𝑓
be any function satisfying Assumption 2.8 such that

𝑓(𝑎) = 𝑐, 𝑓(𝑏) = 𝑑; 𝑓(𝑥) < min{𝐽𝑏(𝑥), 𝐽𝑎𝑏(𝑥)}, ∀ 𝑥 ∈ 𝕏 ⧵ {𝑎, 𝑏}. (116)

Note that

𝑐 < 𝑑 ∫
∞

0
𝑒−(𝑠+(𝑏−𝑎)

√
2𝛽𝑠)𝑑𝑠 = 𝐽𝑏(𝑎), (117)
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which shows such function 𝑓(𝑥) indeed exists.6
One can easily verify that Assumptions 2.1–2.8 hold.Moreover, Assumption 2.10 is also satisfied

due to Lemma 2.12 and Remark 2.13. We have the following result.

Proposition 6.1. {𝑏} is the unique optimal mild equilibrium, while both {𝑏} and {𝑎, 𝑏} are
strong equilibria.

Proof. Recall 𝑆∗ defined in Equation (58). First notice that

𝐽𝑏(𝑥) = 𝐽(𝑥, {𝑏}) and 𝐽𝑎𝑏(𝑥) = 𝐽(𝑥, {𝑎, 𝑏}), ∀ 𝑥 ∈ 𝕏.

Then by Equations (116) and (117), it is easy to see that both {𝑎, 𝑏} and {𝑏} are mild equilibria.
Since 𝑏 is the global maximum of 𝑓, any mild equilibrium must contain 𝑏. Therefore, {𝑏} is the
smallest mild equilibrium, that is, 𝑆∗ = {𝑏}. It then follows from Lemma 4.1 that {𝑏} is optimal
mild. Moreover, by Equations (116) and (117) again, we have that 𝑓(𝑥) < 𝐽(𝑥, {𝑏}) for any 𝑥 ≠ 𝑏,
which implies that {𝑏} is the unique optimal mild equilibrium.
Nowwe verify that both {𝑏} and {𝑎, 𝑏} are strong equilibria. As for the optimal mild equilibrium

{𝑏}, a direct calculation from Equation (114) shows that

𝐽′(𝑏−, {𝑏}) = 𝑑 ∫
∞

0
𝑒−𝑠

√
2𝛽𝑠𝑑𝑠 > 0,

and by symmetry, we have 𝐽′(𝑏+, {𝑏}) < 0. Then,

𝑉𝑥(0, 𝑏−, {𝑏}) − 𝑉𝑥(0, 𝑏+, {𝑏}) = 𝐽
′(𝑏−, {𝑏}) − 𝐽′(𝑏+, {𝑏}) > 0.

Meanwhile, by Lemma 2.14(a), we have 𝑉(𝑡, 𝑥±, {𝑏}) ≡ 0 on 𝕏. Therefore, we have 𝔖{𝑏} = {𝑏}
from Equation (88). Since {𝑏} is closed and admissible, Theorem 5.2(b) tells that {𝑏} is a strong
equilibrium. Now consider the mild equilibirum {𝑎, 𝑏}. Direct calculations from Equation (115)
show that

𝐽′(𝑎−, {𝑎, 𝑏}) = 𝑐 ∫
∞

0
𝑒−𝑠

√
2𝛽𝑠𝑑𝑠 =

√
𝜋𝛽

2
𝑐,

and for any 𝑥 ∈ (𝑎, 𝑏),

𝐽′(𝑥, {𝑎, 𝑏}) = −𝑐 ∫
∞

0
𝑒−𝑠
cosh((𝑏 − 𝑥)

√
2𝛽𝑠)

√
2𝛽𝑠

sinh((𝑏 − 𝑎)
√
2𝛽𝑠)

𝑑𝑠 + 𝑑 ∫
∞

0
𝑒−𝑠
cosh((𝑥 − 𝑎)

√
2𝛽𝑠)

√
2𝛽𝑠

sinh((𝑏 − 𝑎)
√
2𝛽𝑠)

𝑑𝑠.

(118)

6 By the strong Markov property of 𝑋 and Equation (117), one can easily check that 𝐽𝑎𝑏(𝑥) < 𝐽𝑏(𝑥) for 𝑥 < 𝑏. Hence, a
quick example for such 𝑓 would be

𝑓(𝑥) ∶=

⎧⎪⎪⎨⎪⎪⎩

1

1+(𝑎−𝑥)
𝐽𝑎𝑏(𝑥), 𝑥 ≤ 𝑎,

1

1+(𝑥−𝑎)(𝑏−𝑥)
𝐽𝑎𝑏(𝑥), 𝑎 < 𝑥 ≤ 𝑏,

1

1+(𝑥−𝑏)
𝐽𝑏(𝑥), 𝑥 > 𝑏.
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By taking 𝑥 = 𝑎+ in Equation (118) and combining with the first inequality in Equation (113), we
have that

𝐽′(𝑎+, {𝑎, 𝑏}) = − 𝑐 ∫
∞

0
𝑒−𝑠 coth((𝑏 − 𝑎)

√
2𝛽𝑠)

√
2𝛽𝑠𝑑𝑠 + 𝑑 ∫

∞

0
𝑒−𝑠

√
2𝛽𝑠

sinh((𝑏 − 𝑎)
√
2𝛽𝑠)

𝑑𝑠

<

√
𝜋𝛽

2
𝑐 = 𝐽′(𝑎−, {𝑎, 𝑏}).

By taking 𝑥 = 𝑏− in Equation (118) and the fact that 0 < 𝑐 < 𝑑, we have that

𝐽′(𝑏−, {𝑎, 𝑏}) = − 𝑐 ∫
∞

0
𝑒−𝑠

√
2𝛽𝑠

sinh((𝑏 − 𝑎)
√
2𝛽𝑠)

𝑑𝑠 + 𝑑 ∫
∞

0
𝑒−𝑠 coth((𝑏 − 𝑎)

√
2𝛽𝑠)

√
2𝛽𝑠𝑑𝑠

>0 > 𝐽′(𝑏+, {𝑏}) = 𝐽′(𝑏+, {𝑎, 𝑏}).

Hence,

𝑉𝑥(0, 𝑥−, {𝑎, 𝑏}) > 𝑉𝑥(0, 𝑥+, {𝑎, 𝑏}), for both 𝑥 = 𝑎, 𝑏. (119)

Meanwhile, Lemma 2.14(a) tells that 𝑉(𝑡, 𝑥, {𝑎, 𝑏}) ≡ 0 on𝕏 ⧵ {𝑎, 𝑏}. Therefore, by Theorem 3.1,
{𝑎, 𝑏} is a weak equilibrium. Moreover, by Equations (119) and (88),𝔖{𝑎,𝑏} = {𝑎, 𝑏}. It then follows
from Theorem 5.1 that {𝑎, 𝑏} is a strong equilibrium. □

6.2 An example showing strong ⫋weak

In this subsection, we give an example inwhich aweak equilibrium is not strong, and thus {strong
equilibria} ⫋ {weak equilibria}. Let 𝑋 be a geometric Brownian motion:

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡 (120)

with 𝕏 = (0,∞). Let 𝛿(𝑡) = 1

1+𝛽𝑡
and 𝑓(𝑥) = 𝑥 ∧ 𝐾 for some constant 𝐾 > 0. Assume that 𝜇 =

𝛽 > 0.

Proposition 6.2. (0,∞) is a weak equilibrium but not strong, while [𝐾,∞) is the unique optimal
mild equilibrium and a strong equilibrium.

Proof. We first verify the result for (0,∞). Notice that 𝑉(𝑡, 𝑥, (0,∞)) ≡ 𝛿(𝑡)𝑓(𝑥), then direct
calculations show

⎧⎪⎨⎪⎩
𝑉(0, 𝑥, (0,∞)) = (−𝛽 + 𝜇)𝑥 = 0, 0 < 𝑥 < 𝐾,
𝑉(0, 𝑥, (0,∞)) = −𝛽𝐾 < 0, 𝑥 > 𝐾,

𝑉𝑥(0, 𝐾−, (0,∞)) = 1 > 0 = 𝑉𝑥(0, 𝐾+, (0,∞)).

Therefore, by Theorem 3.1, (0,∞) is a weak equilibrium. For 𝑥 ∈ (0, 𝐾), we have that for 𝜀 > 0
small enough,

𝔼[𝛿(𝜌𝜀
(0,∞)
)𝑓(𝑋𝜌𝜀

(0,∞)
)]>𝔼

[
𝛿(𝜀)𝑋𝜀1{𝑋𝜀≤𝐾}

]
=
𝑒𝜇𝜀

1 + 𝜇𝜀
𝑁(𝑑𝜀) ⋅ 𝑥
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≥
(
1 + 𝜇𝜀 +

1
2
𝜇2𝜀2 + 𝑜(𝜀2)

)(
1 − 𝜇𝜀 + 𝜇2𝜀2 + 𝑜(𝜀2)

)(
1 −

1√
2𝜋𝑑𝜀

𝑒−𝑑
2
𝜀 ∕2

)
⋅ 𝑥

≥
(
1 +
1
2
𝜇2𝜀2 + 𝑜(𝜀2)

)
(1 + 𝑜(𝜀2)) ⋅ 𝑥 =

(
1 +
1
2
𝜇2𝜀2 + 𝑜(𝜀2)

)
𝑥 > 𝑥,

where 𝑑𝜀 ∶=
ln(𝐾∕𝑥)−(𝜇+

1

2
𝜎2)𝜀

𝜎
√
𝜀

. This indicates that (0,∞) is not a strong equilibrium.
Now we verify the result for [𝐾,∞). By Ito’s formula,

𝑑

(
𝑋𝑡
1 + 𝛽𝑡

)
=

𝑋𝑡
1 + 𝛽𝑡

(
−
𝛽

1 + 𝛽𝑡
+ 𝜇

)
𝑑𝑡 +

𝜎𝑋𝑡
1 + 𝛽𝑡

𝑑𝑊𝑡 =
𝜇2𝑡𝑋𝑡
(1 + 𝜇𝑡)2

𝑑𝑡 +
𝜎𝑋𝑡
1 + 𝜇𝑡

𝑑𝑊𝑡.

Then, by the facts that 𝜌[𝐾,∞) > 0 ℙ𝑥-a.s. and 𝑋𝑡 > 0 for 𝑥 ∈ (0, 𝐾), we have that

𝐽(𝑥, [𝐾,∞)) − 𝑓(𝑥) = 𝔼𝑥
[ 𝑋𝜌[𝐾,∞)
1 + 𝛽𝜌[𝐾,∞))

]
− 𝑥 = 𝔼𝑥

[
∫
𝜌[𝐾,∞)

0

𝜇2𝑡𝑋𝑡
(1 + 𝜇𝑡)2

𝑑𝑡

]
> 0, ∀𝑥 ∈ (0, 𝐾),

(121)
which shows that [𝐾,∞) is a mild equilibrium. On the other hand, since [𝐾,∞) is the set of global
maxima of 𝑓, any mild equilibrium 𝑆 must contain [𝐾,∞), for otherwise, 𝐽(𝑥, 𝑆) < 𝐾 = 𝑓(𝑥)
for any 𝑥 ∈ 𝑆𝑐 ∩ [𝐾,∞), a contradiction. Therefore, [𝐾,∞) is the smallest mild equilibrium and
thus optimal. Now for any mild equilibrium 𝑆 such that 𝑆 ⧵ [𝐾,∞) ≠ ∅, Equation (121) indicates
that 𝑓(𝑥) < 𝐽(𝑥, [𝐾,∞)) on 𝑆 ⧵ [𝐾,∞), which implies that 𝑆 is not an optimal mild equilibrium.
Hence, [𝐾,∞) is the unique optimal mild equilibrium. Moreover, direct calculation shows that

𝑉(0, 𝑥+, [𝐾,∞)) = (𝛿(𝑡)𝐾) = −𝛽𝐾, ∀𝑥 ∈ [𝐾,∞),
which tells that𝔖[𝐾,∞) = [𝐾,∞). Then by Theorem 5.2(b), [𝐾,∞) is also strong. □

6.3 Stopping of an American put option

Consider the American put example in Huang and Zhou (2020, Section 6.3). In particular, 𝑋 is
a geometric Brownian motion given by Equation (120) with 𝕏 ∶= (0,∞). Let 𝜇 ≥ 0. The payoff
function is defined as 𝑓(𝑥) ∶= (𝐾 − 𝑥)+, and 𝛿(𝑡) ∶= 1

1+𝛽𝑡
. We shall provide all three types of

equilibria. To begin with, the following lemma summarizes the results of mild equilibria stated in
Lemma 6.11, Corollary 6.13, and Proposition 6.15 in Huang and Zhou (2020).

Lemma 6.3.

(i) If 𝑆 is a mild equilibrium, then 𝑆 ∩ (0, 𝐾] = (0, 𝑎] for some 𝑎 ∈ (0, 𝐾].
(ii) 𝑆 = (0, 𝑎] ⊂ (0, 𝐾] is mild equilibrium if and only if 𝑎 ≥ 𝜆

1+𝜆
𝐾, where

𝜆 ∶= ∫
∞

0
𝑒−𝑠

(√
𝜈2 + 2𝛽𝑠∕𝜎2 + 𝜈

)
> 0, 𝜈 ∶=

𝑢

𝜎2
−
1
2
. (122)
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(iii) 𝑆∗ = (0, 𝜆
1+𝜆
𝐾] is the intersection of all mild equilibria and is the unique optimal mild

equilibria.

Following fromLemma6.3(ii), we shall call themild equilibria that belong to the family {(0, 𝑎] ∶
𝑎 ≥ 𝜆

1+𝜆
𝐾} are “type I”mild equilibria.7 The following proposition shows that, except “type I”mild

equilibria, all othermild equilibria take the same form: (0, 𝑎] ∪ 𝐷 that satisfies a certain condition,
and we shall call this family of mild equilibria “type II” mild equilibria.

Proposition 6.4. Except the “type I” mild equilibria in Lemma 6.3(ii), all other mild equilibria take
form: (0, 𝑎] ∪ 𝐷 such that

−(𝐾 − 𝑎)∫
∞

0
𝑒−𝑠

(
𝜈
𝑎
+

√
𝜈2 + 2𝛽𝑠∕𝜎2

𝑎
⋅
(𝑏∕𝑎)

√
𝜈2+2𝛽𝑠∕𝜎2 + (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

(𝑏∕𝑎)
√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

)
𝑑𝑠 ≥ −1, (123)

where 𝐷 is a closed subset of [𝐾,∞) and 𝑏 ∶= inf {𝑥 ∈ 𝐷} satisfying 𝑏 > 𝑎.

Proof. Lemma 6.3(i)(ii) together imply that any mild equilibrium is either of type I or takes
the form: (0, 𝑎] ∪ 𝐷 with 𝐷 being a closed subset of [𝐾,∞). Consider a closed set of such form
𝑆 = (0, 𝑎] ∪ 𝐷 with 𝑏 ∶= inf {𝑥 ∈ 𝐷} > 𝑎. When 𝑎 ≥ 𝐾, the fact that 𝑓 = 0 on [𝐾,∞) immedi-
ately gives that 𝑆 is a mild equilibrium. Notice that −(𝐾 − 𝑎) ≥ 0 and the integrand in the LHS of
Equation (123) is positive, so Equation (123) holds.
When 𝑎 < 𝐾, we have

𝐽(𝑥, 𝑆) = (𝐾 − 𝑎)∫
∞

0

𝑝(𝑡)

1 + 𝛽𝑡
𝑑𝑡 = (𝐾 − 𝑎)∫

∞

0
𝑒−𝑠𝔼𝑥[𝑒−𝛽𝑠𝜏(𝑎,𝑏) ⋅ 1{𝑋𝜏(𝑎,𝑏)=𝑎}

]𝑑𝑠

= (𝐾 − 𝑎)∫
∞

0
𝑒−𝑠

(𝑎
𝑥

)𝜈 (𝑏∕𝑥)√𝜈2+2𝛽𝑠∕𝜎2 − (𝑥∕𝑏)√𝜈2+2𝛽𝑠∕𝜎2
(𝑏∕𝑎)

√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

𝑑𝑠, ∀𝑥 ∈ (𝑎, 𝑏),

where 𝑝(𝑡) ∶= ℙ𝑥(𝜏(𝑎,𝑏) ∈ 𝑑𝑡, 𝑋𝜏(𝑎,𝑏) = 𝑎), and the second line above follows from Borodin and
Salminen (2002, 3.0.5 (a) on page 633). Direct calculations show that for any 𝑥 ∈ (𝑎, 𝑏)

𝐽′(𝑥, 𝑆) = − (𝐾 − 𝑎)∫
∞

0
𝑒−𝑠

(
𝑎𝜈𝜈

𝑥𝜈+1
⋅
(𝑏∕𝑥)

√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑥∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

(𝑏∕𝑎)
√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

+
𝑎𝜈

√
𝜈2 + 2𝛽𝑠∕𝜎2

𝑥𝜈+1
⋅
(𝑏∕𝑥)

√
𝜈2+2𝛽𝑠∕𝜎2 + (𝑥∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

(𝑏∕𝑎)
√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

)
𝑑𝑠,

(124)

𝐽′′(𝑥, 𝑆) =(𝐾 − 𝑎)∫
∞

0
𝑒−𝑠

(
𝑎𝜈(2𝜈2 + 𝜈 + 2𝛽𝑠∕𝜎2)

𝑥𝜈+2
⋅
(𝑏∕𝑥)

√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑥∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

(𝑏∕𝑎)
√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

+
𝑎𝜈(2𝜈 + 1)

√
𝜈2 + 2𝛽𝑠∕𝜎2

𝑥𝜈+2
⋅
(𝑏∕𝑥)

√
𝜈2+2𝛽𝑠∕𝜎2 + (𝑥∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

(𝑏∕𝑎)
√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

)
𝑑𝑠.

(125)

7 It contains the trivial mild equilibrium𝕏 by setting 𝑎 = ∞ and𝕏 = 𝕏 ∩ (0,∞].
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Recall 𝜈 in Equation (122), we have that

𝜈 +
√
𝜈2 + 2𝛽𝑠∕𝜎2 > 0 and (2𝜈2 + 𝜈 + 2𝛽𝑠∕𝜎2) +

(
(2𝜈 + 1)

√
𝜈2 + 2𝛽𝑠∕𝜎2

)
> 0.

This together with

0 < (𝑏∕𝑥)
√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑥∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2 < (𝑏∕𝑥)

√
𝜈2+2𝛽𝑠∕𝜎2 + (𝑥∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

implies that both the integrands on the RHS of Equations (124) and (125) are positive. Therefore,
𝐽′(𝑥, 𝑆) < 0 and 𝐽′′(𝑥, 𝑆) > 0 for 𝑥 ∈ (𝑎, 𝑏), and thus 𝐽(𝑥, 𝑆) is strictly decreasing and convex on
(𝑎, 𝑏). This together with the shape of 𝑓 on (𝑎, 𝑏) indicates that 𝑆 is a mild equilibrium if and only
if 𝐽′(𝑎+, 𝑆) ≥ −1. From Equation (124), we have

𝐽′(𝑎+, 𝑆) = −(𝐾 − 𝑎)∫
∞

0
𝑒−𝑠

(
𝜈
𝑎
+

√
𝜈2 + 2𝛽𝑠∕𝜎2

𝑎
⋅
(𝑏∕𝑎)

√
𝜈2+2𝛽𝑠∕𝜎2 + (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

(𝑏∕𝑎)
√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

)
𝑑𝑠,

so 𝑆 is a mild equilibrium if and only if Equation (123) holds. Notice that 𝐽′(𝑎+, 𝑆) converges
to 0 when 𝑎 ↗ 𝐾. Then for any 𝑏 > 𝐾, by the continuity of function 𝑎 ↦ 𝐽′(𝑎+, 𝑆), there exists
a constant 𝑎𝑏 < 𝐾 such that for all 𝑎 ∈ [𝑎𝑏, 𝐾), Equation (123) indeed holds and 𝑆 is a mild
equilibrium. □

Proposition 6.5. 𝑆∗ = (0, 𝜆
1+𝜆
𝐾] is the unique weak and the unique strong equilibrium.

Proof. We first find all weak equilibria. Since a weak equilibrium is also mild, by Proposition 6.4,
it is sufficient to select weak equilibria from the two types of mild equilibria. Given amild equilib-
rium 𝑆 that is weak, nomatter which type it is, 𝑆must not contain𝐾. Otherwise, by Lemma 6.3(i),
(0, 𝐾] ⊂ 𝑆, which together with 𝑓 = 0 on [𝐾,∞) implies that

𝑉𝑥(0, 𝐾−, 𝑆) = −1 < 0 = 𝑉𝑥(0, 𝐾+, 𝑆),

which contradicts Equation (24) in Theorem 3.1.
Consider an arbitrary type I mild equilibrium (0, 𝑎] with 𝜆

1+𝜆
𝐾 ≤ 𝑎 < 𝐾. By the smooth-fit

condition in Corollary 3.2, 𝑆 = (0, 𝑎] is a weak equilibrium if and only if

𝑉𝑥(0, 𝑎+, (0, 𝑎]) = 𝐽
′(𝑎+, (0, 𝑎]) = −1.

From the calculation in the proof of Lemma 6.12 in Huang and Zhou (2020), such condition is
satisfied if and only if 𝑎 = 𝜆

1+𝜆
𝐾. Hence, 𝑆∗ = (0, 𝜆

1+𝜆
𝐾] is the only weak equilibrium among the

type Imild equilibria. Now pick any type IImild equilibrium 𝑆 = (0, 𝑎] ∪ 𝐷with 𝑏 ∶= inf {𝑥 ∈ 𝐷}.
As 𝐾 ∉ 𝑆, we have 𝑎 < 𝐾. Then by Equation (124), we have

𝑉𝑥(0, 𝑏−, 𝑆) = −
𝐾 − 𝑎

𝑏𝜈+1 ∫
∞

0
𝑒−𝑠

2𝑎𝜈
√
𝜈2 + 2𝛽𝑠∕𝜎2

(𝑏∕𝑎)
√
𝜈2+2𝛽𝑠∕𝜎2 − (𝑎∕𝑏)

√
𝜈2+2𝛽𝑠∕𝜎2

𝑑𝑠 < 0 = 𝑉𝑥(0, 𝑏+, 𝑆).

That is, the smooth-fit condition fails at the boundary 𝑥 = 𝑏, and hence 𝑆 is not weak. In sum,
𝑆∗ = (0,

𝜆

1+𝜆
𝐾] is the unique weak equilibrium.
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Finally, a direct calculation shows that

𝑉(0, 𝑥−, 𝑆∗) = −𝛽(𝐾 − 𝑥) − 𝜇𝑥 < 0, ∀𝑥 ∈
(
0,
𝜆
1 + 𝜆

𝐾

]
,

so 𝑆∗ = 𝔖𝑆∗ . Then, by Theorem 5.1 and the fact that 𝑆∗ is the unique weak equilibrium, we can
conclude that 𝑆∗ is the unique strong equilibrium. □

Remark 6.6. Within this example, we do not restrict equilibria to be admissible. The unique weak,
strong, optimal mild equilibrium (0, 𝜆

1+𝜆
𝐾] turns out to be indeed admissible. Moreover, type I

mild equilibria are all admissible, while any type II mild equilibrium 𝑆 = (0, 𝑎] ∪ 𝐷 with 𝑏 ∶=
inf {𝑥 ∈ 𝐷} > 𝑎 has an alternative (0, 𝑎] ∪ [𝑏,∞), which share the same 𝐽 value and is admissible.
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APPENDIX A: PROOF FOR RESULTS IN SECTION 2
Proof (of (12) in Remark 2.2). Let 𝑋0 = 𝑥 ∈ 𝕏 and ℎ > 0 be small enough such that [𝑥 − ℎ, 𝑥 +
ℎ] ⊂ 𝕏. Let 𝑌 = (𝑌𝑡)𝑡≥0 follows 𝑑𝑌𝑡 = 𝜇̂(𝑌𝑡)𝑑𝑡 + 𝜎̂(𝑌𝑡)𝑑𝑊𝑡 with 𝑌0 = 𝑥, where

𝜇̂(𝑦) ∶=

⎧⎪⎨⎪⎩
𝜇(𝑦), 𝑥 − ℎ ≤ 𝑦 ≤ 𝑥 + ℎ,
𝜇(𝑥 − ℎ), 𝑦 < 𝑥 − ℎ,

𝜇(𝑥 + ℎ), 𝑦 > 𝑥 + ℎ,

and 𝜎̂(𝑦) ∶=

⎧⎪⎨⎪⎩
𝜎(𝑦), 𝑥 − ℎ ≤ 𝑦 ≤ 𝑥 + ℎ,
𝜎(𝑥 − ℎ), 𝑦 < 𝑥 − ℎ,

𝜎(𝑥 + ℎ), 𝑦 > 𝑥 + ℎ.

Then by Huang et al. (2020, Lemma A.1), for any 𝑡 > 0,

ℙ𝑥
(
max
0≤𝑠≤𝑡 𝑌𝑠 > 𝑥

)
= ℙ𝑥

(
min
0≤𝑠≤𝑡 𝑌𝑠 < 𝑥

)
= 1.

Note that 𝑌𝑠 = 𝑋𝑠 for 𝑠 ≤ 𝜏𝐵(𝑥,ℎ). Then for a.s. 𝜔 ∈ {𝜏𝐵(𝑥,ℎ) > 1∕𝑛},
max
0≤𝑠≤𝑡 𝑋𝑠(𝜔) > 𝑥 and min

0≤𝑠≤𝑡 𝑋𝑠(𝜔) < 𝑥, ∀ 𝑡 ∈ (0, 1∕𝑛) and thus ∀ 𝑡 > 0.

Then Equation (12) follows from the arbitrariness of 𝑛 ∈ ℕ. □

Proof of Lemma 2.7. By Equation (13), for any 𝑡, 𝑟 ≥ 0
𝛿(𝑡 + 𝑟) − 𝛿(𝑡) ≥ 𝛿(𝑡)(𝛿(𝑟) − 𝛿(0)),

This together with the differentiability of 𝛿(𝑡) implies that 𝛿′(𝑡) ≥ 𝛿(𝑡)𝛿′(0). As 𝛿′(𝑡) ≤ 0,

1 − 𝛿(𝑡) = ∫
𝑡

0
−𝛿′(𝑠)𝑑𝑠 ≤ ∫

𝑡

0
−𝛿(𝑠)𝛿′(0)𝑑𝑠 ≤ ∫

𝑡

0
|𝛿′(0)|𝑑𝑠 = |𝛿′(0)|𝑡.

□

Proof of Lemma 2.12. Take an admissible stopping policy 𝑆. Let 𝑎, 𝑏 ∈ 𝕏 such that [𝑎, 𝑏] ⊂ 𝕏 and
(𝑎, 𝑏) ⊂ 𝑆𝑐. Throughout the proof, 𝐶 > 0 will serve as a generic constant that may change from
one line to another and is independent of 𝑟.
Set 𝑣(𝑥, 𝑟, 𝑆) ∶= 𝔼𝑥[𝑒−𝑟𝜌𝑆𝑓(𝑋𝜌𝑆 )]. We first provide an estimate for |𝑣𝑥(𝑥, 𝑟, 𝑆)| + |𝑣𝑥𝑥(𝑥, 𝑟, 𝑆)|

on [𝑎, 𝑏]. Assumption 2.1(i) and the boundedness of 𝑓 gives the well-posedness of 𝑣(⋅, 𝑟, 𝑆) for all
𝑟 ≥ 0, and

sup
𝑥∈[𝑎,𝑏],𝑟≥0

|𝑣(𝑥, 𝑟, 𝑆)| ≤ sup
𝑥∈[𝑎,𝑏]

|𝑣(𝑥, 0, 𝑆)| ≤ 𝐶. (A.1)

For an arbitrary 𝑟 ≥ 0, by a standard probabilistic argument, one can derive that 𝑣(𝑥, 𝑟, 𝑆) ∈
2([𝑎, 𝑏]) satisfies the following elliptic equation:{

−𝑟𝑢(𝑥) + 𝜇(𝑥)𝑢′(𝑥) +
1

2
𝜎2(𝑥)𝑢′′(𝑥) = 0, 𝑥 ∈ (𝑎, 𝑏),

𝑢(𝑎) = 𝑣(𝑎, 𝑟, 𝑆), 𝑢(𝑏) = 𝑣(𝑏, 𝑟, 𝑆).
(A.2)

Recall the strictly increasing function 𝑦 = 𝜙(𝑥) defined in Equation (32) and denote by 𝜙−1 the
inverse function of 𝜙. Define function 𝑢̃(𝑦) ∶= 𝑢(𝜙−1(𝑦)) (i.e., 𝑢(𝑥) = 𝑢̃(𝜙(𝑥))) on [𝜙(𝑎), 𝜙(𝑏)].
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Then 𝑢̃ ∈ 2([𝜙(𝑎), 𝜙(𝑏)]), and Equation (A.2) leads to{
−𝑟𝑢̃(𝑦) +

1

2
𝜎̃2(𝑦)𝑢̃′′(𝑦) = 0, 𝑦 ∈ (𝜙(𝑎), 𝜙(𝑏)),

𝑢̃(𝜙(𝑎)) = 𝑣(𝑎, 𝑟, 𝑆), 𝑢̃(𝜙(𝑏)) = 𝑣(𝑏, 𝑟, 𝑆),
(A.3)

with 𝜎̃(𝑦) ∶= 𝜎(𝜙−1(𝑦))𝜙′(𝜙−1(𝑦)). Then Equation (A.1) together with the maximum principle
implies that

sup
𝑦∈(𝜙(𝑎),𝜙(𝑏))

|𝑢̃(𝑦)| ≤ 𝑣(𝑎, 𝑟, 𝑆) ∨ 𝑣(𝑏, 𝑟, 𝑆) ≤ 𝐶 ∀𝑟 ≥ 0.

This together with the fact that 𝑢̃′′ = 2𝑢̃𝑟∕(𝜎̃2) and uniform ellipticity of 𝜎̃ on (𝜙(𝑎), 𝜙(𝑏)) leads
to

sup
𝑦∈(𝜙(𝑎),𝜙(𝑏))

|𝑢̃′′(𝑦)| ≤ 𝑟𝐶 ∀𝑟 ≥ 0. (A.4)

By the mean value theorem, there exists 𝑦0 ∈ (𝜙(𝑎), 𝜙(𝑏)) such that

|𝑢̃′(𝑦0)| = ||||𝑣(𝑏, 𝑟, 𝑆) − 𝑣(𝑎, 𝑟, 𝑆)𝜙(𝑏) − 𝜙(𝑎)

|||| ≤ 2𝐶

𝜙(𝑏) − 𝜙(𝑎)
∀𝑟 ≥ 0. (A.5)

Then by Equations (A.4) and (A.5), for any 𝑦 ∈ (𝜙(𝑎), 𝜙(𝑏)) and 𝑟 ≥ 0, we have

|𝑢̃′(𝑦)| ≤ |𝑢̃′(𝑦0)| + ∫
𝑦

𝑦0

|𝑢̃′′(𝑙)|𝑑𝑙 ≤ 2𝐶

𝜙(𝑏) − 𝜙(𝑎)
+ ∫

𝜙(𝑏)

𝜙(𝑎)
𝑟𝐶𝑑𝑙 =

2𝐶

𝜙(𝑏) − 𝜙(𝑎)
+ 𝑟𝐶(𝜙(𝑏) − 𝜙(𝑎)).

Therefore,

sup
𝑦∈(𝜙(𝑎),𝜙(𝑏))

(|𝑢̃′(𝑦)| + |𝑢̃′′(𝑦)|) ≤ 𝐶(1 + 𝑟) ∀𝑟 ≥ 0.

This together with the fact that

sup
𝑥∈(𝑎,𝑏)

(|𝑢′(𝑥)| + |𝑢′′(𝑥)|) ≤ sup
𝑦∈(𝜙(𝑎),𝜙(𝑏))

(|𝑢̃′(𝑦)| + |𝑢̃′′(𝑦)|) ⋅ sup
𝑥∈(𝑎,𝑏)

(|𝜙′(𝑥)| + |𝜙′(𝑥)|2 + |𝜙′′(𝑥)|)
implies

sup
𝑥∈(𝑎,𝑏)

(|𝑣𝑥(𝑥, 𝑟, 𝑆)| + |𝑣𝑥𝑥(𝑥, 𝑟, 𝑆)|) = sup
𝑥∈(𝑎,𝑏)

(|𝑢′(𝑥)| + |𝑢′′(𝑥)|) ≤ 𝐶(1 + 𝑟) ∀𝑟 ≥ 0. (A.6)

Next, we verify that 𝑉 ∈ 1,2([0,∞) × [𝑎, 𝑏]). For any 𝑟 ≥ 0, 𝑣𝑥(𝑎+, 𝑟, 𝑆), 𝑣𝑥(𝑏−, 𝑟, 𝑆) (resp.
𝑣𝑥𝑥(𝑎+, 𝑟, 𝑆), 𝑣𝑥𝑥(𝑏−, 𝑟, 𝑆)) all exist and satisfy the same bound as the RHS of Equation (A.6).
Hence, we conclude that 𝑣(𝑥, 𝑟, 𝑆) ∈ 2([𝑎, 𝑏]). By Fubini theorem, Equation (20) leads to

𝑉(𝑡, 𝑥, 𝑆) = ∫
∞

0
𝑒−𝑟𝑡𝑣(𝑥, 𝑟, 𝑆)𝑑𝐹(𝑟) ∀𝑥 ∈ 𝕏. (A.7)

This, together with Equation (A.6) and the assumption ∫ ∞
0
𝑟𝑑𝐹(𝑟) < ∞, implies that 𝑉 ∈

1,2([0,∞) × [𝑎, 𝑏]).
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Finally, we prove Equation (18) for 𝑉𝑥(𝑡, 𝑥+, 𝑆) (the verification for 𝑉𝑥(𝑡, 𝑥−, 𝑆) is similar
and thus omitted). For (𝑡, 𝑥) ∈ [0,∞) × [𝑎, 𝑏), by Equations (A.6), (A.7) and the assumption
∫ ∞
0
𝑟𝑑𝐹(𝑟) < ∞,

𝑉𝑥(𝑡, 𝑥+, 𝑆) = ∫
∞

0
𝑒−𝑟𝑡𝑣𝑥(𝑥+, 𝑟, 𝑆)𝑑𝐹(𝑟). (A.8)

Now take any 𝑥 ∈ 𝕏. If there exists some ℎ > 0 such that (𝑥, 𝑥 + ℎ) ⊂ 𝑆𝑐, then by Equations (21),
(A.6), and (A.8), we have that

|𝑉𝑥(𝑡, 𝑥+, 𝑆) − 𝑉𝑥(0, 𝑥+, 𝑆)| ≤ ∫
∞

0
|𝑣𝑥(𝑥, 𝑟, 𝑆)||𝑒−𝑟𝑡 − 1|𝑑𝐹(𝑟)

≤ 𝐶 ∫
∞

0
(1 + 𝑟)(1 − 𝑒−𝑟𝑡)𝑑𝐹(𝑟) = 𝑜(

√
𝑡), as 𝑡 → 0.

Otherwise, since 𝑆 is admissible, there exists some ℎ̄ > 0 such that (𝑥, 𝑥 + ℎ̄) ⊂ 𝑆. Then,

|𝑉𝑥(𝑡, 𝑥+, 𝑆) − 𝑉𝑥(0, 𝑥+, 𝑆)| = |𝛿(𝑡)𝑓(𝑥) − 𝛿(0)𝑓(𝑥)| ≤ |𝛿′(0)|𝑡𝑓(𝑥) = 𝑜(√𝑡), as 𝑡 → 0,
where the above inequality follows from Lemma 2.7. In sum, Equation (18) holds for
𝑉𝑥(𝑡, 𝑥+, 𝑆). □

Proof of Lemma 2.14. Part (a): Assumption 2.10 guarantees that 𝑉(𝑡, 𝑥, 𝑆) ∈ 1,2([0,∞) × 𝑆𝑐).
Equation (12) implies that ℙ𝑥(𝜌𝑆 = 0) = 1 for any 𝑥 ∈ 𝑆, so 𝑉(𝑡, 𝑥, 𝑆) = 𝛿(𝑡)𝑓(𝑥) for any (𝑡, 𝑥) ∈
[0,∞) × 𝑆. Now we prove that

𝑉(𝑡, 𝑥, 𝑆) ≡ 0 ∀(𝑡, 𝑥) ∈ [0,∞) × 𝑆𝑐. (A.9)

Take (𝑡, 𝑥0) ∈ [0,∞) × 𝑆𝑐. Since 𝑆𝑐 is open, we can take ℎ > 0 such that [𝑥0 − ℎ, 𝑥0 + ℎ] ⊂ 𝑆𝑐.
By Assumption 2.1(i) and 𝑉(𝑡, 𝑥, 𝑆) ∈ 1,2([0,∞) × 𝑆𝑐), (𝑠, 𝑥) ↦ 𝑉(𝑠, 𝑥, 𝑆) is continuous on the
compact set [𝑡, 𝑡 + 1] × 𝐵(𝑥0, ℎ). Then,

sup
(𝑠,𝑥)∈[𝑡,𝑡+1]×𝐵(𝑥0,ℎ)

|𝑉(𝑠, 𝑥, 𝑆)| < ∞. (A.10)

Applying Ito’s formula to 𝑉(𝑡 + 𝑠, 𝑋𝑠, 𝑆) and taking expectation, the diffusion term vanishes due
to the boundedness of 𝑉𝑥𝜎 on [𝑡, 𝑡 + 1] × 𝐵(𝑥0, ℎ), we have that

𝔼𝑥0[𝑉(𝑡 + 𝜀 ∧ 𝜏𝐵(𝑥0,ℎ), 𝑋𝜀∧𝜏𝐵(𝑥0,ℎ) , 𝑆)] − 𝑉(𝑡, 𝑥0, 𝑆) = 𝔼
𝑥0

[
∫
𝜀∧𝜏𝐵(𝑥0,ℎ)

0
𝑉(𝑡 + 𝑠, 𝑋𝑠, 𝑆)𝑑𝑠

]
. (A.11)

Meanwhile, by the continuity of 𝑉(𝑠, 𝑥, 𝑆) on [𝑡, 𝑡 + 1] × 𝐵(𝑥0, ℎ),

lim
𝜀↘0

1
𝜀 ∫

𝜀∧𝜏𝐵(𝑥0,ℎ)

0
𝑉(𝑡 + 𝑠, 𝑋𝑠, 𝑆)𝑑𝑠 = 𝑉(𝑡, 𝑥0, 𝑆), ℙ𝑥0 -a.s..
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Thanks to Equation (A.10), we can apply the dominated convergence theorem to above equality
and get that

lim
𝜀↘0

1
𝜀
𝔼𝑥0

[
∫
𝜀∧𝜏𝐵(𝑥0,ℎ)

0
𝑉(𝑡 + 𝑠, 𝑋𝑠, 𝑆)𝑑𝑠

]
= 𝑉(𝑡, 𝑥0, 𝑆). (A.12)

On the other hand, for any 𝜀 > 0, it is obvious that

𝔼𝑥0[𝑉(𝑡 + 𝜀 ∧ 𝜏𝐵(𝑥0,ℎ), 𝑋𝜀∧𝜏𝐵(𝑥0,ℎ) , 𝑆)] = 𝔼
𝑥0[𝛿(𝑡 + 𝜌𝑆)𝑓(𝑋𝜌𝑆 )] = 𝑉(𝑡, 𝑥0, 𝑆). (A.13)

Then by Equations (A.11)–(A.13), we have that

0 = lim
𝜀↘0

1
𝜀

(
𝔼𝑥0[𝑉(𝑡 + 𝜀 ∧ 𝜏𝐵(𝑥0,ℎ), 𝑋𝜀∧𝜏𝐵(𝑥0,ℎ) , 𝑆)] − 𝑉(𝑡, 𝑥0, 𝑆)

)
= 𝑉(𝑡, 𝑥0, 𝑆),

and thus Equation (A.9) holds.
Part (b): The existence of𝑉(𝑡, 𝑥±, 𝑆) on [0,∞) × 𝕏 follows from part (a), the differentiability

of 𝛿 and Assumption 2.8(ii). Take 𝑥0 ∈ 𝕏 and ℎ > 0 such that [𝑥0 − ℎ, 𝑥0 + ℎ] ⊂ 𝕏. We show that

sup
(𝑡,𝑥)∈[0,∞)×𝐵(𝑥0,ℎ)

|𝑉(𝑡, 𝑥−, 𝑆)| < ∞, (A.14)

and the result for 𝑉(𝑡, 𝑥+, 𝑆) follows from a similar argument. Let 𝑥 ∈ 𝐵(𝑥0, ℎ). If (𝑥 − ℎ′, 𝑥) ∈
𝑆𝑐 for some constant ℎ′ > 0, then by the left continuity of 𝑦 ↦ 𝑉(𝑡, 𝑦−, 𝑆) at 𝑦 = 𝑥 and Equa-
tion (22) in part (a), we have 𝑉(𝑡, 𝑥−, 𝑆) = 0. Otherwise, since 𝑆 is admissible, there exists ℎ̄ ∈
(0, ℎ) such that (𝑥 − ℎ̄, 𝑥) ⊂ 𝑆, then part (a) tells that 𝑉(𝑡, 𝑥, 𝑆) = 𝛿(𝑡)𝑓(𝑥) on [0,∞) × (𝑥 − ℎ̄, 𝑥),
and we have that

|𝑉(𝑡, 𝑥−, 𝑆)| =|||||𝛿′(𝑡)𝑓(𝑥) + 𝛿(𝑡)
(
𝑏(𝑥)𝑓′(𝑥−) +

1
2
𝜎2(𝑥)𝑓′′(𝑥−)

)|||||
≤ sup
𝑦∈𝐵(𝑥0,ℎ)

(|𝛿′(0)||𝑓(𝑦)| + |𝑏(𝑦)𝑓′(𝑦−)| + 1
2
𝜎2(𝑦)|𝑓′′(𝑦−)|) < ∞,

where the inequality above follows from the first inequality in Lemma 2.7, Assumptions 2.1(i) and
2.8(ii). Hence, Equation (A.14) holds. □
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