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A Additional Simulation Studies

A.1 Log-Contrast Settings with Varying n, p, Zero Proportion, and SNR

In this study, we consider a model misspecified setting, where the response is generated from the

log-contrast model. More specifically, the relative abundances X, the truncated version of the

relative abundances X0 (when applicable), and the read counts are generated in the same way

as in Study I. Then we generate the response from the following log-contrast model with the true

relative abundances in X

yi = β0 + β1 log xi1 + · · ·+ βp log xip + εi,

where
∑p

j=1 βj = 0. The true coefficient vector is β = (1,−0.8, 0.6, 0, 0,−1.5,−0.5, 1.2, 0, 0,0Tp−10)
T ,

where 0q is a length-q vector of zeros. Namely, only 6 out of the first 10 features have nonzero

coefficients while all the remaining features have zero coefficients.

Varying n and p. We first consider settings with different n and p. In particular, the training

sample size ntrain is set to be 50 and 100, and the dimension p is set to be 100 and 200. The

testing sample size ntest is fixed to be 400 throughout the settings. In addition, there is no zero

truncation (i.e., X = X0) and the SNR is fixed at 1. The MPSE comparison between different

methods is shown in Figure S.1. In general, the results are similar across different settings.

Although a misspecified scenario for the proposed method, RS-ES still has comparable prediction

performance with the transformation-based methods. Figure S.2 shows the computing times for

different methods under different settings. The proposed method is slightly more time-consuming

than the competitors. The computing time of RS-ES is mostly affected by the dimension p, but

not the sample size n.
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Figure S.1: Boxplots of MPSE in the log-contrast settings with varying n and p .
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Figure S.2: Boxplots of computing time in the log-contrast settings with varying n and p.

2



Varying zero proportion and SNR. Next, we vary the zero proportion of X0 and SNR, and

evaluate how the prediction performance is affected in different methods. Recall that the response

is generated using the true relative abundances X, so varying the zero proportion of X0 does not

affect the response. The truncated relative abundances X0 are only used in generating raw read

counts, which are subsequently used in model fitting and testing. We fix ntrain = 100, ntest = 400,

p = 100, and consider a range of zero proportions in X0 (i.e., 0%, 20%, 40%, 60%, and 80%).

Moreover, we consider a low-signal setting (i.e., SNR=1) and a high-signal setting (i.e., SNR=10).

The MPSE comparison results are shown in Figures S.3 and S.4.
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Figure S.3: Mean and standard deviation (i.e., error bar) of MPSE in the log-contrast settings

with varying zero proportions (SNR=1).

We observe that the transformation-based methods (LC-Lasso, Robust-LC, LEiV, and KPR-

Ridge) all have increasing MPSE when the zero proportion in data increases. In comparison, the

proposed RS-ES method is relatively stable. This is especially evident in the high-signal setting

(Figure S.4). In particular, when the zero proportion reaches 80%, RS-ES has the smallest MPSE

among all, despite that the generative model (i.e., the log-contrast model) is misspecified for

RS-ES. Therefore, we conclude that the proposed relative-shift framework is more robust against

varying zero proportions than the transformation-based methods. This is likely due to the fact

that the relative-shift model does not rely on any arbitrary zero-replacement strategy.
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Figure S.4: Mean and standard deviation (i.e., error bar) of MPSE in the log-contrast settings

with varying zero proportions (SNR=10).

A.2 Tree-Guided Equi-Sparsity Setting with High Dimension

In this study, we follow the same data generation procedure as in Study II (tree-guided equi-

sparsity setting), but increase the dimension p from 100 to 400 and 1000, respectively. The

auxiliary tree structure and the tree-guided true coefficient vector are similar in essence to those

in Study II, but proportionally expanded to a higher dimension. For example, when p = 400, we

create the tree structure so that every 10× 4 = 40 consecutive leaf nodes share a common parent

node and so on. The upper-level structure of the tree remains the same as in Figure 3 in the main

paper. Correspondingly, the true coefficient vector is set to be

β =
(
1T80, −2× 1T40, 0.5× 1T40, 2× 1T160, ξT80

)T
.

The same goes for p = 1000. The comparison of MPSE and computing times between different

methods is presented in Figure S.5.

The results are similar to those in the main paper. The relative-shift methods with different

tree-guided regularization have very similar MPSE and significantly outperform other competing

methods (including the RS-ES method without the tree information). KPR-Tree has the second

best performance due to its ability to account for the tree structure. In terms of the computing

time, the proposed methods (especially RS-L1) are slightly slower than the competing methods,
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(a) High-Dimensional Setting (p = 400)
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(b) High-Dimensional Setting (p = 1000)
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Figure S.5: Boxplots of MPSE and computing time in the tree-guided equi-sparsity setting with

high dimension.
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but the model fitting procedure (with cross validation for tuning parameter selection) always

finishes within 1 minute in each simulation run (except for RS-L1 when p = 1000). Considering

the size of the problem, we deem the methods to be computationally efficient.

A.3 Comparison between RS-L1, RS-CL2, and RS-DL2

In this study, we further investigate the differences between RS-L1, RS-CL2, and RS-DL2. As

proof of concept, we focus on a small-scale setting with p = 6 variables. The tree structure among

the variables is shown in Figure S.6. We further assume the true coefficients are β1 = β2 = β3 =

β4 = 0.5 and β5 = β6 = 2. By definition, if we fix the intermediate coefficient for the root node

γ11 to be zero, then the most sparse setting would be γ9 = 0.5, γ10 = 2, and γ1 = · · · = γ8 = 0,

which we treat as the true values for γ. Following Study I, we simulate the relative abundance

data from a logistic Gaussian distribution and generate the response from a relative-shift model

(with SNR being 1). We further truncate the compositional data to get excessive zeros, and use

them as input data with measurement errors.

β1 β2 β3 β4 β5 β6

γ1 γ2 γ3 γ4 γ5 γ6

γ11

γ9

γ7 γ8 γ10

Figure S.6: The taxonomic tree structure among variables.

The comparisons of RS-L1, RS-CL2, and RS-DL2 are shown in Figures S.7 and S.8. In

particular, Figure S.7 shows the box-plots of intermediate coefficient estimates from different

methods. Both RS-DL2 and RS-CL2 are slightly better than RS-L1 in obtaining sparse estimation

of the intermediate coefficients γ1 to γ8. This is likely due to the (overlapping) group structure
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of the penalty terms in Descendant ℓ2 and Child ℓ2. Figure S.8 further shows the comparison of

different methods in β coefficient estimation, prediction, and computing time. For β estimation,

RS-DL2 has the smallest mean squared error, followed by RS-CL2. The difference between each

pair of methods is not dramatic, but is statistically significant from a paired t-test at the nominal

significance level of 0.05. The prediction performances of different methods are similar. The small

differences in estimation accuracy may be obscured by the measurement errors in the input data.

For computing time, RS-L1 is the best, likely because this is a rather small-scale setting. Overall,

all three methods provide similar results, and the group penalties in Descendant ℓ2 and Child ℓ2

may potentially lead to more accurate coefficient estimate.
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Figure S.7: The box-plots of intermediate coefficient estimates from RS-DL2, RS-CL2, and RS-

L1.
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Figure S.8: The box-plots of β estimation, prediction, and computing time of RS-DL2, RS-CL2,

and RS-L1.
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B Proofs of the Theoretical Results

Proof of Theorem 1. Let (β̂, γ̂) be a solution to (9). We have that

1

2n
∥y −Xβ̂∥2 + λPT (γ̂) ≤

1

2n
∥y −Xβ∥2 + λPT (γ),

for any (β,γ) such that β = Aγ. Recall that (β∗,γ∗) are the coefficient vectors of the true model

satisfying β∗ = Aγ∗. Let ∆̂
γ
= γ̂ − γ∗, and ∆̂

β
= A∆̂

γ
= β̂ − β∗. By using y = Xβ∗ + ε, we

get

1

2n
∥Xβ̂ −Xβ∗∥2 ≤ λPT (γ

∗)− λPT (γ̂) +
1

n
εTX∆̂

β

= λ(PT (γ
∗)− PT (γ̂)) +

1

n
εTXA∆̂

γ
. (S.1)

We mainly consider the group penalty forms Child ℓ2 and Descendant ℓ2 in (5) and (6) of the

main paper, as the results for the Node ℓ1 penalty in (4) of the main paper can be directly derived

from Yan and Bien (2021). For each node u ∈ I(T ), define P u as a R(|T |−1)×(|T |−1) diagonal

matrix indicating its child nodes, such that the diagonal elements are given by

(P u)vv =


1 v ∈ Child(u);

0 otherwise.

Similarly, for each node u ∈ I(T ), define Mu as a R(|T |−1)×(|T |−1) diagonal matrix indicating the

nodes of its descendants, such that the diagonal elements are given by

(Mu)vv =


1 v ∈ Descendant(u);

0 otherwise.

Then, the Child ℓ2 penalty in (5) of the main paper can be re-expressed as

PT (γ) =
∑

u∈I(T )

∥P uγ∥,

and the Descendant ℓ2 penalty in (6) of the main paper can be re-expressed as

PT (γ) =
∑

u∈I(T )

∥Muγ∥.
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Moreover, the following two identities hold∑
u∈I(T )

P uP u = I |T |−1,
∑

u∈I(T )

P uMu = I |T |−1. (S.2)

With the above treatment of the penalty forms, we are now ready to treat the second term in

(S.1). Let’s focus on the Child ℓ2 penalty first.

|εTXA∆̂
γ
| = |εTXA(

∑
u∈I(T )

P uP u)∆̂
γ
|

= |
∑

u∈I(T )

(εTXAP u)(P u∆̂
γ
)|

≤
∑

u∈I(T )

∥εTXAP u∥∥P u∆̂
γ
∥

≤ max
u∈I(T )

{∥εTXAP u∥}
∑

u∈I(T )

∥P u∆̂
γ
∥

≤ max
u∈I(T )

{∥(XAP u)
Tε∥}{

∑
u∈I(T )

∥P uγ̂∥+
∑

u∈I(T )

∥P uγ
∗∥}.

That is,

| 1
n
εTXA∆̂

γ
| ≤ max

u∈I(T )
{∥ 1

n
(XAP u)

Tε∥}(PT (γ
∗) + PT (γ̂)). (S.3)

It is easy to see that the same inequality holds for the Descendant ℓ2 penalty due to the second

identity in (S.2).

Now we bound the stochastic term maxu∈I(T ){∥(XAP u)
Tε∥/n}. We will need the following

results from Proposition 1 of Hsu et al. (2012).

Lemma S.1. Let Z be an m × n matrix and let Σz = ZTZ. Suppose ε = (ϵ1, . . . , ϵn)
T is a

multivariate Gaussian random with mean zero and covariance σ2I. For all t > 0,

pr(∥Zε∥2 > σ2{Tr(Σz) + 2
√
Tr(Σ2

z)t+ 2∥Σz∥t}) < e−t,

where ∥Σ∥ denotes the spectral norm of the non-negative definite matrix Σ.

For each u ∈ I(T ), denote Xu ∈ Rn×pu be the submatrix of XAP u by keeping its pu columns

corresponding to the children of the node u; the rest of the columns in XAP u are all zero

9



columns. It can be recognized that each column of Xu is obtained by aggregating the columns

of X corresponding to the leaf nodes L(Tv), v ∈ Child(u). For example, in Figure 1 of the main

paper, for the internal node γ10, its Xu matrix contains 3 columns, X1 +X2, X3, X4. Since X is

compositional, it follows that each element of the matrix Xu is in the interval [0, 1], and the sum

of each of its rows is less than or equal to 1. Write Xu = {xuij}n×pu , it follows that

Tr(Σu) =
n∑
i

pu∑
j

(xuij)
2 ≤

n∑
i

(

pu∑
j

xuij)
2 ≤ n;

Tr(Σ2
u) ≤ Tr(Σu)

2 ≤ n2;

∥Σu∥ ≤ Tr(Σu) ≤ n.

By Lemma S.1, we have that for any u ∈ I(T ) and any t > 0,

pr{∥XT
uε∥2 > nσ2(1 + 2

√
t+ 2t)} < e−t.

It follows that

pr{ 1√
n
∥XT

uε∥ > 2
√
2σ

√
t} < e−t when t > 1/2.

Upon taking t = log |I(T )|/δ > 1/2, we have

pr(
1√
n
∥XT

uε∥ > 2
√
2σ

√
log(|I(T )|)/δ) < e− log

|I(T )|
δ =

δ

|I(T )|

By taking a union bound over all internal nodes, we get

pr( max
u∈I(T )

1√
n
∥XT

uε∥ > 2
√
2σ

√
log(|I(T )|)/δ) ≤ δ.

By (S.1) and (S.3), if we take λ ≥ 2
√
2σ

√
log(|I(T )|)/(δn), then with probability at least 1− δ,

1

2n
∥Xβ̂ −Xβ∗∥2 ≤ λ(PT (γ

∗)− PT (γ̂)) + λ(PT (γ
∗) + PT (γ̂))

= 2λPT (γ
∗).

The results then follow because the above holds for any γ∗ such that β∗ = Aγ∗. This completes

the proof.
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Proof of Lemma 1. For the Node ℓ1 penalty in (4) of the main paper, the result directly follows

based on the construction of the coarsest aggregating set B∗ and a corresponding choice of γ∗,

i.e., for each u ∈ B∗, γ∗u = β∗
j for any j ∈ L(Tu), and otherwise γ∗u = 0. It is easily seen that this

γ∗ satisfies Aγ∗ = β∗. It then follows that
∑

u∈T−r
|γu| ≤ M |B∗|.

For the Child ℓ2 penalty, consider again the above construction of γ∗ according to the coarsest

aggregating set B∗. Immediately, we have that

∥γ∗∥ ≤ M
√
|B∗|.

Define

B∗
p = {u ∈ I(T ); Child(u) ∩B∗ ̸= ∅.}.

That is, B∗
p collects the parent nodes of all the nodes in B∗. We have that ∥(γv)v∈Child(u)∥ ̸= 0

only if u ∈ B∗
p . Since there is no overlap among Child(u), u ∈ B∗

p , we also have that |B∗
p | ≤ |B∗|.

It then follows that

∑
u∈I(T )

∥(γv)v∈Child(u)∥ =
∑
u∈B∗

p

∥(γv)v∈Child(u)∥ ≤
√

|B∗
p |∥γ∗∥ ≤ M

√
|B∗

p ||B∗| ≤ M |B∗|.

Here we use the fact that for any partition of a vector, i.e., a = (aT
1 , . . . ,a

T
s )

T , it holds that∑s
i=1 ∥ai∥ ≤

√
s∥a∥. This completes the proof.
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