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Abstract
Compositional data reside in a simplex and measure fractions or proportions
of parts to a whole. Most existing regression methods for such data rely on
log-ratio transformations that are inadequate or inappropriate inmodeling high-
dimensional data with excessive zeros and hierarchical structures. Moreover,
such models usually lack a straightforward interpretation due to the interrela-
tion between parts of a composition. We develop a novel relative-shift regression
framework that directly uses proportions as predictors. The new framework
provides a paradigm shift for regression analysis with compositional predictors
and offers a superior interpretation of how shifting concentration between parts
affects the response. New equi-sparsity and tree-guided regularization meth-
ods and an efficient smoothing proximal gradient algorithm are developed to
facilitate feature aggregation and dimension reduction in regression. A unified
finite-sample prediction error bound is derived for the proposed regularized
estimators. We demonstrate the efficacy of the proposed methods in extensive
simulation studies and a real gut microbiome study. Guided by the taxonomy
of the microbiome data, the framework identifies important taxa at different
taxonomic levels associated with the neurodevelopment of preterm infants.
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1 INTRODUCTION

Compositional data characterize fractions or proportions
of a whole and contain relative information. Such data
are ubiquitous in various disciplines, such as chem-
istry, geology, ecology, and microbiology. Proportions are
strictly nonnegative, bounded, and subject to a unit-sum
constraint. As compositional data reside in a simplex,
many standard notions and statistical methods do not
directly apply (Aitchison, 1982). In addition, compositional
data can be high-dimensional, inflated with excessive
zeros, and organized in a hierarchical tree structure.
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For instance, in microbiome studies, data are typically
measured through high-throughput sequencing technol-
ogy (e.g., 16S rRNA sequencing) and normalized as compo-
sitions due to heterogeneous library sizes between samples
(Gloor et al., 2016; Tsilimigras & Fodor, 2016). The num-
ber of features (known as operational taxonomic units
[OTUs], or taxa) may far exceed the number of samples.
Since not all OTUs are present or detected in all sam-
ples, microbiome data are usually highly sparse with few
dominant parts and excessive zeros (Xia et al., 2018; Xu
et al., 2021). In addition, there also exists a hierarchical
tree structure among OTUs that captures the taxonomy
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of the microbes (Silverman et al., 2017). Such hierarchical
structure is important because OTU data at lower taxo-
nomic ranks have higher resolution (i.e., more features)
but are more prone to measurement errors, while data at
higher taxonomic ranks have lower resolution with higher
accuracy. There is a trade-off between data resolution and
accuracy along the taxonomic hierarchy, which should be
carefully taken into account in statistical analysis.
The unique features of compositional data pose new

challenges for statistical analysis (Aitchison & Egozcue,
2005; Li, 2015). In this paper, we focus on the regres-
sion analysis with compositional predictors. Existing
methods typically transform compositional data via log-
ratios first (i.e., Aitchison’s approach, Aitchison, 1983)
before further analyses. Subsequently, linear regression
models are built upon transformed data. For example,
one of the most commonly used models is the log-
contrast model (Aitchison & Bacon-Shone, 1984) where
log-ratio-transformed proportions are used as predictors
in a linear regression. An equivalent symmetric form
of the model is 𝑦 = 𝛽0 + 𝛽1 log 𝑥1 +⋯+ 𝛽𝑝 log 𝑥𝑝 + 𝜀,
where the compositional vector 𝒙 is nonzero and resides
in the (𝑝 − 1)-simplex 𝕊𝑝−1 = {𝒙= (𝑥1, … , 𝑥𝑝)

𝑇 ∈ ℝ𝑝 ∶∑𝑝

𝑗=1 𝑥𝑗 = 1, 𝑥𝑗 ≥ 0, 𝑗 = 1,… , 𝑝} and the coefficients sat-
isfy a linear constraint

∑𝑝

𝑗=1 𝛽𝑗 = 0. The model enjoys the
subcompositional coherence and scale and permutation
invariance properties (Aitchison, 1982). Lin et al. (2014)
and Shi et al. (2016) further proposed variable selection
methods for suchmodels to handle high-dimensional data.
Centered log-ratio transformation is also frequently used
in the literature and it has been shown to be equiva-
lent to the log-contrast model if the zero-sum constraint
is imposed on the regression coefficients (Wang & Zhao,
2017; Randolph et al., 2018).
The transformation-based methods have several major

drawbacks. First, the commonly used logarithmic transfor-
mation cannot handle zero values. A common practice is
to artificially replace zero with some preset small value to
avoid singularity (Aitchison&Bacon-Shone, 1984; Palarea-
Albaladejo and Martin-Fernandez, 2013; Lin et al., 2014).
However, when data are highly sparse with excessive zeros
(as is the case with microbiome data), such manipulation
may introduce unwanted bias and result in misleading
results. Another drawback is the lack of straightforward
biological interpretation. The log transformation lifts data
from the simplex, but does not eliminate the interrelations
between features. The change in one predictor value is
linked to the change in at least one other predictor value.
As a result, one cannot simply interpret the coefficient 𝛽𝑗
as the effect size corresponding to one unit increase in
log 𝑥𝑗 with others held fixed.
In addition, the transformation hinders the incorpora-

tion of hierarchical tree structure among features. Several

attempts have been made in the literature to regular-
ize regression coefficients, but no consensus has been
reached. For example, Garcia et al. (2013) and Wang
and Zhao (2017) developed group-lasso-type regularization
methods to achieve subcomposition selection. Randolph
et al. (2018) proposed to translate phylogenetic and tax-
onomic trees into kernels and incorporate them into a
penalized regression framework. However, kernelizing a
hierarchical structuremay oversimplify the extrinsic infor-
mation since a tree cannot be fully characterized by a
similarity matrix. Very recently, Bien et al. (2020) pro-
posed a tree-aggregated method for prediction. However,
the method is still based on log transformation and thus
suffer the same issues as before. Besides, to the best of
our knowledge, no existing transformation-based method
ensures compatible results across different hierarchies.
That is, analyses conducted on the same data at different
hierarchical levels may have drastically different results.
For example, in a microbiome study, a species may be
deemed important from the species-level analysis, but
the genus it belongs to may have negligible effect from
the genus-level analysis. Such discrepancy may call exist-
ing regression analysis with compositional predictors into
question.
In this paper, we break new ground to develop a new

regression paradigm for compositional data. The new
framework, called relative-shift, directly models propor-
tions as predictors without transformation. It provides an
alternative approach to regression with compositional pre-
dictors. The basicmodel is based on a simple yet intriguing
finding, that is, the regression on compositional predictors
is completely identifiable if we just eliminate the intercept
term. Namely, an intercept-free linear regression model
with compositional predictors is the basic form of our pro-
posed relative-shift model. Although seemingly simple,
themodel carries important interpretations of how shifting
concentration between compositional predictors affects
the response (i.e., the origination of the name, relative-
shift). The relative-shift model also serves as a flexible
basis for accommodating special features of compositional
data such as high dimension, zero inflation, and hier-
archical structure. For example, zero values are directly
handled without substitution; high-dimensional compo-
sitional features can be reduced through aggregation or
amalgamation, which is a fundamental operation for com-
positional data (Greenacre, 2020). More importantly, the
hierarchical structure among features can be tactfully
accounted for as well. We conduct model reparametriza-
tion and develop new tree-guided regularization meth-
ods to promote feature aggregation along the tree. The
proposed methods borrow information across hierarchies
and strike a good balance between data resolution and
accuracy. As a result, features are adaptively aggregated
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and selected at different hierarchical levels that deem to
be most relevant to the response.
The relative-shift framework is fundamentally differ-

ent from the transformation-based log-contrast models.
The proposed method focuses on the “redistribution” or
“shift” of proportions themselves rather than ratios of pro-
portions. Correspondingly, basic principles for Aitchison’s
approach to compositional data analysis such as the sub-
compositional coherence property do not directly apply to
the new framework. Nonetheless, we do not consider this
as a limitation of our work. Instead, the notion of “shifting
concentration” is novel and logical, and serves as the basis
of a new analytical paradigm for compositional data.

2 RELATIVE-SHIFT REGRESSION
PARADIGM

2.1 Relative-shift model

Let 𝒚 = (𝑦1, … , 𝑦𝑛)
𝑇 ∈ ℝ𝑛 denote the continuous response

vector of 𝑛 samples. Let 𝒙𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)
𝑇 ∈ 𝕊𝑝−1

represent the compositional vector of 𝑝 variables and
𝒄𝑖 = (𝑐𝑖1, … , 𝑐𝑖𝑞)

𝑇 ∈ ℝ𝑞 be a length-𝑞 auxiliary non-
compositional covariate vector for the 𝑖th subject
(𝑖 = 1, … , 𝑛). We propose the following relative-shift
model

𝑦𝑖 = 𝒄𝑇
𝑖
𝜷𝑐 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖, (1)

where 𝜀𝑖 is the random noise with mean zero and variance
𝜎2, and 𝜷𝑐 ∈ ℝ

𝑞 and 𝜷 = (𝛽1, … , 𝛽𝑝)
𝑇 ∈ ℝ𝑝 are coeffi-

cient vectors for covariates and compositional predictors,
respectively. The relative-shift model is identical to a linear
regression model less the intercept term, yet the difference
ensures the identifiability of the model. In other words,
any intercept term 𝛽0 can be directly absorbed by 𝜷 (by
changing 𝛽𝑗 to 𝛽𝑗 + 𝛽0 for 𝑗 = 1,… , 𝑝).
The relative-shift model directly uses proportions as

predictors and characterizes how compositional changes
affect the response. Since proportions in a compositional
vector are interrelated and do not change alone, coef-
ficients shall not be interpreted individually. Instead, a
reference (i.e., a feature or a set of features that offset the
compositional change in the target feature) is neededwhen
interpreting effect sizes. For instance, for target feature 𝑘,
one may choose another feature 𝑗 (𝑗 ≠ 𝑘) or a group of
featuresΩ ⊂ {1, … , 𝑘, 𝑘 + 1,… , 𝑝} as the reference. Similar
to log-ratio transformations, different references result in
different but compatible interpretations fromdifferent per-
spectives.
More specifically, if feature 𝑗 is used as the reference,

we can write 𝛽𝑗𝑥⋅𝑗 + 𝛽𝑘𝑥⋅𝑘 = 𝛽𝑗(𝑥⋅𝑗 + 𝑥⋅𝑘) + (𝛽𝑘 − 𝛽𝑗)𝑥⋅𝑘.

Therefore, (𝛽𝑘 − 𝛽𝑗) can be interpreted as the effect of shift-
ing unit concentration from 𝑥⋅𝑗 to 𝑥⋅𝑘 while holding other
parts fixed. Alternatively, if featureswith indices inΩ serve
as the reference, we have the following relation

𝛽𝑘𝑥⋅𝑘 +
∑
𝑗∈Ω

𝛽𝑗𝑥⋅𝑗 =
(
𝛽𝑘 − 𝛽Ω

)
𝑥⋅𝑘 +

∑
𝑗∈Ω

𝛽𝑗

(
𝑥⋅𝑗 +

1

ℎ
𝑥⋅𝑘

)
,

(2)
where ℎ = |Ω| is the number of features in Ω and 𝛽Ω =∑
𝑗∈Ω 𝛽𝑗∕ℎ is the average of the 𝛽𝑗s. Correspondingly,

(𝛽𝑘 − 𝛽Ω) can be interpreted as the effect of shifting unit
concentration evenly from the ℎ features in Ω to 𝑥⋅𝑘
while holding other parts fixed. This is because the second
term on the right-hand side remains constant in the shift.
In particular, if Ω = {1, … , 𝑘 − 1, 𝑘 + 1,… , 𝑝}, the effect
size of increasing 𝑥⋅𝑘 by one unit while decreasing every
other part by 1∕(𝑝 − 1) units is 𝛽𝑘 − 𝛽−𝑘 where 𝛽−𝑘 =∑
𝑗≠𝑘 𝛽𝑗∕(𝑝 − 1). In general, any proper contrast of the

regression coefficients can be interpreted as the effect of
certain shift of concentration between parts. This is the
origination of the name relative-shift regression.
Although simple, the relative-shift model well charac-

terizes the fundamental relations between compositional
predictors and the response. It also enjoys several desir-
able properties. First, it is scale and shift invariant. A scale
change in the response or predictors can be easily absorbed
by the corresponding scale change in coefficients. If the
response shifts by a constant, due to the compositional
nature of predictors, the effect can be offset by adding the
same constant to 𝜷 in (1). The above invariance property
also implies that themagnitude or the absolute value of the
coefficients is not important, but the relative relationships
between different parameters are. This naturally leads
to the second property, that is, equal coefficients induce
feature aggregation. This serves as the foundation for par-
simonious modeling in high dimension which we shall
introduce below. Finally, themodel directly accommodates
zero values without transformation.

2.2 Parsimonious modeling in high
dimension

When the number of predictors is large, it is generally
desired to pursue parsimonious modeling in regression.
Due to the compositional nature of data, it is intuitive to
consider feature aggregation in the high-dimensional set-
ting since it maintains the compositionality of data. In
the proposed relative-shift model, aggregation of composi-
tional features can be achieved bymaking their coefficients
equal. For example, if 𝛽𝑗 = 𝛽𝑘, we have 𝛽𝑗𝑥⋅𝑗 + 𝛽𝑘𝑥⋅𝑘 =
𝛽𝑗(𝑥⋅𝑗 + 𝑥⋅𝑘). Namely, features 𝑗 and 𝑘 are combined into
a new predictive entity with the proportion being their
sum and the coefficient being the common one. In general,
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high-dimensional compositional features are reduced into
a lower-dimensional simplex when the coefficient vector 𝜷
in (1) is equi-sparse (She, 2010).
Equi-sparsity is the clustering of regression coefficients.

It is more general than the commonly used zero sparsity
(Hastie et al., 2019). Coefficients are shrunk to the same
constant which is not necessarily zero. In the relative-
shift model, the equi-sparsity of 𝜷 for the compositional
predictors is especially relevant because only the rel-
ative relations between coefficients matter rather than
their absolute numerical values. If a group of coefficients
are equal, shifting concentration among features in the
group does not change the outcome. Namely, the group
of features can be combined without losing any predic-
tive power. We will formally introduce a clustered-lasso
regularization approach in the next section for parameter
estimation with equi-sparsity.
Moreover, when there exists a hierarchical tree structure

among features as auxiliary information (e.g., a taxonomic
tree for microbiome OTUs), we may consider imposing
structured equi-sparsity to incorporate the tree structure.
The basic idea is to encourage coefficients to bemore equi-
sparse if they share more similar hierarchical paths. For
example, if two microbiome species belong to the same
genus, family, order, class, and phylum, their coefficients
are more likely to be the same compared to another pair
of species belonging to distinct phyla. As a result, the equi-
sparsity is partially informed by the tree structure. In the
next section, we will also elaborate new regularization
methods to achieve such structured equi-sparsity.

3 REGULARIZEDMETHODS FOR
PARAMETER ESTIMATION

To estimatemodel parameterswith equi-sparsity, we resort
to a regularized least squares framework by solving the
following optimization problem

(
𝜷𝑐, 𝜷

)
= argmin

𝜷𝑐, 𝜷

1

2𝑛
‖𝒚 − 𝑪𝜷𝑐 − 𝑿𝜷‖2 + 𝜆(𝜷), (3)

where 𝑪 = (𝒄1, … , 𝒄𝑛)
𝑇 ∈ ℝ𝑛×𝑞 is a covariate matrix, 𝑿 =

(𝒙1, … , 𝒙𝑛)
𝑇∈ ℝ𝑛×𝑝 is the compositional data matrix with

each row in 𝕊𝑝−1, (𝜷) is an equi-sparsity-inducing
penalty for 𝜷, and 𝜆 is a tuning parameter.

3.1 Regular equi-sparsity regularization

To impose regular equi-sparsity, we exploit the clustered-
lasso penalty (She, 2010)

(𝜷) =
∑
𝑗<𝑘

𝜔𝑗𝑘|𝛽𝑗 − 𝛽𝑘|, (4)

where 𝜔𝑗𝑘 is some predefined positive weight between
features 𝑗 and 𝑘. Conceptually, the absolute differences
between pairs of coefficients are shrunk to zero to achieve
equi-sparsity. The penalty also coincides with the graph-
guided-fused-lasso penalty in Kim et al. (2009) with a
complete graph. In practice, the weights can be deter-
mined based on extrinsic information, where a larger value
induces more penalty on the pairwise difference and vice
versa. By default, we set all weights to be equal to 1 in
this paper.

3.2 Tree-guided equi-sparsity
regularization

When a 𝑝-leafed tree (denoted by 𝑇) is present among the
compositional features, we propose new methods for tree-
guided equi-sparsity regularization. Let 𝐼(𝑇) represent the
set of internal nodes, 𝐿(𝑇) represent the set of leaf nodes,
and |𝑇| represent the total number of nodes in a tree. We
follow the commonly used notions of child, parent, sibling,
descendant, and ancestor to describe the relations between
nodes. Each leaf node of the tree corresponds to a predictor
(i.e., a compositional component) and each internal node
corresponds to a group of predictors (i.e., the descendant
leaf nodes of the internal node).
Borrowing an idea from Yan and Bien (2021), we first

introduce intermediate coefficients to reparameterize the
original regression coefficients in 𝜷. More specifically, we
assign an intermediate coefficient 𝛾𝑢 to each node 𝑢 ∈ 𝑇−𝑟,
where 𝑇−𝑟 is the node set of the tree 𝑇 without the root
node. The intermediate coefficients in 𝜸 = (𝛾𝑢)𝑢∈𝑇−𝑟 are
associated with the original coefficients in the following
way

𝛽𝑗 =
∑

𝑢∈Ancestor(𝑗)∪{𝑗}
𝛾𝑢, (5)

where Ancestor(𝑗) denotes the set of ancestors (except the
root node) of the leaf node 𝑗. For example, 𝛽1 = 𝛾1 + 𝛾8 +

𝛾10 in the toy example in Figure 1. As a result, we have

𝜷 = 𝑨𝜸, (6)

where 𝑨 ∈ {0, 1}𝑝×(|𝑇|−1) is a tree-induced indicator
matrix with entry 𝐴𝑗𝑘 = 1𝑘∈Ancestor(𝑗)∪{𝑗} (equivalently,
1𝑗∈Descendant(𝑘)∪{𝑘}, with Descendant(𝑘) being the
descendant set of node 𝑘). We remark that the intermedi-
ate coefficients are oversaturated and not identifiable by
design, but it does not affect the subsequent regularized
estimation procedure.
With the new parameterization, it becomes immedi-

ately clear that zeroing out all the intermediate coefficients
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F IGURE 1 Illustration of tree-guided reparameterization

for nodes in Descendant(𝑢) results in the equi-sparsity
of a subvector in 𝜷 that shares the same ancestor 𝑢. For
example, in Figure 1, if we zero out 𝛾𝑢s for the descen-
dants of node 8 (i.e., 𝛾1 = 𝛾2 = 0), the 𝛽𝑗s for the leaf
nodes with ancestor node 8 will have the same value (i.e.,
𝛽1 = 𝛽2 = 𝛾10 + 𝛾8). As a result, the desired tree-guided
equi-sparsity regularization on 𝜷 (i.e.,(𝜷)) can be equiva-
lently expressed as structured zero-sparsity regularization
on 𝜸 (i.e., 𝑇(𝜸)), where we consider the following three
variants:

(a) Node 𝓁1 (L1):

𝑇(𝜸) =
∑
𝑢∈𝑇−𝑟

𝑤𝑢|𝛾𝑢|, (7)

(b) Child 𝓁2 (CL2):

𝑇(𝜸) =
∑

𝑢∈𝐼(𝑇)

𝑤𝑢‖(𝛾𝑣)𝑣∈Child(𝑢)‖, (8)

where Child(𝑢) denotes the set of children nodes of
node 𝑢;

(c) Descendant 𝓁2 (DL2):

𝑇(𝜸) =
∑

𝑢∈𝐼(𝑇)

𝑤𝑢‖(𝛾𝑣)𝑣∈Descendant(𝑢)‖. (9)

All three penalties induce sparsity in 𝜸 and thus poten-
tially result in equi-sparsity in 𝜷. The Node 𝓁1 penalty is
closely related to the one used in Yan and Bien (2021) and
Bien et al. (2020), except that we do not penalize the orig-
inal coefficients in 𝜷. The Child 𝓁2 and Descendant 𝓁2
penalties are group-lasso-type regularization, which intu-

itively encourages the groups of nodes toward the leaves
of a tree to take zero values. In particular, Child 𝓁2 does
not contain any overlapping groups while Descendant 𝓁2
does. Later we show that all three penalty terms can
be implemented by the same algorithm and their the-
oretical properties can be understood through a unified
finite-sample prediction error bound. The weights in each
penalty may be used to adjust for different node heights or
heterogeneous group sizes and/or avoid over-penalization
if desired. By default, we set the weights to be 1 through-
out the paper. Data-adaptive selection ofweights is a future
research direction.
The tree-guided regularization methods borrow infor-

mation across all hierarchies of a tree and naturally strikes
a good balance between data resolution and accuracy.
Moreover, it also achieves adaptive selection of features
at different hierarchical levels. For example, suppose we
fit the model to microbiome OTU data with a taxo-
nomic tree structure. If all the species within a genus
are regularized to have the same coefficient, a new fea-
ture is formed at the genus level with its proportion
being the sum of all the child species proportions. The
genus-level feature is deemed relevant in prediction rather
than its descendant species. Similarly, if all the species
(in different genera) within a family share the same
coefficient, the newly formed family-level feature will
be selected.

4 MODEL FITTING ALGORITHM

The optimization problem in (3) is convex with all the
penalty terms proposed in the previous section. In prin-
ciple, generic convex optimization solvers can be used.
Nonetheless, given the high-dimensional nature of the
problem, such generic methods are usually computation-
ally prohibitive. Instead, we resort to a more efficient
smoothing proximal gradient method (Chen et al., 2012)
to solve the optimization. We remark that the details of
the smoothing proximal gradient algorithm are well docu-
mented in Chen et al. (2012), so we only outline the general
idea of the algorithm.
The optimization problem in (3) can be uniformly

expressed as

min
𝜷

1

2𝑛
‖𝒚 − 𝑿𝜷‖2 + 𝜆Ω(𝜷), (10)

where𝑿 = (𝑪,𝑿), 𝜷 = (𝜷𝑇𝑐 , 𝜷
𝑇)𝑇 , andΩ(𝜷) = (𝜷) for the

regular equi-sparsity estimation, and 𝑿 = (𝑪,𝑿𝑨), 𝜷 =
(𝜷𝑇𝑐 , 𝜸

𝑇)𝑇 , and Ω(𝜷) = 𝑇(𝜸) for the tree-guided equi-
sparsity estimation. In particular, the penalty termΩ(𝜷) is
a nonsmooth function of 𝜷 and the elements of 𝜷 may be
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nonseparable. The fundamental idea of smoothing proxi-
mal gradient is to (1) decouple the nonseparable elements
via the dual norm; (2) apply a Nesterov smoothing tech-
nique (Nesterov, 2005) to obtain the gradient of Ω(𝜷); and
(3) apply an optimal gradient method (Beck & Teboulle,
2009).
More specifically, the termΩ(𝜷) in (10) can be expressed

by the dual norm as

Ω
(
𝜷
)
= max

𝜶∈
𝜶𝑇𝑫𝜷, (11)

where  is some convex, closed unit ball and 𝑫 is a con-
stantmatrix defined by respective problems (seeChen et al.
(2012) for details). Subsequently, it is approximated by a
surrogate function

𝑓𝜇
(
𝜷
)
= max

𝜶∈
𝜶𝑇𝑫𝜷 −

𝜇

2
‖𝜶‖2, (12)

which can be shown to be smooth with respect to 𝜷 (as
long as 𝜇 > 0) and bounded by a tight interval aroundΩ(𝜷)
(Nesterov, 2005). Nesterov (2005) further showed that the
gradient of 𝑓𝜇(𝜷) is 𝑫𝑇𝜶∗ with 𝜶∗ being the optimal solu-
tion to (12) and the gradient is Lipschitz continuous. In
particular, in our settings, 𝜶∗ has a closed-form expression
and the Lipschitz constant is explicit (Chen et al., 2012).
Let ℎ(𝜷) = (2𝑛)−1‖𝒚 − 𝑿𝜷‖2 + 𝜆𝑓𝜇(𝜷) be the new

objective function. The gradient of ℎ(𝜷), that is, ▿ℎ(𝜷),
has an explicit form and is Lipschitz continuous with an
explicit Lipschitz constant 𝐿. To minimize ℎ(𝜷), one may
resort to the classical gradient algorithm by iteratively
updating the estimate of 𝜷:

𝜷(𝑡+1) = 𝜷(𝑡) −
1

𝐿
▿ℎ

(
𝜷(𝑡)

)
, (13)

until convergence. However, the convergencemay be slow.
Instead, smoothing proximal gradient applies the fast iter-
ative shrinkage-thresholding algorithm (Beck & Teboulle,
2009)which is an optimal gradientmethod in terms of con-
vergence rate. The fast iterative shrinkage-thresholding
algorithm updates the estimate 𝜷(𝑡+1) with not just the
previous estimate 𝜷(𝑡), but rather a very specific combi-
nation of the previous two estimates 𝜷(𝑡) and 𝜷(𝑡−1). As a
result, the convergence has been proved to be much faster
than the standard gradientmethod (Beck&Teboulle, 2009;
Chen et al., 2012).
The tuning parameter 𝜆 in (10) balances the quadratic

loss function and the penalty term. In practice, it typi-
cally has to be determined from data. A standard approach
is to use cross-validation to adaptively select the optimal
tuning parameter. Since the smoothing proximal gradient
algorithm for model fitting is very efficient, the cross-

validation scheme is computationally feasible. We provide
more details in the numerical studies in Section 6.

5 THEORY

Let 𝑇 represent a 𝑝-leafed tree with root node 𝑟. Both
𝐿(𝑇) and 𝐼(𝑇) have been defined previously as the sets
of leaf nodes and internal nodes, respectively. Let 𝑇𝑢 be
a subtree of 𝑇 rooted at the node 𝑢 for 𝑢 ∈ 𝑇. To focus
on the main idea, we consider the relative-shift model
without additional covariates, that is, 𝒚 = 𝑿𝜷∗ + 𝜺, where
𝑿 is a compositional design matrix, 𝜷∗ ∈ ℝ𝑝 is the true
coefficient vector, and 𝜺 is a vector of independently and
identically distributed Gaussian noise with mean zero and
variance 𝜎2. With the tree-based reparameterization (6),
we have 𝜷∗ = 𝑨𝜸∗, where 𝜸∗ = (𝛾∗𝑢)𝑢∈𝑇−𝑟 is the vector
of intermediate coefficients and 𝑨 is a tree-induced indi-
cator matrix. Without loss of generality, we assume the
response 𝒚 is centered at the population level. We study
finite-sample properties of the regularized estimator

𝜷 = argmin
𝜷=𝑨𝜸

{
1

2𝑛
‖𝒚 − 𝑿𝜷‖2 + 𝜆𝑇(𝜸)

}
, (14)

where 𝑇(𝜸) is any one of the three penalties (i.e., Node
𝓁1, Child 𝓁2, andDescendant 𝓁2) introduced in Section 3.2.
Our main result is presented in Theorem 1. The detailed
proof is in the Section B of Supporting Information.

Theorem 1. Consider the regularized estimator 𝜷 of 𝜷
from solving (14) with any penalty forms in (7)–(9). Denote|𝐼(𝑇)| as the number of internal nodes of the tree. Choose
𝜆 ≥ 2

√
2𝜎

√
log(|𝐼(𝑇)|)∕(𝛿𝑛). Then with probability at least

1 − 𝛿, it holds that

1

𝑛
‖𝑿𝜷 − 𝑿𝜷∗‖2 ⪯ 𝜆{ min

𝜸;𝑨𝜸=𝜷∗
𝑇(𝜸)

}
, (15)

where ⪯ means the inequality holds up to a multiplicative
constant irrelevant to model parameters.

In the above results, the order of 𝜆 is𝑂(
√
log(|𝐼(𝑇)|)∕𝑛),

depending on the tree structure through the total num-
ber of internal nodes |𝐼(𝑇)| that represents the dimension
of the model. The term {min𝜸;𝑨𝜸=𝜷∗ 𝑇(𝜸)} captures the
complexity of the true model by measuring the minimal
penalty function evaluated at the truth.
With the above unified prediction error bound, we now

perform further analysis on mode size and complexity
to obtain specific error rates. Following Yan and Bien
(2021), we first introduce the concepts of aggregating set
and coarsest aggregating set, which correspond to the
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equi-sparsity pattern of the coefficients in the proposed
relative-shift model. In particular, we say that 𝐵 ⊆ 𝑇 is an
aggregating set with respect to 𝑇 if {𝐿(𝑇𝑢) ∶ 𝑢 ∈ 𝐵} forms a
partition of 𝐿(𝑇). For any 𝜷∗ ∈ ℝ𝑝, there exists a unique
coarsest aggregating set 𝐵∗ ∶= 𝐵(𝜷∗, 𝑇) ⊆ 𝑇 (“the aggre-
gating set”) with respect to the tree 𝑇 such that (a) 𝛽∗

𝑗
= 𝛽∗

𝑘
for 𝑗, 𝑘 ∈ 𝐿(𝑇𝑢) ∀𝑢 ∈ 𝐵∗, (b) |𝛽∗𝑗 − 𝛽∗𝑘| > 0 for 𝑗 ∈ 𝐿(𝑇𝑢)
and 𝑘 ∈ 𝐿(𝑇𝑣) for siblings 𝑢, 𝑣 ∈ 𝐵∗.
It is then clear that the size of the coarsest aggregating

set, |𝐵∗|, is a natural complexity measure of the equi-
sparsity pattern of 𝜷∗ guided by the tree. Therefore, it is
desired to bound {min𝜸;𝑨𝜸=𝜷∗ 𝑇(𝜸)} in Theorem 1 in terms
of |𝐵∗| and the magnitude of 𝜷∗. In particular, for Node
𝓁1 in (7) and Child 𝓁2 in (8), we have the following corol-
lary (see Section B of Supporting Information for a detailed
proof).

Corollary 1. Suppose 𝑇 is a 𝑝-leafed full tree and the
true coefficient 𝜷∗ is bounded by some positive constant 𝑀
(i.e., ‖𝜷‖∞ ≤ 𝑀). For Node 𝓁1 in (7) and Child 𝓁2 in (8),
respectively, it holds that

min
𝜸;𝑨𝜸=𝜷∗

𝑇(𝜸) ≤ 𝑀|𝐵∗|. (16)

Together with Theorem 1, we obtain an explicit error
bound for the prediction error,

1

𝑛
‖𝑿𝜷 − 𝑿𝜷∗‖2 ⪯√

log(|𝐼(𝑇)|)∕𝑛|𝐵∗|. (17)

We remark that the bound takes a familiar form as
those for many well-studied high-dimensional models.
In particular, the measure of the model dimension, that
is, the number of internal nodes |𝐼(𝑇)|, is of order 𝑝.
Both Node 𝓁1 and Child 𝓁2 can predict well as long as
log(𝑝)∕𝑛 = 𝑜(1) and its performance is tied to |𝐵∗|, repre-
senting the complexity of the equi-sparsity pattern on the
tree.

6 SIMULATION

We compare the proposed relative-shift regression with
several transformation-based models using comprehen-
sive simulations. Specifically, we consider the relative-shift
model with the equi-sparsity regularization (i.e., “RS-ES”)
and the three tree-guided regularization methods, Node
𝓁1, Child 𝓁2, and Descendant 𝓁2 (denoted as “RS-L1”, “RS-
CL2”, and “RS-DL2,” respectively), when applicable. For
competing methods, we consider the log-contrast model
with lasso penalty (“LC-Lasso”) (Lin et al., 2014), the log-
error-in-variable model (“LEiV”) (Shi et al., 2021), the
robust log-contrast model (“Robust-LC”) (Combettes &

Müller, 2021), and the kernel penalized regression (KPR)
model (Randolph et al., 2018) with ridge kernel (“KPR-
Ridge”) and taxonomic kernel (“KPR-Tree”). Since the
proposed relative-shift paradigm is fundamentally differ-
ent from the log-contrast models, we do not directly
compare them on parameter estimation accuracy. Instead,
we focus on the comparison of prediction accuracy mea-
sured by the out-sample mean squared prediction error
(MSPE)

MSPE = 1

𝑛test

𝑛test∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2
, (18)

and computing time (including cross-validation for tuning
parameter selection). Each simulation study is repeated
100 times.

6.1 Study I: Equi-sparsity setting

In this study, we first simulate compositional data 𝑿 with
𝑝 = 100 and 𝑛 = 500 (i.e., 100 for training and 400 for test-
ing). In particular, the compositional data are generated
from a logistic Gaussian distribution as in Lin et al. (2014).
The resulting relative abundance matrix 𝑿 does not have
zero entries. To mimic the typical zero-inflation feature of
compositional data, we further truncate the data to create
40% zero entries and re-compositionalize the data as 𝑿0.
Then read counts are sampled from a multinomial distri-
bution with the underlying proportions coming from 𝑿0
and the total counts generated from a negative binomial
distribution (Shi et al., 2021). The read counts are used
in model fitting and testing, while the true relative abun-
dances in 𝑿 are used to generate the response values. In
particular, in this study, the response is generated from the
proposed model (1), where the true coefficients are equi-
sparse. Specifically, features 1–20, 21–30, and 31–100 can
be aggregated, respectively, without losing any predictive
power. The random errors are generated in a way that the
signal-to-noise ratio (SNR) is 1.
Since there is no extrinsic tree information in this

setting, we just compare RS-ES with LC-Lasso, LEiV,
Robust-LC, and KPR-Ridge. To deal with zero counts,
we just follow the default zero-replacement strategy for
each competing method. The boxplots of MSPE and com-
puting time (for each simulation run) can be found in
Figure 2A. We observe that RS-ES significantly outper-
forms the other transformation-based methods in predic-
tion accuracy, mainly because (1) the data are generated
from the relative-shift model; (2) RS-ES properly handles
zeros without transformation. When data are generated
from a log-contrast model with varying zero proportions,
we also see robust performance of the proposed method
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(B) Simulation Study II
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F IGURE 2 Boxplots of MPSE (left) and computing time (right) in (A) Simulation Study I and (B) Simulation Study II. This
figure appears in color in the electronic version of this article, and any mention of color refers to that version

(see more details in Section A of Supporting Information).
Besides, all three methods are computationally efficient as
the model fitting times are within a couple of seconds on a
standard desktop computer (16Gb RAM, Intel Core i7 CPU
2.20 GHz).

6.2 Study II: Tree-guided equi-sparsity
setting

In this study, we include extrinsic information of a hier-
archical tree. Data are generated in a similar way as in
Study I, except for the true coefficients. To generate the
coefficient vector, we first assume there is a tree struc-
ture among the variables (see Figure 3), where every 10
consecutive leaf nodes share a common parent node and
so on. Guided by the tree structure, the true coefficient
vector for the generative relative-shift model is set to be
𝜷 = (𝟏𝑇20, −2 × 𝟏

𝑇
10, 0.5 × 𝟏

𝑇
10, 2 × 𝟏

𝑇
40, 𝝃

𝑇
20)

𝑇 , where 𝟏𝑞 is a
length-𝑞 vector of ones and 𝝃20 is a length-20 vector filled
standardGaussian randomnumbers. Namely, in principle,
the first 20 features can be aggregated along the tree to
their common ancestor, the next 10 features can be aggre-

gated to their parent node, and so on. The last 20 features,
although they also share a common ancestor, cannot be
aggregated due to distinct coefficient values. See Figure 3
for the feature aggregation pattern.
We compare the three tree-guided regularization

methods RS-L1, RS-CL2, and RS-DL2 with all the com-
peting methods. Among the competitors, only KPR-Tree
takes advantage of the tree structure by converting it
into a patristic distance kernel. The comparison result is
shown in Figure 2B. In the left panel, the three tree-guided
relative-shift methods have similar prediction errors and
are significantly better than all the other methods. (More
comparisons between the three proposed regularization
methods can be found in Section A of Supporting Informa-
tion.) The next best method is KPR-Tree, which benefits
from the extrinsic tree structure. Among the methods not
using the tree information, RS-ES outperforms the others.
On the other hand, the superior prediction performance
of the tree-guided relative-shift methods does come at
a price, that is, a slightly higher computational cost.
However, even with cross-validation for tuning parameter
selection, the computing time of the proposed methods is
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F IGURE 3 Left: The taxonomic tree structure among variables in Study II. The leaf node indices are in ascending order from left to
right. Right: The equi-sparsity structure of the regression coefficients. Features with the same coefficient are aggregated to the common
ancestor (i.e., the closest solid node)

within a few seconds for each simulation run (except for
RS-L1). We also conduct additional simulations in higher-
dimensional settings (for 𝑝 = 400 and 𝑝 = 1000). The
proposed methods are quite scalable and the prediction
results are similar to what we present here. More details
can be found in Section A of Supporting Information.

7 APPLICATION TO PRETERM
INFANT GUTMICROBIOME STUDY

We apply the proposed relative-shift model with
taxonomic-tree-guided regularization to a preterm infant
gut microbiome study. The study aims to understand how
gut microbiome is related to the neurodevelopment of
preterm infants. Data were collected at a Neonatal Inten-
sive Care Unit (NICU) in the northeast US. Fecal samples
of preterm infants were collected daily when available
during the infant’s first month of postnatal age. Bacterial
DNA was isolated and extracted from each sample; V4
regions of the 16S rRNA gene were sequenced using the
Illumina platform. Gender, birth weight, delivery type,
and complications were recorded at birth, and medical
procedures and feeding types were recorded throughout
the infant’s stay. Infant neurobehavioral outcomes were
measured when the infant reached 36–38 weeks of post-
menstrual age, using the NICU Network Neurobehavioral
Scale (NNNS) (Cong et al., 2017; Sun et al., 2020).
After proper processing, we obtain 𝑝 = 62 taxa, most

at the genus level, on 𝑛 = 34 individuals. The longitu-
dinal data are averaged across the postnatal period for
each infant, resulting in a single 34 × 62 OTU data matrix
with 39.2% zero entries. Moreover, the taxonomic tree
of the 62 taxa is also available (see Figure 4). Each
taxon in the OTU table corresponds to a leaf node. The
primary outcome is the normalized NNNS score. We

also include several standardized covariates (i.e., gen-
der, delivery type, premature rupture of membranes,
score for Neonatal Acute Physiology–Perinatal Extension-
II (SNAPPE-II), birth weight, and percentage of feeding
with mother’s breast milk) in our analysis.
Since all three tree-guided methods lead to similar

results, we only present the result from RS-DL2 here. The
tuning parameter is chosen by fivefold cross-validation.
The estimated coefficients for compositional predictors are
approximately equi-sparse but not exact. This is a com-
mon issue with the group-lasso-type penalty (Chen et al.,
2012). To facilitate interpretation, we set a small threshold
(i.e., 10−4) and truncate the groups of intermediate coeffi-
cients whose Frobenius norms are below the threshold. As
a result, we obtain highly interpretable equi-sparse coef-
ficients for the 62 taxa. An illustration of the estimated
coefficient values and the corresponding feature aggre-
gation pattern along the taxonomic tree is provided in
Figure 4. In particular, taxa with the same coefficient are
aggregated to the common ancestor (i.e., the lowest solid
node). For instance, Taxa 2-6 at the genus level are aggre-
gated to the common class Actinobacteria because they
have the same estimated coefficient value.
The estimated coefficients carry intuitive interpretations

of the microbial effects on the outcome. More specifically,
the average value of 𝜷 (multiplied by 100) is 0.075, which
provides an overall baseline for interpreting the parame-
ters. Out of all the taxa, the Class Bacilli (100 × 𝛽𝑗 = 0.317

for 𝑗 = 11, … , 23) and the Order Clostridiales (100 × 𝛽𝑗 =
0.341 for 𝑗 = 24, … , 38) have the largest coefficient values,
and the individual genera in the Order Enterobacteriales
(100 × 𝛽𝑗 ≤ −0.228 for 𝑗 = 48, … , 56) have the smallest val-
ues. This indicates the outcome is (on average) positively
associated with the composition of Bacilli and Clostridi-
ales and negatively associated with the individual genera
in Enterobacteriales. Moreover, if we shift one unit of
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Taxon 1 (−0.002) Other

Taxon 2 g: Actinomyces

Taxon 3 g: Varibaculum

Taxon 4 g: Corynebacterium

Taxon 5 Other

Taxon 6 g: Bifidobacterium

Taxon 7 (0.082) g: Bacteroides

Taxon 8 (0.156) g: Parabacteroides

Taxon 9 (0.095) Other

Taxon 10 (0.265) Other

Taxon 11 Other

Taxon 12 Other

Taxon 13 g: Anaerobacillus

Taxon 14 g: Staphylococcus

Taxon 15 g: Staphylococcus

Taxon 16 Other

Taxon 17 Other

Taxon 18 g: Granulicatella

Taxon 19 Other

Taxon 20 g: Enterococcus

Taxon 21 g: Lactobacillus

Taxon 22 Other

Taxon 23 g: Streptococcus

Taxon 24 Other

Taxon 25 Other

Taxon 26 g: SMB53

Taxon 27 g: Pseudoramibacter Eubacterium

Taxon 28 Other

Taxon 29 Other

Taxon 30 g: Clostridium

Taxon 31 g: Peptostreptococcus

Taxon 32 g: Oscillospira

Taxon 33 g: Anaerococcus

Taxon 34 g: Finegoldia

Taxon 35 g: Peptoniphilus

Taxon 36 Other

Taxon 37 g: Megasphaera

Taxon 38 g: Veillonella

Taxon 39 (−0.004) g: Fusobacterium

Taxon 40 Other

Taxon 41 g: Bradyrhizobium

Taxon 42 Other

Taxon 43 Other

Taxon 44 (−0.123) g: Campylobacter

Taxon 45 (−0.184) Other

Taxon 46 (−0.184) Other

Taxon 47 (−0.181) g: Shewanella

Taxon 48 (−0.371) Other

Taxon 49 (−0.278) g: Enterobacter

Taxon 50 (−0.228) g: Klebsiella

Taxon 51 (−0.289) g: Pantoea

Taxon 52 (−0.274) g: Plesiomonas

Taxon 53 (−0.273) g: Proteus

Taxon 54 (−0.27) g: Serratia

Taxon 55 (−0.274) g: Shigella

Taxon 56 (−0.274) g: Trabulsiella

Taxon 57 (−0.179) g: Halomonas

Taxon 58 (−0.139) Other

Taxon 59 (−0.139) g: Aggregatibacter

Taxon 60 (−0.139) g: Haemophilus

Taxon 61 g: Acinetobacter

Taxon 62 g: Pseudomonas

c: Actinobacteria
(−0.106)

c: Bacilli
(0.317)

o: Clostridiales
(0.341)

c: Alphaproteobacteria
(−0.123)

o: Burkholderiales
(−0.123)

o: Pseudomonadales
(−0.189)

Kingdom Phylum Class Order Family Genus

F IGURE 4 The taxonomic tree of the NICU microbiome data. Taxa with the same estimated coefficient value (i.e., blank leaf nodes) are
aggregated to their common ancestor (i.e., the closest solid node). The coefficient value (multiplied by 100) for each taxon (or group of taxa) is
presented in the parenthesis. This figure appears in color in the electronic version of this article, and any mention of color refers to that version
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TABLE 1 The median (median absolute deviation) of PSE of different methods based on LOOCV of the NICU data

Method RS-DL2 RS-ES LC-Lasso KPR-Ridge KPR-Tree
PSE 0.579 (0.484) 0.547 (0.448) 0.587 (0.509) 0.571 (0.493) 0.522 (0.475)

concentration (i.e., 1% in proportion) from the Genus
Shigella (a genus in Enterobacteriales) to any taxon (or
taxa) in Clostridiales, the response value will increase
by {3.41 − (−2.74)} × 10−3 = 6.15 × 10−3. Alternatively, if
we move one unit of concentration from any taxon (or
taxa) in Bacilli to any taxon (or taxa) in Clostridiales, the
response valuewill only slightly increase by (3.41 − 3.17) ×
10−3 = 2.4 × 10−4. Similarly, one could interpret the effect
of shifting concentration between any two (groups of) taxa.
For comparison and corroboration, we also apply LC-

Lasso with feature selection on the same data set. With
the tuning parameter selected by cross-validation, the
LC-Lasso method only selects three individual taxa at
the genus level (i.e., Veillonella in Order Clostridiales,
and Shigella and others in Order Enterobacteriales) after
covariate adjustment. The directions of association are
consistent with our findings (i.e., the genus in Clostridiales
has positive association and the genera in Enterobacteri-
ales have negative association). Although further investi-
gations arewarranted to validate the findings, the proposed
method potentially provides a more comprehensive pic-
ture of the microbial effects on the outcome.
We further conduct leave-one-out cross-validation

(LOOCV) to compare the out-sample prediction accuracy
of different methods on the real data. The prediction
squared errors (PSE) are summarized in Table 1. Due to
the small sample size (𝑛 = 34), the differences between
the methods are not statistically significant. The PSE are
comparable between the relative-shift methods (RS-DL2
and RS-ES) and the log-contrast methods (LC-Lasso,
KPR-Ridge, and KPR-Tree). Nonetheless, the intrigu-
ing biological interpretation of the proposed methods
still warrants their use in this application. The estimated
parametersmay provide novel insights into the association
between the gut microbiome and the neurodevelopmental
outcome of preterm infants.

8 DISCUSSION

In this paper, we develop a novel relative-shift regres-
sion paradigm for compositional data. The new framework
regresses the response on compositional predictors directly
without transformation. The relative relation of coeffi-
cients for compositional predictors carry a straightforward
interpretation, that is, the contrasts of coefficients cap-
ture effects of shifting concentration between features
on the response. The relative-shift framework provides

a flexible basis for supervised dimension reduction. We
develop different regularization methods, that is, the equi-
sparsity regularization and the tree-guided regularization,
for feature aggregation. In particular, the tree-guided reg-
ularization takes advantage of the extrinsic hierarchical
structure among features and adaptively identifies rele-
vant features at different hierarchical levels. An efficient
smoothing proximal gradient algorithm is devised to fit
models with different regularization terms. Numerical
studies demonstrate that the proposed methods provide
an effective and interpretable alternative for compositional
data analysis.
There are several directions for future research. First, in

practice the effect of concentration shifts between parts of
a composition on the response may be nonlinear, so it is of
particular interest to generalize the current framework to
accommodate such nonlinear relationships. Second, while
we have established statistical guarantees on the predic-
tion performance of the proposed method, it is pressing to
study the estimation performance and develop statistical
inference methods for assessing the relative-shift effects.
To achieve these, certain comparability condition on the
design is necessary (Bühlmann and van de Geer, 2009).
Since the equi-sparsity pattern and the tree-structure are
encoded in 𝑨 where 𝜷∗ = 𝑨𝜸∗, such a condition could be
imposed on the transformed design matrix 𝑿𝑨.
Last but not least, although the current framework

can handle zeros without replacement, it does not treat
zero differently from any positive proportions. In many
applications, it may be desirable to specifically model the
zero generation mechanism (Xu et al., 2021).
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implemented in Matlab code which is posted online with
this paper.
Supporting Information

How to cite this article: Li, G., Li, Y. & Chen, K.
(2023) It’s all relative: Regression analysis with
compositional predictors. Biometrics, 79, 1318–1329.
https://doi.org/10.1111/biom.13703

https://orcid.org/0000-0002-7298-2141
https://orcid.org/0000-0002-7298-2141
https://orcid.org/0000-0003-2182-9048
https://orcid.org/0000-0003-2182-9048
https://orcid.org/0000-0003-3579-5467
https://orcid.org/0000-0003-3579-5467
https://doi.org/10.1111/biom.13703

	It’s all relative: Regression analysis with compositional predictors
	Abstract
	1 | INTRODUCTION
	2 | RELATIVE-SHIFT REGRESSION PARADIGM
	2.1 | Relative-shift model
	2.2 | Parsimonious modeling in high dimension

	3 | REGULARIZED METHODS FOR PARAMETER ESTIMATION
	3.1 | Regular equi-sparsity regularization
	3.2 | Tree-guided equi-sparsity regularization

	4 | MODEL FITTING ALGORITHM
	5 | THEORY
	6 | SIMULATION
	6.1 | Study I: Equi-sparsity setting
	6.2 | Study II: Tree-guided equi-sparsity setting

	7 | APPLICATION TO PRETERM INFANT GUT MICROBIOME STUDY
	8 | DISCUSSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


