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for regression analysis with compositional predictors and offers a superior interpretation of how shifting concentration
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A unified finite-sample prediction error bound is derived for the proposed regularized estimators. We demonstrate
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1. Introduction

Compositional data characterize fractions or proportions of a whole and contain relative

information. Such data are ubiquitous in various disciplines, such as chemistry, geology,

ecology, and microbiology. Proportions are strictly nonnegative, bounded, and subject to a

unit-sum constraint. As compositional data reside in a simplex, many standard notions and

statistical methods do not directly apply (Aitchison, 1982). In addition, compositional data

can be high dimensional, inflated with excessive zeros, and organized in a hierarchical tree

structure. For instance, in microbiome studies, data are typically measured through high-

throughput sequencing technology (e.g., 16S rRNA sequencing) and normalized as compo-

sitions due to heterogeneous library sizes between samples (Gloor et al., 2016; Tsilimigras

and Fodor, 2016). The number of features (known as OTUs, Operational Taxonomic Units,

or taxa) may far exceed the number of samples. Since not all OTUs are present or detected

in all samples, microbiome data are usually highly sparse with few dominant parts and

excessive zeros (Xia et al., 2018; Xu et al., 2021). In addition, there also exists a hierarchical

tree structure among OTUs that captures the taxonomy of the microbes (Silverman et al.,

2017). Such hierarchical structure is important because OTU data at lower taxonomic ranks

have higher resolution (i.e., more features) but are more prone to measurement errors, while

data at higher taxonomic ranks have lower resolution with higher accuracy. There is a trade-

off between data resolution and accuracy along the taxonomic hierarchy, which should be

carefully taken into account in statistical analysis.

The unique features of compositional data pose new challenges for statistical analysis

(Aitchison and Egozcue, 2005; Li, 2015). In this paper, we focus on the regression analysis

with compositional predictors. Existing methods typically transform compositional data

via log-ratios first (i.e., Aitchison’s approach, Aitchison, 1983) before further analyses. Sub-

sequently, linear regression models are built upon transformed data. For example, one of
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the most commonly used models is the log-contrast model (Aitchison and Bacon-Shone,

1984) where log-ratio-transformed proportions are used as predictors in a linear regression.

An equivalent symmetric form of the model is y = β0 + β1 log x1 + · · · + βp log xp + ε,

where the compositional vector x is nonzero and resides in the (p − 1)-simplex Sp−1 =

{x= (x1, . . . , xp)
T ∈ Rp :

∑p
j=1 xj = 1, xj ⩾ 0, j = 1, . . . , p} and the coefficients satisfy

a linear constraint
∑p

j=1 βj = 0. The model enjoys the subcompositional coherence and

scale and permutation invariance properties (Aitchison, 1982). Lin et al. (2014) and Shi

et al. (2016) further proposed variable selection methods for such models to handle high

dimensional data. Centered log-ratio transformation is also frequently used in the literature

and it has been shown to be equivalent to the log-contrast model if the zero-sum constraint

is imposed on the regression coefficients (Randolph et al., 2018; Wang and Zhao, 2017).

The transformation-based methods have several major drawbacks. First, the commonly

used logarithmic transformation cannot handle zero values. A common practice is to artifi-

cially replace zero with some preset small value to avoid singularity (Aitchison and Bacon-

Shone, 1984; Palarea-Albaladejo and Martin-Fernandez, 2013; Lin et al., 2014). However,

when data are highly sparse with excessive zeros (as is the case with microbiome data),

such manipulation may introduce unwanted bias and result in misleading results. Another

drawback is the lack of straightforward biological interpretation. The log transformation

lifts data from the simplex, but does not eliminate the interrelations between features. The

change in one predictor value is linked to the change in at least one other predictor value.

As a result, one cannot simply interpret the coefficient βj as the effect size corresponding to

one unit increase in log xj with others held fixed.

In addition, the transformation hinders the incorporation of hierarchical tree structure

among features. Several attempts have been made in the literature to regularize regres-

sion coefficients, but no consensus has been reached. For example, Garcia et al. (2013)
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and Wang and Zhao (2017) developed group-lasso-type regularization methods to achieve

subcomposition selection. Randolph et al. (2018) proposed to translate phylogenetic and

taxonomic trees into kernels and incorporate them into a penalized regression framework.

However, kernelizing a hierarchical structure may oversimplify the extrinsic information

since a tree cannot be fully characterized by a similarity matrix. Very recently, Bien

et al. (2020) proposed a tree-aggregated method for prediction. However, the method is

still based on log transformation and thus suffer the same issues as before. Besides, to

the best of our knowledge, no existing transformation-based method ensures compatible

results across different hierarchies. That is, analyses conducted on the same data at different

hierarchical levels may have drastically different results. For example, in a microbiome study,

a species may be deemed important from the species-level analysis, but the genus it belongs

to may have negligible effect from the genus-level analysis. Such discrepancy may call existing

regression analysis with compositional predictors into question.

In this paper, we break new ground to develop a new regression paradigm for compositional

data. The new framework, called Relative-Shift, directly models proportions as predictors

without transformation. It provides an alternative approach to regression with compositional

predictors. The basic model is based on a simple yet intriguing finding, that is, the regression

on compositional predictors is completely identifiable if we just eliminate the intercept term.

Namely, an intercept-free linear regression model with compositional predictors is the basic

form of our proposed relative-shift model. Although seemingly simple, the model carries

important interpretations of how shifting concentration between compositional predictors

affects the response (i.e., the origination of the name, relative-shift). The relative-shift model

also serves as a flexible basis for accommodating special features of compositional data

such as high dimension, zero inflation, and hierarchical structure. For example, zero values

are directly handled without substitution; high dimensional compositional features can be
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reduced through aggregation or amalgamation, which is a fundamental operation for compo-

sitional data (Greenacre, 2020). More importantly, the hierarchical structure among features

can be tactfully accounted for as well. We conduct model reparametrization and develop

new tree-guided regularization methods to promote feature aggregation along the tree. The

proposed methods borrow information across hierarchies and strike a good balance between

data resolution and accuracy. As a result, features are adaptively aggregated and selected at

different hierarchical levels that deem to be most relevant to the response.

The relative-shift framework is fundamentally different from the transformation-based log-

contrast models. The proposed method focuses on the “redistribution” or “shift” of pro-

portions themselves rather than ratios of proportions. Correspondingly, basic principles for

Aitchison’s approach to compositional data analysis such as the subcompositional coherence

property do not directly apply to the new framework. Nonetheless, we do not consider this as

a limitation of our work. Instead, the notion of “shifting concentration” is novel and logical,

and serves as the basis of a new analytical paradigm for compositional data.

2. Relative-Shift Regression Paradigm

2.1 Relative-Shift Model

Let y = (y1, . . . , yn)
T ∈ Rn denote the continuous response vector of n samples. Let

xi = (xi1, . . . , xip)
T ∈ Sp−1 represent the compositional vector of p variables and ci =

(ci1, . . . , ciq)
T ∈ Rq be a length-q auxiliary non-compositional covariate vector for the ith

subject (i = 1, . . . , n). We propose the following relative-shift model

yi = cTi βc + β1xi1 + · · ·+ βpxip + εi, (1)

where εi is the random noise with mean zero and variance σ2, and βc ∈ Rq and β =

(β1, . . . , βp)
T ∈ Rp are coefficient vectors for covariates and compositional predictors, re-

spectively. The relative-shift model is identical to a linear regression model less the intercept
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term, yet the difference ensures the identifiability of the model. In other words, any intercept

term β0 can be directly absorbed by β (by changing βj to βj + β0 for j = 1, . . . , p).

The relative-shift model directly uses proportions as predictors and characterizes how

compositional changes affect the response. Since proportions in a compositional vector are

interrelated and do not change alone, coefficients shall not be interpreted individually.

Instead, a reference (i.e., a feature or a set of features that offset the compositional change in

the target feature) is needed when interpreting effect sizes. For instance, for target feature k,

one may choose another feature j (j ̸= k) or a group of features Ω ⊂ {1, . . . , k, k + 1, . . . , p}

as the reference. Similar to log-ratio transformations, different references result in different

but compatible interpretations from different perspectives.

More specifically, if feature j is used as the reference, we can write βjx·j +βkx·k = βj(x·j +

x·k) + (βk − βj)x·k. Therefore, (βk − βj) can be interpreted as the effect of shifting unit

concentration from x·j to x·k while holding other parts fixed. Alternatively, if features with

indices in Ω serve as the reference, we have the following relation

βkx·k +
∑

j∈Ω
βjx·j = (βk − β̄Ω)x·k +

∑

j∈Ω
βj(x·j +

1

h
x·k),

where h = |Ω| is the number of features in Ω and β̄Ω =
∑

j∈Ω βj/h is the average of the βjs.

Correspondingly, (βk − β̄Ω) can be interpreted as the effect of shifting unit concentration

evenly from the h features in Ω to x·k while holding other parts fixed. This is because the

second term on the right-hand side remains constant in the shift. In particular, if Ω =

{1, . . . , k−1, k+1, . . . , p}, the effect size of increasing x·k by one unit while decreasing every

other part by 1/(p − 1) units is βk − β̄−k where β̄−k =
∑

j ̸=k βj/(p − 1). In general, any

proper contrast of the regression coefficients can be interpreted as the effect of certain shift

of concentration between parts. This is the origination of the name relative-shift regression.

Although simple, the relative-shift model well characterizes the fundamental relations

between compositional predictors and the response. It also enjoys several desirable properties.
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First, it is scale and shift invariant. A scale change in the response or predictors can be

easily absorbed by the corresponding scale change in coefficients. If the response shifts by a

constant, due to the compositional nature of predictors, the effect can be offset by adding the

same constant to β in (1). The above invariance property also implies that the magnitude

or the absolute value of the coefficients is not important, but the relative relationships

between different parameters are. This naturally leads to the second property, that is,

equal coefficients induce feature aggregation. This serves as the foundation for parsimonious

modeling in high dimension which we shall introduce below. Finally, the model directly

accommodates zero values without transformation.

2.2 Parsimonious Modeling in High Dimension

When the number of predictors is large, it is generally desired to pursue parsimonious mod-

eling in regression. Due to the compositional nature of data, it is intuitive to consider feature

aggregation in the high-dimensional setting since it maintains the compositionality of data. In

the proposed relative-shift model, aggregation of compositional features can be achieved by

making their coefficients equal. For example, if βj = βk, we have βjx·j+βkx·k = βj(x·j+x·k).

Namely, features j and k are combined into a new predictive entity with the proportion

being their sum and the coefficient being the common one. In general, high-dimensional

compositional features are reduced into a lower dimensional simplex when the coefficient

vector β in (1) is equi-sparse (She, 2010).

Equi-sparsity is the clustering of regression coefficients. It is more general than the com-

monly used zero-sparsity (Hastie et al., 2019). Coefficients are shrunk to the same constant

which is not necessarily zero. In the relative-shift model, the equi-sparsity of β for the

compositional predictors is especially relevant because only the relative relations between

coefficients matter rather than their absolute numerical values. If a group of coefficients are

equal, shifting concentration among features in the group does not change the outcome.
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Namely, the group of features can be combined without losing any predictive power. We will

formally introduce a clustered-lasso regularization approach in the next section for parameter

estimation with equi-sparsity.

Moreover, when there exists a hierarchical tree structure among features as auxiliary infor-

mation (e.g., a taxonomic tree for microbiome OTUs), we may consider imposing structured

equi-sparsity to incorporate the tree structure. The basic idea is to encourage coefficients

to be more equi-sparse if they share more similar hierarchical paths. For example, if two

microbiome species belong to the same genus, family, order, class, and phylum, their co-

efficients are more likely to be the same compared to another pair of species belonging to

distinct phyla. As a result, the equi-sparsity is partially informed by the tree structure. In the

next section, we will also elaborate new regularization methods to achieve such structured

equi-sparsity.

3. Regularized Methods for Parameter Estimation

To estimate model parameters with equi-sparsity, we resort to a regularized least squares

framework by solving the following optimization problem

(β̂c, β̂) = argmin
βc,β

1

2n
∥y −Cβc −Xβ∥2 + λP(β), (2)

where C = (c1, . . . , cn)
T ∈ Rn×q is a covariate matrix, X = (x1, . . . ,xn)

T∈ Rn×p is the

compositional data matrix with each row in Sp−1, P(β) is an equi-sparsity-inducing penalty

for β, and λ is a tuning parameter.

3.1 Regular Equi-Sparsity Regularization

To impose regular equi-sparsity, we exploit the clustered-lasso penalty (She, 2010)

P(β) =
∑

j<k

ωjk|βj − βk|,
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where ωjk is some predefined positive weight between features j and k. Conceptually, the

absolute differences between pairs of coefficients are shrunk to zero to achieve equi-sparsity.

The penalty also coincides with the graph-guided-fused-lasso penalty in Kim et al. (2009)

with a complete graph. In practice, the weights can be determined based on extrinsic

information, where a larger value induces more penalty on the pairwise difference and vice

versa. By default, we set all weights to be equal to 1 in this paper.

3.2 Tree-Guided Equi-Sparsity Regularization

When a p-leafed tree (denoted by T ) is present among the compositional features, we propose

new methods for tree-guided equi-sparsity regularization. Let I(T ) represent the set of

internal nodes, L(T ) represent the set of leaf nodes, and |T | represent the total number

of nodes in a tree. We follow the commonly used notions of child, parent, sibling, descendant

and ancestor to describe the relations between nodes. Each leaf node of the tree corresponds

to a predictor (i.e., a compositional component) and each internal node corresponds to a

group of predictors (i.e., the descendant leaf nodes of the internal node).

Borrowing an idea from Yan and Bien (2021), we first introduce intermediate coefficients

to reparameterize the original regression coefficients in β. More specifically, we assign an

intermediate coefficient γu to each node u ∈ T−r, where T−r is the node set of the tree T

without the root node. The intermediate coefficients in γ = (γu)u∈T−r are associated with

the original coefficients in the following way

βj =
∑

u∈Ancestor(j)∪{j}
γu,

where Ancestor(j) denotes the set of ancestors (except the root node) of the leaf node j. For

example, β1 = γ1 + γ8 + γ10 in the toy example in Figure 1. As a result, we have

β = Aγ, (3)

where A ∈ {0, 1}p×(|T |−1) is a tree-induced indicator matrix with entry Ajk = 1k∈Ancestor(j)∪{j}
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(equivalently, 1j∈Descendant(k)∪{k}, with Descendant(k) being the descendant set of node k). We

remark that the intermediate coefficients are over-saturated and not identifiable by design,

but it does not affect the subsequent regularized estimation procedure.

[Figure 1 about here.]

With the new parameterization, it becomes immediately clear that zeroing out all the

intermediate coefficients for nodes in Descendant(u) results in the equi-sparsity of a subvector

in β that shares the same ancestor u. For example, in Figure 1, if we zero out γus for the

descendants of node 8 (i.e., γ1 = γ2 = 0), the βjs for the leaf nodes with ancestor node

8 will have the same value (i.e., β1 = β2 = γ10 + γ8). As a result, the desired tree-guided

equi-sparsity regularization on β (i.e., P(β)) can be equivalently expressed as structured

zero-sparsity regularization on γ (i.e., PT (γ)), where we consider the following three variants:

(a) Node ℓ1 (L1):

PT (γ) =
∑

u∈T−r

wu|γu|, (4)

(b) Child ℓ2 (CL2):

PT (γ) =
∑

u∈I(T )

wu∥(γv)v∈Child(u)∥, (5)

where Child(u) denotes the set of children nodes of node u;

(c) Descendant ℓ2 (DL2):

PT (γ) =
∑

u∈I(T )

wu∥(γv)v∈Descendant(u)∥. (6)

All three penalties induce sparsity in γ and thus potentially result in equi-sparsity in β.

The Node ℓ1 penalty is closely related to the one used in Yan and Bien (2021) and Bien

et al. (2020), except that we do not penalize the original coefficients in β. The Child ℓ2 and

Descendant ℓ2 penalties are group-lasso-type regularization, which intuitively encourages the

groups of nodes towards the leaves of a tree to take zero values. In particular, Child ℓ2 does

not contain any overlapping groups while Descendant ℓ2 does. Later we show that all three
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penalty terms can be implemented by the same algorithm and their theoretical properties

can be understood through a unified finite-sample prediction error bound. The weights in

each penalty may be used to adjust for different node heights or heterogeneous group sizes

and/or avoid over-penalization if desired. By default, we set the weights to be 1 throughout

the paper. Data-adaptive selection of weights is a future research direction.

The tree-guided regularization methods borrow information across all hierarchies of a tree

and naturally strikes a good balance between data resolution and accuracy. Moreover, it also

achieves adaptive selection of features at different hierarchical levels. For example, suppose

we fit the model to microbiome OTU data with a taxonomic tree structure. If all the species

within a genus are regularized to have the same coefficient, a new feature is formed at the

genus level with its proportion being the sum of all the child species proportions. The genus-

level feature is deemed relevant in prediction rather than its descendant species. Similarly,

if all the species (in different genera) within a family share the same coefficient, the newly

formed family-level feature will be selected.

4. Model Fitting Algorithm

The optimization problem in (2) is convex with all the penalty terms proposed in the previous

section. In principle, generic convex optimization solvers can be used. Nonetheless, given the

high dimensional nature of the problem, such generic methods are usually computationally

prohibitive. Instead, we resort to a more efficient smoothing proximal gradient method (Chen

et al., 2012) to solve the optimization. We remark that the details of the smoothing proximal

gradient algorithm are well documented in Chen et al. (2012), so we only outline the general

idea of the algorithm.

The optimization problem in (2) can be uniformly expressed as

min
β̃

1

2n
∥y − X̃β̃∥2 + λΩ(β̃), (7)
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where X̃ = (C,X), β̃ = (βT
c ,β

T )T , and Ω(β̃) = P(β) for the regular equi-sparsity

estimation, and X̃ = (C,XA), β̃ = (βT
c ,γ

T )T , and Ω(β̃) = PT (γ) for the tree-guided

equi-sparsity estimation. In particular, the penalty term Ω(β̃) is a nonsmooth function of β̃

and the elements of β̃ may be nonseparable. The fundamental idea of smoothing proximal

gradient is to 1) decouple the nonseparable elements via the dual norm; 2) apply a Nesterov

smoothing technique (Nesterov, 2005) to obtain the gradient of Ω(β̃); and 3) apply an optimal

gradient method (Beck and Teboulle, 2009).

More specifically, the term Ω(β̃) in (7) can be expressed by the dual norm as

Ω(β̃) = max
α∈Q

αTDβ̃,

where Q is some convex, closed unit ball and D is a constant matrix defined by respective

problems (see Chen et al. (2012) for details). Subsequently, it is approximated by a surrogate

function

fµ(β̃) = max
α∈Q

αTDβ̃ − µ

2
∥α∥2, (8)

which can be shown to be smooth with respect to β̃ (as long as µ > 0) and bounded by

a tight interval around Ω(β̃) (Nesterov, 2005). Nesterov (2005) further showed that the

gradient of fµ(β̃) is DTα∗ with α∗ being the optimal solution to (8) and the gradient is

Lipschitz continuous. In particular, in our settings, α∗ has a closed-form expression and the

Lipschitz constant is explicit (Chen et al., 2012).

Let h(β̃) = (2n)−1∥y − X̃β̃∥2 + λfµ(β̃) be the new objective function. The gradient

of h(β̃), i.e., ▽h(β̃), has an explicit form and is Lipschitz continuous with an explicit

Lipschitz constant L. To minimize h(β̃), one may resort to the classical gradient algorithm

by iteratively updating the estimate of β̃:

β̃
(t+1)

= β̃
(t) − 1

L
▽h(β̃(t)

),

until convergence. However, the convergence may be slow. Instead, smoothing proximal

gradient applies the fast iterative shrinkage-thresholding algorithm (Beck and Teboulle,
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2009) which is an optimal gradient method in terms of convergence rate. The fast iterative

shrinkage-thresholding algorithm updates the estimate β̃
(t+1)

with not just the previous

estimate β̃
(t)
, but rather a very specific combination of the previous two estimates β̃

(t)
and

β̃
(t−1)

. As a result, the convergence has been proved to be much faster than the standard

gradient method (Chen et al., 2012; Beck and Teboulle, 2009).

The tuning parameter λ in (7) balances the quadratic loss function and the penalty term.

In practice, it typically has to be determined from data. A standard approach is to use

cross validation to adaptively select the optimal tuning parameter. Since the smoothing

proximal gradient algorithm for model fitting is very efficient, the cross validation scheme is

computationally feasible. We provide more details in the numerical studies in Section 6.

5. Theory

Let T represent a p-leafed tree with root node r. Both L(T ) and I(T ) have been defined

previously as the sets of leaf nodes and internal nodes, respectively. Let Tu be a subtree of

T rooted at the node u for u ∈ T . To focus on the main idea, we consider the relative-

shift model without additional covariates, i.e., y = Xβ∗ + ε, where X is a compositional

design matrix, β∗ ∈ Rp is the true coefficient vector, and ε is a vector of independently and

identically distributed Gaussian noise with mean zero and variance σ2. With the tree-based

reparameterization (3), we have β∗ = Aγ∗, where γ∗ = (γ∗
u)u∈T−r is the vector of intermediate

coefficients and A is a tree-induced indicator matrix. Without loss of generality, we assume

the response y is centered at the population level. We study finite-sample properties of the

regularized estimator

β̂ = argmin
β=Aγ

{
1

2n
∥y −Xβ∥2 + λPT (γ)

}
, (9)
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where PT (γ) is any one of the three penalties (i.e., Node ℓ1, Child ℓ2, and Descendant ℓ2)

introduced in Section 3.2. Our main result is presented in Theorem 1. The detailed proof is

in the Section B of Supporting Information.

Theorem 1: Consider the regularized estimator β̂ of β from solving (9) with any penalty

forms in (4)–(6). Denote |I(T )| as the number of internal nodes of the tree. Choose λ ⩾

2
√
2σ

√
log(|I(T )|)/(δn). Then with probability at least 1− δ, it holds that

1

n
∥Xβ̂ −Xβ∗∥2 ⪯ λ{ min

γ;Aγ=β∗
PT (γ)},

where ⪯ means the inequality holds up to a multiplicative constant irrelevant to model

parameters.

In the above results, the order of λ is O(
√
log(|I(T )|)/n), depending on the tree structure

through the total number of internal nodes |I(T )| that represents the dimension of the model.

The term {minγ;Aγ=β∗ PT (γ)} captures the complexity of the true model by measuring the

minimal penalty function evaluated at the truth.

With the above unified prediction error bound, we now perform further analysis on mode

size and complexity to obtain specific error rates. Following Yan and Bien (2021), we first

introduce the concepts of aggregating set and coarsest aggregating set, which correspond to

the equi-sparsity pattern of the coefficients in the proposed relative shift model. In particular,

we say that B ⊆ T is an aggregating set with respect to T if {L(Tu) : u ∈ B} forms a partition

of L(T ). For any β∗ ∈ Rp, there exists a unique coarsest aggregating set B∗ := B(β∗, T ) ⊆ T

(“the aggregating set”) with respect to the tree T such that (a) β∗
j = β∗

k for j, k ∈ L(Tu)

∀u ∈ B∗, (b) |β∗
j − β∗

k| > 0 for j ∈ L(Tu) and k ∈ L(Tv) for siblings u, v ∈ B∗.

It is then clear that the size of the coarsest aggregating set, |B∗|, is a natural complexity

measure of the equi-sparsity pattern of β∗ guided by the tree. Therefore, it is desired to

bound {minγ;Aγ=β∗ PT (γ)} in Theorem 1 in terms of |B∗| and the magnitude of β∗. In
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particular, for Node ℓ1 in (4) and Child ℓ2 in (5), we have the following corollary (see Section

B of Supporting Information for a detailed proof).

Corollary 1: Suppose T is a p-leafed full tree and the true coefficient β∗ is bounded

by some positive constant M (i.e., ∥β∥∞ ⩽ M). For Node ℓ1 in (4) and Child ℓ2 in (5),

respectively, it holds that

min
γ;Aγ=β∗

PT (γ) ⩽ M |B∗|.

Together with Theorem 1, we obtain an explicit error bound for the prediction error,

1

n
∥Xβ̂ −Xβ∗∥2 ⪯

√
log(|I(T )|)/n|B∗|.

We remark that the bound takes a familiar form as those for many well-studied high-

dimensional models. In particular, the measure of the model dimension, i.e., the number

of internal nodes |I(T )|, is of order p. Both Node ℓ1 and Child ℓ2 can predict well as long

as log(p)/n = o(1) and its performance is tied to |B∗|, representing the complexity of the

equi-sparsity pattern on the tree.

6. Simulation

We compare the proposed relative-shift regression with several transformation-based models

using comprehensive simulations. Specifically, we consider the relative-shift model with the

equi-sparsity regularization (i.e., “RS-ES”) and the three tree-guided regularization methods,

Node ℓ1, Child ℓ2 and Descendant ℓ2 (denoted as “RS-L1”, “RS-CL2”, and “RS-DL2” respec-

tively), when applicable. For competing methods, we consider the log-contrast model with

lasso penalty (“LC-Lasso”) (Lin et al., 2014), the Log-Error-in-Variable model (“LEiV”)

(Shi et al., 2021), the robust log-contrast model (“Robust-LC”) (Combettes and Müller,

2021), and the kernel penalized regression (KPR) model (Randolph et al., 2018) with ridge

kernel (“KPR-Ridge”) and taxonomic kernel (“KPR-Tree”). Since the proposed relative-

shift paradigm is fundamentally different from the log-contrast models, we do not directly
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compare them on parameter estimation accuracy. Instead, we focus on the comparison of

prediction accuracy measured by the out-sample mean squared prediction error (MSPE)

MSPE =
1

ntest

ntest∑

i=1

(yi − ŷi)
2,

and computing time (including cross validation for tuning parameter selection). Each simu-

lation study is repeated 100 times.

6.1 Study I: Equi-Sparsity Setting

In this study, we first simulate compositional data X with p = 100 and n = 500 (i.e., 100

for training and 400 for testing). In particular, the compositional data are generated from a

logistic Gaussian distribution as in Lin et al. (2014). The resulting relative abundance matrix

X does not have zero entries. To mimic the typical zero-inflation feature of compositional

data, we further truncate the data to create 40% zero entries and re-compositionalize the data

as X0. Then read counts are sampled from a multinomial distribution with the underlying

proportions coming from X0 and the total counts generated from a negative binomial

distribution (Shi et al., 2021). The read counts are used in model fitting and testing, while the

true relative abundances in X are used to generate the response values. In particular, in this

study, the response is generated from the proposed model (1), where the true coefficients are

equi-sparse. Specifically, features 1-20, 21-30, and 31-100 can be aggregated, respectively,

without losing any predictive power. The random errors are generated in a way that the

signal-to-noise ratio (SNR) is 1.

Since there is no extrinsic tree information in this setting, we just compare RS-ES with

LC-Lasso, LEiV, Robust-LC, and KPR-Ridge. To deal with zero counts, we just follow

the default zero-replacement strategy for each competing method. The boxplots of MSPE

and computing time (for each simulation run) can be found in Figure 2(a). We observe

that RS-ES significantly outperforms the other transformation-based methods in prediction

accuracy, mainly because 1) the data are generated from the relative-shift model; 2) RS-ES
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properly handles zeros without transformation. When data are generated from a log-contrast

model with varying zero proportions, we also see robust performance of the proposed method

(see more details in Section A of Supporting Information). Besides, all three methods are

computationally efficient as the model fitting times are within a couple of seconds on a

standard desktop computer (16Gb RAM, Intel Core i7 CPU 2.20 GHz).

[Figure 2 about here.]

6.2 Study II: Tree-Guided Equi-Sparsity Setting

In this study, we include extrinsic information of a hierarchical tree. Data are generated

in a similar way as in Study I, except for the true coefficients. To generate the coefficient

vector, we first assume there is a tree structure among the variables (see Figure 3), where

every 10 consecutive leaf nodes share a common parent node and so on. Guided by the

tree structure, the true coefficient vector for the generative relative-shift model is set to be

β =
(
1T
20, −2× 1T

10, 0.5× 1T
10, 2× 1T

40, ξT20
)T

, where 1q is a length-q vector of ones and ξ20

is a length-20 vector filled standard Gaussian random numbers. Namely, in principle, the

first 20 features can be aggregated along the tree to their common ancestor, the next 10

features can be aggregated to their parent node, and so on. The last 20 features, although

they also share a common ancestor, cannot be aggregated due to distinct coefficient values.

See Figure 3 for the feature aggregation pattern.

[Figure 3 about here.]

We compare the three tree-guided regularization methods RS-L1, RS-CL2, and RS-DL2

with all the competing methods. Among the competitors, only KPR-Tree takes advantage

of the tree structure by converting it into a patristic distance kernel. The comparison result

is shown in Figure 2(b). In the left panel, the three tree-guided relative-shift methods have

similar prediction errors and are significantly better than all the other methods. (More
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comparisons between the three proposed regularization methods can be found in Section

A of Supporting Information.) The next best method is KPR-Tree, which benefits from

the extrinsic tree structure. Among the methods not using the tree information, RS-ES

outperforms the others. On the other hand, the superior prediction performance of the tree-

guided relative-shift methods does come at a price, that is, a slightly higher computational

cost. However, even with cross validation for tuning parameter selection, the computing time

of the proposed methods is within a few seconds for each simulation run (except for RS-L1).

We also conduct additional simulations in higher-dimensional settings (for p = 400 and

p = 1000). The proposed methods are quite scalable and the prediction results are similar

to what we present here. More details can be found in Section A of Supporting Information.

7. Application to Preterm Infant Gut Microbiome Study

We apply the proposed relative-shift model with taxonomic-tree-guided regularization to a

preterm infant gut microbiome study. The study aims to understand how gut microbiome is

related to the neurodevelopment of preterm infants. Data were collected at a Neonatal Inten-

sive Care Unit (NICU) in the northeast US. Fecal samples of preterm infants were collected

daily when available during the infant’s first month of postnatal age. Bacterial DNA was

isolated and extracted from each sample; V4 regions of the 16S rRNA gene were sequenced

using the Illumina platform. Gender, birth weight, delivery type, and complications were

recorded at birth, and medical procedures and feeding types were recorded throughout the

infant’s stay. Infant neurobehavioral outcomes were measured when the infant reached 36-38

weeks of postmenstrual age, using the NICU Network Neurobehavioral Scale (NNNS) (Cong

et al., 2017; Sun et al., 2020).

After proper processing, we obtain p = 62 taxa, most at the genus level, on n = 34

individuals. The longitudinal data are averaged across the postnatal period for each infant,

resulting in a single 34 × 62 OTU data matrix with 39.2% zero entries. Moreover, the
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taxonomic tree of the 62 taxa is also available (see Figure 4). Each taxon in the OTU

table corresponds to a leaf node. The primary outcome is the normalized NNNS score. We

also include several standardized covariates (i.e., gender, delivery type, premature rupture

of membranes, score for Neonatal Acute Physiology–Perinatal Extension-II (SNAPPE-II),

birth weight, and percentage of feeding with mother’s breast milk) in our analysis.

Since all three tree-guided methods lead to similar results, we only present the result from

RS-DL2 here. The tuning parameter is chosen by 5-fold cross validation. The estimated

coefficients for compositional predictors are approximately equi-sparse but not exact. This is

a common issue with the group-lasso-type penalty (Chen et al., 2012). To facilitate interpreta-

tion, we set a small threshold (i.e., 10−4) and truncate the groups of intermediate coefficients

whose Frobenius norms are below the threshold. As a result, we obtain highly interpretable

equi-sparse coefficients for the 62 taxa. An illustration of the estimated coefficient values

and the corresponding feature aggregation pattern along the taxonomic tree is provided in

Figure 4. In particular, taxa with the same coefficient are aggregated to the common ancestor

(i.e., the lowest solid node). For instance, Taxa 2-6 at the genus level are aggregated to the

common class Actinobacteria because they have the same estimated coefficient value.

[Figure 4 about here.]

The estimated coefficients carry intuitive interpretations of the microbial effects on the

outcome. More specifically, the average value of β̂ (multiplied by 100) is 0.075, which provides

an overall baseline for interpreting the parameters. Out of all the taxa, the Class Bacilli

(100 × β̂j = 0.317 for j = 11, . . . , 23) and the Order Clostridiales (100 × β̂j = 0.341 for

j = 24, . . . , 38) have the largest coefficient values, and the individual genera in the Order

Enterobacteriales (100 × β̂j ⩽ −0.228 for j = 48, . . . , 56) have the smallest values. This

indicates the outcome is (on average) positively associated with the composition of Bacilli

and Clostridiales and negatively associated with the individual genera in Enterobacteriales.
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Moreover, if we shift one unit of concentration (i.e., 1% in proportion) from the Genus

Shigella (a genus in Enterobacteriales) to any taxon (or taxa) in Clostridiales, the response

value will increase by {3.41−(−2.74)}×10−3 = 6.15×10−3. Alternatively, if we move one unit

of concentration from any taxon (or taxa) in Bacilli to any taxon (or taxa) in Clostridiales,

the response value will only slightly increase by (3.41− 3.17)× 10−3 = 2.4× 10−4. Similarly,

one could interpret the effect of shifting concentration between any two (groups of) taxa.

For comparison and corroboration, we also apply LC-Lasso with feature selection on

the same data set. With the tuning parameter selected by cross validation, the LC-Lasso

method only selects three individual taxa at the genus level (i.e., Veillonella in Order

Clostridiales, and Shigella and others in Order Enterobacteriales) after covariate adjustment.

The directions of association are consistent with our findings (i.e., the genus in Clostridiales

has positive association and the genera in Enterobacteriales have negative association).

Although further investigations are warranted to validate the findings, the proposed method

potentially provides a more comprehensive picture of the microbial effects on the outcome.

We further conduct leave-one-out cross validation (LOOCV) to compare the out-sample

prediction accuracy of different methods on the real data. The prediction squared errors

(PSE) are summarized in Table 1. Due to the small sample size (n = 34), the differences

between the methods are not statistically significant. The prediction squared errors are

comparable between the relative-shift methods (RS-DL2 and RS-ES) and the log-contrast

methods (LC-Lasso, KPR-Ridge, and KPR-Tree). Nonetheless, the intriguing biological

interpretation of the proposed methods still warrants their use in this application. The

estimated parameters may provide novel insights into the association between the gut mi-

crobiome and the neurodevelopmental outcome of preterm infants.

[Table 1 about here.]
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8. Discussion

In this paper, we develop a novel relative-shift regression paradigm for compositional data.

The new framework regresses the response on compositional predictors directly without

transformation. The relative relation of coefficients for compositional predictors carry a

straightforward interpretation, that is, the contrasts of coefficients capture effects of shifting

concentration between features on the response. The relative-shift framework provides a

flexible basis for supervised dimension reduction. We develop different regularization meth-

ods, i.e., the equi-sparsity regularization and the tree-guided regularization, for feature

aggregation. In particular, the tree-guided regularization takes advantage of the extrinsic

hierarchical structure among features and adaptively identifies relevant features at different

hierarchical levels. An efficient smoothing proximal gradient algorithm is devised to fit

models with different regularization terms. Numerical studies demonstrate that the proposed

methods provide an effective and interpretable alternative for compositional data analysis.

There are several directions for future research. First, in practice the effect of concentration

shifts between parts of a composition on the response may be nonlinear, so it is of particular

interest to generalize the current framework to accommodate such nonlinear relationships.

Second, while we have established statistical guarantees on the prediction performance

of the proposed method, it is pressing to study the estimation performance and develop

statistical inference methods for assessing the relative-shift effects. To achieve these, certain

comparability condition on the design is necessary (Bühlmann and van de Geer, 2009). Since

the equi-sparsity pattern and the tree-structure are encoded in A where β∗ = Aγ∗, such

a condition could be imposed on the transformed design matrix XA. Last but not least,

although the current framework can handle zeros without replacement, it does not treat

zero differently from any positive proportions. In many applications, it may be desirable to

specifically model the zero generation mechanism (Xu et al., 2021).
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Figure 1: Illustration of tree-guided reparameterization.



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

26 Biometrics, XXXXXX 0000

(a) Simulation Study I

RS-E
S

LC
-L

as
so

Rob
us

t-L
C

LE
iV

KPR-R
idg

e

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

M
P

S
E

Out-Sample Mean Squared Prediction Error

RS-E
S

LC
-L

as
so

Rob
us

t-L
C

LE
iV

KPR-R
idg

e

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
im

e 
(S

ec
)

Computing Time

(b) Simulation Study II

RS-D
L2

RS-C
L2

RS-L
1

RS-E
S

LC
-L

as
so

Rob
us

t-L
C

LE
iV

KPR-R
idg

e

KPR-T
re

e

0.03

0.04

0.05

0.06

0.07

0.08

M
P

S
E

Out-Sample Mean Squared Prediction Error

RS-D
L2

RS-C
L2

RS-L
1

RS-E
S

LC
-L

as
so

Rob
us

t-L
C

LE
iV

KPR-R
idg

e

KPR-T
re

e

0

2

4

6

8

10

12

T
im

e 
(S

ec
)

Computing Time

Figure 2: Boxplots of MPSE and computing time in simulation Studies I and II. This figure
appears in color in the electronic version of this article, and any mention of color refers to
that version.
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Figure 3: Left: The taxonomic tree structure among variables in Study II. The leaf node
indices are in ascending order from left to right. Right: The equi-sparsity structure of the
regression coefficients. Features with the same coefficient are aggregated to the common
ancestor (i.e., the closest solid node).
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o: Clostridiales
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c: Alphaproteobacteria
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(−0.123)
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Figure 4: The taxonomic tree of the NICU microbiome data. Taxa with the same estimated
coefficient value (i.e., blank leaf nodes) are aggregated to their common ancestor (i.e., the
closest solid node). The coefficient value (multiplied by 100) for each taxon (or group of
taxa) is presented in the parenthesis. This figure appears in color in the electronic version of
this article, and any mention of color refers to that version.
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Table 1: The median (median absolute deviation) of PSE of different methods based on
LOOCV of the NICU data

Method RS-DL2 RS-ES LC-Lasso KPR-Ridge KPR-Tree

PSE 0.579 (0.484) 0.547 (0.448) 0.587 (0.509) 0.571 (0.493) 0.522 (0.475)


