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Abstract
Objective: Electronic medical records allow for retrospective clinical research 
with large patient cohorts. However, epilepsy outcomes are often contained in 
free text notes that are difficult to mine. We recently developed and validated 
novel natural language processing (NLP) algorithms to automatically extract key 
epilepsy outcome measures from clinic notes. In this study, we assessed the fea-
sibility of extracting these measures to study the natural history of epilepsy at our 
center.
Methods: We applied our previously validated NLP algorithms to extract seizure 
freedom, seizure frequency, and date of most recent seizure from outpatient visits 
at our epilepsy center from 2010 to 2022. We examined the dynamics of seizure 
outcomes over time using Markov model-based probability and Kaplan–Meier 
analyses.
Results: Performance of our algorithms on classifying seizure freedom was com-
parable to that of human reviewers (algorithm F1 = .88 vs. human annotator  
� = .86). We extracted seizure outcome data from 55 630 clinic notes from 9510 
unique patients written by 53 unique authors. Of these, 30% were classified as 
seizure-free since the last visit, 48% of non-seizure-free visits contained a quan-
tifiable seizure frequency, and 47% of all visits contained the date of most re-
cent seizure occurrence. Among patients with at least five visits, the probabilities 
of seizure freedom at the next visit ranged from 12% to 80% in patients having 
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1   |   INTRODUCTION

The electronic health record (EHR) contains large 
amounts of free text data, including clinically meaningful 
outcome measures, across all areas of medicine. At epi-
lepsy centers, these measures include seizure frequency, 
seizure freedom, and the date of most recent seizure, often 
present in the text of progress notes. For epilepsy, seizure 
freedom is a critical outcome measure, and documentation 
of seizure frequency and time since most recent seizure re-
corded are among the American Academy of Neurology's 
epilepsy quality measures.1,2 Presently, these specific out-
come measures are represented in unstructured text data 
in a myriad of formats, precluding traditional text mining 
approaches.2,3 Automated processes to accurately extract 
seizure frequency and freedom from EHRs would permit 
important research, such as comparisons of effectiveness 
of treatment interventions, retrospective clinical trials, 
and natural history studies, all with the potential to im-
prove the delivery of care for patients with epilepsy. These 
same principles apply in all medical specialties with their 
own disease-specific outcome measures.

We recently developed and validated a natural lan-
guage processing (NLP) algorithm to extract seizure free-
dom, seizure frequency, and date of most recent seizure 
from the text of outpatient progress notes for patients with 
epilepsy.4,5 Using annotated clinical notes, we fine-tuned 
and applied state-of-the-art transformer language models 
to rapidly read and comprehend clinical note text. The 
algorithm achieved near-human performance at classi-
fying patients as seizure-free at each clinic visit (median 
accuracy = 84%) and human performance at determin-
ing seizure frequency (accuracy = 88%, F1 score = 85%) 
and the date of most recent seizure (accuracy = 86%, F1 
score = 83%).4,5

In this study, we sought to (1) determine the feasibility 
of extracting these epilepsy outcomes measures from an 
EHR at large scale and (2) use this approach to character-
ize epilepsy outcomes over time at our academic epilepsy 

center. We applied our method to 55 630 outpatient prog-
ress notes from the epilepsy center at our institution over 
a 12-year period. We examined patterns of seizure out-
comes over time, and estimated probabilities of future 
seizure freedom based on past seizure freedom. We also 
analyzed patterns of model errors with an eye toward fu-
ture improvements.

2   |   MATERIALS AND METHODS

2.1  |  Data collection

This research was approved by the institutional review 
board of the University of Pennsylvania with a waiver of 
informed consent.

We identified all outpatient visits from years 
2010 through 2022 for patients with epilepsy-related 
International Classification of Diseases (ICD) codes 345 
and 780.3 (ICD-9), and G40 and R56 (ICD-10) who were 
seen at our comprehensive epilepsy center. From the 
EHRs, we extracted the full progress note text, author, and 
visit date. We filtered for notes written by epileptologists 

seizures or seizure-free at the prior three visits, respectively. Only 25% of patients 
who were seizure-free for 6 months remained seizure-free after 10 years.
Significance: Our findings demonstrate that epilepsy outcome measures can be 
extracted accurately from unstructured clinical note text using NLP. At our ter-
tiary center, the disease course often followed a remitting and relapsing pattern. 
This method represents a powerful new tool for clinical research with many po-
tential uses and extensions to other clinical questions.
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Key Points

•	 Epilepsy outcome measures can be extracted 
accurately and at scale from unstructured clini-
cal note text using NLP

•	 The disease course at our single academic epi-
lepsy center often followed a remitting and 
relapsing pattern rather than a simple dichot-
omy of drug-responsive versus drug-resistant 
epilepsy

•	 This method represents a powerful new tool for 
clinical research with many potential uses and 
extensions to other clinical questions
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and epilepsy nurse practitioners, and excluded attending 
attestations, addendums, and notes fewer than five lines 
in length.

2.2  |  NLP model development and 
implementation

Our methods for implementing our NLP algorithm 
have been described elsewhere in detail4,5 and are sum-
marized in Figure 1. Briefly, we fine-tuned five seeds of 
pretrained Bio_ClinicalBERT and RoBERTa transformer 
language models on human-annotated clinical notes.4,6,7 
Transformer models are deep-learning-based neural net-
works trained to understand the meanings of words and 
the relationships between them.8,9 These models classified 
patients as seizure-free, and extracted the span of text that 
contained their seizure frequency and/or date of last sei-
zure.4 We defined each visit as “seizure-free” if the patient 
had not had seizures since their last visit or within the past 
1 year, whichever was more recent. These classifications 
are not static classifications of the patient, but rather are 
classifications of the patient at each of their visits for the 
defined period between visits. Our current algorithms did 
not distinguish between different types of seizures. We 
then used a combination of neural summarization with 
the T5 language model10 and custom rules-based quantifi-
cation to convert the extracted text spans into quantitative 
frequencies and date–time objects, respectively.5

In this study, we applied this pipeline to our dataset 
of outpatient office notes. For each note, we classified 
patients as seizure-free or having recent seizures, and we 
quantified the seizure frequency and date of most recent 

seizure. To improve performance, we repeated this process 
five times, once for each seed of the pipeline, creating five 
independent sets of predictions. We merged these predic-
tions through plurality voting to generate a final set of pre-
dictions, a method that has been shown in other contexts 
to improve the performance of NLP models.11,12

2.3  |  Statistical analysis

Seizure outcomes were described with descriptive statis-
tics. Because the primary unit of our analysis was office 
visits, and because the pattern of office visits may be af-
fected by seizure outcome status (e.g., seizure-free patients 
may have less frequent and fewer total visits than patients 
with ongoing seizures), we calculated the median times to 
next visit following a seizure-free or not-seizure-free visit 
across patients with at least five visits. Furthermore, we 
compared the frequency of visits, total number of visits, 
and total time at our institution between those patients 
who were nearly always seizure-free (at least 80% of visits 
seizure-free) and those patients who were rarely or never 
seizure-free (at least 80% of visits not seizure-free) using 
two-sided Mann–Whitney U-tests.

To estimate the probability of seizure freedom at a 
given visit based on prior visits, we used Markov model-
based chains, where the nodes of the chain represent the 
patients' state (having recent seizures or seizure-free) at 
each visit, and the probability of seizure freedom is depen-
dent on the previous nodes. We included all patients with 
at least five visits, including at least four consecutive visits 
without missing classifications. We calculated transition 
probabilities by counting the number of occurrences of 

F I G U R E  1   Schematic methods of 
natural language processing pipeline. 
Seizure freedom was approached as a 
classification task. Seizure frequency 
and date of most recent seizure were text 
extraction tasks, followed by additional 
summarization and quantification steps to 
determine final frequency and date values. 
The algorithm was repeated with five 
different seeds and used plurality voting 
to arrive at the final output. Transformer 
models are a class of deep-learning-based 
neural networks that are trained on 
large amounts of data to understand and 
reproduce human language.
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each possible sequence of states across the cohort. We cal-
culated 95% confidence intervals (CIs) for these probabil-
ities using nonparametric bootstrapping by subject with 
10 000 iterations.

To further analyze how seizure outcome changed 
over time, we performed a Kaplan–Meier time-to-event 
analysis. We identified patients with at least three vis-
its and found their first interval that spanned at least 
6 months of visits (“baseline interval”), excluding visits 
with missing classifications. Patients then entered the 
time-to-event analysis starting from the end of this base-
line interval (time 0). At the time of entry to the time-to-
event analysis, we classified patients as “seizure-free” if 
all visits during the baseline interval were classified as 
seizure-free. We followed each patient across all remain-
ing visits following entry into the time-to-event analysis. 
Patients with <1 year of data after the baseline interval 
were excluded. We monitored over time for the first visit 
with breakthrough seizures. Patients were removed from 
the analysis (censored) after their last available visit. To 
identify potential bias in our time-to-event analysis, we 
checked whether there was a significant correlation be-
tween length of follow-up and proportion of visits with 
recent seizures for these patients. We further compared 
the age, gender, and race of censored and noncensored 
patients to determine whether there were differences 
between these patients using two-sided Mann–Whitney 
U-tests and chi-squared tests.

We validated our plurality voting method on classify-
ing seizure freedom by comparing its classification per-
formance (F1) against the agreement (Cohen �) of our 
annotators on the same task, and on extracting seizure 
frequencies and dates of last seizure by comparing its 
“agreement” with the gold standard values to our human 
annotators' “agreement” on the same task. Our human an-
notations and annotators were those from our previous val-
idation study.4 Gold standard seizure frequencies and dates 
of last seizures were generated by merging and adjudicating 
human annotations (see our previous study for details4); as 
such, human agreement with the gold standard is inflated. 
In our previous study, human annotations (and the adjudi-
cated gold standard annotations) were text strings;4 here, 
we converted these human-annotated text strings to quanti-
tative frequency and date–time values using the same sum-
marization and quantification steps described above.

Specifically for seizure frequency and date of last sei-
zure, we defined “agreement” as the number of exam-
ples where the algorithm or human annotators matched 
the gold standard divided by the total number of exam-
ples. Matches were defined by both (1) correctly iden-
tifying when a seizure frequency or date of last seizure 
was present within the medical note and (2) correctly 
returning the seizure frequency or date of last seizure 

value when it did exist. We used this custom agreement 
metric over established metrics because the extraction 
of seizure frequency and date of last seizure must be 
divided into two simultaneous processes. The first cat-
egorically determines whether either measure exists 
within the note (akin to a classification task), whereas 
the second finds the correct numerical value when it 
does exist on a continuous domain (a quantification 
task). No single metric can appropriately handle these 
two processes at once. For example, the F1 metric can 
measure categorical performance on the classification 
process, but cannot handle continuous performance 
(e.g., is a prediction of “12 sz/mo” vs. a correct answer of 
“3 sz/mo” a false positive or negative?). Similarly, met-
rics like intraclass correlation or root mean square error 
measure continuous performance on the quantification 
process, but fail on categorical performance (e.g., what 
is the error between “no answer” and “3 sz/mo”?). In 
contrast, our definition of “agreement” concisely cap-
tures both processes simultaneously.

For rigor, we include positive predictive value and sen-
sitivity on classifying seizure freedom in Table  S2A. For 
extracting seizure freedom and date of last seizure, we also 
include the F1 score and Fisher's one-way random intra-
class correlation (ICC) for the classification and quanti-
fication processes, respectively, in Table S2B.13 We found 
the one-way random ICC sufficient in comparison to 
other ICCs that account for potential bias according to the 
selection criteria outlined in Liljequist et al.14

All analyses were performed using Python software in-
cluding packages numpy, pandas, pingouin, lifelines, and 
scipy. We include links to our NLP models and code in our 
Data Availability Statement.

3   |   RESULTS

3.1  |  Cohort

We analyzed 55 630 notes from 9510 patients. Notes were 
written by 53 unique authors. Notes included 5725 (10%) 
new patient visits and 49 905 (90%) follow-up visits. Of the 
9510 unique patients, 7036 (74%) were seen more than once 
for 53 156 total visits, and 3682 patients (39%) were seen at 
least five times for 43 999 total visits. Demographic data were 
available for 8741 patients (92% of entire cohort; Table S1).

3.2  |  Seizure outcomes

Outcome classifications for the 55 630 visits are shown 
in Table  1. The minority of all visits were classified as 
seizure-free (16 688 visits, 30%).
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Among the 9510 unique patients, 718 (8%) were seizure-
free at every visit, 3572 (38%) were having recent seizures 
at every visit, 4956 (52%) had some visits of each type, and 
264 patients (3%) had only unclassified visits. Among the 
3682 patients with at least five visits (Figure 2), 110 (3%) 
were seizure-free at every visit, 391 (11%) were having sei-
zures at every visit, and 3084 (84%) had some visits of both 
types.

Across all visits, the median time to next visit was 
4.1 months (interquartile range [IQR] = 2.1–6.8 months). 
After a seizure-free visit, the median time to next visit 
was 6.0 months (IQR = 3.5–11.3 months); after a visit 

with recent seizures, the median time to next visit was 
3.5 months (IQR = 1.8–6.1 months). There were 564 pa-
tients who were classified as seizure-free at >80% of 
their visits and 1021 patients who were classified as not 
seizure-free at >80% of their visits. The more seizure-free 
group had less frequent visits (median = 1.6 vs. 2.9 visits/
year, p < .001) and fewer total visits (median = 8 vs. 10 vis-
its, p < .001), and spent more total time at our institution 
(median time between first and last visit = 69 months vs. 
43 months, p < .001).

There were 2122 patients with new patient visits classi-
fied as having recent seizures and at least three more fol-
low-up visits. Of these patients, 710 (33%) achieved at least 
6 months of seizure freedom at the time of last follow-up.

Seizure frequency was extracted from 16 404 visits (48% 
of visits classified as having recent seizures), and the date 
of most recent seizure was extracted from 26 098 visits 
(47% of all notes). These values are similar to our prior 
manual annotation of a subset of notes,4 and therefore re-
flect the expected rate at which these outcome measures 
are stated in our office notes, rather than failures of the 
algorithms. When a seizure frequency was detected, the 
median seizure frequency was three seizures per month. 
When a date of most recent seizure was detected, these 
dates ranged from 0 days before the visit to 60 years before 
the visit (median = 4.5 months before the visit).

T A B L E  1   Outcome classifications.

Outcome
n (%) of 
visits

Entire cohort 55 630 (100%)

Seizure freedom classification

Seizure-free 16 688 (30%)

Having recent seizures 34 452 (62%)

Unclassified 4490 (8%)

Seizure frequency extracted 16 404 (48%a)

Date of most recent seizure extracted 26 098 (47%)
aSeizure frequency expressed as percentage of visits classified as having 
seizures.

F I G U R E  2   Seizure freedom 
classifications over time. A visual 
summary represents our large patient 
cohort and the relapsing–remitting nature 
of epilepsy. Shown are 43 999 clinic visits 
(dots) from 3682 patients (rows) seen at 
least five times at our institution from 
2010 to 2022. Each visit was classified by 
the natural language processing algorithm 
as seizure-free or having recent seizures. 
Visits with unknown classification are 
not shown. Patients were sorted based on 
fraction of visits that were seizure-free, 
stratified into quintiles of proportion of 
visits classified as seizure-free (0–20% 
of visits, 21–40%, etc.), with white space 
between each quintile.
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3.3  |  Estimating probabilities of 
seizure freedom

We used a third-order Markov model-based approach 
to estimate the probability of seizure freedom at a given 
visit based on the outcome classification of the previous 
three visits (Figure 3). This analysis included 21 638 visits 
from 3308 patients. Patients who were seizure-free at all 
three previous visits had a seizure freedom probability of 

80% (95% CI = 79%–82%) at the next visit. At the other ex-
treme, patients who were having seizures at all three pre-
vious visits had a seizure-freedom probability of 12% (95% 
CI = 12%–13%) at the next visit. Among patients having 
seizures at only one of the previous three visits, the prob-
ability of seizure freedom at the next visit ranged from 
46% to 67%, and varied in a stepwise fashion depending 
on whether the preceding visit with seizures was the first, 
second, or third most recent visit.

For our Kaplan–Meier time-to-event analysis, there 
were 987 patients who were seizure-free during a 6-month 
baseline interval and had at least 1 year of follow-up. In 
this cohort, 50% of patients had a breakthrough seizure 
within 3 years, and 75% had a breakthrough seizure by 
10 years (Figure 4). There was no correlation between pro-
portion of visits with seizures and duration of follow-up 
(Spearman correlation = .013, p = .69). Additionally, we 
found no significant differences in gender, age, or race be-
tween the censored and uncensored patients (all p > .05).

3.4  |  Accuracy and quality control of 
NLP models

The accuracy of our current NLP methods compared to 
human reviewers has been previously described.4 In this 
study, we observed that plurality voting across our models 
increased model performance (Figure  5). For classifica-
tion of seizure freedom, our current model had .88 F1; for 
comparison, the average interrater agreement between 

F I G U R E  3   Probability of seizure freedom based on the 
preceding three visits. Probabilities were calculated using a third-
order Markov-like model with 95% confidence intervals. Y-axis 
markers denote the order of classifications in the three previous 
visits, with sample sizes in parentheses. Darker colors indicate 
higher probability.

F I G U R E  4   Kaplan–Meier time-to-event analysis. Patients 
who were seizure-free during the 6-month baseline interval 
were monitored from the end of the baseline interval (time 0) for 
breakthrough seizures. Patients with <1 year of follow-up from the 
end of the baseline interval were excluded. Censoring is indicated 
with a vertical tick.
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human reviewers was .82 Cohen � (95% CI = .63–1.00). 
For seizure frequency and date of last seizure (combined 
for this analysis), our current model had 88% agreement 
with the gold standard, compared to 85% (95% CI = 72%–
99%) for human reviewers. Additional metrics of model 
performance are in Tables S2A,B.

Next, we identified extreme values of seizure frequency 
and date of most recent seizure to determine whether 
these represented algorithm errors. The 10 highest seizure 
frequency values ranged from 1521 to 21 900 seizures per 
month. We manually verified that seven of 10 of these 
extreme values were correct interpretations of the origi-
nal note text (Table S3). For date of most recent seizure, 
a total of 55 notes (.1%) returned dates after the visit date, 
that is, in the future. We manually reviewed five of these 
and found that four of five were correct interpretations of 
the original text, that is, the note erroneously documented 
a future date of the patient's seizure (Table S4). We also 
manually reviewed the five notes with the earliest dates of 
most recent seizure (years ranging 1960–1972) and found 
that all five were correct in older patients who had been 
seizure-free for decades (Table S5).

Finally, we identified “contradictory” model outputs: 
visits classified as seizure-free and with a nonzero seizure 
frequency (826 visits, 1.5%), visits classified as seizure-free 
and with a date of most recent seizure after the last visit or 
within the past 1 year (642 visits, 1.2%), or both (90 visits, 
0.2%). We manually reviewed 200 of these contradictory 
notes, randomly selected. The most common cause of con-
tradiction (59/200, 30%) was multiple seizure types with 

conflicting information. For example, a note might say, 
“Since last visit, no convulsions. Isolated auras occur twice 
per month.” The NLP model might classify this note as 
seizure-free, based on the phrase “no convulsions,” while 
also reporting a seizure frequency of “twice per month.” 
Other causes of contradictory model outputs were failure 
to distinguish current from outdated information, often 
due to copy-forwarding or summarizing of old informa-
tion in note text; extracting the frequency of nonseizure 
events, such as headaches; and contradictions within the 
original note (Table S6).

4   |   DISCUSSION

In this study, we used a novel NLP algorithm to extract sei-
zure freedom, seizure frequency, and date of most recent 
seizure from 55 630 free text clinic notes from 9510 unique 
patients with epilepsy, written by 53 unique authors at a 
single academic medical center. The algorithm performed 
these tasks with accuracy comparable to human review-
ers. The majority of visits were not seizure-free (62%); the 
majority of patients (84% of those with five or more vis-
its) had a mix of visits with and without recent seizures. 
Seizure freedom probability at next visit could be esti-
mated from the preceding three visits. Of patients seizure-
free for at least 6 months, 50% had relapsed by 3 years and 
75% had relapsed by 10 years.

A tool that accurately extracts clinically meaningful 
outcome measures from note text has many potential 

F I G U R E  5   Accuracy of the natural language processing models. (A) Classification of visits as seizure-free or having recent seizures. 
Models 1–5 and final result of plurality voting were measured as F1 compared to the ground truth annotations. Human performance was 
measured as Cohen's � of 15 human reviewers (mean ± 95% confidence interval). (B) Quantifying seizure frequency and date of most recent 
seizure (combined for this analysis). Agreement of both model and human were measured in comparison to ground truth quantitative 
values (frequency value or date).
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research applications. Extracting epilepsy outcomes from 
EHRs has been a major challenge requiring manual review 
by human readers. Prior efforts to extract epilepsy-related 
information using NLP have been limited to traditional 
machine learning and basic rules-based approaches that 
work only in limited contexts3,15; furthermore, few have 
extracted critical outcome measures like seizure fre-
quency, freedom, and time since last seizure.3,16 For ex-
ample, Fonferko-Shadrach and colleagues17 developed an 
algorithm that used a combination of rules-based and sta-
tistical techniques to extract a number of epilepsy-related 
variables including seizure frequency, with an F1 score of 
.66. Decker and colleagues18 used a rules-based algorithm 
to extract seizure frequencies from note text, with an F1 
score of .82 on an internal test set and .40 on an external 
test set. None of these methods extracted seizure freedom 
as a distinct outcome measure. Our models extracted sei-
zure freedom, seizure frequency, and date of most recent 
seizure with accuracies comparable to human readers. In 
the current study, we demonstrated incremental improve-
ments in the model compared to our prior reports,4,5 and 
we analyzed the model's errors with an eye toward con-
tinued improvements. Additionally, because our methods 
are based on Google AI's transformer models, they will be 
easily adaptable to a wide range of research questions, in 
epilepsy or other disorders.

Studying outcome measures over time is important for 
understanding the natural history and prognosis of epi-
lepsy. The landmark study of Kwan and Brodie19 found 
that two thirds of patients were seizure-free, defined as 
no seizures for ≥1 year at time of last follow-up. Other 
population-based epidemiological studies have found 
that, if followed long enough, the majority of persons 
with epilepsy achieved terminal remission, defined as 
no seizures for ≥5 years at last follow-up.20–23 However, 
charting patients' outcomes over time reveals a more 
complex and dynamic course than these simple binaries 
suggest. Epidemiological studies have found that fewer 
than one quarter of patients have early and sustained re-
mission after epilepsy diagnosis.22,24 For many patients, a 
remitting–relapsing course is common, with periods of 1 
or more years of seizure freedom, interrupted by break-
through seizures, sometimes repeating this pattern mul-
tiple times.25–30 The risk of relapse decreases with longer 
duration of remission, but even in patients with >10 years 
of remission, a substantial proportion will relapse.28 The 
converse may also be true. One study of drug-resistant 
epilepsy, defined as seizures at least monthly despite two 
or more antiseizure medications, found that one third of 
those patients not undergoing epilepsy surgery achieved 
at least 1 year of seizure freedom at some point during 
7 years of follow-up.31 In the seminal randomized trial 
of temporal lobectomy versus medical management for 

patients with drug-resistant temporal lobe epilepsy (de-
fined as monthly seizures for 1 year despite two or more 
antiseizure medications), 8% of the medical group had 
no impaired-awareness seizures during the 1-year study 
period.32

Our results highlight this complex and dynamic prog-
nosis of epilepsy for most patients. The majority of our 
patients had a mix of seizure-free and recent-seizure vis-
its, with highly variable seizure-free intervals between 
seizures. This challenges the concept that a person's epi-
lepsy is either drug-responsive or drug-resistant, reducing 
these outcomes to a simple static property. Our findings 
reflect real-world clinical practice at our center, including 
factors like prescribed medication changes, patient adher-
ence, and other factors influencing seizure outcomes. We 
believe that the outcomes observed here are representa-
tive of epilepsy treated at academic medical centers, and 
in line with prior epidemiological studies, arguing that 
a complex, remitting–relapsing natural history may be 
more common than is often recognized. Prior studies that 
addressed similar questions have relied on manual chart 
reviews, at tremendous effort and cost. NLP can now ac-
complish these tasks with much lower cost and effort, 
and at much greater scale. Should our findings bear out 
at other clinical centers and in other settings, the knowl-
edge that most patients undergo a relapsing–remitting 
course could greatly affect our approach to epilepsy care. 
It might also influence epilepsy research to try different 
approaches to epilepsy treatment in the hope of breaking 
this cycle.

Patients with well-controlled epilepsy had less frequent 
and fewer total office visits, but spent more time at our 
institution than patients who were predominantly hav-
ing seizures. This finding may seem counterintuitive; one 
might expect patients who continue to have seizures to be 
more likely to continue to follow up with their providers. 
It could be that patients with well-controlled epilepsy re-
turn for refills and laboratory tests, whereas patients with 
poorly controlled epilepsy are dissatisfied with their care 
and seek care elsewhere; patient satisfaction is positively 
associated with quality and efficacy of care, and negatively 
associated with probability of provider change.33–35

Our study had several limitations. Our NLP algorithm 
was developed and tested at a single center. Although our 
cohort included notes from many unique authors with dif-
ferent writing styles, it will be important for future studies 
to test generalizability across institutions, and throughout 
our health system beyond the epilepsy center. Our center 
is a tertiary academic center, with presumed bias toward 
more complex and drug-resistant epilepsies. Our method's 
temporal resolution is limited to clinic visits, rather than 
individual seizures, so it lacks the temporal granularity 
of seizure diaries that contain the exact date and time of 
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every seizure. The observation that seizure-free patients 
have less frequent and fewer total office visits may bias 
analysis at the visit level (e.g., inflating the proportion of 
total visits classified as not seizure-free) but should not 
bias our analyses at the patient level. Furthermore, as 
length of follow-up stay is inversely correlated with over-
all difficulty of epilepsy control, the latter a variable that 
we can only partially capture, our Kaplan–Meier analysis 
may not have perfectly noninformative censoring, poten-
tial introducing bias into our results. Our findings at the 
cohort level (e.g., relapse rate of 50% at 3 years and 75% at 
10 years) may not apply to all individual patients; selected 
subgroups may have different prognoses. Our analyses did 
not account for treatments, including changes in antisei-
zure medications, which will be an important opportunity 
for future study. We also identified several opportunities 
to improve the model's performance, such as accounting 
for multiple seizure types in a single note, although these 
limitations did not reduce the model's overall performance 
below the accuracy of human readers.

5   |   CONCLUSIONS

In conclusion, extraction of clinically important seizure 
outcome measures is feasible using NLP of clinical notes. 
At our center, the disease course for many patients fol-
lowed a remitting and relapsing pattern; the majority of 
patients did not achieve sustained seizure freedom. This 
method represents a powerful new tool for clinical re-
search with many potential uses and extensions to other 
clinical questions, including studies for quality assurance, 
retrospective clinical trials, and rapid patient selection to 
improve the efficacy of prospective diagnostic and thera-
peutic investigation.
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