
Supporting Information

for Laser Photonics Rev., DOI 10.1002/lpor.202200499

Observation of Square-Root Higher-Order Topological States in Photonic Waveguide Arrays

Juan Kang, Tao Liu, Mou Yan, Dandan Yang, Xiongjian Huang, Ruishan Wei, Jianrong Qiu,

Guoping Dong*, Zhongmin Yang* and Franco Nori



1 
 

Supporting Information for: 

Observation of Square-Root Higher-order Topological States in 

Photonic waveguide arrays 

Juan Kanga,‡, Tao Liub,a,‡, Mou Yanb, Dandan Yanga, Xiongjian Huanga, Ruishan Weia, 

Jianrong Qiuc, Guoping Donga,*, Zhongmin Yangb,* , Franco Norid 

a
 State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key 

Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering 
Technology Research and Development Center of Special Optical Fiber Materials and Devices, 

School of Materials Science and Engineering, South China University of Technology, Guangzhou 
510640, China 

b 
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 

510640, China 
c
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and 

Engineering, Zhejiang University, Hangzhou 310027, China 
d
Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research;  

RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan; and 
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA 

 

 

‡ These authors contributed equally. 

* To whom correspondence should be addressed. 

E-mail: dgp@scut.edu.cn (G.P. Dong); yangzm@scut.edu.cn (Z.M. Yang) 

  

mailto:dgp@scut.edu.cn
mailto:yangzm@scut.edu.cn


2 
 

Supporting Information 

S1.  Decorated honeycomb-lattice model 

We numerically study the topological properties of a finite decorated honeycomb 

lattice. The lattice consists of 55 sites with alternating hopping strengths 𝑡1 and 𝑡2, 

as shown in Figure S1a. In the tight-binding model, the Hamiltonian of the decorated 

honeycomb lattice is written as  

𝐻 =

(

 
 
 
 

𝑚𝐴 𝑡1 0 0 0 0 ⋯
𝑡1 𝑚𝐶 𝑡2 0 0 0 ⋯
0 𝑡2 𝑚𝐵 𝑡2 𝑡2 0 ⋯
0 0 𝑡2 𝑚𝐶 0 𝑡1 ⋯
0 0 𝑡2 0 𝑚𝐶 0 ⋯
0 0 0 𝑡1 0 𝑚𝐴 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱)

 
 
 
 

,                (1) 

where 𝑚𝐴  and 𝑚𝐵  denote the masses of the two nonequivalent sites of the 

honeycomb lattice, 𝑚𝐶  denotes the mass of the extra sites inserted from the 

breathing kagome lattice (see Figure S1a). Here we choose 𝑚𝐴=𝑚𝐵=𝑚𝐶. In Figure 

S1b, we plot the eigenspectra as a function of 𝑡2/𝑡1. For 0<𝑡2/𝑡1<1, there are 

in-gap corner and edge states, indicating topologically nontrivial phases. While, for 

𝑡2/𝑡1>1, the in-gap corner and edge states disappear, indicating topologically trivial 

phases.  

S2.  Photonic decorated honeycomb lattice 

We produced decorated honeycomb lattices using optical waveguide arrays. In 

the waveguide system, the coupling coefficients c1 and c2 can be regarded as the 

hopping strengths t1 and t2, in analogy with electronic systems. These coefficients 

depend on the separation of two nearest-neighbor waveguides and the excitation 

wavelength, which can be estimated by Lc=/2c. The coupling length Lc denotes the 
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distance required for the guided modes, in two coupled waveguides, to achieve 

maximum power conversion. For our configurations, the coupling lengths are Lc = 

0.59 cm for d1 = 12 μm, and Lc = 4.40 cm for d2 = 12 μm, under the excitation 

wavelength of 532 nm. Then, the corresponding coupling coefficients are c1 = 2.66 

cm-1, and c2 = 0.36 cm-1, respectively. 

Next, we discuss the topological property of the photonic decorated honeycomb 

lattice. Electronic higher-order topological systems are characterized by a filling 

anomaly. For the photonic systems, we can also calculate the filling anomaly and 

analogous boson charges[1]. The calculation of the analogous boson charges in our 

photonic lattice follows the following procedure: (1) calculate the local density of 

states (LDOS) based on the simulated mode distributions of each photonic 

eigenstate. This LDOS is related to the propagation constant 𝛽, which corresponds 

to the energy in the electronic system; (2) integrate the LDOS to obtain the spectral 

charge at each unit cell; and (3) the spectral charge distribution is then calculated by 

summing the entire bulk band. 

The calculated results are shown in Figure1c of the main text, a fractional 

corner anomaly  =  corner    
edge1

  edge2  mod 1  1/3 can be obtained, which 

indicates the unambiguous identification of higher-order topology. 

S3.  Slit beam shaping 

In our experiments, optical waveguide arrays were fabricated by a femtosecond 

(fs) laser with a repetition rate of 1 kHz. The power of the pulsed laser is crucial to 

write high-quality waveguides. When the power is high, it is easy to cause glass 

damage after laser beam focusing. Moreover, high-power lasers can cause 

waveguides with a narrow elliptic cross section. This is because the waveguides are 
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created by transverse writing (the glass sample is translated perpendicularly to the 

laser beam), and a laser beam with a high peak power can cause the light intensity 

along the axial direction to be several times stronger than that along the transverse 

direction when focused into the glass substrate.  

To fabricate high-quality waveguides, we use the slit beam-shaping method. The 

setup of the laser writing is shown in Figure S2a. The fs laser beam is focused into a 

fused quartz glass by a 20 microscope objective with a numerical aperture (NA) of 

0.45. An adjustable slit, oriented parallel to the laser’s writing direction, is inserted in 

front of the objective. According to the theory for controlling the laser focal profile[2], 

the width of the slit is set to 500 µm, in order to shape the fs laser beam. Then we 

can achieve approximately circular cross-section waveguides, as shown in Figures 

S2b and S2c. The waveguide is characterized by a small refractive index difference, 

3.310-4, between the waveguide and glass matrix, supporting a single-mode guide 

over the entire visible wavelength range. While the waveguide is fabricated without 

using a slit, the cross section becomes elliptic, as shown in Figures S2d and S2e. 

Note that the waveguide in Figure S2d is written using a 10 objective lens, in order 

to avoid damaging the waveguide. 

S4.  Bulk and defect states in the Photonic decorated honeycomb lattice 

In the main text, we present the corner and edge excitations for different 

configurations, and the corresponding numerical simulations are shown in Figure S3. 

In addition, we further show the bulk modes in both topological nontrivial and trivial 

regimes. As shown in Figure S4, the bulk II modes, in-between the first and second 

band gaps, are distributed more extensively than the bulk I modes below the first 

band gap or above the second band gaps. The experiment results are shown in 
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Figure S5, consistent with the simulations. 

Next, we proceed to explore the effects of defects in the bulk. We designed 

different bulk vacancies in our system. Figure S6a shows the sample of the 

decorated honeycomb lattice in the presence of two bulk vacancies induced by 

removing two sites, which are located in the original kagome lattice (type-i defect). By 

exciting the waveguide closest to the bulk vacancies, we have observed 

well-localized states at the output facet, as shown in Figure S6b. Akin to the corner 

states in the pristine structure, these modes exist in the bulk gap (see Figures 

S7a,b), because those two vacancies can be regarded as the corner of the triangular 

sample. Figure S6c shows the bulk vacancies introduced by removing one 

waveguide in the original kagome lattice (type-ii defect) or the original honeycomb 

lattice (type-iii defect). The type-ii defect introduces the same termination as the 

edge in the pristine structure, thus supporting a localized state in the triplet (see 

Figure S6d and Figures S7c,d). In contrast, when exciting the waveguide nearby 

the type-iii defect, we observed light diffraction into the bulk (Figure S6e). 

S5.  Effect of defects on edge states 

To observe the diffraction behaviors of the edge states in the presence of 

defects, we fabricated a 10 cm sample with a missing waveguide on the bottom edge, 

as shown in Figure S10a. The excitation diffracts to the next waveguides with triplets, 

after starting from the excitation site (see Figure S10b). This indicates that the 

excitation can circumvent the defect that does not destroy the “triplets” on the edge. 

The measured result is consistent with the simulation in Figure S10d. Due to the 

limited waveguide length in our experiment, we also perform numerical simulations 

for longer propagation distances (see Figures S10c-f). As the waveguide length 
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increases, the edge state can pass through the defect, and eventually distributes 

over the entire edge at z=70 cm. The animation of the dynamic evolution process is 

given in Supplementary Video 1. 

Furthermore, we produced additional two-site defects by removing the 

waveguides at different positions, as shown in Figure S11. These defects destroy 

the triplets at the edge. The simulated dynamical evolutions of light in waveguide 

arrays show that the edge diffractions are blocked by the defects, and can only 

transport along the direction without defects. The animations of the dynamic 

evolution process are given in Supplementary Videos 2 and 3. Note that the 

directional diffraction behaviors of edge states in this system should be distinguished 

from chiral propagation. 

S6.  Robustness of the corner states 

To study the robustness of the higher-order corner states, we study different 

types of disorder, which either preserve or break the C3 and chiral symmetries. 

For the C3-preserving case, the disorder is applied to the coupling coefficients c2 

with the modified coupling c'2=c2+α , as shown in Figure S12a. Here, 

α ∈ [ W/2, W/2]  is a uniformly distributed coupling term. Figure S12b shows 

eigenspectra as a function of the disorder strength δ. Here, the standard deviation 

 =W/√12 of uniformly distributed random numbers is used to evaluate the disorder 

strength δ: δ= /C, with C=(c1+c2)/2. The energies of the corner states are insensitive 

to the C3-preserving disorder for a finite-disorder strength. In contrast, when the 

disorder is stochastically applied both to the coupling coefficients c1 and c2 with the 

modified values c'1,2=c1,2+α𝑖, with 𝑖 ∈ [1, 5] (see Figure S12a), C3 symmetry is 

broken and the energies of the corner states are strongly influenced, as shown in 
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Figure S12c. In this case, the corner states are coupled to the bulk modes. 

Furthermore, the robustness of the corner states can be quantified by 

calculating the averaged mean squared difference between the energy of the 

disordered system and the one without disorder. The localization of the corner 

modes can be characterized by the inverse participation ratio[3] (IPR), which is 

defined as  

IPR =
∑ |𝜓𝑖,𝛽corner |

4𝑁
𝑖=1

(∑ |𝜓𝑖,𝛽corner |
2)𝑁

𝑖=1

2                            (2) 

where 𝜓𝑖,𝛽corner   denotes the normalized wave function amplitude of corner states at 

the site 𝑖. Here, the IPR is averaged over all eigenstates of the corner states. Our 

results are presented in Figure 4 in the main text, which show that the corner states 

in the photonic square-root HOTI are protected by the C3 symmetry. 

In addition to the C3 symmetry, the Hamiltonian on a decorated honeycomb 

lattice also preserves chiral symmetry, i.e., 𝐻 satisfies 𝛾𝐻𝛾−1  =  𝐻, where 

𝛾 =

(

 
 

1 0 0 0 0
0 1 0 0 0
0 0  1 0 0
0 0 0  1 0
0 0 0 0  1)

 
 
.                          (3) 

We now consider the chiral-breaking disorder schemes applied to the 

next-nearest-neighbor coupling (Figure S13a) or on-site potentials (Figure S13d). 

For both cases, the C3 symmetry is preserved. We present the eigenspectra (Figure 

S13b,e) and the energy fluctuations (Figure S13c,f) of the corner states as a 

function of the disorder strength. The results indicate that the corner states are 

robust against chiral-breaking disorder that preserves the C3 symmetry. 

S7.  Nonlinear properties of the square-root higher-order topological insulator 

To understand the nonlinear properties of our photonic square-root HOTI, we 
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have simulated light dynamics under both linear and nonlinear excitations, as shown 

in Figure S14. For the linear excitation, the localized corner states are clearly 

observed only in the topologically nontrivial regime. When nonlinear interactions are 

introduced, corner-excitation modes tend to be localized both in the homogenous 

and topologically trivial regimes. And well-localized corner solitons are formed in the 

strong nonlinear regime[4]. Surprisingly, weak nonlinearity leads to a small coupling of 

the original corner modes to bulk states in the topologically nontrivial regime. 

Increasing the nonlinearity induces a tight localization in the corner sites. These 

results in square-root HOTIs are similar to the nonlinear properties in conventional 

HOTIs[5,6]. 
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Figure S1. Lattice and band structures of the square-root higher-order 

topological insulators studied here. (a) Schematic of the decorated honeycomb 

lattice. The dashed gray rhombus denotes the unit cell, which consists of two 

nonequivalent sites (red and blue solid balls) contributed from the honeycomb-lattice, 

and three extra-inserted sites (orange solid balls) from the breathing kagome lattice. 

The hopping strengths are denoted by t1 and t2. (b) Eigenenergy E versus t2/t1. The 

gray, blue, and red curves denote the bulk, edge, and corner states, respectively. 
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Figure S2. Slit beam shaping. (a) Schematic of the experimental setup for 

fabricating waveguides with approximate circular cross-section using the 

slit-beam-shaping method. (b) White-light transillumination image of waveguides 

fabricated in the fused quartz glass with 20(NA 0.45) objective lens and slit width of 

500 µm. (c) Near-field intensity distribution of the guided mode in (b) excited by light 

with a wavelength of 532 nm. (d) White-light transillumination image of waveguides 

fabricated in the fused quartz glass with 10(NA 0.3) objective lens but without the 

slit beam shaping. (e) Near-field intensity distribution of the guided mode in c excited 

by light with a wavelength of 532 nm. The image in (b) and (d) is on a 1:1 scale with 

the experimental images in (c) and (e), respectively. 
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Figure S3. Simulated intensity distributions of the decorated honeycomb lattices in 

the topologically nontrivial, homogeneous, and topologically trivial regimes, subject 

to corner/edge excitations.  
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Figure S4. Calculated eigenspectra of the finite waveguide arrays. Two typical 

bulk mode distributions (labelled as bulk I and II) (a-c) in the topologically nontrivial 

regime, and (d-f) in the topologically trivial regime. 
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Figure S5. Experimental images of light emerging at the output facet of the 

waveguide array with length z = 49 mm in (a, b) topologically nontrivial and (c, d) 

trivial regimes, corresponding to the simulated bulk mode distributions. Light of 

wavelength 532 nm is injected into the bulk waveguide (indicated by a white arrow). 
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Figure S6. Measured results of bulk-defect modes. (a, c) Microscope images of 

the waveguide arrays with different types of bulk vacancies marked by red dotted 

circles. (b, d) and e show experimental images of light emerging at the output facet of 

the waveguide array corresponding to the type-i, ii, and iii defects, respectively.  
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Figure S7. Calculated eigenspectra and defect mode distributions (a, b) for type-i 

bulk vacancies and (c, d) for the type-ii defect. 
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Figure S8. Square-root higher-order topological insulator with different 

coupling distances. (a-d) Experimental images of light emerging at the output facet 

of the waveguide array for d1/2=18 μm and d2/1=11 μm  c1/2=0.35 cm-1 and c2/1=2.76 

cm-1). Light at wavelength 447 nm is injected into the waveguide at the corner (a, c) 

and edge (b, d) Also, the panels (e-h) show the experimental images of light 

emerging at the output facet of the waveguide array for d1/2=25 μm and d2/1=13 μm 

(c1/2=0.41 cm-1 and c2/1=2.71 cm-1). Light at wavelength 633 nm is injected into the 

waveguide. The light diffracts into the bulk for the topologically trivial phases, but are 

confined at the corner or edge for the topologically nontrivial phases. 

  



17 
 

 

Figure S9. Dynamical evolution of the corner modes by exciting the second 

waveguide at the bottom left corner. (a) Microscope image of the decorated 

honeycomb lattice. White-light transillumination image captured from the output end 

facet (xy plane) of the waveguide array. The two characteristic distances between 

nearest-neighbor waveguides are d1=12 μm and d2=21 μm. (b) Numerical simulation 

of the light propagation when exciting the second waveguide (see Figure S10a) at 

the bottom left corner. The red arrow at the bottom indicates the position of the light 

injection. The y-section is located between the first and second rows of the 

waveguide array (marked by the violet line in (a)). The panels i-v correspond to 

waveguides with lengths of z = 34, 37, 40, 43, 46 mm. (c) Measured light 

distributions (orange rectangles in (a)) at the output facet from i to v. 
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Figure S10. Effect of defects on edge states. (a) Microscope image of the 

waveguide array with a missing waveguide (marked by a red dotted circle in panel 

(a)) on the edge. (b) Experimental image of light emerging at the output facet of the 

waveguide array with the defect (z = 10 cm). The light is injected into the waveguide 

on the bottom edge (indicated by a white arrow). (c, d) Simulations of light diffraction 

through the waveguide array at various propagation distances with z = 0, 10 cm, 30 

cm, and 70 cm, respectively. The experimental result in (b) is consistent with the 

simulated result in (d). 
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Figure S11. Simulated results of the light diffraction through the waveguide array 

with two kinds of edge defects (left panel) at various propagation distances z = 0, 10 

cm, 30 cm, and 70 cm, respectively. The defects suppress the light on the triplets at 

the edge; thus, the edge states can only propagate along the direction without 

defects. The diffraction behaviors of edge states in this system should be 

distinguished from chiral propagation. 

  



20 
 

 

Figure S12. Robustness analysis of corner states against C3-breaking disorder. 

(a) Schematic showing the type of disorder that preserves (left panel) and breaks 

(right panel) C3 symmetries (marked by the colored arcs). (b, c) Eigenspectra of the 

corner (red dots), edge (blue dots) and bulk (black bots) states as a function of the 

disorder strength δ for the (b) C3-preserving and (c) C3-breaking disorder scheme. 
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Figure S13. Robustness analysis of corner states against chiral-breaking 

disorder. (a) Schematic showing the disorder applied to the next-nearest-neighbor 

coupling (marked by the dotted orange line). (b) Eigenspectra as a function of δ for 

the disorder in (a). (c) Energy fluctuation of the corner states as a function of δ for the 

disorder in (a).  The vertical axis denotes the averaged mean squared difference 

between the energy 𝛽corner of the corner state in the disordered system and the 

corner-state energy 𝛽ideal in the ideal or clean system. (d) Schematic showing the 

disorder applied to the on-site potentials with µ and γ added on the sites A (blue 

pellets) and C (orange pellets), respectively. (e, f) same as (b, c) but for the disorder 

in (d). 

 

  



22 
 

 

 

Figure S14. Simulated light dynamics of decorated honeycomb lattices in linear and 

nonlinear regimes under corner excitations. Upper, middle and bottom rows show the 

light output patterns for different input powers in the topologically nontrivial, 

homogeneous, and topologically trivial regimes, respectively. Here, P/(c1+c2) 

represents the normalized power. 
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