
 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1002/lpor.202200499. 

 

This article is protected by copyright. All rights reserved. 

 

Observation of Square-Root Higher-Order Topological States in Photonic Waveguide Arrays 

Juan Kanga, Tao Liub,a, Mou Yanb, Dandan Yanga, Xiongjian Huanga, Ruishan Weia, 

Jianrong Qiuc, Guoping Donga,*, Zhongmin Yangb,*, Franco Norid 

a
State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber 

Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development 

Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China 

University of Technology, Guangzhou 510640, China 

b
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China 

c
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang 

University, Hangzhou 310027, China 

d
Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research;  

RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan; and Department of Physics, 

University of Michigan, Ann Arbor, Michigan 48109-1040, USA 

 

* To whom correspondence should be addressed. 

E-mail: dgp@scut.edu.cn (G.P. Dong); yangzm@scut.edu.cn (Z.M. Yang) 

 

Recently, higher-order topological insulators (HOTIs), accompanied by 

topologically nontrivial boundary states with codimension larger than one, have been 

extensively explored because of unconventional bulk-boundary correspondences. As 

a novel type of HOTIs, very recent works have explored the square-root HOTIs, 
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where the topologically nontrivial nature of bulk bands stems from the square of the 

Hamiltonian. In this paper, we experimentally demonstrate 2D square-root HOTIs in 

photonic waveguide arrays written in glass using femtosecond laser direct-write 

techniques. Edge and corner states are clearly observed at visible light spectra. The 

dynamical evolutions of topological boundary states are experimentally 

demonstrated, which verify the existence of photonic corner states in two band gaps. 

The symmetry-protected corner states in the photonic square-root HOTI may have 

potential applications in information processing and lasing. 

 

1. Introduction 

Topological insulators (TIs) have attracted intense research interests due to their 

exotic electronic and optical properties as well as promising device applications[1-3]. 

Recently, the concept of TIs has been generalized to higher-order topological 

insulators (HOTIs). In contrast to first-order TIs, nth-order HOTIs[4-8] feature gapless 

states on their open boundaries with codimension n. For instance, a two-dimensional 

(2D) HOTI hosts mid-gap states on its 0D corners. The higher-order topological 

phases have been widely investigated in both condensed matter physics[9-11] and 

classical waves systems, such as photonic crystals[12-20], acoustic systems[21-23], and 

mechanical systems[24,25]. Noticeably, for photonic systems, higher-order topological 

states can find novel applications in, e.g., achieving 0D low-threshold and 

high-performance topological lasing in 2D photonic crystals[26-30], and designing 

topological photonic crystal fibers with multi-channel transmission capabilities based 

on corner modes[14,15]. 
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Recently, a novel type of TIs has been put forward by taking the square root of 

tight-binding models, dubbed square-root Tis[31]. Their Hamiltonians are obtained by 

applying the square-root operation to their parent Hamiltonians, thus giving rise to 

doubled bulk gaps. The square-root TIs can support boundary states with 

non-quantized topological indices, as demonstrated in 1D chains of Aharonov-Bohm 

cages[32]. Later on, the square-root topology has been extended to other systems 

including superconductors and non-Hermitian structures[33]. Specially, the square-root 

operation was generalized to HOTIs, producing square-root HOTIs[34]. The 

square-root HOTIs can be obtained by inserting a set of additional sublattices in an 

original lattice, and the topological properties are inherited from their squared 

Hamiltonians. The corresponding experimental realization was actively pursued in 

various classical wave systems, such as acoustic and electromagnetic waves[35,36]. In 

contrast to conventional HOTIs (e.g., the kagome and honeycomb lattices[14,15]) with 

one group of corner/edge states, the square-root HOTIs host two groups of 

corner/edge states in two band gaps. The two groups of corner states are localized 

on the two nearest sites at the corners, exhibiting opposite phase distributions. These 

unique properties can be further transferred into photonics, and may provide new 

approaches for light guiding and trapping. 

Here, we experimentally realize a 2D square-root HOTI in photonic waveguide 

arrays written in fused quartz glass by femtosecond (fs) laser direct-write 

technology[37-44]. The square-root HOTI is constructed by inserting breathing kagome 

lattices into the honeycomb lattices[34], where corner states exist in the two band 

gaps. In ref.[45], the authors constructed the same square-root HOTI with its topology 

characterized by the bulk polarization, and reported the spectral measurements of 

corner localized in-gap modes. In contrast, in addition to the spectral measurement, 
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we analyze a fractional corner anomaly for revealing the higher-order topology, and 

explored the confinement and dynamical features of visible-light excitation on the 

lattice boundaries. Furthermore, the robustness of the corner states against disorder 

respecting the corresponding symmetry is discussed, which is of significance for the 

practical applications. 

2. Results  

2.1. Model 

The square-root HOTI is designed by a combination of a honeycomb lattice and 

a breathing kagome lattice[34]. This forms a decorated honeycomb lattice, as shown in 

Figure 1a. The Hamiltonian of the combined system is derived by applying the 

square root operator to the direct sum of two Hamiltonians of the honeycomb and 

breathing kagome lattices. The photonic square-root HOTI can be realized in optical 

waveguide arrays via fs laser direct-write. In the single-mode approximation, the 

waveguide arrays can be described by using a tight-binding approximation. The 

diffraction equation of the light propagation along this structure reads: 

    (   )   ( ) (   ),                          (1) 

where  (   ) denotes the envelope of the electric field in the waveguide with 

propagation distance  , and   is the wavelength of light. The effective tight-binding 

Hamiltonian for the decorated honeycomb lattice is given by 

   (
  
( )

 

   
( )
),                            (2) 
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where   
( )

 represents the Hamiltonian of the breathing kagome lattices, and   
( )

 

represents the Hamiltonian of honeycomb lattices with on-site potentials of two 

sublattices.   
( )
    , and   

( )
    , with 

  (
      
     

       
    ),                       (3) 

where   denotes Bloch wavevector,      (     √   ) are the lattice vectors,    and 

   are coupling coefficients between nearest-neighbor waveguides, which depend on 

the wavelength   and the distance   of the adjacent waveguides. The topological 

properties of the decorated honeycomb lattice are described by its squared 

Hamiltonian, which includes two sectors   
( )

 and   
( )

. Here, we consider the bulk 

polarization as a topological invariant[22,34]. For our square-root system with C3 

symmetry, the quantized polarization below the first and second gaps are P=1/3 for 

     , respectively, indicating a topologically nontrivial phase. While for      , a 

topologically trivial phase occurs with zero polarization P=0. Note that the 

polarizations for the eigenvector of the kagome sector   
( )

 has the same variation 

as P. Whereas the polarizations for the eigenvector of the honeycomb sector   
( )

 is 

always 0 for       and      . This indicates that the nontrivial topological 

properties of the square-root HOTI are inherited from the inserted kagome lattice. 

The schematic of the decorated honeycomb lattice in the photonic waveguide 

array is shown in Figure 1b. The diameter of each waveguide is      m, and the 

refractive index difference between the waveguide and glass matrix is estimated to be 

      - 
, corresponding to the propagation constant           m-  at   

    nm. For the waveguide system in the topologically nontrivial regime, the two 

characteristic distances between nearest-neighbor waveguides are        m, and 

javascript:;


 

 

 

This article is protected by copyright. All rights reserved. 

6 

 

       m (corresponding to          m
- , and          m

- ). And the system 

becomes topologically trivial once    is interchanged with   . 

 

Figure 1. Structure and spectrum of the finite decorated honeycomb lattice. a) The 

square of the Hamiltonian of the decorated honeycomb lattice is the direct sum of the 

Hamiltonians of honeycomb and breathing kagome lattices. Black arrows represent 

the lattice vectors:      ( 
 

 
 
√ 

 
). b) Schematic showing the optical waveguide array 

with the decorated honeycomb lattice. The lattice constant       m  c1 and c2 

denote the coupling strengths defined in Eq. (3), d1     m and d2     m   ) 

Calculated eigenspectra of the finite lattice with the corner (red), edge (blue) and bulk 

(gray) states. C=(c1+c2)/2=1.51 cm-1. d) Distribution of the photonic charge for the first 

bulk band (marked by the blue shadow in (c)). e,g) Simulated mode field distributions 

of corner states in the first and second band gaps. f,h) Simulated mode field 

distributions of edge states in the first and second band gaps. 
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Figure 1c shows the simulated eigenspectra of the finite photonic lattice in the 

topologically nontrivial regime, where the corner and edge states emerge in two band 

gaps. We then calculate the distribution of the photonic charge by integrating the local 

density of states over the first band, as shown in Figure 1d (more details are shown 

in Section S2, Supporting Information). A fractional charge   d       appears at the 

edge, and vanishes at the corner with   o n    . Thus, a fractional corner anomaly 

    o n     
 d   

   d   )           occurs, indicating the existence of 

higher-order topological corner states[46-48].  

The mode profiles of the corner and edge states in the two band gaps are shown 

in Figures 1e-h. This square root HOTI is strikingly different from the conventional 

second-order kagome lattice. For the kagome lattice, the topologically nontrivial 

phase corresponds to the weak intercell coupling, and its second-order topological 

corner states are well localized at a single isolated site at each corner[14,49]. While, for 

our decorated honeycomb lattice, the strong intercell coupling leads to a series of 

coupled “triplets” (three excited sites) along the edges and “duplets” (two excited 

sites) on each corner. Moreover, these boundary states in the first and second band 

gaps show the antiphase and in-phase mode profiles. 

2.2. Observation of boundary states 

We now proceed to experimentally probe the in-gap edge and corner states to 

demonstrate features of the photonic square-root HOTI. We fabricate the decorated 

honeycomb lattice in optical waveguide arrays as shown in Figure 2a. A laser beam 

with a wavelength of 532 nm is injected into the corner/edge waveguides through the 

fused-tapered optical fiber. Light localization, in the coupled duplets waveguides of 

the corner (or the triplet waveguides of the edges), is observed, as presented in 

Figures 2b,c. For comparison, we fabricate two additional samples with 

homogeneous (Figure 2d) and trivial (Figure 2g) configurations, corresponding to 
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            m, and        m,        m, respectively. In the homogeneous 

lattice, the light injected into the corner and edge waveguides diffracts into the bulk 

(see Figures 2e,f), due to the bulk band-gap closure. For the trivial case, there are no 

corner/edge states although the band gaps reopen, light spreading also occurs (see 

Figures 2b,c). The corresponding numerical simulations are presented in Figure S3, 

Supporting Information, which confirm our experimental results. In addition, the 

experimental results about bulk and defect states are shown in Section S4, 

Supporting Information. The same topological features can be detected using other 

excitation wavelengths, by simply modifying the waveguide spacing. In Figure S8, we 

present the localized corner and edge states under the excitations of both blue and 

red light. 
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Figure 2. Experimental observation of corner and edge states. a), d) and g): 

Microscope images of the waveguide arrays for the topologically nontrivial, 

homogeneous and trivial photonic lattices, respectively. b, c) Experimental images of 

light emerging at the output facet of the samples in (a) by injecting light (λ=532 nm) 

into the corner and edge waveguides (marked by a white arrow), respectively. The 

light is localized at a corner and edge. e,f) and h,i): same as b,c) but for the 

homogeneous and topologically trivial cases, where light is diffracted into the bulk. 

The dashed circles denote the positions of the waveguides. All of the samples have 

the same length z=49 mm. 
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2.3. Dynamical evolutions 

 

Figure 3. Dynamical evolutions of the corner and edge states. a) Measured 

distributions of light at the output facet of samples with different lengths. i-v denote 

waveguides with lengths z=34, 37, 40, 43, 46 mm, respectively. b) Simulated 

propagation dynamics of light when exciting the first waveguides at the left corner. C) 

Simulated light propagation dynamics, and d measured light distributions when 

exciting the first waveguides at the edge. Red arrows indicate the positions of the 

excited waveguides. Note that only parts of the simulation results (propagation 

distance from 25 mm to 50 mm) are displayed in (b) and (c). 

Topological properties of the square-root HOTIs are further explored by studying 

the propagating dynamics, along the  -direction, of the boundary states. The 

evolution time   of the wavefunction in tight-binding models can be mapped into the 

propagation distance   of light in optical waveguide arrays. We fabricated five 
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samples with different lengths (Figure 3), and probed the light distributions at the 

output facet. Upon exciting the first (Figures 3a,b) or the second waveguide (Figure 

S9, Supporting Information) at the left corner, the light propagates alternately in the 

two waveguides at the corner along the  -direction. When exciting the waveguide on 

the edge (Figures 3c,d), a breathing-like oscillation is observed in the triplet 

waveguides. These experimental observations are consistent with numerical 

simulations using the beam-propagation method. In particular, when injecting light 

into the waveguides at the corner, both topologically protected corner states with the 

antiphase and in-phase distributions are excited simultaneously. Thus, the two corner 

states with different eigenenergies are superimposed, resulting in the light-beating 

phenomenon. The energy difference of these two corner states is derived as 

      , with         m being the beating length. Therefore, we obtain the 

energy of the corner states as             m- , in agreement with the numerical 

results in Figure 1c. The beating pattern reveals the existence of corner states in two 

band gaps in the photonic square-root HOTI. 

2.4. Robustness of the higher-order corner states 

The higher-order in-gap corner states are expected to be robust against disorder 

preserving the C3 symmetry which enforces the quantized bulk polarization. To 

demonstrate this, we introduce disorder by randomly changing the nearest-neighbor 

coupling, sampled as a uniform distribution in the range [    ,    ]. The disorder 

strength is defined as      , where     √   is the standard deviation of uniformly 

distributed random numbers (see details in Section S7, Supporting Information). 
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We consider two types of disorder, which preserve and break the C3 symmetry, 

respectively. For the former case, we find that the C3-preserving disorder only 

induces a slight fluctuation of the energies (denoted by the propagation constant) of 

the corner states for small disorder strength (see Figure 4a). Moreover, The inverse 

participation ratio (IPR) is independent of system length, because second-order 

topological boundary states are always localized around the corners. (see Figure 4b). 

These results indicate that the corner states are robust against the C3-preserving 

disorder[32]. While, for the disorder strength that beyond the size of the gap between 

the corner state and the edge state, the energy fluctuations become stronger (see 

Figure 4 and Figure S12b, Supporting Information). The IPR scales inversely with 

the system length, indicating the corner states are coupled to edge/bulk states. 

In contrast, for the latter case, the energies of corner states are sensitive to the 

disorder, and they can coupled with the edge and bulk states in the presence of the 

C3-breaking disorder, as shown in Figure 4a (see also Figure S12c, Supporting 

Information). In Figure 4c-e, we found that the light injected into the corner 

waveguides spreads into the bulk/edge by incrementally increasing the strength of 

the C3 symmetry breaking ( =0.10, 0.28, and 0.40). The energy fluctuations that are 

proportional to the disorder strength and the delocalization of the corner states 

indicate that there is no topological protection when the C3 symmetry is broken. In 

addition, the effects of the on-site disorder on corner states are discussed in Section 

S7, Supporting Information, which further confirms that the corner states in the 

photonic square-root HOTI are protected by the C3 symmetry. 
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Figure 4. Robustness analysis of corner states. a) Energy fluctuations of the corner 

states versus disorder strength  . The vertical axis denotes the averaged mean 

squared difference between the energy         of the corner state in the disordered 

system and the corner-state energy        in the clean system. The intersected curve 

of the orange and cyan regions has the form  
 
 and represents the energy 

fluctuation proportional to the disorder strength. The simulations were run using a 

lattice with 342 sites and every disorder strength was realized 10,000 times. b) The 

inverse participation ratio (IPR) of the corner states as a function of   for different 

system lengths L with the C3-preserving disorder. Here, L is defined as the number of 

unit cells along the edge. c-e) Measured distributions of the light emerging at the 

output facet of the C3 symmetry breaking arrays for the corner excitation, with 

incrementally increasing strength  =0.10, 0.28 and 0.40. 
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3. Discussion 

In summary, we have realized 2D photonic square-root HOTIs based on optical 

waveguide arrays fabricated in glass using femtosecond laser direct-write techniques. 

In contrast to conventional higher-order photonic crystals, the square-root HOTIs host 

two types of corner states with in-phase and anti-phase mode profiles in two band 

gaps. They induce the beating pattern, which has been experimentally demonstrated 

by the dynamical evolution of the light in the waveguides. These findings offer a 

feasible strategy for controlling symmetry-protected localized states, and pave a way 

toward potential applications in photonic devices. Noted that our photonic decorated 

honeycomb lattices have similar geometry with the 2D photonic chained lattice whose 

topology comes from their primary lattice nodes[50]. For our system, the nontrivial 

higher-order topological properties are inherited from the inserted kagome lattice.  

For future studies, it is worth to further explore experimentally the interplay of 

square-root higher-order topology and nonlinearity (see our numerical simulations in 

the Supplementary Information). The most recent investigations have demonstrated 

fascinating topological nonlinear phenomena, such as nonlinearity-induced 

topological phase transitions from trivial states[51], nontrivial coupling of topological 

states[52], and Floquet edge solitons for unidirectional transmission [53,54]. 

Furthermore, the experimental studies in nonlinear HOTI systems indicated that the 

higher-o d    o n   stat s hav  th  pot ntial to  nhan   nonlin a  li ht−matt   

interactions[55]. Meanwhile, the nonlinear effect can in turn promote the localization of 

the corner states[56,57]. We expect that incorporating the square-root higher-order 

topology and nonlinearity will bring more interesting topological phenomena and 

potential new applications of corner modes. 
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4. Methods 

Sample fabrication: Waveguide arrays were fabricated with 50 mm commercial 

quartz glasses by using fs laser processing. This system consists of a regeneratively 

amplified Ti: sapphire fs laser, a Nikon microscope (Eclipse 80i) equipped with a CCD 

camera, a computer-controlled 3D xyz translation stage, and several optical 

elements. The fs laser emits 1 kHz, 130 fs pulses with central wavelength of 800 nm. 

To write the waveguide arrays, laser pulses with 2.5 mW power were focused inside 

the sample with a 20 microscope objective (NA= 0.45). The glass sample was 

placed on the 3D xyz t anslation sta    and th n t anslat d at a sp  d of      m s. 

An adjustable slit, oriented parallel to the laser writing direction, is inserted in front of 

the objective to shape the laser beam and fabricate the near-circular cross-section 

waveguide (see details in Section S3, Supporting Information). The fabricated 

waveguides support a single-mode guide over the entire visible wavelength range. 

After the waveguide arrays were fabricated, the two lateral faces of the sample were 

carefully polished. Finally, 49 mm waveguide array samples were used for the 

observation of topological phenomena. 
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