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Abstract 
One of the significant challenges for robotic 

construction with dimensional lumber and other 
construction materials is the accumulation of 
material imperfections and manufacturing 
inaccuracies, resulting in significant deviations 
between the as-built structure and its digital twin. 
This paper presents and evaluates methods for 
addressing these challenges to enable a multi-robot 
construction process that adaptively updates future 
fabrication steps to accommodate for perceived 
inaccuracies, improving build quality. We 
demonstrate through a physical stacking case study 
experiment that our methods can decrease 
fabrication deviations due to setup and calibration 
errors by utilizing robot perception and adaptive 
processes. Overall, this research advances current 
toolpath and task optimization strategies to help 
shape a comprehensive system for working with 
tolerance-aware robotic construction. 
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1 Introduction 
Robotic construction with dimensional lumber and 

other construction materials imposes significant 
challenges for robotic systems due to material 
imperfections and fabrication tolerances [1], [2]. 
Depending on the quality of the lumber (e.g., grade 2 or 
3), the cross-sections of elements could deviate from 
nominal values. Furthermore, due to the length of the 
full-height elements (e.g., 3 m), lumber elements are 
usually not completely straight and include considerable 
deformations (e.g., twists and bends), contributing to 
their positioning errors. Compounding these issues, 
wood can shrink and expand due to temperature and 
moisture variability. Material imperfections and 
manufacturing inaccuracies accumulate during the 

assembly process, resulting in a significant deviation 
between the as-built structure and its digital twin. Our 
previous experiments have shown deviations up to 60 
mm while assembling a light timber wall assembly, and 
due to these inaccuracies, the automated process often 
must be interrupted and errors addressed manually, 
decreasing build quality and increasing time taken for 
fabrication.  

The current challenge in autonomous manufacturing 
and assembly of building-scale structures is the high 
intrinsic complexity of construction tasks and the lack of 
human-robot interfaces designed for the specific 
operational needs of construction [3]. This is in part due 
to the adoption of robotic systems from other industries 
such as the automotive industry, which operates in a 
highly structured and repetitive environment. Through 
the integration of more intelligent perception, reasoning, 
and control algorithms, a streamlined digital design-to-
fabrication workflow can better address potential 
unforeseen collisions and part imprecisions, especially 
when compounded with the challenge of operating 
multiple robots cooperatively. This paper presents and 
evaluates methods for addressing the discussed 
challenges to enable a multi-robot construction process 
that adaptively updates future fabrication steps to 
accommodate for perceived inaccuracies due to material 
imperfections and manufacturing inaccuracies, 
improving build quality. 

2 Related Work 
Multi-robot systems have long been established for 

assembly line applications, with well-synchronized 
repetitive tasks [4], [5]. Cooperative robotic fabrication 
for construction, however, is still being explored, with 
applications including foam wire cutting [6], masonry 
vault construction [7], spatial metal structure assembly 
[8], and timber construction [1], [9]–[15]. In addition to 
distributing workload, robotic cooperation can also be 
utilized to perform construction tasks that cannot be 
achieved by a single robot, as is often the case when 
working with spatial assemblies.  
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Focusing specifically on light timber assembly, the
tight tolerances required for structural integrity coupled 
with the imperfect nature of timber studs make fully 
automated assembly challenging. The calibration of the 
robots and their tooling becomes a critical factor in 
determining as-built tolerances, with the real possibility 
of failure due to part collision. An end-effector 
positioning system utilizing static and dynamic 
correction through external pose tracking can reduce 
average positioning error down to 0.10 mm [16];
however, this solution has limited application outside of 
a defined workspace and is not suitable for adapting to 
material and process deviations.

There has been research to develop methods for
dynamically adapting to these deviations. Gandia et al. [2]
present a tolerance-aware computational design method 
for spatial timber structures, demonstrating how an 
optimal assembly sequence can be generated to minimize 
propagated tolerances. Eversmann et al. [17] use
scanning to calculate the gripping and placement of 
differently sized shingles, however there was no 
feedback for updating post-placement tolerances, 
presumably due to the flexibility of a shingle system.
Devadass et al. [18] reference a haptic fiducial to 
dynamically calibrate the workpiece cutting process for a 
mobile robotic setup, although assembly was still assisted 
through human robot collaboration. These approaches
focus on minimizing tolerances during material 
processing and design computation, and as such there 
exists a gap in current literature on how to address 
deviations during the fabrication and assembly steps.

Adaptive fabrication techniques have long been 
embedded into the culture of craft, overcoming materials 
and environments with uncertain conditions by utilizing 

visual and haptic perception to inform decision-making 
in real-time [19]. When translated to robotic processes, 
computer vision technologies such as three-dimensional 
(3D) laser scanning and force/torque sensing form a basis 
for robotic perception, which then informs how the robot 
reasons with its surroundings to perform its next action 
in a feedback loop.

Recent research has demonstrated the application of 
adaptive robotic subtractive manufacturing processes for
stone carving [19] and wood [20], where the visualization 
and predictive techniques afforded by adaptive processes 
enable human-like responsiveness towards working with 
the material. Adaptive processes have also been utilized 
for the localization and calibration of a mobile robotic 
fabrication system for building-scale mesh welding [21], 
increasing accuracy through continuous mapping of the 
environment and surveying of the fabrication process.

Overall, the main objective of this research is to 
develop and evaluate adaptive assembly techniques that 
enable cooperative multi-robot timber assembly by
minimizing positional and process deviations, as well as 
handling material imperfections. These adaptive 
techniques will be evaluated through a set of physical 
stacking experiments to determine their effectiveness 
based on fabrication tolerance metrics.

3 Methods

3.1 Fabrication Setup
The fabrication testbed for this research consists of 

two KUKA [22] KR 120 R2700 6-axis industrial robot 
arms, named ‘North’ and ‘South’, mounted on parallel 
linear tracks, which allows full access to a raised 

Figure 1. Digital design to fabrication workflow, highlighting the transfer of data between the 
computational model and the robot, adapted from previous research [9].



assembly platform and a custom 3-axis computer 
numerical controlled (CNC) table saw. Each robot is 
equipped with a pneumatically controlled gripper end 
effector, which can be swapped out for an LMI 
Technologies Gocator 2350 [23] two-dimensional (2D) 
laser profiler for all scanning operations. Control of the 
workcell and collection of sensor data is processed 
through a programmable logic controller (PLC, Beckhoff 
TwinCAT [24]). 

3.2 Timber Assembly Process 
The basic timber assembly process, as the main case 

study process for this research, starts with a human 
operator loading a standard 2x4 piece of lumber down the 
center of the saw table, with one end roughly aligned with 
the edge of the table. The active robot then picks up the 
raw stock and performs two cuts on the saw for the 
model-specified length and end-plane angles. The 
gripping frame is located on the stock such that the first 
cut safely minimizes offcut volume, while the second cut 
maximizes the remaining material for future cuts, also 
making sure to avoid any potential collision between the 
saw blade and the gripper. Without regripping, the cut 
2x4 element is brought over to the assembly platform and 
inserted into its final position within the sub-assembly. 
The human operator then fastens the element into place 
(e.g., with screws to previously placed elements, or with 
clamps if directly attached to the platform) before the 
robot releases the element and retracts. This process 
repeats until the sub-assembly is complete. 

3.3 Digital Design-to-Fabrication Workflow 
We have adapted a digital design-to-fabrication 

workflow based on previous research [9], which 
integrates Rhinoceros 3D [25], its plugin Grasshopper 
[26] and Python [27] with Super Matter Tools [28], a
custom computational design tool for offline

programming and simulation (see Figure 1). This 
workflow enables a seamless connection between the 
digital design of the fabrication module and the robotic 
simulation, control, and manufacturing.  

The forward loop of the workflow translates each 
timber element’s modelled geometry into frames 
(consisting of position and orientation) that can be 
interpreted by our control algorithm for path planning. 
The primary frame for each element is chosen to be 
located at the centroid of the element, aligned with its 
long axis, ensuring safe and stable gripping while cutting 
and placing the element during assembly. Cutting 
attributes (such as cutting distance, saw blade angles) are 
generated parametrically from the modelled end planes. 
The pickup and saw locations are taught, while the path 
traversal and gripping states are configured prior to 
fabrication. All of these parameters are then 
automatically post-processed into Kuka Robot Language 
(KRL) to be executed by the robot. 

The backward loop of the workflow enables feedback 
into the digital design loop, allowing for alterations to the 
model based on observed as-built conditions. This loop 
is what enables the adaptive adjustment of model 
parameters to reduce deviations in the fabricated sub-
assembly.  

Perception of the workpiece occurs both before and 
after each pick-cut-place operation to assist in the 
adaptive processes, as discussed in the following section. 
At this point in the process, the active robot swaps to the 
laser profile scanning end effector and performs a series 
of profile scans of the placed element to generate a digital 
as-built model. Profile scanning was selected over sweep 
scanning due to its minimal memory and processing 
requirements, while still being able to capture the critical 
boundary points to reconstruct the element digitally 
within reasonable accuracy. The reconstructed element is 
then used to update the as-built model, which can be 
compared with the original model to perceive deviations 
(see Figure 2). 

Figure 2. The scan processing begins with filtering the profile pointcloud (a), isolating the points 
scanned from the top face of the element. The filtered profiles are then used to generate a geometric 
representation and its central frame (b). The as-built model is updated with the newest element, which 
can be used to calculate deviations from the digital model (c). 



3.4 Adaptive Processes 
In order to reduce deviations between the digital and 

as-built models, we introduce adaptation into the 
fabrication workflow. Adaptation is enabled through the 
robots’ usage of the laser profile scanner, which defines 
a perceptual coordinate space model in relation to the 
base world coordinate system for each robot. This 
process utilizes the physically placed elements as an 
anchor point to align the digital model with the 
perceptual spaces of each robot. 

Two adaptation steps are added to the fabrication 
process – in the first, the active robot scans the previously 
placed element to determine the current deviation and 
estimate the correction (i.e., changes placement position 
and orientation) required to minimize deviations in the 
next element. After placing the next element, the active 
robot scans the new element to evaluate and update its 
estimation model. 

The true as-built frame of a placed element in the 
world coordinate system is notated as 𝑝𝑝𝑛𝑛𝑊𝑊, where 𝑛𝑛 is the 
element index. The relation between this true frame and 
the scanned frame is as follows: 

𝑝𝑝𝑛𝑛𝐿𝐿 = 𝑇𝑇𝐿𝐿𝑊𝑊 𝑝𝑝𝑛𝑛𝑊𝑊 + 𝜀𝜀𝑛𝑛𝐿𝐿 (1) 

Where 𝑝𝑝𝑛𝑛𝐿𝐿 is the scanned frame relative to the robot 
laser’s tool center point (TCP, 𝑇𝑇𝐿𝐿𝑊𝑊 is the transformation 
between the laser and world spaces, and 𝜀𝜀𝑛𝑛𝐿𝐿  is the 
measurement noise due to the scanning process. 𝑇𝑇𝐿𝐿𝑊𝑊 is, 
in turn, comprised of transformations from the scanner 
TCP to the robot flange (TLF), robot flange to the robot 
root (TFR), and robot root to the world (TRW, see Equation 
(2)). 

𝑇𝑇𝐿𝐿𝑊𝑊 = 𝑇𝑇𝐿𝐿𝐿𝐿 𝑇𝑇𝐿𝐿𝐹𝐹  𝑇𝑇𝐹𝐹𝑊𝑊 (2) 

Of these transformations, 𝑇𝑇𝐿𝐿𝐿𝐿 is calibrated by the user, 
𝑇𝑇𝐿𝐿𝐹𝐹 is calculated by the robot controller and assumed to 
be accurate, leaving 𝑇𝑇𝐹𝐹𝑊𝑊  as the primary source of 
deviation between the laser and world spaces. This 
deviation is trivial in a single robot workcell with a fixed 
root, as the world space can be defined to be the same as 
the robot root. However, in a multi-robot workcell, any 
deviation in installation or calibration may result in a 
mismatch between each robot’s perception of the world 
space. As an example, the two robots used in this paper 
have world spaces that are offset by approximately 4 mm, 
which translates to deviations in fabrication when 
operating without adaptation processes. To address this, 
one robot is arbitrarily chosen as the primary robot, 
setting the world space equal to its root (i.e., 𝑇𝑇𝐹𝐹𝑊𝑊0 = 𝐼𝐼). 
𝑇𝑇𝐹𝐹𝑊𝑊 can then be estimated for the remaining robots 𝑘𝑘 ≥
1 by relating their scanned element frame to the primary 
robot’s. 

𝑇𝑇�𝐹𝐹𝑊𝑊𝑛𝑛
𝑘𝑘 = (𝑇𝑇𝐿𝐿𝐿𝐿𝑘𝑘  𝑇𝑇𝐿𝐿𝐹𝐹𝑘𝑘 )−1 𝑝𝑝𝑛𝑛𝐿𝐿𝑘𝑘�����������

robot k

 [(𝑇𝑇𝐿𝐿𝐿𝐿0  𝑇𝑇𝐿𝐿𝐹𝐹0 )−1 𝑝𝑝𝑛𝑛𝐿𝐿0]−1�������������
primary robot

(3) 

As the number of elements increases, 𝑇𝑇�𝐹𝐹𝑊𝑊𝑘𝑘  is refined 
through linear least squares approximation. With a model 
for the transformation between the robot’s perceptual 
space the world space, an estimate of the true as-built 
frame can be derived from Equation (4) and applied to 
determine the current deviation 𝑇𝑇𝑊𝑊𝑊𝑊𝑛𝑛 between the digital 
and as-built models. 

�̂�𝑝𝑛𝑛𝑊𝑊 = 𝑇𝑇𝑊𝑊𝑊𝑊𝑛𝑛 𝑝𝑝𝑛𝑛𝑊𝑊 (4) 

This transformation is then applied to the modelled 
frame of the next element 𝑝𝑝𝑛𝑛+1𝑊𝑊  alongside an estimated 
gripper error 𝑇𝑇�𝐺𝐺𝐸𝐸 to obtain the gripper target position in 
the robot perceptual space �̇�𝑝𝑛𝑛+1𝐹𝐹  (see Equation (5)), 
which is input into the toolpath program generation. 

�̇�𝑝𝑛𝑛+1𝐹𝐹 = 𝑇𝑇�𝐺𝐺𝐸𝐸𝑛𝑛 𝑇𝑇�𝐹𝐹𝑊𝑊𝑛𝑛 𝑇𝑇𝑊𝑊𝑊𝑊𝑛𝑛 𝑝𝑝𝑛𝑛+1𝑊𝑊 (5) 

The gripper error is derived from the second 
adaptation step after placing and scanning the new 
element. This model is initialized (before the start of a 
fabrication task, for example) with a test piece assuming 
𝑇𝑇𝐺𝐺𝐸𝐸 = 𝐼𝐼. With the post-placement scanned frame 𝑝𝑝𝑛𝑛+1𝐿𝐿 , 
the gripper error is updated with linear least squares. 

𝑝𝑝𝑛𝑛+1𝐿𝐿 = 𝑇𝑇𝐿𝐿𝐹𝐹  �𝑇𝑇�𝐺𝐺𝐸𝐸𝑛𝑛+1�
−1 �̇�𝑝𝑛𝑛+1𝐹𝐹 + 𝜀𝜀𝑛𝑛+1𝑃𝑃 (6) 

Where 𝜀𝜀𝑛𝑛+1𝑃𝑃  is the process noise error, which can 
result from material deformation, shifting while fastening, 
etc., assumed to have a mean of 0. Altogether, there is 
now a forward adaptation step for adjusting the position 
and orientation of the next element, as well as a backward 
adaptation step for evaluating and updating the error 
estimation model. 

Adaptation can be applied in two ways in a multi-
robot fabrication workflow – in the first, the arbitrarily 
designated primary robot does not incorporate any 
adaptation steps, and instead, the other robot(s) adapt and 
work around the primary robot. In this case, the primary 
robot establishes a ground truth throughout the 
fabrication process by adhering strictly to the digital 
model but is therefore reliant on its initial calibration to 
minimize deviations. The second method of adaptation is 
for all the robots to incorporate adaptation, which 
increases the primary robot’s ability to respond to 
deviations at the cost of decreased protection against 
cumulative tolerances. To investigate the effectiveness of 
these adaptative processes, we conducted an experiment 
to compare the average deviation of a fabrication task 
with and without adaptation. 

3.5 Experiment 
The experiment was tasked with cutting and stacking 

ten 1000 mm lengths of standard 2x4 lumber from 8 ft 
(2.4 m) stock, alternating between the two robots of the 
experimental workcell, North and South, as the active 
robot. Although the model design is architecturally trivial, 



the rotational alignment and positional accuracy of both 
robots is critical to the success of the task (i.e., forming a 
flat vertical wall), demonstrating the effectiveness of 
adaptation in a multi-robot fabrication setup. The 
effectiveness of the fabrication process was evaluated 
based on the average and per-element frame deviations. 

The first experimental process was the base case, with 
no adaptation on either robot. In the second experimental 
process, North was set as the non-adapting primary robot 
while South adapted to its placements. In the third 
experimental process, both robots utilized adaptation. 
One stack of ten timber elements was fabricated for each 
of the three processes, generating ten sample points each 
(five per robot). Each sample point is a 6-dimensional 
vector (x, y, z, roll, pitch, yaw) representing an element’s 
deviation (transformation) relative to its original modeled 
configuration frame. The results of the second and third 
processes are benchmarked with the base case. 

Figure 3. The South robot placing the final 
element in a timber stacking task (with no 
adaptation).  

4 Results 
Figures 4-6 plot the x and y components of each 

sample point across the three experimental processes. 
The perception of each robot (colored red for North, blue 
for South) is consistently offset for each process, 
indicating the base difference between the two robots’ 
perceptual spaces. Within each perceptual space, the base 
case (Figure 4) highlights the calibration error between 
North-placed elements (circles) and South-placed 
elements (triangles), as the result of no adaptation, with 
the offset between the average deviation of each cluster 
being 2.5 mm. The average deviation of a cluster is 
calculated by averaging the Euclidean distance of each 
sample point to their respective reference frame 
(modeled element frame). The second process (Figure 5) 
shows a marked improvement with South’s adaptation 

Figure 4. XY frame deviation for Process 1 (base 
case), with no adaptation. 

Figure 5. XY frame deviation for Process 2, with 
South adapting to North. 

Figure 6. XY frame deviation for Process 3, with 
both North and South robots utilizing adaptation. 



aligning its elements with North’s, decreasing the offset 
to 0.4 mm and reducing the overall average deviation 
from 1.28 mm down to 0.45 mm (as measured by North). 

The third experimental process shows the effect of 
cumulative deviations – each element in Figure 6 is 
labelled for legibility, with the elements having a clear 
drift direction, tending to deviate further from the 
modelled position as the task progresses. This is likely 
due to the fact that the two estimation models for the 
robot-world transformation 𝑇𝑇�𝐹𝐹𝑊𝑊  and gripper error 𝑇𝑇�𝐺𝐺𝐸𝐸 
are still rough at the beginning of a new task, especially 
with the lack of an established ground truth as present in 
the case of the second process. Utilizing a larger initial 
dataset (e.g., gathered from previous tasks) could 
potentially alleviate most of this drift; however, more 
robust control logics are required to completely eliminate 
cumulative deviations. 

Table 1. Element frame deviation translation (mm) 

Scanned by North Scanned by South 
Process Average Stdev. Average Stdev. 

1 1.28 1.01 3.00 1.28 
2 0.45 0.26 3.53 0.28 
3 1.96 1.03 5.66 0.77 

Table 2. Element frame deviation rotation (°) 

Scanned by North Scanned by South 
Process Average Stdev. Average Stdev. 

1 0.107 0.255 0.108 0.263 
2 0.377 0.053 0.354 0.055 
3 0.484 0.086 0.452 0.090 

5 Conclusion and Outlook 
In this paper, we have introduced an adaptive process 

for multiple robots working cooperatively on a 
construction task. Initial experimental results 

demonstrate the potential for this adaptive process to 
decrease fabrication deviations due to setup and 
calibration errors by utilizing robot perception. The 
research also highlights future work to further refine the 
estimation models and cooperative fabrication workflow. 

As next steps, we intend to apply the adaptive 
processes to light timber framed wall assembly tasks at 
building-scale as well as implement real-time control to 
drive the fabrication workflow. Part of this 
implementation will include a probabilistic model that 
accounts for the currently unaddressed measurement and 
process noise error terms. These advances will push the 
adaptive process in line with other current toolpath and 
task optimization strategies to create a comprehensive 
system for working with tolerance-aware robotic 
construction. 
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