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ABSTRACT: 

 

 Each healthcare institutions have numerous patients with a variety of different disease 

conditions. Some of these diseases might be common and spread across multiple locations and 

demographics while some might be situated or originated in certain places. Interoperability of 

patient data between different healthcare organizations will help in improving the quality of care 

provided to the patients. The patients’ records, consisting of their notes, diagnoses, etc., contain 

numerous ICD codes in them. Mapping these through embedding created can help in 

understanding and utilizing the data for further studies. This work involves two intuitions namely 

the University of Texas Medical Branch, and Michigan Medicine where embeddings are generated 

for the ICD codes in both of their patient cohorts.  

 

INTRODUCTION: 

 

 In the current era of digital information and technological advancement, the volume of data 

available is tremendous. In healthcare, patient data is available across different mediums such as 

Electronic Health Records (EHR), Patient Portals, Personal Health Records (PHI), Payer’s 

database, etc. The type of data ranges from physician’s notes, laboratory test results, personal 

information, family history, medical history, medications, and so on. This abundant data provides 

the foundation of evidence-based medicine and delivering value-based, patient-centric care. 

Patient data is also a fundamental resource in analyzing trends, patterns and developing diagnostic 

Machine Learning predictive models. 
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 After 2014, when meaningful usage of EHRs was adopted, each patient is the source of 80 

MB of data per year. It is predicted that by 2025, the compound annual growth rate of healthcare 

data will touch 36%. Without the Global Covid-19 Pandemic, 2020 predictions show about 2314 

exabytes of data were expected to be produced (Culbertson, 2021). The majority of the data is 

available from the patient’s care provider and the hospital. With HIPAA and other health data 

privacy policies existing, the data is stored securely and not exchanged or shared with other 

healthcare organizations. This is essential to ensure that patients’ personal health data isn’t leaked, 

stolen, or misused. On the other hand, it also prevents tapping into the abundant potential of using 

the data in developing retrospective healthcare solutions. 

 

 With big data being the primary ingredient in developing and implementing Healthcare 

Artificial Intelligence Solutions, methods to utilize the patient’s data while also eliminating the 

possibility of leaking personal details must be employed. Cyber-encryptions, and de-identification 

techniques to mask personal records mentioned according to HIPAA are a few possibilities. These 

steps enable interoperability or sharing of data. One hospital or healthcare organization would not 

have sufficient data to create robust models which can perform for the majority of extreme cases. 

Even if the model developed with data from a specific location does work accurately, the same 

solution can’t be adopted in another location as the demographics might be different. Thus, 

interoperability between different healthcare institutions in different regions is essential. One 

example in recent times includes the publishing of data from Wuhan medical centers on Covid-19 

symptoms in patients. As this data was made public, it helped health systems across the globe to 

make prior preparations and have an advantage in dealing with the scenario. 

 

 Interoperability is defined as the ability of different information systems, devices, and 

applications to access, exchange, integrate and cooperatively use data in a coordinated manner, 

within and across organizational, regional, and national boundaries, to provide timely and seamless 

portability of information and optimize the health of individuals and populations globally (Epalm, 

2021). In the healthcare domain, interoperability will enable sharing of data securely by means of 

dedicated health data exchange architecture, safety, and privacy standards. The exchange of data 

can be across different care organizations in the same community, other health networks, involved 

stakeholders, and the individual patient as well. 
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 There are 4 levels or layers of interoperability namely Foundational, Structural, Semantic, 

and Organizational. The first level or the Foundational level establishes the interconnectivity 

which will enable the ability of one information system to communicate (share or receive) data 

with another system. The next level, Structural, lays the format, and syntax of the exchange data. 

It defines the standard structure in which the data can be transferred and interpreted on both sides. 

The penultimate level is the Semantic level in the complex layer where real-time transfer of data 

exchange is conducted between multiple systems for interpretation and subsequent utilization. It 

provides the standard for encryption and models for the data elements. The final level is the 

Organizational level in which policy, legal governance, and other organizational factors are 

established to facilitate smooth communication and usage of the data across multiple entities. This 

helps foster trust and builds a seamless, streamlined workflow (Lambert, 2023). Another critical 

piece is the user consent, in this case, the patient whose data would be shared with or without 

masking their personal information.  

 

 Moving forward, Heath Information Exchange (HIE) would provide seamless electronic 

transfer of hospital data with other clinical and healthcare organizations. The final stage of the 

Health Information Exchange is to facilitate access and usage of patient clinical data to deliver 

safe, timely, efficient, effective, affordable, and equitable patient-centered care (Epalm, 2021). 

Another spectrum is the usage of this data by public health authorities to assist in the analysis of 

the health of populations and by policymakers in drafting healthcare policies for the nation or state. 

 

 The potential of healthcare information interoperability is limitless. On top of using the 

information in developing data-oriented technological solutions, the data can help in efficient 

value-based and evidence-based care. It can also assist in increasing awareness in patients, 

improving productivity while decreasing the cost, and burnout of healthcare professionals. Another 

critical advantage would be the continuum of quality care despite patients visiting different 

hospitals. Financial incentives and reimbursement will also benefit from this interoperability.  

 

 Currently, the Center for Medicare and Medicaid Services is taking a tremendous effort in 

increasing healthcare data interoperability between patients, care providers, and community 

hospitals to increase support for patient care and reduce administrative burden. In 2020 May, CMS 
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introduced its Interoperability & Patient Access Final Rule policy which aims to enable the 

interoperability of healthcare for all involved stakeholders in the system (Interoperability and the 

Connected Health Care System | CMS). 

  

BRAIN INJURY ASSOCIATED FATIGUE AND ALTERED COGNITION: 

 

There are more than 2.5 million people who experience Traumatic Brain Injury (TBI) 

yearly with approximately 50,000 ending in death and more than 80,000 suffering permanent 

disability. TBI or Craniocerebral Trauma is caused by a sudden injury, such as a sports injury or 

vehicular accident, to the head leading to damage or trauma to the brain. It is commonly 

categorized as mild, moderate, or severe based on the level of trauma. Around 90% of the patients 

fall under the middle category (Brain Trauma Foundation - Frequently Asked Questions (FAQ) — 

Brain Trauma Foundation). The generic symptoms include confusion or “fuzzy or foggy brain”, 

dysfunctions in vision and speech, short-term memory loss, and day-to-day organizational and 

concentration difficulties.  

 

It was found that, in a subclass of TBI patients, there is pituitary dysfunction and abnormal 

growth hormone secretion. This further leads to profound fatigue and reduced cognitive aptitude 

in fields of memory, processing capability, and execution of tasks preventing the patients from 

conducting their normal life daily. This clinical condition is termed Brain Injury Associated 

Fatigue and Altered Cognition or BIAFAC in short. This post-TBI syndrome discovery was made 

by Dr. Randall Urban, University of Texas Medical Branch, and his team (Traumatic Brain Injury 

Impairs Hormone Production, Disrupting Sleep, Cognition, Memory, 2021).  

 

It was found that TBI triggers a reduction in growth hormone secretion and that most TBI 

patients’ health improves after growth hormone replacement treatment. The approach of 

recombinant growth hormone replacement treatment has significantly improved the conditions of 

patients with BIAFAC (Wright et al., 2020). Signs of improvements in fatigue and cognition were 

seen after 3 and 4-5 months after treatment, respectively. This is more of a treatment for the 

symptoms than the condition as it was observed that any pause in the treatment causes the return 

of the symptoms. 
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Initially, the study was conducted on just 18 patients. With the exact causative factor of 

BIAFAC being ambiguous and the patients being currently limited to around 120 only, the current 

data is insufficient to derive the exact reasons. This work aims to identify and implement code 

embedding in both the Michigan Genomics Initiative (MGI), which is a data repository of over 

80,000 patients, their medical notes, readings, genomic data, etc., and the University of Texas 

Medical Branch (UTMB) which has the BIAFAC patients. As of now, BIAFAC doesn’t have a 

specified official ICD code and thus, the patients at Michigan Medicine aren’t diagnosed with 

BIAFAC. But some patients have TBI out of which some of them have the symptoms of BIAFAC 

while the rest don’t. 

 

MICHIGAN GENOMICS INITIATIVE: 

 

 The Michigan Genomics Initiative (MGI) is a combined research effort of care providers, 

patients, and researchers at Michigan Medicine to collect and maintain patients’ medical records 

from the health system’s EHR along with their genetic information for research purposes. The data 

is collected by means of voluntary participants on the side of patients who are consenting to share 

their medical records, data, history, and their DNA information. This is a protected data repository 

where access is granted only to the University of Michigan researchers who have undergone 

training and received IRB approval. As of this year, there are close to 100K MGI participants and 

all of them are patients who have received care in Michigan Medicine. Out of these patients, about 

71K patients’ genotypes and polygenic scores are available.  

 

 As of the end of the year 2022, the gender distribution of 71K patients in the repository is 

approximately 47% males to 53% females. The common median age is 60 years while the median 

for males is 62 years and for females 57 years. The distribution in terms of self-reported ethnicity 

is 86% Caucasian, 6.5% African American, 2.7% Asian, 0.5% American Indian or Native Alaskan, 

and the remaining unknown (Michigan Genomics Initiative | University of Michigan Precision 

Health).  

 

 The data utilized in this work is sourced from the MGI repository. There are multiple 

datasets employed for this study. There are datasets for patients’ demographics, diagnoses, lab 
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results, procedures, and clinical notes. The patient demographics dataset consists of 63,455 

instances. These patients are filtered from the complete MGI based on the occurrences or mention 

of Traumatic Brain Injury, Fatigue, Cognitive Impairment, and other symptoms of BIAFAC. The 

diagnoses dataset of the patients has around 60338966. The lab dataset of the patients has around 

78925407. The notes dataset of the patients has around 2307522. The procedures dataset of the 

patients has around 24302807. The following tables are data dictionaries for the different datasets 

utilized for developing the code embeddings.  

 

S.No Column Name Description  Data Type 

1 MRN Medical Record Number numeric 

2 PATIENTID Unique ID Number of the 

Patient 

alphanumeric str 

3 LIVING_STATUS Patient’s Mortality str 

4 CURR_AGE_OR_AGE_DEATH Age of the patient numeric 

5 SEX Gender of the patient str 

6 PAYOR_NAME Insurance Company Name str 

7 BENEFIT_PLAN_NAME Insurance Plan Name str 

8 RACE_1 Race of the Patient str 

9 ETHNICITY Ethnicity of the Patient str 

Table 1: Data Dictionary of Patients Dataset (MGI) 

 

S.No Column Name Description  Data Type 

1 MRN Medical Record Number numeric 

2 PATIENTID Unique ID Number of the Patient alphanumeric str 

3 DX_DATE Date of Diagnosis datetime value 

4 DX_CODE Diagnosis Code float 

5 DX_NAME Name of the Diagnosis str 

6 DX_SOURCE  str 

Table 2: Data Dictionary of Diagnoses Dataset (MGI) 
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S.No Column Name Description  Data Type 

1 MRN Medical Record Number numeric 

2 PATIENTID Unique ID Number of the Patient alphanumeric str 

3 ORDER_TIME Time of the Lab Order datetime value 

4 CPT_CODE Current Procedural Terminology 

Codes 

alphanumeric str 

5 DESCRIPTION Brief about the CPT Code str 

6 ORDER_DISPLAY_NAME Name Displayed for the order str 

7 COLLECTION_TIME Sample Collection Time datetime value 

8 RESULT_TIME Time of result datetime value 

9 RESULT_NAME Result of the test str 

10 BASE_NAME Main Element of the test str 

11 RESULT_VALUE Value of the base element numeric 

12 UNITS Unit of the numeric value str 

Table 3: Data Dictionary of Labs Dataset (MGI) 

 

S.No Column Name Description  Data Type 

1 MRN Medical Record Number numeric 

2 PATIENTID Unique ID Number of the Patient alphanumeric str 

3 PX_DATE Date of Procedure datetime value 

4 PX_CODE Procedure Code numeric 

5 PX_NAME Name of the Procedure str 

6 PX_TYPE Type of Procedure alphanumeric str 

Table 4: Data Dictionary of Procedures Dataset (MGI) 

 

S.No Column Name Description  Data Type 

1 MRN Medical Record Number numeric 

2 PATIENTID Unique ID Number of the Patient alphanumeric str 

3 PAT_ENC_CSN_ID  numeric 

4 NOTE_DATE Date the note was created datetime value 
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5 NOTE_TYPE Type of Note str 

6 NOTE Content of Procedure str 

Table 5: Data Dictionary of Notes Dataset (MGI) 

 

METHODOLOGY: 

 

PRE-PROCESSING: 

 

 The datasets contain numerous additional data columns which aren’t required for this 

analysis. Thus, initial cleaning of the data is required to convert it into the desired structure. The 

diagnoses, procedures, and labs dataset were considered for the embedding process as each of them 

have Diagnostic and/or Procedural codes in them. For all three datasets, the MRN, Code, and Date 

columns. Each patient has their own MRN and Patient ID and it is unique for them. There are no 

cross instances of MRN and Patient ID. To maintain anonymity and to protect the personal 

information of the patients, their MRN must be coded numerically. Similarly, the Codes are also 

numerically coded to enable the determination of the Co-occurrence matrix in the next step. The 

Code to Code-ID mapping is preserved to use during the validation step. For the next step, the day 

of occurrence of the code has to be recorded. This is relative to the patients and their code instances. 

This data column known as ‘numDays’ was calculated by setting a standard date and subtracting 

the standard date from the date of Code occurrence. The standard date was determined by a day 

less than the minimum date of Code occurrence. Cleaned metadata consists of the new patient ID, 

new Code ID, and numDays. Finally, there was a total of 60338965 instances in the metadata. 

 

Patient ID numDays ICD Code 

7362 3263 1282 

7362 3263 1282 

7362 3263 4453 

7362 3263 11088 

7362 3263 11088 

7362 3263 369 

Table 6: Sample of Cleaned Metadata from MGI 
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CO-OCCURRENCE MATRIX: 

 

 Generally, the co-occurrence matrix or gray level co-occurrence distribution is defined 

over an image to be the distribution of co-occurring values of the pixel. This is commonly 

employed in texture analysis of medical images such as MRI and CT scans. In Natural Language 

Processing, a co-occurrence matrix can be used for the processing of words in a corpus. 

Fundamentally, it establishes the relationship between different words, phrases, sentences, etc. in 

the text collection. Each row and column in the co-occurrence matrix represent a unique element 

of the corpus. Each value denotes the number of occurrences of the two elements together. This 

will help in understanding the association between the elements (Zhao et al., 2017). 

 

 In this scenario, the co-occurrence matrix is built where the rows and columns represent 

the codes present in the data. This matrix will display the codes which occur with each other and 

the frequency of their occurrences of the codes within each patient. These occurrences are 

categorized into time windows such as 0, 6, 13, 29, and 59. The window length of 0 represents the 

co-occurring codes within a day, followed by a week, a fortnight, a month, and finally two months, 

respectively. This matrix not just forms the basis for text analysis, but also helps in representing 

the elements as embeddings. Any row or column from the co-occurrence matrix can be taken and 

turned into a word embedding representation. The high dimensionality of the matrix might most 

likely pose problems during this process but here are dimensionality reduction methods that can 

be utilized. A few options would be Principal Component Analysis (PCA), Singular Value 

Decomposition (SVD), Linear Discriminant Analysis (LDA), etc. 

 

 Each instance in the co-occurrence table consists of the two codes, their number of co-

occurrences, and the window under it. It is then converted to a sparse matrix representation format 

for each window length. The co-occurrence sparse matrix of the larger window is the summation 

of all the elements within the smaller windows. For example, a window size of 13, will include 

co-occurrence values for the code pairs from windows 0 and 6 as well.  

 

Code1 Code2 Count Window 

1282 1282 21243 0 
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1282 4453 1573 0 

1282 11088 5998 0 

369 1282 7430 0 

Table 7: Sample of Co-Occurrence Data 

 

POINTWISE MUTUAL INFORMATION: 

 

 Pointwise Mutual Information (PMI) is a common measure of association in statistics 

which in Natural Language Processing can be used in determining related words. It compares the 

probability of 2 words occurring together to the probability of the occurrence of words if they were 

independent. The PMI helps in weighing the association by obtaining the co-occurrence of the 2 

words in a text corpus that a priori expected to appear in it by chance. For instance, “Machine 

Learning” is a word that has a certain meaning while the words separately, “Machine” and 

“Learning”, have a different meaning altogether. On the other hand, “Great Britain” is a 

meaningful usage of the word “Great”, but it can be used in front of other State or Country names. 

 

 Mathematically, PMI can be defined as, 

𝑃𝑀𝐼(𝑥, 𝑦) = 𝑙𝑜𝑔!	
𝑃(𝑥, 𝑦)

𝑃(𝑥)	𝑃(𝑦) 

 

When there are two words, x, and y. If they are independent entities, the joint probability is the 

product of each word’s individual probability (Damani, 2013). Thus, the PMI would be equal to 

the log of 1 which is 0. Which would mean that there is no association or specific meaning between 

the 2 words. PMI will help determine whether words have a high joint probability with each other 

while not having a high probability of occurrence if those words are separately considered. Thus, 

these 2 words could be called a pair having significant and relevant meanings. There exist 

variations to PMI like Positive PMI (PPMI) and Normalized Pointwise Mutual Information 

(NPMI) (Levy & Goldberg, 2014). The former is obtained by making the negative values of PMI 

0 while the latter is attained by normalizing the values in between the range of -1 to 1 where -1 is 

for words never occurring together, 0 for independence, and 1 for complete co-occurrence.  
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SHIFTED POSITIVE POINTWISE MUTUAL INFORMATION: 

 

 Shifted PPMI is a word-context co-occurrence PMI matrix where each value is calculated 

as 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(0, 𝑃𝑀𝐼(𝑤, 𝑐) − log(𝑘)), where k is the number of negative samples considered. In 

other words, the SPPMI is obtained by subtracting the log(k) from the PMI matrix to obtain mostly 

non-negative values in the resultant matrix (Levy & Goldberg, 2014).  

 

SINGULAR VALUE DECOMPOSITION: 

 

 To improve generalization and faster computational efficiency, the sparse representation 

can be reduced to a low-dimensional dense matrix. Embedding like word2vec or GloVe uses a 

gradient descent approach for factorization. Here, Singular Value Decomposition (SVD) is 

employed. The Singular Value Decomposition of a matrix, say A, is the factorization of A into the 

product of 3 matrices. The matrices U and V contain orthonormal columns or in other words, the 

orthogonal matrix in nature while matrix D is diagonal with positive real values. It can be 

expressed by the formula as follows, 

 

𝐴 = 𝑈𝐷𝑉# 

   

 The columns of U are the left singular vectors, and the transpose of V has rows that are the 

right singular vectors. Finally, the D matrix, having the same dimensions as A, has diagonal 

singular values. The SVD represents an expansion of the original matrix in a coordinate system 

where the covariance matrix is diagonal (Klema & Laub, 1980). Obtaining the SVD for A involves 

calculating the eigen values and eigen vectors of 𝐴𝐴# and 𝐴#𝐴. The eigen vectors of the former 

form the columns of matrix U while the latter’s eigen vectors form the columns of matrix V. The 

last matrix D’s values are obtained from the square roots of eigen values from both matrix 

multiplications. The singular values are real numbers and correspond to the diagonal values of the 

matrix D and are arranged in descending order (Alter et al., 2000).  

 

 The SVD has varied applications from computing the pseudoinverse of a matrix and 

solving homogenous linear equations to least squares and low-rank matrix approximations. There 
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are variations of SVD that are more commonly employed than the complete version mainly due to 

the computation limit and storage space. A few popular derivatives are Thin SVD, Truncated SVD, 

and Compact SVD.  

 

 The Spectral Dimensionality Reduction over the Shifted PPMI Matrix (SPPMI-SVD) aims 

to apply singular value decomposition on the SPPMI matrix. It is a factorization-based continuous 

dense distributional word model approach. After that, the dense singular vectors are taken as the 

word embeddings for the word vectors passed in the SPPMI matrix (Levy & Goldberg, 2014). 

 

 A fast approximation of SVD is the Augmented, Implicitly Restarted Lanczos 

Bidiagonalization Algorithm (IRLBA). This algorithm was developed by James Baglama and 

Lothar Reichel. This is an effective and memory-efficient approach for computing truncated 

singular value decomposition for highly sparse and dense matrices. The IRLBA is a partial SVD 

approach that finds some approximate singular values and their singular vectors for the matrix. 

While the SVD method provides a complete set of singular values and corresponding vectors 

which can be more than the provided set of singular vectors, IRLBA on the other hand, gives an 

estimated number of singular values equal to or less than the maximum number of set singular 

vectors (Baglama & Reichel, 2005).  

 

RESULTS: 

 

 Genome-wide association studies (GWAS) found that if single-nucleotide variants occur 

at various locations across the genome, they can be associated with a specific trait, and it was 

considered a phenotype (Bastarache, 2021). Similarly, Phenome-wide association studies 

(PheWAS) adapted the idea of GWAS to search or analyze for phenotypes associated with specific 

single-nucleotide variants across numerous phenotypes, also known as phenome. Based on this 

approach, mappings of ICD 9 and 10 diagnoses codes in EHR to Phecodes were developed and 

made open source for research (Wu et al., 2019).  

 

 The Phecode data consists of the ICD code and a phecode value which is combined to 

group similar ICD codes into batches. These ICD groups were taken as the testing standard to see 
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if the embedding generated for the code pairs were significant. Each pair in the phecode data was 

considered and if their phecode value is the same, they are associated pairs and if their values are 

not the same, the code pair don’t have an association with each other. The cosine similarity was 

calculated on the embedding to obtain the predicted association between the codes. The two sets 

of pairs constructed from the phecodes, and the embeddings were evaluated to find the AUC_ROC 

curve value. The value was evaluated with multiple lengths of dimensions from 10 to a total of 

500 dimensions. The table below shows the ROV value for the different chosen dimensions of the 

embeddings. 

 

S.No ICD Code Phecode Rounded Phecode 

1. S62.024D 804.0 804 

2. T84.498D 858.0 858 

3. 728.4 728.2 782 

4. F10.959 317.0 317 

5. 716.92 716.9 716 

Table 8: Sample of ICD Phecodes 

 
 

Dimension AUC_ROC Value for Different Windows 

1 Day 7 Days 14 Days 30 Days 60 Days 

10 0.5539521888797039 0.5593082156865559 0.5638041919156447 0.5656628929218283 0.565616950773861 

50 0.5788491931829053 0.5773175180430431 0.5765834129578798 0.5786445588013006 0.5819482392095202 

100 0.5845325851126077 0.5884192686213173 0.5910691907417622 0.5861006526016854 0.5821475078243514 

300 0.5873197703165446 0.5938041822872928 0.5946707546203469 0.5932845422637602 0.5920295477722952 

500 0.584734145168001 0.5895691992910649 0.5917322381776561 0.5917723287092848 0.5914700338716454 

Table 9: ROC Values for Code Embeddings from MGI 

 

 Compared to the MGI repository the BIAFAC patients in UTMB are minimal. There are 

only about 120 patients and their corresponding records over the years of treatment. There was a 

total of 38764 records for a total of 119 patients who had BIAFAC conditions. The different 

columns in the table were,  

 

S.No Column Name Description  Data Type 

1 PATIENT_NUM Unique Patient ID Number numeric 
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2 START_DATE Date the code was encountered datetime value 

3 CONCEPT_CD ICD Code alphanumeric 

Table 10: Data Dictionary of Patients’ Diagnoses (BIAFAC)  

 

After cleaning the data to format, it in the same arrangement as the MGI metadata, it was observed 

that there were instances having dates in the late 1985s. Most likely, these dates were 

autogenerated since the original values were missing from the dataset. Since the study was started 

in 2004, all the instances having dates before that year were dropped as these date differences can 

offset the values in the co-occurrence matrix. After the embedding was obtained and cosine 

similarity was calculated with different dimensions of the embeddings to compute the ROC_AUC 

value with the phecodes as the gold standard.  

 
 

Dimension 

AUC_ROC Value for Different Windows 

1 Day 7 Days 14 Days 30 Days 60 Days 

10 0.532578117073145 0.5433824139599822 0.5389521435508348 0.5346649884286183 0.5283015097409528 

50 0.5642949849603682 0.5706068521540714 0.565486408910506 0.5671847106003527 0.5609190895510984 

100 0.5621229146473165 0.5660693410292849 0.5637295800511546 0.5644461709067351 0.5625437118952165 

300 0.5600050590690202 0.5599955873350535 0.5608023122327654 0.5618713907545914 0.5577950683313043 

500 0.5554382500552563 0.5573348074466209 0.5581526545614182 0.5570981037102096 0.5548329028809644 

Table 11: ROC Values for Code Embeddings from BIAFAC 

 

DISCUSSION AND LIMITATIONS: 

 

 The ROC value for both institutions is around 0.60. MGI’s results are closer to the value 

while the BIAFAC cohort’s result is slightly lesser. The phecode data contains 98,549 ICD 9 and 

ICD 10 codes combined. But the number of ICD codes in the MGI and BIAFAC data is less; the 

former has about 33513 codes while the latter has only around 1769 ICD 10 codes for the smallest 

window size. Thus, the number of codes the embeddings generated and evaluated is reduced and 

limited to the number of codes present in the main data. The embeddings were generated with 

2000 iterations for the IRLBA algorithm. Increasing the number of iterations to 3000, yielded the 

same range of ROC. Utilizing the Sparse SVD implementation instead of the IRLBA also didn’t 

return any significant change in the ROC result. Thus, changing the type of SVD or increasing the 

iterations didn’t improve the accuracy of the embeddings generated for the ICD codes. 
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 The ROC results of MGI for the different lengths of embeddings yield different values. 

The smallest dimension considered was 10 and the ROC value was the least across all the windows. 

There is an increase in the values as the number of dimensions increases. The embedding 

dimensions of 300 have the highest results followed by 500 which is only slightly less than the 

previous. Also, upon looking at the ROC results, an increase in the ROC value can be seen as the 

window length increases. This can be attributed to the increase in the number of codes available 

as the window expands. All these results have remained stable across the different dimensions and 

windows as the results were of the same range while testing for subsets of the code embeddings.  

 

 The ROC values are not consistent for the smallest dimensions across all windows for the 

BIAFAC data. After that, there is an increase that can be seen but beyond 300, there is a decrease 

in the value. Unlike MGI, 100 seems to be the stable and accurate dimension for the BIAFAC data. 

 

 The phecode representation is available for ICD 9 and ICD 10 diagnoses codes. There are 

other medical codes like procedural codes, CPT, etc. The embedding for these codes can be 

generated but the accuracy can’t be determined with the phecodes. The codes are also spread across 

numerous days. The codes that co-occur beyond two months weren’t included in this analysis. In 

the future analysis, the cosine similarity for the codes of the same window from both institutions 

can be compared to compute the closest, similar ICD codes.  

  

 There are a total of 1750 ICD Codes that are matching with each other in both institutions. 

The similarity of the embeddings for the same ICD codes on both sides were computed and the 

1743 codes out of the 1750, have a similarity of over 0.90. The minimum similarity value is around 

0.35, 25% quartile value, median, 75% quartile value, and the maximum value are all around 0.99. 

This shows that majority of the ICD codes’ embedding are highly similar to each other with a 

similarity score of around 0.99. The table below shows that the 7 ICD codes that have the least 

similarity with each other on both MGI and BIAFAC side. 
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BIAFAC Code Similarity 

K62.89 0.358652435 

M70.61 0.653337027 

T83.89XA 0.730062731 

L81.1 0.793964768 

K51.90 0.859340931 

N80.9 0.875781127 

K56.60 0.892278585 

Table 12: Codes having least similarity value 

 

While initial similarity was calculated for matching codes, the embeddings for the ICD Codes in 

BIAFAC data was compared against each embedding in the MGI cohort, to determine the closet 

ICD code which has the most similarity.  

 

BIAFAC 

Code 

Top 3 Similar Codes 

MGI Code Similarity MGI Code Similarity MGI Code Similarity 

K62.89 M75.100 0.36136 H66.90 0.36028 H35.433 0.36027 

M70.61 864.01 0.66012 924.3 0.65552 M00.00 0.65443 

T83.89XA Z99.81 0.73092 R13.12 0.73086 A56.11 0.73079 

L81.1 780.57 0.79482 V58.61 0.79477 Z12.31 0.79472 

K51.90 N30.10 0.99992 R19.8 0.99992 T45.1X5A 0.99992 

N80.9 T68.XXXD 0.99992 560.89 0.99992 S12.500D 0.99991 

K56.60 Z94.1 0.89286 A56.11 0.89282 B01.9 0.89269 

Table 13: Top 3 Similar MGI Codes to BIAFAC Codes 

 

 Furthermore, in future work, the groups of similar ICD codes can be determined by 

comparing the similarity between each embedding within institution, say MGI, and finding the set 

of codes that are similar to each other. The same approach can be performed on the other side, 

BIAFAC, to establish the sets. These sets can now be associated with each other to determine if 

the all the ICD codes in the set are matching or if there are any difference in the codes. 
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CONCLUSION: 

 

 The potential of interoperability between healthcare organizations in improving evidence-

based and increasing the quality of care for patients is massive. Majorly in diseases that originate 

in certain places, rare diseases, etc. sharing of data and subsequent interpretations of it can help in 

a higher probability of successful treatment. BIAFAC is a similar condition, found in a single 

organization, but can be present in different demographics as well. Making use of this data in other 

locations gives the advantage of easier analysis and access to treatment options. The embedding 

for the ICD codes was determined based on the co-occurrence of these codes in different time 

windows in both the MGI data and the BIAFAC data. This will help in finding similar codes across 

the various locations to enable understanding of the shared health data.  
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