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PREFACE

This dissertation is a collection of works undertaken and published in peer-reviewed scientific
literature over the course of the degree program, i.e., a dissertation-by-publications. A brief
explanation of each chapter or its correspondence to the published works is given as follows:

Chapter 1 - This introduces the motivation of Koopman operator theory and alternatives to its
goal in the sense of global linearization and identification of general [nonlinear] dynamical systems.

Chapter 2 - WA Manzoor, S Rawashdeh, and A Mohammadi. “Vehicular Applications of Koopman
Operator Theory – A Survey”. In: IEEE Access, vol. 11 (2023), pp. 25917–25931. DOI:
10.1109/ACCESS.2023.3257109.

Chapter 3 - This is a dedicated segment that factors out the common mathematical background
from the other chapters for minimizing repetition and improved readability. It is mainly the
Appendix section from the paper presented in Chapter 4.

Chapter 4 - WA Manzoor, S Rawashdeh, and A Mohammadi. “Real-Time Prediction of Pre-ignition
and Super-Knock in Internal Combustion Engines”. In: SAE International Journal of Engines,
vol. 16, no. 3 (2022), pp. 363–375. DOI: 10.4271/03-16-03-0021.

Chapter 5 - WA Manzoor, S Rawashdeh, and A Mohammadi. “Koopman Operator- Based
Data-Driven Identification of Tethered Subsatellite Deployment Dynamics”. In: Journal of
Aerospace Engineering, vol. 36, no. 4 (2023). DOI: 10.1061/JAEEEZ/ASENG-4836.

Chapter 6 - This provides concluding remarks and presents potentially valuable future research
directions which have become evident over the course of the presented research. These include
adaptive control for a robot undergoing peristaltic locomotion, and a method for seismic haz-
ard threat assessment for railway and mine safety. Preliminary results are also included for the latter.
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ABSTRACT

This dissertation presents the development and applications of Koopman operator theory for solving
system identification and prediction problems in the domain of vehicular systems and mobility from
a data-driven perspective. The research is organized into three thrusts, whose results have been
published in three peer-reviewed journal articles published over the past two years. The first
article provides a comprehensive survey of Koopman operator theory from over 100 research
papers and its applications to vehicular systems (aerospace, automotive, marine, rail, robotic,
mining/construction, traffic management, and others), highlighting the potential for reduced-order
modeling and control in this domain and gaps in the literature. The second article proposes a data-
driven algorithm, i.e., the Hankel Alternative View of Koopman analytic approach, for predicting
pre-ignition, a dynamically chaotic phenomenon, and resulting super-knock events in an internal
combustion engine without the need for physics-based modeling. This is done within a framework
designed for real-time implementation on an engine controller. This application has the potential to
improve the operational adaptability of a vehicle, improving safety, performance and cost, by dealing
with combustion instability through a ‘perdition and avoidance’ approach rather than the current
‘detection and mitigation’ approach. Simulation results from real engine data show the generation
of a learned model in linear form capable of commanding one or more of several provided mitigating
actions approximately 2.27 seconds prior to an event. Further validation results use data from low,
medium, and high engine speeds within the envelope of low-speed pre-ignition. Finally, the third
article discusses the use of Koopman operator theory for model generation of a tethered satellite
system subject to unknown disturbances from several exogenous [nonlinear] environmental sources.
The resulting state-space model shows excellent matching between the actual and simulated motion
in simulation of the mission-critical maneuver of subsatellite deployment from its mothership.
Overall, this research demonstrates the potential of the modern data-driven implementations of
Koopman operator theory for system identification and control in various vehicular systems, with
two specific case studies that illustrate this potential in a novel way.
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CHAPTER 1

Introduction

A vehicle is generally anything that can carry a payload, including occupants, equipment, sensors
or any other items. In some contexts, the item may be its own presence. Colloquially, this definition
is often abstracted into the realm of thoughts and ideas, such as a poem being a ”vehicle” to express
one’s love. Most generally, it has also been defined as any mobile mechanized equipment. All
these ideas have been captured in Merriam-Webster’s formal definitions [1]. In this dissertation,
only the former, physical type of vehicle is considered. This includes systems and processes
associated with automotive, aerospace, marine, rail, robotic, and subterranean classes of vehicles,
along with some interfacing or noteworthy classes such as biolocomotion, communication and
traffic management, amongst others. Advancement in the study of vehicular systems and mobility
is critical due to its enablement of modern life and the success of civilization. Transportation
is a fundamental property of vehicles that facilitates economic growth, ensures access to basic
needs, sustains social interaction, and provides numerous other benefits. Most vehicles today are
mechanized in some way and increasingly rely on or are limited by natural forces whose endeavor
to harness continues as humanity pushes the boundary of engineering. As such, control systems
in progressively novel and generalized contexts has become a flourishing research area in its
own right. To this end, global linearization and modeling of unforced trajectories in nonlinear
and chaotic systems (system identification) is necessary for reliable control of nonlinear ve-
hicle systems, which explored through Koopman operator theory forms the topic of this dissertation.

Global linearization is an endeavor used in the field of control theory to simplify the analysis
and design of nonlinear control systems. A nonlinear system is one in which the time rate of
change of a state variable is not directly proportional to the input. These systems are generally
difficult to analyze and design, and often require complex mathematical techniques to understand.
In contrast, linear systems are much easier to analyze and design, and their behavior can be
predicted with a high degree of accuracy. The advantage of global linearization is that it allows
for the use of powerful linear control theory and algebraic tools to analyze and design nonlinear
systems. Control system techniques have developed in several contexts, from those which aim to
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model purely electro-mechanical, hydraulic, pneumatic, gravitational or subatomic processes, to
industrial automation and biological systems. In this dissertation, the interest is to focus on a few
problems specific to vehicular applications which can be solved using a specific approach to global
linearization. Particularly, these applications include the prediction of abnormal combustion in an
automotive engine, and the deployment of a tethered subsatellite in orbit about a celestial body
subjected to unknown environmental forces, although a comprehensive survey of other problems
is also presented. The mathematical approaches discussed herein are the recently emergent
expressions of Koopman operator theory.

Real systems can be represented by dynamical models of varying levels of fidelity. On the
upper end, there may exist nonlinear state dynamics. These may include processes that act over a
wide range of timescales, the required resolution of which may not be justifiable in the trade-off
between computational efficiency and meaningful impact on macroscopic properties seen in the
output. Further, the nonlinear dynamics may demonstrate chaotic behaviors, bifurcation and
sensitivity to initial conditions that are not observable in systems with linear dynamics. The
concept of “meaningfulness” may be subjective and is usually quantified in terms of tolerable
sensitivity that may be regarded as negligible given the application, where the magnitude of output
variation, propagation of measurement errors and imperfect parameter definitions are factors.
By sacrificing the required level of output precision or being unable to acquire such, one may
choose to simplify a system’s description at the expense of losing model fidelity. The neglected
dynamics may be considered as disturbance to the system, along with all other processes unknown
or unmodelled. Doing this results in an incomplete accountability of mass and energy processes
needed to truly isolate the system described. However, it is usually required in order to mold the
system description into a mathematically linear form, the advantage of which is the availability
of state-space dependent control methods (e.g., linear quadratic regulator/state-dependent Riccati
equation, or model predictive control, to name a few), estimation techniques or analyses (e.g.,
controllability). Thus, when not inherently linear (a rare care), conventional linearization of
nonlinear dynamics typically involves negligence or lower fidelity approximations of higher-order
dynamics, state-input dependence and disturbances.

The most conventional method of linearization involves approximating a system’s behavior
at a particular state, usually an equilibrium or operating point. The behavior of a system as
described by the solution of differential equations of the state may represent a curve (within
a given plane), whose range approaches a linear form as the domain about the point of lin-
earization is limited. Consequently, the model is then only or approximately valid at or near
the point of linearization, respectively. Such linear models are typically obtained by way of

2



small perturbation theory [2] which utilizes small angle approximations and vanishing terms
containing products of differentials. Here, all state and input values, along with their derivatives
are perturbed with a delta term and the equation is expanded to expose negligible terms.
Alternatively, these terms also readily arise in error dynamics, as have previously been derived
in terms of equations of motion for a solar sail [3]. Another common approach is the use of
a truncated Taylor series expansion about the desired point [4]. These conventional methods
of linearization are generally introduced in undergraduate control systems and mathematics courses.

The first three, and most significant, terms of the Laurent series expansion also happen to
correspond to the form of impedances of an RLC circuit in the Laplace domain. This can be
useful in approximating component values in an unknown branch of a bridge circuit by simply
expanding the balance equation where the unknown branch’s impedance is rearranged as a function
of the Laplace variable. Another approach to linearize affine equations of motion was applied for
spacecraft formation control using vectored thrust [3]. The procedure there was to take the triple
derivative of the state yielding the jolt dynamics, where small angle approximation was then useful
to decouple the state variables and control angles. The result was integrated in the feedback loop
successively to feed into the original (acceleration) and jolt equations, for the plant model and cost
function optimization, respectively, in the following time steps of a control scheme.

Changing state variables is also a traditional method for global linearization, e.g., [5],
[6]. According to the latter, this can be accomplished using either the General or Heuristic
methods to find a system of linear equations in an intermediate variable which is itself a
function of the original state variable. In the Heuristic method, one equates the nonlinear
equation to the general state space equation in controller canonical-like Frobenius form and
unknowns are selected to comply with the Routh-Hurwitz stability criteria. The disadvantages
of this approach are that a stable solution may not be easy to find, and it is computationally
complex for automation. In the General method, the approach is a matter of collecting like
terms containing state variables from the expanded nonlinear equation and grouping them into
convenient definitions for intermediate variables. A potential pitfall of these methods, in some
cases, arises in cases where the system of equations is time-varying and linearization does not
necessarily isolate the effect of state from control inputs. Thus, the result is not generally in true
state space form which is problematic for the implementation of some control methods and analyses.

Additional classifications of global linearization methods exist for affine and bilinear systems,
including state linearization, feedback linearization and restricted feedback linearization. In
studies such as [7] and others, a formal definition is provided as an overarching condition for global
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linearizability with respect to that which may be achievable via a change of state variables as
previously described. However, there are examples of some systems given in [7] that do not fulfill
the definition yet are linearizable within some range, at some point(s), at all but some point(s), or
at “every point locally”. While appreciating the topological formality with which such literature is
produced, it sometimes tends to lack consideration for the practicality of engineering application
for real systems wherein, for example, proving smoothness of a vector field for all possible
solutions of a system’s description is not of concern beyond its intended operating range, or even
at all with the realities of noise and disturbance. Hence, guarantees from formal proofs are usually
unachievable, especially in the case of system descriptions purposefully modeled empirically
whether by design, for simplicity, or due to limitations in understanding of the physical processes
involved. However, such methods continue to be invaluable and definitely yield superior results
over model-based controllers relying on locally linearized dynamics. For example, feedback
linearization has been used for coupled attitude and orbital control of a spacecraft [8].

Other global linearization methods involve alternative ways of representing nonlinear systems
descriptions to forms which may be linear (i.e., with decoupled input/output, endogenous
feedback and disturbance) including as difference fields, 1-forms, Kählar differentials, Carleman
linearization (using polynomials), generalized transfer functions, using output feedback, and as
time-delay systems (see [9] for details on each these approaches). These methods are least common
and continue to be studied as open areas of research in the field of pure mathematics. Lying
obscurely in the middle remains the class of global linearization methods relating to regression
methods, among which include those based on the Koopman operator [10].

Generally, global linearization of nonlinear systems was a research area that experienced its first
boom in the 1970s (e.g., Krener, 1973 and Brockett, 1978, as cited in [7]). This followed a period
around the 1930s, during which it was shown that linear transformations of nonlinear dynamical
systems exist when represented in Hilbert [function] space. This high dimensional space is framed
upon a coordinate system consisting of up to infinite orthonormal bases of functions rather than unit
vectors, wherein the properties of spatial completeness are preserved, i.e., integration, Hausdorff,
etc. While working with Hamiltonian equations, David Hilbert’s contemporary, Bernard Koopman
presented an approach [11], built in turn off of the work of John von Neumann, to resolve this
operator to an explicit combination of spectral modes related to a system’s observed motion. Hence,
this transformation matrix is expressed as the Koopman operator, now commonly denoted as 𝐾 .
Research activity around this idea resurged around 2010 by some notable researchers including Igor
Mezić [12], Peter Schmid [13], Steven Brunton [14] and others [15]–[19], whose cited research has
been very thoroughly reviewed.
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In the remainder of this dissertation, the following notations will be used with respect to letters
and symbols. Vectors are generally represented with an overbar (®) in the form of a rightwards
harpoon. Vectors and matrices are generally boldface. A shifted matrix is followed by a prime. The
transpose is indicated by the superscript T, whereas the complex-conjugate transpose is indicated
with a superscripted asterisk (∗); the former and latter are interchangeable in the case of real num-
bers. The pseudo-inverse of a matrix is indicated by a superscripted dagger (†), whereas the regular
inverse is indicated by a superscripted −1. Estimated and truncated quantities are represented by
a tilde ( ˜). Derivatives with respect to time are represented by an overdot ( ¤), with the number
of overdots corresponding to the order of the derivative. The forward slash (/) indicates division,
or in the context of matrices indicates regular matrix multiplication of the first matrix with the
inverse of the subsequent matrix (i.e., right matrix division). Finally, R.H.S. and L.H.S. are used as
acronyms for right- and left-hand side, respectively, in relation to the equality symbol in an equation.

Chapter 2 presents a detailed literature review of the various vehicular applications utilizing
the Koopman operator, along with the various implementations of Koopman operator theory
that have arisen since the popularization of the dynamic mode decomposition (DMD) algorithm
[20]. Specifically, the types of applications span the realms of aerospace, automotive, rail,
marine, mining, traffic, and robotic systems and subsystems. Chapter 3 provides a mathematical
background on the Koopman operator with some major forms of its solutions (e.g., DMD, HAVOK)
which are implemented in the proceeding novel case studies. These include the prediction of
pre-ignition and superknock in an internal combustion engine (ICE), in Chapter 4, and in the
deployment of a subsatellite from its mothership in a tethered satellite system (TSS), in Chapter 5.
Superknock is a combustion instability seeded by pre-ignition which is highly detrimental to the
structural integrity, performance and harshness of an engine’s operation. Its reliable prediction
in a computationally efficient manner (i.e., that which is suitable for real-time application) is a
significant contribution given that the dynamics involved are highly sensitive, or chaotic, and its
avoidance directly translates to efficiency, safety, user satisfaction and cost savings. Similarly,
tethered satellite deployment is a highly sensitive and mission-critical operation dependent on
numerous environmental factors which cannot be modeled practically. This requires a system
identification technique also suitable for real-time implementation that captures all dynamical
effects, over all relevant time-scales, imposed upon the TSS for effective control. Ineffective
control has in past missions led to expensive loss, rendering this research a valuable contribution
from that perspective as well.
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CHAPTER 2

Literature Review

2.1 Abstract

Koopman operator theory has proven to be a promising approach to nonlinear system identification
and global linearization. For nearly a century, there had been no efficient means of calculating the
Koopman operator for applied engineering purposes. The introduction of a recent computationally
efficient method in the context of fluid dynamics, which is based on the system dynamics
decomposition to a set of normal modes in descending order, has overcome this long-lasting
computational obstacle. The purely data-driven nature of Koopman operators holds the promise
of capturing unknown and complex dynamics for reduced-order model generation and system
identification, through which the rich machinery of linear control techniques can be utilized. Given
the ongoing development of this research area and the many existing open problems in the fields
of smart mobility and vehicle engineering, a survey of techniques and open challenges of applying
Koopman operator theory to this vibrant area is warranted. This review focuses on the various
solutions of the Koopman operator which have emerged in recent years, particularly those focusing
on mobility applications, ranging from characterization and component-level control operations
to vehicle performance and fleet management. Moreover, this comprehensive review of over 100
research papers highlights the breadth of ways Koopman operator theory has been applied to various
vehicular applications with a detailed categorization of the applied Koopman operator-based
algorithm type. Furthermore, this literature review discusses theoretical aspects of Koopman
operator theory that have been largely neglected by the smart mobility and vehicle engineer-
ing community and yet have large potential for contributing to solving open problems in these areas.
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2.2 Introduction

Koopman operator theory is named after Bernard Koopman, who in the 1930s proved the
premise that linear transformations of nonlinear dynamical systems exist when represented in
Hilbert [function] space [11]. Historically, determining a Koopman-invariant subspace was
accomplished by trial and error despite being unsuccessful for most dynamical systems. The
enabling engine for modern-day data-driven applications of the Koopman operator theory are
due to the profound insights on geometrical and statistical properties of dynamical systems in
the Ph.D. dissertation [21] and the foundational line of work [22], [23] on harmonic analysis of
the Koopman operator. Mezić’s pioneering work [21]–[23] along with the computational break-
throughs based on singular value decomposition (SVD) enabled approximation of the Koopman
operator from large amounts of data without relying on the pseudo-inversion of large non-square
matrices. It is remarked that the first modern-day engineering application of Koopman operator the-
ory has been due to Mezić and Banaszuk [23] for model parameter identification in combustion rigs.

Fig. 2.1. Publication timeline of the surveyed literature. The number of studies incorporating
Koopman operator-based methods in smart mobility and vehicle engineering applications has been
increasing nearly exponentially over an eight-year span thus far.

As demonstrated in Figure 2.1, the first vehicular applications started to emerge only six years
after the computational breakthrough due to the Dynamic Mode Decomposition (DMD) technique
was achieved in 2008 [20]. Among vehicular applications alone, it is evident from Figure 2.1 that
the number of studies incorporating Koopman operator-based methods has been increasing nearly
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exponentially over an eight-year time span since 2014. However, with a mere maximum of 30
such studies published so far in a given year, the likely trend is further exponential growth as more
researchers become aware of the associated algorithms, and as the applicability of such algorithms
simultaneously evolves.

Features of the Current Survey. The purely data-driven nature of Koopman operators holds
the promise of capturing unknown and complex dynamics for reduced-order model generation
and system identification, through which the rich machinery of linear control techniques can be
utilized. The emergent nature of the smart mobility and vehicular-related applications, where
the Koopman operator in each particular application needs to be approximated, implies that the
development of various Koopman operator approximation algorithms is expected to grow along
with the vehicular problems they aim to solve. Given the ongoing development of this research
area and the many existing open problems in the fields of smart mobility and vehicle engineering,
a survey of techniques and open challenges of applying Koopman operator theory to this vibrant
area is warranted. To the best of the author’s knowledge, this survey is the first of its kind
reviewing the applications of Koopman operator theory within a focused research area, namely,
smart mobility and vehicle engineering applications. A notable feature of this survey is reviewing
and categorizing the results of over 100 research papers based on both application and algorithm
type (see Table 2.1 and Section 2.5) that are concerned with the applications of Koopman operator
theory to the field of smart mobility and vehicular engineering. Such a comprehensive and detailed
categorization will be beneficial to the research practitioners working in the field. Furthermore,
this review chapter discusses theoretical aspects of Koopman operator theory that have been
largely neglected by the smart mobility and vehicle engineering community and yet have large
potential for contributing to solving open problems in these areas. Additionally, this chapter seeks
to identify gaps in the smart mobility and vehicle engineering research where new and existing
Koopman operator-based methods have the potential to further develop and address unsolved
problems potentially benefiting from the perspectives of nonlinear system identification, control,
global linearization, and the predictive powers that Koopman operator theory has to offer (see,
e.g., Remarks 4–9).

The rest of this chapter is organized as follows. After presenting the relevant taxonomy in
Section 2.3, a brief overview of the basic underpinnings of the Koopman operator theory is
provided in Section 2.4. The literature review with categorized vehicular applications is presented
in Section 2.5, where each subsection concludes with a list of open research questions for the
application of Koopman operator-based methods in terms of vehicle types not encountered in
the literature. Other relevant applications, which are not explicitly vehicular in nature, and
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theoretical/algorithmic variations are reviewed in Section 2.6.

Remark 1 A survey paper on variants of DMD authored by Chen et al. [24] had been published
in 2012. However, being conducted a decade ago, it was well before the emergence of Koopman
operator vehicular applications in the literature. Nevertheless, a very interesting discussion on the
optimal application of DMD can be found in that paper. Another influential review in the field of
Koopman operator theory is due to Budišić et al. [25]. Over the course of developing this chapter,
Schmid [26], who is the pioneer of the original mode decomposition method, has also published
his own survey on the variants of his method found in the literature. However, Schmid’s survey is
not focused on the specific topic of smart mobility and vehicle engineering applications. Finally,
it is remarked that while Schmid’s survey paper is focused on DMD and its variants, a complete
review on Koopman operator methods in fluid mechanics due to Mezić has been presented in [27].

2.3 General Taxonomy and Vehicle Type Categorization

For the purposes of this survey, a vehicle is generally considered to be any man-made instrument
that can carry a payload, including occupants, equipment, sensors or any other items. In some
contexts, the item may be its own presence. Most generally, vehicle has also been defined as
any mechanized equipment. All these ideas have been captured in Merriam-Webster’s formal
definitions [1]. In this chapter, the physical type of vehicle according to Merriam-Webster is
considered. This physical type includes systems and processes associated with automotive,
aerospace, marine, rail, robotic, and subterranean classes of vehicles, along with some interfacing
or noteworthy classes such as biolocomotion, communication, and traffic management, amongst
others.

The motivation to focus on vehicular applications stems from the fact that many processes and
subsystems are not easily modeled to a sufficient level of fidelity and/or are subject to a significant
level of noise/disturbances. Such conditions pose limitations on the performance, control and
overall utilization of the processes and subsystems that transduce energy into motion. Vehicles
of different types, such as aircraft and automobiles, may further share common subsystems (e.g.,
combustion chamber or pump) or types of maneuvers (e.g., braking or collision avoidance).
Consequently, from a dynamics and controls standpoint, it is sufficient to maintain the scope of
this study to include all major vehicle categories.

Of all the studies found in this survey, Figure 2.2 (the pie chart on the top) illustrates their
proportions in terms of the type of vehicles represented. These include aerospace, automotive,
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marine, mining, traffic, robotics and rail vehicles. Also included are some studies that are
theoretical only in terms of presenting a novel Koopman operator-based algorithm or those of
general relevance (e.g., pertaining to a generic subsystem or component of multiple possible
vehicles) without substantially demonstrating it on any vehicle, whether in simulation, in-vehicle,
or on a hardware-in-the-loop test bench.

Figure 2.2 (the pie chart on the bottom) further breaks down the proportions of studies that
pertain to specific types of functions, rather than vehicle platforms. These include traverse,
maneuver, subsystem and guidance, as defined in what follows.

• Traverse: refers to the macro-scale function of a vehicle moving from one point to another
(e.g., orbiting).

• Maneuver: refers to a specific mission, operation, reconfiguration or change in situation a
vehicle may undertake within its journey (e.g., docking).

• Subsystem: refers to the subject of the study focusing on a component or set of components
and their specific operation (e.g., a battery).

• Guidance: refers to the navigational aspect of vehicle path-finding and maintenance, cor-
rection or modification of trajectory (e.g., obstacle avoidance).

Finally, “Traffic Management" is concerned with the coordinated motion of multiple vehicles.
Given the uniqueness of certain problems arising in traffic management, it was decided to segregate
such studies into their own category.

Remark 2 (Machine Learning Community Taxonomy) With the mainstreaming of Koopman
operator-based methods, there also seems to be a linguistic generalization in that the term “Koop-
man" or “Koopman model" is increasingly used to describe any finite state transition matrix
approximated for an unmodeled or nonlinear system. This is especially true in the artificial in-
telligence and machine learning community (see, e.g., [28]). Such use may continue to uphold
validity since Koopman operator theory remains one of the main formal justifications for utilizing
linear state transition matrices for closely capturing the behavior of nonlinear dynamical systems
by means of proper linearization.

Remark 3 (A Brief Note on CFD studies) The inclusion of computational fluid dynamics (CFD)
studies has generally been avoided in this review. The only exceptions are the studies containing
an explicit vehicular application or proposing a new type of Koopman operator-based system
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identification method/variant. This is because the DMD solution to the Koopman operator was
itself first derived in the very context of CFD (see the seminal work by Schmid [13]) and has since
had the most time to mature in the CFD literature. Many such CFD-centric studies involve a generic
case study of flow past a cylinder or airfoil, which may have relevance to, e.g., lifting surfaces,
screw propellers, or more generically, pumps and turbines. Thus, the inclusion of literature from
the CFD domain poses a vast grey area, often with speculative applicability. For example, residual
DMD (resDMD) was used in a CFD-focused study [29] for supersonic plasma discharge but has
significant relevancy to satellite propulsion systems. To narrow the scope of the search, all literature
pertaining to the fluid dynamics realm has been excluded, other than those with explicit vehicular
applications, or those which identify a novel algorithm (in which case the corresponding study was
grouped into the ‘Theory’ category). This takes away a major source of ambiguity, given that much
of the pure fluid dynamics literature is generalized (e.g., flow past a cylinder) such that it may or
may not be relevant to vehicle motion.
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Fig. 2.2. Vehicle categories (top) and function categories (bottom) of the surveyed smart mobility
and vehicular engineering literature. The area of each piece in the pie charts is proportional to
the ratio of the number of the conducted studies within each particular area to the number of total
studies.
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Table 2.1. Summary of studies organized by employed method.

Algorithm Studies‡

Direct Method of Selecting Koopman Observables (DMa) [30][31]
Direct Methods using Frobenius–Perron Method or [Factorization
of PDEs for] Adjoint Koopman Operator, Method of Characteris-
tics, Legendre polynomials or Schur Decomposition (DMb)

[32][26][33][34][35]
[36][37][38]

Direct Methods including Error Minimization (e.g., using Taylor
Series Error Bounds), Minimization of Frobenius Norm through
Pseudo-inversion of Data Matrix or other Optimization (DMc)

[39][40][41]

Duel Faceted Linearization (DFL) [42]
Bilinear Koopman Realization [43]
Robust Koopman MPC (RK-MPC) or Robust Tube-based MPC
with Koopman (r-KMPC)

[44][45]

Koopman Mode Decomposition (KMD) and/or determination of
Koopman modes only (not Koopman operator), including through
Arnoldi iteration (Note: KMD was first discovered in [22].)

[46][47][48]

Koopman Map Inversion (KMI) [49]
Projection Methods onto Selected/Derived/Required Basis, in-
cluding use of Principle Orthogonal Decomposition (POD)

[50][51][52][53]

Dynamic Mode Decomposition (DMD), excluding where DMD
is compared against modified methods

[54][26][55][56][57]
[58][59][60][61]
[62][63][64][65] [66]

Extended DMD (EDMD) or slightly modified EDMD, e.g., Nat-
urally Structured DMD (NSDMD)

[67][68][26][69][70]
[71][72][73][74]
[75][76][77][78]
[79][80][81][82]
[83][84][85][86] [87]

Weighted Online EDMD (WOEDMD) [88]
Koopman Eigenfunction Extended Dynamic Mode Decomposi-
tion (KEEDMD) or modified KEEDMD

[89][90]

DMD with Control (DMDc) [91][66]
Rescaled DMD (rDMD) [54]
Exact DMD, ANN-based Exact DMD (ANN-EDMD) [26][77]

‡ Detail descriptions are provided in the text.
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Table 2.1. (continued) Summary of studies organized by employed method.

Algorithm Studies‡

Debiased DMD, Forward/Backward DMD (FB-DMD) [26]
Multi-resolution DMD (mrDMD) [26][92]
Hankel Alternative View of Koopman (HAVOK), Hankel DMD
(HDMD) (partial or full-predictive) (Note: Hankel DMD was first
introduced by Arbabi and Mezić[93].)

[26][94][95][96][97]

Higher-order DMD (HODMD) [26][98]
Physics-based Higher-order EDMD (PhysEDMD) [99]
Physics-informed DMD (PiDMD) [100]
Residual DMD (rDMD) [29]
Bilinear EDMD (bEDMD) [101]
Constant Energy Multiscale DMD (CEM-DMD) [77]
Iterative learning of Koopman invariant subspace (LIR-DMD) [77]
Time Delay DMD (TD-DMD) [87]
Kernel DMD (KDMD) [87]
Sparcity Promoting DMD (spDMD) [87]
Deep Koopman, Deep Direct Koopman, or other general Artificial
Neural Network (DDK-ANN) Scheme

[102][103][104][105]
[106][107][108][109] [91]

Neural Koopman Lyapunov Control (nKLC) [110]
Deterministic/Convolutional Koopman Network (DCKNet, CK-
Net), Deep Convolutional Koopman Network (DKN)

[111][112]

Deep Learning-based EDMD (DL-EDMD) [103]
Deep Learning with Recurrent Neural Network (DL-RNN) [113]
Direct Koopman Reinforcement Learning (DKRL) [114]
Split Koopman Autoencoder (SKA) [115]
EDMD with Autodidact Stiffness Learning (ASL-EDMD) [116]
Sparse Identification of Nonlinear Dynamics (SINDy) [117][118]
Stepwise Akaike Information Criteria (SAIC) [118]
Stochastic Koopman Operator (SKO), or Stochastic Adversarial
Koopman Operator (SAK) with Auxillary Neural Network, Gaus-
sian Process-based Koopman Operator (GPK), or other Stochastic
Methods

[28][119][120][83]

‡ Detail descriptions are provided in the text.
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2.4 A Brief Overview of Koopman Operator Theory

Koopman operator theory is founded on the premise that linear transformations of nonlinear
dynamical systems exist when represented in Hilbert [function] space [11]. This high dimensional
space is framed upon a coordinate system consisting of [up to] an infinite number of orthonormal
bases (i.e., a linear combination of functions rather than unit vectors), wherein the properties of
spatial completeness are preserved. The composition operator (i.e., the “Koopman" operator)
mapping “observables" between these two spaces could be resolved explicitly as a combination
of spectral modes that are related to a dynamical system’s observed trajectories. Observables can
be selected as the system’s state and/or some functions thereof. If a set of observables could be
found such that the resultant Koopman operator is finite, then those observables form the basis of
a “Koopman-invariant subspace".

Consider a nonlinear system where the state x is propagated in time according to

x𝑘+1 = F x𝑘 , (2.1)

where x𝑘 = x(𝑡𝑘 ) is the state at time at sample number 𝑘 and F is a proper dynamical mapping.
The premise of the theory is that there exists a Koopman operator, K, which has the property
of linearly propagating the observables, y ∈ R𝑚, of any system (including nonlinear and chaotic
systems) through Hilbert space [11]. In other words, the operator K acts according to

y𝑘+1 = Ky𝑘 , (2.2)

where y𝑘 = y(𝑡𝑘 ) is a vector of observables (the state and/or functions thereof) at time 𝑘 , and can
be decomposed to a set of observables, g, which may or may not be finite, such that (for brevity of
exposition, let us work with the finite presentation with 𝑝 functions)

y𝑘 = g(x𝑘 ) = [𝑔1(x𝑘 ), 𝑔2(x𝑘 ), . . . , 𝑔𝑝 (x𝑘 )]⊤. (2.3)

Additionally, under the property of function composition given by

K (g) = g ◦ F , (2.4)

ensures that the state transition rule

x𝑘+1 = K(g(x𝑘 )) = A(x𝑘 ), (2.5)
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where A := K ◦ g governs the state propagation through time.

Historically, determining a Koopman-invariant subspace and computing the matrix 𝐴 given
by (2.5) was accomplished by trial and error despite being unsuccessful for most dynamical systems
[10]. The enabling engine for modern-day data-driven applications of the Koopman operator theory
are due to the profound insights on geometrical and statistical properties of dynamical systems in
the Ph.D. dissertation [21] and the foundational line of work [22], [23] on harmonic analysis of
the Koopman operator. Mezić’s pioneering work [21]–[23] along with the computational break-
throughs based on singular value decomposition (SVD) enabled approximation of the Koopman
operator from large amounts of data without relying on the pseudo-inversion of large non-square
matrices. It is remarked that the first modern-day engineering application of Koopman operator
theory has been due to Mezić and Banaszuk [23] for model parameter identification in combustion
rigs. In what follows, a brief exposition is provided for the main DMD technique that has been the
main driving force behind the proliferation of various applications of Koopman operator theory to a
plethora of disciplines including geology, epidemiology, finance, and neurology, to name a few (see,
e.g., [121] and the references therein). Additionally, Figure 2.3 provides an intuitive overview of the
explained DMD process for the generation of a linearized and reduced-order model of an example
nonlinear dynamical system (i.e., a tethered satellite system subject to unknown disturbances [122]).

From a practical perspective, the matrix A in (2.5) is the approximation of the Koopman
operator acting upon the function space. Since A is constant in a Koopman-invariant subspace,
it may be applied to an entire collection of 𝑚 measurements, propagating the data matrix X
to the time-shifted data matrix X′, in which the set of observables are arranged column-wise.
Specifically, these data matrices are represented as

X = [x0, · · · , x𝑚−1],
X′ = [x1, · · · , x𝑚] .

(2.6)

A straightforward and yet computationally inefficient method for computing an approximation of
the Koopman operator can be achieved by multiplying both sides of Eq. 2.5 by the inverse of the
data matrix, inv(X). However, this matrix may be too large to invert or non-square. Rather, a more
practical solution relies on solving the following optimization problem

A = argminA∥X′ − AX∥𝐹 , (2.7)

where ∥ · ∥𝐹 denotes the Frobenius norm.
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Fig. 2.3. DMD process for linearized, reduced-order model generation of nonlinear Tethered
Satellite System subject to unknown disturbances.

To solve the optimization given by (2.7), regression yields the best-fit fixed Koopman operator,
which propagates the selected observables, even if not precisely Koopman-invariant, between any
two corresponding columns of the original and time-shifted data matrices. Another way of finding
an approximate solution to the minimization problem in Equation (2.7) is to compute proper
pseudo-inverses. For instance, SVD-based methods rely on computing the Moore-Penrose left
pseudo-inverse. If the data matrix is coincidentally square and invertable, yet the observables are
not perfectly Koopman-invariant, the attained solution will not act as a reliable Koopman operator
between all sets of corresponding observables. Moreover, a computational roadblock exists in that
observable data over any practical length of time or collected with a reasonably small sampling
time quickly accumulates to a data matrix too large to invert using a desktop computer. A typical
in-vehicle electronic control unit would likely be even more so limited in terms of available
computational capacity.

Methods such as DMD [13] therefore use SVD to obtain a factorization of the transition matrix
that is organized by order of modes of decreasing magnitude (see, also, Figure 2.3). This implies
that the major components of the dynamics are captured in a manner that dynamical modes of
higher ranks have higher noise-to-signal ratios. Thus, although the dynamics are decomposed into
a linear combination of a large set of bases, a reasonable truncation can still be made, which results
in a reasonable approximation for engineering purposes. One example of this process is illustrated
in Figure 2.3, where DMD is used to obtain a linear, reduced-order model of a tethered subsatellite
undergoing deployment [122] while subjected to multiple environmental disturbances which are
too complicated to accurately model, yet whose effects are captured in the observed data. The
model truncation capability afforded by the DMD technique and its variants allows for tuning to
achieve a tolerable signal-to-noise ratio.

In the DMD method [13], the dynamics are decomposed into a linear combination of a large
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set of bases. Nevertheless, a reasonable truncation, which is suitable for engineering purposes, can
be achieved. Essentially, the system dynamics, which are represented by a finite set of nonlinear
equations, is approximated with an up to infinite set of linear state equations. The order of the
obtained linear system can be tuned using a proper reduced-order truncation method as described
later. Therefore, in the DMD method, an approximated linear system is used such that

x𝑘+1 = Ax𝑘 . (2.8)

To obtain the operator A for a general nonlinear system using the SVD-based approach, the
snapshots of measurable quantities are obtained from Equation (2.6). For the data matrix X, the
following SVD factorization holds

X = UΣΣΣV. (2.9)

In the decomposition given by (2.9), U and V are unitary matrices and ( )∗ is the complex
conjugate transpose operator. Moreover, ΣΣΣ is a square matrix of singular values arranged by order
of decreasing magnitude, with those in the lower rows corresponding to negligible dynamic modes
(i.e., lower signal-to-noise ratio). Thus, the three matrices of the right-hand-side in (2.9) can be
truncated to rank 𝑟 − 1 which maintains the best fit to data. Indeed, 𝑟 is the optimal hard threshold
attained through proper techniques such as the Gavish & Donoho method (see pp. 31 in [14]), to
comply with a required truncation size.

Furthermore, it is possible to obtain the eigendecomposition

XX∗ = U diag(ΣΣΣ2, 0)U∗

X∗X = UΣΣΣ2V∗,
(2.10)

from (2.9). In this eigendecomposition, U contains the eigenvectors of XX∗ and its columns
are ordered according to how much correlation they capture in the columns of X. A geometric
interpretation of the SVD given by (2.10) is that it is a product of rotation matrices scaled by the
singular values, which is necessary to project data, X, from the original coordinate system onto a
frame wherein the bases of the column-space are defined by U and the bases of the row-space are
defined by V.

Once the data matrix X from Equation (2.6) has been decomposed, the full state transition matrix
can be reconstructed according to

A = X′ṼΣ̃ΣΣ
−1

Ũ∗ (2.11)
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where𝑈 is also interpreted as the modes of principal orthogonal decomposition and the relationship

K̃ = Ũ∗KŨ (2.12)

holds for the unitary matrix Ũ. Finally, the truncated Koopman matrix can be computed according
to

K̃ = Ũ∗X′ṼΣ̃ΣΣ
−1
, (2.13)

where (˜) denotes the truncated quantities. See the textbook [14] for further details on reverting
the obtained truncated states back to the original state space.

Eq. 2.3 provides the most general form for choosing the observables. Alternatively, if a catalog
of functions (of the states) were included therein, the algorithm would then be referred to as
Extended DMD (EDMD). Similarly, in the Sparse Identification of Nonlinear Dynamics (SINDy)
algorithm, the time-shifted data matrix (or time derivative of the state, in the continuous time case)
is equated to a matrix of possible coefficients projected onto a candidate library of functions to
reproduce a structurally linear equivalent system representation of the nonlinear dynamics.

The Hankel Alternative View of Koopman (HAVOK) is yet another adaptation of DMD which
has a characteristically predictive quality, especially for chaotic systems. This approach relies
on Takens embedding theorem, which states that the full dynamics of a chaotic attractor can be
reconstructed from the time series of a single measurement diffeomorphic to the original dynamics.
It is remarked that the first instance of utilization of Takens embedding theorem in data-driven
Koopman operator theory is due to Mezić and Banaszuk [23]. This forms a relationship between
the Hankel matrix interpretation of all elements propagating through a constant linear transformation
of the initial state, and a chaotic system quality of being sensitive to initial conditions. Others have
found alternative methods of approximating the Koopman operator (e.g., by use of artificial neural
networks), while some have adapted DMD in further creative ways (e.g., Multi-resolution DMD)
suited for increased robustness in specific applications. The goal of this chapter is to present the
application of the Koopman operator (through DMD and its evolved and alternative forms) on
applications in the domain of vehicle engineering and smart mobility. The reader is referred to the
textbook [14] for more information on Koopman operator theory, SVD, DMD, optimal truncation
and other fundamental methods.
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2.5 Literature Review: Vehicular Applications

In this section, a review of the literature is presented and the results of over 100 research papers are
categorized based on both application and algorithm type that are concerned with the applications
of Koopman operator theory to the field of smart mobility and vehicular engineering. Table 2.1
details the specific Koopman operator-based system identification method/algorithm used by the
studies referenced hereafter. Given the vast number of algorithms and variants thereof, the reader is
encouraged to refer to the respective studies to obtain their technical details. The following presents
the surveyed literature organized by vehicle category.

2.5.1 Aerospace

2.5.1.1 Drones/Quadrotors

Many of the aerospace applications falling under this review are concerned with unmanned aerial
vehicles (UAVs), usually of the quadcopter variety. Specific studies also focus on particular
maneuvers, for example, Koopman Eigenfunction Dynamic Mode Decomposition (KEEDMD)
has been used for general quadrotor model generation [90] and, more specifically, to learn the non-
linear ground-effect to improve the speed and quality with which a multi-rotor aircraft may land [89].

Optimization of UAV flight has been explored using Dynamic Mode Decomposition (DMD) [61]
and DMD with Control (DMDc) [91] in optimal control, and by the adjoint Koopman operator [34]
for expected state propagation, with demonstrated advantages over stochastic control schemes. The
adjoint Koopman operator in this literature refers to the left adjoint of the Frobenius-Perron operator.

Several methods including DMD, Extended DMD (EDMD), bilinear EDMD (biEDMD) and
Koopman Canonical Transform have been compared against each other on a planar quadrotor
flight testbed, where the superiority of the Koopman Canonical Transform has been demonstrated
in handling affine dynamics for nonlinear model predictive control (NMPC).

Path planning using Robust Koopman Model Predictive Control (RK-MPC) has also been
demonstrated in a quadrotor simulation [44]. Optimal control for quadcopter stabilization has
been demonstrated with models identified using EDMD [68]. Finally, an artificial neural network
(ANN)-based approach called Split Koopman Autoencoder has been used in the context of remote
state monitoring of UAVs [115], where the communication aspect of flight pertaining to radio
frequency signal processing has been addressed.
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2.5.1.2 Missiles/Hypersonic Regime

A few other studies pertaining to the aeronautical domain have also been found to utilize Koopman
operator-based methods. This includes the application of ballistic airdrop, where the adjoint
Koopman operator is used to determine the optimal air release point for ariel delivery to a specified
ground target under parametric uncertainty [32]. Modeling of missile dynamics from noisy data
for model predictive control has also been undertaken using Sparse Identification of Nonlinear
Dynamics (SINDy) and Stepwise Akaike Information Criteria (SAIC), where it has been shown to
be superior in comparison with state-feedback control [118].

Remaining the theme of supersonic flight, model generation for aerodynamic flutter has been
performed using Higher Order DMD (HODMD) to extract frequencies and damping from tests
with reduced manual interaction and more robust aeroelastic analysis [98]. Further, in this flow
regime, supersonic combustion ramjet (ScramJet) engines are susceptible to an “unstart condition”,
which is when the airflow in a duct violently breaks down. This phenomenon occurs when the
pre-combustion shock train (PSCT) location translates upstream beyond the front of the inlet,
causing flow separation within the engine and resultant shear layer oscillations. The detection and
characterization of this condition relies on accurate modeling of flow characteristics which has
been the objective of a study through the use of multi-resolution DMD (mrDMD), demonstrating
the inadequacy of the regular DMD approach [92].

For autonomous aircraft and for rocket combustion instability control, principle orthogonal
decomposition-based DMD (POD-DMD) was used to simplify equations of motion with a reduced
number of variables and selective sensitivity [53]. POD-DMD is also found to have been used in
the computational fluid dynamics (CFD) analysis of flow around an airfoil in the sub/transonic
regime, with the method increasing computational efficiency by three orders of magnitude while
accuracy remained within 5% as compared to other methods [52].

Transitioning between air and space flight, upper and trans-atmospheric dynamics have posed a
challenge due to the many environmental factors involved as well as vehicle controllability in what
is usually the hypersonic flight regime. For this situation, EDMD has been employed to identify a
system model for optimal attitude control [71]. Similarly, the adjoint Koopman operator has also
been used [123] to identify equations of motion through a linearly-constrained quadratic program
to model atmospheric reentry.

21



2.5.1.3 Space Systems

In terms of space system applications, the categories can again be divided into dynamics-related
(including traversing and maneuvering) and subsystem-related (including propulsion). It was
found most applications pertained to the minimum-fuel orbital rendezvous. One approach
employed Koopman Map Inversion to obtain a linearized model for optimal control [49], while
another approach demonstrated Neural Koopman Lyapunov Control for linearizing a generalized
affine system [110]. Minimization of the Frobenius norm was performed on a similarly affine
thrust-vectoring application using the pseudo-inverse to directly solve for the Koopman operator
[40].

In the study [38], a linear model for zonal harmonics around the moon was derived using
Schur decomposition, rather than a singular value decomposition (SVD) approach to approximate
solutions to perturbed ordinary differential equations. A related problem is lunar station-keeping,
namely for Lyapunov and Halo orbits in the circular-restricted three-body problem (CR3BP).
One study creatively obtained the Koopman operator approximation of the system matrix through
direct computation using Legendre polynomials, which are already by their nature a complete
and finite set of orthonormal basis in Hilbert space [36]. See [3] for more information on the CR3BP.

Low thrust trajectory optimization in underactuated orbital flight was addressed by a projection
method onto vector fields defined by the input matrix [50]. The authors of [122] demonstrated
the extraction of system equations for a tethered subsatellite deployment maneuver subjected to
unmodelled dynamics and disturbances using DMD and DMDc. The same objective was achieved
by directly using Koopman-invariant observables [30], but is not always possible or practical for
most problems. Further, system equations of a lander modeled as an inverted pendulum with
stabilization thrusters below its center of gravity were derived using EDMD [76]. EDMD was
also used for a lunar lander in the dynamic allocation of control between a human driver and
robot [85], [86], referred to as model-based shared control (MbSC).

On the subsystem side of space applications, DMD was used to find resonant frequencies, damp-
ing coefficient and mode shapes in a CFD simulation of a rocket engine’s cryogenic swirl injector
[63], the critical flow rate at which vibration occurs, or “garden hose instability” (commonly
encountered in rocket engines), was investigated using Arnoldi iteration to attain Koopman modes
[48].

Remark 4 (Identified Gap in the Literature) Although the objective of the aforementioned
aerospace-related studies has been limited to system identification, the ultimate goal of almost
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37% of the studies within this vehicle category (which is almost 46% above all vehicle categories
combined together) was to obtain equations of motion in a linear form for the purposes of control
using model predictive control (MPC) or other state-space methods. As it can be seen from Fig.
2.2, Aerospace has been the largest vehicle class employing emerging Koopman operator-based
methods as compared to any other vehicle class. Despite this, the variety of aerospace vehicle types
was found to be quite limited, mostly being small multi-rotor type UAVs. For this vehicle class, the
surveyed literature did not seem to include material pertaining to helicopters and balloons.

2.5.2 Automotive

2.5.2.1 Automobile Engines

In terms of vehicle subsystems for combustion instability in internal combustion engines (ICE),
the Hankel Alternative View of Koopman (HAVOK) method was employed for the prediction of
pre-ignition and super-knock from real-time peak-pressure data [124], while the authors of [96]
employed a portion of the same method (although not by name) to describe the thermoacoustic
oscillation characterizing the transition between chaotic states and limit cycles. Also for ICE
engines, turbine dynamics were investigated (e.g., in superchargers) using EDMD to model and
predict turbulent and steady-state behavior [73].

2.5.2.2 EV Applications

In terms of electric vehicles (EVs), a linear model for motor control was extracted using DMD to
actuate a permanent magnet synchronous motor through switching insulated-gate bipolar transistors
(IGBTs) [59]. IGBTs are a common means to convert direct current (DC) from a battery to the
appropriate coils within a motor to control speed in modern EVs. Similarly, an artificial neural
network approach has been used to linearize a DC-DC converter model for switching control
[109]. Furthermore, linear data-driven predictors afforded by Koopman operator formalism have
been utilized to formulate the eco-driving problem for electric vehicles in a constrained quadratic
program setting [125], [126]. Additionally, data-driven design methods based on Koopman operator
theory have been utilized to design X-in-the-loop environments for electrical vehicle systems [127].
Finally, there is a recent body of literature on Koopman operator-based state estimation/prediction
and fault diagnosis for batteries that are widely used in electric vehicles [128], [129].

2.5.2.3 Automotive Model Identification and Control

Model identification for nonlinear tire dynamics using EDMD is investigated in both [69] and [70],
with the former utilizing a single-track model (making it applicable to motorcycles), while the latter
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further applies MPC control. Similarly, [31] develops an MPC controller with a single-track model
obtained by learning Koopman-invariant observables directly from data to recover the vehicle from
a nonlinear state (e.g., skidding), when present. MPC is also used to minimize bounce by means
of adjusting propulsive force in [74] while using EDMD for their model generation, thus becoming
an alternative method for suspension control. Finally, handling and stability control (with linear
time-varying MPC, or LTV-MPC) using torque vectoring is explored by [72] using EDMD for
model identification.

2.5.2.4 Autonomous Vehicle Motion Control/ADAS Systems

The remaining studies in this vehicle category pertain to motion control in autonomous or advanced
driver-assist systems (ADAS). In this group, artificial neural network methods were most prevalent.
Control for vehicle motion planning was enabled using Deep Direct Koopman (DDK) or variants
in [102], [103] and [104], with the latter-most specifically applied to a case study dealing with
optimal trajectory prediction in racing. Deep learning-based EDMD was employed in [103], also
for system identification in path tracking. For vehicle-to-vehicle related optimized management of
traffic comprised of autonomous vehicles, data-driven MPC (DMPC) was employed for coordinated
movement [108] (e.g., through a controlled intersection) which they term as “autonomous vehicle
platooning”; here their focus is also on the comparison between centralized versus distributed
controllers. The final studies in this category all aim to also obtain a linear model for MPC
design and have to do with lane-keeping employing Bilinear Koopman Realization [43], Koopman
Tracking MPC (KTMPC) [106], and Weighted Online EDMD (WOEDMD) [88] for Operator-AV
shared control.

Remark 5 (Identified Gap in the Literature) For this vehicle class, the surveyed literature did
not seem to include studies pertaining to tracked (including tanks) and screw-propelled vehicles,
vehicles otherwise specialized for travel over multiple terrains (e.g., snow, sand, grass, or semi-
aquatic environments), as well as tractors, emerging e-mobility devices and other specialized
vehicles. Relevant information for applications concerning rovers may be found in the robotics
literature, presented in an upcoming section.

2.5.3 Marine

2.5.3.1 Autonomous Marine Vehicles

This vehicle category included some items which could have been categorized instead in the
section for robotics, however, where the application dealt specifically with guidance, navigation or
propulsion in water, it was considered to be a marine vehicle. This includes a robotic fish, where
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an EDMD-like algorithm was employed using high-order derivatives of physics-based functions of
the state to linearize affine dynamics [35]. Similarly, the adjoint Koopman operator was used to
improve the efficiency of a swimming robot in a flow-like environment [37], where it could learn
the dynamics of its environment. Finally, a robot was shown to follow a simulated river while
avoiding probable locations of unsafe areas (navigation with probabilistic safety constraints) using
Naturally Structured DMD (NSDMD) [87], which is actually a modified EDMD algorithm.

2.5.3.2 Oceanic Applications

The next common theme relates to oceanic applications. In the context of an oil spill, oceanic
flow was modeled using the adjoint Koopman operator to determine the optimal location for ships
to release dispersant to control contaminants in a double-gyre fluid flow field [35]. Prediction
of wind and oceanic flow patterns was also included in a review that surveyed the use of DMD
and its variants [26], including EDMD, Exact DMD, Debiased DMD (also known as forward-
and backward-DMD, multiresolution DMD, Hankel DMD (also known as HAVOK), higher-order
DMD (which includes derivatives of observable functions) and the adjoint Koopman operator.
However, these are not all applied to vehicular applications, yet are a valuable resource for one
who seeks to find an appropriate Koopman operator-based method for a potential vehicular
application. Finally, a dissertation by [87] presents Time-delay DMD (TD-DMD), EDMD, Kernel
DMD (KDMD) and Sparsity Promoting DMD (spDMD), and includes the application of model
identification for the 3D turbulent air-wake of a ship.

A unique study has also been found relating to the measurement of sea ice concentration, which
aims to detect exponentially decaying spatial modes in the Arctic and Antarctic oceans [47]. This
study is an example of one explicitly relating to satellite data processing, however, there may be
many others using Koopman operator-based methods extending into the area of remote sensing and
geographic information systems (GIS) which are not within the scope of this survey.

Remark 6 (Identified Gap in the Literature) For this vehicle class, the surveyed literature did
not seem to include studies pertaining to hovercraft, submarines (including autonomous or re-
motely piloted underwater vehicles) and offshore platforms. Relevant information for applications
concerning hydrofoils may be found in the CFD literature.
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2.5.4 Mining

2.5.4.1 Hydraulic Fracturing

For this category, the most common studies employing Koopman operator-based methods were
found for the application of hydraulic fracturing, which included [130], [131], [132] and [133].
However, these studies were deemed to fall outside the scope of this review due to their non-
vehicular nature. This is due to the fact that they focused largely on the detection of shale deposits
with fixed drilling infrastructure. On the other hand, from a subsystem perspective, it may be
somewhat appropriate to include processes enabling natural resource extraction through pipelines.
In that sense, Hankel-based DMD (HDMD) was used to model the multiphase flow dynamics of
an oil-gas slug and forecast hold-up time profiles [94]. At the very least, this could have relevance
to the operation of inspection/health-monitoring and cleaning vehicles that are typically used in
pipelines.

2.5.4.2 Autonomous Excavation

Amongst other studies within this category, an autonomous excavation application was found where
Koopman operator-based system identification was performed using Duel Faceted Linearization
for the selection of Koopman invariant observable variables [42], whereafter an MPC control
strategy was applied. Koopman Mode Decomposition (KMD) was used for identifying growing
or decaying modes from traffic data and was shown to be superior in performance as compared
to artificial intelligence methods [46], [134]. Finally, the aforementioned study on autonomous
vehicle platooning [108] can arguably also belong in this category.

Remark 7 (Identified Gap in the Literature) For this vehicle class, the surveyed literature did
not seem to include studies pertaining to subterranean machines, such as those used for tunnel
boring or directional drilling, landships, and elevators.

2.5.5 Traffic

Traffic management was found to be an area of research where Koopman operator-based system
identification techniques are being used. Given its distinctness from physical road vehicles, it has
been assigned its own category. The majority of applications in this class of vehicle pertained to
traffic signal phase timing. In the studies by [56] and [57], DMD was utilized for early identification
of unstable queue growth, with the latter further proposing an adaptive traffic control system. The
same objective was sought by [75], but instead using EDMD to predict pedestrian traffic and an
MPC controller for vehicle signaling in response to it.
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2.5.6 Robotics

2.5.6.1 Robotic Arms

The operation of robotic arms was found to be the most common application in this category
and has been treated as a “vehicle” for the purposes of this survey as such devices are usually
employed to spatially transport a payload from one point to another. For this purpose, EDMD was
used (which they refer to as Koopman-MPC) to actuate the arm under voltage disturbance [67].
An aforementioned study from the Aerospace category [91] also demonstrates DMDc and other
approaches including ANN and Reinforcement Learning on a robotic arm.

2.5.6.2 Human-Robot Collaboration

A modified form of EDMD using Autodidact Stiffness Learning was used for detection and adaptiv-
ity in applied torque for the human-machine interface of a manipulator (i.e., yoke controller) [116].
Similarly, end-effector motion of industrial robotic arms around humans requires environmental
state prediction for safe path planning. This was done in one study where the Koopman operator
was directly solved for by taking the pseudo-inverse involved in minimization of the Frobenius
norm (a computationally expensive operation) [41]. The same objective of safe path planning
was also achieved in [33] with the use of the adjoint Koopman operator and in [120] using the
Stochastic Koopman Operator. The latter study also cited an interesting application of their method
for automated air traffic management but was not selected for inclusion in the Aerospace category
given the lack of demonstration (i.e., simulation, physical experiment or substantive formulation).

2.5.6.3 Soft Robotics

Other robotics-related applications found in the literature included a pneumatically actuated soft
manipulator which used EDMD for pick & place operations for objects of unknown mass [80].
Underactuated control of the same type of robot was explored in [95] using Hankel DMD (HDMD).
An aforementioned study from the Aerospace category [68] also involved control of a robotic ball
(called “Sphero SPRK”) rolling in level sand to follow a predetermined trajectory, EDMD was
used here. Similarly, another study provides an example of a wheeled robot that uses a modified
KEEDMD algorithm to extract unknown mode dynamics with improved computational efficiency
[90].

2.5.6.4 Wheeled/Legged/Swimming Robots

A unique study involving a wheeled robot utilized EDMD for increased computational efficiency
and real-time implementation [81]. Using jointed legs to locomote is another means by which a
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robot may traverse; the authors of [55] investigated such crawling and used DMD to expose the
method’s limitations. Marine robotic applications, as previously mentioned, include the robotic
fish [39] and obstacle-avoiding river-traversing robot using NSDMD [84]. The former used an
MPC controller to make the fish swim in a line or circle, with the linearized model obtained directly
from an adaptive error minimization approach using Taylor series error bounds.

Remark 8 (Identified Gap in the Literature) For this vehicle class, the surveyed literature did
not seem to include studies pertaining to climbing or jumping vehicles, vehicles relying on peristaltic
locomotion (see, e.g., [135] for such a robot prototype), attack or surveillance platforms, and robot
swarms. Although, a unique biolocomotion study was indeed found to employ DMD to enable
mapping between an upper limb and its contra-lateral lower limb while walking forward at constant
speed [58]. This may arguably qualify as a mode of transportation (i.e., walking), and may very
well apply to bipedal robots which are designed to walk like humans.

2.5.7 Rail

Only one single study was found pertaining to this vehicle category, which was for an MPC
application of a high-speed train whose linearized model was obtained via EDMD [82].

Remark 9 (Identified Gap in the Literature) For this vehicle class, the surveyed literature did
not seem to include studies pertaining to trams, cable cars and roller coasters. It is important to
note that factors surrounding the operation of vehicles or their subsystems were not discounted in
the literature search. For example, the HAVOK algorithm’s predictive qualities may have potential
in the areas of environmental forecasting (e.g., passenger load, wind and earthquake) and health
monitoring (e.g., component mean time between failures), such that vehicles could be operated with
appropriate constraints during times of expected adverse conditions.

2.6 Literature Review: Vehicle-related & Other Relevant
Studies

In this section, an overview of other relevant applications was provided which are not explicitly
vehicular in nature, and theoretical/algorithmic variations of the Koopman operator framework that
might be beneficial for future applications in the area of smart mobility and vehicular engineering.
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2.6.1 General Studies Applicable to Vehicles

Studies focused on fluid flow are among the most common vehicle-related research topics where
Koopman operator theory has played an integral role. Using DMD, the modeling of nonlinear
oscillations due to vortex shedding was investigated in [60] and is highly relevant for aeronautical
applications. Also relevant to aeronautical engines that operate in the transonic regime is the
use of DMD to model separated and turbulent flow within a convergent-divergent nozzle [112],
which manifests as the gas path of gas turbine engines. Most internal and external combustion
engines also rely on liquid [fuel] injection, for which [112] is highly relevant as it demonstrates the
modeling, prediction and control of nonlinear flow associated with atomization dynamics, enabled
by DMD and deep convolutional Koopman network (CKN). Similarly, MPC control of nonlinear
fluid flow was demonstrated in [113] using a deep learning approach.

The second most common research area found applicable to this category were studies pertaining
to motor control, which is especially relevant to UAVs and robots, but potentially also to other types
of vehicles when examining them from a subsystem perspective. This was achieved in [119] using
Gaussian process-based Koopman operator in robust controller design, and in [79] using EDMD for
current control for the synchronous operation of motors. Finally, a power management study used
Stochastic Adversarial Koopman Operator with Auxillary Neural Network for the quick learning
of reduced order models that measure the state of charge of Lithium-ion batteries [28]. Potentially
applicable to some aircraft and specialized ground vehicles, one study used DMD in the diagnostics
of natural gas rotating detonation engines [62].

2.6.2 Theoretical Issues with Potential Applications to Smart Mobility and
Vehicular Engineering

This section introduces some studies which are theoretically focused on the derivation of unique
Koopman operator-based techniques but have not been utilized in the application-focused literature.
They are included in this review due to their potential for any future applications the reader may be
motivated towards. Firstly, [54] uses DMD and rescaled DMD (rDMD) for image processing. Also
relating to images, [111] used Deterministic and Convolutional Koopman Networks (DCKNet
and CKNet, respectively) to predict a suitable trajectory from a provided topography to solve
the standard Mountain Car Problem. This may have relevance to energy-limited adaptive cruise
control applications in the automotive category. Linearized, reduced order models in [100]
are identified using Physics-informed DMD (piDMD), while [51] similarly makes a case for
physics preservation but utilizes a projection-based model reduction approach. Examples in
the former include channel flow and flow past a cylinder, which may be relevant to Marine
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vehicles, but does not explicitly specify such. The inverted pendulum model is generated in
[105] using Deep Neural Network-based Koopman (Koopman DNN), with [107] also employing
an ANN approach, and [114] combining ANN with accelerated learning using Deep Koopman
Reinforcement Learning (DKRL). Finally, an ANN-based Exact DMD approach is also presented
in [77] in comparison with EDMD and Iterative Learning of Reconstructed Koopman operator
(LIR-DMD) for the development of multi-scale models from coarse data with long-range prediction.

EDMD and Stochastic Koopman Operator (SKO) are used in [83], while [78] presents a modified
EDMD. It has been noted that throughout this survey, EDMD was the most used method in a
modified form. Sparse Identification of Nonlinear Dynamics with Control (SINDYc) has been
developed in [83], and can potentially be applied anywhere DMDc has been used (e.g., in [122] for
tethered subsatellite deployment), although the paper demonstrates its application on a predator-
prey model and the Lorenz system. An example in [45] applies Robust Tube-based MPC with
Koopman (r-KMPC) on the Van der Pol Oscillator, which may have relevance to applications in
wireless communication, among other areas. Finally, an interesting application of auto-tuning (i.e.,
model evaluation) using DMD was presented in [65] in the context of a zero-sum game. This may
have potential applications in the balancing of parameters and fuzzy criteria in the realm of AV
aggressiveness and wargaming.

2.7 Conclusion

Since its advent in 1931, Koopman operator theory [11] has only recently been actively utilized
for solving practical problems, thanks to the introduction of the DMD algorithm in 2008 [20].
Since then, a multitude of DMD algorithm variations have risen to prominence and found utility
across various fields. A notable feature of this survey was reviewing and categorizing the results
of over 100 research papers based on both application and algorithm type in smart mobility and
vehicle engineering (see Table 2.1 and Section 2.5). Additionally, this survey identified potential
research gaps in smart mobility and vehicular engineering applications (Remarks 4–9). Finally,
this review chapter discussed theoretical aspects of Koopman operator theory that have been
largely neglected by the smart mobility and vehicle engineering community and yet have large
potential for contributing to solving open problems in these areas (see Section 2.6.2).

Future Research Directions. Given the emergence of cyber-threats against connected and au-
tonomous vehicles as well as robotic systems (see, e.g., [136], [137]), a future research direction
might include utilizing Koopman operator-based algorithms for designing cyber-resilient vehicular
and smart mobility applications (see, e.g., [138] for a related line of research). Another poten-
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tial research direction is using Koopman operator-based algorithms for predicting the motion of
vulnerable road users (VRUs), e.g., pedestrians and cyclists (see, e.g., [139], [140]). Finally, reha-
bilitation robotics and robotic exoskeletons can be the benefactors of the predictive capabilities of
Koopman operator-based algorithms for detecting tripping events and/or system identification in
various modes of locomotion (see, e.g., [141], [142]).
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CHAPTER 3

Mathematical Background

3.1 Introduction

This chapter provides a stand-alone overview of the Koopman operator and its approximation using
the Dynamic Mode Decomposition (DMD) algorithm. The Singular Value Decomposition (SVD)
approach is used for this, although an iterative approach using the Arnoldi method also exists. As
seen in Chapter 2, DMD has been elemental to the recent explosion of research in engineering
applications of the Koopman operator, with most other methods being derived therefrom. For
example, DMD with Control (DMDc) and the Hankel Alternative View of Koopman (HAVOC)
are also utilized in this research but are based fundamentally on the DMD algorithm. This
chapter concludes with some comparison with related approaches to nonlinear system identification,
namely, the Eigenvalue Realization Algorithm (ERA) and Machine Learning methods in general.

3.2 Koopman Operator Theory

Koopman operator theory is based on the premise that linear transformations of nonlinear
dynamical systems exist when represented in the Hilbert (i.e., function) space. This high
dimensional space is framed upon a coordinate system consisting of up to infinite orthonormal
bases of functions rather than unit vectors, wherein the properties of spatial completeness are
preserved, i.e., integration, Hausdorff, etc. The theory aims to resolve this operator to an explicit
combination of spectral modes related to a system’s observed motion. Hence, this transformation
matrix is denoted as the Koopman operator, K.

Nominally, for a nonlinear system of the form

x𝑘+1 = 𝐹 (x𝑘 ) (3.1)
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where x𝑘 = x(𝑡𝑘 ), for which there is available data, one could begin by selecting candidate functions
of the state, g(x(𝑡)), termed ‘observables’ or ‘measurables’, be they inclusive of the state itself,
and/or powers, trigonometric functions, or other nonlinear combinations thereof (e.g., x2

𝑘
𝑠𝑖𝑛(x𝑘 )),

concatenated as

y = [𝑔1(x𝑘 ), 𝑔2(x𝑘 ), ...𝑔𝑝 (x𝑘 )]𝑇 (3.2)

such that,

y𝑘+1 = K(y𝑘 ). (3.3)

These observables are, by definition, linear combinations of eigenfunctions in the Hilbert space
which are invariant to linear transformation by the Koopman operator. A deterministic approach to
resolving ideal observables remains an open problem in the mathematics literature but approaches
such as the Sparse Identification of Nonlinear Dynamics (SINDy) [14] exist wherein a library of
candidate functions with arbitrary coefficients is framed as a regression problem upon measured
data to yield the best fit. With a sufficiently large coefficient matrix and vector of diverse function
terms, it is possible to attain the correct or near-correct form of the solution. This process could
then theoretically be repeated until K̂ = y𝑘+1/y𝑘 → K iteratively converges to a constant value
between all 𝑘 and 𝑘 + 1 observables of the state by way of a regression algorithm. An alternative
approach would theoretically be to arrange the collection of 𝑚 state measurements as a data matrix

X = [x𝑘 , x𝑘+1, x𝑘+2, . . . , x𝑚−1] (3.4)

and the time-shifted data matrix,

X′ = [x𝑘+1, x𝑘+2, x𝑘+3, . . . , x𝑚] (3.5)

and solve for K = X′/X from Eq. 3.3 assuming that it is valid to take y from Eq. 3.2 as the
original state vector. However, y may be too large (or infinite), the selection of observables may
be incorrect (i.e., not invariant in the function space, or not “Koopman invariant”), X may not be
square, and/or be practically too large to invert. Thus, it has historically been extremely difficult
and impractical to solve for the Koopman operator. If relying on the pseudoinverse to invert
the data matrix or using trial-and-error to determine a suitable set of measurables, this approach
represents an approximation. However, a globally linear approximation may be sufficiently practical
for engineering applications. Fundamentally, the Koopman operator enables a nonlinear system
represented in a finite vector space to alternatively be defined in an up to infinite-dimensional
function space, yet linear in terms of suitable measurables.
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3.3 Dynamic Mode Decomposition

One solution in the construction of a globally linear system representation of a complex system
from data is to approximate the Koopman operator and is known as Dynamic Mode Decomposition
(DMD) [16]. This involves the application of Singular Value Decomposition (SVD) to factorize the
data matrix, whose outputs can be arranged to determine the system’s eigenvalues and lower-order
approximation. Since the SVD is derived from a correlation matrix, the singular values extracted
thereby are conveniently arranged by decreasing magnitudes of dynamic mode, allowing for
truncation of negligible dynamics, which may be those with a low signal-to-noise ratio. This
in turn is used to propagate some state in time to a future time step. Since the SVD involves a
pseudo-inverse, it is regression-based and therefore a best-fit state transition matrix acting as a
globally linear approximation of the nonlinear system.

Taking Eqs. 3.4 and 3.5, and assuming validity in taking y as the original state vector, as
previously mentioned, it can be approximated that X′ − KX ≈ 0, where the Frobenius norm of the
left-hand side is minimized to obtain

K = 𝑎𝑟𝑔𝑚𝑖𝑛A∥X′ − AX∥𝐹 ≈ X′X† (3.6)

where X† is the pseudo-inverse. A convenient approach to this is by way of the SVD. The means
by which the SVD extracts a system’s dynamic modes have to do with its relationship to the
correlation matrices, XX∗ and X∗X. If it is said that a factorization exists such that X = U𝚺V,
where U and V are unitary matrices, then substitution reveals that XX∗ = U 𝑑𝑖𝑎𝑔(𝚺2, 0)U∗ and
X∗X = U𝚺2V∗, where ( )∗ is the complex conjugate transpose and is equal to the regular transpose
when elements of the matrix are real numbers. Moving the conjugate transpose of the unitary
matrices to the left-hand side reveals an eigendecomposition form wherein, e.g., for the former
case, U contains the eigenvectors of XX∗. Therefore, if the diagonal elements of 𝚺 are arranged
in descending magnitude, the columns of U are ordered in terms of how much correlation they
capture in the columns of X. The explanation in [14] also offers a geometric interpretation of the
SVD as being a product of rotation matrices scaled by the singular values necessary to project
data, X, from the original coordinate system onto a frame wherein the bases of the column-space
(i.e., y-components) are defined by U and row-space (i.e., x-components) are defined by V. This is
why U and V are to be unitary matrices, as unitary transformations are such that the inner product
is preserved. Further, the Moore-Penrose pseudo-inverse can be applied to the aforementioned
problem of solving for the K matrix in that the SVD factorization, U𝚺V, of X can be inverted
individually, with 𝚺 guaranteed to be a square matrix. It should be noted that 𝚺 is square either
coincidently, with zero-rows excluded (as when written in the ‘economical’ form), or when rows
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beyond 1 to 𝑟 are truncated as they correspond to negligible dynamic modes. In the lattermost
case, the singular values on the latter rows may be significantly smaller in magnitude or even
orders of magnitude as compared to the singular values in the initial rows.

Gavish and Donoho [143] present a method which can be used to calculate an optimal hard
threshold for 𝑟 . However, this value can also be determined via trial and error, to comply with a
required truncation size, or by other means. Generally, truncation of the state dynamics matrix up
to rank 𝑟 − 1 is that which yields the best fit to data.

Once the data matrix X from Eq. 3.4 has been decomposed, the truncated Koopman matrix can
be computed as

K̃ = Ũ∗X′Ṽ�̃�−1 (3.7)

where ( )̃ denotes the truncated quantities. It is from this K̃ matrix that the state-space matrices,
A and B, of the surrogate model are extracted and used in the HAVOK algorithm (see Section 4.5).
Eq. 3.7 arises from substituting the expansion K = X′Ṽ�̃�−1Ũ∗ into K̃ = Ũ∗KŨ, with Ũ representing
the matrix of principal orthogonal decomposition modes; this establishes the relationship between
the full and truncated state transition matrices. Thus Eq. 3.3 becomes practically obtainable as

x̃𝑘+1 ≈ K̃x̃𝑘 (3.8)

which is true in the space of principle orthogonal modes and reverted to the space of the original
state vector by the projection x = Ũx̃. This step is important to retain the physical meaning of the
state variables in case they were formulated with such, which is generally the case when intending
to subject the system to control action. Further analysis on the spectral analysis of DMD is available
in [14].

3.3.1 Comparison with Other Methods

3.3.1.1 Comparison with Eigenvalue Realization Algorithm

The Eigensystem Realization Algorithm (ERA) is another technique that leverages the Hankel
matrix. However, it is based exclusively on an arrangement of impulse responses, rather than
concatenated raw data as in the case of the HAVOK algorithm. Depending on the nature of the
system to be identified, this may not be possible. For example, the ERA is very useful when there
exists the possibility of performing controlled experiments. An advantage of using the ERA is
that one may capture a system’s behavior using a minimal set of experimental data. The main
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disadvantage is that lower frequency modes can be missed if lightly damped transients do not decay
within the settling time of the impulse responses used to generate the data. At the expense of a larger
Hankel matrix, the HAVOK algorithm is more robust in capturing complex behaviors including
unknown disturbances and those which change over time. It is for these reasons that HAVOK was
considered more suitable to identify the dynamics of a system under real-time operation. It is
interesting to note that a property of the Hankel matrix is that it can be decomposed in terms of the
product of controllability and observability matrices [144].

3.3.1.2 Comparison with Machine Learning Methods

Koopman operator theory and machine learning are both important tools for analyzing and modeling
complex dynamical systems, but they approach the problem from different perspectives. Koopman
operator theory is a mathematical framework for studying the behavior of nonlinear dynamical
systems. The Koopman operator is a linear operator that acts on functions of the state variables of
a system, and it provides a way to analyze the long-term behavior of the system. The Koopman
operator can be used to compute observables and extract features from the state variables of a
system, which can then be used to make predictions or control the system. Machine learning, on
the other hand, is a set of techniques for building models from data. Machine learning algorithms
are designed to learn patterns and relationships in data, and to use these patterns to make predictions
or decisions. Machine learning is often used in applications where the system being modeled is
complex and difficult to analyze using traditional techniques. While Koopman operator theory
and machine learning have some similarities, they approach the problem of modeling complex
dynamical systems from different perspectives. Koopman operator theory is more focused on
the underlying mathematical structure of the system, while machine learning is more focused
on learning patterns and relationships from data. In some cases, Koopman operator theory and
machine learning can be used together to achieve better performance than either approach could
achieve alone. The choice between Koopman operator theory and machine learning ultimately
depends on the specific requirements of the application and the expertise of the practitioner.
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CHAPTER 4

Superknock Prediction

4.1 Abstract

Super-knock is a phenomenon triggered by pre-ignition and has limited the design envelope of
internal combustion engines in terms of power density. This poses a huge challenge for the
automotive industry where engine sizes have been continuously decreasing due to the demand
for weight savings and integration with electrified powertrains. Such downsized engines typically
require increased boost pressure, availing conditions conducive to pre-ignition which in turn may
trigger super-knock. Traditionally, this and other forms of knock have been managed by way of
a ‘detection and mitigation’ approach in place of ‘prediction and avoidance’ due to an evolving
understanding of corresponding combustion dynamics, as well as the incapability of emerging real-
time computational methods to perform and actuate over the time-scale required. In this study, a
data-driven algorithm is used to extract (and adapt) a globally linearized system representation using
eigen-time series, isolating the system’s dynamic modes to capture underlying effects leading to
pre-ignition without the need for physics-based modeling. This approach is a unique application of
‘Hankel Alternative View of Koopman’ analysis for chaotic systems and can be executed onboard an
engine control module supplying a buffer of recent to latest time-step data to predict an impending
pre-ignition event. The proposed design does not require any change to existing sensors and
actuators in the existing knock management system architecture, nor would it require any significant
increase in computational capacity in terms of the associated engine control unit. A simulation was
conducted with real super-knock data to nominally test applicability of the algorithm. From this
training data set, the linearized dynamical system was able to predict pre-ignition approximately
2.27 seconds prior to the event, which is adequate to take mitigating action. Further validation
runs covering low, medium, and high engine speeds within the envelope of low-speed pre-ignition
generated similar results.
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4.2 Introduction

Knock, in a spark-ignition internal combustion engine (ICE) is the condition resulting from
improper air-fuel mixture or other combustion reactants unintentionally detonating due to any
source excluding intentional spark-triggered flame propagation. The etymology of the word
relates to the sound usually accompanying this condition, which may be the result of various
direct or indirect mechanisms, for example, shock waves or detonation-induced vibrations in the
cylinder wall [145]. Generally, classifications of knock may include heavy-knock, slight-knock,
non-knock, deto-knock, and super-knock. The lattermost is often synonymous with, but technically
a result of pre-ignition, which is most well-known to occur at low speed and high load con-
ditions [146], [147], or during cold starts, and limits the downsizing of boosted engines [148], [149].

For efficiency and increased power, many modern engines use pressurized, ‘charge air’ to
supply the intake manifold, in contrast to a naturally aspirated engine. This increased pressure is
called boost pressure, which can be created by using a compressor, called a supercharger. When a
supercharger is powered by a turbine, in turn, driven by exhaust gas to salvage excess kinetic energy
from recirculated combustion products, it is then referred to as a turbocharger. Smaller engines,
which are especially used in hybrid vehicles as secondary or shared-capacity propulsion typically
require charge air to maintain adequate torque generation [150] and maximum power-to-weight
ratio [151].

Consequentially, these smaller engines running at higher pressures are associated with increased
sensitivity to pre-ignition. Pre-ignition as a chaotic event is characterized by this difficulty in
prediction due to sensitivity to initial conditions [152], even though resulting from non-random
underlying dynamical processes. Thus, it is in a mathematical, rather than colloquial, sense that
abnormal combustion such as pre-ignition and super-knock are described as chaotic events. This
is also in agreement with other literature [153], [154], and preserves the idea of combustion as
a deterministic process upon which modeling efforts, such as [155], are based. Interestingly, the
phase portrait of crank angle, piston velocity and cylinder pressure during super-knock would
resemble the Rössler attractor – a classical chaotic system.

Ordinary knock has been described as quasi-periodic in nature [148]; pre-ignition, however, is
sporadic, difficult to predict, very damaging, and tends to occur within certain transient conditions
(e.g., low speed, engine warm-up). Also as opposed to ordinary knock, if pre-ignition could occur
with any regularity whatsoever, then that entails the engine is already operating in a condition
known to make it susceptible to pre-ignition and there is no need for prediction. Further, an
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engine allowed to undergo a few occurrences of pre-ignition may potentially self-destruct anyway.
For example, in another study [156] that investigated the relationship between pre-ignition and
super-knock, only four instances of super-knock were achieved over 2000 crank cycles on a
laboratory engine specifically tuned to solicit pre-ignition, with five other instances of pre-ignition
which failed to produce super-knock. Furthermore, because the physics-based combustion
dynamics of pre-ignition/super-knock is not fully understood [157], a reliable model to test a
predictive algorithm does not exist for simulation, unless it is a computationally intensive 3D CFD
model (and even then, experimental at best). This chapter demonstrates that there exist underlying
dynamics at the root of pre-ignition/super-knock, rendering it predictable, as opposed to “random,
abnormal combustion”. Then, there should exist the possibility to extract features from measured
data which can forewarn the phenomenon. This chapter shall present a data-driven algorithm that
was successful in doing this on recorded vehicle data containing two super-knock events without
the need to model combustion dynamics. The ability to predict and avoid even a single pre-ignition
event in a real-world setting would be beneficial to the life of an engine and is the engineering
problem being addressed herein.

Remark 10 It is important to highlight that, unlike knock, pre-ignition and super-knock remains
an unsolved problem in automotive research. The current development in prediction is limited to
a few successful instances involving intensive 3D CFD modeling, such as [155], which are not
developed for online implementation.

Pre-ignition is a pre-requisite condition to super-knock, although the converse is not necessarily
true [149] and may occur also in compression-ignition engines [158] and in those using alternative
fuels, e.g., hydrogen [159], biofuel [160], [161] and in other, non-propulsive chemical processes
[162]. As an unintended combustion event in the cylinder, pre-ignition results in a significant loss
of energy. The associated increase in temperature tends to create initial conditions for autoignition
over the following crank cycles, which is the specific mechanism for pre-ignition seeding
super-knock. The off-design temporal characteristic of pre-ignition opposes the power-stroke in
an ICE engine cycle, leading to high stresses and reduced efficiency. Specifically, valve timing
(for evacuation and induction), fuel injection, and spark timing (for spark-ignition engines) are
coordinated such that combustion occurs within a designated window of crank positions where
the piston is near the top-dead-center (TDC) such that circular acceleration of the crank can be
maintained. If [auto]ignition occurs inadvertently during the compression stroke, the force of
combustion in that cylinder will oppose the crank’s rotational momentum and power strokes of
other cylinders in the firing sequence, subjecting the piston to extraordinary load. Such loads often
result in a damaged piston head, damaged piston rings, damaged cylinder liner, bent connecting
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rods, head gasket failure, and all the associated symptoms of these conditions (e.g., noise,
vibration, harshness, blue or white smoke, burning oil and catastrophic engine failure). Figure 4.1
illustrates how the off-design temporal characteristic of pre-ignition opposes the power-stroke in
an ICE engine cycle, leading to high stresses and reduced efficiency.

Fig. 4.1. Transverse cross-section of crankshaft and cylinder with piston sweeping through TDC.

In this chapter, the primary area of focus will be on super-knock, being the more significant
form of knock in terms of the potential for damage and as a design limitation issue. The approach
of this study is to bypass the need for a physics-based understanding of the underlying mechanisms,
and instead relies on measurements of variables anyhow associated with generating effects leading
up to the conditions where pre-ignition is likely, captured in data. The onset of a pre-ignition
condition is presumed, in part, to be related to the cycle-to-cycle accumulation of heat, which
upon an activation threshold ignites a residual oil droplet existing or splashed off the cylinder wall.
Therefore, it is expected that cycle-to-cycle temperature or pressure would be an appropriate data
set to consider in predicting pre-ignition and is supported by precedent [163]. As a numerical
approach, a similar study [164] involved the demonstration of Fourier transform to detect patterns
associated with knock; here, Koopman operator theory is applied to extract dynamic modes of
the system, essentially as the solution to a correlation problem. Also analogous to this study is a
process [165] similarly involving the estimation of system uncertainties and delays using advanced
observer-based techniques in the processing of oxygen sensor data.

In terms of contributions, this study is a presentation of an approach to predict and avoid
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super-knock, rather than to manage it after the fact, which has been an unsolved problem. This
would serve to overcome the current downsizing limitation of ICE engines in hybrid electric
vehicles, improve small engine longevity and improve noise, vibration & harshness (NVH). To
the best of the authors’ knowledge, this study is also the first application of Koopman operator
theory to a problem of this nature. Further, the algorithm is sufficiently compact for real-time
implementation on production vehicles.

The remainder of the chapter includes an overview of the general knock management
system in terms of sensing, processing, and actuation. That is followed by some mathematical
background on Koopman operator theory and associated predictive algorithm for application to the
pre-ignition/super-knock problem. The section thereafter presents the utilized data and simulation
results. Finally, some conclusions are drawn in terms of interpretation and future work.

4.3 General Knock Management Approach

With the advent and popularization of turbocharged engines, SAAB was the first automaker to
implement knock management in 1982 via their ‘automatic performance control’ [166] electronic
control unit (ECU), which adjusted the intake manifold pressure upon indication of excessive
pressure from the knock sensor. This is a transducer that converts vibrational energy into an
electric signal whose voltage output varies proportionally, or at least diffeomorphically to a force
applied to it.

Figure 4.2 shows the general functional flow of a typical knock mitigation system, which can be
preserved for knock avoidance as well. Typically, knock is flagged when at any point the magnitude
of vibration exceeds a predetermined, calibrated threshold. Before the knock sensor output
voltage can be used as a digital data value, it must be conditioned. Signal conditioning typically
involves amplification (e.g., via an operational amplifier circuit, to increase the signal-to-noise
ratio), filtered (using band-pass filtering to exclude engine noises resulting from frequencies not
originating from the cylinder), and is then passed to an analog-to-digital converter.

The running vehicle and engine thereof onto which the knock sensor is mounted contain multiple
sources of vibration (for example, road noise, serpentine and timing belts, AC compressor, coolant
and fuel pumps, cam/crankshaft and valves, cabin audio, precipitation, suspension and chassis
flexion, and so on) which may be detected by the knock sensor as false positives. In signal
processing, the signal may then be calibrated by a transfer function to represent a peak cylinder
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Fig. 4.2. Basic process for knock mitigation/avoidance.

pressure value, being largely proportional to the vibration detected, or to estimate other combustion
parameters [167]. For this, a model must be formulated which is specific to the engine. The
algorithm is typically a threshold comparison which the electronic control unit is programmed to
compare against the knock sensor output to discern any type of knock event from normal operation.
After the algorithm flags a knock event, a supervisory controller generates an actuator command.
In practice, there are several actuations one may take to mitigate knock, including but not limited
to the following:

• Decrease boost pressure via bleeding exhaust gas through the wastegate

• Decrease boost pressure via a reduction in throttle opening

• Enrich air-fuel-ratio (AFR) via an increased duration of the fuel injection pulse in direct-
injection engines

• Enrich air-fuel-ratio via advancing the intake valve opening in port-injection engines

• Decrease piston-cylinder compression ratio if this feature is available

• Retard spark timing if the piston is close enough to TDC given the engine speed

• Inject fuel during the intake stroke to act as a coolant

• Cut fuel and spark in the expected cycle to avoid the issue altogether
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• Modify exhaust gas recirculation; to suspend or increase may depend on the ambient humidity

Actuation of, e.g., the wastegate, can be an effective way to change upstream conditions to
avoid pre-ignition once its occurrence is predicted. However, such actuators may have alternative
objectives or competing effects, which necessitate a supervisory control loop for optimization or
arbitration between them. For example, AFR is used not only for optimizing power and reducing
fuel consumption, but also to manage emissions.

Following commitment to a course of action, low-level drivers transduce the command signal
into the necessary physical response. This may be in the form of power electronics, pneumatics,
solenoid hydraulics, etc. The control action is then carried out and the new system configuration
modifies the combustion process, hopefully in a manner sufficiently favorable to preventing
conditions where pre-ignition may occur while avoiding noticeably undesirable side-effects (in
terms of performance, emissions, comfort, or reliability). The combustion dynamics are also
dictated in part by operating conditions such as ambient conditions, speed, load, driver behavior,
fuel type and quality, engine condition, and others, which the command generation process must
sufficiently account for.

This study aims to extend the use of this pre-existing hardware and software system architecture
to predict pre-ignition and super-knock. The adaptation of an algorithm originating from non-
automotive applications towards a software solution for pre-ignition and super-knock is presented.
Also, a framework wherein this solution can be implemented in an adaptive fashion is proposed.
The scope at this level of technology readiness is limited to concept development using available
data as a case study, with implementation and robustness analysis reserved as future exercises. The
following section details an algorithm suitable for implementation in the ‘Algorithm Application’
block of the process shown in Figure 4.2, which would physically be expressed as an ECU soft-
ware update. The knock sensor remains the key hardware component on which this approach relies.

4.4 Mathematical Background & Algorithm

In this study, pre-ignition is modeled as a chaotic event in a dynamical system, as explained in the
Introduction. Chaos exhibits volatile and complex behaviors which are practically unpredictable
given inexact measurements. However, such dynamics are theoretically deterministic due to the
existence of governing principles. The trajectory that a system’s state may take through a vector
field formed by the set of solutions to the set of differential equations describing a given dynamical
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system is highly sensitive to its initial conditions. Despite this, chaos is not truly random (unless
it is, e.g., white noise), rather, it generally exhibits systemic and organized structures. In a
physical system, these are generally associated with the underlying dynamics of disturbances and
unmodelled elements of the system.

Takens embedding theorem shows that the full dynamics of a chaotic attractor can be
reconstructed from the time-series of a single measurement, provided that the set of measurements
is diffeomorphic to the original dynamics. An example of this is the reconstruction of an
oscillator, such as the Lorenz system, in 3-dimensional space using measurements of oscillations
along the x-axis only [14], [121]. From a geometric perspective then, one could qualitatively
extract the overall dynamics by analyzing the topologies and organization of trajectories in
phase-space. Similarly, using Koopman operator theory, one may find the emergence of
approximately linear and nonlinear regions; the latter of which require large forcing terms
to sustain the globally linear model. Other analyses used to characterize chaotic systems in-
clude delay embedding, singular & nonlinear Laplace spectrum analyses, and statistical approaches.

A brief mathematical background on Koopman Operator Theory is presented in the previous
chapter, which also presents a brief mathematical background on Dynamic Mode Decomposition
(DMD), which is a modern approach to solving for the Koopman operator from a data-driven
perspective. The reader is advised to review that material before proceeding to the following
section, and to [14] for more comprehensive details.

4.5 ‘Hankel Alternative View of Koopman’ Analysis

An understanding of DMD is necessary to better understand the Hankel Alternative View of
Koopman (HAVOK) [121], which relies on the same principles but yields an alternative perspective.
An introduction to DMD is presented in Chapter 3 for convenience. If instead of composing the
data matrix as in the typical form of Eq. 3.4, the data is arranged in the form of a Hankel matrix,
as follows,
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H =


x (𝑡1) x (𝑡2) · · · x
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𝑡𝑝
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x (𝑡2) x (𝑡3) · · · x
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𝑡𝑝+1

)
...

...
. . .

...

x
(
𝑡𝑞
)

x
(
𝑡𝑞+1

)
· · · x (𝑡𝑚)


= U𝚺V𝑇

≈


x (𝑡1) Kx (𝑡1) · · · K𝑝−1x (𝑡1)

Kx (𝑡1) K2x (𝑡1) · · · K𝑝x (𝑡1)
...

...
. . .

...

K𝑞−1x (𝑡1) K𝑞x (𝑡1) · · · K𝑚−1x (𝑡1)



(4.1)

One may obtain equations of motion arranged as,

𝑑

𝑑𝑡
v(𝑡) = K̃v(𝑡) ≈ Av1:(𝑟−1) (𝑡) + Bv𝑟 (𝑡), K̃ =

[
A(𝑟−1)×(𝑟−1) B(𝑟−1)×1

. . .

]
(4.2)

The K̃ matrix is obtained from Eq. 3.7, following a further singular value decomposition of
V𝑇 , from which the A and B matrices are extracted as shown in the second part of Eq. 4.2. The
rows of K̃ beyond 𝑟 − 1 are disregarded due to the truncation, as they represent a “bad fit”. Given
that Eq. 4.2 represents a system that is not truly linear, the behavior of v𝑟 serves as a corrective
“forcing” entity that forces the linear model to behave like the actual system, lumping the effects
of nonlinear dynamics. Eq. 4.2 is referred to herein as the surrogate model, where v contains the
1 to 𝑟 − 1 eigen-delay coordinates (A is the truncation of H, from the SVD), and v𝑟 (referred to
herein as ‘apparent forcing’) is the next row; it represents the effective control input necessary to
maintain Eq. 4.2 as true.

The interpretation of the 𝑟 𝑡ℎ row of Eq. 4.2 is that a linear system (i.e., one with a constant
state transition matrix, the columns of which project unit coordinate vectors of the original
space into the output state) has a single fixed point at the origin (since a zero state yields a
zero output under zero control input); however, a nonlinear system may have multiple fixed
points, limit cycles, and other nonlinear spatial features. Thus, v𝑟 is interpreted as the most
significant [given (𝜎𝑟 ∈ 𝚺) > 𝜎𝑛,∀ 𝑛 > 𝑟] corrective “input” required to make this linear
system behave like the observed [nonlinear] system, with chaotic behaviors being expressed
as “bursts” ahead of the occurrence. This behavior is in agreement with the results shown in
[121], which demonstrated predictive lobe switching observed in the Lorenz system using HAVOK.

The surrogate model arises from linear regression (e.g., using DMD) of the right-singular
vectors, or V matrix, from the SVD factorization of the Hankel matrix. This V matrix represents a
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time series (called the eigen-time series) which reconstructs the behavior (e.g., as delay coordinates)
of the original dynamics, but without knowledge of the full data, given that the Hankel matrix was
constructed using only a subset (e.g., x = 𝑓 (𝑎), an observable aspect of the dynamics such as fuel
level) of the original state (e.g., 𝑎, 𝑏, 𝑐, a point in cartesian space such as position). If this subset
data is a suitable measurable (or set thereof), the eigen-time series is indeed diffeomorphic to the
original dynamics. Thus, linearization upon this embedded attractor will be easier. Also note
from the second part of Eq. 4.1 that the significance of data in the form of a Hankel matrix is that
it encompasses the idea of the Koopman operator given that every data point can be considered
as an iterate of the Koopman operator applied to the first measurement, which in turn represents
the general characteristic of chaotic systems as sensitive dependence on initial conditions. Note
that p, q defines the desired aspect ratio of the Hankel matrix, which may be adjusted arbitrarily
(although, the optimal truncated rank may change correspondingly). Figure 4.3 illustrates the gener-
alized algorithm with the incorporation of a running buffer to retrain the model described in Eq. 4.2.

Fig. 4.3. Implementation of HAVOK algorithm.

This process can be incorporated into the ‘Algorithm Application’ block in the control system
strategy shown in Figure 4.2, in place of the standard threshold comparison. After the measured
data is arranged as a Hankel matrix and decomposed, the factors are truncated to preserve the
significant 𝑟 − 1 dynamic modes and assessed for best-fit. Depending on the nature of the system
or from prior simulations, the 𝑟 value may already be known so this assessment need not be
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performed online.

The algorithm will be deemed successful if a flag can be inferred using apparent or non-apparent
features embedded within the test data in advance of recorded pre-ignition events. Once the
regression model of the system’s delay embedding is developed and validated against the data, it
can run online and be expected to capture most instances of pre-ignition.

Remark 11 Eventually, the predictive quality of the model is expected to degrade over time due to
the chaotic property of sensitivity to initial conditions, and the process should restart from Step 1
with a new model. Building this into the process, it is suggested to automatically retrain the model
periodically through a running buffer wherein data leading to past escaped pre-ignition events are
saved. The more novel conditions [e.g., low-speed pre-ignition (LSPI) in various ambient weather
conditions, loads, oil qualities, etc.] leading to pre-ignition that are saved in the buffer, the more
robust the algorithm should be against future pre-ignition events.

4.6 Data & Simulation Results

The data available to test this algorithm on super-knock prediction is shown in Figure 4.4. It was
collected from a 6-cylinder 3.5 L turbocharged gasoline direct-injection engine running 87 RON
fuel, operating at an engine speed of approximately 1320 RPM during a cold start. The engine
had a defect that made it more prone to pre-ignition. From it, the measurable used to construct the
data matrix consisted of only the cycle-to-cycle peak cylinder pressure.

The collected data clearly shows each pressure cycle’s conformance to the theoretical 4-stroke
cycle. Pre-ignition occurs in cycles 149 and 355 with both events triggering super-knock. The
crank cycle begins at −360◦ coincident with the intake stroke, followed by a rise in pressure due
to compression after which the sharp rise in pressure near 0◦ corresponds to the work done by
combustion. Pressure drops over the expansion stroke and then returns to 0 bar through the exhaust
stroke.

Remark 12 An alternative selection of the measurable may have been possible and should be
guided by the information presented in the literature review. One study explored the combination
of various parameters as nondimensional quantities to characterize the influence of fuel-oil film
on pre-ignition [157]. Such type of efforts may be an option for a selection of measurable that
yields maximum advance notice of pre-ignition over a wide variety of conditions. In this study,
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Fig. 4.4. Cylinder pressure test data with pre-ignition events, 1320 RPM.

peak pressure was sufficient to prove the concept for the conditions associated with available data.
Another study [153] involved a similar theoretical approach using delay embeddings for advanced
detection of pre-ignition employing statistical analysis of cycle-to-cycle pressure distributions.
Other studies, such as [163], utilize the maximum amplitude of pressure oscillations or root-mean-
square of pressure, which are suitable for ex post facto detection and not necessarily for prediction.
In the context of the HAVOK approach, this is because such processing erases knowledge of cycle-
to-cycle variabilities containing higher-order outputs of combustion. The SVD subprocess relies
on the extraction of dynamic modes in order of correlation between eigen-delay coordinates and
measured data, enabling the segregation of noise.

Using the data from Figure 4.4 data to construct the Hankel matrix and following the process,
Figure 4.5 presents the output of the surrogate model, Eq. 4.2, along with the behavior of the
apparent forcing term.
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Fig. 4.5. Simulation results for HAVOK analysis applied to super-knock data.

The “flag” in this figure is defined to be the onset of excitation in the apparent forcing term. It
refers to the instant a warning for the potential of the anticipated pre-ignition event can be generated,
whereas “event” refers to the instant pre-ignition in fact occurs. Given that the engine was running
at approximately 1320 RPM, both instances of pre-ignition are flagged over 2.27 seconds prior,
upon which mitigating actuation can easily be applied to preemptively suppress the conditions in
which the super-knock event is expected to occur. The associated reduced-order model came out
to be of rank 10 (r = 11) with the following state-space matrices:
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A =



1.0000 −0.0065 0.0011 0.0034 0.0021 −0.0042 0.0012
0.0035 0.9941 0.0610 0.0045 −0.0625 −0.0042 0.0411
0.0003 −0.0615 0.9866 −0.1227 0.0231 0.0659 0.0009
−0.0019 0.0038 0.1201 0.9751 0.1726 −0.0032 −0.0462
−0.0003 0.0603 −0.0191 −0.1689 0.9610 −0.1894 0.0067 ...

0.0035 0.0009 −0.0696 −0.0023 0.1855 0.9422 0.2328
0.0005 −0.0427 0.0017 0.0482 −0.0095 −0.2309 0.9207
0.0037 0.0003 −0.0389 −0.0010 0.0696 0.0019 −0.2736
−0.0004 0.0327 −0.0027 −0.0289 0.0036 0.0829 −0.0042
−0.0028 −0.0002 0.0220 0.0004 −0.0345 0.0000 0.0807

−0.0041 0.0004 0.0034
−0.0014 −0.0342 0.0010
0.0378 0.0013 −0.0208
−0.0032 0.0297 0.0015

... −0.0700 0.0016 0.0358
0.0021 −0.0830 0.0000
0.2747 0.0001 −0.0803
0.8957 −0.2817 0.0018
0.2802 0.8673 0.3463
0.0022 −0.3453 0.8330



≈
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B =

[
0.0001 −0.02760 0.00020 0.0226 −0.0002 −0.0603 −0.0016 ...

... −0.0286 0.0010 −0.0060
]𝑇

C = I10

D = 010×1

(4.3)

The A matrix in Eq. 4.3 is the approximated Koopman operator. It can be noted that the A
matrix is approximately a skew-symmetric tridiagonal matrix. In accordance with spectral theory,
this can be expected given the Koopman operator’s function in executing a special orthogonal
transformation. The fact that it is not exactly computed as such relates to the idea that regression
was performed. As similarly highlighted in [117] where the same structural form availed, was
interpreted therein to mean that system poles which happen to be slightly positive can be reasonably
approximated to lie exactly on the imaginary axis. This model encompasses the dynamics of
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combustion processes, which were not apparent enough for direct physics-based modeling, that
led to the pre-ignition and super-knock shown in Figure 4.5.

Given a typical vehicle’s CAN network having a message rate on the order of 1 millisecond,
2270 milliseconds are adequate to run through the steps of Figure 4.2 from sensing to actuation.
This may represent a lower bound of advanced notice possible given that LSPI would otherwise
be more likely to occur at lower engine speeds. The data used in the simulation was in terms
of crank cycle. Thus, if the vehicle were idling, a flag similarly generated 50 cycles ahead of an
expected event would correspond to 6 seconds. Although the underlying combustion dynamics
might manifest differently across different speeds, it is still expected that the cycle-to-cycle peak
pressure to capture the effect of in-cylinder boundary conditions upon the onset of pre-ignition. In
the context of this case study, this relates to any detectable association since the dynamic mode
extraction utilizes the correlation matrix within the singular value decomposition subprocess.

4.7 Validation of Predictive Capability

In the previous section, the HAVOK algorithm was applied to the entire dataset. Alternatively, only
the first pre-ignition event can be used to construct the surrogate model and then used to predict the
onset of the second pre-ignition event. In that case, the optimal truncation happens to yield rank 7
(𝑟 = 8), with the state state-space matrices and excitation in 𝑣𝑟 as follows:
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A =



0.9995 −0.0090 0.0031 0.0035 0.0034 −0.0042 0.0019
0.0042 0.9957 0.0564 0.0056 −0.0588 −0.0037 0.0365
0.0002 −0.0569 0.9870 −0.1318 0.0319 0.0558 −0.0004
−0.0026 0.0017 0.1276 0.9762 0.1527 −0.0012 −0.0541
−0.0002 0.0531 −0.0259 −0.1458 0.9622 −0.2098 0.0183
0.0036 0.0008 −0.0609 0.0000 0.2017 0.9425 0.2161
0.0005 −0.0391 0.0024 0.0568 −0.0180 −0.2117 0.9198



≈
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B = [0.00490.0032 − 0.03610.00040.07410.0002 − 0.2914]𝑇

C = I7

D = 07×1

(4.4)

Fig. 4.6. Simulation results for HAVOK analysis applied to predict the second super-knock event.
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The result in Figure 4.6 shows the same warning time for the second pre-ignition/super-knock
event, even though the algorithm has no knowledge of it. This is interpreted to mean that the same
or similar enough combustion dynamics were at play during both instances (i.e., both pre-ignition
events occurred due to the same reasons). Finally, the form of Eq. 4.4 again yields the same
structural properties as the prior results shown in Eq. 4.3, as expected.

Remark 13 Signal-to-noise ratio is a key parameter for robustness and the Koopman approach
resolves the measurement data into a distinct set of modes where relevant features become easily
apparent, such that the boundary between that which truly affects the dynamics is more precisely
discerned from that which is truly noise. A nominal surrogate model could be set as an initial
calibration from a master dataset containing past pre-ignition events at various conditions. It could
also be made adaptive by growing to include novel operating and environmental conditions from
a running buffer (of knock-sensor data) to add cases where pre-ignition was not predicted. Thus,
the possibility of false positives is minimized and diminish over time. The rank, 𝑟, of the Koopman
matrix may come up different, yet will always be the global best fit, and therefore predict most
super-knock events. Given that only a few pre-ignition events can cause a catastrophic failure of
an engine, avoiding any pre-ignition at all is a valuable achievement.

A sense of the time scales involved in performing the HAVOK computations in comparison
with the processes being controlled is necessary for understanding the feasibility of in-vehicle
implementation. The simulation environment of this desktop study consisted of a Dell Latitude
7424 with a 1.70 GHz Intel Core i5-8350U 4 Core processor and 16 GB RAM running Microsoft
Windows 10. Using embedded timer functions, the duration of three key blocks of code were
measured: 𝑇1 being the extraction of 422 peak pressures from a total of 3,035,400 sampled pressure
measurements over all the crank cycles in the available data; 𝑇2 being the organization of the Hankel
matrix, its decomposition using the singular value decomposition and organization of the surrogate
model; and 𝑇3 being the threshold comparison of the 𝑣𝑟 values from the surrogate model. The total
duration of these time segments, the computations of which would otherwise be performed on an
engine control unit, came out to be 14.8 ms. In vehicular applications, the activity associated with
𝑇1 is an analog process obtained from the knock sensor’s conditioned output and is likely to be
faster than the data extraction performed in the desktop simulation. The activity associated with 𝑇2

comprises the main algorithmic processing and took merely 3.6 ms to compute in addition to the
threshold comparison associated with𝑇3, which is what is traditionally done with knock sensor data
currently. A CAN message can be transmitted in as little as 130 `𝑠 [168], with the added duration
of final actuation ranging from null (no fire) to perhaps a few hundred milliseconds (e.g., opening
the wastegate). Thus, even with added times for intermediate intra-ECU computation, the poten-
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tial control response would very well be within the 2270 ms warning window generated in this study.

In terms of assessing the feasibility of in-vehicle implementation from the perspective
of computational capacity, it is also necessary to note that necessary additions to an engine
control module would be minimal. Beyond the threshold comparison already performed during
knock-sensing, strategy code may additionally call for a function block to perform the singular
value decomposition, which utilizes 605 bytes of code. Further additions would require a few
lines of code to arrange stored data, invert a square matrix (of rank ≤ 𝑟) and multiply four
matrices (of length ≤ 𝑟) in performing the required computations for Eq. 3.7. Therefore,
the additional required code space would be under 1 kB in ROM, plus 1 byte per stored peak
pressure data value in calibration space. Lastly, the surrogate model will take well under 100
bytes. Such capacity requirement would likely not justify any hardware upgrade and is rel-
atively minor compared to typical software features emerging from engineering development today.

In terms of further experimental validation, additional data was obtained using the same engine
over three relatively steady speeds averaging 1316 RPM (Figure 4.7), 1783 RPM (Figure 4.9)
and 2036 RPM (Figure 4.11). These runs showed multiple instances of pre-ignition, all of which
produced super-knock. The three speeds were selected to reasonably cover the design envelope
within which LSPI is common and are classified as low, medium, and high, respectively. The
calibrated cold-start idle speed for the engine used in this study is 1000 RPM. Above the selected
high speed, the scenario evolves into medium-speed pre-ignition (MSPI). Further, LSPI is less
likely to occur in a warmed-up engine. The mechanism for this, as described in the literature
review, may relate to oil residue on the cylinder wall. Thermal expansion of the piston and cylinder
after warm-up may tighten the interfacing tolerance, decreasing the likelihood of such residue
to manifest. Older engines with worn-out piston rings are thus more susceptible to LSPI during
cold-start. Following the same steps from Figure 4.3, validation results for these three additional
cases are given below in Figures 4.8, 4.10 and 4.12. For all cases, the A and B matrices were
computed based on the first pre-ignition event as training data. The remaining data, converted
into delay coordinates, used the same surrogate state-space model for observation of bursts in the
apparent forcing term.
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Fig. 4.7. Cylinder pressure test data with pre-ignition events, 1316 RPM.

Fig. 4.8. Prediction results using HAVOK, 1316 RPM.
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Fig. 4.9. Cylinder pressure test data with pre-ignition events, 1783 RPM.

Fig. 4.10. Prediction results using HAVOK, 1783 RPM.
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Fig. 4.11. Cylinder pressure test data with pre-ignition events, 2036 RPM.

Fig. 4.12. Prediction results using HAVOK, 2036 RPM.
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With the bursting threshold taken as 0.02, a prediction flag was established around 49 cycles
prior to pre-ignition in all cases. This corresponds to 2.3 s, 1.7 s and 1.4 s for the three speed
cases, respectively. These are again sufficient durations to allow for mitigating actuation.

4.8 Conclusions

The proposed technique involved the construction of a linear representation of the system solely
using peak pressure data as the input, from which an apparent nonlinear forcing term was extracted.
In all cases, the apparent forcing term exhibited excitation approximately 50 crank cycles before
the pre-ignition/super-knock events occurred. This number may be different for environmental
and operating conditions differing from test conditions. However, the data used in this study
included 19 instances of pre-ignition and super-knock from over 2850 cycles at various speeds
within the envelope where LSPI can be expected. Further, the proposed algorithm is designed to
be implemented in an adaptive fashion where the surrogate model can be updated to include new
pre-ignition data. Advance notice for pre-ignition prior to its occurrence on the order achieved
in this study is sufficient to preemptively take mitigating action (e.g., opening the wastegate), up
to and including disablement of fuel and spark to the affected cylinder in the anticipated cycle.
Further, the necessity for a data-driven approach is justified due to the facts that:

• The combustion dynamics are unknown

• There currently exist no feasible physics-based models

• Behavioral models are over-simplified and void of underlying dynamical behaviors necessary
for prediction

• The difference in timescales of measurements that alert us to an upcoming super-knock
event compared to that on which the event itself manifests and lasts are so large that the
signal-to-noise ratio is too low

The state dynamics matrix attained from the Koopman operator of eigen-time series data
was of size 7 × 7, which is much smaller than the many series of calibration maps already
handled by a modern engine controller, which tend to rely on semi-physics-based models with
empirical corrective factors determined from engine sweep calibration. Implementation of a
trained model, up to the point developed herein, would be especially useful in critical operating
regions susceptible to super-knock (e.g., low speed, high-load, cold start). The algorithm is
well suited for self-tuning, building upon re-evaluation of the surrogate model from buffered
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data, and so may learn and avoid new conditions resulting in pre-ignition. It seems that the
right-singular vectors have a predictive property due to the effective compression of observed
dynamics onto a smaller time scale, which is why the size of the Hankel matrix is also effec-
tively a tuning parameter, ensuring that any repeatable pattern in the data will be detected there first.

By its nature, pre-ignition occurs sporadically. It typically seeds super-knock which dissipates
over the following few crank cycles, returning the engine to nominal operation. If adverse condi-
tions persist pre-ignition may recur until a favorable steady-state condition is attained (e.g., engine
warm-up). Thus, it is not likely to see too many occurrences in data collected over a relatively
short time span. Future studies may involve a study of predictive performance with respect to
the accumulation of engine damage from pre-ignition up to the point of failure. One could also
apply HAVOK to predict other types of instabilities in other engine variants operating in specific
dynamical contexts (e.g., thrust variation in gas turbine engines, or current ripple in electric motors).

Further work may include the determination of a standardized nondimensional parameter that
more optimally captures the effects of conditions leading up to pre-ignition than peak pressure
over a large variety of conditions. Self-recalibration may be innate to this technique so long as the
buffer is stored in memory, and the surrogate reevaluated upon every failed prediction. If proven
successful in real-world driving conditions, it would be a significant advancement in the field of
engine controllability and a solution to a major limitation in the design envelope of hybrid electric
vehicles and small engines.
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CHAPTER 5

Tethered Subsatellite Deployment

5.1 Abstract

Compact tether-based actuation is a suitable approach for the deployment of femto/picosatellite
bodies from CubeSats using ultrasmall electrodynamic tethers for fuel-free propulsion and deor-
biting. Despite the advantages of tethered satellite systems, control technologies for these have yet
to mature in several domains including robustness to structural faults and unmodeled dynamics.
A proposed solution for the identification of disturbances to tethered satellite dynamics is to use
a data-driven algorithm to learn the system’s behavior over previous orbits and then provide an
estimated prediction for the evolution of system states. To achieve the goal of state prediction
via a globally linearized system model, this chapter employs the Koopman operator constructed
from observed dynamics to extrapolate future motion of a tethered subsatellite subject to unknown
disturbances while being deployed from its mothership. Numerical simulations of the constructed
model versus the nonlinear model of the tethered satellite system demonstrate the effective pre-
diction capabilities of the proposed Koopman operator-based numerical algorithm for the general
flight characteristics many orbits into the future.

5.2 Introduction

Tethered satellite systems (TSS) have found various applications ranging from tethered propulsion,
which offers the potential for significantly cheaper space operations by way of fuel-free solutions
to boosting and deorbiting, to attitude stabilization and orbital flight control [169]. Conventional
satellites often include redundant control actuators, such as oblique reaction wheels in their
attitude control systems. Consequently, failure of a primary control actuator does not lead to the
loss of satellite controllability. On the other hand, having such reaction wheel-based actuators
introduces a coupling between the degrees-of-freedom affecting the satellite attitude dynamics [8].
Furthermore, the undesirable economic tradeoff to such control redundancy is the loss of valuable
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payload capacity and increased weight.

In tethered propulsion, in contrast to thruster/wheel-based satellite actuation technologies, the
flow of electric current through a conductive-electrodynamic tether (EDT) induces a Lorentz force
acting against the ambient magnetic field which accelerates or decelerates the TSS (see Fig. 5.1
for the mechanism of TSS-deployment into the orbit). In other words, the Lorentz force generates
either propulsive or braking effects, depending on the EDT current direction. Such compact tether-
based actuation, which relies on the exchange of momentum with the planet’s magnetosphere, is
especially suitable for deployment of pico-/femto-satellite bodies from CubeSats using ultra-small
electrodynamic tethers [170]. The tethered satellite technology further enables applications such
as deorbiting, detumbling and underactuated control of damaged/decommissioned satellites, which
have been contributing to the growing problem of unmanaged space debris [171].

In addition to EDTs, there are other factors affecting the motion of the general TSS. In
particular, the difference in altitude between the subsatellite and its mothership results in
differential aerodynamic drag due to the gradient in atmospheric density, gravity gradient torque,
and pitch motion. The pitch motion itself is caused by the masses of the tethered satellite and its
mothership at different orbital radii, being constrained to move with the same orbital velocities
[172]. In addition to this differential aerodynamic drag force, the large inertial distribution along
the radial axis of tethered satellites implies a greater sensitivity, in comparison with conventional
satellites, to 𝐽2 perturbations [173]. The superposition of these effects along with space weather
factors such as solar radiation pressure, geomagnetic storms, and solar/lunar tidal effects on the
atmosphere lead to heightened sensitivities in the operational performance of a TSS. Therefore,
the accumulated effect of incremental disturbances over relatively long tethers necessitates the
identification of the TSS dynamics subject to environmental disturbances. Identification of the
TSS dynamics, in turn, enables the design of reliable motion control and prediction algorithms for
the TSS.

Many control laws and fault detection schemes for the TSS are formulated using physics-based
approaches. Rawashdeh & Lumpp [174], Varma [175] and others have created physics-based
models of conventional miniature satellites subject to environmental forces including aerodynamic
drag and gravity gradient assuming constant parameters. Furthermore, Yu et al. [176] have derived
equations of motion describing the TSS motion as chaotic behavior resulting from atmospheric drag
and the Earth’s oblateness. In a related work, He & Ge [177] provided an in-depth derivation of a
free-beam model for flexible satellites including those with large solar panels. They state that with
higher-order frequency modes often being neglected, reduced models adapted for control can result
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in spill-over instability under certain conditions. For example, they show that a Lyapunov-based
control law eliminates an approximately 3.5 meter vibration in two 10 meter solar panels over 50
seconds. Furthermore, a spacecraft is subject to all sorts of potentially unmodeled disturbances
including but not limited to time-varying gravitational magnitude and direction, atmospheric
swelling, solar flaring, momentum exchange from micro-debris impacts, thruster misalignment,
and sensor resolution issues. These effects will only become more pronounced as the trend moves
towards miniature satellites (such as, Micro/Nano/Pico/Femto-Can/CubeSats). Physics-based
modeling, which explicitly consider all these unknown disturbances, for the purposes of control
and fault detection in highly sensitive spacecraft operations, is an almost intractable task.

Over the last decade there has been an increased interest in online model adaptation and
automated calibration algorithms for autonomous vehicle systems as an alternative to physics-based
approaches. Accordingly, the goal of TSS dynamics identification under unknown disturbances
can be accomplished by analyzing available real-time flight data and subsequent construction
of models from which future trajectories can be extrapolated. Without prior knowledge of the
exact TSS dynamical model, variability, volatility and nonlinearities, this estimation task is
understandably very difficult to accomplish, often requiring simplifications [178]. Moreover,
identifying these unknown dynamics during the sensitive operation of TSS tether deployment
(see Fig. 5.1) is of crucial importance as post-deployment oscillations might yield tether forces
beyond the expected strength and subsequent failure of the deployment operation. Indeed, such
post-deployment oscillations were among the main causes of the failure of the 1996 TSS-1R
demonstrator mission [179].

Previous research on the TSS deployment problem using tension control has highlighted the
criticality of adequate modeling. One approach has been to use a qualitative lumped disturbance
model, as Wen et al. [180] did to demonstrate the performance of an optimal feedback controller.
Similarly, Wang et al. [181] constructed an open-loop tether tension control law using particle
swarm optimization and compared its performance with proportional-derivative and sliding mode
controllers subjected to uncertainties and perturbations. Others have focused on the system
identification aspect and sought to create higher fidelity physics-based models. For example, Yu
& Dai [43] established an approach to identify tether dynamics from a structural perspective and
showed how deployment performance is affected not only by operational, but also mechanical
and material properties of the tether. Williams [182] identified tether dynamics including models
for tether shape, vibrations, drag and electrodynamic forces using Chebyshev polynomials. State
estimation of TSS has also been performed using genetic algorithms [183] and Kalman filters
[184], [185]. Among space systems applications, Koopman operator-based methods have only
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Fig. 5.1. Deployment of a TSS into the orbit.

very recently been employed in the context of rocket engines [48], [63], landing [76], attitude
control [30], and the orbital flight of monolithic spacecraft [36], [50].

The present work seeks to address the problem of identifying spacecraft dynamics under
environmental disturbances from a data-driven perspective in a non-conventional satellite
configuration undergoing a specific maneuver, namely, deployment of a subsatellite via a single
tether. Although disturbance observer-based techniques are widely used for estimating unknown
disturbances acting on nonlinear control systems [186], these techniques rely on the knowledge
of the exact underlying dynamical model. On the other hand, the time-varying nature of
nonhomogeneity in the flight environment of TSSs requires an adaptive, real-time approach
for system identification, which would result in improved predictions of future trajectories.
Specifically, in low Earth orbit (LEO), where a tethered satellite is most effective if deploying a
conductive tether, planetary oblateness introduces a gravitational perturbation 430 times greater
than that of 𝐽3 effects, and the nominal solar radiation perturbation has an order of magnitude
of 10−6𝑚/𝑠2 [187]. Further, LEO coincides with the Appleton–Barnett layer, or “F layer”
of the ionosphere, a region with the greatest electron density. Thus, an EDT in LEO would
be most effective. Atmospheric and electron density in the F layer varies in relation to lunar
position and solar activity, with segmentation into two distinct sub-layers occurring diurnally [188].
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5.2.1 Background on Global Linearization Techniques

Real systems can be represented by dynamical models of varying levels of fidelity, including
nonlinear systems. These may include processes which act over a wide range of timescales,
necessitating a trade-off between fidelity and computational efficiency. Further, nonlinear dynamics
may demonstrate chaotic behaviors such as bifurcation and sensitivity to initial conditions, which
are not observable in systems with linear dynamics. Thus, when not inherently linear (a rare case),
conventional linearization of nonlinear dynamics typically involves negligence or approximations
of higher order dynamics, state-input dependence, and disturbances.

Conventional methods of linearization include approximating a system’s behavior at a particular
state, usually an equilibrium or an operating point. Such linear models are typically obtained
by way of small perturbation theory which utilizes small angle approximations and vanishing
terms containing products of differentials, or the use of a truncated series expansion about the
desired point. Decoupling of nonlinear terms or affine control inputs by these means can also be
enabled through increasing the order of differential equations describing the system. However, the
model is then only or approximately valid at or near the point of linearization, respectively, and
increased in sensitivity through noise amplification. The neglected dynamics are left to be taken
as disturbance, along with all other unknown or unmodeled processes. In the LEO environment,
the occurrence and magnitude of geomagnetic storms are unpredictable [189]. Also, the local
density of rarefied gasses are functions of chaotic meteorological processes, yielding drag as a
time-varying force [190]. If a deterministic model otherwise existed, it could be linearized along a
reference trajectory and gain scheduling implemented. However, an adaptive and computationally
more efficient approach would be to learn the system’s empirical behavior in real-time, accounting
for all influences. This approach is utilized in this research. Such a reduced-order non-physics-
based model in a globally linear form could readily take advantage of state-space control techniques.

To address the limitations of conventional linearization, there has been much research into the
area of global linearization. One such technique is that of changing state variables. As detailed by
Jordan & Nowacki [5], this can be accomplished using either the General or Heuristic methods
to find a system of linear equations in an intermediate variable which is itself a function of the
original state variable. In the Heuristic method, one equates the nonlinear equation to the general
state space equation in controller canonical-like Frobenius form and unknowns are selected to
comply with the Routh-Hurwitz stability criteria. Disadvantages of this approach is that a stable
solution may not be easy to find, and it is computationally complex for automation. In the
General method, the approach is a matter of collecting like terms containing state variables from
the expanded nonlinear equation and grouping them into convenient definitions for intermediate
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variables. However, such linearized system of equations may still be time varying and do not
necessarily isolate the effect of state from control inputs. Thus, the result is not generally in true
state space form, which is problematic for the implementation of some control methods and analyses.

Additional classifications of global linearization methods exist for affine and bilinear sys-
tems including state linearization, feedback linearization and restricted feedback linearization.
C̆elikovský [7] derived a formal definition in which global linearizability may be achievable by
these means via a change of state variables. However, he also provided examples of systems that
do not fulfill the criteria yet are linearizable within some range, at some point(s), at all but some
point(s), or at “every point locally”. However, guarantees of smoothness and continuity from
formal proofs are sometimes unachievable, especially in the case of empirical system descriptions,
when there is noise and disturbance, or where there are limitations in understanding of the physical
processes involved.

Other global linearization methods involve alternative ways of representing nonlinear system
descriptions to forms which may be linear (with decoupled input/output, endogenous feedback and
disturbance) including as difference fields, 1-forms, Kähler differentials, Carleman linearization,
generalized transfer functions, using output feedback, and as time-delay systems [9]. These
methods are least common and continue to be studied as open areas of research in the field of
pure mathematics. Alternatively, there exists a class of global linearization methods relating to
regression methods, among which include those based on the Koopman operator [117].

Operator theory is the study of linear operators on function spaces, alternative to geometric or
stochastic frameworks. The Koopman approach to operator theory distinguishes itself through
its goal in determining coordinate changes required to represent nonlinear dynamics in a linear
space through the construction of required bases from measurement data [14]. This high
dimensional space is framed upon a coordinate system consisting of up to infinite orthonormal
bases in suitable function spaces rather than unit vectors, wherein the properties of spatial
completeness are preserved [97]. The result is a state transition matrix mapping the propagation
of a system’s set of measurable quantities in a best-fit manner over the entire domain. Hence,
this transformation matrix is denoted as the Koopman operator. This approach to linearized
system identification has found applications in data-driven modeling of complex systems
ranging from fluid dynamics [191]–[193] to neuroscience [117] and power grids [194]. The
interested reader is referred to the work in [121] for a detailed treatment of Koopman operator theory.

In the context of model predictive controllers (MPCs), the linear predictors obtained from
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the Koopman operator-based approach exhibit a performance superior to conventional linear
predictors such as those relying on the so-called Carleman linearization or local linearization
techniques. Additionally, the numerical schemes for constructing these linear predictors is totally
data-driven and simple to compute, where the underlying computation boils down to a proper
nonlinear transformation of the data and a subsequent linear least squares problem in the lifted
space readily solvable for large data sets [195].

Contributions of the chapter. The Koopman operator, particularly in its numerical approach as
with Dynamic Mode Decomposition (DMD) [13] has the intrinsic property of learning unmodeled
dynamics, computational efficiency, and has been useful to solve a breadth of engineering
problems. To exploit these opportunities further, this approach has been selected for investigation
in the context of TSS systems. More broadly, this research is undertaken as a means to expand
the literature of advanced system identification into the area of space systems engineering, where
dynamics modeling is imperative. In this chapter, a linear global state-transition matrix is found
for the TSS dynamics, which is a linear approximation of the Koopman operator of the TSS. This
TSS Koopman operator incorporates proper functions of the online data obtained from angular
positions and tether length measurements from the TSS. Subsequently, using the incoming stream
of TSS data, the Koopman operator, which is approximated using the DMD algorithm, provides a
reduced-order and globally linearized representation of an otherwise nonlinear dynamical system
that includes the effect of unmodeled processes affecting the behavior of the TSS. Thus, the
proposed Koopman operator-based algorithm is suitable for data-driven modeling of the behavior
of TSSs subject to unknown disturbances. Simulations of the constructed Koopman operator-based
linear dynamics versus the true nonlinear model of the tethered satellite system demonstrate
the predictive capabilities of the proposed Koopman operator-based numerical algorithm for
the general flight characteristics including many orbits into the future. Further, the TSS being
simulated is modeled after the University of Michigan’s Miniature Tether Electrodynamics
Experiment (MiTEE), which is a 3U CubeSat equipped to deploy a femto-satellite housing an
electron collector/emitter to actuate current within the connecting EDT [196].

The rest of this chapter is organized as follows. In the following, a brief review of the
dynamics of tethered satellite systems while being deployed into circular orbit is provided. Then, a
data-driven Koopman operator-based numerical algorithm is presented for estimating the unknown
disturbances acting on a given TSS. This is followed by a presentation of simulation results and
effectiveness of the proposed approach. Finally, this chapter concludes with further remarks and
future research directions.
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5.3 Tethered Satellite Dynamics

In this work, the maneuver of tethered subsatellite deployment from its mothership is considered.
The control-oriented dynamic model appearing in the TSS literature [180], [197] is adopted, which
describes the deployment and retrieval behavior of this system as illustrated in Fig. 5.1. The
interested readers are referred to Williams [182] for a full physics-based model of TSS dynamics.

For presenting the control-oriented model of the TSS dynamics, an Earth-centered Inertial (ECI)
coordinate frame is considered. The ECI frame is fixated on the celestial body, Earth, about which
the satellite is orbiting. Moreover, a Local-Vertical-Local-Horizon (LVLH) body-fixed frame on the
satellite itself can be considered. The LVLH frame is centered on the mothership and is convenient
for attitude analysis. Having fixed these coordinate systems, the equations of motion,
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]
= −𝑢,

(5.1)

model the behavior of the subsatellite’s attitude and position with respect to the mothership in the
LVLH frame depicted in Fig. 5.2. This TSS model, Eq. 5.1, was taken from Wen et al. [180],
and is also common in the TSS literature [198]; originally adapted from Stuiver [199]. Here, the
angle \ denotes the pitch angle, which is the angle between the tether projection on the orbital
plane and the local vertical, or nadir, the angle 𝜑 denotes the roll angle about the axis defining the
local horizon and is thus the out-of-plane rotation of the TSS, and b is the nondimensionalized
tether length, b = 𝑙𝑡/𝑙𝑐, where 𝑙𝑡 is the tether length at time 𝑡 and 𝑙𝑐 is the characteristic length,
taken to be the maximum tether length. In Eq. 5.1, 𝑢 = 𝑇

𝑚Ω2𝑙𝑐
> 0 is the nondimensionalized

control input, where 𝑇 denotes the tension force of the tether. The in- and out-of-plane vibrations
are dynamically coupled. The right-hand side of Eq. 5.1 can be nondimensionalized using the
generalized [external] forces in the first two equations of motion.

The equations of motion in Eq. 5.1 are expressed in terms of nondimensionalized time, which
is scaled by Ω−1. The parameter Ω =

√︁
`/𝑟3

𝑜 = 1.133 × 10−3 𝑟𝑎𝑑/𝑠 is the mean orbital angular
velocity, where ` = 3.986005 × 1014 𝑚3/𝑠2 is the gravitational parameter for the Earth and
𝑟𝑜 = (6371 + 400) 𝑘𝑚 is the Earth’s radius plus flight altitude considered in this study. Other
relevant values following the MiTEE design includes the maximum tether length of 𝑙𝑐 = 50 𝑚,
mothership mass of 𝑀 = 3.3 𝑘𝑔, and subsatellite mass of 𝑚 = 100 𝑔. The mothership and its
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Fig. 5.2. Geometry of the orbital motion of a TSS.

subsatellite are assumed to be point masses (𝑀 and 𝑚, respectively), in accordance with the vast
majority of the TSS literature (see, e.g., [200], [201]). This assumption results in decoupling
the attitude control of the individual satellites from the problem, which is independent of the
specific exercise of TSS configuration. Also, attitude control of the subsatellite may not be
relevant depending on the mission specifics (e.g., the electron collector of the MiTEE’s EDT).
It is important to note that the out-of-plane rotation occurs at the TSS barycenter, which is
approximately coincident with the mothership’s center of mass given that 𝑀 ≫ 𝑚, and that the
mass of the tether is negligible compared to 𝑚. As a result, the rotation about the axis collinear
with the tether can be ignored. Finally, it is assumed that the tether is always taut, such that there is
no slack or bending, which may introduce infinite degrees of freedom into the problem. These are
very common simplifications in the TSS literature [180], [198], [199], whereas the true center of
mass exists at the system’s barycenter. The dynamical model given in Eq. 5.1 is in accordance with
the assumption of a circular orbit about a spherical geoid with uniform mass distribution. Thus,
planetary oblateness and 𝐽2 perturbations are neglected. However, these effects are indirectly
incorporated through the exogenous disturbance model.

Remark 14 As it can be seen from Eq. 5.1, the TSS is an underactuated control system since
there are three degrees-of-freedom and only one control input. Contingency for underactuation is
an important topic by itself since there have been numerous tumbling satellites causing mission
failures, dangerous space debris, and recent development of international legislation that mandate
deorbiting expended satellites [202].

In the dynamical system given by Eq. 5.1, the tether itself is always assumed to be straight.
This condition is ensured by constraining the controller in a way that ensures there is always a
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positive, nonzero tension in the tether, which is physically true even in the case of zero applied
force due to the gravity gradient torque on the TSS. This gravity torque is generated by the
subsatellite while being situated at a lower altitude and constrained to move with the same velocity
as the mothership. Otherwise, the subsatellite would be required to move at a higher velocity to
maintain a circular orbit. This fact also reveals that the applied control tension should be a braking
force; or else, there may be slack introduced in the tether that leads to flexibility and tugging,
entailing infinite degrees of freedom. However, by imposing the inequality constraint ¤b > 0, one
can easily avoid slack. Furthermore, it is possible to consider disturbance effects such as elasticity
by adding a lumped disturbance term to the nominal control input acting on the TSS dynamics
in Eq. 5.1. The interested reader is referred to Wen et al. [180] and Yu & Dai [43] for further details.

5.4 Koopman Operator-based Approximations of TSS Nonlin-
ear Dynamics

This section provides a brief overview of Koopman operator theory fundamentals in the context of
the TSS dynamics. Consider the TSS nonlinear dynamical system given by Eq. 5.1 and define the
state vector x = [\, 𝜑, b, ¤\, ¤𝜑, ¤b]𝑇 ∈ X, where the state space X ⊂ 𝑅6 is an open and connected set.
Hence, the state vector x includes the TSS pitch and roll angles, normalized tether length, and their
corresponding rates of change, respectively. The Koopman operator, denoted by K, for the TSS
dynamics given by Eq. 5.1 advances ‘measurement functions’ of the state of the TSS with the flow
of the dynamics. Indeed, one can consider candidate output functions of the state, g (x𝑘 ), which
are known as the ‘observables’ of the nonlinear TSS dynamics in Eq. 5.1 and belong to the function
space G (X). If the flow of the TSS dynamics in Eq. 5.1 is given by the mapping F : X → X, the
evolution of the TSS states is governed by

x𝑘+1 = F(x𝑘 ), (5.2)

where x𝑘 = x(𝑡𝑘 ). Therefore, the Koopman operator K : G (X) → G (X), advances a given
observable function g ( ) along the flow of the dynamics in Eq. 5.2 as

K (g) = g ◦ F. (5.3)

The observables may be the states themselves (such as, ¤\), and/or powers (such as, ¤\2), trigono-
metric functions (such as, 𝑠𝑖𝑛(\)), or other nonlinear combinations thereof (such as, ¤\ sin (\)) of
the states of the TSS. These nonlinear observable functions of the TSS states can be concatenated
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as

y𝑘 = g(x𝑘 ) = [g1(x𝑘 ), g2(x𝑘 ), . . . , g𝑝 (x𝑘 )]𝑇 , (5.4)

to form a vector of observables. Computing a closed-form expression for the flow map F( ) is
a nontrivial task in many dynamical systems. Rather, Koopman operator theory seeks to find a
collection of observable functions g : X → 𝑅 that in composition with the flow map F( ) result
in linear dynamics in the space of those functions G (X), such that K (g) = _g. Such functions
are called the eigenfunctions of the Koopman operator K. In other words, if g∗ ∈ G (X) is an
eigenfunction associated with the Koopman operator of Eq. 5.2, it follows that

g∗(x𝑘+1) = K(g∗) (x𝑘 ) = _g∗(x𝑘 ), (5.5)

where _ is the eigenvalue associated with the eigenfunction g∗. For a vector of Koopman eigen-
functions g∗

𝑖
, 1 ≤ 𝑖 ≤ 𝑝, such as the one in Eq. 5.4, it follows that

y𝑘+1 = (Kg) (x𝑘 ) = 𝚲g (x𝑘 ) , (5.6)

where 𝚲 = 𝑑𝑖𝑎𝑔{_1, · · · , _𝑝} is the diagonal matrix containing the eigenvalues of the Koopman
operator eigenfunctions. Hence, if one can compute an approximation of K associated with the
TSS dynamics along with proper Koopman eigenfunctions, then the TSS states can be easily
predicted using the identified Koopman operator.

In the next section, a data-driven scheme is presented, called the dynamic mode decomposition
(DMD) method, for approximating the Koopman operator of the TSS dynamics.

5.4.1 Dynamic Mode Decomposition

The DMD method, formalized by Schmid [13], approximates dynamic modes of the Koopman
operator in a data-driven manner, resolving the system’s state dynamics. Indeed, the DMD
algorithm computes, from experimental data, the eigenvalues and eigenvectors (low-dimensional
modes) of a linear model that approximates the underlying dynamics. One interesting feature of
this data-driven method is that the DMD approximation is valid even if the dynamics are nonlinear
[121]. Here, an overview of the DMD algorithm is provided in the context of the TSS dynamics.
A detailed treatment of the DMD algorithm can be found in Tu et al. [203].

A sequential set of data vectors {x0, · · · , x𝑚} is sampled during the operation of the TSS. These
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data vectors are the “snapshots” of the state of the TSS dynamics in Eq. 5.1 that are sampled
from the continuous TSS evolution x (𝑡), where x𝑘 = x (𝑘 Δ𝑡) where a fixed sampling rate Δ𝑡 is
assumed. When DMD is applied to data generated by the TSS nonlinear dynamics in Eq. 5.1, the
DMD algorithm yields a best fit linear operator A that approximately advances the state of the TSS
dynamics x in 𝑅6 according to the linear dynamical system

x𝑘+1 = Ax𝑘 , (5.7)

To obtain the operator A for the TSS dynamics, the snapshots of measurable quantities {x0, · · · , x𝑚}
are arranged into two data matrices

X = [x0, · · · , x𝑚−1],
X′ = [x1, · · · , x𝑚] .

(5.8)

The best fit linear operator A, which is obtained by the DMD algorithm, is the solution to the
optimization problem

A = 𝑎𝑟𝑔𝑚𝑖𝑛A | | X′ − AX | |𝐹 , (5.9)

where | | · | |𝐹 denotes the Frobenius norm. It is remarked that Eq. 5.4 describes the general case
of selecting observables, if a catalog of functions of the states were incorporated into the data
matrices, the algorithm would then be referred to as Extended DMD.

Solving the optimization problem in Eq. 5.9 involves employing Singular Value Decomposition
(SVD) whose outputs can be arranged to determine the dominant Koopman eigenvalues of the
system, thus enabling a lower-order linear approximation of the Koopman operator. Since the
SVD is derived from the correlation matrix, the singular values extracted thereby are conveniently
arranged by decreasing magnitudes of dynamic mode, allowing for truncation. The details on
solving the optimization problem in Eq. 5.9 using SVD algorithm can be found in [203].

In summary, the end-result of the DMD algorithm for the dynamics is a best-fit state transition
matrix acting as a globally linear approximation of the nonlinear system. The obtained DMD-based
Koopman operator can then be used to propagate the desired states of the system to a future instant
in time and thus providing a prediction of the evolution of the underlying dynamical system.
Fig. 5.3 provides a schematic of the DMD-based Koopman operator approximation for the TSS
dynamics. In the next section, this identification algorithm is applied to a TSS maneuver where the
TSS subsatellite is being deployed into a circular orbit while there is a time-varying disturbance to
the tension control input.
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Fig. 5.3. Sources of variabilities in TSS flight environment & DMD process.

Remark 15 It is assumed that there is no knowledge of the underlying TSS dynamics in Eq. 5.1.
Rather, an approximation of these nonlinear dynamics is obtained using the stream of data
{𝑥0, · · · , 𝑥𝑚} and the solution to the optimization problem in Eq. 5.9. See Fig. 5.3 for a schematic
of the DMD-based Koopman operator approximation for the TSS dynamics.

5.4.2 Dynamic Mode Decomposition with Control

Dynamic mode decomposition with control (DMDc) is a variant of DMD that resolves the A and
B state space matrices separately. This approach allows for extraction of the open loop dynamics
independent of the control actions applied. The modification required herein is to replace the data
matrix from Eq. 5.8 with an input matrix that includes both the data and control inputs. The SVD
is then performed on this input matrix and the resulting unitary matrices have corresponding state
and control portions. Taking the state portion only, and an SVD of the time-shifted data matrix
from Eq. 5.8, the optimization of Eq. 5.9 is again achieved through the projection of the data
matrix onto the unitary matrices and scaled by singular values generated by the SVD.

Specifically, the estimated Koopman operator is constructed as a product of the time-shifted data
matrix and the singular value decomposition of the data matrix, as shown in Eq. 2.13. In DMDc,
the procedure is as follows: let U, 𝚺 and V be the SVD factors of the combined data matrix, 𝚿,
where 𝚿 = [X,Y]𝑇 and Y is the matrix of sampled control actions; and let U𝑜, 𝚺𝑜 and V𝑜 be the
SVD factors of the time-shifted data matrix, X′. Then,

𝐴 = Uo
𝑇𝑋′𝚺−1U𝑇

1 Uo,

𝐵 = [0 0 1 0 0 0]𝑇
(5.10)
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where the input matrix, B, is structured as such in this case due to it being known that the sampled
control action only came from the third state equation. U1 is the state portion of U. Note that one
may continue to use economical forms of the SVD factors. Further details and examples of the
DMDc algorithm are provided by Proctor et al. [18].

5.4.3 TSS Dynamics Identification During Subsatellite Deployment

In this section, the DMD-based identification algorithm is applied to a TSS maneuver where the
TSS subsatellite is being deployed into a circular orbit. During the deployment operation, the
subsatellite starts lowering to a desired altitude vertically below the mothership. Most of the useful
mission activities start after complete deployment of the subsatellite.

Here, it is assumed that there is no knowledge of the underlying TSS dynamics in Eq. 5.1.
Rather, during the early stages of tether deployment, the tether length is being controlled via a
proportional-derivative control scheme of the form

𝑢𝑛 = 𝐾𝑝

(
b − b𝑑

)
+ 𝐾𝑑 ¤b, (5.11)

where b𝑑 is the desired tether length. Furthermore, it is assumed that there is an unknown time-
varying disturbance in the tension force, which gets added to the control input. In other words, the
disturbance force affects the dynamics of the TSS as

𝑢 = 𝑢𝑛 + 𝑢𝑑 , (5.12)

where 𝑢𝑑 is the tension disturbance, which can lump the effects of atmospheric, geomagnetic, or
𝐽2 perturbations. Following Wen et al. [180], the following disturbance model is used for the
simulation studies undertaken herein.

𝑢𝑑 = 0.01
𝑚𝑛

𝑚𝑝

(𝑠𝑖𝑛 (100𝑡) + 𝑠𝑖𝑛 (0.01𝑡)) . (5.13)

Remark 16 All reference to nonlinear TSS dynamics herein refers to the TSS equations of motion
used for simulation represented by Eq. 5.1, where 𝑢 is taken from Eq. 5.12. This set of equations
comprises the exogenous model, which is unknown to the learning algorithm.

In Eq. 5.13, 𝑚𝑝 denotes the subsatellite mass, which is within ±5% of the subsatellite nominal
value 𝑚 = 𝑚𝑛. It is assumed that the mothership is negligibly affected by perturbations due to its
much greater inertia. Furthermore, the subsatellite, due to its lower altitude is immersed more in
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Earth’s atmosphere and experiences the drag effects more than the mothership. The proportional
and derivative gains in the control law given by Eq. 5.11 are chosen such that the nondimensional
tension control input is constrained between 𝑢𝑚𝑖𝑛 = 0.01 and 𝑢𝑚𝑎𝑥 = 2𝑢𝑠, with 𝑢𝑠 = 3 being the
nominal static force, in consistence with Wen et al. [180] and representing a reasonable upper
bound acting as a limiting factor in TSS missions, as with the failure of the aforementioned TSS-1R
mission [179]. The lower bound is set to a practical minimum yet positive finite value. Indeed,
any occurrence of negative tension implies slack in the tether that corresponds to introducing
infinite degrees of freedom and tugging. Thus, the control action in the current context represents
a continuous yet modulated braking during the subsatellite deployment.

In the deployment of a subsatellite, Banium & Kumar [197] proposed a practically suitable
reference trajectory for optimal control. The trajectory follows an exponential decay in rate of
deployment, leveling off upon approach to the target length, and consists of a tunable first-order
time constant, p, as given in the following equation.

𝑙 (𝑡) = 𝑙𝑜 + 𝑙𝑐 (1 − 𝑒−𝑡/𝑝) (5.14)

Here, 𝑙𝑜 and 𝑙𝑐 are the initial and maximum tether lengths, respectively.

5.5 Simulation Results

For demonstration, Fig. 5.4 illustrates a baseline result showing unforced deployment, com-
paring the original nonlinear dynamics with introduced disturbances and linearized dynamics
obtained via DMD. Fig. 5.5 presents the results of simulation where tension as a braking
force was applied upon the tether as a control input using a simple proportional–derivative
(PD) controller with both gains set to 100. In both cases, the deployment of the tether follows
a reference trajectory defined by Eq. 5.14 using a time constant of 0.1. The PD controller
gains were selected to yield an appropriate magnitude and range for control input of 1 to
100 `𝑁 , comparable to an alternative propulsion system for small satellites [204]. The ten-
sion control result in Fig. 5.6 did indeed meet this requirement. The true [dimensionalized]
tension force of the tether can be recovered by multiplying the values of this control input by𝑚Ω2𝑙𝑐.

Fig. 5.5 shows the performance of the DMD/DMDc model estimation compared to the
nonlinear dynamics. Following the convention of Eq. 5.9, the state vector is organized as
x = [\, 𝜑, b, ¤\, ¤𝜑, ¤b]𝑇 which includes the TSS pitch and roll angles, as well as the normalized
tether length, and their corresponding rates of change. The initial roll angle was non-zero due to

74



Fig. 5.4. Simulation comparing nonlinear vs. globally linearized model: unforced dynamics.

start-up errors and disturbances. Initial tether length is taken to be 1 𝑐𝑚 and terminating at the
deployed normalized length of b = 1, that is, 100%, which in this study was taken to be 50 𝑚.
Thus, there is no desired state or reference trajectory imposed on the pitch and roll angles, nor on
their rates. This is because the scope of this study was on the deployment maneuver, and the TSS,
as configured, is underactuated to perform such angular control.

Figs. 5.4 and 5.5 illustrate the progression of the state variables (solid black) over the course
of the subsatellite deployment. Superimposed thereon (dotted blue) is the output of the linearized
model constructed using DMD/DMDc. The necessity of a controlled deployment is evident in
Fig. 5.4 in that the tether length stops increasing abruptly. In practice, this is undesirable due
to several reasons including the possibility of impulsive forces exceeding the tether strength and
elasticity in the tether causing recoil which introduces slack and tugging dynamics not modeled in
Eq. 5.1. Note that in the case of controlled deployment, the linearized model includes closed-loop
feedback, as the effects of control action have been absorbed into the data matrices of Eq. 5.8.
Table 5.1 details the minute deviations in the graphed results, which are not discernable visually.
These errors particularly tended to occur during the transient phases of the deployment maneuver
and are inconsequential.

Eq. 5.15 provides the result of state transition matrix for the lumped system as derived via DMD,
and Eq. 5.16 provides the result of the DMDc algorithm which decomposes it to the natural and
forced components in terms of the state-space A and B matrices, respectively.
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Fig. 5.5. Simulation comparing nonlinear vs. globally linearized model: controlled deployment.

Table 5.1. Maximum state errors between nonlinear dynamics and globally linearized model.

State Uncontrolled Controlled Controlled Units
Error DMD DMD [×10−3] DMDc
| 𝛿\ | 0.0371 0.0430 0.0021 𝑟𝑎𝑑

| 𝛿𝜑 | 0.0001 0.0041 0.0100 𝑟𝑎𝑑

| 𝛿b | 0.0252 0.0005 0.0762 -
| 𝛿 ¤\ | 0.0398 0.8177 0.0024 𝑟𝑎𝑑/𝑠
| 𝛿 ¤𝜑 | 0.0005 8.5000 0.0151 𝑟𝑎𝑑/𝑠
| 𝛿 ¤b | 0.0081 0.0728 0.0076 𝑠−1
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Fig. 5.6. Simulation results showing control input associated with controlled deployment.

A =

©«

1 0.0004 0 0.01 −0.0002 0.0002
0 0.9999 0 0 0.0099 0
0 0 1 0 0 0.01

−0.0085 0.0852 −0.0002 0.9962 −0.0402 0.0443
0 −0.0262 0 0.0001 0.9784 −0.0001
0 0.0017 0 0 0.0008 0.9996

ª®®®®®®®®®®®¬
(5.15)

A =

©«

1 −0.0003 0 0.0061 −0.0079 0
−0.0001 1 −0.01 −0.0004 −0.0001 −0.0008
0.0277 0.0062 0.9979 0.1183 0.0344 −0.0218
−0.0002 0 −0.0005 0.999 0.001 0.0166
−0.0011 0 0 −0.0031 0.9989 0.012
−0.0004 0 0 −0.0115 −0.0097 0.9759

ª®®®®®®®®®®®¬
, B =

©«

0
0
1
0
0
0

ª®®®®®®®®®®®¬
(5.16)

There is excellent agreement between the exogenous and DMD-linearized models. Dis-
crepancies in the angular overshoots are less than one degree for the worst case. Overall, the
frequency and magnitudes of all state variables are appropriately captured. As shown in Fig.
5.5, the subsatellite deployments along the nadir. Short-period oscillations are attributed to the
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disturbance model, and as is evident from the figure, are totally captured in the linear model
as well. The tether deployment rate is expected to increase monotonically in free deployment,
which is indeed the nominal case. However, it is important to note that the behavior shown in
Fig. 5.4 includes the effects of simulated disturbance affecting tether tension, superimposed
sinusoidally, as described in Eq. 5.13. The otherwise desired constraints on tether tension
continue to hold, such as positive and non-zero. Moreover, the controllability matrix derived from
Eq. 5.16 is of full rank. Although beyond the scope of the current chapter, such identified dynam-
ics of the TSS can be used in more advanced control algorithms such as model predictive controllers.

To provide a quantitative measure of the training data needed to acquire an accurate state
dynamics matrix, Fig. 5.7 depicts the convergence of learning error against the simulation time.
The error matrix denoted by 𝛿𝐴 is the maximum difference between the current learned state
dynamics matrix and the terminal learned state dynamics matrix, namely, the final state dynamics
matrix that is computed from the Koopman operator-based identification algorithm in the final
step of the numerical simulation. In the final step of the simulation, the terminal state dynamics
matrix is computed by incorporating the total available data at the time of full deployment, which
corresponds to 𝑚 = 15001 state measurements. Fig. 5.7 shows both the Frobenius norm of the
error matrix as well as the absolute value of its greatest element. The change in Frobenius norm
beyond 141 𝑠Ω−1 is less than 1% (within the first 35 hours of flight time), which corresponds to
𝑚 = 14101 state measurements under the selected controller gains. However, the absolute change
in matrix values diminishes to be on the order of 10−3 beyond 65.3 𝑠Ω−1 (equivalent to the 16
hours of flight time), which corresponds to 𝑚 = 6531 state measurements. Consequently, by half
of the mission time, the tether is only ∼80% deployed under the selected reference trajectory. Yet,
the learned state matrix has converged to a very close vicinity of the terminal state dynamics matrix.

5.6 Conclusion and Further Remarks

With conventional linearization techniques in spacecraft dynamics, a limitation is imposed on
the robustness of forecasting motion under the influence of unknown and unmodeled effects.
Thus, the exercise of dynamics modeling constitutes an engineering judgment on how much
sacrifice in fidelity can be tolerated within an acceptable level of risk – an envelope that should
be minimized. In this research, an established model for TSS deployment was taken and
superimposed with disturbances, all unknown to a Koopman operator-based learning algorithm.
The aim of this study has been to apply an emergent system identification technique from outside
of the space systems field, namely, dynamic mode decomposition and to develop a more practical
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Fig. 5.7. Convergence in learning error of state dynamics matrix.

model that can capture unmodeled effects. Furthermore, the proposed Koopman operator-based
methodology is a computationally efficient approach that can be implemented in real-time and
will be amenable to state-space control synthesis techniques (the focus of this chapter has been
on system identification though). In essence, a TSS exhibiting nonlinear behavior was analyzed
from which measured data was used to construct a globally linear dynamical model. It is also
worth reiterating that a useful application of the approach presented herein is to easily assess in
real-time, the controllability of the system (mission operability), given its operating environment.
The dynamic modes identified included those of the system’s nominal motion, as well as of
external disturbances and control. Moreover, the resultant model is globally linear, which is not
achievable with traditional perturbation or truncated series-based linearization techniques at fixed
operating points. The DMDc algorithm produced an A matrix which extracted the unforced
state dynamics of the deploying TSS, while the A matrix output from the DMD algorithm was
that of the closed-loop system. Both models captured the behavior of the nonlinear dynamics
with disturbances. Comparison of both linearized models against the exogenous (nonlinear)
dynamics yielded excellent agreement. These system identification approaches applied to the TSS
deployment maneuver or similar space system problem are the first known to the authors rooted in
Koopman operator theory.

The TSS deployment behavior as simulated by the DMD linearized model can be used to
optimally tune control action or be used in alternate robust controller designs requiring a linear
state-space representation of the system dynamics, including in the formation of a model and
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prediction horizon for model predictive control. Further, if the source of nonlinearity acting upon
nominally linear unforced dynamics is the disturbance, then the disturbance model can be extracted
by taking the difference between the nominal and globally linearized models. Potential future
research involves combining model-based and data-driven observers. For example, in Bruder et
al. [80] an Extended DMD algorithm was used to estimate the loads of objects being lifted by
a soft robotic arm by means of a model predictive controller. One can potentially use such a
combined model-based and data-driven approach also in space systems applications to estimate
underactuated states (e.g., in attitude control), linearize affine systems (e.g., in solar sailing), or
optimize mission-specific parameters (e.g., in imaging). DMD enables the possibility of further
analyses of complex spacecraft dynamics problems, especially TSSs which are especially sensitive
to disturbances and control, increasing overall mission reliability of space systems applications.
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CHAPTER 6

Conclusions & Further Research

Emergent techniques of determining the Koopman operator have become a contender for the
identification of dynamical systems of any complexity in a way that is computationally superior
to machine learning methods. Moreover, the HAVOK approach offers predictive properties for
systems that are highly nonlinear and even chaotic in nature, thereby becoming invaluable for
applicability to a host of unsolved problems in vehicle systems and controls.

This dissertation examined vehicular applications of Koopman operator theory in the recent
literature and extended contributions to the field using the case studies of predicting superknock and
pre-ignition in an internal combustion engine, and in tethered subsatellite deployment subjected
to unmodelable environmental effects. Firstly, it was shown that the evolutionary manifestations
of Koopman operator theory have emerged in recent years and the extent to which they have
been applied to vehicular applications continues to grow. Consequently, it was established that
this research area is unique in its own right and highly undersaturated. Next, the case study of
pre-ignition and superknock prediction was presented wherein the HAVOK algorithm was framed
such that it could be implemented as a real-time, computationally efficient operation to improve
the safety, efficiency, reliability and harshness of a conventional internal combustion engine in the
automotive context (with equal relevance to aerospace, marine, rail, mine, construction, robotic,
and other applications). The framework developed can be used as an engineering guide to do
similar with other engine features. Finally, the case study of a deployment operation in a tethered
satellite system was presented. Here, the general theme was the learning of complex environmental
effects to which the system may be highly sensitive. The result was an accurate capturement of
dynamics and the generation of linearized equations of motion without the need to understand
underlying physical processes. This concept can also be extended to other problems, such as
predictive battery pre-cooling in electrical vehicles, and docking of spacecraft.
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6.1 Future Research Directions

This section highlights some candidate systems upon which demonstration of this research was
considered, but have not yet developed to a sufficient degree for publication. These ideas are works
in progress and may be completed in the near future at the RMI Laboratory.

6.1.1 Adaptive Control of Peristaltic Locomotion in Unknown Environments

Figure 6.1 is an example of a vehicle that employs underactuated peristaltic motion to traverse soft
terrain in the emulation of a worm [135]. System identification techniques such as those proposed
herein could be used to learn the characteristics of its environment in real-time and auto-tune its
control algorithm accordingly. For example, the adaptation of its peristaltic wave can optimize its
speed in surface or sub-surface operation and in varying mediums (e.g., snow, mud, water, oil, etc.).
A learning window can be hard coded to run nominal data through the DMD algorithm. After that,
the duration it takes for the robot to travel a fixed distance over several test terrains can be measured
to confirm any improvement in the performance of a linear model-based controller.

Fig. 6.1. Peristaltic robot developed at the RMI Laboratory at the University of Michigan - Dearborn

6.1.2 An Empiric Approach to Seismic Hazard Prediction for Railway and
Mine Safety

Rail transport continues to be amongst the most economical and environmentally friendly means
of transferring passengers and freight across long distances. Among safety issues, high-speed
rail is particularly susceptible to seismic hazards, with several catastrophes littered throughout
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recent history. While not all earthquakes cause train derailments, they potentially confound
further dangerous and costly situations such as damage to railway infrastructure (including safety
mechanisms and health monitoring systems), the propensity of human error, and a decline in
ridership confidence, among others. Currently, there are limited technologies in place to warn of
impending seismic hazards for railway operations comprised of networked seismic sensors (land-
or sea-based) along railway tracks or near known seismic hotspots. However, these systems are
reactionary and are limited by the geological literature not yet producing a reliable algorithm for
earthquake prediction.

Although the forecasting of earthquakes remains an open challenge, the proposed technique
is solidly grounded in the science of data-driven capturement of dynamical processes. The only
assumption enabling this is that deterministic physical processes should indeed exist to cause the
target events, no matter the complexity; i.e., the target events are not purely random phenomena in
the statistical sense. This assumption is justified through at least one means of earthquake genesis,
namely, Rayleigh-Taylor instability which occurs when magma rises from the mantle and pushes
into the overlying Earth’s crust [205]. The instability can cause cracking and deformation of the
crust, leading to the buildup of tectonic stress that is released as an earthquake when the stress
exceeds the strength of the crust. This mechanism has been proposed as a possible explanation
for the generation of shallow earthquakes in volcanic regions and has been observed in laboratory
simulations. Crack propagation through the crust further follows its own set of deterministic
physical principles. Given this assumption of earthquake processes being deterministic, and not
random in the mathematical sense, it follows that the HAVOK algorithm may be suitable to learn a
linear model given enough data.

The Global Seismic Activity Level (GSAL) is the daily combined magnitude of global seismic
activity and is updated live on the internet [206]. After digitizing 10 years of this data from 2010
to 2020 and processing it through the HAVOK algorithm, the result is given in Fig. 6.2.

The top portion of the figure shows the daily combined Richter scale magnitude, 𝑀𝑐, with days
registered as ≥ 6 (classified as High) highlighted in red. The bottom graph shows the apparent
forcing required to make the data fit a globally linearized linear model of rank 20 (this can be used
as a tuning variable). Although a detailed analysis is this data is yet to be performed in terms of
statistical significance, it seems that some significant earthquakes were indeed predictable within
a few days of their manifestation. However, most were not predictable. Thus, some more work
needs to be done to work with the data from a proper perspective. It is also theorized that more
reliable predictions may be possible from data collected at a specific site, ideally over a suspected
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Fig. 6.2. Global seismic activity level from 2010 to 2020 with HAVOK apparent forcing

tectonic hot spot or an active volcano. Such may fall within the scope of railway safety since most
of the world’s high-speed and bullet trains exist in the Ring of Fire nations (e.g., Japan)

When replicating this approach for coal mine data from the UCI Machine Learning Repository
[207], a much stronger predictive result was obtained and is shown in Fig. 6.3.
However, it may be that the algorithm has caught on to shift schedules and recurrent blasting
operations. Even if that is the case, it helps to realize the potential recconnance value of this
approach to learning troop movements and logistic patterns beyond boarders or near a theatre of
armed conflict. Nonetheless, this area of research may soon prove successful.

6.1.3 Other Future Work

Future work in addition to the aforementioned (and what has already been mentioned throughout
Chapter 2) may include efforts in the realm of preventative maintenance, anticipated user behavior,

84



Fig. 6.3. Coal mine seismic hazard assessment with HAVOK apparent forcing

performance & reliability, manufacturability & operation management, automated calibration or
gain scheduling of virtually any powertrain feature, and much more.

Koopman operator theory is a powerful mathematical framework that has a proven potential
to revolutionize the design and control of complex systems, including vehicular applications, as
demonstrated in this dissertation. Koopman operator theory is concerned with the analysis and
modeling of dynamic systems using a novel approach based on the observation of the evolution of
functions rather than states. Thus, the application of Koopman operator theory to vehicular appli-
cations has significant potential to improve system modeling, enhance control, enable autonomous
vehicle control, and reduce development time and costs. As such, it is an exciting area of research
with significant potential for real-world impact.
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[7] S. Cĕlikovský, “Global linearization of nonlinear systems - A survey,” Banach Center
Publications, vol. 32, no. 1, pp. 123–137, 1995.

[8] A. Frias, “Modeling and control of spacecraft systems with coupled orbital and attitude
dynamics,” Ryerson University, Toronto, ON, 2012.

[9] J. Belikov, A. Kaldmäe, and Ü. Kotta, “Global linearization approach to nonlinear control
systems: A brief tutorial overview,” Proceedings of the Estonian Academy of Sciences,
vol. 66, no. 3, 2017.

[10] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koopman invariant subspaces
and finite linear representations of nonlinear dynamical systems for control,” PloS one,
vol. 11, no. 2, e0150171, 2016.

[11] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proceedings
of the National Academy of Sciences of the United States of America, vol. 17, no. 5, pp. 315–
318, 1931.

86



[12] I. Mezić, “Analysis of fluid flows via spectral properties of the Koopman operator,” Annual
Review of Fluid Mechanics, vol. 45, no. 1, pp. 357–378, 2013.

[13] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal
of Fluid Mechanics, vol. 656, pp. 5–28, 2010.

[14] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Machine learning,
dynamical systems, and control. Cambridge University Press, 2019.

[15] Y. Susuki, I. Mezić, F. Raak, and T. Hikihara, “Applied Koopman operator theory for
power systems technology: Nonlinear theory and its applications,” Institute of Electronics,
Information and Communication Engineers, vol. 7, no. 4, pp. 430–459, 2016.

[16] H. Arbabi, Introduction to koopman operator theory of dynamical systems. 2018.

[17] A. Bruce, V. Zeidan, and D. Bernstein, “What is the koopman operator? a simplified
treatment for discrete-time systems,” in 2019 American Control Conference (ACC), IEEE,
2019, pp. 1912–1917.

[18] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition with control,”
SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142–161, 2016.

[19] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan, “Modeling and control of soft
robots using the koopman operator and model predictive control,” in 2019 Robotics: Science
and Systems, 2019.

[20] J. L. Schmid Peter J.; Sesterhenn, “Dynamic mode decomposition of numerical and exper-
imental data,” in Bulletin of the American Physical Society, ser. 61st APS meeting, vol. 61,
San Antonio, 2008, p. 208.

[21] I. Mezić, On the geometrical and statistical properties of dynamical systems: Theory and
applications. California Institute of Technology, 1994.

[22] I. Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,”
Nonlinear Dynamics, vol. 41, pp. 309–325, 2005.

[23] I. Mezić and A. Banaszuk, “Comparison of systems with complex behavior,” Physica D:
Nonlinear Phenomena, vol. 197, no. 1-2, pp. 101–133, 2004.

[24] K. K. Chen, J. H. Tu, and C. W. Rowley, “Variants of dynamic mode decomposition:
Boundary condition, koopman, and fourier analyses,” Journal of nonlinear science, vol. 22,
no. 6, pp. 887–915, 2012.

[25] M. Budišić, R. Mohr, and I. Mezić, “Applied Koopmanism,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 22, no. 4, p. 047 510, 2012.

87



[26] P. J. Schmid, “Dynamic mode decomposition and its variants,” Annual Review of Fluid
Mechanics, vol. 54, pp. 225–254, 2022.

[27] I. Mezić, “Analysis of fluid flows via spectral properties of the Koopman operator,” Annual
Review of Fluid Mechanics, vol. 45, pp. 357–378, 2013.

[28] K. Balakrishnan and D. Upadhyay, “Stochastic adversarial Koopman model for dynamical
systems,” arXiv preprint arXiv:2109.05095, 2021.

[29] M. J. Colbrook, L. J. Ayton, and M. Szőke, “Residual dynamic mode decomposition: Robust
and verified Koopmanism,” arXiv preprint arXiv:2205.09779, 2022.

[30] T. Chen and J. Shan, “Koopman-operator-based attitude dynamics and control on SO(3),”
Journal of Guidance, Control, and Dynamics, vol. 43, no. 11, pp. 2112–2126, 2020.

[31] V. Cibulka, T. Haniš, M. Korda, and M. Hromčıćk, “Model predictive control of a vehicle
using Koopman operator,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 4228–4233, 2020.

[32] A. Leonard, J. Rogers, and A. Gerlach, “Koopman operator approach to airdrop mission
planning under uncertainty,” Journal of Guidance, Control, and Dynamics, vol. 42, no. 11,
pp. 2382–2398, 2019.

[33] G. Gutow and J. D. Rogers, “Koopman operator method for chance-constrained motion
primitive planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1572–1578,
2020.

[34] J. Meyers, A. Leonard, J. Rogers, and A. Gerlach, “Koopman operator approach to optimal
control selection under uncertainty,” in Proc. 2019 IEEE American Control Conference
(ACC), IEEE, Jul. 2019, pp. 2964–2971.

[35] S. Sinha, U. Vaidya, and R. Rajaram, “Operator theoretic framework for optimal placement
of sensors and actuators for control of nonequilibrium dynamics,” Journal of Mathematical
Analysis and Applications, vol. 440, no. 2, pp. 750–772, 2016.

[36] S. Servadio, D. Arnas, and R. Linares, “Dynamics near the three-body libration points via
Koopman operator theory,” Journal of Guidance, Control, and Dynamics, vol. 45, no. 10,
pp. 1800–1814, 2022.

[37] T. Salam, V. Edwards, and M. A. Hsieh, “Learning and leveraging features in flow-like
environments to improve situational awareness,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 2071–2078, 2022.

[38] D. Arnas, “Solving perturbed dynamic systems using Schur decomposition,” Journal of
Guidance, Control, and Dynamics, pp. 1–18, 2022.

88



[39] G. Mamakoukas, M. L. Castano, X. Tan, and T. D. Murphey, “Derivative-based Koopman
operators for real-time control of robotic systems,” English, IEEE transactions on robotics,
vol. 37, no. 6, pp. 2173–2192, 2021.

[40] V. Zinage and E. Bakolas, “Far-field minimum-fuel spacecraft rendezvous using Koopman
operator and l2/l1 optimization,” in 2021 American Control Conference (ACC), IEEE, 2021,
pp. 2992–2997.

[41] A. Sinha and Y. Wang, “Koopman operator–based knowledge-guided reinforcement learn-
ing for safe human–robot interaction,” Frontiers in Robotics and AI, vol. 9, 2022.

[42] F. E. Sotiropoulos and H. H. Asada, “Dynamic modeling of bucket-soil interactions using
Koopman-DFL lifting linearization for model predictive contouring control of autonomous
excavators,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 151–158, 2021.

[43] B. Yu and P. Dai, “Deployment dynamics of a tape-shaped tethered satellite,” Journal of
Aerospace Engineering, vol. 35, no. 4, 2022.

[44] G. Mamakoukas, S. Di Cairano, and A. P. Vinod, “Robust model predictive control with
data-driven Koopman operators,” in 2022 American Control Conference, Mitsubishi Elec-
tric Research Laboratories, 2022, pp. 3885–3892.

[45] X. Zhang, W. Pan, R. Scattolini, S. Yu, and X. Xu, “Robust tube-based model predictive
control with Koopman operators,” Automatica, vol. 137, p. 110 114, 2022.

[46] A. M. Avila, “Applications of Koopman operator theory to highway traffic dynamics,” M.S.
thesis, University of California, Santa Barbara, 2017.

[47] J. Hogg, M. Fonoberova, and I. Mezić, “Exponentially decaying modes and long-term
prediction of sea ice concentration using Koopman mode decomposition,” Scientific reports,
vol. 10, no. 1, pp. 1–15, 2020.

[48] M. H. Canham, “On flexible tubes conveying a moving fluid: Variational dynamics and
spectral analysis,” M.S. thesis, University of Alberta, Edmonton, AL, 2017.

[49] S. Servadio, R. Armellin, and R. Linares, “A Koopman-operator control optimization for
relative motion in space,” arXiv preprint arXiv:2207.07079, 2022.

[50] C. Hofmann, S. Servadio, R. Linares, F. Topputo, et al., “Advances in Koopman operator
theory for optimal control problems in space flight,” in 2022 AAS/AIAA Astrodynamics
Specialist Conference, 2022, pp. 1–13.

[51] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox, “Lift & learn: Physics-informed
machine learning for large-scale nonlinear dynamical systems,” Physica D: Nonlinear
Phenomena, vol. 406, p. 132 401, 2020.

89



[52] S. A. Renganathan, Y. Liu, and D. N. Mavris, “Koopman-based approach to nonintru-
sive projection-based reduced-order modeling with black-box high-fidelity models,” AIAA
Journal, vol. 56, no. 10, pp. 4087–4111, 2018.

[53] S. E. Otto, “Advances in data-driven modeling and sensing for high-dimensional nonlinear
systems,” Ph.D. dissertation, Princeton University, 2022.

[54] I. Cohen, T. Berkov, and G. Gilboa, “Total-variation mode decomposition,” in International
Conference on Scale Space and Variational Methods in Computer Vision, Springer, 2021,
pp. 52–64.

[55] Z. Wu, S. L. Brunton, and S. Revzen, “Challenges in dynamic mode decomposition,”
Journal of the Royal Society Interface, vol. 18, no. 185, p. 20 210 686, 2021.

[56] E. Ling, L. Zheng, L. J. Ratliff, and S. Coogan, “Koopman operator applications in signal-
ized traffic systems,” IEEE Transactions on Intelligent Transportation Systems, 2020.

[57] E. Ling, L. Ratliff, and S. Coogan, “Koopman operator approach for instability detection
and mitigation in signalized traffic,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), IEEE, 2018, pp. 1297–1302.

[58] A. M. Boudali, P. J. Sinclair, R. Smith, and I. R. Manchester, “Human locomotion analysis:
Identifying a dynamic mapping between upper and lower limb joints using the Koopman
operator,” in 2017 39th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), IEEE, 2017, pp. 1889–1892.

[59] S. Hanke, S. Peitz, O. Wallscheid, S. Klus, J. Böcker, and M. Dellnitz, “Koopman operator-
based finite-control-set model predictive control for electrical drives,” arXiv preprint
arXiv:1804.00854, 2018.

[60] S. Le Clainche, D. Rodriguez, V. Theofilis, and J. Soria, “Flow around a hemisphere-
cylinder at high angle of attack and low reynolds number. Part II: POD and DMD applied
to reduced domains,” Aerospace Science and Technology, vol. 44, pp. 88–100, 2015.

[61] S. Vasisht and M. Mesbahi, “Data-guided aerial tracking,” Journal of Guidance, Control,
and Dynamics, vol. 43, no. 8, pp. 1540–1549, 2020.

[62] C. L. Journell, R. M. Gejji, I. V. Walters, A. I. Lemcherfi, C. D. Slabaugh, and J. B.
Stout, “High-speed diagnostics in a natural gas–air rotating detonation engine,” Journal of
Propulsion and Power, vol. 36, no. 4, pp. 498–507, 2020.

[63] H. T. Luong, Y. Wang, H.-G. Sung, and C. H. Sohn, “A comparative study of dynamic mode
decomposition methods for mode identification in a cryogenic swirl injector,” Journal of
Sound and Vibration, vol. 503, p. 116 108, 2021.

90



[64] R. Larusson, N. Andersson, L.-E. Eriksson, and J. Östlund, “Comparison of eigenmode
extraction techniques for separated nozzle flows,” in 50th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference, 2014, p. 4003.

[65] A. M. Avila, M. Fonoberova, J. P. Hespanha, et al., “Game balancing using Koopman-based
learning,” in 2021 American Control Conference (ACC), IEEE, 2021, pp. 710–717.

[66] W. A. Manzoor, S. Rawashdeh, and A. Mohammadi, “Koopman operator-based data-
driven identification of tethered subsatellite deployment dynamics,” Journal of Aerospace
Engineer, 2022, Submitted.

[67] X. Zhu, C. Ding, L. Jia, and Y. Feng, “Koopman operator based model predictive control
for trajectory tracking of an omnidirectional mobile manipulator,” English, Measurement
and control (London), 2022.

[68] T. A. Berrueta, I. Abraham, and T. Murphey, Experimental applications of the koopman
operator in active learning for control. Springer, 2020, pp. 421–450.

[69] V. Cibulka, T. Haniš, and M. Hromčıćk, “Data-driven identification of vehicle dynamics
using Koopman operator,” 2019 22nd International Conference on Process Control (PC19),
pp. 167–172, 2019.

[70] M. Švec, Š. Ileš, and J. Matuško, “Model predictive control of vehicle dynamics based on
the Koopman operator with extended dynamic mode decomposition,” in 2021 22nd IEEE
International Conference on Industrial Technology, IEEE, vol. 1, 2021, pp. 68–73.

[71] P. Mi, Q. Wu, and Y. Wang, “Suboptimal control law for a near-space hypersonic
vehicle based on Koopman operator and algebraic Riccati equation,” Proceedings of
the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
p. 09 544 100 211 045 594, 2022.

[72] M. Švec, Š. Ileš, and J. Matuško, “Predictive approach to torque vectoring based on the
Koopman operator,” in 2021 European Control Conference (ECC), IEEE, 2021, pp. 1341–
1346.

[73] S. Zinage, S. Jadhav, Y. Zhou, I. Bilionis, and P. Meckl, “Data driven modeling of tur-
bocharger turbine using Koopman operator,” arXiv preprint arXiv:2204.10421, 2022.

[74] J. Buzhardt and P. Tallapragada, “A Koopman operator approach for the vertical stabilization
of an off-road vehicle,” Modelling, Estimation and Control Conference, Apr. 2022.

[75] D. Lehmberg, F. Dietrich, and G. Köster, “Modeling Melburnians—using the Koopman
operator to gain insight into crowd dynamics,” Transportation Research Part C: Emerging
Technologies, vol. 133, p. 103 437, 2021.

91



[76] S. Bhandari, “Landing a spaceship with Koopman operator theory and model predictive
control,” M.S. thesis, Technical University of Munich, Munich, BY, 2021.

[77] M. Li and L. Jiang, “Deep learning nonlinear multiscale dynamic problems using Koopman
operator,” Journal of Computational Physics, vol. 446, p. 110 660, 2021.

[78] M. O. Williams, M. S. Hemati, S. T. Dawson, I. G. Kevrekidis, and C. W. Rowley, “Ex-
tending data-driven Koopman analysis to actuated systems,” IFAC-PapersOnLine, vol. 49,
no. 18, pp. 704–709, 2016.

[79] H. M. Calderón, I. Hammoud, T. Oehlschlägel, H. Werner, and R. Kennel, “Data-driven
model predictive current control for synchronous machines: A Koopman operator ap-
proach,” in 2022 International Symposium on Power Electronics, Electrical Drives, Au-
tomation and Motion (SPEEDAM), IEEE, 2022, pp. 942–947.

[80] D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan, “Koopman-based control
of a soft continuum manipulator under variable loading conditions,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 6852–6859, 2021.

[81] L. Shi and K. Karydis, “Enhancement for robustness of Koopman operator-based data-
driven mobile robotic systems,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2021, pp. 2503–2510.

[82] B. Chen, Z. Huang, R. Zhang, et al., “Data-driven Koopman model predictive control for
optimal operation of high-speed trains,” IEEE Access, vol. 9, pp. 82 233–82 248, 2021.

[83] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven approximation of
the Koopman operator: Extending dynamic mode decomposition,” Journal of Nonlinear
Science, vol. 25, no. 6, pp. 1307–1346, 2015.

[84] J. Moyalan, Y. Chen, and U. Vaidya, “Navigation with probabilistic safety constraints:
Convex formulation,” arXiv preprint arXiv:2203.12520, 2022.

[85] A. Broad, I. Abraham, T. Murphey, and B. Argall, “Data-driven Koopman operators for
model-based shared control of human-machine systems,” The International Journal of
Robotics Research, vol. 39, no. 9, pp. 1178–1195, 2020.

[86] A. Broad, T. Murphey, and B. Argall, “Learning models for shared control of human-
machine systems with unknown dynamics,” arXiv preprint arXiv:1808.08268, 2018.

[87] S. Pan, “Robust and interpretable learning for operator-theoretic modeling of non-linear
dynamics,” Ph.D. dissertation, University of Michigan, 2021.

92



[88] W. Guo, H. Cao, S. Zhao, M. Li, B. Yi, and X. Song, “A data-driven model-based shared
control strategy considering drivers’ adaptive behavior in driver-automation interaction,”
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering, p. 09 544 070 221 104 888, 2022.

[89] C. Folkestad, D. Pastor, and J. W. Burdick, “Episodic Koopman learning of nonlinear
robot dynamics with application to fast multirotor landing,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 9216–9222.

[90] C. Folkestad, Y. Chen, A. D. Ames, and J. W. Burdick, “Data-driven safety-critical control:
Synthesizing control barrier functions with Koopman operators,” IEEE Control Systems
Letters, vol. 5, no. 6, pp. 2012–2017, 2020.

[91] W. Jin, Z. Wang, Z. Yang, and S. Mou, “Pontryagin differentiable programming: An end-to-
end learning and control framework,” Advances in Neural Information Processing Systems,
vol. 33, pp. 7979–7992, 2020.

[92] J. Sullivan, “Application of data-driven modal decomposition techniques to the non-
stationary case of scramjet unstart,” M.S. thesis, The Ohio State University, 2021.

[93] H. Arbabi and I. Mezic, “Ergodic theory, dynamic mode decomposition, and computation
of spectral properties of the Koopman operator,” SIAM Journal on Applied Dynamical
Systems, vol. 16, no. 4, pp. 2096–2126, 2017.

[94] N. Ali, B. Viggiano, M. Tutkun, and R. B. Cal, “Forecasting the evolution of chaotic
dynamics of two-phase slug flow regime,” Journal of Petroleum Science and Engineering,
vol. 205, p. 108 904, 2021.

[95] D. A. Haggerty, M. J. Banks, P. C. Curtis, I. Mezić, and E. W. Hawkes, “Modeling,
reduction, and control of a helically actuated inertial soft robotic arm via the Koopman
operator,” arXiv preprint arXiv:2011.07939, 2020.

[96] Z. Ma, G. Wang, T. Cui, and Y. Zheng, “Interpretation of intermittent combustion oscilla-
tions by a new linearization procedure,” Journal of Propulsion and Power, vol. 38, no. 2,
pp. 190–199, 2022.

[97] W. A. Manzoor, S. Rawashdeh, and A. Mohammadi, “Real-time prediction of pre-ignition
and super-knock in internal combustion engines,” SAE Int. J. Engines, vol. 16, no. 3, 2023.

[98] S. Le Clainche, R. Moreno-Ramos, P. Taylor, and J. M. Vega, “New robust method to study
flight flutter testing,” Journal of Aircraft, vol. 56, no. 1, pp. 336–343, 2019.

93



[99] M. L. Castaño, A. Hess, G. Mamakoukas, T. Gao, T. Murphey, and X. Tan, “Control-oriented
modeling of soft robotic swimmer with Koopman operators,” in 2020 IEEE/ASME Inter-
national Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2020, pp. 1679–
1685.

[100] P. J. Baddoo, B. Herrmann, B. J. McKeon, J. N. Kutz, and S. L. Brunton, “Physics-informed
dynamic mode decomposition (piDMD),” arXiv preprint arXiv:2112.04307, 2021.

[101] C. Folkestad and J. W. Burdick, “Koopman NMPC: Koopman-based learning and nonlinear
model predictive control of control-affine systems,” in 2021 IEEE International Conference
on Robotics and Automation, IEEE, 2021, pp. 7350–7356.

[102] Y. Xiao, “DDK: A deep Koopman approach for dynamics modeling and trajectory tracking
of autonomous vehicles,” arXiv preprint arXiv:2110.14700, 2021.

[103] Y. Xiao, X. Zhang, X. Xu, X. Liu, and J. Liu, “Deep neural networks with Koopman oper-
ators for modeling and control of autonomous vehicles,” IEEE Transactions on Intelligent
Vehicles, 2022.

[104] R. Wang, Y. Han, and U. Vaidya, “Deep Koopman data-driven control framework for
autonomous racing,” in Proc. Int. Conf. Robot. Autom.(ICRA) Workshop Opportunities
Challenges Auton. Racing, 2021, pp. 1–6.

[105] Y. Han, W. Hao, and U. Vaidya, “Deep learning of Koopman representation for control,” in
2020 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 1890–1895.

[106] Y. Wang, Y. Yang, Y. Pu, and C. Manzie, “Data-driven predictive tracking control based on
Koopman operators,” arXiv preprint arXiv:2208.12000, 2022.

[107] C. Bakker, A. Bhattacharya, S. Chatterjee, C. J. Perkins, and M. R. Oster, “Learning
Koopman representations for hybrid systems,” arXiv preprint arXiv:2006.12427, 2020.

[108] J. Zhan, Z. Ma, and L. Zhang, “Data-driven modeling and distributed predictive control of
mixed vehicle platoons,” IEEE Transactions on Intelligent Vehicles, 2022.

[109] A. Maksakov and S. Palis, “Koopman-based optimal control of boost dc-dc converter,”
in 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), IEEE,
2020, pp. 1–4.

[110] V. Zinage and E. Bakolas, “Neural Koopman Lyapunov control,” arXiv preprint
arXiv:2201.05098, 2022.

[111] Y. Xiao, X. Xu, and Q. Lin, “Cknet: A convolutional neural network based on Koopman
operator for modeling latent dynamics from pixels,” arXiv preprint arXiv:2102.10205,
2021.

94



[112] S. B. Leask, “Dynamical feature extraction of atomization phenomena using deep Koopman
analysis,” Ph.D. dissertation, University of California, Irvine, 2021.

[113] K. Bieker, S. Peitz, S. L. Brunton, J. N. Kutz, and M. Dellnitz, “Deep model predictive flow
control with limited sensor data and online learning,” Theoretical and computational fluid
dynamics, vol. 34, no. 4, pp. 577–591, 2020.

[114] L. Songy, J. Wangy, and J. Xuz, “A data-efficient reinforcement learning method based on
local Koopman operators,” in 20th IEEE International Conference on Machine Learning
and Applications, IEEE, 2021, pp. 515–520.

[115] A. M. Girgis, H. Seo, J. Park, M. Bennis, and J. Choi, “Split learning meets Koopman theory
for wireless remote monitoring and prediction,” in 2021 IEEE 32nd Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), IEEE, 2021,
pp. 1191–1196.

[116] T. Goyal, S. Hussain, E. Martinez-Marroquin, N. A. Brown, and P. K. Jamwal, “Impedance
control of a wrist rehabilitation robot based on autodidact stiffness learning,” IEEE Trans-
actions on Medical Robotics and Bionics, vol. 4, no. 3, pp. 796–806, 2022.

[117] B. Brunton, L. Johnson, J. Ojemann, and J. Kutz, “Extracting spatial–temporal coherent
patterns in large-scale neural recordings using dynamic mode decomposition,” Journal of
Neuroscience Methods, vol. 258, pp. 1–15, 2016.

[118] H. Matpan, “Data driven model discovery and control of longitudinal missile dynamics,”
M.S. thesis, Middle East Technical University, 2021.

[119] L. Yingzhao and C. Jones, “On Gaussian process based Koopman operators,” Ifac Paper-
sonline, vol. 53, no. CONF, pp. 52–58, 2020.

[120] M. L. Bujorianu, R. Wisniewski, and E. Boulougouris, “Stochastic safety for random
dynamical systems,” in 2021 American Control Conference (ACC), IEEE, 2021, pp. 1340–
1345.

[121] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz, “Chaos as an
intermittently forced linear system,” Nature Communications, vol. 8, no. 1, pp. 1–9, 2017.

[122] W. A. Manzoor, S. Rawashdeh, and A. Mohammadi, “Koopman operator-based data-driven
identification of tethered subsatellite deployment dynamics,” ASCE Journal of Aerospace
Engineering, 2023, Accepted, in print.

[123] J. Meyers, J. Rogers, and A. Gerlach, “Koopman operator method for solution of generalized
aggregate data inverse problems,” Journal of Computational Physics, vol. 428, p. 110 082,
2021.

95



[124] W. A. Manzoor, S. Rawashdeh, and A. Mohammadi, “Real-time prediction of pre-ignition
and super-knock in internal combustion engines,” SAE International Journal Engines,
vol. 16, no. 3, 2023.

[125] S. Gupta, D. Shen, D. Karbowski, and A. Rousseau, “Koopman model predictive control for
eco-driving of automated vehicles,” in 2022 American Control Conference (ACC), IEEE,
2022, pp. 2443–2448.

[126] D. Shen, J. Han, D. Karbowski, and A. Rousseau, “Data-driven design of model predic-
tive control for powertrain-aware eco-driving considering nonlinearities using Koopman
analysis,” IFAC-PapersOnLine, vol. 55, no. 24, pp. 117–122, 2022.

[127] M. E. Marco, J. A. de la Riva, C. B. Sopena, and J. C. S. Cortes, “A data-driven methodology
applied to X-in-the-loop environments for electric vehicle development,” in 2021 IEEE
Vehicle Power and Propulsion Conference (VPPC), IEEE, 2021, pp. 1–5.

[128] B. B. Kanbur, V. Kumtepeli, and F. Duan, “Thermal performance prediction of the battery
surface via dynamic mode decomposition,” Energy, vol. 201, p. 117 642, 2020.

[129] H. Moreno and A. Schaum, “Low-order electrochemical state estimation for Li-Ion batter-
ies,” Algorithms, vol. 16, no. 2, p. 73, 2023.

[130] A. Narasingam and J. S.-I. Kwon, “Application of Koopman operator for model-based
control of fracture propagation and proppant transport in hydraulic fracturing operation,”
Journal of Process Control, vol. 91, pp. 25–36, 2020.

[131] H. Klie and H. Florez, “Data-driven discovery of unconventional shale reservoir dynamics,”
in SPE Reservoir Simulation Conference, OnePetro, 2019.

[132] A. Narasingam, “Operator theoretic model predictive control of moving boundary dy-
namical systems: Application to hydraulic fracturing,” Ph.D. dissertation, Texas A&M
University, 2020.

[133] A. Bao, E. Gildin, A. Narasingam, and J. S. Kwon, “Data-driven model reduction for
coupled flow and geomechanics based on DMD methods,” Fluids, vol. 4, no. 3, p. 138,
2019.

[134] A. M. Avila and I. Mezić, “Data-driven analysis and forecasting of highway traffic dynam-
ics,” Nature Communications, vol. 11, no. 1, p. 2090, 2020.

[135] S. Scheraga, A. Mohammadi, T. Kim, and S. Baek, “Design of an underactuated peristaltic
robot on soft terrain,” in 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2020, pp. 6419–6426.

96



[136] E. Nekouei, M. Pirani, H. Sandberg, and K. H. Johansson, “A randomized filtering strat-
egy against inference attacks on active steering control systems,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 16–27, 2021.

[137] A. Mohammadi, H. Malik, and M. Abbaszadeh, “Generation of wheel lockup attacks on
nonlinear dynamics of vehicle traction,” in 2022 American Control Conference (ACC),
IEEE, 2022, pp. 1994–1999.

[138] M. Taheri, K. Khorasani, N. Meskin, and I. Shames, “Data-driven Koopman operator
based cyber-attacks for nonlinear control affine cyber-physical systems,” in 2022 IEEE 61st
Conference on Decision and Control (CDC), IEEE, 2022, pp. 6769–6775.

[139] E. A. Pool, J. F. Kooĳ, and D. M. Gavrila, “Context-based cyclist path prediction using
recurrent neural networks,” in 2019 IEEE Intelligent Vehicles Symposium, IEEE, 2019,
pp. 824–830.

[140] C. Schöller, V. Aravantinos, F. Lay, and A. Knoll, “What the constant velocity model can
teach us about pedestrian motion prediction,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 1696–1703, 2020.

[141] S. Kumar, A. Mohammadi, D. Quintero, S. Rezazadeh, N. Gans, and R. D. Gregg, “Ex-
tremum seeking control for model-free auto-tuning of powered prosthetic legs,” IEEE
Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2120–2135, 2020.

[142] F. Aprigliano, S. Micera, and V. Monaco, “Pre-impact detection algorithm to identify
tripping events using wearable sensors,” Sensors, vol. 19, no. 17, p. 3713, 2019.

[143] M. Gavish and D. Donoho, “The optimal hard threshold for singular values is 4/ý3,” IEEE
Transactions on Information Theory, vol. 60, no. 8, pp. 5040–5053, 2014.

[144] L. Lessard, Lecture notes advanced control systems, lecture 15: Balanced realization, Oct.
2022.

[145] Y. Qi, Y. Wang, Y. Li, J. Wang, X. He, and Z. Wang, “Auto-ignition characteristics of
end-gas in a rapid compression machine under super-knock conditions,” Combustion and
Flame, vol. 205, pp. 378–388, 2019.

[146] X. Luo, H. Teng, T. Hu, R. Miao, and L. Cao, “An experimental investigation on low
speed pre-ignition in a highly boosted gasoline direct injection engine,” SAE International
Journal of Engines, vol. 8, no. 2, pp. 520–528, 2015.

[147] M. Dalla Nora and H. Zhao, “High load performance and combustion analysis of a four-
valve direct injection gasoline engine running in the two-stroke cycle,” Applied Energy,
vol. 159, pp. 117–131, 2015.

97



[148] J.-M. Zaccardi and D. Escudié, “Overview of the main mechanisms triggering low-speed
pre-ignition in spark-ignition engines,” International Journal of Engine Research, vol. 16,
no. 2, pp. 152–165, 2015.

[149] L. Ruichen, X. Boyan, Q. Yunliang, and X. Weiyang, “Numerical analysis of low speed
pre-ignition and knock process in downsized turbocharged direct injection engines with
ethanol-gasoline blends,” International Journal of Automotive Technology, vol. 21, pp. 13–
22, 2020.

[150] M. Amann, D. Mehta, and T. Alger, “Engine operating condition and gasoline fuel composi-
tion effects on low-speed pre-ignition in high-performance spark ignited gasoline engines,”
SAE International Journal of Engines, vol. 4, no. 1, pp. 274–285, 2011.

[151] W. Zhang, T. Wu, L. Dong, and W. Hao, “Analysis and detection methodology of knock
phenomenon in gasoline engines based on cylinder pressure sensors,” in Proceedings of
the 19th Asia Pacific Automotive Engineering Conference & SAE-China Congress 2017:
Selected Papers, Springer, 2019, pp. 359–373.

[152] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos: An introduction to dynamical systems.
Springer, 1997.

[153] B. Kaul, C. Finney, R. Stiffler, and J. Drallmeier, “Advanced intra-cycle detection of pre-
ignition events through phase-space transforms of cylinder pressure data,” SAE [Technical
Papers], vol. 2020, no. 01, 2020.

[154] H. Xu, X. Ni, X. Su, et al., “Experimental and numerical investigation on effects of pre-
ignition positions on knock intensity of hydrogen fuel,” International Journal of Hydrogen
Energy, vol. 46, no. 52, pp. 26 631–26 645, 2021.

[155] N. Peters, B. Kerschgens, and G. Paczko, “Super-knock prediction using a refined theory
of turbulence,” SAE International Journal of Engines, vol. 6, no. 2, pp. 953–967, 2013.

[156] Z. Wang, H. Liu, T. Song, et al., “Relationship between super-knock and pre-ignition,”
International Journal of Engine Research, vol. 16, no. 2, pp. 166–180, 2015.

[157] H. Kubach, A. Weidenlener, J. Pfeil, et al., “Investigations on the influence of fuel oil film
interaction on pre-ignition events in highly boosted di gasoline engines,” SAE Technical
Paper, Tech. Rep., 2018.

[158] K. P. Grogan and M. Ihme, “A new ignition time model applied to super knock,” Proceedings
of the Combustion Institute, vol. 37, no. 3, pp. 3487–3494, 2019.

[159] M. Sadiq Al-Baghdadi, “Development of a pre-ignition submodel for hydrogen engines,”
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering, vol. 219, no. 10, pp. 1203–1212, 2005.

98



[160] O. Budak, F. Hoppe, B. Heuser, S. Pischinger, U. Burke, and A. Heufer, “Hot surface
pre-ignition in direct-injection spark-ignition engines: Investigations with tailor-made fuels
from biomass,” International Journal of Engine Research, vol. 19, no. 1, pp. 45–54, 2018.

[161] M. Radwan, S. M. Elfeky, and O. S. M. Abu-Elyazeed, “An investigation on abnormal
combustion, emissions and performance of novel jojoba bio-gasoline and its blends with
gasoline in a spark-ignition engine,” SAE Technical Paper, Tech. Rep., 2012.

[162] K. Thyagarajan and K. Bhaskaran, “Effect of argon dilution on the pre-ignition oxidation
kinetics of benzene,” International journal of energy research, vol. 15, no. 3, pp. 235–248,
1991.

[163] G. Panzani, G. Pozzato, S. M. Savaresi, J. Rösgren, and C. H. Onder, “Engine knock
detection: An eigenpressure approach,” IFAC-PapersOnLine, vol. 52, no. 5, pp. 267–272,
2019.

[164] K. Akimoto, H. Komatsu, and A. Kurauchi, “Development of pattern recognition knock
detection system using short-time fourier transform,” IFAC Proceedings Volumes, vol. 46,
no. 21, pp. 366–371, 2013.

[165] H.-M. Wu and R. Tafreshi, “Observer-based internal model air–fuel ratio control of lean-
burn si engines,” IFAC Journal of Systems and Control, vol. 9, p. 100 065, 2019.

[166] K. Jack, “Turbocharger with a brain,” Jul. 1982, Popular Science.

[167] J. Chauvin, O. Grondin, E. Nguyen, and F. Guillemin, “Real-time combustion parameters
estimation for hcci-diesel engine based on knock sensor measurement,” IFAC Proceedings
Volumes, vol. 41, no. 2, pp. 8501–8507, 2008.

[168] K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area network (can) message
response times,” Control engineering practice, vol. 3, no. 8, pp. 1163–1169, 1995.

[169] V. Jain, L. Murugathasan, G. Bindra U.and Li, et al., “CubeSats can serve multiple stake-
holders too: Use of the DESCENT mission to develop national and international collabo-
ration,” in Proc. of Guidance, Navigation and Control, ASTRO 2018, Quebec City, QC:
CASI, 2018.

[170] I. Bell, J. McTernan, B. Gilchrist, and S. Bilen, “Investigating miniature electrodynamic
tethers and interaction with the low earth orbit plasma,” in AIAA Space 2013 Conference
and Exposition, AIAA, 2013, p. 5391.

[171] S. Nishida, S. Kawamoto, Y. Okawa, F. Terui, and S. Shoji Kitamura, “Space debris removal
system using a small satellite,” Acta Astronautica, vol. 65, no. 1-2, pp. 95–102, 2009.

99



[172] M. Dobrowolny and N. H. Stone, “A technical overview of TSS-1: The first tethered-satellite
system mission,” Il Nuovo Cimento C, vol. 17, no. 1, pp. 1–12, 1994.

[173] B. S. Yu and D. P. Jin, “Deployment and retrieval of tethered satellite system under 𝐽2

perturbation and heating effect,” Acta Astronautica, vol. 67, no. 7-8, pp. 845–853, 2010.

[174] S. A. Rawashdeh and J. E. Lumpp, “Aerodynamic stability for CubeSats at ISS orbit,”
Journal of Small Satellites, vol. 2, no. 1, pp. 85–104, 2013.

[175] S. Varma, “Control of satellites using environmental forces: Aerodynamics drag / solar
radiation pressure,” Ryerson University, Toronto, ON, 2011.

[176] B. Yu, S. Xu, and D. Jin, “Chaos in a tethered satellite system induced by atmospheric drag
and Earth’s oblateness,” Nonlinear Dynamics, vol. 101, no. 2, pp. 1233–1244, 2020.

[177] W. He and S. S. Ge, “Dynamic modeling and vibration control of a flexible satellite,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 1422–1431, 2015.

[178] A. Schutte and B. Dooley, “Constrained motion of tethered satellites,” Journal of Aerospace
Engineering, vol. 18, no. 4, 2005.

[179] N. Stone and C. Bonifazi, “The TSS-1R mission: Overview and scientific context,” eophys-
ical Research Letters, vol. 25, no. 4, pp. 409–412, 1998.

[180] H. Wen, D. P. Jin, and H. Y. Hu, “Optimal feedback control of the deployment of a tethered
subsatellite subject to perturbations,” Nonlinear Dynamics, vol. 51, no. 4, pp. 501–514,
2008.

[181] C. Wang, P. Wang, A. Li, and Y. Guo, “Deployment of tethered satellites in low-eccentricity
orbits using adaptive sliding mode control,” Journal of Aerospace Engineering, vol. 30,
no. 6, p. 04 017 077, 2017.

[182] P. Williams, “Deployment/retrieval optimization for flexible tethered satellite systems,”
Nonlinear Dynamics, vol. 52, no. 1, pp. 159–179, 2008.

[183] T. Lovell, “Application of genetic algorithms to state estimation of tethered systems,”
Computer methods in applied mechanics and engineering, vol. 192, no. 15, pp. 1799–1819,
2003.

[184] D. Cicci, E. Volovecky, and C. Qualls, “Identification of a tethered satellite using a Kalman
filter,” Advances in the Astronautical Sciences, vol. 119, no. 15, pp. 983–998, 2005.

[185] E. Volovecky, “Identification of a tethered satellite using an extended Kalman filter,” M.S.
thesis, Auburn University, Auburn, AL, 2007.

100



[186] A. Mohammadi, H. J. Marquez, and M. Tavakoli, “Nonlinear disturbance observers: Design
and applications to Euler-Lagrange systems,” IEEE Control Systems Magazine, vol. 37,
no. 4, pp. 50–72, 2017.

[187] J. Gonzalez, “Spacecraft formation control: Adaptive PID-extended memory recurrent
neural network controller,” California State University, Long Beach, CA, 2018.

[188] D. F. Martyn, “The normal F region of the ionosphere,” Proceedings of the Institute of
Radio Engineers, vol. 47, no. 2, pp. 147–155, 1959.

[189] A. V. Dmitriev, A. V. Suvorova, M. V. Klimenko, et al., “Predictable and unpredictable
ionospheric disturbances during St. Patrick’s Day magnetic storms of 2013 and 2015 and
on 8–9 march 2008,” Journal of Geophysical Research: Space Physics, vol. 122, no. 2,
pp. 2398–2423, 2017.

[190] J. A. M. McDonnell, P. R. Ratcliff, and I. Collier, “Atmospheric drag modelling for orbital
micro-debris at LEO altitudes,” Advances in Space Research, vol. 17, no. 12, pp. 183–188,
1996.

[191] P. Schmid, D. Violato, and F. Scarano, “Decomposition of time-resolved tomographic PIV,”
Experiments in Fluids, vol. 52, no. 6, pp. 1567–1579, 2012.

[192] B. Zang, U. Vevek, and T. New, “Some insights into the screech tone of under-expanded
supersonic jets using dynamic mode decomposition,” Journal of Aerospace Engineering,
vol. 34, no. 4, 2021.

[193] X. Zhu, C. Hu, X. Yang, and Z. Du, “Dynamic mode decomposition analysis of the unsteady
flow in a centrifugal compressor volute,” Journal of Aerospace Engineering, vol. 32, no. 1,
2019.

[194] S. Sinha, S. Nandanoori, and E. Yeung, “Data driven online learning of power system
dynamics,” in IEEE Power & Energy Society General Meeting, IEEE, Aug. 2020, pp. 1–5.

[195] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman
operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018.

[196] B. Bronner and D. Trung, Developing the miniature tether electrodynamics experiment:
Completion of key milestones and future work, University of Michigan, Ann Arbor, MI,
2015.

[197] P. Banium and V. Kumar, “Optimal control of the shuttle-tethered-subsatellite system,”
Acta Astronautica, vol. 7, no. 12, pp. 1333–1348, 1980.

101



[198] H. Gläßel, F. Zimmermann, S. Brückner, U. M. Schöttle, and S. Rudolph, “Adaptive neural
control of the deployment procedure for tether-assisted re-entry,” Aerospace Science and
Technology, vol. 8, no. 1, pp. 73–81, 2004.

[199] W. Stuiver, “Dynamics and configuration control of two-body satellite systems,” AIAA
Journal of Spacecraft and Rockets, vol. 11, no. 8, pp. 545–546, 1974.

[200] K. Kumar, “Review on dynamics and control of nonelectrodynamic tethered satellite sys-
tems,” Journal of spacecraft and rockets, vol. 43, no. 4, pp. 705–720, 2006.

[201] Godard, K. Kumar, and B. Tan, “Fault-tolerant stabilization of a tethered satellite system
using offset control,” Journal of Spacecraft and Rockets, vol. 45, no. 5, pp. 1070–1084,
2008.

[202] UNOOSA, Inter-agency space debris coordination committee space debris mitigation
guidelines, United Nations Office of Outer Space Affairs, United Nations, 2007, p. 9.

[203] J. Tu, C. Rowley, D. Luchtenberg, S. Brunton, and J. Kutz, “On dynamic mode decom-
position: Theory and applications,” Journal of Computational Dynamics, vol. 1, no. 2,
pp. 391–421, 2014.

[204] L. Boccaletto and L. d’Agostino, “Design and testing of a micro-Newton thrust stand
for FEEP,” in 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,
AIAA/ASME/SAE/ASEE, 2000, p. 3268.

[205] T. V. Gerya and D. A. Yuen, “Rayleigh–taylor instabilities from hydration and melting
propel ‘cold plumes’ at subduction zones,” Earth and Planetary Science Letters, vol. 212,
no. 1-2, pp. 47–62, 2003.

[206] T. Pfeiffer, Global seismic activity level (GSAL), Available: https://www.allquakes.com/
earthquakes/global-seismic-activity-level.html, Volcano Discovery, 2023.

[207] M. Sikora and L. Wrobel, “Application of rule induction algorithms for analysis of data
collected by seismic hazard monitoring systems in coal mines,” Archives of Mining Sciences,
vol. 55, no. 1, pp. 91–114, 2010.

102


	Dedication
	Acknowledgements
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Literature Review
	Abstract
	Introduction
	General Taxonomy and Vehicle Type Categorization
	A Brief Overview of Koopman Operator Theory
	Literature Review: Vehicular Applications
	Aerospace
	Drones/Quadrotors
	Missiles/Hypersonic Regime
	Space Systems

	Automotive
	Automobile Engines
	EV Applications
	Automotive Model Identification and Control
	Autonomous Vehicle Motion Control/ADAS Systems

	Marine
	Autonomous Marine Vehicles
	Oceanic Applications

	Mining
	Hydraulic Fracturing
	Autonomous Excavation

	Traffic
	Robotics
	Robotic Arms
	Human-Robot Collaboration
	Soft Robotics
	Wheeled/Legged/Swimming Robots

	Rail

	Literature Review: Vehicle-related & Other Relevant Studies
	General Studies Applicable to Vehicles
	Theoretical Issues with Potential Applications to Smart Mobility and Vehicular Engineering

	Conclusion

	Mathematical Background
	Introduction
	Koopman Operator Theory
	Dynamic Mode Decomposition
	Comparison with Other Methods
	Comparison with Eigenvalue Realization Algorithm
	Comparison with Machine Learning Methods



	Superknock Prediction
	Abstract
	Introduction
	General Knock Management Approach
	Mathematical Background & Algorithm
	‘Hankel Alternative View of Koopman’ Analysis
	Data & Simulation Results
	Validation of Predictive Capability
	Conclusions

	Tethered Subsatellite Deployment
	Abstract
	Introduction
	Background on Global Linearization Techniques

	Tethered Satellite Dynamics
	Koopman Operator-based Approximations of TSS Nonlinear Dynamics
	Dynamic Mode Decomposition
	Dynamic Mode Decomposition with Control
	TSS Dynamics Identification During Subsatellite Deployment

	Simulation Results
	Conclusion and Further Remarks

	Conclusions & Further Research
	Future Research Directions
	Adaptive Control of Peristaltic Locomotion in Unknown Environments
	An Empiric Approach to Seismic Hazard Prediction for Railway and Mine Safety
	Other Future Work


	Bibliography

