Recovering the missing links: the modeling of virus-host infection networks in silico

Gaylord (Eric) Bastien, PhD Candidate

Duhaime Lab, Ecology and Evolutionary Biology, University of Michigan CS026 | Microbial ecology and physiology

Quick introduction to viral ecology and knowledge gap

Predicting virus-host ecological interactions in silico

Applying network thinking to study virus-host infection networks

Viruses are central to the ecology and evolution of their hosts

Impact element cycles

Viruses are central to the ecology and evolution of their hosts

Impact element cycles

Impact microbial metabolism

Viruses are central to the ecology and evolution of their hosts

Impact element cycles

Impact microbial metabolism

Impact microbial evolution

Conservatively, 5 millions uncultivated viruses have been discovered

Conservatively, 5 uncultivated millions viruses have been discovered

How to recover the missing links?

O Virus

How to recover the missing links?

O Virus

Cecelia Batterbee

- We collected host range data from the NCBI virus database (each virus has an associated host) and published literature
- A total of 8849 interactions (both infection and non-infection events) were collected from which we have sequences for hosts and viruses

Cecelia Batterbee

Evaluating the predictions made by VHIP 87% accuracy rate

Evaluating the predictions made by VHIP 87% accuracy rate

Evaluating the predictions made by VHIP

87% accuracy rate

Evaluating the predictions made by VHIP

87% accuracy rate

Model will be made available as a Python package on Github in coming weeks

Lake Erie

X

Satellite view of a harmful algal bloom in Lake Erie

Lake Erie

AJ Wing

Satellite view of a harmful algal bloom in Lake Erie

Prairie Potholes

carbon cycling in

(2018).

Aerial picture of the prairie Potholes

Lake Erie

Satellite view of a harmful algal bloom in Lake Erie

6408 viruses x 17 hosts = 108,936 possible interactions

Prairie Potholes

Aerial picture of the prairie Potholes

2039 viruses x 26 hosts = 52,999 possible interactions

Lake Erie

Satellite view of a harmful algal bloom in Lake Erie

Prairie Potholes

Dalcin Martins, P. et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. *Microbiome* 6, 138 (2018).

Aerial picture of the prairie Potholes

6408 viruses x 17 hosts = 108,936 possible interactions

2039 viruses x 26 hosts = 52,999 possible interactions

Lake Erie

Satellite view of a harmful algal bloom in Lake Erie

Prairie Potholes

Dalcin Martins, P. et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. *Microbiome* 6, 138 (2018).

Aerial picture of the prairie Potholes

6408 viruses x 17 hosts = 108,936 possible interactions

2039 viruses x 26 hosts = 52,999 possible interactions

 We can visualize the output of VHIP as a matrix, where each row represents a different virus and each column represents a different host

Viruses	0.7	0.6	0.3	0.9
	0.9	0.2	0.8	0.9
	0.8	0.9	0.1	0.1
	0.9	0.8	0.2	0.1
	0.8	0.2	0.1	0.1

- We can visualize the output of VHIP as a matrix, where each row represents a different virus and each column represents a different host
- Each cell then contains the confidence score value for that virus-host pair

0.7	0.6	0.3	0.9
0.9	0.2	0.8	0.9
0.8	0.9	0.1	0.1
0.9	0.8	0.2	0.1
0.8	0.2	0.1	0.1
	0.9	0.9 0.2 0.8 0.9 0.9 0.8	0.9 0.2 0.8 0.8 0.9 0.1 0.9 0.8 0.2

- We can visualize the output of VHIP as a matrix, where each row represents a different virus and each column represents a different host
- Each cell then contains the confidence score value for that virus-host pair
 - We can color the cell based on the score value.
 - Above 0.5 is infection
 - Below 0.5 is non-infection

Viruses	0.7	0.6	0.3	0.9
	0.9	0.2	0.8	0.9
	0.8	0.9	0.1	0.1
	0.9	0.8	0.2	0.1
	0.8	0.2	0.1	0.1

- We can visualize the output of VHIP as a matrix, where each row represents a different virus and each column represents a different host
- Each cell then contains the confidence score value for that virus-host pair
 - We can color the cell based on the score value.
 - Above 0.5 is infection
 - Below 0.5 is non-infection

.7	0.6	0.3	0.9
.9	0.2	0.8	0.9
.8	0.9	0.1	0.1
.9	0.8	0.2	0.1
.8	0.2	0.1	0.1
	.9 (.9 0.2 .8 0.9 .9 0.8	.9 0.2 0.8 .8 0.9 0.1 .9 0.8 0.2

- We can visualize the output of VHIP as a matrix, where each row represents a different virus and each column represents a different host
- Each cell then contains the confidence score value for that virus-host pair
 - We can color the cell based on the score value.
 - Above 0.5 is infection
 - Below 0.5 is non-infection

Viruses	0.7	0.6	0.3	0.9
	0.9	0.2	0.8	0.9
	0.8	0.9	0.1	0.1
	0.9	0.8	0.2	0.1
	0.8	0.2	0.1	0.1

- We can visualize the output of VHIP as a matrix, where each row represents a different virus and each column represents a different host
- Each cell then contains the confidence score value for that virus-host pair
 - We can color the cell based on the score value.
 - Above 0.5 is infection
 - Below 0.5 is non-infection

Hosts

- We can visualize the output of VHIP as a matrix, where each row represents a different virus and each column represents a different host
- Each cell then contains the confidence score value for that virus-host pair
 - We can color the cell based on the score value.
 - Above 0.5 is infection
 - Below 0.5 is non-infection

Hosts

- We can visualize the output of VHIP as a matrix, where each row represents a different virus and each column represents a different host
- Each cell then contains the confidence score value for that virus-host pair
 - We can color the cell based on the score value.
 - Above 0.5 is infection
 - Below 0.5 is non-infection

Hosts

- We can visualize the output of VHIP as a matrix, where each row represents a different virus and each column represents a different host
- Each cell then contains the confidence score value for that virus-host pair
 - We can color the cell based on the score value.
 - Above 0.5 is infection
 - Below 0.5 is non-infection
- Rows and columns can be reorganized
 - Rows are organized by descending number of host a virus is predicted to infect
 - Columns are organized by descending susceptibility

Prairie Potholes

A framework to study virus-host infection networks

Recover viral and microbial populations

Predict ecological interactions between viral and microbial populations

Thank you!

Advisors
Dr. Melissa Duhaime Dr. Luis Zaman

Labmates

AJ Wing Jessica

Rachel Cable

Lizy Michaelson

Choi

Morgan Lindback

Cecelia Batterbee

gbastien@umich.edu

GEricBastien

Funding

A framework to study virus-host infection networks

Recover viral and microbial populations

Predict ecological interactions between viral and microbial populations

