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Viruses are central to the ecology and evolution of their hosts

Psst...
take some new genes.
They'll help you diversify!
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Conservatively, 5 millions uncultivated
viruses have been discovered
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Design of Virus-Host Interaction Predictor (VHIP)
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We collected host range data from the NCBI
virus database (each virus has an associated
host) and published literature

A total of 8849 interactions (both infection and

non-infection events) were collected from
which we have sequences for hosts and viruses
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Model will be made available as a Python package on Github

in coming weeks
Bastien et al., in prep
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Practical application of model on two different study systems
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Practical application of model on two different study systems

Viruses

o

Hosts

We can visualize the output of VHIP as a matrix,
where each row represents a different virus and each
column represents a different host

Each cell then contains the confidence score value for
that virus-host pair
o We can color the cell based on the score value.
m Above 0.5 is infection
m Below o.5 is non-infection

Rows and columns can be reorganized
o Rows are organized by descending number of
host a virus is predicted to infect
o Columns are organized by descending
susceptibility



Practical application of model on two different study systems
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Practical application of model on two different study systems
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A framework to study virus-host infection networks

Metagenomics pipeline
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Recover viral and microbial
populations
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VHIP output

Predict ecological interactions between
viral and microbial populations
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