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inflammatory response
Yuanyuan Qiaoa,b,c,1 , Jesse W. Wotringd,1 , Yang Zhenga,1 , Charles J. Zhangd, Yuping Zhanga,b, Xia Jianga, Carla D. Prettoe, Sanjana Eyunnia,  
Abhijit Paroliaa, Tongchen Hea, Caleb Chenga, Xuhong Caoa, Rui Wanga , Fengyun Sua, Stephanie J. Ellisona, Yini Wangf , Jun Qinf, Honghua Yang,  
Qianxiang Zhoug, Liandong Mag, Jonathan Z. Sextond,e,h,i,j, and Arul M. Chinnaiyana,b,c,k,l,2

Contributed by Arul M. Chinnaiyan; received December 23, 2022; accepted June 12, 2023; reviewed by Thirumala-Devi Kanneganti and Amy Moran

RESEARCH ARTICLE | MEDICAL SCIENCES

Early in the COVID-19 pandemic, data suggested that males had a higher risk of devel-
oping severe disease and that androgen deprivation therapy might be associated with 
protection. Combined with the fact that TMPRSS2 (transmembrane serine protease 2), 
a host entry factor for the SARS-CoV-2 virus, was a well-known androgen-regulated 
gene, this led to an upsurge of research investigating androgen receptor (AR)-targeting 
drugs. Proxalutamide, an AR antagonist, was shown in initial clinical studies to benefit 
COVID-19 patients; however, further validation is needed as one study was retracted. 
Due to continued interest in proxalutamide, which is in phase 3 trials, we examined 
its ability to impact SARS-CoV-2 infection and downstream inflammatory responses. 
Proxalutamide exerted similar effects as enzalutamide, an AR antagonist prescribed for 
advanced prostate cancer, in decreasing AR signaling and expression of TMPRSS2 and 
angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. However, proxal-
utamide led to degradation of AR protein, which was not observed with enzalutamide. 
Proxalutamide inhibited SARS-CoV-2 infection with an IC50 value of 97 nM, compared 
to 281 nM for enzalutamide. Importantly, proxalutamide inhibited infection by mul-
tiple SARS-CoV-2 variants and synergized with remdesivir. Proxalutamide protected 
against cell death in response to tumor necrosis factor alpha and interferon gamma, and 
overall survival of mice was increased with proxalutamide treatment prior to cytokine 
exposure. Mechanistically, we found that proxalutamide increased levels of NRF2, an 
essential transcription factor that mediates antioxidant responses, and decreased lung 
inflammation. These data provide compelling evidence that proxalutamide can prevent 
SARS-CoV-2 infection and cytokine-induced lung damage, suggesting that promising 
clinical data may emerge from ongoing phase 3 trials.

proxalutamide | SARS-CoV-2 | COVID-19 | androgen receptor | cytokines

Over 3 y have passed since the first documented cases of COVID-19 arose from infec-
tion by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet many 
challenges remain worldwide in preventing and treating the disease (1). Robust vac-
cination campaigns led to rapid development, testing, and deployment of several 
vaccines effective against infection and serious illness from the initial SARS-CoV-2 
genetic lineages (2–6). However, as the pandemic continued, waning vaccine protection 
and emergence of new variants have led to breakthrough infections, as well as many 
people now having been infected multiple times (5–9). Booster vaccines, including 
bivalent boosters effective against the highly transmissible omicron variant, have been 
developed in an effort to overcome these challenges (10). Oral antivirals such as mol-
nupiravir and nirmatrelvir–ritonavir have been developed for high-risk individuals 
who contract COVID-19, but these are also met with obstacles like potential recurrent 
infections or contraindications with other commonly prescribed drugs (11–14). 
Together, these challenges highlight the ongoing critical need for new therapeutics to 
combat SARS-CoV-2.

As it is the initial step in the viral life cycle, the entry process has been intensely studied 
to understand how to potentially block SARS-CoV-2 infection (15). Early data during 
the pandemic showed that the spike (S) protein of SARS-CoV-2 binds to host 
angiotensin-converting enzyme 2 (ACE2) receptors on the cell surface to initiate entry 
(16, 17). Cleavage of the spike protein by transmembrane serine protease 2 (TMPRSS2) 
facilitates fusion of the viral and cell membranes and cell entry (18, 19). With the presumed 
advantage that it will be difficult for the virus to mutate and evade host-directed drugs, 
multiple preclinical and clinical research efforts have since followed examining the efficacy 
of therapies directly targeting TMPRSS2 and ACE2, albeit with mixed results and several 
studies still ongoing (20–25).

Significance

Drugs that target androgen 
receptor (AR) signaling, including 
those that inhibit production of 
androgen ligands (degarelix) and 
those that bind to and directly 
block AR activity (enzalutamide), 
have been investigated in clinical 
trials for the treatment of 
COVID-19 but failed to produce 
positive results. Another AR 
antagonist, proxalutamide, is in 
ongoing phase 3 studies for 
COVID-19 after showing initial 
positive findings. Data from this 
study show that proxalutamide 
can inhibit infection of multiple 
variants of SARS-CoV-2 in vitro. 
These data suggest that 
proxalutamide should continue 
to be investigated in clinical 
studies as a potential therapy for 
COVID-19.
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Since TMPRSS2 is a well-known androgen receptor (AR)-regulated 
gene, early hypotheses suggested that inhibition of AR activity could 
be a potential treatment strategy for COVID-19 (26). As demo-
graphic data became available, many reports also observed that males 
had higher incidences of severe SARS-CoV-2 infections that required 
intensive care unit (ICU) admission or resulted in death (27–29). 
In further support of the initial hypothesis that AR activity may 
drive COVID-19 pathogenesis, a retrospective study during the 
first months of the pandemic observed a reduced incidence of 
SARS-CoV-2 infections in prostate cancer patients taking androgen 
deprivation therapy (ADT) compared to those not receiving ADT 
(30). Other small studies supported this observation and the prem-
ise that anti-androgens could be protective against severe COVID-19 
(31, 32); however, these results quickly became debated as other 
studies found no association between ADT and SARS-CoV-2 infec-
tivity (33–35).

These preliminary observations prompted a burst of basic science 
and clinical studies to attempt to elucidate the role of androgens 
in SARS-CoV-2 infection and determine whether AR inhibitors 
could be viable treatment options for COVID-19. Studies with AR 
antagonists prescribed for prostate cancer treatment (e.g., enzalu-
tamide, apalutamide, and darolutamide) have since shown that 
SARS-CoV-2 infectivity can be decreased in vitro in certain con-
texts with these drugs (36–38). However, some randomized, con-
trolled clinical trials of AR inhibition in COVID-19 patients have 
not produced encouraging results. For instance, in the Hormonal 
Intervention for the Treatment in Veterans with COVID-19 
Requiring Hospitalization (HITCH) trial (NCT04397718) which 
tested degarelix, a gonadotropin-releasing hormone (GnRH) antag-
onist that rapidly suppresses testosterone levels, in male veterans 
hospitalized with COVID-19, no improvement in clinical out-
come was observed compared to placebo (39). Similarly, the 
COVIDENZA trial (NCT04475601) found no improvement 
in outcome of COVID19-positive male or female patients who 
were randomized to treatment with enzalutamide vs. standard 
of care (40).

In contrast, the AR antagonist proxalutamide was also tested 
as a possible treatment for COVID-19 in randomized, controlled 
trials and showed encouraging positive benefits (41–43), but these 
findings were met with caution from the scientific community 
after a retraction statement was issued for one of the publications, 
citing concerns over randomization (44). Proxalutamide is cur-
rently in additional phase 3 trials for COVID-19 in both outpa-
tient (NCT04870606 and NCT04869228) and hospital 
(NCT05009732) settings in different countries, including the 
United States. Proxalutamide was originally developed as an AR 
antagonist for advanced prostate cancer and is in ongoing phase 
2 clinical trials for this indication as well (45–47). Our previous 
study found that AR antagonists (enzalutamide, apalutamide, and 
darolutamide) and degraders decreased TMPRSS2 and ACE2 
expressions and were potent inhibitors of SARS-CoV-2 infectivity 
in vitro (37). Given these data and the continued clinical interest 
surrounding proxalutamide in COVID-19, we sought to test prox-
alutamide for its ability to impact SARS-CoV-2 infection. We find 
that proxalutamide inhibits cellular infection by multiple 
SARS-CoV-2 variants and shows synergistic activity in vitro with 
remdesivir, an antiviral demonstrated to have clinical benefit in 
COVID-19 patients (48, 49). Additionally, in vivo studies showed 
that prophylactic treatment with proxalutamide can improve over-
all survival in mouse models of the TNFα (tumor necrosis factor 
alpha) and IFNγ (interferon gamma)-induced cytokine storm 
triggered by SARS-CoV-2 infection (50), potentially occurring 
through increases in the nuclear factor erythroid 2-related factor 
2 (NRF2) transcription factor responsible for mediating cellular 

antioxidant responses. Altogether, this study provides characteri-
zation of proxalutamide in SARS-CoV-2 infection models and 
provides data to possibly explain positive results that may emerge 
from clinical trials of proxalutamide for COVID-19 treatment.

Results

Proxalutamide is an AR antagonist recently developed for castration- 
resistant prostate cancer (CRPC) (47), in comparison to enzalu-
tamide which has been commonly prescribed for CRPC treatment 
for several years (51). To first compare the transcriptomic changes 
associated with proxalutamide and enzalutamide, RNA-sequencing 
(RNA-Seq) analysis was carried out in AR-positive prostate cancer 
Lymph Node Carcinoma of the Prostate (LNCaP) cells using 
either 20 µM proxalutamide or enzalutamide for 8 h of treatment. 
Gene set enrichment analysis was achieved by examining differ-
entially expressed genes in either proxalutamide- or enzalutamide-
treated cells compared to control. The normalized enrichment 
score results indicated that androgen responses were the top down-
regulated hallmark in both proxalutamide- and enzalutamide-
treated LNCaP cells (Fig. 1A). Gene set enrichment analysis on 
androgen responses further confirmed that proxalutamide signif-
icantly down-regulated androgen-regulated genes that were sup-
pressed by enzalutamide (Fig. 1B), suggesting proxalutamide 
suppresses AR signaling. In addition, the effect of proxalutamide 
on cell proliferation was examined in LNCaP cells and a castration-
resistant variant of LNCaP called C4-2B cells. In both LNCaP 
and C4-2B cells, proxalutamide and enzalutamide treatment 
resulted in dose-dependent inhibition of cell proliferation in vitro, 
but growth inhibition was greater with proxalutamide treatment 
compared to enzalutamide at the same concentrations (Fig. 1 C 
and D). Importantly, we found that proxalutamide not only sup-
pressed AR signaling but also decreased AR protein levels, which 
were not altered by enzalutamide treatment (Fig. 1E), indicating 
that proxalutamide possesses stronger inhibition of the AR sign-
aling pathway than enzalutamide. Previously, we reported that 
enzalutamide can transcriptionally down-regulate SARS-CoV-2 
entry factors TMPRSS2 and ACE2 (37). Here, we found that 
proxalutamide had the same ability to decrease TMPRSS2 and 
ACE2 (Fig. 1F). Thus, we postulated that proxalutamide may 
block SARS-CoV-2 infection.

Employing a SARS-CoV-2 bioassay platform, we have established 
an in vitro system with which to examine the various strains of 
authentic SARS-CoV-2 viral infection (37, 52). In this system, cells 
were pretreated with the experimental compounds for 24 h prior to 
SARS-CoV-2 infection for an additional 72 h (Fig. 2A). The results 
showed that proxalutamide decreased cellular infection by the WA1 
strain of SARS-CoV-2 in a dose-dependent manner with an IC50 
value of 97 nM, whereas enzalutamide decreased infectivity with an 
IC50 value of 281 nM (Fig. 2B). Representative images of cellular 
infectivity by the WA1 strain of SARS-CoV-2 in control-, 
proxalutamide-, or enzalutamide-treated conditions confirmed that 
decreased infection could be achieved by the AR antagonists prox-
alutamide and enzalutamide in LNCaP cells (Fig. 2C). Since several 
variants of the SARS-CoV-2 virus have emerged throughout the 
pandemic, we examined the effect of proxalutamide against infec-
tion of multiple strains. The results indicated that proxalutamide 
possessed robust inhibitory effects in blocking SARS-CoV-2 infec-
tion by the most common strains, including WA1, alpha, delta, and 
omicron, with IC50 values of 69 nM, 48 nM, 98 nM, and 581 nM, 
respectively, in LNCaP cells (Fig. 2D).

Furthermore, remdesivir is a Food and Drug Administration 
(FDA)-approved agent for treatment of SARS-CoV-2 infection  
(48, 49). The combinatorial effect of proxalutamide or enzalutamide D
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and remdesivir in preventing infection by the SARS-CoV-2 alpha 
strain was examined in induced human alveolar cells (iAEC2) 
(Fig. 3A). The results indicated that proxalutamide had a strong 
synergistic effect with remdesivir in inhibition of alpha strain 

infection and achieved 100% protection against infection (Fig. 3B), 
with a synergy score of 14.516 (Fig. 3C). Similarly, the enzalutamide 
and remdesivir combination achieved synergy but with a slightly 
weaker synergistic effect than the proxalutamide and remdesivir 
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Fig. 1. Proxalutamide is a recently developed AR antagonist that also down-regulates AR protein levels. (A) Hallmark of differential expressed gene signatures 
in proxalutamide (Proxa) and enzalutamide (Enza) treatment vs. control in LNCaP cells; the asterisk indicates a P value of less than 0.01. (B) Gene set enrichment 
of the androgen response pathway in proxalutamide- or enzalutamide-treated LNCaP cells. (C) Cell growth inhibition in enzalutamide- or proxalutamide-treated 
LNCaP cells. Ctrl, control. P values were calculated by the two-tailed unpaired t test between ctrl and 30 µM enzalutamide or proxalutamide (not between each 
dose). (D) Cell growth inhibition in enzalutamide- or proxalutamide-treated C4-2B cells. Ctrl, control. P values were calculated by the two-tailed unpaired t test 
between ctrl and 30 µM enzalutamide or proxalutamide (not between each dose). (E) Immunoblotting of AR and PSA protein in LNCaP cells after treatment 
with various concentrations of proxalutamide and enzalutamide for 24 h. Quantification of band intensity of AR/GAPDH is shown on the right. P values were 
calculated by the two-tailed unpaired t test between 20 µM proxalutamide and enzalutamide. (F) Relative mRNA expression of ACE2 and TMPRSS2 in LNCaP cells 
after the indicated treatment. P values were calculated by the two-tailed unpaired t test between control and the indicated treatment.
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combination (Fig. 3 E and F). Both proxalutamide or enzalutamide 
and remdesivir combination treatments had no detrimental effects 
on the viability of iAEC2 cells (Fig. 3 D and G). These results suggest 
that proxalutamide may have clinical utility in combination with 
current SARS-CoV-2 treatments, such as remdesivir.

SARS-CoV-2-induced mortality is largely triggered by a cytokine 
storm that occurs in the pulmonary system and systemically (53). It 
has been reported that TNFα and INFγ can act synergistically to 
trigger inflammatory cell death in vitro and in vivo, which mimics 
the SARS-CoV-2-induced cytokine shock syndrome (CSS) that 
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occurs in COVID-19 patients (50). Specifically, TNFα and INFγ 
induce a type of inflammatory cell death called PANoptosis, which 
is regulated by the PANoptosome and involves molecular compo-
nents of pyroptosis, apoptosis, and necroptosis (50, 54). In an 
AR-positive lung cell line, H1437, we demonstrated that the com-
bination of TNFα and INFγ induced maximal cell death compared 
to either cytokine alone (Fig. 4A). Interestingly, the cell death 
induced by combination treatment with TNFα and INFγ was atten-
uated by proxalutamide and another AR antagonist darolutamide 
in a dose-dependent manner (Fig. 4B) but not by enzalutamide or 
apalutamide (SI Appendix, Fig. S1A). Additionally, the cell death 
triggered by TNFα and INFγ combination treatment was confirmed 
by elevated cleaved PARP (c-PARP) levels, which were dose 
dependently blocked by proxalutamide and darolutamide (Fig. 4C) 

but not enzalutamide or apalutamide (SI Appendix, Fig. S1B). 
Similarly, AR protein levels were down-regulated by proxalutamide 
and darolutamide (Fig. 4D) but not enzalutamide or apalutamide 
(SI Appendix, Fig. S1C). This suggests that AR antagonists such as 
proxalutamide or darolutamide may provide additional benefits in 
terms of reducing CSS in vivo. In normal mouse prostate organoids, 
we confirmed that proxalutamide inhibited murine AR signaling by 
decreasing androgen (dihydrotestosterone, DHT)-stimulated induc-
tion of Fkbp5 and Psca target genes; additionally, proxalutamide 
decreased Ar mRNA levels (SI Appendix, Fig. S2A). These results 
prompted us to examine the in vivo efficacy of proxalutamide in 
preventing death in the TNFα and INFγ CSS model (50) in 
wild-type C57BL6 male mice. We tested two treatment regimens 
of proxalutamide prior to cytokine challenge with the TNFα and 
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Fig. 3. Proxalutamide and remdesivir combination exerts strong synergistic effect in blocking SARS-CoV-2 infection in iAEC2. (A) Schematic illustration of the 
study design of the SARS-CoV-2 bioassay on iAEC2 cells. (B) Combination matrix of proxalutamide and remdesivir in inhibition of SARS-CoV-2 alpha strain infection. 
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INFγ combination. The data showed that both proxalutamide treat-
ment regimens reduced mortality induced by TNFα and INFγ 
(SI Appendix, Fig. S2 B and C). Histology evaluation of tissue dam-
age triggered by TNFα and INFγ combination was examined in the 
small intestine and lung (SI Appendix, Fig. S2D). Compared with 
the PBS treated group, atrophy of the villi and an increase in inflam-
matory cell infiltration in the lamina propria area of the intestine 
were observed post-TNFα and IFNγ treatment, which was largely 
alleviated with proxalutamide treatment. In addition, TNFα and 
IFNγ treatment induced interlobular septal thickening in the lungs 
of mice showing focal epithelial hyperplasia, and such effects were 
rescued by proxalutamide treatment. Thus, these results suggest that 
proxalutamide may reduce TNFα and IFNγ cytokine storm-induced 
cell death in vitro and in vivo.

The NRF2 pathway is an important part of cellular defense 
through the production of antioxidants, which occurs via binding 
of the NRF2 transcription factor to antioxidant response elements 
in target genes (55–57). The upregulation of NRF2 has been reported 
to control inflammation in several studies (56–60). Here, we found 
that proxalutamide increases NRF2 transcriptional activity by 
enhancing NRF2 DNA binding in RAW264.7 and THP-1 cells 
(Fig. 5A). In RAW264.7 cells, proxalutamide also up-regulated 
NRF2 protein expression in lipopolysaccharide (LPS)-stimulated 
conditions (Fig. 5B). In the in vitro CSS model triggered by TNFα 
and INFγ combination treatment, proxalutamide augmented NRF2 
protein levels and decreased cell death in THP-1 cells (Fig. 5 C and 
D). Apoptotic cell death triggered by TNFα and INFγ combination 
treatment was attenuated by proxalutamide (Fig. 5E). Next, we 
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Fig. 4. Proxalutamide attenuates CSS–related cell death and mortality. (A) Real-time analysis of cell death in H1437 cells in vitro under control, TNFα, IFNγ, or 
combination treatment. Representative images of dead cells under the indicated conditions are shown on the Right. The P value was calculated by the two-tailed 
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control and 20 µM proxalutamide or darolutamide. (C) Immunoblotting of c-PARP and vinculin (loading control) in H1437 cells after treatment with 10 and 20 
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examined proxalutamide in an acute lung injury animal model trig-
gered by poly(I:C), and combination dexamethasone and roflumilast 
treatment was used as a positive control (Fig. 5F). In this model, 
proxalutamide significantly reduced the total mononuclear cells and 
neutrophils in alveolar lavage fluids from poly(I:C)-induced animals 
(Fig. 5G). Together, our data show that proxalutamide up-regulates 
NRF2 protein levels and decreases inflammation in the lungs induced 
by poly(I:C), suggesting a possible benefit of proxalutamide against 

SARS-CoV-2-associated inflammatory responses and mortality in 
COVID-19 patients.

Discussion

Proxalutamide was initially developed as an AR antagonist that 
could potentially have efficacy in CRPC patients, including those 
that had developed resistance to existing AR-targeted therapies. 
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Results from phase 1 testing in CRPC patients showed that prox-
alutamide was well tolerated, had a favorable pharmacokinetic 
profile, and exhibited antitumor activity in select patients (47). 
AR-targeting compounds became one of the initial groups of drugs 
to be pursued as potential COVID-19 treatments for the myriad 
of reasons discussed in preceding sections. With phase 1 testing 
complete, proxalutamide was positioned to be tested in the setting 
of COVID-19, along with other AR-targeted drugs that have been 
FDA-approved for prostate cancer for years, such as enzalutamide. 
Although positive results were reported for the initial COVID-19 
trials with proxalutamide, clarity is still needed as one of the stud-
ies was retracted last year (41–44). Here, we performed several 
in vitro and in vivo assays assessing the activity of proxalutamide 
against SARS-CoV-2 infection and inflammatory responses. We 
indeed demonstrate that proxalutamide decreases SARS-CoV-2 
infectivity in vitro, and the compound is active against several 
strains of the virus (WA1, alpha, delta, and omicron). Synergy can 
be obtained when proxalutamide is combined with remdesivir. 
Interestingly, proxalutamide also increases levels of the NRF2 
transcription factor.

It is well established that COVID-19 can be associated with a 
cytokine storm, a hyperactivation of the immune system that can 
ultimately result in death (53). In this study, we employed two 
in vivo lines of experimentation to analyze the effect of proxaluta-
mide on CSS and lung injury. Proxalutamide pretreatment in the 
TNFα/IFNγ model of CSS (50) results in a modest increase in 
overall survival (SI Appendix, Fig. S2 B and C), mirroring the atten-
uation of in vitro cell death observed with proxalutamide in the 
H1437 and THP-1 cell lines (Figs. 4B and 5D). Using poly(I:C) 
that induces inflammatory responses in the lung similar to viral 
infections (61), we observe that proxalutamide significantly decreases 
total cell and neutrophil levels in BALF (bronchoalveolar lavage 
fluid) (Fig. 5G). Altogether, results from these two in vivo models 
suggest that proxalutamide can decrease CSS responses and lung 
inflammation, but there are associated caveats to note. TNFα and 
IFNγ induce PANoptosis in mice that leads to CSS and death, which 
has been suggested to mimic severe COVID-19 in patients (50). 
However, TNFα/IFNγ-induced death in mice occurs within hours, 
whereas death from acute respiratory distress syndrome (ARDS) in 
COVID-19 patients happens over a much longer time (62). 
Additionally, studies have implicated alternative cytokines (e.g., IL-6 
and IL-1) rather than just TNFα and IFNγ as the primary inducers 
of ARDS in COVID-19 (63). In terms of the poly(I:C) model, it 
is prudent to also note that this is a model of lung injury, rather than 
lung epithelial cell death. Finally, these in vivo experiments are mod-
els of the possible downstream effects of SARS-CoV-2 and did not 
directly involve animal infection with the virus. It is interesting to 
note, however, that proxalutamide increases the DNA binding activ-
ity and expression of Nrf2, and Nrf2 has been shown to be an 
essential factor for tempering the immune response and protecting 
against sepsis (64, 65). A recent study also shows that SARS-CoV-2 
can inhibit Nrf2 signaling through one of its nonstructural proteins 
(66). In line with our findings, Nrf2 agonists consequently inhibited 
SARS-CoV-2 replication (66).

Combined, the data in this study support the notion that proxal-
utamide has antiviral activity against SARS-CoV-2 and suggest that 
it could show positive clinical benefit in cases of COVID-19, war-
ranting further clinical exploration. In comparison, as mentioned 
above, clinical studies with degarelix (HITCH trial, NCT04397718) 
and enzalutamide (COVIDENZA trial, NCT04475601) did not find 
any improvements in clinical outcome with COVID-19 (39, 40). 
There are a multitude of explanations that could account for these 
disparate findings from different AR-targeting drugs. Degarelix is a 
GnRH antagonist that prevents release of follicle-stimulating hormone 

and luteinizing hormone, thereby leading to suppression of testicular 
testosterone release and a decrease in AR activity at the level of 
ligand availability (67). In contrast, proxalutamide, like enzaluta-
mide, binds directly to the ligand-binding domain of AR to block 
receptor activation (47, 68). As shown in Fig. 1, proxalutamide 
and enzalutamide exert similar effects in LNCaP prostate cancer 
cells—decreasing or activating similar signaling pathways, decreas-
ing androgen signaling, and decreasing cell proliferation. Relevant 
to SARS-CoV-2, both compounds decrease expression of host 
entry receptors ACE2 and TMPRSS2 (Fig. 1F). However, certain 
differences exist with these two compounds. For instance, a pre-
clinical report on proxalutamide reported a 3.4-fold higher bind-
ing affinity for AR compared to enzalutamide (47). As shown 
here and previously (47), proxalutamide can also decrease AR 
protein expression, while enzalutamide does not lead to AR deg-
radation (Fig. 1E). In the SARS-CoV-2 bioassays, proxalutamide 
exhibited increased potency in inhibiting infection compared to 
enzalutamide (IC50 of 97 nM for proxalutamide and 281 nM 
for enzalutamide, Fig. 2B) and a higher Bliss synergy score with 
remdesivir (14.516 and 11.685 for proxalutamide and enzalut-
amide, respectively, Fig. 3). Furthermore, in the cell line models 
of cytokine-mediated death with combined TNFα and IFNγ 
treatment, addition of proxalutamide prevented cell death 
(Fig. 4B), whereas enzalutamide was without effect, even at the 
high dose of 20 µM (SI Appendix, Fig. S1A). These data show 
that although proxalutamide and enzalutamide are both AR 
antagonists, differences in their mechanisms of action exist. 
However, since both compounds decrease ACE2 and TMPRSS2 
expression and ultimately prevent SARS-CoV-2 infectivity 
in vitro (albeit with different IC50 values), further research is 
needed to define the precise mechanisms that could account for 
disparate clinical outcomes in COVID-19 treatment.

Several phase 3 clinical trials of proxalutamide treatment for 
COVID-19, all sponsored by Kintor Pharmaceuticals, are ongoing 
in different countries, and these studies should provide more definitive 
answers as to its efficacy. One phase 3 randomized, placebo-controlled, 
multiregional clinical trial of outpatients with mild or moderate 
COVID-19 (NCT04870606) primarily enrolled patients at centers 
across the United States (99%) (69). Efficacy data showed that prox-
alutamide reduced the risk of hospitalization or death compared to 
placebo, and proxalutamide continued to show a positive safety 
profile (69). An additional outpatient clinical trial of males with 
mild to moderate COVID-19 in Brazil is ongoing (NCT04869228), 
with the primary outcome being oxygen requirement at Day 28. 
Finally, NCT05009732 is an ongoing phase 3 trial of proxaluta-
mide in hospitalized adults with COVID-19 that has participating 
locations across several countries, including the United States, 
China, Philippines, and South Africa. The primary end point for 
this study is time to clinical deterioration (need for ICU care, 
mechanical ventilation, or mortality). The data presented in our 
report suggest that proxalutamide can markedly decrease 
SARS-CoV-2 infectivity and associated inflammatory responses, 
which could result in positive clinical benefit, and results from the 
clinical studies above are eagerly awaited.

Methods

Cell Culture. LNCaP, RAW264.7, and THP-1 cells were purchased from the 
American Type Culture Collection (ATCC) and cultured in 5% CO2 at 37 °C in 
medium as suggested by ATCC. iAEC2 cells [iPSC (SPC2 iPSC line, clone SPC2-
ST-B2, Boston University) derived alveolar epithelial type 2 cells] were maintained 
as previously described (52). iAEC2 cells were also subcultured as previously 
described (70). Cell lines underwent genotype authentication and were confirmed 
to be negative for mycoplasma.D
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SARS-CoV-2 Bioassay. SARS-CoV-2 isolates USA-WA1/2020, hCoV-19/USA/OR-OHSU-
PHL00037/2021 (Lineage B.1.1.7; Alpha Variant), hCoV-19/USA/MD-HP05285/2021 
(Lineage B.1.617.2; Delta Variant), and hCoV-19/USA/GA-EHC-2811C/2021 (Lineage 
B.1.1.529; Omicron Variant) were obtained from BEI resources and propagated in 
VeroE6 cells (ATCC). Viral titers were established by TCID50 with the Reed and Muench 
method. LNCaP or iACE2 cells were plated in 384-well plates and treated with increas-
ing concentrations of proxalutamide or enzalutamide for 24 h prior to SARS-CoV-2 virus 
infection in a Biosafety Level 3 facility. Cells were then incubated for 48 h postinfection 
under culture conditions of 5% CO2 and 37°C. Assay plates were fixed, permeabilized, 
and labeled with antinucleocapsid SARS-CoV-2 primary antibody (Antibodies Online, 
Cat. #: ABIN6952432) as previously described (52). The remaining of the assay pro-
ceeded as previously described (70).

Fluorescence Imaging and High-Content Analysis. A Thermo-Fisher CX5 
high-content microscope with LED excitation (386/23 nm, 650/13 nm) at 10× 
magnification was used to image assay plates. Nine fields per well were imaged 
at a single Z-plane in these experiments. Imaging, processing, and normalization 
were performed as previously described (70, 71).

Gene Expression Analysis. RNA was extracted from LNCaP cells treated with 
DMSO, 20 µM proxalutamide, or enzalutamide for 8 h using a Qiagen RNA extrac-
tion kit. RNA quality was determined using a Bioanalyzer RNA Nano Chip. Poly-A 
selection was performed with Sera-Mag Oligo(dT)-Coated Magnetic Particles 
(38152103010150; GE Healthcare Life Sciences), and libraries were generated 
using a KAPA RNA HyperPrep kit (KK8541; Roche Sequencing Solutions). RNA-seq 
was performed on an Illumina HiSeq 2500. Reads were aligned with the Spliced 
Transcripts Alignment to a Reference mapper to the human reference genome 
gh38. Gene differential expression analysis was carried out with edgeR70.

Mouse Prostate Organoid Culture. Whole mouse prostate was dissected from 
C57BL6J wild-type mice, and organoid culture was generated according to pre-
vious publication (72). Mouse prostate organoids were treated with 5 µM or 10 
µM proxalutamide or enzalutamide for 16 h prior to 10 nM DHT stimulation for 
8 h. Total RNA was extracted from organoid culture using the miRNeasy mini kit 
(Qiagen), and cDNA was synthesized from 1 µg total RNA using the High-Capacity 
cDNA Reverse Transcription Kit (Applied Biosystems). qPCR was performed 
using fast SYBR green master mix on the QuantStudio Real-Time PCR Systems 
(Applied Biosystems). The SYBR green primer sequences are Fkbp5 forward: 
GATTGCCGAGATGTGGTGTTCG, Fkbp5 reverse: GGCTTCTCCAAAACCATAGCGTG; Psca for-
ward: GCACAGTTGCTTTACATCGCGC, Psca reverse: ACAGGTCAGAGTAGCAGCACGT; and 
Ar forward: CCTTGGATGGAGAACTACTCCG, Ar reverse: TCCGTAGTGACAGCCAGAAGCT.

Immunoblotting. For western blotting analysis, cells were harvested and lysed 
in Pierce RIPA buffer (Thermo Fisher) with added phosphatase (Millipore) and pro-
tease (Roche) inhibitor cocktails. Protein quantification, sodium dodecyl-sulfate 
polyacrylamide gel electrophoresis, transfer, blocking, and antibody incubation 
were performed as described previously (73), and protein signals were detected 
with ECL Primer (Amersham) on a Li-Cor machine. Antibodies were used at dilu-
tions recommended by the manufacturer and consisted of the following: AR 
(06-680, Millipore), PSA (Dako), NRF2 (12721S, Cell Signaling Technology), and 
GAPDH (3683S, Cell Signaling Technology).

Real-Time Imaging for Cell Death. The kinetics of cell death were determined 
using the IncuCyte ZOOM (Essen BioScience) live-cell automated system. H1437 
or THP-1 cells (1 × 105 cells/well) were seeded in 24-well tissue culture plates. Cells 
were treated with 50 ng/mL of human TNFα (Peprotech, AF-300-01A) and /or 100 
ng/mL of human IFNγ (Peprotech, 300-02) for the indicated time and stained with 
1 µg/mL propidium iodide (PI) (Life Technologies, P3566) following the manufac-
turer’s protocol. The plate was scanned, and fluorescent and phase-contrast images 
were acquired in real-time every 4 h. PI-positive dead cells are marked with a red 
mask for visualization. The image analysis, masking, and quantification of dead 
cells were done using the software package supplied with the IncuCyte imager.

In Vivo TNFα and IFNγ-Induced Inflammatory Shock. C57BL6J mice were pur-
chased from The Jackson Laboratory. Eight- to nine-week-old male C57BL6J mice were 
given vehicle or 40 mg/kg proxalutamide by oral gavage either 2 h or once daily for 5 d 
prior to cytokine injection. Cytokine combination of 10 μg TNFα (Preprotech, 315-01A) 
and 20 μg IFNγ (Preprotech, 315-05) was diluted in Dulbecco’s phosphate-buffered 
saline (PBS) and injected intraperitoneally. After cytokine injection, animals were under 
permanent observation, and survival was assessed every 30 min.

Poly(I:C)-Induced Acute Lung Injury In Vivo Model. Six- to eight-week-old 
male BALB/c (Bagg Albino/c) mice were assigned to treatment groups by ran-
domization in BioBook software to achieve similar group mean weight before 
treatment; 10 mice were allocated into each group. Group 1 was normal-vehicle; 
groups 2 to 5 were challenged with poly(I:C) with vehicle sodium carboxymethly 
cellulose (CMC-Na), 10 mg/kg dexamethasone and 20 mg/kg roflumilast com-
bination, 20 mg/kg proxalutamide, or 40 mg/kg proxalutamide, respectively. 
Dexamethasone was dissolved in 0.5% CMC-Na to make a suspension at a final 
concentration of 1 mg/mL. Roflumilast was dissolved in 0.5% CMC-Na to make a 
suspension at a final concentration of 2 mg/mL. Mice were treated with vehicle, 
dexamethasone and roflumilast combination, or proxalutamide 16 h and 1 h prior 
to poly(I:C) injection and 6 h after poly(I:C) injection. Additional proxalutamide 
dose was given 18 h post poly(I:C) injection. Poly(I:C) solution was prepared 
to a 0.06% solution in sterile PBS freshly prepared where 1.8 mg poly(I:C) was 
dissolved in 3 mL PBS to make a suspension at a final concentration of 0.6 mg/
mL. Twenty-four hours post poly(I:C) injection, all mice were anesthetized with 
Zoletil (i.p., 25 to 50 mg/kg, containing 1 mg/mL Xylazine). Lungs were gently 
lavaged via the tracheal cannula with 0.5 mL PBS containing 1% fetal bovine 
serum (FBS), and the BALF was collected. Then, the lungs were gently lavaged 
with another 0.5 mL PBS containing 1% FBS. After lavage, the collected BALF was 
stored on ice. The total cell number in BALF was counted using a hemocytometer. 
After lavage by PBS, all mice were killed by exsanguination.

Liquid Mass Spectrometry Quantification after TFRE (Transcription 
Factors Response Element) Enrichment. Mouse monocyte RAW264.7 cells 
(0, 2 h, 4 h, and 8 h) and human monocyte THP-1 (0, 0.5 h, 2 h, and 6 h) were 
treated with 10 μM proxalutamide, respectively. Cells were collected and cocul-
tured with TFRE-binding beads, and the beads were rotated and combined for 1.5 
h at 4°C. After the combined TFRE beads were washed 3 times with NETN and 2 
times with mass spectrometry (to remove the scale removing agent; if there were 
still bubbles, they were washed again with water). Then, 50 μL NH4HCO3 and 1.5 
μg tyrosinase were added to the beads. The beads were hydrolyzed overnight, 
and the tube wall was lightly spritzed 1 to 2 times in the middle. Two hundred 
microliters of 50% acetonitrile + 0.1% formic acid was added to the suspension 
for 3 to 5 min, and then, the supernatant was transferred on a magnetic rack to a 
new Eppendorf tube; this was then repeated once. The supernatant was vacuum 
dried into peptide powder and stored at low temperature. Protein sequences were 
identified by liquid chromatography with tandem mass spectrometry.

Statistical Analysis. Statistical analyses were performed by the two-tailed, 
unpaired t test, unless otherwise indicated in figure captions. Error bars indicate 
mean ± SEM. GraphPad Prism software (version 9) was used for statistical calcu-
lations. No data were excluded from the analyses.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix. Sequencing data are available through the National 
Center for Biotechnology Information Gene Expression Omnibus, accession num-
ber GSE234805 (74).
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