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Basal ganglia dysfunction is implicated in movement disorders including Parkinson
Disease, dystonia, and choreiform disorders. Contradicting standard “rate models” of
basal ganglia-thalamic interactions, internal pallidotomy improves both hypo- and hyper-
kinetic movement disorders. This “paradox of stereotaxic surgery” was recognized
shortly after rate models were developed, and is underscored by the outcomes of
deep brain stimulation (DBS) for movement disorders. Despite strong evidence that DBS
activates local axons, the clinical effects of lesions and DBS are nearly identical. These
observations argue against standard models in which GABAergic basal ganglia output
gates thalamic activity, and raise the question of how lesions and stimulation can have
similar effects. These paradoxes may be resolved by considering thalamocortical loops
as primary drivers of motor output. Rather than suppressing or releasing cortex via
motor thalamus, the basal ganglia may modulate the timing of thalamic perturbations
to cortical activity. Motor cortex exhibits rotational dynamics during movement, allowing
the same thalamocortical perturbation to affect motor output differently depending on its
timing with respect to the rotational cycle. We review classic and recent studies of basal
ganglia, thalamic, and cortical physiology to propose a revised model of basal ganglia-
thalamocortical function with implications for basic physiology and neuromodulation.
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BASAL GANGLIA ANATOMY AND THE STANDARD “RATE
MODEL”

The basal ganglia (BG) are heavily interconnected subcortical nuclei spanning the midbrain,
diencephalon, and telencephalon (Figure 1). The striatum consists of GABAergic medium spiny
projection neurons (MSNs) (Wilson and Groves, 1980) as well as several types of interneurons
(Tepper et al., 2004, 2010), and is the primary receptive nucleus of the BG. It receives input from
most areas of the neocortex, specific thalamic nuclei, and dopaminergic neurons of the substantia
nigra pars compacta (SNc) and ventral tegmental area (VTA) (Parent et al., 1983; Kreitzer and
Malenka, 2008). Serotonergic afferents from the dorsal raphe (Ternaux et al., 1977), noradrenergic
afferents from the locus coeruleus (Mason and Fibiger, 1979), and more recently, cholinergic
afferents from the pedunculopontine nucleus (PPN) (Dautan et al., 2020) have also been identified.
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The primary output nuclei of the BG are the GABAergic
globus pallidus pars interna (GPi) and substantia nigra pars
reticulata (SNr), which project to the BG-recipient zone of
“motor” thalamus (BG-Mthal). BG-Mthal connects primarily
with premotor cortex, forming reciprocal loops that interact with
primary motor cortex and the cerebellar-recipient thalamus (CB-
Mthal) (McFarland and Haber, 2002; Haber and Calzavara, 2009;
Tanaka et al., 2018). In the rest of this manuscript, we use the
terms BG- and CB-Mthal to avoid confusion due to differing
nomenclature across species, and the term “Mthal” when there is
ambiguity regarding which subregion was studied. In addition to
the canonical motor BG-thalamocortical circuit, the mediodorsal
and centromedian-parafascicular nuclear complex (CM-pf) of
the thalamus receive input from motor cortices and the BG.
The mediodorsal nucleus forms reciprocal connections with
prefrontal cortex, while CM-pf projects to striatum, pallidum, the
subthalamic nucleus (STN) and cortex (Lanciego et al., 2009; Ilyas
et al., 2019; McElvain et al., 2021).

Standard “rate” models of BG function describe two routes
of information transmission from the striatum to BG output
nuclei: the “direct” and “indirect” pathways. According to
the model, direct pathway dopamine D1-receptor expressing
GABAergic MSNs disinhibit the thalamus by suppressing the
GABAergic GPi and SNr. The indirect pathway originates
from dopamine D2-expressing MSNs that project to the globus
pallidus pars externa (GPe; in rodents typically referred to simply
as GP). D2-MSNs are believed to decrease GPe output, which
increases STN activity, increases GPi activity, and suppresses
BG-Mthal (Albin et al., 1989; DeLong, 1990; Gerfen et al.,
1990). Because D1 receptor activation increases MSN excitability
and D2 receptor activation decreases MSN excitability (Gerfen
and Surmeier, 2011), the direct and indirect pathways are
inversely modulated by dopamine. Ultimately, firing rates of
thalamocortical neurons in BG-Mthal regulate motor cortical
activity, which in turn regulates movement “vigor” (i.e.,
movement frequency, amplitude, or velocity). Direct pathway
activation therefore promotes movement, while indirect pathway
activation suppresses movement. At the level of BG-thalamic
interactions, the model predicts that increased BG output should
decrease movement vigor, and decreased BG output should have
the opposite effect.

EVIDENCE SUPPORTING “RATE
MODELS”

Hypotheses regarding the role of the BG in motor function
have been strongly influenced by observations in human disease.
This is especially true of Parkinson Disease (PD) because its
neurochemistry and pathology are relatively well understood.
PD is characterized by slowness of movement (bradykinesia),
increased muscular tone, tremor, and postural instability. Rate
models predict that bradykinesia results from underactive direct
and overactive indirect pathways due to decreased D1 and D2
receptor activation, respectively. This should result in decreased
GPe, BG-Mthal, and motor cortical activity; and hyperactive STN
and BG output nuclei (GPi/SNr). These predictions are largely

supported by single-unit recordings in non-human primates
(NHPs) rendered parkinsonian by MPTP (Filion and Tremblay,
1991; Schneider and Rothblat, 1996; Raz et al., 2000; Pasquereau
and Turner, 2011; Tachibana et al., 2011) and 6-OHDA-treated
rodents (Pan and Walters, 1988). PD patients also have elevated
GPi and reduced BG-Mthal firing rates compared to other
neurologic disorders (Molnar et al., 2005; Starr et al., 2008;
Chen et al., 2010). Furthermore, dopamine agonists both improve
symptoms and alter BG firing rates in ways consistent with
rate models (Filion et al., 1991; Levy et al., 2001; Parker et al.,
2018). Finally, manipulations that reduce STN discharge like
permanent lesions (Bergman et al., 1990) or transient inactivation
(Wichmann et al., 1994; Baron et al., 2002; Tachibana et al., 2011)
improve parkinsonism.

Observations in hyperkinetic disorders also influenced the
development of rate models (Albin et al., 1989). D2-receptor
bearing indirect pathway MSNs degenerate early in Huntington
Disease (Reiner et al., 1988; Albin et al., 1992), which is
characterized by excessive abnormal involuntary movements.
Reduced indirect pathway activity should reduce BG output,
releasing thalamic suppression. STN lesions in healthy subjects
induce contralateral hemiballismus (large, “flinging” involuntary
limb movements) (Carpenter et al., 1950; Crossman, 1987), which
similarly is attributed to depressed downstream activity in BG
output nuclei. Because these observations were used to create the
model, however, they do not represent independent validation of
its predictions.

Optogenetics made it possible to directly test rate model
predictions in mice. By selectively expressing an excitatory
opsin (channelrhodopsin, ChR2) in D1− or D2-MSNs, blue
light could activate one population independently of the other.
Selective activation of D1-MSNs decreased SNr activity, while
D2-MSN activation increased SNr activity (Kravitz et al., 2010).
Behaviorally, D2-MSN activation suppressed movement, and D1-
MSN activation rescued locomotion in 6-OHDA-treated mice.

Collectively, these data support the notion that, at least
under certain conditions, the rate model predicts behavioral and
physiologic outcomes of neuronal manipulations.

EVIDENCE CONTRADICTING “RATE
MODELS”

Not all single-unit recordings are consistent with rate model
predictions. For example, BG output firing rates did not change
significantly in symptomatic MPTP-treated NHPs (Wichmann
et al., 1999; Raz et al., 2000; Leblois et al., 2007; Tachibana
et al., 2011). Furthermore, MPTP-treated NHPs did not exhibit
firing rate changes in primary motor cortex (Goldberg et al.,
2002) or BG-Mthal (Pessiglione et al., 2005; Kammermeier et al.,
2016). BG-Mthal firing rates increased in 6-OHDA lesioned rats,
again directly contradicting rate model predictions (Bosch-Bouju
et al., 2014). While some single-unit recordings match rate model
predictions, it is difficult to attribute clinical phenomenology to
firing rate changes if they do not always match model predictions.

Furthermore, BG output and BG-Mthal activity increase
concurrently at movement onset (Goldberg and Fee, 2012;
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FIGURE 1 | Simplified model of BG-thalamocortical interactions. In standard “rate models” of BG-thalamocortical function, competing direct and indirect pathways
determine SNr/GPi firing rates, which in turn suppress or release BG-recipient motor thalamic regions to drive movement. Green arrows—excitatory (glutamatergic)
projections; red—inhibitory (GABAergic) projections, blue—dopaminergic. Experiments whose results are consistent or conflict with rate model predictions are
highlighted for each BG nucleus. Note that some experiments may have results that both support and contradict the rate model, even in the same nucleus.
Abbreviations are defined in the text.

Schwab et al., 2020). By itself, this does not necessarily contradict
rate models. Subsets of disinhibited BG-Mthal neurons could
initiate a desired action, while BG output suppresses other BG-
Mthal neurons that drive alternative movements (an “action
selection” model) (Redgrave et al., 1999; Maia and Frank, 2011;
Mink, 2018; Logiaco et al., 2021). This idea is difficult to test
directly, but several lines of evidence suggest that this is not the
case. Songbirds have a unique anatomy in which large calyceal
synapses (Luo and Perkel, 1999) allow simultaneous recording
of thalamic (dorsolateral division of the medial thalamus—
DLM) neurons and their pallidal (Area X) input (Person and
Perkel, 2007). Inhibitory pallidal inputs and thalamic neurons
increase activity concurrently during zebra finch song (Goldberg
and Fee, 2012). If the pallidum suppresses alternative actions
while thalamus activates a specific song, highly active pallidal
terminals should suppress their connected thalamic neurons
while less active terminals allow their postsynaptic neurons to
fire. Instead, presynaptic pallidal terminal activity suppressed
connected thalamic neurons for only ∼5 ms, altering action
potential timing in their postsynaptic neurons (Figure 2B).

However, the average firing rate of connected thalamic neurons
increased over a timescale of seconds. While this anatomy is
specific to songbirds, it suggests that pallidal activity alters fine
thalamic spike timing without necessarily decreasing mean BG-
Mthal firing rates (at least, under physiologic conditions in
healthy animals).

Recording pallidal afferents and their specific thalamic single
neuron targets is extremely difficult, if not impossible in
mammals in vivo. Nonetheless, simultaneous GPi and BG-Mthal
recordings are inconsistent with rate model predictions. In NHPs
performing reaches, not only were there similar peri-movement
rate changes in the GPi and BG-Mthal (Figure 2), but changes
in GPi firing lagged changes in BG-Mthal (Schwab et al., 2020).
Furthermore, cross-correlation functions between individual
pallidal and thalamic neurons were rarely significant. When
significant cross-correlations were found, they were generally
inconsistent with monosynaptic pallidal-thalamic inhibition (i.e.,
pallidal spikes were not followed by a decrease in thalamic firing
probability). These data further argue against pallidal gating of
thalamic activity.
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FIGURE 2 | BG output alters the timing of BG-Mthal spikes but not their
average rate. (A) Comparative anatomy between mammalian and songbird
BG-thalamocortical loops. Reproduced with permission from Goldberg et al.
(2012). (B) Pallidal spikes regulate the fine timing of thalamic (DLM) spikes
during birdsong. Red dots indicate pallidal spikes, rasters indicate thalamic
spikes from a connected thalamic neuron. Trials are sorted by the duration of
the pallidal interspike interval. Note that thalamic spiking is briefly suppressed
after each pallidal spike, aligning thalamic spikes across trials but without
reducing their overall firing rate on a longer time-scale. Reproduced with
permission from Goldberg et al. (2012). (C) In NHPs performing reaches,
response patterns are similar in GPi and VLa (an Mthal subregion with pallidal
afferents). Population-averaged spike-density functions are shown for all
neurons (black) for subpopulations that increase (orange) or decrease (blue)
firing rates near movement onset. Shaded regions indicate SEM. Reproduced
with permission from Schwab et al. (2020).

The most compelling argument that rate models are
incomplete is the “paradox of stereotaxic surgery,” which was
identified soon after rate models were introduced (Marsden
and Obeso, 1994). Consistent with rate model predictions,
pallidotomy improves parkinsonism (Svennilson et al., 1960;
Laitinen et al., 1992; Lozano et al., 1995; Baron et al., 1996,
2000; Bastian et al., 2003). However, pallidotomy also improves
hyperkinetic disorders including dystonia (Lozano et al., 1997;
Vitek and Bakay, 1997) and chorea, including levodopa-induced
dyskinesias (Lozano et al., 1995; Lang et al., 1997; Jankovic et al.,
1999). Rate models predict that all of these should be exacerbated
by pallidal inactivation. Furthermore, pallidal-recipient thalamic
lesions in NHPs do not cause permanent bradykinesia, if they
cause bradykinesia at all (Canavan et al., 1989). On the other
hand, GPi lesions or inactivation consistently slow movement
in previously healthy subjects, again in direct opposition to
rate model predictions (Horak and Anderson, 1984; Mink and
Thach, 1991; Inase et al., 1996; Desmurget and Turner, 2010).
Furthermore, “action selection,” as assessed by the ability to recall
overlearned sequences, is preserved with pallidal inactivation
(Desmurget and Turner, 2010). Interestingly, bradykinetic PD
patients move faster after pallidotomy, but patients with
preserved movement speed move slower (Bastian et al., 2003).

DEEP BRAIN STIMULATION

Deep brain stimulation (DBS) treats bradykinesia, rigidity, and
tremor in PD by delivering continuous, high-frequency electrical
stimulation to GPi or STN (Starr et al., 1998). The clinical
effects of high-frequency DBS present another paradox: they
are very similar to the effects of lesions at the same locations.
This was initially interpreted to mean that DBS works by
suppressing neural activity, possibly by depolarization blockade
(Burbaud et al., 1994; Benazzouz et al., 1995; Beurrier et al.,
2001). Modeling studies indicated that local somata should be
hyperpolarized by DBS (McIntyre et al., 2004), and neuronal
recordings showed that somatic activity is suppressed during high
frequency stimulation (Boraud et al., 1996; Dostrovsky et al.,
2000; Dostrovsky and Lozano, 2002; Chiken and Nambu, 2013).
However, the same models also predict that axons, whether
afferent, efferent, or axons of passage, should be activated by
DBS. Furthermore, single-unit recordings and neurochemical
measurements downstream from stimulation sites are more
consistent with activation than suppression of efferent fibers
(i.e., stimulation in a glutamatergic/GABAergic nucleus mostly
increases/decreases downstream neuronal activity, respectively)
(Windels et al., 2000; Hashimoto et al., 2003; Vitek et al., 2004;
Muralidharan et al., 2017). Finally, high frequency optogenetic
STN stimulation improves parkinsonism in 6-OHDA-treated
rats, which is difficult to attribute to somatic suppression (Yu
et al., 2020). Collectively, these data argue that there is a second
“paradox of stereotaxic surgery”—that neuronal suppression and
high frequency activation have nearly identical clinical effects.

The outcomes of DBS coupled with the evidence cited
above has led to widespread recognition that the rate model is
incomplete, but an adequate replacement has remained elusive.

PHYSIOLOGIC CHANGES ASSOCIATED
WITH PARKINSONISM

The development of animal models of PD and the advent of
DBS allowed direct comparisons of physiology between healthy
and diseased states. As it became clear that the rate model
is incomplete, it also became possible to identify physiologic
changes in parkinsonism.

While both tremor and bradykinesia/rigidity are clearly
linked to dopamine loss, they have distinct pathophysiologic
mechanisms. Several lines of evidence link tremor to changes in
both BG- and cerebello-thalamic circuits. DBS of the cerebellar-
recipient thalamus (the ventral intermediate nucleus, VIM)
improves parkinsonian tremor, but not bradykinesia or rigidity
(Lyons et al., 2001; Hariz et al., 2008). However, parkinsonian
tremor also responds (usually) to levodopa, as well as subthalamic
and pallidal DBS (Weaver et al., 2012; Wong et al., 2020) [though
it has been argued that STN DBS may improve tremor by
activating passing cerebello-thalamic fibers (Abdulbaki et al.,
2021)]. Single-unit spike-tremor coherence in both VIM (Magnin
et al., 2000) and the STN (Amtage et al., 2008) also suggest
that both BG- and cerebello-thalamic circuits participate in
parkinsonian tremor. Precisely how striatal dopamine loss leads
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to downstream changes in both BG- and cerebellar-thalamic
circuits to generate tremor remains unclear, however. Several
hypotheses have been advanced, including effects of extrastriatal
(especially thalamic) dopamine loss (Sanchez-Gonzalez et al.,
2005; Dirkx et al., 2017), interactions between BG and cerebellar
circuits at the level of thalamocortical circuits (Helmich et al.,
2021), and transmission of aberrant BG signaling to the
cerebellum via disynaptic subthalamo-cerebellar connections
(Bostan and Strick, 2018).

In contrast to tremor, BG-thalamic interactions are more
directly implicated in the pathogenesis of bradykinesia and
rigidity. Three themes have emerged: enhanced neuronal
oscillations, synchrony, and burst-firing, though controversy
remains regarding the relative importance of each in
causing parkinsonism.

Enhanced “beta” (∼13–30 Hz, though definitions vary)
oscillations are consistently observed in parkinsonism, both in
single unit firing and local field potential (LFP) oscillations.
MPTP-treated non-human primates have enhanced oscillatory
firing among single units in the STN and GPi (Bergman et al.,
1994). These findings were corroborated in DBS patients, who
showed dramatic decreases in subthalamic LFP beta power with
levodopa treatment and motor symptom improvement (Brown
et al., 2001). Beta oscillations are robustly and consistently
correlated with bradykinesia/rigidity in parkinsonism (Kuhn
et al., 2006; Ray et al., 2008; Neumann et al., 2016), and
suppressed during effective treatment (Kuhn et al., 2006;
Weinberger et al., 2006; Ray et al., 2008; Feldmann et al., 2021;
Kehnemouyi et al., 2021). Furthermore, subthalamic (Eusebio
et al., 2008; Chen et al., 2011) or cortical (Guerra et al., 2021)
stimulation at beta frequencies slows movement.

However, beta oscillations are not a purely pathological
phenomenon. Brief bursts of beta oscillations occur in healthy
subjects throughout BG-thalamocortical circuits (Leventhal et al.,
2012; Feingold et al., 2015; Shin et al., 2017; Gaidica et al.,
2020). Behaviorally, beta bursts are associated with tonic
muscle contraction (Baker et al., 1997), active movement
suppression (Swann et al., 2009), and slowed reaction times
(Leventhal et al., 2012) and movement speed (Gilbertson et al.,
2005). Conversely, beta bursts are less likely during movement
(Sanes and Donoghue, 1993; but see Leventhal et al., 2012).
Amphetamine makes rats hyperactive, and also suppresses beta
oscillations (Berke, 2009). Collectively, these data suggest that
beta oscillations normally stabilize the current behavioral state
(Engel and Fries, 2010; Shin et al., 2017). In PD, beta bursts
are prolonged, increasing beta amplitude in power spectra
averaged over long timescales (Tinkhauser et al., 2017, 2018;
Deffains et al., 2018; Pina-Fuentes et al., 2019; Eisinger et al.,
2020; Yu et al., 2021). Dopamine loss may prolong “normal”
beta events, preventing transitions to new behaviors. However,
it is also possible that “normal” beta events are distinct
from the pathological beta of parkinsonism. Models suggest
thalamocortical (Sherman et al., 2016), striatal (McCarthy et al.,
2011), or subthalamo-pallidal (Mirzaei et al., 2017) origins for
normal and pathologic beta. It remains unclear if a solitary
beta phenomenon is caused by one mechanism, or if several
mechanisms cause distinct beta phenomena.

While it is possible that beta oscillations are simply a
biomarker of parkinsonism (Weinberger et al., 2009), there
are plausible mechanisms through which they could influence
behavior. In healthy subjects, single unit activity is phase-locked
to transient beta oscillations in cortex (Murthy and Fetz, 1996;
Reimer and Hatsopoulos, 2010) and throughout the basal ganglia
(Leventhal et al., 2012). This phase locking is enhanced after
dopamine loss (Kuhn et al., 2005; Yang et al., 2014; Deffains et al.,
2016). In addition, phase-amplitude coupling between beta and
high frequency (∼300 Hz) LFP oscillations in the STN (Lopez-
Azcarate et al., 2010), GPi (Connolly et al., 2015b; Tsiokos et al.,
2017), and cortex (de Hemptinne et al., 2013) is higher in the
dopamine-depleted state and correlated with bradykinesia and
rigidity (de Hemptinne et al., 2015). These high frequency LFP
oscillations may reflect multi-unit activity (Meidahl et al., 2019),
further suggesting that large groups of neurons across structures
are increasingly entrained to beta oscillations as dopamine is
lost. It is suggested that this network-wide synchrony reduces
the information coding capacity of BG-thalamocortical circuits,
leading to decreased behavioral flexibility (i.e., inability to initiate
movement) (Brittain and Brown, 2014). However, this still does
not fully explain why periodic synchronized neuronal activation
at beta frequencies should alter movement speed.

AN ALTERNATIVE VIEW OF
BG-THALAMOCORTICAL
INTERACTIONS

Corticothalamic projections are often omitted from “box
and arrow” diagrams of BG-thalamocortical circuits, but
are necessary and sufficient to generate movement-locked
modulation of BG-Mthal activity. In songbirds, thalamic (DLM)
neurons exhibit similar song-linked modulation in intact and
pallidal (Area X)-lesioned finches (Goldberg and Fee, 2012).
Furthermore, changes in corticothalamic activity precede song-
locked DLM modulation. Muscimol injected in GPi of NHPs
caused only mild changes in movement-linked BG-Mthal
modulation (Inase et al., 1996). In mice, anterior lateral motor
cortex (ALM, homologous to human premotor cortex) and BG-
Mthal activity are mutually dependent (Guo et al., 2017). During
the delay period in a forced choice task, ALM and BG-Mthal
activity ramp up and predict impending choice. ALM inhibition
reduces BG-Mthal activity, and vice versa. It may be more
appropriate to consider the BG as modulating ongoing cortico-
thalamocortical activity instead of gating actions by suppressing
and releasing BG-Mthal. This is more consistent with modern
views of other thalamocortical circuits. Instead of simple relays
for ascending sensory signals or cortico-cortical communication,
it is suggested that thalamocortical circuits regulate and maintain
activity across cortical networks (Halassa and Kastner, 2017).

The mechanisms by which BG-Mthal activity influences
motor cortical activity are unclear. Implicit in rate/action
selection models is the assumption that thalamocortical neurons
directly or indirectly activate cortical projection neurons that
drive specific muscle activation patterns to generate a complex
action (Redgrave et al., 1999; Maia and Frank, 2011; Mink, 2018;
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Logiaco et al., 2021). An alternative view is that motor cortex
functions as a dynamical system whose state depends on
its own history and input from other regions (Churchland
et al., 2012). The neural “state” is the instantaneous firing
rates of cortical neurons (Figure 3). Some of these neurons
directly influence downstream effectors (e.g., corticospinal
neurons), while others regulate the internal dynamics of the
system (e.g., interneurons) (Shenoy et al., 2013). In this
view, cortical population activity evolves according to rules
determined by intracortical connectivity, and this population
activity determines dynamic patterns of muscle activation and
movement. Importantly, cortical population activity rotates in
the firing rate state space, even for non-periodic movements

FIGURE 3 | Analogy between a simple pendulum and cortical firing rate
state-space dynamics. (A) Idealized periodic changes in firing rates for 3
single units. (B) The firing patterns of the units in (A) trace an elliptical orbit in
the firing rate state space. In an actual recording, more units would be
recorded, and many more would be unobserved. Population dynamics are
often analyzed with a dimensionality-reduction technique to project the high
dimensional firing rate state space (one dimension per neuron) into a
subspace that accounts for most of the variance in the recorded signal (e.g.,
Churchland et al., 2012). (C) A simple pendulum also traces a rotating
trajectory in the state space defined by its angular position (θ) and velocity (D).
The same perturbation arrows in (B–D) can expand (green arrows) or shrink
(red arrows) the state space rotation depending on their timing with respect to
these state space rotations. In the case of the pendulum, this reduces its
maximum angular position and velocity; in the case of neural dynamics, this
would reduce the range of neuronal firing rates and theoretically reduce
movement amplitude and velocity.

(Churchland et al., 2012; Vaidya et al., 2015). Larger neural state
space rotations are associated with faster movements.

Movement-linked rotational thalamocortical dynamics could
explain how the BG regulate movement speed. In a system
governed by rotational dynamics, the timing of perturbations
with respect to those dynamics is critical. By way of analogy,
when a pendulum is at rest, subsequent motion depends on the
strength and direction of an initial push, regardless of timing.
The resting pendulum may be analogous to motor cortex in a
movement-preparatory state (Kaufman et al., 2014, 2016). An
abrupt increase in Mthal activity could provide the “push,” with
its amplitude determining the size of the subsequent state space
rotation and movement speed/amplitude (Gaidica et al., 2018;
Catanese and Jaeger, 2021). In this sense, the BG may gate action
initiation from a cortical state that has prepared a specific action.
Once the pendulum is in motion, its dynamics rotate in the
state space described by its angular position and velocity, and
perturbation timing becomes critical (Figures 3C,D). Pushing it
in the same direction as its instantaneous velocity will accelerate
it and increase the size of the state space rotation, but the exact
same push 180◦ later in its swing cycle will slow it and shrink
the state space rotation (Figures 3, 4; Dudman and Krakauer,
2016). Instead of interactions between gravity, the cable, and
the pendulum bob, cortical system dynamics are generated by
interactions among cortical neurons and extracortical input. In
particular, BG-Mthal thalamocortical neurons tend to synapse in
cortical layer I on the apical dendrites of layer V pyramidal tract
(PT) neurons (Herkenham, 1980; Kuramoto et al., 2009, 2015;
Guo et al., 2018; Tanaka et al., 2018).

There is experimental evidence that the timing of thalamic
input is critical to maintaining cortical dynamics during
movement (Sauerbrei et al., 2020). During mouse skilled
reaching, optogenetically silencing Mthal disrupts cortical
neuronal state space and reach trajectories (Figure 4).
Furthermore, optogenetic stimulation of motor thalamocortical
terminals has frequency-dependent effects on cortical dynamics
and paw trajectories. 4 Hz stimulation disrupts neural dynamics
and reach trajectories with each pulse, but there is enough time
between pulses for trajectories to partially recover. At 10 Hz,
reaching is more impaired, often with an oscillatory component
to the paw trajectory. At 40 Hz, reaches are severely impaired.
These data indicate that not only is thalamocortical signaling
necessary to maintain movement-related cortical dynamics, its
timing is critical.

This raises the question of how Mthal “knows” when to
push. Synchrony with local field potential (LFP) oscillations
may coordinate BG-Mthal activity with cortical dynamics. The
phase of cortical and thalamic delta oscillations predicts reaction
time (Saleh et al., 2010; Hamel-Thibault et al., 2018; Gaidica
et al., 2020; Figure 5) and coordinated corticostriatal low
frequency (∼3–6 Hz) LFP oscillations emerge as rats learn
single pellet reaching (Lemke et al., 2019). This suggests that
low frequency LFPs become coordinated across cortical-BG-
thalamocortical circuits as actions are learned, and that the LFP
phase at which BG-Mthal spikes occur determines their effect on
movement. We speculate that cortical rotational dynamics, which
have a frequency of 2–3 Hz in NHPs (Churchland et al., 2012;

Frontiers in Systems Neuroscience | www.frontiersin.org 6 August 2021 | Volume 15 | Article 725876

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-725876 August 23, 2021 Time: 14:53 # 7

Magnusson and Leventhal Basal Ganglia-Motor Thalamic Interactions

FIGURE 4 | The motor cortex as a dynamical system. (A) Multisite single unit recordings were made from primary motor cortex (M1) as mice performed skilled
reaching (left). Thalamocortical terminals in M1 (likely from both BG- and CB-Mthal) were optogenetically activated at varying frequencies (right). (B) Paw trajectories
under different stimulation conditions. Mice made smooth reaches in the absence of stimulation. Paw trajectories were perturbed by 4 Hz stimulation. 10 Hz
stimulation created oscillating paw trajectories, reminiscent of action tremor. 40 Hz stimulation severely limited paw movement. (C) Neural state space trajectories
under different stimulation conditions. 4 Hz stimulation shrunk the state space trajectory, while 10 and 40 Hz stimulation severely truncated the state space rotation.
PC1 and PC2 indicate the first two principal components of the neuronal firing rate state space. Adapted with permission from Sauerbrei et al. (2020).

Kaufman et al., 2016), are reflected in low frequency LFP
oscillations synchronized across BG-thalamocortical circuits, at
least during movement. Mthal neurons whose activity predicts
reaction time and movement speed phase-lock to thalamic delta
(∼1–4 Hz), suggesting a mechanism for coordinating Mthal
activity with cortical dynamics (Figure 5; Gaidica et al., 2020).

The impact of beta oscillations on movement speed has been
studied extensively due to their association with parkinsonism.
In addition to predicting reaction times, the phase of cortical
and thalamic delta oscillations predicts the amplitude of beta
oscillations (i.e., they are phase-amplitude coupled) (Saleh et al.,
2010; Lopez-Azcarate et al., 2013; Arnal et al., 2015; Hamel-
Thibault et al., 2018; Grabot et al., 2019; Gaidica et al., 2020).
Mthal single units whose activity is correlated with movement
speed (and also phase-locked to delta oscillations) predict the
occurrence of LFP beta oscillations (Gaidica et al., 2020). Thus,
in healthy subjects, brief, self-limited bursts of beta oscillations
are modulated by the phase of ongoing delta oscillations and
the timing of Mthal single unit activity. We suggest that these
nested LFP oscillations reflect coordination between Mthal single
unit activity and cortical dynamics, which are disrupted in
Parkinson Disease.

BG-THALAMIC INTERACTIONS IN
HEALTH AND PARKINSONISM

This raises the question of how the BG regulate thalamic spike
timing. In healthy animals, GPi/SNr neurons fire at relatively

high tonic rates (∼70–80 Hz), reflected in flat autocorrelograms
(Raz et al., 2000; Bar-Gad et al., 2003). After dopamine depletion,
firing patterns become “bursty” with brief periods of high
frequency firing (Nini et al., 1995; Boraud et al., 1998; Raz
et al., 2000; Soares et al., 2004). As in STN and cortex (reviewed
above), GPi/SNr neurons tend to fire in oscillatory patterns and
entrain to LFP oscillations (Chan et al., 2011; Brazhnik et al.,
2012). In addition to LFP entrainment, GPi neurons become
synchronized with each other. Cross-correlograms between GPi
neurons are almost universally flat in healthy NHPs (Bar-Gad
et al., 2003), but develop significant correlations after dopamine
loss (Nini et al., 1995; Heimer et al., 2002, 2006). As in
other brain regions, these changes normalize at least partially
with treatments that improve symptoms including levodopa
(Heimer et al., 2002, 2006) and DBS (Hashimoto et al., 2003;
Hahn et al., 2008; Malekmohammadi et al., 2018). While these
changes are consistently observed in advanced parkinsonism,
studies in progressive models of nigral degeneration generated
conflicting results regarding which physiologic changes correlate
best with parkinsonism across disease stages (Leblois et al., 2007;
Devergnas et al., 2014; Connolly et al., 2015a,b; Muralidharan
et al., 2016; Escobar Sanabria et al., 2017; Willard et al., 2019).

Several potential mechanisms of BG-thalamic interactions
have been proposed (Goldberg et al., 2013). The first is a rate
model view, in which tonic GPi activity suppresses BG-Mthal
activity until it is released to initiate action. Arguments against
this idea have been detailed above (see Evidence Contradicting
Rate Models), though rate models may apply under specific
conditions (for example, transitioning from rest to movement
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FIGURE 5 | Potential links between Mthal LFP oscillations, cortical dynamics,
and single unit BG-Mthal activity. (A) Mthal single units are phase-locked to
thalamic delta oscillations. Top—behavioral events during a forced-choice
reaction time task, in which a rat pokes its nose in a lit port to initiate a trial.
A pure Tone then signals the rat to withdraw its nose and poke an adjacent
port. Bottom—single trial delta LFP phase and single unit firing during task
performance. Note that this unit has a preferred delta phase during which its
activity increases. This phase-locking was characteristic of units whose
activity predicted the speed of the subsequent nose withdrawal and poke into
an adjacent port. Adapted with permission from Gaidica et al. (2020).
(B) Illustrations of potential pallidal-thalamocortical interactions in healthy
subjects, parkinsonism, post-pallidotomy, and during DBS. In healthy
subjects, Mthal activity phase-locked to LFP delta oscillations provide
well-timed input to enhance cortical state space rotations (arrow). In
parkinsonism, thalamocortical neurons synchronized to beta rhythms deliver
ill-timed perturbations to cortical dynamics, sometimes enhancing but more
often opposing state space rotations (arrows). After pallidotomy, BG-Mthal
activity is regulated entirely by cortical input (either directly or via the thalamic
reticular nucleus). The BG-Mthal firing pattern is speculative since BG-Mthal

(Continued)

FIGURE 5 | continued
activity has not been measured post-pallidotomy, but illustrates the idea that
both beta synchrony and appropriately timed pallidal input are lost. During GPi
(and to some extent STN) DBS, BG-Mthal units become variably entrained to
DBS pulses. This also disrupts beta synchrony but prevents normal pallidal
regulation of BG-Mthal spike timing. These single unit patterns are intended to
represent typical firing patterns, recognizing that there is variability across the
population, even in the synchronized parkinsonian state. Mthal LFPs are
omitted from the pallidotomy and DBS panels because these effects are
unknown and the model does not make predictions regarding how they
should change.

or during especially strong direct/indirect pathway activation)
(Kravitz et al., 2010; Schmidt et al., 2013; Gaidica et al.,
2018). The second is a rebound model that focuses on low
threshold spike (LTS) bursts generated by T-type Ca2+ channels
after hyperpolarization. Transiently elevated inhibition from
the BG could provide the hyperpolarization necessary for LTS
bursting, though LTS bursts appear to be uncommon in healthy
animals during wakefulness (Bosch-Bouju et al., 2014). The
third mechanism is entrainment of BG-Mthal firing to pallidal
inputs. In the songbird, pallidal (Area X) spikes inhibit BG-
Mthal (DLM) units for several milliseconds, after which their
excitability increases. During epochs of strong cortical input
(e.g., singing), BG-Mthal spikes become tightly aligned to pallidal
spikes without significantly affecting mean firing rates (Figure 2;
Goldberg and Fee, 2012).

BG-thalamic interactions may operate mostly in
“entrainment” mode in healthy animals, with the “rebound”
mode becoming more important after dopamine depletion.
LTS bursts may become more frequent due to burst-firing
at the GABAergic BG output, as well as changes in the
intrinsic properties of BG-Mthal neurons (Edgerton and
Jaeger, 2014; Bichler et al., 2021). Artificial excitation of BG
afferents in mouse BG-Mthal can generate LTS bursts in
slice and in vivo, which depends on the presence of T-type
Ca2+ channels (Edgerton and Jaeger, 2014; Kim et al., 2017).
These bursts are enhanced and linked to motor dysfunction
in SPR-knockout mice, which are dopamine-deficient due
to defects in tetrahydrobiopterin synthesis (Kim et al.,
2017). Furthermore, models suggest that synchronous BG
output is especially effective at generating rebound bursting
(Nejad et al., 2021).

Transitions between BG-Mthal firing modes in different
dopaminergic states are plausible, but there are relatively few
studies of thalamic physiology in the dopamine-depleted state.
Results have been inconsistent regarding the importance of
thalamic burst-firing and beta synchrony in parkinsonism.
Increased BG-Mthal burst firing has been observed in MPTP-
treated compared to healthy NHPs (Pessiglione et al., 2005),
but this was not true in all studies or in 6-OHDA treated
rats (Bosch-Bouju et al., 2014; Kammermeier et al., 2016).
BG-Mthal burst-firing was also observed in humans with PD
(especially during tremor), but cannot be directly compared to
healthy controls (Zirh et al., 1998; Magnin et al., 2000; Molnar
et al., 2005). In NHPs, findings regarding oscillatory activity
are also inconsistent. Strong low frequency LFP oscillations
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(3–9 Hz) coherent with frontal EEG signals were observed in
humans with PD, with a smaller peak in beta power coherent
with EEG leads over ipsilateral motor cortex (Sarnthein and
Jeanmonod, 2007). In contrast, higher frequency (∼15 Hz) LFP
oscillations were observed in BG-Mthal of MPTP-treated NHPs.
Single BG-Mthal units became entrained to these “low beta”
oscillations, and themselves exhibited low frequency oscillatory
firing patterns (Kammermeier et al., 2016). In hemiparkinsonian
rats, LFP power increased at higher frequencies (∼30–40 Hz),
also with BG-Mthal single-unit entrainment to those rhythms
(Brazhnik et al., 2016). More impressively, correlations between
the activity of BG-Mthal neurons markedly increased after
dopamine-depletion, which was associated with loss of specificity
for joint movements (i.e., neurons responded to movement across
multiple joints instead of just one) (Pessiglione et al., 2005).

While the key links between thalamic physiology and
parkinsonism are not fully defined, BG-Mthal units consistently
develop low frequency (<∼20 Hz) synchronous oscillatory firing
after striatal dopamine loss in NHPs. Periodic synchronized
BG-Mthal activity could disrupt cortical rotational dynamics,
similar to artificial stimulation of thalamocortical terminals
(Sauerbrei et al., 2020; Figures 3–5). While a single well-
timed perturbation during a rotational cycle could appropriately
enlarge or shrink cortical state space rotations, periodic high
frequency perturbations would repeatedly disrupt evolving
dynamics. In particular, there seems to be something special
about synchronized neuronal activity at beta frequencies,
suggesting that they are well-timed to shrink cortical state space
rotations associated with movement.

RESOLVING THE “PARADOXES OF
STEREOTAXIC SURGERY”

Considering motor cortico-thalamocortical circuitry as an
independent dynamical system modulated by BG output could
resolve the apparent paradoxes associated with lesions and DBS
(Figure 5). Loss of BG output (i.e., pallidotomy) would allow
thalamocortical dynamics to evolve unperturbed. The cost of
removing BG output would be loss of appropriate BG-mediated
modulation of thalamocortical circuits. In the pendulum analogy,
the ability to increase the pendulum’s momentum would be lost,
but at least it would not be slowed by poorly timed perturbations.
This could explain why slow patients move faster, and fast
patients move slower after pallidotomy (Bastian et al., 2003).

DBS of the STN and GPi have complex effects on BG-
Mthal and cortical activity patterns. In MPTP-treated NHPs,
STN DBS did not reduce BG-Mthal bursting, but did reduce
single-unit oscillatory power between ∼3–30 Hz (Xu et al.,
2008). Three studies examined the effects of GPi stimulation
on BG-Mthal activity in NHPs, finding variable changes in BG-
Mthal firing rates at the single unit level, no change in burst
frequency (though some changes in burst characteristics), and
reduced single-unit entrainment to beta oscillations (Agnesi
et al., 2015; Kammermeier et al., 2016; Muralidharan et al.,
2016). The latter could be responsible for reductions in motor
cortical beta oscillations (single-unit and LFP) during GPi

DBS (McCairn and Turner, 2015; Wang et al., 2018). Two
studies found BG-Mthal entrainment to GPi stimulation, which
inhibited a large fraction of BG-Mthal units for several
milliseconds with each stimulus pulse (Agnesi et al., 2015;
Muralidharan et al., 2016). However, responses were variable at
the level of individual neurons, including decreased, increased,
or multimodal firing patterns in response to each stimulus pulse.

While these data do not reveal a clear singular mechanism
by which high frequency DBS improves parkinsonism, they
suggest that an important therapeutic effect is to disrupt beta
synchrony among BG-Mthal neurons. High frequency STN or
GPi stimulation creates narrow time windows during which
thalamocortical neurons can be excited by corticothalamic input,
preventing BG-Mthal neurons from becoming entrained to
synchronous beta frequency input from GPi. Indeed, GPi DBS
creates a peak in BG-Mthal single-unit power spectra near the
stimulation frequency (Muralidharan et al., 2017). As in the
case of pallidotomy, the cost of preventing transmission of beta
synchrony into BG-Mthal would be loss of BG control over
thalamocortical spike timing.

SUMMARY AND FUTURE DIRECTIONS

We suggest that delta frequency LFP oscillations reflect
movement-related cortical rotational dynamics. Single-unit BG-
Mthal activity phase-locked to delta oscillations could speed or
slow movement, depending on the timing with respect to cortical
dynamics. A major function of the BG may be to adjust the
strength and timing of BG-Mthal spiking with respect to cortical
dynamics depending on task demands.

Like rate models, this hypothesis makes testable predictions.
First, cortical state space rotations should align consistently
with delta LFP phase. Second, phase entrainment of BG-Mthal
spikes to LFP delta oscillations should vary with movement
speed. Third, artificially manipulating BG-Mthal spike timing
with respect to delta oscillations should alter movement speed.
Finally, the same movement should generate qualitatively similar
cortical dynamics with different sized state space rotations under
parkinsonian and treated conditions (e.g., with levodopa or DBS).

If this model is correct, it still leaves several open questions.
First, it is not clear how striatum, globus pallidus, and the
subthalamic nucleus interact to optimize GPi spike timing.
Second, the neural mechanisms by which BG-Mthal (or CB-
Mthal) activity influence cortical dynamics are unknown. BG-
Mthal thalamocortical neurons project to both premotor and
primary motor regions, where they tend to synapse in cortical
layer I on the apical dendrites of layer V pyramidal tract (PT)
neurons (Herkenham, 1980; Kuramoto et al., 2009, 2015; Guo
et al., 2018; Tanaka et al., 2018). Corticothalamic projections
to BG-Mthal arise at least in part from layer V pyramidal
neurons in premotor cortex, forming a closed loop with
premotor-projecting thalamocortical neurons that appears to be
segregated from primary motor cortical-thalamic loops (Guo
et al., 2018). While layer II/III-specific CB-Mthal projections
to primary motor cortex have been defined (Hooks et al.,
2013; Yamawaki and Shepherd, 2015) the circuits linking
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BG-Mthal and primary motor cortex are less well-characterized.
Furthermore, premotor and motor cortical layer VI neurons
project to the inhibitory thalamic reticular nucleus, which in
turn projects to motor thalamic regions. How this complex
circuitry allows the BG to influence motor cortical dynamics and,
ultimately, motor output is unknown.

It is also not clear why LFP frequencies that are enhanced
by dopamine loss are different across species, making it
difficult to determine which physiologic changes are most
relevant to humans. While basic features of BG-thalamocortical
communication are preserved from rodents to primates, there are
important differences. Primate Mthal has inhibitory interneurons
that are absent (or at least very sparse) in rodents (Jones, 1981).
Dopaminergic innervation of Mthal is also much stronger in
primates than rodents (Sanchez-Gonzalez et al., 2005). Perhaps
more importantly, rodent BG output is primarily from SNr with
a much smaller contribution from the entopeduncular nucleus
(the rodent analog of GPi). The degree to which these differences
are meaningful for interpreting rodent results in the context of
human disease is uncertain.

This model also does not readily explain hyperkinetic
disorders like dystonia or chorea. One possibility is that
aberrant thalamocortical communication may not simply
shrink or expand cortical state space rotations, but force
them onto entirely new trajectories. For example, pushing
a pendulum out of its plane of motion would lead to
completely new dynamics. Unfortunately, there are few
animal models in which to study the thalamic physiology of
hyperkinetic disorders other than levodopa-induced dyskinesias.
One important clue may come from differences between
STN and GPi DBS. Despite mostly similar clinical effects,
STN DBS causes dyskinesias which usually wane over
time, while GPi DBS suppresses them. Whether this is due
to distinct effects on BG-Mthal activity or extrathalamic
effects is unknown.

The BG also influence motor function through non-thalamic
pathways for which we have not accounted. BG output flows
to brainstem nuclei including the superior colliculus, which is
important for orienting movements (e.g., attending to a loud
noise or bright light) (Park et al., 2020). The STN projects to
pontine nuclei that project to the cerebellum (Bostan et al., 2010)
providing a potential mechanism for STN DBS to affect tremor.
STN DBS can also activate motor cortical neurons by retrograde
activation of hyperdirect pathway axons (Gradinaru et al., 2009;

Walker et al., 2012; Miocinovic et al., 2018), though recent studies
suggest that this may not be a critical mechanism (Johnson et al.,
2020; Yu et al., 2020). The relevance of each of these projections
to the pathophysiology of parkinsonism (and other movement
disorders) and the effects of DBS remain to be determined.

We have suggested a novel framework in which to
understand BG-thalamocortical interactions that is almost
certainly oversimplified. The concept of BG modulation of
thalamic spike timing has been suggested previously (Goldberg
et al., 2013; Dudman and Krakauer, 2016). Here, we add the idea
that a major role of BG-Mthal is to regulate the size of cortical
state space rotations, and therefore movement speed/amplitude,
with well-timed spikes. The timing of BG-Mthal input to motor
cortex with respect to cortical dynamics (reflected in LFP delta
oscillations) determines whether movements will be sped or
slowed, and the strength of BG-Mthal signaling determines the
magnitude of the effect. This model is consistent with known
pathophysiologic changes in parkinsonism, and may explain
the apparently paradoxical clinical effects of BG lesions and
DBS. Importantly, this model makes specific testable predictions,
much like the rate model which has facilitated impressive
progress in understanding BG influences on motor control over
the last 30 years.
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