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Shared Genetic Risk Factors for Multiple
Sclerosis/Psoriasis Suggest Involvement of
Interleukin-17 and Janus Kinase–Signal

Transducers and Activators of
Transcription Signaling
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Objective: Psoriasis and multiple sclerosis (MS) are complex immune diseases that are mediated by T cells and
share multiple comorbidities. Previous studies have suggested psoriatic patients are at higher risk of MS;
however, causal relationships between the two conditions remain unclear. Through epidemiology and genetics,
we provide a comprehensive understanding of the relationship, and share molecular factors between psoriasis
and MS.
Methods: We used logistic regression, trans-disease meta-analysis and Mendelian randomization. Medical claims data
were included from 30 million patients, including 141,544 with MS and 742,919 with psoriasis. We used genome-wide
association study summary statistics from 11,024 psoriatic, 14,802 MS cases, and 43,039 controls for trans-disease
meta-analysis, with additional summary statistics from 5 million individuals for Mendelian randomization.
Results: Psoriatic patients have a significantly higher risk of MS (4,637 patients with both diseases; odds ratio
[OR] 1.07, p = 1.2 � 10�5) after controlling for potential confounders. Using inverse variance and equally
weighted trans-disease meta-analysis, we revealed >20 shared and opposing (direction of effect) genetic loci
outside the major histocompatibility complex that showed significant genetic colocalization (in COLOC and
COLOC-SuSiE v5.1.0). Co-expression analysis of genes from these loci further identified distinct clusters that
were enriched among pathways for interleukin-17/tumor necrosis factor-α (OR >39, p < 1.6 � 10�3) and Janus
kinase–signal transducers and activators of transcription (OR 35, p = 1.1 � 10�5), including genes, such as
TNFAIP3, TYK2, and TNFRSF1A. Mendelian randomization found psoriasis as an exposure has a significant causal
effect on MS (OR 1.04, p = 5.8 � 10�3), independent of type 1 diabetes (OR 1.05, p = 4.3 � 10�7), type 2 diabe-
tes (OR 1.08, p = 2.3 � 10�3), inflammatory bowel disease (OR 1.11, p = 1.6 � 10�11), and vitamin D level
(OR 0.75, p = 9.4 � 10�3).
Interpretation: By investigating the shared genetics of psoriasis and MS, along with their modifiable risk factors, our
findings will advance innovations in treatment for patients suffering from comorbidities.
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Multiple sclerosis (MS), a chronic central nervous
system disease that damages central nervous system

myelin or white matter through immune dysregulation,1

is associated with multiple comorbidities and risk factors
that can increase susceptibility and/or accelerate
neurodegeneration,2,3 such as smoking, cardiovascular
disease, and low vitamin D. Although receiving less
attention, psoriasis, a complex chronic skin disease4

associated with systemic inflammation,5 has been found
to impose a higher (odds ratio [OR] 1.296) risk of
MS. Notably, the risk of MS increases with psoriasis
severity.7 Certain cytokines have been implicated in the
pathogenesis of both psoriasis and MS, including inter-
leukin (IL)-17,8,9 interferon (IFN)γ,10,11 and tumor
necrosis factor (TNF).12,13 Clinical responses were
observed in both diseases for IL-17-regulating drugs,
dimethyl fumarate14,15 and secukinumab,16,17 as well as
α4-integrin antagonist, natalizumab18; however, even
though TNF inhibitors work well for psoriasis, they
have been found to exacerbate MS.12 Similarly, IFNβ is
a common treatment for MS, but can trigger psoria-
sis.19 Until now, there has been limited study to discern
the effects of shared genetic and modifiable risk factors
on the psoriasis/MS comorbidity, and how they are
associated with the aforementioned cytokine signaling
pathways. However, this is essential for understanding
the mechanisms and identifying effective treatments for
many patients suffering from both conditions.

Psoriasis and MS each have a substantial genetic
component (�70% heritability for psoriasis20 and 50–
64% for MS21,22), with genetic signals from both diseases
enriched among regulatory regions for CD4+ and CD8+

T cells.1,4 Infiltration of activated CD4+/CD8+ T cells in
the skin increases proliferation of keratinocytes to produce
psoriatic plaques;23 whereas in MS, T cells are involved in
an inflammatory process that damages myelin nerve insu-
lation.24 Myelin-specific CD4+ T cells are over four-fold
more abundant in MS patients than controls,25 and there
is a 10-fold increase of dermal T cells in psoriasis lesions
compared with healthy skin.26 Psoriasis and MS are both
characterized by T helper (Th)1 and Th17 cells,23,27 with
Th17 demonstrating greater ability to cross the choroid
plexus (in MS) than other CD4+ subsets;28 whereas in
psoriasis, neutrophil extracellular traps help enhance Th17
induction.29 Both diseases are associated with class I
human leukocyte antigen alleles (eg, B*44 is protective for
MS30-32 and C*06:02 increases the risk for psoriasis33),
although the primary association for MS in the major his-
tocompatibility complex (MHC) is with class II human
leukocyte antigen alleles (including DRB1*15:01).34

However, outside the MHC, little is known about the
genetic components they share.

Psoriasis and MS have also been associated with
overlapping modifiable risk factors. For instance, both
are more prevalent in northern latitudes35,36 and are con-
nected with vitamin D deficiency.37,38 There is evidence
that vitamin D may be involved in modulating immune
responses, including the activation of CD4+/CD8+

T cells,39,40 and it has also been found to suppress IL-17
induction.41 However, much remains to be known
regarding its precise role in inflammatory diseases, such
as psoriasis and MS.42 In psoriasis, vitamin D analogs are
regularly used as topical treatments,38 whereas there have
been multiple inconclusive trials for its use as an oral
supplement in MS.43,44 Ultraviolet radiation is an effec-
tive treatment for psoriasis,45 and early trials suggest it
may be beneficial for MS.46 Obesity is another key risk
factor for immune-mediated diseases in general,47 and
previous Mendelian randomization (MR) studies have
suggested it can causally affect both psoriasis48 and
MS.49 Metabolic dysfunction resulting from obesity
impacts the immune system;50 for example, through the
effect of adipokines on TNF.51 Further modifiable risk
factors reported by the literature include smoking,52,53

triggering events,54,55 infections,56,57 and the micro-
biome.58,59 These risk factors should be taken into con-
sideration when assessing the causal relationship between
psoriasis and MS.

Understanding the pathophysiology of comorbidities
is essential for precision medicine and optimal disease
management, as it can provide clues to their underlying
molecular mechanisms and common etiology. In the pre-
sent study, we conduct epidemiological analysis on a large
medical claims dataset to reveal risk factors common to
both diseases, and then we apply a trans-disease meta-
analysis (TDMA) to identify >20 shared genetic loci.
Finally, we apply MR using genetic variants as instru-
ments to establish a causal relationship between psoriasis
and MS independent of their comorbidities and modifi-
able risk factors.

Methods
The genetic cohorts involved in both the psoriasis and MS
genome-wide association study (GWAS) were institutional
review board approved (details in previous publications).
The Optum Clinformatics® data was exempt from institu-
tional review board approval.

Epidemiology
We investigated the association between psoriasis and MS,
in the context of potential confounders, through an epide-
miological analysis of 30,445,892 patients from Optum’s
deidentified Clinformatics® Data Mart.60 All included
individuals had a recorded year of birth, self-reported sex
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and race; the majority (75%) were white and just over half
(55%) were female, with a mean age of 45 years (at the
most recent encounter), and mean enrollment (follow-up)
of 5 years. The status of the following traits among the
patients was evaluated by the presence/absence of
ICD-9/10 codes, as shown in Table S1 in Data S1: type 1
diabetes (T1D), type 2 diabetes (T2D), coronary artery
disease (CAD), rheumatoid arthritis (RA), inflammatory
bowel disease (IBD), asthma, vitamin D deficiency, obe-
sity/morbid obesity, smoking, and alcohol use disorder
(AUD). In total, our analysis included 141,544 patients
with MS, 742,919 patients with psoriasis, and 4,637
patients with both diseases.

Logistic regression was applied to medical claims data
extracted for the years 2001 to 2018 from 30,445,892
patients in Optum’s deidentified Clinformatics® Data
Mart60 (version 7.2; OPTUM, Eden Prairie, MN, USA).
Patients were included that had a recorded year of birth
(from which we calculated the age at most recent encoun-
ter), sex, and race, then we added up the total enrollment
periods, to give the total enrollment for each patient. Traits
were ascertained by ICD-9/10 codes, as shown in Table S1
in Data S1, including obesity, smoking, and AUD, as no
quantitative data on body mass index (BMI), smoking, or
alcohol consumption was readily available.

Trans-Disease Meta-Analysis
To compare genetic signals between psoriasis and MS, we
performed TDMA on GWAS summary statistics from
psoriasis (11,024 cases, 16,336 controls)61 and MS
(14,802 cases, 26,703 controls)1 cohorts. Meta-analyses
were prepared as per the data collection and processing
steps described in their respective GWAS.1,61 We applied
the standard fixed effects inverse variance weighted (IVW)
approach62 to meta-analysis summary statistics, and also
implemented TDMA using an equally weighted combina-
tion63,64 of effect sizes (βPsor,CAD ¼ βPsorþβCADð Þ=2) and
variances (V Psor,CAD ¼ V PsorþV CADð Þ=4). Loci were con-
sidered independent if they are separated by >500 kb or
revealed through approximate conditional analysis
(GCTA-COJO65), with the largest psoriasis cohort
(11,675 cases and controls) being used as the reference
dataset for linkage disequilibrium (LD) computation.
We also applied Heritability Estimation from Summary
Statistics66 to identify locally correlated regions, using
the European 1,000 Genomes data provided with the
software as reference, and the recommended parti-
tions.67 Colocalization analysis was performed using
COLOC68 and its Sum of Single Effects (SuSiE) exten-
sion69 on markers within �100 kb of each lead TDMA
marker, with the same reference cohort as COJO.

Mendelian Randomization
We applied MR to investigate potential causal relationships
between psoriasis, MS, and their comorbidities. We used six
different MR techniques (MR-PRESSO,70 MR-Egger,71 MR-
Robust,72 MR-RAPS,73 MR-Median,74 and MR-Mode75) to
provide confidence in the results, by minimizing the risk of
spurious findings due to the weaknesses of any one
approach. First, MR-PRESSO70 was used to correct for
horizontal pleiotropy by removing outliers, which addressed
distortion for asthma (p = 0.012), T1D (p = 0.002), and
RA (p < 3.3 � 10�5) on MS. Then, the other techniques
were used to test assumptions in different ways: MR-
Egger71 includes the intercept in its model; MR-Robust72

uses Tukey’s loss function for robust regression; MR-
RAPS73 accounts for variance in effect sizes and uses a ran-
dom effects model; and MR-Median74 and MR-Mode75

control for heterogeneity by calculating weighted median- or
mode-based estimates, respectively. We extracted genetic data
from full GWAS summary statistics for 10 traits, in addition
to psoriasis and MS. Genetic instruments were selected from
the intersection of markers across traits, through LD
clumping (p ≤ 1 � 10�4, LD ≥ 0.001, window size =
10 Mbp), using the European 1,000 Genomes data as refer-
ence. The six different MR techniques were applied in
univariable analysis, to estimate the causal effect of each trait
on psoriasis and MS; and then we conducted multivariable
analysis using GRAPPLE,76 by pooling the genetic markers
from each trait.

Results
Epidemiology
Unlike psoriasis, MS was more strongly associated with
female sex (Table 1; OR 2.36, p = 1.2 � 10�4,323), and
both MS and psoriasis had reduced prevalence in Asian
(OR 0.36, p = 2.7 � 10�513) and Hispanic (OR 0.62,
p = 1.7 � 10�488) patients, while psoriasis also had lower
prevalence among black patients (OR 0.67,
p = 7.2 � 10�1,693). Vitamin D deficiency (OR 3.02,
p = 1.9 � 10�368) had the strongest association for MS,
and was also associated with psoriasis (OR 1.77,
p = 9.2 � 10�8,302). The strongest association for psoriasis
was RA (OR 3.82, p = 1.2 � 10�21,815), which was also
associated with MS (OR 2.64, p = 9.1 � 10�1,792). Both
MS and psoriasis were associated with AUD, smoking,
asthma, T1D, T2D, CAD, IBD, and morbid obesity. When
including all covariates in a conditional model, the effect of
psoriasis on MS was OR 1.07 (p = 1.2 � 10�5), while the
effect of MS on psoriasis was OR 1.10 (p = 9.4 � 10�10).

Shared and Opposing Genetic Loci
Table 2 shows the results of TDMA using fixed effects
IVW meta-analysis, while Tables S2 and S3 in Data S1
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show the results using the equally weighted approach.
TDMA signals with shared or opposing direction of effect
are presented as circular Manhattan plot tracks (Fig 1A, B
for IVW, Figure S1a, b in Data S1 for equally weighted).
In total, 22 and 20 genetic loci were identified for IVW
and equally weighted approaches, respectively (counting

the MHC, as a single locus due to its complex LD), in
which the TDMA lead marker was: (1) genome-wide sig-
nificant (p < 5 � 10�8) in TDMA; (2) suggestively signif-
icant (p < 1 � 10�4) for each trait; and (3) more
significant in TDMA than in both traits. IVW and equally
weighted approaches were highly concordant, with only

TABLE 1. Epidemiological Analysis

Covariate

Demographics Effect on MS Effect on Psoriasis

All MS Psor Both OR (95% CI) p value OR (95% CI) p value

Age in years

Mean (SD)

45

(23)

54

(15)

53

(18)

56

(14)

1.47

(1.46–1.48)

1.2 � 10�4,442 1.49

(1.48–1.49)

1.2 � 10�24,027

Sex

M

Sample size (%)

13,645,873

(44.82)

36,302

(0.27)

355,342

(2.60)

1,294

(0.01)

Reference group

F

Sample size (%)

16,800,019

(55.18)

105,242

(0.63)

387,577

(2.31)

3,343

(0.02)

2.36

(2.34–2.39)

1.2 � 10�4,323 0.88

(0.88–0.89)

8.8 � 10�608

Race

White

Sample size (%)

22,779,120

(74.82)

113,748

(0.50)

591,317

(2.60)

3,886

(0.02)

Reference group

Asian

Sample size (%)

1,259,402

(4.14)

2,245

(0.18)

28,175

(2.24)

68

(0.01)

0.36

(0.34–0.37)

2.7 � 10�513 0.86

(0.85–0.87)

8.9 � 10�135

Black

Sample size (%)

3,015,614

(9.90)

15,050

(0.50)

52,679

(1.75)

366

(0.01)

1.00

(0.98–1.02)

0.92 0.67

(0.66–0.67)

7.2 � 10�1,693

Hispanic

Sample size (%)

3,391,756

(11.14)

10,461

(0.31)

70,748

(2.09)

317

(0.01)

0.62

(0.60–0.63)

1.7 � 10�488 0.80

(0.79–0.81)

4.5 � 10�676

Trait

Sample Size (%) Effect on MS Effect on Psoriasis

All MS Psor Both OR (95% CI) p value OR (95% CI) p value

Psoriasis 742,919 (2.44) - - 4,637 (0.02) 1.22 (1.20–1.24) 5.3 � 10�41 - -

MS 141,544 (0.46) - - 4,637 (0.02) - - 1.24 (1.22–1.26) 8.0 � 10�47

Type 1 diabetes 923,543 (3.03) 7,158 (0.78) 33,256 (3.60) 331 (0.04) 1.34 (1.33–1.36) 3.9 � 10�126 1.14 (1.13–1.15) 4.7 � 10�115

Type 2 diabetes 4,767,871 (15.66) 32,595 (0.68) 172,729 (3.62) 1,405 (0.03) 1.24 (1.23–1.25) 1.5 � 10�211 1.19 (1.19–1.20) 4.8 � 10�747

Coronary artery disease 3,170,317 (10.41) 21,996 (0.69) 119,635 (3.77) 991 (0.03) 1.13 (1.12–1.14) 1.1 � 10�53 1.03 (1.02–1.03) 8.5 � 10�15

Rheumatoid arthritis 813,738 (2.67) 9,495 (1.17) 66,613 (8.19) 813 (0.10) 1.85 (1.83–1.87) 1.0 � 10�699 3.11 (3.09–3.12) 6.8 � 10�14,924

Inflammatory bowel disease 403,112 (1.32) 3,935 (0.98) 18,686 (4.64) 206 (0.05) 1.76 (1.73–1.79) 6.5 � 10�265 1.65 (1.64–1.67) 2.8 � 10�948

Asthma 4,026,381 (13.22) 25,643 (0.64) 116,560 (2.89) 1,128 (0.03) 1.36 (1.35–1.37) 3.9 � 10�433 1.24 (1.24–1.24) 1.0 � 10�949

Vitamin D deficiency 3,937,160 (12.93) 43,555 (1.11) 152,644 (3.88) 1,846 (0.05) 2.30 (2.29–2.32) 1.5 � 10�3,974 1.42 (1.42–1.43) 1.1 � 10�2,867

Obesity

Obese 3,256,617 (10.70) 19,918 (0.61) 115,156 (3.54) 806 (0.02) 1.22 (1.21–1.23) 2.4 � 10�148 1.43 (1.42–1.43) 1.8 � 10�2,475

Morbidly obese 1,686,290 (5.54) 13,077 (0.78) 67,983 (4.03) 646 (0.04) 1.47 (1.46–1.48) 1.1 � 10�370 1.68 (1.67–1.69) 4.5 � 10�3,350

Smoking 4,605,396 (15.13) 38,163 (0.83) 174,563 (3.79) 1,587 (0.03) 1.78 (1.77–1.79) 3.5 � 10�1,857 1.38 (1.38–1.39) 2.6 � 10�2,738

Alcohol use disorder 836,527 (2.75) 5,491 (0.66) 31,853 (3.81) 238 (0.03) 1.53 (1.51–1.55) 1.8 � 10�204 1.43 (1.42–1.44) 4.7 � 10�803

Note: The top portion of the table shows the effects of different demographic variables on MS/psoriasis; the bottom portion of the table illustrates the
effects of other traits/diseases on MS/psoriasis, after adjusting for the demographic variables.
Abbreviations: MS = multiple sclerosis; OR = odds ratio; Psor = psoriasis.
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two loci identified by each approach not by the other (two
loci appear both shared and opposing in IVW). Shown in
red on Figure 1A, B are 11 shared and 11 opposing loci,
revealed using IVW TDMA, of which Figure 2 illustrates
two shared and two opposing loci using regional associa-
tion plots. We then performed conditional analysis sepa-
rately on psoriasis and MS outside the MHC using
conditional and joint analysis (GCTA-COJO65), and
applied the TDMA criteria to each independent signal
identified, discovering an additional two shared and one
opposing IVW TDMA locus (shown in blue in Fig 1), of
which one of the shared loci was identified by the equally
weighted approach, leading to 27 independent TDMA
signals across the three approaches (Figures S2–S24 in

Data S1); we also confirmed seven shared and six oppos-
ing loci. Table 2 and Tables S4 to S5 in Data S1 present
the loci identified by TDMA and COJO, respectively.

We additionally evaluated broader genetic correlations
between psoriasis and MS using Heritability Estimation
from Summary Statistics.66 Three LD-independent
regions67 had significant correlation between psoriasis
and MS (false discovery rate ≤5%): a chromosome
5 (157–159 Mbp; p = 4.3 � 10�17) and chromosome
10 (81–82 Mbp; p = 8.6 � 10�5) region, which encompass
loci identified by our previous two approaches, and the adja-
cent chromosome 5 region (159–160Mbp; p = 1.3 � 10�6),
which does not. Marker rs72804018 from this region
(Table 2) is in low LD (r2 = 0.03, D0 = 0.32) with the

TABLE 2. Loci Identified by Trans-Disease Meta-Analysis

Cyt. Band rsID

Position

(hg19) RA/NR

MS Psoriasis TDMA Heterogeneity Colocalization
Nearby

GenesOR p OR p OR p Q p COLOC PP SuSiEa

Shared (same direction of effect) loci

5q33.3 rs2546890 158,759,900 A/G 1.12 1.0 � 10�12 1.33 6.4 � 10�51 1.21 7.1 � 10�58 1.4 � 10�2 0.91 4.4 � 10�7 0 IL12B

6p21.1 rs59024520 42,238,973 C/T 1.16 6.3 � 10�5 1.19 8.2 � 10�5 1.17 2.3 � 10�8 4.4 � 10�4 0.98 0.83 0 USP49

6q23.3 rs9321623 137,958,265 C/T 1.08 4.5 � 10�6 1.10 4.5 � 10�7 1.09 9.5 � 10�12 1.7 � 10�4 0.99 1.5 � 10�3 1 TNFAIP3

7p14.1 rs11767350 37,385,365 A/G 1.07 6.5 � 10�6 1.09 7.4 � 10�6 1.08 2.2 � 10�10 6.4 � 10�5 0.99 0.80 3 ELMO1b

10q22.2 rs2459446 75,601,596 C/T 1.07 7.9 � 10�5 1.13 1.5 � 10�10 1.09 8.9 � 10�14 1.8 � 10�3 0.97 0.87 3 CAMK2Gb

11q13.1 rs479777 64,107,477 T/C 1.08 3.5 � 10�5 1.13 2.1 � 10�9 1.10 6.0 � 10�13 9.1 � 10�4 0.98 0.87 0 PRDX5b, RPS6KA4b

12p13.31 rs4149576 6,449,115 T/C 1.11 3.5 � 10�9 0.07 8.8 � 10�5 1.09 6.8 � 10�12 3.4 � 10�4 0.99 0.07 6 CD27, TNFRSF1Ab

13q14.2 rs9591325 50,811,220 T/C 1.24 4.2 � 10�10 1.24 6.6 � 10�9 1.24 2.0 � 10�17 1.7 � 10�5 1.00 0.99 2 DLEU1b

16p13.13 rs243324 11,354,970 A/G 1.12 5.9 � 10�12 1.08 6.6 � 10�5 1.10 5.5 � 10�15 6.6 � 10�4 0.98 3.1 � 10�4 0 SOCS1, RMI2b

17q21.2 rs957970 40,519,890 A/G 1.14 1.1 � 10�13 1.11 7.3 � 10�8 1.13 6.4 � 10�20 2.2 � 10�4 0.99 0.97 7 STAT3b, STAT5Ab/B

19p13.2 rs55677033 11,166,293 T/C 1.09 2.6 � 10�6 1.08 9.0 � 10�5 1.09 9.5 � 10�10 1.0 � 10�5 1.00 0.17 2 ILF3, CARM1

Opposing (opposite direction of effect) loci

1p36.11 rs6672420 25,291,010 A/T 1.07 2.2 � 10�5 0.86 8.8 � 10�15 1.11 6.3 � 10�18 2.9 � 10�3 0.96 0.93 3 RUNX3

2p16.1 rs1177213 61,079,090 A/G 0.93 4.6 � 10�6 1.16 2.1 � 10�15 1.11 5.2 � 10�18 3.0 � 10�3 0.96 0.73 6 RELb, PUS10b

5q31.1 rs3843503 131,466,629 T/A 1.08 1.9 � 10�5 0.92 2.1 � 10�5 1.08 1.6 � 10�9 1.5 � 10�6 1.00 0.68 3 CSF2, P4HA2b

6p22.1 rs1611653 29,841,702 G/C 1.31 3.9 � 10�50 0.73 1.5 � 10�61 1.34 6.4 � 10�109 1.5 � 10�3 0.97 - - HLA-Bb/C, TNF

6q23.3 rs7746779 138,154,501 A/G 0.90 8.8 � 10�7 1.15 1.1 � 10�9 1.13 1.1 � 10�14 7.8 � 10�4 0.98 3.2 � 10�3 0 TNFAIP3, WAKMAR2

6q25.3 rs2451279 159,515,077 G/A 1.10 6.4 � 10�8 0.91 3.6 � 10�6 1.10 1.8 � 10�12 4.3 � 10�6 1.00 2.6 � 10�3 2 TAGAPb

7q36.1 rs10243355 150,356,318 G/A 1.09 3.4 � 10�5 0.89 1.8 � 10�5 1.10 3.4 � 10�9 6.2 � 10�4 0.98 0.81 1 GIMAP2b/6b

10q22.3 rs1250565 81,047,015 A/G 1.12 1.0 � 10�10 0.89 3.3 � 10�9 1.12 2.1 � 10�18 2.4 � 10�5 1.00 0.83 2 ZMIZ1b

11p11.2 rs12574410 47,169,228 C/G 1.11 3.9 � 10�6 0.90 9.3 � 10�5 1.11 1.5 � 10�9 1.3 � 10�5 1.00 0.88 0 MYBPC3b, AGBL2b

16p13.13 rs3862471 11,113,463 G/T 1.17 3.2 � 10�23 0.92 6.4 � 10�6 1.14 1.3 � 10�25 3.0 � 10�3 0.96 0.85 0 CLEC16Ab

22q12.3 rs5756405 37,310,954 A/G 1.07 2.4 � 10�5 0.93 4.3 � 10�5 1.07 4.3 � 10�9 4.7 � 10�5 0.99 0.76 3 CSF2RBb, NCF4

aIndicates the number of pairs of fine-mapped signals with evidence of colocalization (PP >0.7).
beQTL evidence in eQTLGen or GTEx v8.
MS = multiple sclerosis; OR = odds ratio; SuSiE = Sum of Single Effects; TDMA = Trans-Disease Meta-Analysis.
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(B)

(C)

(D)

FIGURE 1: Inverse weighted trans-disease meta-analysis (TDMA). Circular diagram including the following: (A) Manhattan plot of
shared (same direction of effect) psoriasis/multiple sclerosis (MS) TDMA signals, showing markers more significant in TDMA than
for either trait. (B) Manhattan plot of opposing (opposite direction of effect) psoriasis/MS TDMA signals, showing markers more
significant in TDMA than for either trait. Red dashed lines show the genome-wide significance (p < 5 � 10�8) threshold for
shared and opposing signals, respectively. Loci that meet this threshold and are suggestively significant (p < 1 � 10�4) for both
traits are highlighted in red (if identified through our original TDMA approach) or blue (for additional loci identified using GCTA-
COJO). (C) Density of H3K27ac active enhancer marks for B-cell centroblasts (the most enriched cell type among the TDMA loci,
compared with other established loci for psoriasis and MS). The darker the color, the higher the proportion of regulatory marks
overlapping each 2-Mbp region. Genes reported by previous psoriasis and MS GWAS1,4,96–99 are labeled for each locus. (D) Links
between genes, according to co-expression in L1000 assay perturbation experiments from NIH’s Library of Integrated Network-
Based Cellular Signatures (LINCS). Each link has a random color, with transparency (alpha) values set proportional to the log-
scaled number of experiments in which at least one gene from a locus is co-expressed with at least one gene from another locus,
such that more opaque links represent pairs of loci with genes co-expressed in more experiments. IVW = inverse variance
weighted; MS = multiple sclerosis. [Color figure can be viewed at www.annalsofneurology.org]
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FIGURE 2: Regional association plots for four loci identified by inverse variance weighted (IVW) disease meta-analysis (TDMA).
For each of the following loci, the lead TDMA marker is shown in purple, and the other markers are colored according to their
linkage disequilibrium (LD) with the lead marker: (A) 6q25.3 opposing locus, with rs2451279 lead marker; (B) 7p14.1 shared
locus, with rs17259252 lead marker; (C) 10q22.3 opposing locus, with rs1108618 lead marker; (D) 13q14.2 shared locus, with
rs9591325 lead marker. [Color figure can be viewed at www.annalsofneurology.org]
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shared locus 154 kb upstream and meets our three criteria
(MS p = 4.6 � 10�7; psoriasis p = 1.8 � 10�7; IVW
TDMA p = 5.2 � 10�13; equally weighted TDMA
p = 4.6 � 10�13), suggesting it may be a secondary signal.

Colocalization Analysis
We investigated whether the shared and opposing loci col-
ocalize to the same causal signals in psoriasis and MS,
using COLOC68 (Table S6 in Data S1). Of the 25 non-
MHC loci (identified by the three approaches) 16 showed
strong evidence of colocalization, with posterior probabili-
ties ranging from 0.68 (for the opposing locus, centered
on rs3843503 in chromosome 5) to 0.99 (for the
rs9591325 shared locus in chromosome 13). For the
remaining loci, we used the SuSiE COLOC extension,69

which applies fine-mapping to provide more accurate
inference by assuming the potential presence of multiple
causal variants per locus. Significantly, all of the loci iden-
tified by the equally weighted TDMA approach had evi-
dence (PP = 1.0) of colocalization with SuSiE (Table S7
in Data S1), and interestingly, it was the secondary signal
(ie, rs72804018) identified by Heritability Estimation
from Summary Statistics that colocalized for the chromo-
some 5 locus. However, none of the additional loci from
the GCTA-COJO analysis had evidence of colocalization,
suggesting there may be different causal variants in psoria-
sis and MS.

To evaluate which TDMA loci might be explained
by comorbidities, we retrieved full summary statistics from
the largest available GWAS of individuals of European
ancestry for each comorbidity. Table S8 in Data S1 pre-
sents the shared and opposing TDMA loci that had at
least suggestively significant association with each trait.
Traits with the most associated loci (eg, RA, with seven
loci, and IBD, with five loci) are primarily mediated by
immunology rather than modifiable risk factors. T1D
(an autoimmune disorder) has seven associated loci,
whereas T2D (a metabolic condition) has none. The risk
allele locus associated with the most traits, rs413024, is
positively associated with IBD, T1D, and RA. All but one
of the risk alleles for the shared loci show increased risk of
the comorbidities, whereas for the opposing loci, psoriasis
and MS impart increasing/decreasing risk on the same
traits. These results suggest no one comorbidity dominates
the genetic relationship between psoriasis and MS, with
the loci instead pertaining to complex imbalances in sys-
temic inflammation.

Functional Analysis
Using H3K27ac marks for active enhancers in 33 different
cell types,77 we conducted binomial enrichment tests to
identify how the genetic signals can play regulatory roles

in the specific cells involved in psoriasis/MS. Table S9 in
Data S1 compares enriched cell types for the 23 equally
weighted TDMA plus GCTA-COJO loci outside the
MHC, against the 62 MS and 20 psoriasis genome-wide
significant loci, identified from their respective GWAS
outside these regions. Immune cells were the highest
enriched among TDMA, psoriasis, and MS loci, with
stimulated Th17 cells ranking among the most enriched
in each (TDMA p = 2.1 � 10�8, MS p = 2.0 � 10�12,
psoriasis p = 0.011). Other CD4+/CD8+ T-cell subsets
were highly enriched in TDMA, including Th0
(p = 1.5 � 10�8), Th1 (p = 1.4 � 10�7) and CD8+

memory T cells (p = 6.3 � 10�5). However, centroblasts
were the most enriched cell type for TDMA
(p = 7.7 � 10�12), whereas they were less enriched in
MS (p = 4.6 � 10�7) and psoriasis (p = 0.038), respec-
tively. Figure 1C presents the H3K27ac active enhancer
marks for B-cell centroblasts as a density plot, showing
that regions of higher density (darker color on the plot)
often co-occur with TDMA loci. We compared enrich-
ments in TDMA against the other psoriasis and MS loci
using binomial tests, and found centroblasts to be the
most significant cell type compared with psoriasis
(p = 3.4 � 10�5) and MS (p = 9.4 � 10�4). As a sensi-
tivity check, we repeated the enrichment analysis excluding
the four TDMA loci identified using the conditional analy-
sis approach (that did not colocalize), and found once again
that centroblasts were more enriched in TDMA than the
other psoriasis (p = 1.4 � 10�4) and MS (p = 2.3 � 10�3)
loci. Interestingly, brain cell types were only significantly
enriched (adjusting for false discovery rate) among the
TDMA loci, and not the MS- or psoriasis-only loci. Of
these, mid-frontal lobe (p = 1.9 � 10�4), hippocampus
middle (p = 1.0 � 10�3) and inferior temporal lobe
(p = 1.1 � 10�3) had the strongest enrichment.

Gene Co-Expression
Previous studies highlight the value of integrating gene co-
expression networks with GWAS results to infer biological
functions. Therefore, we utilized the L1000 assay pertur-
bation experiment from NIH’s Library of Integrated
Network-Based Cellular Signatures (LINCS)78 to under-
stand the molecular network regulated by the TDMA loci.
Links between these loci shown in Figure 1D indicate at
least one gene from the first locus is co-expressed with a
gene from the other. The opacity of each link is propor-
tional to the log-scaled number of experiments in which
the genes are co-expressed, such that pairs of loci with
stronger evidence of connection are more clearly visible.
As might be expected, links between the MHC and other
loci are among the strongest; however, there are also con-
nections between many of the non-MHC loci. For
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example, the 17q21.2 (STAT3, STAT5A/B) shared locus
is highly connected with the 7p14.1 (ELMO1) shared
locus (co-expressing in 642 experiments), whereas the

5q31.1 (CSF2, P4HA2) opposing locus is highly con-
nected with the 2p16.1 (REL, PUS10) opposing locus
(in 505 experiments).
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FIGURE 3: Mendelian randomization (MR) results for the effects of psoriasis and other comorbidities on multiple sclerosis. Forest
plots generated from the results of six MR techniques (A–F). BMI = body mass index; CAD = coronary artery disease;
Drink = drinks per week; IBD = inflammatory bowel disease; OR = odds ratio; p = p value; RA = rheumatoid arthritis;
Smoke = cigarettes per day; T1D = type 1 diabetes; T2D = type 2 diabetes; VitD = vitamin D (25OHD).
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We inferred distinct groups of loci/genes from the
log-weighted LINCS data by applying four different com-
munity detection algorithms (leading eigenvector, Louvain,
optimal integer programming, and spin-glass) in the iGraph
software package.79 Three co-expressing clusters (Table S10
in Data S1) were consistently identified by all four algo-
rithms and were unaffected by including or excluding the
MHC. We applied pathway enrichment analysis (excluding
the MHC) using Enrichr,80 which aggregates annotations
from multiple sources. In the Kyoto Encyclopedia of Genes
and Genomes, the most significant pathway for cluster
1 (including CSF2 and TNFAIP3) was IL-17 signaling
(OR 39.32, p = 1.6 � 10�3), for cluster 2 (including
IL12B and TYK2) it was Janus kinase–signal transducers
and activators of transcription (JAK–STAT) signaling
(OR 35.85, p = 1.1 � 10�5), and for cluster 3 (including
CAMK2G and TNFRSF1A) it was necroptosis
(OR 161.01, p = 3.7 � 10�9).

Cluster 1 was also significantly enriched for TNFα sig-
naling pathways in the National Center for Advancing Trans-
lational Sciences BioPlanet (OR 67.37, p = 1.4 � 10�6)
and the Molecular Signatures Database (OR 30.14,
p = 2.7 � 10�4), whereas cluster 2 and 3 were both signifi-
cant for IL-6–JAK–STAT3 signaling in the Molecular Signa-
tures Database (OR 47.38, p = 6.2 � 10�5 and OR
118.49, p = 6.6 � 10�6, respectively). Cluster 2 was also
significantly enriched for IL-12 signaling in BioPlanet
(OR 93.31, p = 3.0 � 10�7). Overall, there appear to be
two main mechanisms in which the TDMA loci are
involved: IL-17–TNFα signaling (cluster 1) and JAK–STAT
signaling (clusters 2 and 3). We annotated Table S10 in
Data S1 to show which loci have genes involved in each
pathway.

Mendelian Randomization
Figure 3 provides estimates of causal effects on MS for
each MR technique we applied, whereas Figure S25 in
Data S1 presents the same for psoriasis. Psoriasis was esti-
mated to have a significant (false discovery rate <0.05)
effect on MS by four of the six techniques, whereas it was
nominally significant for the remaining two (MR-Egger
and MR-Robust). By contrast, none of the techniques
indicated a significant effect for MS on psoriasis, and only
one (MR-RAPS) was nominally significant. Consistent
with the (covariate adjusted) epidemiological analysis, esti-
mates of the effect of psoriasis on MS ranged from
p = 7.1 � 10�3, OR 1.05 for MR-PRESSO to
p = 7.9 � 10�3, OR 1.07 for MR-Mode. We confirmed
the causal effect of psoriasis on MS with a significant
Steiger test result (p = 6.6 � 10�298), indicating higher
correlation between the genetic instruments with psoriasis
(r2 = 0.144) than MS (r2 = 0.011).

Selecting the six comorbidities/traits (T1D, T2D,
IBD, vitamin D, BMI, and drinks/week) estimated to
have a significant causal effect by at least one technique,
we conducted a multivariable analysis using MR-GRAP-
PLE.76 The causal effect of psoriasis on MS remained sig-
nificant (OR = 1.04, p = 5.8 � 10�3), after conditioning
on effects of T1D (OR 1.05, p = 4.3 � 10�7), T2D
(OR 1.08, p = 2.3 � 10�3), IBD (OR 1.11,
p = 1.6 � 10�11), and vitamin D levels (OR 0.75,
p = 9.4 � 10�3); however, BMI and drinks/per week
were no longer even nominally significant. Whereas by
univariable analysis BMI was the only trait (apart from
psoriasis) estimated to have at least a nominally significant
effect on MS by all six techniques, it is known to have a
causal effect on other traits, so it is possible that it affects
MS indirectly.

Discussion
By combining large-scale epidemiological analysis with genet-
ics, we confirmed a significant and causal association between
psoriasis and MS that is independent of different confounding
factors. A fully adjusted OR of 1.07 (p = 1.2 � 10�5) was
estimated using medical claims data from �900,000 patients
with psoriasis and/or MS and �30 million controls. MR
techniques gave comparable effect sizes (OR 1.05–1.07), with
OR 1.04 (p = 5.8 � 10�3) when conditioning on T1D,
T2D, IBD, vitamin D, BMI, and drinks/per week (traits sig-
nificant in univariable analysis), whereas no significant causal
effect was observed for MS on psoriasis. In total, >20 non-
MHC genome-wide significant shared or opposing genetic
loci were identified between psoriasis and MS that were at
least suggestively significant (p < 1 � 10�4) for each trait and
more significant in TDMA than both traits. In an indepen-
dent replication study for MS, two of the suggestively signifi-
cant loci (rs6672420 and rs5756405) were genotyped, and
both were confirmed to be genome-wide significant
(OR 1.06, p = 1.5 � 10�9; OR 1.07, p = 5.4 � 10�11).1

No significant heterogeneity was identified for these markers
between the main MS and replication cohorts, nor between
the individual psoriasis cohorts. When combining the MS
and psoriasis cohorts together (rather than applying TDMA),
rs6672420 has nominally significant (p = 0.01) heterogene-
ity, whereas for rs5756405 it is not significant (p = 0.98).
The mixture of shared and opposing loci is interesting, as it
suggests a complex genetic relationship between psoriasis and
MS. This could help explain why certain treatments (eg,
TNFα inhibitors and IFNβ) are beneficial in only one of the
two diseases. Our analysis of the co-expression of genes at
these loci suggests IL-17/TNFα and JAK–STAT signaling to
be particularly important mechanisms for the psoriasis/MS
comorbidity.
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We evaluated multiple different approaches for
TDMA: inverse weighted meta-analysis,62 typically used
for single-trait GWAS, can favor loci that are dominated
by one or the other trait, whereas equally weighted
TDMA avoids this bias; however, it does not fully take
advantage of the greater accuracy provided by larger stud-
ies; we also applied approximate conditional analysis
(GCTA-COJO). It is reassuring that most of the loci were
found by all three approaches; however, the loci from our
equally weighted TDMA all had evidence of colocalization
(through COLOC and SuSiE), whereas not all of the
additional loci from the other approaches did. This does
not rule out these loci from affecting the same genes and
pathways in psoriasis and MS, but it suggests they may
have different causal variants that could affect these path-
ways in different ways (ie, pleiotropy). We addressed
potential pleiotropy in MR by removing any outliers
detected by MR-PRESSO and using five other techniques
that test the assumptions of MR. Furthermore, by apply-
ing multivariable analysis in addition to the traditional
univariable approach, we controlled for the effect of con-
founding factors.

The TDMA loci we identified are enriched in
H3K27ac active enhancer marks for B-cell centroblasts,
both compared with the rest of the genome and with the
psoriasis/MS-specific loci. Although the role of B cells has
been elucidated in MS,1 they have been less well studied
in psoriasis, potentially because they are detected in
smaller numbers than T cells in lesional skin.81 Neverthe-
less, regulatory B-cell involvement in responses to the
phosphodiesterase 4 inhibitor, apremilast, has recently
been reported,82 and they are able to suppress IL-
23-mediated inflammation.83 Previous research showed
tonsils from psoriasis patients had a lower germinal center
to marginal zone area ratio,84 and germinal center affinity
maturation plays an important role in MS.85 B-cell activa-
tion is believed to be enhanced by neutrophil extracellular
traps in MS,86 as well as in lupus.87 Although neutrophil
extracellular traps have been found to promote psoriatic
inflammation, particularly through Th17,29,88 it has yet to
be investigated whether they assist B-cell maturation in a
similar way to other diseases. Biological effects of genetic
signals are challenging to identify, and require mechanistic
study; for example, through multiomic analysis. In
Table 2, we show which genes have eQTL support in two
large datasets (eQTLGen89 and GTEx90), finding the lead
marker of 80% of the loci to be an eQTL; however, fur-
ther work is required to pinpoint and validate specific
gene targets.

The use of medical claims data can have limitations,
as they are primarily collected for billing purposes rather
than research. We also did not have access to quantitative

data on obesity, smoking, and alcohol use, and so used
ICD-9/10 codes for these covariates instead. It is conceiv-
able that this information would only be recorded if the
physician considers these details to be relevant to the
patient’s health; for example, ICD codes reflect AUD,
rather than the number of drinks consumed, and only
16% of patients were indicated as obese, whereas other
studies suggest the proportion may be almost twice as high
in the USA.91 The overall consistency with genetic and
MR results was reassuring. However, psoriatic arthritis
occurs in up to 30% of psoriasis patients,92 and can some-
times be misdiagnosed as RA. This could explain the
strong effect sizes observed for RA in epidemiology, and
lack of significance in MR, in which patients were assessed
by rheumatologists. A recent survey93 found the ICD-
9/10 codes for MS have up to 92.4% sensitivity and
92.6% specificity, whereas for psoriasis, 81% of patients
who have an ICD-10 code had a confirmed diagnosis,94

with 88% sensitivity for ICD-9 codes.95 However, ICD
codes can still be inaccurate, especially for diseases such as
MS that have variable symptoms, and future work will
focus on developing and applying more rigorous case defi-
nitions; for example, based on prescriptions for disease-
modifying therapies, or multiple visits to relevant special-
ists (as is recorded in Optum’s deidentified Clinformatics®

Data Mart60).
These limitations notwithstanding, the present study

provides genetic and epidemiological evidence for similar-
ity and the causal relationship between MS and psoriasis
immunomes, while identifying important differences
between these two complex diseases that should help
guide future research.
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