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Abstract Seventy years ago, Hodgkin and Huxley published the first mathematical model to
describe action potential generation, laying the foundation for modern computational neuro-
science. Since then, the field has evolved enormously, with studies spanning from basic neuro-
science to clinical applications for neuromodulation. Computer models of neuromodulation

L. Liang, A. Damiani and M. D. Brocco are joint first authors.
S. F. Lempka and E. Pirondini are joint senior authors.

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society. DOI: 10.1113/JP282884

https://orcid.org/0000-0002-8078-3951
https://doi.org/10.1113/JP282884#support-information-section


3104 L. Liang and others J Physiol 601.15

have evolved in complexity and personalization, advancing clinical practice and novel neuro-
stimulation therapies, such as spinal cord stimulation. Spinal cord stimulation is a therapy
widely used to treat chronic pain, with rapidly expanding indications, such as restoring motor
function. In general, simulations contributed dramatically to improve lead designs, stimulation
configurations, waveform parameters and programming procedures and provided insight
into potential mechanisms of action of electrical stimulation. Although the implementation
of neural models are relentlessly increasing in number and complexity, it is reasonable to
ask whether this observed increase in complexity is necessary for improved accuracy and,
ultimately, for clinical efficacy. With this aim, we performed a systematic literature review and a
qualitative meta-synthesis of the evolution of computational models, with a focus on complexity,
personalization and the use of medical imaging to capture realistic anatomy. Our review showed
that increased model complexity and personalization improved both mechanistic and trans-
lational studies. More specifically, the use of medical imaging enabled the development of
patient-specific models that can help to transform clinical practice in spinal cord stimulation.
Finally, we combined our results to provide clear guidelines for standardization and expansion of
computational models for spinal cord stimulation.
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Abstract figure legend Evolution of computational models of spinal cord stimulation. The use of computational models
of spinal cord stimulation is expanding rapidly in the field of neuromodulation. Here, we evaluated the evolution of such
models from the 1980s to 2022. Thanks to the advancement of medical images and computational tools, models have
evolved from two-dimensional (2D) models (left) to three-dimensional (3D) models with limited realism and tissue
compartments (middle), then to magnetic resonance imaging (MRI)-based patient-specific models with high realism
and complex tissue compartments (right). Model figures were adapted from Capogrosso et al. (2013), Coburn (1980),
and Rowald et al. (2022), with permission. Abbreviations: csf, cerebrospinal fluid; edf, epidural fat; gm, greymatter; root,
roots and rootlets; wm, white matter.

Introduction

Since Hodgkin and Huxley published their numerical
solutions to the set of partial differential equations
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describing the generation of membrane voltages in axons
(Hodgkin & Huxley, 1952), computer models in neuro-
science have bloomed into a myriad of applications.
In addition to theoretical understanding of the neural
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code, computer models have found fertile ground in
translational studies of neurostimulation (Capogrosso
& Lempka, 2020). These clinically oriented applications
stemmed from the need to understand the mechanisms
underlying the observed experimental evidence that
electrical stimulation of axons in the dorsal columns
reduced chronic pain in patients with refractory pain
syndrome. This technology, known as spinal cord
stimulation (SCS), is now the most widely adopted
neurostimulation therapy, and computer simulations of
SCS have paved the way for the use of computational tools
in other neurostimulation technologies, such as nerve and
deep brain stimulation (DBS) therapies (Capogrosso &
Lempka, 2020). Here, we review the historical progression
of computer models for SCS and analyse the introduction
of modern imaging techniques and their impact on
current and future clinical applications.

Spinal cord stimulation. Spinal cord stimulation is a
US Food and Drug Administration-approved therapy
for treating refractory pain, with >50,000 implants per
year (Sdrulla et al., 2018). SCS for pain management
dates back to 1967 (Shealy et al., 1967; Wall & Sweet,
1967). It was originally developed on the premise of the
gate-control theory of pain (Melzack & Wall, 1965), in
which Melzack and Wall theorized that the activation of
cutaneous fibres can interfere with nociceptive signalling
through inhibitory interneurons that ‘gate’ pain trans-
mission from the spinal cord to the brain. This hypothesis
led to the suggestion that electrical stimulation of the
dorsal columns, which carry low-threshold cutaneous
afferents, would drive activity in spinal inhibitory inter-
neurons, which would, in turn, attenuate nociceptive
signalling and thereby prevent nociceptive output from
the spinal cord to the brain (Lempka & Patil, 2018;
Zhang et al., 2014). To this end, electrodes were placed
in the dorsal epidural space to stimulate sensory afferents
in the dorsal columns. Aided by the relatively low risk
of the surgical procedure, SCS has since been used in
investigational studies to explore a variety of clinical
applications, such as improvement of motor control and
autonomic functions in a variety of disorders, such as
multiple sclerosis, stroke and spinal cord injury (Barola
et al., 1995; Barolat-Romana et al., 1985; Cioni & Meglio,
1987; Meglio et al., 1989; Pirondini et al., 2022; Powell
et al., 2022; Waltz & Andreesen, 1981).

Computational models of SCS. Computational models
of neurostimulation build on the concepts developed
by Hodgkin and Huxley to estimate how extracellular
application of electric potentials influences the neural
membrane voltage (Hodgkin&Huxley, 1952; Holsheimer,
1998). More specifically, three-dimensional (3D) volume
conductor models of the spinal cord geometry, which rely

on realistic anatomy that can be obtained by anatomical
measures and/or medical imaging (Fig. 1A), are used to
compute the extracellular potential. A numerical method,
such as the finite element method (FEM), can then be
used to calculate the potential distributions generated
within these complex anatomical structures (Coburn &
Sin, 1985) (Fig. 1B). Finally, extracellular potentials are
applied to Hodgkin–Huxley neural models (Hodgkin
& Huxley, 1952) to estimate the corresponding neural
response (Fig. 1C).

Why do we need computer models of SCS? In trans-
lational applications of SCS, in silico neural models
provide a platform for investigating mechanisms of
neurostimulation technologies and optimizing the
therapy in ways that would be difficult, time consuming
and expensive to perform experimentally (Capogrosso
& Lempka, 2020). For example, computer models can
be used to restrict the parameter space to be tested
experimentally. This accelerates development and
mitigates safety and ethical concerns by reducing the
number of preclinical subjects and clinical iterations of
initial experimental assays.
With regard to SCS for chronic pain management,

computational models have provided insights into which
neural pathways primarily respond to SCS, supporting
the gate-control mechanism of the therapy (Holsheimer,
2002). These computational models have also led to
dramatic improvements in lead designs, stimulation
configurations, waveform parameters and programming
procedures (Lempka & Patil, 2018). For instance, they
have been used to develop or validate new lead designs
(Kent et al., 2014). Computational models are also used in
commercial clinical programming systems to determine
stimulation configurations and select parameters that
focus the stimulation at a desired location (selected by the
user) (Veizi et al., 2017). Finally, computational network
models have been used to optimize the temporal patterns
of SCSwaveforms (Gilbert et al., 2022). Yet, inmany cases,
these approaches remain to be validated clinically.
The knowledge gained from computational models

of SCS for pain has permitted a rapid growth of SCS
models for other applications. In experiments using
SCS to improve locomotion, computational models
demonstrated that myelinated afferent fibres are the
primary targets of SCS, activating motoneurons and
other cells via synaptic pathways (Capogrosso et al.,
2013). These models also revealed that antidromic action
potentials elicited in primary sensory afferents by SCS
interfere with natural sensory feedback, which is crucial
for coordinated limb movements (Formento et al., 2018;
Moraud et al., 2016; Sadashivaiah et al., 2018; Zhang et al.,
2014). This issue was resolved by implementation of a
biomimetic burst stimulation protocol spatiotemporally

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
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Figure 1. Spinal cord stimulation computational modelling components
A, example of the morphology of human spinal cord segments and their general applications in SCS,
namely movement (movement restoration), pain (chronic pain treatment) and autonomic (autonomic

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
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restoration/restoration of lower urinary tract function). Differences in root angle and segment shape for each
spine area are highlighted with thick lines. B, steps for building the volume conductor model that can be used
to simulate the electromagnetic fields generated by SCS: (i) tissue contours are derived from anatomical sources
(i.e. measurements, atlas and/or medical images); (ii) these segmentations are then used for the three-dimensional
volume reconstruction; and (iii) proper conductivity values are assigned to each tissue, and a mesh is generated to
simulate electromagnetic field distributions. C, potential components for the biophysical neuron model. Neuron
fibre activation can be simulated based on assigned fibre diameter, neuron population or neural trajectory, which,
with parameter tuning based on experimental and/or clinical data, can be translated into experimental and/or
clinical predictions, such as perception and discomfort thresholds, and measurements of motor restoration. Sub-
panels in C include figures modified from Greiner et al. (2021) and de Freitas et al. (2022), with permission.

tuned to activate different spinal cord locations selectively
with precise temporal resolution. This protocol was first
tested through computer simulations (Formento et al.,
2018; Moraud et al., 2016), followed by experiments in
rats (Wenger et al., 2016) andmonkeys (Capogrosso et al.,
2016) and, later, in humans (Wagner et al., 2018).

Unknowns, challenges and open questions. Over-
all, the previous examples highlight the importance
of computational simulations in the translational
pathway to preclinical tests and, finally, to successful
clinical implementation. Computational models
support and expedite the development, optimization
and implementation of innovative neurostimulation
therapies. Yet, there are still important questions to
be addressed. First, there is no consensus on which
anatomical structures are essential for accurate volume
conductor models and what might be the most proper
imaging techniques and protocols to capture these
structures. Second, there is still controversy on how
several factors influence model accuracy, such as the
presence and characteristics of a biophysical neuron
model, the applied physical material properties (e.g.
electrical conductivity) and the necessary levels of model
complexity and personalization. Finally, the best methods
to standardize model validation and clinical outcome
metrics are not established, resulting in a dramatic lack of
defined guidelines that, consequently, limits the effective
use of computational models in clinical applications. To
answer these questions, we have reviewed the evolution
of computer models of SCS since their introduction in
the early 1980s (Coburn, 1980; Sin & Coburn, 1983).
The goals of this review were to identify overall trends,
including both established and emerging indications, and
to provide recommendations to standardize and expand
the use of computational models to advance the field of
SCS for various clinical applications.

Methods

Inclusion criteria and study search. The papers
included in the present review had to comply with
the following three essential criteria: (i) they had to

include volume conductor models of the spinal cord; (ii)
the computational model was used to simulate the field(s)
generated by electrical SCS (epidural, intradural or trans-
cutaneous); and (iii) the paper was available in English.
The search for relevant papers was initially conducted
in PubMed (https://pubmed.ncbi.nlm.nih.gov/; 4 March
2022) using the keywords defined in Table 1, by means of
Boolean operators, nesting and truncation.

Coding of variables. For each included paper, we
extracted variables to categorize distinct aspects of
the computational models. We divided these aspects into
objective and derived variables. On an important note,
several methods can be used to solve Maxwell’s equations
and calculate the applied potentials in the complex
anatomical geometries. However, because the FEM is by
far the most common approach, we will generally refer to
these methods as FEMmodels.
Objective variables.
� Year of publication of the paper.
� Species on which the FEM model was based: human,
monkey, dog, cat or rodent.

� SCS technique: epidural, intradural or transcutaneous.
� Spine level coverage: cervical, thoracic,
lumbar/lumbosacral or whole spinal cord.

� Application for which the FEM model was used:
pain, movement, autonomic function or biophysical.
‘Biophysical’ meant that the model was not used for
a specific application, but with the goal of improving
the general development of computational models
(e.g. comparing the dermatomal zone selectivity of
single current source and multiple current source
systems within the dorsal column (Min et al., 2014)).

� The main purpose for which the model was created:
to optimize stimulation parameters, optimize lead
position, optimize lead design, investigate mech-
anism(s) of action and formodelling. ‘Modelling’ refers
to studies that developed and released the model
without a specific purpose. When there was more than
one purpose in the same paper, we assigned the most
relevant one.

� Anatomical sources used to create the FEM model:
measure/atlas based, magnetic resonance imaging

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
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Table 1. Keyword search table and results

Search term
Search results for

PubMed (4 March 2022) Comment

“spinal cord stimulation” AND (“finite element” OR “computation∗”) NOT “peripheral” 72 No filter
“spinal cord” AND “stimulat∗” AND “computation∗” AND model 128 No filter
“spinal cord” AND “stimulat∗” AND “finite element” AND model 74 No filter
“spinal cord” AND “stimulat∗” AND simulation AND model 334 No filter
Total number of publications 608 –
Total number of publications excluding duplicates 431 –

(MRI) based or MRI/measure based. ‘Measure/atlas
based’ refers either to using basic geometric contours
of shapes and sizes measured from dissections or taken
from the literature or to using an atlas (i.e. by extrusion
of histological cross-sectional images). ‘MRI based’
refers to using three-dimensional (3D) reconstructions
of tissue structures through MRI segmentations.
Finally, the ‘MRI/measure-based’ category refers to
using a combination of measures and MRI-based
models. It is important to note that we used the
term ‘MRI’ to refer to medical imaging (i.e. MRI
and/or computed tomography (CT)). This choice
was made because only n = 4 articles (Greiner et al.,
2021; Lempka et al., 2020; Song et al., 2015; Zareen
et al., 2017) reported the use of CT as an anatomical
source for specific compartments (bone and electrode).
Furthermore, to date, dura mater and root/rootlet
tissues have not been created in any FEM using MRI;
therefore, we did not consider these structures in the
classification of anatomical sources.

� Validation: no validation, qualitative validation or
quantitative validation. We assigned a study ‘no
validation’ if the main conclusions drawn from
the simulations were not validated against any
experiments. However, note that the model might
have been validated for other simulations in a different
publication. A ‘qualitative validation’ corresponded
to a comparison between simulated and experimental
results without direct comparison of numerical values.
A ‘quantitative validation’ involved direct comparison
of values, such as compound muscle action potential
amplitudes (Laakso et al., 2014). For studies with both
qualitative and quantitative validation, we placed them
in the quantitative validation group.

Derived variables. In addition to objective variables, we
assigned different scores to the models based on two
derived variables, namely personalization and complexity.
� Personalization: a variable that evaluated the extent to
which the FEM model was personalized for a specific
subject. We assigned a score of 0, 1 or 2. A score of
‘0’ meant that the model was not personalized. A score

of ‘1’ meant that the model was partly personalized
(e.g. variations in the dorsal cerebrospinal fluid (CSF)
thickness or a modification of tissue conductivity to
simulate spinal cord injury). A score of ‘2’ meant that
the model considered the realistic shapes and sizes of
each anatomical compartment for a specific subject.

� Complexity: we considered two levels of model
complexity: FEM model complexity and neuron
model complexity.

(a) FEM model complexity: a variable that evaluated
the complexity of the tissue volumes and
conductivities included in the FEM model. We
calculated the complexity score for each FEM
model considering the tissues that were included.
Precisely, we gave one point for each tissue type
that appeared in ≥8% of the papers (i.e. grey
matter, white matter, CSF, epidural fat, bone,
dura mater, vasculature, rootlets, intervertebral
discs, encapsulation tissue, muscle, skin and
surrounding layer/saline bath). For the other
tissues (e.g. cartilage and connective tissue), which
were represented in a minority of the papers,
we assigned one point if at least one of these
tissues was represented in the FEM model. The
maximum score was 11, and we discretized the
complexity score in three levels: 0 = (complexity
score ≤ 4); 1 = (5 ≤ complexity score ≤ 7); and
2 = (complexity score ≥ 8).

(b) Neuron model complexity: a variable that
evaluated the complexity of the biophysical model
of the neural response to SCS. We calculated this
complexity by summing the complexity scores
assigned for individual components of the model:
axon ion channels and axon cable structure. We
assigned the axonal ion channels a score of 0 (no
ion channels), 1 or 2. A score of ‘1’ meant that the
ionic dynamics were derived from another species,
whereas a score of ‘2’meant that the ionic dynamics
were matched to the species for which SCS was
being modelled. We assigned the axonal cable
structure a score of 1, 2, 3 or 4. We applied a score
of: ‘1’ to models that did not represent the axon as

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
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an electrical circuit, but instead used an activating
function (i.e. second-order spatial derivative of
the applied electric potential) to approximate
neural activation (Rattay et al., 2000); ‘2’ to models
that represented axons as simple, unmyelinated
cylinders and to models that represented axons
as nodes of Ranvier separated by internodes
with infinitely resistive myelin; ‘3’ to models that
represented axons as nodes of Ranvier connected
by myelinated internodes with finite impedance;
and ‘4’ tomodels that used a double-cable structure
to model axons with finite-impedance myelin and
with a conductive pathway in the periaxonal
region between the axolemma and myelin sheath.
We added additional points (i.e. 1 point) if studies
incorporated: (i) small-diameter collateralization
of the axons; (ii) more than one fibre population;
(iii) different fibre diameters; (iv) different axon
locations; and/or (v) varied fibre position and/or
diameter to maximize biological realism (e.g.
matching fibre densities to histological data,
stochastically drawing fibre diameters from an
appropriately parametrized distribution). Overall,
this scoring system allowed for a maximum of
11 points, and we discretized the complexity score
in three levels: 0 = (complexity score ≤ 4); 1 =
(5 ≤ complexity score ≤ 7); and 2 = (complexity
score ≥ 8).

Data analysis. Initially, we summarized the proportional
distribution of studies within each category. Next, we
focused our analysis on the temporal evolution of
individual variables. Finally, we analysed the relationships
between the different variables. It is important to note
that when analysing anatomical sources for different
applications and purposes, we considered only studies
published after 2010 (i.e. the year in which MRI was
introduced into the construction of FEMmodels). Finally,
we summarized key findings of human studies that
used patient-specific models, which might guide future
advancement of these tools.

Results

Study selection. Our search combinations resulted in a
total of 431 unique papers on 4 March 2022 (Fig. 2).
After an appraisal of the abstracts, 352 manuscripts were
excluded owing to the absence of a volume conductor
model of the spinal cord or owing to a focus on
unrelated simulations, such as mechanical properties of
the spinal cord. Given that computational modelling of
electrical stimulation is highly interdisciplinary, for the 79
remaining papers, we examined their references to avoid
oversight of relevant papers that were not in the PubMed
database. As a result of this step, we added 17 papers.
Of these 96 papers, nine papers were review papers,

Figure 2. Flow diagram of study
selection results

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
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perspectives or book chapters and were excluded from
our review. Therefore, we considered a total of 87 papers
in our analyses. It should be noted that these 87 papers
included only ∼41 unique spinal cord models (for details,
see Tables S1–S3). Some of the models were reused in
different papers with smallmodifications. Given that these
modifications were made to simulate specific conditions
or unique applications, we considered each study as a new
model in our analysis.

The evolution of FEM models for SCS. Computational
models of SCS were first developed in the early
1980s (Coburn, 1980; Sin & Coburn, 1983). Before
approximately the year 2000, the majority of models
were not developed for a specific clinical application, and

studies focused mainly on understanding technical
aspects of building a model and factors affecting
simulation results. Thereafter, the focus evolved into
more specific applications. Computer models for pain
management have been and continue to be the most
common application (43%; Fig. 3), and movement and
autonomic function applications emerged only around
the 2010s (Fig. 4A). Therefore, not surprisingly, most
of the models (53%) focused on the thoracic spinal cord,
the most common SCS target to treat lower back and
leg pain. For all existing models, the most common
stimulation technique was epidural stimulation (76%),
and most of the computational efforts were used to model
the human spinal cord (81%), where clinical interest is
more abundant. A considerable portion of existingmodels

Figure 3. Pie charts of objective- and derived-variable distributions amongst the studies included in our
analysis

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
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Figure 4. Spinal cord stimulation model applications and purposes
A, the plot shows the different modelling studies based on their corresponding application (abscissa) and
publication year (ordinate). The pie charts show the percentages of the anatomical sources used to create models
for each application. For this analysis, we considered only models published after the introduction of MRI to
SCS models in 2010. B, bubble charts illustrating the distributions of FEM and biophysical complexity scores for
different applications. The ‘autonomic’ category was not included owing to the low number of studies (n = 3).
Thick outlines indicate the most frequent complexity score for each application. C, the plot shows the different
modelling studies based on their corresponding purpose (abscissa) and publication year (ordinate). The pie charts
show the percentages of the anatomical sources used to create the models for each purpose. For this analysis, we
considered only models published after the introduction of MRI to SCS models in 2010. D, bubble charts illustrating
the distributions of FEM and biophysical complexity scores for different purposes. Thick outlines indicate the most
frequent complexity score for each purpose.

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
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sought to analyse and optimize the stimulation parameters
(40%). Only in the last decade (since 2010), more applied
studies have been complemented with the interest in
understanding the underlying mechanisms of action
of SCS (Fig. 4C). Not surprisingly, this shift coincides
strikingly well with the introduction of computational
models of SCS in preclinical animal models and might
be driven by the introduction of new SCS technologies,
such as kilohertz-frequency (Kapural et al., 2015; Van
Buyten et al., 2013) and burst SCS (Deer et al., 2018),
which were proposed to improve the clinical efficacy of
SCS for pain relief relative to conventional low-frequency
(i.e. 40–60 Hz) stimulation. Despite the increased use of
SCS models in both clinical and preclinical simulations,
we found that more than half (58%) of the published
simulation results were not validated experimentally,
highlighting the lack of standardized guidelines for the
effective use of these models.

The evolution of personalization and complexity of
SCS models. Since the earliest computational models of
SCS, investigators have considered the possible effects

of anatomical variations (Cadotte et al., 2015; Delmotte
et al., 2015; Holsheimer et al., 1991; Toossi et al., 2021)
on the electric potential distributions generated during
SCS and the corresponding neural activation. However,
most FEM models to date incorporate no personalization
(69%; Fig. 3). Only a small percentage (6%) of studies
used models with a high degree of personalization (i.e.
personalization score of 2), and all of these studies were
published recently (2014 or later; Figs 3 and 5).
We identified an analogous pattern with regard to

FEM model complexity. In the early stages, models
were two-dimensional (2D) and contained limited spinal
cord compartments. Probably thanks to more powerful
computers, more efficient algorithms and standardized
multiphysics simulation software, FEM models quickly
expanded to 3D and used a medium level of complexity
(i.e. complexity score of 1; 60%). However, only 33%
of the models reached the highest complexity level (i.e.
complexity score of 2). This increase in complexity might
also be explained by the inclusion of the spinal roots
and rootlet structures in 16 papers (for details, see Tables
S1–S3) since 2014. Although some earlymodelling studies

Figure 5. Spinal cord stimulation model complexity and personalization
A–C, FEM model complexity (A), biophysical model complexity (B) and personalization (C) scores of SCS models
as a function of publication year. We have indicated the anatomical sources of the model and the corresponding
SCS technique by marker colour and shape, respectively. The pie charts in A and C indicate the corresponding
percentage of anatomical sources for each complexity and personalization score: 0 (bottom), 1 (middle) and 2 (top).
For this analysis, we considered only models published after the introduction of MRI to SCS models in 2010. D,
bar plots representing the mode of complexity scores for the FEM and biophysical models for each personalization
level. E, bar plots representing, for each level of personalization, the percentage of papers with no validation, a
quantitative validation or a qualitative validation.

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
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of SCS for pain control included explicit representations
of the spinal roots (Coburn, 1980; Coburn & Sin, 1985),
recent increased attention on spinal root volume can be
attributed, in part, to increased computational power that
has allowed these roots to be included in complex 3D
models. Multiple studies have demonstrated that dorsal
root fibres are crucial stimulation targets formotor control
(Capogrosso et al., 2013; Greiner et al., 2021), which
highlights that the inclusion of spinal roots in the FEM
model is especially important in SCS for motor control.

An equivalent analysis on the model complexity can
be applied to the increase in realism over time for the
biophysical neuron models. These neural components
are necessary to quantify the effect of SCS-produced
potential on neural behaviour directly. Coburn was the
first to model the neural response to SCS directly and
compared the predicted activation thresholds of dorsal
column, dorsal rootlet and corticospinal tract fibres
in response to epidural SCS with clinical observations
(Coburn & Sin, 1985). This seminal paper applied
the McNeal model of myelinated fibres, which consists
of nodes of Ranvier with frog-derived ion dynamics
connected by infinitely resistive myelinated internodes
(Frankenhaeuser & Huxley, 1964; McNeal, 1976). After
this foundational model, many studies included explicit
representations of neurons (74%), with a general trend
of increased biophysical complexity over time (Fig. 5B).
Indeed, only ∼17% of biophysical models published
before 2010 had high complexity, whereas 59% of those
published since 2010 achieved the highest complexity
score.

This increase in complexity is attributable both to an
increase in the sophistication of components included
in the models (e.g. fibre diameters and ion channel
dynamics) and to the introduction of new levels of detail
(e.g. double-cable myelin model) that provide a more
complete or accurate assessment of the neural response
(Richardson et al., 2000; Struijk et al., 1992; Wesselink
et al., 1999). These developments have followed important
findings from both studies that were specific to SCS and
those for general neurostimulation purposes.

When comparing model complexity and
personalization, we found that, despite the limited
number of papers with high personalization (n = 5),
which prohibited statistical analysis, there is a clear
trend showing that higher levels of personalization
are paralleled by higher levels of complexity in both
the FEM and biophysical models (Fig. 5D). Inter-
estingly, studies using highly personalized models were
more likely to perform a quantitative validation of the
simulation results, with 100% of the most personalized
models having a quantitative validation (Fig. 5E). Of
the 23 studies with quantitative validation, 18 were
published in the last decade (since 2012). These results
show that researchers are placing an increased emphasis

on model validation, and with enough personalization
and complexity, computer models have the capability to
make quantitative predictions that might inform clinical
practice directly.

Increased complexity shaped the evolution of model
applications and purposes. The personalization
level distributions were similar across applications
and purposes, whereas FEM and biophysical model
complexity scores varied across different model
applications (Fig. 4B), with movement-application
models generally having a higher complexity. This
higher complexity for movement-application models
might be explained by their well-defined neural targets
and necessary stimulation precision. Likewise, it is
unsurprising that biophysical-application models, which
lack a defined functional goal, have the lowest aggregate
complexity scores. Moreover, this discrepancy might be
explained, in part, by the fact that models were initially
applied for different applications in different decades, thus
reflecting the general trend for complexity to increase over
time (Figs 4A and 5A and B).
Additionally, FEM and biophysical complexity scores

also differed between study purposes (Fig. 4D). Inter-
estingly, both mechanism and lead design had high
complexity for both FEMandbiophysicalmodels, whereas
modelling-purpose and stimulation-parameter studies
had medium complexity. Interestingly, for lead position,
the complexity score was higher for biophysical models
(level 3) than for FEMmodels (level 2).

Introduction of medical imaging influenced the
complexity and personalization of computer models for
SCS. Until recently (2010s), the majority of the models
were measure based (71%). In the early 2010s, magnetic
resonance images obtained with different sequences and
microCT scans were introduced, revolutionizing the way
that SCS FEM models were created (Figs 3 and 4). For
humans, the most common sequences have been SPACE
fast turbo spin echo 3D (Christ et al., 2010) and T2 SPACE
with ZOOMit (Rowald et al., 2022), whereas in animals,
the most common have been TurboRARE T2 weighted
pulse sequence (Zareen et al., 2017).
Despite the limited use of this technology, MRI-based

models shaped applications and purposes and allowed
the use of more complex and personalized models.
Indeed, all models with the highest personalization
level used MRI-based identification of the anatomical
structures, and those with medium personalization used
medical imaging in the majority of the cases (58%).
The FEM complexity showed a similar trend, with 65%
of the models with high complexity deploying MRI
information.
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Interestingly, we found that MRI-based models are
used more commonly in the movement application (60%
for movement vs. 28% for pain) and have recently
expanded to the biophysical application (Fig. 4A). This
trend suggests that, despite being the first and one of
the main fields of application, the pain community is
not taking full advantage of the innovations introduced
by the use of MRI. Several reasons could justify this
discrepancy. Rootlet fibres are often not represented
explicitly in FEM or biophysical models of SCS for pain,
because activation of the thoracic roots and rootlets is
believed to be associated with discomfort, and the axons
within the dorsal columns are the main therapeutic target.
Furthermore, the most common implantation levels for
SCS for pain are the lower thoracic spine levels. At these
levels, it is not possible to visualize these rootlet structures.
Furthermore, the anatomy of the thoracic spinal cord is
also less variable across segments in comparison to the
cervical and lumbosacral cord (Frostell et al., 2016; Ko
et al., 2004) (Fig. 1A). Therefore, precise cord and rootlet
shapes and dimensions are less likely to affect simulation
results in the thoracic cord.
Purposes and MRI-based models had a similar

evolution. Indeed, we found that from the outset (around
early 2010s), mechanisms of SCS were studied mostly
using MRI-based models, showing that more recent fields
took full advantage of this new technology (Fig. 4C). Also,
for lead position and design, the usage of MRI has been
increasing over the years. Stimulation-parameter studies,
instead, are still based mostly on measure-based models
(Fig. 4C).
Finally, it appears that transcutaneous SCSmodels were

mostly MRI based (Fig. 4A). This could be because of
the necessity of capturing anatomical structure outside the
bone, but also by the usage of the virtual family model
(Christ et al., 2010), which is MRI based and is often
reused across studies. There is, instead, nothing similar for
epidural and subdural SCS.

Discussion

The rapidity at which neuroengineering and neuroscience
are expanding results in a continuous demand for new
tools capable of optimizing and refining the interactions
with the nervous system, although the role of many
structures (e.g. interneurons and fibres) is still unknown
and therefore not described by computer models. This
lack of knowledge about target systems represents a
crucial obstacle for the development of more effective
SCS therapies. In parallel, commercial systems continue
to become more sophisticated, allowing an increased
variety of waveform parameters, higher electrode counts
and non-standardized configurations that represent an
increasing variety of possibilities to interact with the
system. These technical improvements exponentially

increase the space of therapeutic parameters, generating a
crucial need to find optimal parameter subspaces that can
be tackled by accurate, realistic and highly personalized
computational models. These virtual frameworks would
successfully meet the need to explore these large
parameter spaces efficiently and effectively, which would
be infeasible experimentally. Finally, the increase of
model personalization would improve the search for
optimal stimulation parameters, lead configurations and
lead position in patient-specific scenarios, hence over-
coming current standardized practices that might select
suboptimal therapy parameters. This approach could
revolutionize clinical care and patient programming in
SCS-based therapies.
In the present study, we classified manuscripts

describing computer models of SCS to reveal trends
in the evolution of applications for SCS models, realism
in model components, complexity, personalization and
the technological advances and clinical needs that drove
these evolutions. In this section, we discuss our main
findings, with additional recommendations to standardize
computational models of SCS, and we provide suggestions
to improve the quality of these computational approaches.

The importance of increased complexity. As stated
earlier, computational models can simply include a
volume conductor model to simulate the electromagnetic
fields generated by SCS or can incorporate a biophysical
neuron model to understand ionic current flows in
individual neurons (Chakraborty et al., 2018). It has
been proposed that, given the complex anatomical
structure and the variety of factors that can affect neural
activation (e.g. branch points and axonal bends), the
electric field will best predict neural polarization and
neuromodulation, in contrast to the activation function
(i.e. the second-order spatial derivative of the electric
potential). This approach has been formalized as the
‘quasi-uniform assumption’ (Bikson et al., 2013, 2015;
Khadka et al., 2019) and might serve as a useful and
efficient heuristic for predicting which gross anatomical
regions are likely to be affected more strongly by
the stimulation. Thus, this approach is well suited for
applications in which precise identification of which
neurons are being activated is not the primary objective,
such as studies investigating new electrode configurations
or the effects of anatomical electrical properties on
current flow. In contrast, for studies investigating precise
biophysical activation profiles or evaluating new temporal
stimulation patterns, a biophysical model is better able to
account for the subtle effects of ion channel dynamics and
neural morphology on activation properties. Finally, for
putative mechanisms of action other than direct electrical
stimulation, biophysical neuronal modelling might be
unnecessary, and instead, multiphysics simulations might
be more appropriate. For instance, modelling studies have
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investigated the combined effects of joule heating (owing
to applied electric currents) and bioheat transfer as a
potential therapeutic mechanism for kilohertz-frequency
SCS (Zannou et al., 2019, 2021).

Despite the quasi-uniform assumption, there is a clear
trend of increasing complexity over time in both the
FEM and biophysical models (Fig. 5A and B). However,
a more complex model does not necessarily imply a better
model, and questions naturally arise regarding the level of
complexity that is necessary and/or sufficient to develop a
useful model. Regarding the FEM model, the increase in
complexity was possible, in part, because of the use ofMRI
techniques to capture gross anatomical structures, such as
the spinal roots that are the neural target in the movement
field. As discussed by Capogrosso and Lempka (2020),
inclusion of root volumes can significantly shift fibre
activation distribution and threshold, and thus affect the
direct clinical applicability of simulated results. However,
only three studies considered realistic representations
of roots and rootlets that followed trajectories derived
from anatomical measurements (Greiner et al., 2021;
Khadka et al., 2020; Rowald et al., 2022) and implemented
curvilinear anisotropic conductivities (Greiner et al.,
2021; Rowald et al., 2022).

Regarding the biophysical model, we considered
several factors when scoring complexity. We believe
that including several relevant neuronal populations
(e.g. both dorsal column and dorsal rootlet fibres to
compare on/off-target effects) and varying the axonal
diameter and position clearly help to improve the trans-
latability of model predictions. Furthermore, studies
have clearly demonstrated the importance of using
species-appropriate ion channels (Wesselink et al., 1999)
and including branch points (Struijk et al., 1992) in
biophysical models of SCS. For each of these variables,
maximizing their complexity is not strictly necessary
to produce a useful model, because all models require
simplifications and abstractions. However, we feel that
it is good practice to consider each of these variables
thoughtfully, in order to provide a more complete
and realistic prediction of the neural response, and
accounting for these variables in the models is typically
feasible without an unreasonable increase in effort or
computational resources.

In contrast, the necessary (and sufficient) complexity
to model the axon geometry, and specifically the inter-
node, is more controversial and depends largely on the
study. Compelling evidence demonstrates the role of
submyelin conductance in axonal behaviour and the
value of representing this current pathway to improve
model predictions of axonal behaviour relative to
single-cable models (Cohen et al., 2020; Richardson
et al., 2000). In a direct comparison between models
with infinite-impedance myelin, finite-impedance myelin
and a double-layer myelinated axon, Richardson et al.

(2000) demonstrated that all three models could produce
reasonable results in line with experimental data and that
all models were sensitive to parameter choices. However,
they found that only the double-cable axon representation
could respond faithfully to pulse trains at frequencies of
≥25Hz, as is typical in SCS. Thus, for studies investigating
the response to sequential stimuli (rather than activation
by a single pulse), a double-layer axon structure is the
appropriate model. For studies considering a single
stimulus pulse, using a simplified representation can be
sufficient to produce a reasonably accurate prediction
of the neural response and will reduce the number
of parameters and the corresponding computational
complexity. Additionally, simplified approaches can prove
valuable and sufficient in situations in which reduced
accuracy is acceptable for the accompanying gains in
efficiency. For instance, these simplified models could
provide a useful heuristic in producing real-time pre-
dictions of the neural response to various stimulation
configurations while programming devices in the clinic.
Looking forward, significant model improvements

remain attainable by generating high-quality experimental
data to parameterize biophysical models. The gold
standard remains the McIntyre, Richardson and Grill
(MRG) model (or derivatives thereof) of the spinal motor
axon that was developed two decades ago (Richardson
et al., 2000). Promising developments, such as adding
additional channel conductances (e.g. active submyelin
conductances), have produced model behaviours that
better match recordings from human sensory nerve fibres
that are highly relevant when modelling the dorsal spinal
cord for SCS applications (Gaines et al., 2018). Future
work advancing these ideas, in addition to investigating
the local properties in different regions of the axon (e.g. the
axon terminal), will further enhance our ability to model
the neural response to SCS.

The importance of patient-specific models to improve,
standardize and expand SCS. Although canonical
models are still invaluable to understand the science of
SCS and to improve the technical design of SCS systems,
patient-specificmodels are essential to describe the axonal
response to SCS quantitatively and to program effective
stimulation parameters for each patient. Despite the small
number of studies using patient-specific models of SCS
(i.e. only five papers), their results parallel those of other
neurostimulation applications where personalization is
more established, namely DBS. Indeed, Frankemolle et al.
(2010) showed that computational models of DBS provide
an exemplary tool in support of clinical decisions. In their
study, patient-specific computational models helped
to determine stimulation parameters that provided
superior clinical efficacy relative to the parameters
selected through standard programming methods. In
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order to obtain similar results for SCS, research groups
performed in-depth studies focusing on FEM-model
variations of two main structures, CSF and bone, and
the corresponding changes in model predictions between
highly personalized models and generalized models.
Specifically, CSF thickness, which varies as a function
of spinal level and body position, and across patients
(He et al., 1994; Holsheimer et al., 1995), was shown
to have a large effect on current penetration within the
spinal cord during SCS. Specifically, an increment of the
current density of 54.6% was observed when halving the
CSF thickness (Sin & Coburn, 1983). The dorsal CSF
thickness was demonstrated to be positively correlated
with the activation threshold of dorsal column fibres
(Solanes et al., 2021) and perception threshold (which
increased by 50.8 and 26.6%, respectively, in the dorsal
columns and the dorsal root entry zone after an increase
of the dorsal CSF thickness of 1 mm) and negatively
correlated with paraesthesia coverage (He et al., 1994;
Holsheimer & Struijk, 1991; Holsheimer et al., 1995;
Lempka et al., 2015). The transverse size of the dural
sac, instead, was negatively correlated with the activation
of afferent fibres (Solanes et al., 2021). Likewise, the
shape of the spinal canal (Fernandes et al., 2021), size
of the spine structures (Fiocchi et al., 2016) and relative
position of the stimulating electrodes to the spine (Zander
et al., 2020) have strong effects on the electric field and
corresponding activation thresholds. Interestingly, after
spinal cord injury, orthopaedic interventions (Greenberg
& Arredondo, 2001) can change the spine structure
and scarring can change tissues conductivities, both of
which can affect the simulated electric field amplitude
(Hernández-Labrado et al., 2011) and therefore need
to be considered in computer simulations. In summary,
these studies provide evidence of the great variability in
outcome measures deriving from anatomical alterations,
suggesting that increased personalization could increase
model accuracy by accounting for multiple sources
of inter-patient variability. Additionally, these studies
suggest that CSF thickness, bone and thecal sac sizes
are essential structures for accurate volume conductor
models.
In this direction, Lempka et al. (2020) reported

that simulated sensory thresholds obtained with
patient-specific models were significantly more similar
to those measured clinically than those simulated with
canonicalmodels, which underestimate the dorsal column
fibre activation thresholds. Additionally, they quantified
the effect of pulse-width variation on sensory thresholds,
identifying a mean absolute percentage error of 8.9 and
44.9%, relative to the clinically measured value, for the
patient-specific and canonical models, respectively. Two
other studies found similar results, in which model pre-
dictions of perception and discomfort thresholds were
more consistent with the clinical measurements using

patient-specific models (specifically, the difference with
respect to clinically measured perception threshold was
6.4 and 171% for the patient-specific and canonical
models, respectively; Howell et al., 2014; Solanes
et al., 2021). Likewise, in the ‘movement’ application,
Rowald et al. (2022) developed highly personalized
patient-specific models for the purpose of restoring
locomotion. The authors performed an intraoperative
validation of the simulated lead position by monitoring
EMG recordings while delivering SCS. The predictions of
the patient-specific model corresponded to the optimal
electrode placement. Indeed, they reported that a 2 mm
displacement from the predicted location caused a drop
in selectivity. Interestingly, the use of a generic (i.e. not
personalized) model failed to reach the same accuracy.
Thanks to the optimized lead position, contact location
and stimulation configuration for each patient, Rowald
et al. (2022) demonstrated rapid restoration of trunk and
leg motor functions in patients with complete paralysis.
Finally, Veizi et al. (2017) used a canonical model with
patient-specific electrode locations and implemented
a patient-specific algorithm to select active electrode
combinations and current amplitudes at each electrode.
The personalized group demonstrated a∼1.5 times higher
responder rate (i.e. patients receiving ≥50% reduction in
pain) relative to a cohort in whom stimulation parameters
were selected through standard clinical methods.
Despite these extremely encouraging results, additional

work using patient-specific models is now necessary to
demonstrate the potential of these models to improve
clinical implementation of SCS. We believe that the
collection of papers reported here (see Tables S1, S2 and
S3) represents a valuable summary to guide the choice of
the best model designs in future work and boost the use of
patient-specific approaches. However, wider adoption of
SCS models impels the improvement and standardization
of MRI protocols that capture relevant structures, such as
CSF and spinal roots.
Finally, it is important to note that personalization

of DBS models was driven not only by the availability
of higher-resolution brain MRI but especially by needs
for precision in neurosurgical implantation procedures.
Instead, spinal lead implantations are currently performed
with limited image guidance and lower constraint on
positioning, far from the millimetre precision required to
target deep brain structures (Lempka&Patil, 2018). In this
context, it is important to note that complex personalized
computer models of SCS are now suggesting that new
neurosurgical approaches to SCS must be developed
to improve the accuracy and stability of implantation
procedures to be able to target specific microstructures,
such as the dorsal rootlets (Rowald et al., 2022). This
provides a powerful example of how neural simulations
can be ahead of clinical practice and influence the
standard of care.
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Medical imaging propelled personalization and
complexity. Importantly, all the studies (n = 5) with
patient-specific models deployed medical imaging for the
segmentation and the quantification of the anatomical
structures, suggesting that MRI is necessary to increase
the accuracy and the predictive power of these models.
Nevertheless, models can reach high complexity with both
measure-based and MRI-based models. However, since
MRI was introduced, the majority of the complex models
were also MRI based. This trend was particularly true
for the application of movement restoration. Although
this could be explained by a tendency of newer fields to
propel the use of newly available technologies, such as
MRI, this could also be attributable to the difficulty in
capturing structures at the thoracic level (i.e. the most
common implantation level of SCS to treat pain). New
advances in the field of MRI for lower cervical segments
(Cohen-Adad et al., 2021) could improve these images
and soon change this trend.

However, medical imaging has still not been exploited
maximally for development of computational models
of SCS. For instance, manuscripts often lack details
describing the specific acquisition sequences, thus
limiting the adaptability of these approaches. Additionally,
even the models with the most complex representations
of the spinal cord roots and rootlets did not model these
structures directly from medical images, but instead
combined anatomical measurements and mathematical
algorithms to calculate assumed non-overlapping
trajectories. Yet it is now well known that dorsal root
diameter, fibre angles and curvature when entering the
spinal cord can cause substantial differences in fibre
activation threshold (Coburn & Sin, 1985; Struijk et al.,
1993). Therefore, accurate images of these structures are
pivotal to increase the accuracy of current models. In
this direction, advanced acquisition sequences, such as
diffusion-weighted MRI (Vargas et al., 2010), provide a
means to capture high-resolution fibre trajectories and
could be used to characterize root and rootlet shapes
accurately.

Future of SCS models. Artificial intelligence-based
algorithms are another important breakthrough that
could be extremely advantageous for the development of
personalized in silico models of SCS. These approaches
have the potential to achieve automation of processes
that are currently performed manually. Specifically,
the exploitation of artificial intelligence in the auto-
mated tissue segmentation from medical images would
drastically reduce the time and effort required for the
creation of a patient-specific model, thus paving the
way to personalized precision medicine (Capogrosso &
Lempka, 2020; Gaweł et al., 2018; Perone et al., 2018).

Additionally, computational modelling of the neural
network effects of SCS is another area with significant

potential for development. In the related field of DBS,
many researchers have developed network-based models
incorporating the various basal ganglia populations to
investigate the stimulation-generated effects on neural
circuit behaviour (McIntyre &Hahn, 2010). Thesemodels
provide a more complete picture of the neural response
by incorporating interactions between relevant neural
populations. A similar approach has recently begun to
be adopted for SCS purposes, although the technique
remains immature. For pain applications, Zhang et al.
(2014) produced an SCS-based network model that
included primary afferent fibres and both excitatory
and inhibitory interneurons (allowing for subpopulations
with different firing characteristics) and measured the
output response of spinal neural networks for multiple
SCS stimulation frequencies. In a contrasting approach,
Arle et al. (2014) produced a comprehensive model,
with hundreds of thousands of neurons and milli-
ons of synaptic connections, to examine how SCS
can treat neuropathic and nociceptive pain. Although
such models are impressive in scale, they highlight the
difficulties, in addition to the importance of proper model
parameterization and constraining models based upon
high-quality experimental data. Impressive advancements
continue to bemade in delineating the neurochemical and
electrophysiological subpopulations of the dorsal horn
and their connections (e.g. Medlock et al., 2022), and
integration of these data with best-practice biophysical
modelling provides a promising path for understanding
how SCS affects the behaviour of spinal circuits.
Lastly, although recent studies have increasingly

included quantitative comparisons of simulations and
experimental results, the validation metrics used for these
comparisons have been inconsistent. Inconsistency in
these validation metrics creates difficulties in comparing
the predictions across multiple models and impedes
the development of clinically meaningful standards
for effective treatment predictions. For example, in
the field of motor function, studies have compared
the model-based predictions of large sensory fibre
activation thresholds with experimentally observed
motor thresholds (de Freitas et al., 2022) and response
latency (Capogrosso et al., 2013), simulated motoneuron
activation with specific muscle force (Wagner et al.,
2018) and simulated and measured compound muscle
action potential amplitudes (Laakso et al., 2014). When
using computational models to study SCS for pain,
validation metrics have been applied more consistently,
with most studies comparing simulated dorsal root and
dorsal column fibre activation threshold with measured
perception and discomfort thresholds (Arle et al., 2014;
Holsheimer et al., 1995; Howell et al., 2014; Lempka et al.,
2018, 2020; Rattay et al., 2000; Solanes et al., 2021; Struijk
et al., 1998). As the use of SCS continues to increase
and expand to new indications, it will be important to
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establish a standardized set of validation metrics to assist
implementation of simulation results in a clinical setting.
To conclude, we strongly believe that, by taking full

advantage of MRI techniques and artificial intelligence,
developing new circuit networks and increasing
computational power, we can develop realistic and
highly accurate virtual frameworks to understand
the mechanisms of SCS and develop optimal SCS
therapies and surgical strategies. With more complex
and personalized models and with standardized model
validation and clinical outcome metrics, we can bridge
the gap between simulations and patient care.
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