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Abstract:

Seventy years ago, Hodgkin and Huxley published the first mathematical model that described
action Wneration, laying the foundation for modern computational neuroscience.
Since then, the field has evolved enormously with studies spanning from basic neuroscience to
lation applications. Computer models for neuromodulation have evolved in

sonalization, advancing clinical practice and novel neurostimulation
therapigs, suglgasy spinal cord stimulation (SCS). SCS is a widely used therapy to treat chronic
pain wittgrapidly expanding indications, such as restoring motor function. In general,
simulatio tically contributed to improved lead designs, stimulation configurations,
waveformraram@ters, and programming procedures, as well as provided insight into potential
mechanis ion of electrical stimulation. However, while practical applications of neural
models are releatlessly increasing in number and complexity, it is reasonable to ask whether
this obser cfease in complexity is necessary for improved accuracy and ultimately clinical
efficacy. T i¥aim, we performed a systematic literature review with a qualitative meta-
synthesis lution of computational models, with a focus on complexity, personalization,
and the usmO

model comilexitf improved both mechanistic as well as translational studies. More specifically,

ical imaging to capture realistic anatomy. Our review showed that increased
it enabledffhe development of patient-specific models that can help transform clinical practice

in SCS. Fi combined our results to provide clear guidelines for standardization and
expansion utational models for SCS.

~

Evolution of computational models of spinal cord stimulation
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Abstra e legend: Evolution of computational models of spinal cord stimulation.
The use of co ational models of spinal cord stimulation is rapidly expanding in the field of neuromodulation.
Here, we evaluated the evolution of such models from the 1980s to 2022. Thanks to the advancement of medical
images and computational tools, models evolved from 2D models (left) to 3D models with limited realism and tissue
compartments (middle), then, to MRI-based patient specific models with high realism and complex tissue
compartments (right). Model figures from left to right were adapted from Coburn 1980, Capogrosso et al. 2013, and
Rowald et al. 2022, respectively, with permission. Abbreviation key: gm-gray matter, wm-white matter, csf-

cerebrospinal fluid, edf-epidural fat, root-roots and rootlets
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Introduction:

Since Hodgkin and Huxley published their numerical solutions to the set of partial differential
equatioWg the generation of membrane voltages in axons (Hodgkin & Huxley, 1952),
computer magdels in neuroscience have bloomed into a myriad of applications. In addition to
theoretica tanding of the neural code, computer models have found fertile ground in
translatio f neurostimulation (Capogrosso & Lempka, 2020). This clinically oriented
applicagiopgsieia@ed from the need to understand the mechanisms underlying the observed
experime§1 evidence that electrical stimulation of axons in the dorsal columns reduced

chronic p ients with refractory pain syndrome. This technology, known as spinal cord
stimulatiof”{S is now the most widely adopted neurostimulation therapy, and computer
simulationt S have paved the way for the use of computational tools in other
neurostimulatiga, technologies, such as nerve and deep brain stimulation (DBS) therapies
(Capogrosmmpka, 2020). Here, we reviewed the historical progression of computer
models for d analyzed the introduction of modern imaging techniques and their impact

on currentBu‘e clinical applications.
Spinal coi stimulation (SCS)

SCS is an EDAgapproved therapy for treating refractory pain with more than 50,000 implants
per year ( al, 2018). SCS for pain management dates back to 1967 (Shealy et al., 1967;
Wall & Sweet, W967). It was originally developed on the premise of the gate-control theory of
pain ( all, 1965), in which Melzack and Wall theorized that the activation of
cutaneous n interfere with nociceptive signaling through inhibitory interneurons that
“gate” pai mission from the spinal cord to the brain. This hypothesis led to the suggestion
that el lation of the dorsal columns, which carry low-threshold cutaneous afferents,

would drive activity in spinal inhibitory interneurons, which would in turn attenuate
nocicepti\g signaling and thus prevent nociceptive output from the spinal cord to the brain
(Lempka 9 018; Zhang et al., 2014). To this end, electrodes were placed in the dorsal

stimulate sensory afferents in the dorsal columns. Aided by the relatively low

dll procedure, SCS has since been employed in investigational studies to explore
nical applications, such as improvement of motor control and autonomic

functi(;mty of disorders, such as multiple sclerosis, stroke, and spinal cord injury (SCI)

-
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Figure 1. SCS computational modeling components. (A) Example of human spinal cord segments morphology, and
their general applications in SCS (movement: movement restoration, pain: chronic pain treatment, autonomic:
autonomic/lower urinary tract function restoration). Differences in root angle and segment shape for each spine area
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are highlighted with thickened lines. (B) Steps for building the volume conductor model that can be used to
simulate the electromagnetic fields generated by SCS: 1) tissue contours are derived from anatomical sources, i.e.,
measurements, atlas, and/or medical images; 2) these segmentations are then used for the 3D volume
reconstructi@n; 3) pi@per conductivity values are assigned to each tissue and the mesh is generated to simulate
electromhdistributions. (C) Potential components for the biophysical neuron model. Neuron fiber
activation cap imulated based on assigned fiber diameter, neuron population, or neural trajectory, which with
parameter t d on experimental and/or clinical data, can be translated into experimental and/or clinical
predictions, stieh beyeeption and discomfort thresholds, and measurements of motor restoration. Subfigures in
panel C include modified figures from Greiner et al. 2021 (Greiner et al, 2021) and de Freitas et al. 2022 (de Freitas et
al., 2022) with permission.

O

Computatign odels of SCS

Computati dels of neurostimulation build on the concepts developed by Hodgkin-Huxley
to estima xtracellularly applied electric potentials influence the neural membrane
voltage (H ing& Huxley, 1952; Holsheimer, 1998). More specifically, three-dimensional (3D)

volume conductor models of the spinal cord geometry, which rely on realistic anatomy that can
be obtain! Ey anatomical measures and/or medical imaging (Figure 1A), are used to compute

the extrac otential. A numerical method, such as the finite element method (FEM), can
then be us culate the potential distributions generated within these complex anatomical
structuresy( C & Sin, 1985) (Figure 1B). Extracellular potentials are finally applied to
Hodgkin-Htkl eural models (Hodgkin & Huxley, 1952) to estimate the corresponding neural

respon Q).

Why do we need computer models of SCS?

In translaSnal applications of SCS, in silico neural models provide a platform for investigating
mechanis rostimulation technologies and optimizing the therapy in ways that would be
suming, and expensive to be perform experimentally (Capogrosso & Lempka,
, computer models can be used to restrict the parameter space to be tested
experimentally. This accelerates development and mitigates safety and ethical concerns by

reducing fnumE)er of pre-clinical subjects as well as clinical iterations of initial experimental

assays.
H

With regard to SEs for chronic pain management, computational models have provided insights

into whic pathways primarily respond to SCS, supporting the gate-control mechanism
of the ther Holsheimer, 2002). These computational models also led to dramatic
improv, in lead designs, stimulation configurations, waveform parameters, and
programm cedures (Lempka & Patil, 2018). For instance, they have been used to develop

or validate new lead designs (Kent et al, 2014). Computational models are also utilized in a
commercial clinical programming system to determine stimulation configurations and select
parameters that focus the stimulation at a desired location (selected by the user) (Veizi et al,
2017). Finally, a computational network model has been used to optimize the temporal patterns
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of a SCS waveform (Gilbert et al, 2022). Yet, in many cases, these approaches remain to be
clinically validated.

ined from computational models of SCS for pain permitted a rapid growth of
er applications. In experiments utilizing SCS to improve locomotion,
computational models demonstrated that myelinated afferent fibers are the primary targets of
SCS, act-lv Mtoneurons and other cells via synaptic pathways (Capogrosso et al., 2013).
These moL) revealed that antidromic action potentials elicited in primary sensory
afferents interfere with natural sensory feedback, which is crucial for coordinated limb

_____ e was resolved by implementation of a biomimetic burst stimulation protocol
spatiotem%uned to selectively activate different spinal cord locations with precise
temporal ugi@n. This protocol was first tested through computer simulations (Moraud et al,
2016; Egzj_qlu_Z_ngl and then followed by experiments in rats (Wenger et al, 2016),

monkeys (Capogr@sso et al., 2016), and later in humans (Wagner et al,, 2018).

Unknow“cnges, and open questions

Overall, ts examples highlight the importance of computational simulations in the

translatio g ay, to pre-clinical tests, and finally to successful clinical implementation.
Computati odels support and expedite the development, optimization, and
impleme i of innovative neurostimulation therapies. Yet, there are still important
questions t dressed. First, there is no consensus on which anatomical structures are
essenti rate volume conductor models and what are the most proper imaging

techniques and protocols to capture these structures. Secondly, there is still controversy on how
several fagtors influence model accuracy, such as the presence and characteristics of a
biophysicL)n model, the applied physical material properties (e.g., electrical
conductivit ad the necessary levels of model complexity and personalization. Finally, the

best meth standardize model validation and clinical outcome metrics are not established,
resulting i atic lack of defined guidelines that consequently limits the effective use of
computati dels in clinical applications. To answer these questions, we reviewed the

expand t f computational models to advance the field of SCS for various clinical
applications.
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Methods:

Inclusiw and study search
The papen the present review had to comply with three essential criteria: a) they

had to incltde=76ltifte conductor models of the spinal cord; b) the computational model was
used @ SiAEIEE the field(s) generated by electrical SCS (epidural, intradural or
transcutar&us I.I and c) the paper was available in English. The search for relevant papers was
initially conducted in PubMed (https://pubmed.ncbi.nlm.nih.gov/, Mar. 4, 2022) using the key-
words defiled in fTable 1) by means of Boolean operators, nesting, and truncation.

Coding of variables

For each d paper, we extracted variables to categorize distinct aspects of the
computati dels. We divided these aspects into objective and derived variables. On an
important note, Several methods can be used to solve Maxwell's equations and calculate the
applied p in the complex anatomical geometries. However, because the finite element

FEM mod

Objective i S:

e Year mtion of the paper.

e S n which the FEM model was based: human, monkey, canine, cat, rodent.
e SC ue: epidural, intradural, transcutaneous.

e Spine level coverage: cervical, thoracic, lumbar/lumbo-sacral, whole spinal cord.

method (ty far the most common approach, we will generally refer to these methods as

e Applidati r which the FEM model was used: pain, movement, autonomic function,
ical “Biophysical” meant that the model was not used for a specific application, but

al zone selectivity of single current source and multiple current source

syste ithin the dorsal column (Min et al, 2014)).
e Th i ose for which the model was created: optimize stimulation parameters,

OPW position, optimize lead design, investigate mechanism(s) of action, and
modeling. “Modeling” refers to studies that developed and released the model without a

specific purpose. When there was more than one purpose in the same paper, we assigned
the m ant one.

sources used to create the FEM model: measure/atlas-based, magnetic
imaging (MRI)-based, MRI/measure-based. “Measure/atlas-based” refers to
asic geometric contours of shapes and sizes measured from dissections or
taken from literature, or using an atlas (i.e., by extrusion of histological cross-sectional
images). “MRI-based” refers to using 3D reconstructions of tissue structures through MRI
segmentations. Finally, the “MRI/measure-based” category refers to using a combination of
measures and MRI-based models. It is important to note that we used the term “MRI” to

either usi
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refer to medical imaging (i.e., MRI and/or CT). This choice was made because only n=4
reported the use of CT as an anatomical source for specific compartments (bone and
ele rthermore, to date, dura mater and roots/rootlets tissues have not been

createdgimmany FEM using MRI, therefore we did not consider these structures in the
anato @ rces classification.

Validatieisgi@ validation, qualitative validation, and quantitative validation. We assigned a
study@no validation” if the main conclusions drawn from the simulations were not
Valida&nst any experiments. However, note that the model may have been validated
for otlder similations in a different publication. A “qualitative validation” corresponded to a
comp Ak etween simulated and experimental results without directly comparing
numerjcalg@lues. A “quantitative validation” involved direct comparison of values, such as
comp%scle action potential amplitudes (Laakso et al,, 2014). For studies with both
qualitatiVe #d quantitative validation, we placed them in the quantitative validation group.

Derived variabl§-

In addition
derived v

ective variables, we assigned different scores to the models based on two
ables, namely personalization and complexity.

Personalization: a variable that evaluated to what extent the FEM model was personalized
for a gpe ubject. We assigned a score of 0, 1, or 2. “0” meant that the model was not
personali ‘1” meant that the model was partially personalized (e.g., variations in the
do spinal fluid (CSF) thickness or a modification of tissue conductivity to

CI). “2” meant that the model considered the realistic shapes and sizes of each
anatomi partment for a specific subject.

Complexity: we considered two levels of model complexity: a) FEM model complexity and
b) neuron model complexity.
a) del complexity: a variable that evaluated the complexity of the tissue volumes
an ctivities included in the FEM model. We calculated the complexity score for
ea odel considering the tissues that were included. Precisely, we gave one point
for ssue type that appeared in at least 8% of the papers (i.e., gray matter, white
m - , epidural fat, bone, dura mater, vasculature, rootlets, intervertebral discs,

en@apsulation tissue, muscle, skin and surrounding layer/saline bath). For the other

tissues (egg., cartilage, connective tissue), which were represented in a minority of the
Massigned one point if at least one of these tissues was represented in the FEM

m maximum score was 11 and we discretized the complexity score in 3 levels:
0 = (complexity score < 4), 1 = (5 < complexity score < 7), and 2 = (complexity score = 8).

O model complexity: a variable that evaluated the complexity of the biophysical
pf the neural response to SCS. We calculated this complexity by summing the
compleRigy scores assigned for individual components of the model: axon ion channels
and axon cable structure. We assigned the axonal ion channels a score of 0 (no ion
channels), 1, or 2. “1” meant that the ionic dynamics were derived from another species,
whereas “2” meant that the ionic dynamics were matched to the species for which SCS
was being modeled. We assigned the axonal cable structure a score of either 1, 2, 3, or 4.
We applied a score of: “1” to models that did not represent the axon as an electrical
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circuit, but instead used an activating function (i.e., second-order spatial derivative of
the applied electric potential) to approximate neural activation (Rattay et al, 2000); “2”
to models that represented axons as simple, unmyelinated cylinders as well as models

ented axons as nodes of Ranvier separated by internodes with infinitely
resisgimegnyelin; “3” to models that represented axons as nodes of Ranvier connected by
mternodes with finite impedance; and “4” to models that used a double-
cab ife to model axons with finite-impedance myelin as well as a conductive
BafAWEYSR the periaxonal region between the axolemma and myelin sheath. We added
additional points (i.e, 1 point) if studies incorporated: i) small-diameter

collateralization of the axons; ii) more than one fiber population; iii) different fiber
didimetersyiv) different axon locations; and/or v) varied fiber position and/or diameter

to ifffize biological realism (e.g, matching fiber densities to histological data,
st lly drawing fiber diameters from an appropriately parametrized
disgribitigh). Overall, this scoring system allowed for a maximum of 11 points, and we

discretized the complexity score in 3 levels: 0 = (complexity score < 4), 1 = (5 <
complexity score < 7), and 2 = (complexity score = 8).

Data analysis

We first s ed the proportional distribution of studies within each category. Then, we
focused our a is on the temporal evolution of individual variables. Finally, we analyzed the
relationship een the different variables. It is important to note that when analyzing

s for different applications and purposes, we considered only studies
published aft 10, i.e., the year in which MRI was introduced into the construction of FEM

This article is protected by copyright. All rights reserved.



Search Terms
1. "spinal card stimulation™ AND BubMed Search

("finite element” OR "computation*") =608
NOT "peripheral” (72) Tt T H
| Duplicates |
2. "spinal cord" AND "stimulat*" AND — n=177 1
"computation*" AND model {128} Lo H
3. "spinal cord" AND "stimulat*" AND
“finite element” AND model (74) Abstract Appraisal
n=431

4, "spinal cord” AND "stimulat®”
AND simulation AND model {334) |

)
=X
c
=%
1]
=%

| n=352
. . . b o o o o 4
Inclusion Criteria
1. Use of a spinal cord volume Reference Revie
conductor model _7”
2, Simulation of electrical stimulation n=79
field distributions Added
n=17

Included Papers

n=9%
| Reviews :
|
Papers for Analysis
n=287
Figure 2. Fl of study selection results.
Study ion
Our se mbinations resulted in a total of 431 unique papers on Mar. 4 (Figure 2).
Follow act appraisal, 352 manuscripts were excluded due to the absence of a volume

conductor model of the spinal cord or a focus on unrelated simulations, such as mechanical
propertieﬁf the spinal cord. Since computational modeling of electrical stimulation is highly
interdisci , for the 79 remaining papers, we examined their references to avoid oversight
of relevani#papers that were not in the PubMed database. As a result of this step, we added 17
papers. Ofh 96 papers, nine papers were review papers, perspectives, or book chapters and
were excluded
should be @oted that these 87 papers only included ~41 unique spinal cord models (see Tables
2, 3, etails). Some of the models were reused in different papers with small
modifiWuse these modifications were made to simulate specific conditions or unique
applicatio1ls, we considered each study as a new model in our analysis.

-

<

rom our review. Therefore, we considered a total of 87 papers in our analyses. It
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Objective variables

Species SCS technique Anatomical source Application
159 1% 5% 16% 3%
1%, 19% 24% ‘ 30%
2% NN 14%
70%
81% 76% 43%

Human (81) Epidural (76) Bl Measure/atlas (70) Biophysics/modeling (30)
B Cat (2) Transcutaneous (19) MRI/measure (16) Pain (43)
B Dog (1) Intradural (5) MRI (14) Movement (24)
I Rat/Mouse (15) B Autonomic (3)
Il Monkey (1)

Spinal level coverage Purpose Biophysical model Validation
4% 6%
12% 9
17% ‘ 26% 26% 26%
21%, 40%
58%
3% 1o 749% 16%
Cervical (26) Stimulation parameters (40) Present (74) Il No validation(58)
Thoracic (53) Lead position (21) Not present (26) I Qualitative (16)

Lumbar/sacral (17) I Lead design (21)
B Whole (4) B Modeling (6)
Bl Mechanism (12)

Bl Quantitative(26)

Derived variables

) Biophysical
Personalization FEM complexity cfrﬁpﬁ;ci?y
6%
44% ’17%

7%
e 33% ’
69%
60%

8 Complexity 0 (7)
B Complexity 1 (60)
8 Complexity 2 (33)

39%

Personalization 0 (69)
Personalization 1 (25)
Personalization 2 (6)

Il Complexity 0(17)
B Complexity 1(39)
Complexity 2 (44)

I

Figure 3. Pi objective- and derived-variable distributions amongst the studies included in our analysis.

O

The evolution of FEM models for SCS
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Computati®nal models of SCS were first developed in the early 1980s (Coburn,_1980; Sin_&
Coburn, 1983). Pxior to around the year 2000, the majority of models were not developed for
a specif%pplication and studies focused mainly on understanding technical aspects of
building a nd factors affecting simulation results. Thereafter, the focus evolved into
more specific applications. Computer models for pain management have been and continue to
be the most common application (43%) (Figure 3), and only around the 2010s, movement and
autonomj ion applications emerged (Figure 4A). Therefore, not surprisingly, most of the
ocused on the thoracic spinal cord, the most common SCS target to treat lower
back and leg p or all existing models, the most common stimulation technique was epidural
stimulation (76%) and most of the computational efforts were used to model the human spinal

cord (81%), where clinical interest is more abundant. A considerable portion of existing models
sought to analyze and optimize the stimulation parameters (40%). Only in the last decade (since
2010), more applied studies were complemented with the interest in understanding the
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underlying mechanisms of action of SCS (Figure 4C). Not surprisingly, this shift coincides
strikingly well with the introduction of computational models of SCS in preclinical animal
models and might be driven by the introduction of new SCS technologies, such as kilohertz-

were propgs g improve the clinical efficacy of SCS for pain relief relative to conventional low-
frequency @ 60Hz) stimulation. Despite the increased use of SCS models in both clinical
and precli tlations, we found that over half (58%) of the published simulation results
were ot VARE@EEEd experimentally, highlighting the lack of standardized guidelines for the
effective us of these models.

Application
A B
Il Measure/atlas-based MRI/measure-based MRI-based
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Figure 4. SCS model applications and purposes. (A) The top plot shows the different modeling studies based on their
corresponding application (abscissa) and publication year (ordinate). The pie charts show the percentages of the
anatomical sources used to create models for each application. For this analysis, we only considered models
published after the introduction of MRI to SCS models in 2010. (B) Bubble charts illustrating the distributions of FEM
and biophysical complexity scores for different applications. Autonomic was not included due to the low number of
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studies (n=3). Bold outlines indicate the most frequent complexity score for each application. (C) The bottom plot
shows the different modeling studies based on their corresponding purpose (abscissa) and publication year
(ordinate). The pie charts show the percentages of the anatomical sources used to create the models for each
purpose. Forlhis ana!sis, we only considered models published after the introduction of MRI to SCS models in 2010.

(D) Bubb trating the distributions of FEM and biophysical complexity scores for different purposes. Bold
outlines indic ost frequent complexity score for each purpose.

The evol onalization and complexity of SCS models

Since tie Sresttomputational models of SCS, investigators considered the possible effects of
anatomicafariations (Holsheimer et al, 1994; Cadotte et al., 2015; Delmotte et al, 2015; Toossi
etal, 2021 e electric potential distributions generated during SCS and the corresponding
neural ac owever, most FEM models to date incorporate no personalization (69%)
(Figure 3) a small percentage (6%) of studies utilized models with a high degree of

personali
(2014 orl

., personalization score of 2) and all of these studies were published recently
ures 3 and 5).

g

We identi;le an analogous pattern with regard to FEM model complexity. In the early stages,
models wﬂ-dimensional and contained limited spinal cord compartments. Probably

thanks to werful computers, more efficient algorithms, and standardized multiphysics
simulation e, FEM models quickly expanded to 3D and utilized a medium level of
complexity (i mplexity score of 1) (60%). However, only 33% of the models reached the
highest compl level (i.e.,, complexity score of 2). This increase in complexity might also be
explai imclusion of the spinal roots and rootlet structures in 16 papers (see Tables 2,

on spinal root volume can be partly attributed to increased computational
power that allow these roots to be included in complex 3D models. Multiple studies have
demonstrfd that dorsal root fibers are critical stimulation targets for motor control

(Capogros
in the FEM is especially important in SCS for motor control.

An equivaleént analysis on the model complexity can be applied to the increase in realism over
time f igphysical neuron models. These neural components are necessary to directly

quantif}m of SCS-produced potential on neural behavior. Coburn was the first to
directly m0del the neural response to SCS, and compared the predicted activation thresholds of
dorsal colmsal rootlet, and corticospinal tract fibers in response to epidural SCS with

clinical o ns (Coburn, 1985). This seminal paper applied the McNeal model of
myelinated fib hich consists of nodes of Ranvier with frog-derived ion dynamics connected
by infini istive myelinated internodes (Frankenhaeuser & Huxley, 1964; McNeal, 1976).

Followin oundational model, many studies included explicit representations of neurons
(74%), with a genteral trend of increased biophysical complexity over time (Figure 5B). Indeed,
only approximately 17% of biophysical models published before 2010 had high complexity,
whereas 59% of those published since 2010 achieved the highest complexity score.
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This increase in complexity is due to both increasing the sophistication in components included
in the models (e.g., fiber diameters, ion channel dynamics) as well as by introducing new levels
of detail (e.g. double cable myelin model) that provide a more complete or accurate assessment

of the onse (Struijk_et al,_1992; Wesselink et_al,_1999; Richardson et _al. 2000).
These deve ents have followed important findings from studies that were both specific to
SCS as wel for general neurostimulation purposes.

H

When confparing model complexity and personalization, we found that, despite the limited
number o%ith high personalization (n=5), which prohibited statistical analysis, there is
a clear tr shojing that higher levels of personalization are paralleled by higher levels of
complexityQi the FEM and biophysical models (Figure 5D). Interestingly, studies using

highly personalized models were more likely to perform a quantitative validation of the
simulatiorfiregfiltsy with 100% of the most personalized models having a quantitative validation
>0

(Figure 5 of the 23 studies with quantitative validation, 18 of these studies were
published st decade (since 2012). These results show that researchers are placing an
increased s on model validation, and with enough personalization and complexity,

computer models have the capability of making quantitative predictions that may directly
inform clifical practice.

q
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Figure 5 del complexity (A), biophysical model complexity (B) and personalization (C) scores of SCS models

as a function o

tion year. We have indicated the anatomical sources of the model and the corresponding SCS

technique by marker color and shape, respectively. The pie charts in A and C indicate the corresponding percentage
of anatomical sources for each complexity and personalization score: 0 (bottom), 1 (middle), and 2 (top). For this
analysis, we only considered models published after the introduction of MRI to SCS models in 2010. (D) Bar plots
representing the mode of complexity scores for the FEM and biophysical models for each personalization level. (E)
Bar plots representing, for each level of personalization, the percentage of papers with no validation, a quantitative
validation or a qualitative validation.
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Increased complexity shaped the evolution of model applications and purposes

Whereawzation level distributions were similar across applications and purposes, FEM
and biophySiCalmodel complexity scores varied across different model applications (Figure
4B), with ﬁ ept-application models generally having a higher complexity. This higher
compleaity for movement-application models may be explained by their well-defined neural
targets and necessary stimulation precision. Likewise, it is unsurprising that biophysical-
applicatio , which lack a defined functional goal, have the lowest aggregate complexity
scores. Moggovdythis discrepancy may partially be explained by the fact that models were first
applied f@nt applications in different decades, thus reflecting the general trend for
complexity crease over time (Figure 4A; Figure 5A and B).

Additional% and biophysical complexity scores also differed between study purposes
(Figure 4D). Intéestingly, both mechanism and lead design had high complexity both for FEM
and biophysi odels, whereas modeling-purpose and stimulation-parameters studies had
medium ¢ ity. Interestingly, for lead position, the complexity score was higher for

biophysical (level 3) than for FEM models (level 2).

Introductmmedical imaging influenced the complexity and personalization of
for SCS

SPACE with ZOOMit (Rowald et al., 2022); whereas in animals, the most common have been
TurboRAR weighted pulse sequence (Zareen et al., 2017).

Despite thc use of this technology, MRI-based models shaped applications and purposes
and allow&d the use of more complex and personalized models. Indeed, all models with the
highest personalization level used MRI-based identification of the anatomical structures and
those WHn personalization used medical imaging in the majority of the cases (58%).

FEM com i owed a similar trend with 65% of the models with high complexity deploying
MRI information.

ound that MRI-based models are used more commonly in the movement
% for movement versus 28% for pain) and have recently expanded to the
ication (Figure 4A). This trend suggests that, despite being the first and one of
the main fields of application, the pain community is not fully taking advantage of the
innovations introduced by the use of MR imaging. Several reasons could justify this discrepancy.
Rootlet fibers are often not explicitly represented in FEM or biophysical models of SCS for pain,
because activation of the thoracic roots and rootlets is believed to be associated with discomfort
and the axons within the dorsal columns are the main therapeutic target. Furthermore, the most
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common implantation levels for SCS for pain are the lower thoracic spine levels. At these levels,
it is not possible to visualize these rootlet structures. Further, the anatomy of the thoracic spinal
cord is also less variable across segments as compared to the cervical and the lumbosacral cord

and dimendss likely to affect simulation results in the thoracic cord.

Purpose-s m-based models had a similar evolution. Indeed, we found that, from birth
(around ELIOS), mechanisms of SCS were studied mostly using MRI-based models
showing that m@ge recent fields took full advantage of this novel technology (Figure 4C). Also,
for lead p@sition @nd design, the usage of MRI has been increasing over the years. Stimulation
parameters les, instead, are still based mostly on measure-based models (Figure 4C).

92,

Finally, it mthat transcutaneous SCS models were mostly MRI-based (Figure 4A). This

could be b f the necessity to capture anatomical structure outside the bone, but also by

reused acn@ss studies. There is, instead, nothing similar for epidural and subdural SCS.

Discussiom

The ra ich neuroengineering and neuroscience are expanding results in a continuous
demand for ools capable of optimizing and refining the interactions with the nervous
system, ough the role of many structures (e.g. interneurons, fibers, etc.) is still unknown
and th escribed by computer models. This lack of knowledge about target systems

represents a crucial obstacle for the development of more effective SCS therapies. In parallel,
commercidl systems continue to become more sophisticated, allowing an increased variety of
waveformhters, higher electrode counts and non-standardized configurations that
represent easing variety of possibilities to interact with the system. These technical
improvem onentially increase the space of therapeutic parameters, generating a critical
need to find 0ptimal parameter sub-spaces that can be tackled by accurate, realistic, and highly
personali computational models. These virtual frameworks would successfully meet the
need t ici and effectively explore these large parameter spaces which would be
infeasible gxperimentally. Finally, the increase of model personalization would improve the
search #tlm;ﬂ stimulation parameters, lead configurations, and lead position in patient-
specific s hence overcoming current standardized practices that may select sub-
optimal tmarameters. This approach could revolutionize clinical care and patient
programming i S-based therapies.

In this study, we classified manuscripts describing computer models of SCS to reveal trends in
the evolution of applications for SCS models, realism in model components, complexity,
personalization and the technological advances and clinical needs that drove these evolutions.
In this section, we discuss our main findings with additional recommendations to standardize

This article is protected by copyright. All rights reserved.



computational models of SCS and provide suggestions to further improve the quality of these
computational approaches.

T

The impo f increased complexity

As previo , computational models can simply include a volume conductor model to
simulat® tFE"&/@&®omagnetic fields generated by SCS or can incorporate a biophysical neuron
model to erstand ionic current flows in individual neurons (Chakraborty et al., 2018). It has
been proposed that, given the complex anatomical structure and variety of factors that can
affect neugal actiyation (e.g., branch points, axonal bends), the electric field will best predict
neural pol and neuromodulation, in contrast to the activation function (i.e., the second-
order spatigl ivative of the electric potential). This approach has been formalized as the
“quasi-unifgr umption” (Bikson et al, 2013; Bikson et al, 2015; Khadka et al, 2019) and
may serve as a useful and efficient heuristic for predicting which gross anatomical regions are
likely to be mor@strongly affected by the stimulation. Thus, this approach is well-suited for
applicatiomsmi ich precise identification of which neurons are being activated is not the
jeetimey such as studies investigating novel electrode configurations or the effects of

1 activation profiles or evaluating new temporal stimulation patterns, a
@€Y is better able to account for the subtle effects of ion channel dynamics and
neural moiph@logy on activation properties. Finally, for putative mechanisms of action other

Zannou et al, 2021).

[

Despite the i-uniform assumption, there is a clear trend of increasing complexity over time
both in th d biophysical models (Figure 5A and 5B). However, a more complex model
does not n ily imply a better model, and questions naturally arise as to what level of
complexityg sary and/or sufficient to develop a useful model. Regarding the FEM model,

the incre in complexity was partially possible because of the use of MRI techniques to

movem s discussed in Capogrosso & Lempka 2020, inclusion of root volumes can
significan ifim fiber activation distribution and threshold, and thus affect direct clinical
applicability of Bsimulated results. However, only three studies considered realistic
represent of roots and rootlets that followed trajectories derived from anatomical
measurem Khadka et al., 2020; Greiner et al, 2021; Rowald et al, 2022) and implemented
curvili otropic conductivities (Greiner et al., 2021; Rowald et al., 2022).

Regarding the biophysical model, we considered several factors when scoring complexity. We
believe that the value of including several relevant neuronal populations (e.g., both dorsal
column and dorsal rootlet fibers to compare on/off target effects) as well as varying axonal
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diameter and position clearly helps improve the translatability of model predictions.
Furthermore, studies have clearly demonstrated the importance of using species-appropriate
ion channels (Wesselink et al, 1999) and including branch points (Struijk et al, 1992) in
biophy s of SCS. For each of these variables, maximizing their complexity is not

: to produce a useful model, as all models require simplifications and
ever, we feel that it is good practice to thoughtfully consider each of these
variables v a more complete and realistic prediction of the neural response, and
accounfin se variables in the models is typically feasible without an unreasonable
increase inggffort or computational resources.

On the othe d, the necessary (and sufficient) complexity to model the axon geometry, and
specificall ingernode, is more controversial, and largely depends on the study. Compelling
evidence ates the role of submyelin conductance in axonal behavior, and the value of
representi isseurrent pathway to improve model predictions of axonal behavior relative to
single-cable mod@ls (Richardson_et_al.,_2000; Cohen_et al, 2020). In a direct comparison
between ith infinite-impedance myelin, finite-impedance myelin, and a double-layer

myelinate ™ Richardson et al. demonstrated that all three models could produce
reasonabl sults in line with experimental data, and that all models were sensitive to

parameter choices. However, Richardson et al. found that only the double-cable axon
representdfio 1d faithfully respond to pulse trains at frequencies of at least 25 Hz, as is
typical in ichardson et al, 2000). Thus, for studies investigating the response to
sequenti imuli(rather than activation by a single pulse), a double-layer axon structure is the
appropri odel. For studies considering a single stimulus pulse, using a simplified

representatj y be sufficient to produce a reasonably accurate prediction of the neural
reduce the number of parameters and the corresponding computational
complexity. Additionally, simplified approaches may prove valuable and sufficient in situations
in which rgduced accuracy is acceptable for the accompanying gains in efficiency. For instance,

Lodels could provide a useful heuristic in producing real-time predictions of
the neura@e to various stimulation configurations while programming devices in the

these sim

clinic.

Lookin&ignificant model improvements remain attainable by generating high-quality
experimengal data to parameterize biophysical models. The gold standard remains the MRG

(McIntyre®Richardson and Grill) model (or derivatives thereof) of the spinal motor axon that
was devel o decades ago (Richardson et al, 2000). Promising developments, such as
adding admhannel conductances (e.g., active submyelin conductances), have produced
model behaviorsgthat better match recordings from human sensory nerve fibers which are
when modeling the dorsal spinal cord for SCS applications (Gaines et al., 2018).
vancing these ideas, as well as investigating the local properties in different
(e.g., the axon terminal), will further enhance our ability to model the neural

regions of the a
response to SCS.
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The importance of patient-specific models to improve, standardize, and expand SCS

While canonical models are still invaluable to understand the science of SCS and to improve the
technicw SCS systems, patient-specific models are essential to quantitatively describe

the axonal'response to SCS and to program effective stimulation parameters for each patient.
Despite tmber of studies employing patient-specific models of SCS (i.e., only 5
papers), theil Its parallel those of other neurostimulation applications where

personglizaii@igisgymore established: DBS. Indeed, Frankemolle and colleagues (Frankemolle et
al, 2010) @howed that computational models of DBS provide an exemplary tool in support of

clinical d * In this study, patient-specific computational models helped determine
stimulatiof”parafmeters that provided superior clinical efficacy relative to the parameters
selected t tandard programming methods. In order to obtain similar results for SCS,

structuresf{CSK afdl bone, and the corresponding changes in model predictions between highly
personalizéd”m@dels and generalized models. Specifically, CSF thickness, which varies as a
function o level, body position, and across patients (He_et al._ 1994; Holsheimer et _al.,

research ;wrformed in-depth studies focusing on FEM-model variations of two main

1995), wa to have a large effect on current penetration within the spinal cord during
SCS. Specifically, an increment of the current density of 54.6% was observed when halving the
CSF thicksss Esin & Coburn, 1983). The dorsal CSF thickness was demonstrated to be

positively d with the activation threshold of dorsal column fibers (Solanes et al., 2021)

and percepéi hreshold (which increased by 50.8% and 26.6%, respectively, in the dorsal
columns orsal root entry zone, following an increase of the dorsal CSF thickness of 1
mm), and vely correlated with paresthesia coverage (He_et al., 1994; Holsheimer &
Struijk [ESSTRHGISh eimer et al., 1995; Lempka et al., 2015). The transverse size of the dural sac,
instead, wa ively correlated with the activation of afferent fibers (Solanes et al,, 2021).
Similarl ape of the spinal canal (Fernandes et al., 2021), size of the spine structures
(Fiocc 5 ), and relative position of the stimulating electrodes to the spine (Zander et

al., 2020) have strong effects on the electric field and corresponding activation thresholds.
Interesting, after SCI, orthopedic interventions (Greenberg & Arredondo, 2001) can change
the spine

simulated g

and scarring can change tissues conductivities, which can both affect the
field amplitude (Hernandez-Labrado et al., 2011) and therefore need to be
puter simulations. In summary, these studies provide evidence of the great
ottcome measures deriving from anatomical alterations, suggesting that increased

considered
variability i
personali uld increase model accuracy by accounting for multiple sources of
interpati iability. Additionally, these studies suggest that CSF thickness, bone, and thecal

sac sizes aF esse’:ial structures for accurate volume conductor models.

In this dir:empka and colleagues (Lempka et al,, 2020) reported that simulated sensory
thresholds obgaififed with patient-specific models were significantly more similar to those
clinical @ ured than those simulated with canonical models, which underestimate the

dorsal co

ber activation thresholds. Additionally, they quantified the effect of pulse-width
variation on sensory thresholds, identifying a mean absolute percentage error of 8.9% and
44.9% relative to the clinically measured value, for the patient-specific and canonical models,
respectively. Two other studies found similar results in which model predictions of perception
and discomfort thresholds were more consistent with the clinical measurements using patient-
specific models (specifically, the difference with respect to clinically measured perception
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threshold was 6.4% and 171% for the patient-specific and canonical model, respectively)

2022 developed highly personalized patient-specific models for the purpose of restoring

locomo thors performed an intraoperative validation of the simulated lead position
by monitogmgmelectromyographic recordings while delivering SCS. The predictions of the
patient-sp jodel corresponded to the optimal electrode placement; indeed, the study

displacement from the predicted location caused a drop in selectivity.
use of a generic (i.e., not personalized) model failed to reach the same
anks to the optimized lead position, contact location, and stimulation configuration

patiefits with complete paralysis (Rowald et al, 2022). Finally, Veizi and colleagues

igal”’model with patient-specific electrode locations and implemented a patient-
specific alg®ri to select active electrode combinations and current amplitudes at each
electrode wm., 2017). The personalized group demonstrated an approximately 1.5 times
higher responder rate (i.e., patients receiving 250% reduction in pain) relative to a cohort in
which stimulatiofMyparameters were selected through standard clinical methods.

Despite thg; extremely encouraging results, additional work using patient-specific models is

now necessary tq further demonstrate the potential of these models to improve clinical
implemenﬁscs. We believe that the collection of papers reported here (see Tables 3 and
S

4) repres luable summary to guide the choosing of the best model designs in future
works e use of patient-specific approaches. However, wider adoption of SCS models
impels t ovement and standardization of MRI protocols that capture relevant structures,

such as CSF inal roots.

Finally, it ; important to note that personalization of DBS models was driven not only by the

availabilit r-resolution brain MRI but especially by needs for precision in neurosurgical
implantatig edures. Instead, spinal lead implantations are currently performed with
limited im ance and lower constraint on positioning far from the millimeter precision
required to target deep brain structures (Lempka & Patil, 2018). In this context it is important
to note t lex personalized computer models of SCS are now suggesting that new
neuros roaches to SCS must be developed to improve accuracy and stability of
implantatign progedures to be able to target specific microstructures, such as the dorsal rootlets
(RowalMZ). This provides a powerful example of how neural simulations can be ahead
of clinical Band influence standard of care.

ica 4@ g propelled personalization and complexity

Importantly, all'0fithe studies (n=5) with patient-specific models deployed medical imaging for
the segmentation and the quantification of the anatomical structures, suggesting that MRI is
necessary to increase the accuracy and the predictive power of these models. On the other hand,
models can reach high complexity with both measure-based and MRI-based models. However,
since MRI was introduced, the majority of the complex models were also MRI-based. This trend
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was particularly true for the application of movement restoration. While this could be explained
by a tendency of newer fields to propel for the use of newly available technologies, such as MRI,
this could also be due to the difficulty to capture structures at the thoracic level, i.e., the most
commolHion level of SCS to treat pain. Novel advances in the field of MRI for lower

cervical seQ(Cohen-Adad et al, 2021) could improve these images and soon change this
trend.

However,h imaging has still not been maximally exploited for development of
computat@els of SCS. For instance, manuscripts often lack details describing the specific
equ

acquisitio ces, thus limiting the adaptability of these approaches. Additionally, even the
models wit most complex representations of the spinal cord roots and rootlets did not
directly d ese structures from medical images, but instead combined anatomical

measurem mathematical algorithms to calculate assumed non-overlapping trajectories.

Yet itis n nown that dorsal root diameter, as well as fiber angles and curvature when
entering the spindl cord, can cause substantial differences in fiber activation threshold (Coburn

& Sin, 19855°Strdijk et al, 1993). Therefore, accurate images of these structures are pivotal to
increase a f current models. In this direction, advanced acquisition sequences, such as
diffusion-Weighted MRI (Vargas et al, 2010), provide a means to capture high-resolution fiber

trajectories and thus could be used to accurately characterize roots and rootlets shapes.

Future els

Artificial in ce (Al)-based algorithms are another important breakthrough that could be
extrem geous for the development of personalized in silico models of SCS. These
approaches have the potential to achieve automation of processes that are currently performed
manually. Specifically, the exploitation of Al in the automated tissue segmentation from medical
images WL

specific modelmthus paving the way towards personalized precision medicine (Capogrosso &
Lempka, 2 @ one et al., 2018; Gawet et al., 2018).

stically reduce the time and effort required for the creation of a patient-

Additi&utational modeling of the neural network effects of SCS is another area with
significan*oten’a’ 1 for development. In the related field of DBS, many researchers developed

network-based models incorporating the various basal ganglia populations to investigate the
stimulatio ted effects on neural circuit behavior (McIntyre & Hahn, 2010). These models
provide a m

relevant neura

plete picture of the neural response by incorporating interactions between

pulations. A similar approach has recently begun to be adopted for SCS
ugh the technique remains immature. For pain applications, Zhang et al.
-based network model that included primary afferent fibers as well as excitatory
and inhibitory 1
and measured the output response of spinal neural networks for multiple SCS stimulation

rneurons (allowing for subpopulations with different firing characteristics)
frequencies (Zhang et al., 2014). In a contrasting approach, Arle and colleagues produced a

comprehensive model with hundreds of thousands of neurons and millions of synaptic
connections to examine how SCS can treat neuropathic and nociceptive pain (Arle et al., 2014).
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Although such models are impressive in scale, they highlight the difficulties as well as the
importance of proper model parameterization and constraining models based upon high quality
experimental data. Impressive advancements continue to be made in delineating the
neuroc d electrophysiological subpopulations of the dorsal horn and their
connectio :
biophysica
of spinal circt
H I

L

Lastly, whil@reéent studies have increasingly included quantitative comparisons of simulations
and expefimentall results, the validation metrics used for these comparisons have been
agro

g provides a promising path for understanding how SCS affects the behavior

inconsistent. Tticonsistency in these validation metrics creates difficulties in comparing the
predictio multiple models and impedes the development of clinically meaningful
standards ctive treatment predictions. For example, in the field of motor function,
studies ha red the model-based predictions of large sensory fiber activation thresholds
with experiment;y observed motor thresholds (de Freitas et al, 2022) and response latency
(Capogros ., 2013), simulated motoneuron activation with specific muscle force (Wagner
et al, 20 E, simulated and measured compound muscle action potential amplitudes
(Laakso efdgl, 2014). When using computational models to study SCS for pain, validation
metrics have been applied more consistently, with most studies comparing simulated dorsal

root and dor lumn fiber activation threshold with measured perception and discomfort
thresholdsSH imer_et gl, 1995; Struijk et al, 1998; Rattay et al, 2000; Arle et al, 2014;
Howell ; Lempka et al., 2018; Lempka et al, 2020; Solanes_et al., 2021). As the use of
SCS con 0 increase and expand to new indications, it will be important to establish a
standardize validation metrics to assist implementation of simulation results in a clinical
setting

To concluhstrongly believe that, by taking full advantage of MRI techniques and Al,

developin circuit networks, and increasing computational power, we can develop
realistic a accurate virtual frameworks to understand the mechanisms of SCS and
develop optl SCS therapies and surgical strategies. With more complex and personalized
models, rdized model validation and clinical outcome metrics, we can bridge the gap
betwe s and patient care.

=
<
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