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Abstract  
Differences in gut microbiome composition are linked with health, disease and ultimately host 

fitness; however, the molecular mechanisms underlying that relationship are not well 

characterized. Here, we modified the fish gut microbiota using antibiotic and probiotic feed 

treatments to address the effect of host microbiome on gene expression patterns. Chinook salmon 

(Oncorhynchus tshawytscha) gut gene expression was evaluated using whole transcriptome 

sequencing (RNA-Seq) on hindgut mucosa samples from individuals treated with antibiotic, 

probiotic and control diets to determine differentially expressed (DE) host genes. Fifty DE host 

genes were selected for further characterization using nanofluidic qPCR chips. We used 16S 

rRNA gene metabarcoding to characterize the rearing water and host gut microbiome (bacterial) 

communities. Daily administration of antibiotics and probiotics resulted in significant changes in 

fish gut and aquatic microbiota as well as more than 100 DE genes in the antibiotic and probiotic 

treatment fish, relative to healthy controls. Normal microbiota depletion by antibiotics mostly led 

to downregulation of different aspects of immunity and upregulation of apoptotic process. In the 

probiotic treatment, genes related to post-translation modification and inflammatory responses 

were up-regulated relative to controls. Our qPCR results revealed significant effects of treatment 

(antibiotic and probiotic) on rabep2, aifm3, manf, prmt3 gene transcription. Moreover, we found 

significant associations between members of Lactobacillaceae and Bifidobacteriaceae with host 

gene expression patterns. Overall, our analysis showed that the microbiota had significant 

impacts on many host signaling pathways, specifically targeting immune, developmental, and 

metabolic processes. Our characterization of some of the molecular mechanisms involved in 

microbiome-host interactions will help develop new strategies for preventing/ treating 

microbiome disruption-related diseases. 
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Introduction 

Nearly all animals examined to date show complex interactions with their associated microbial 

communities. It is evident that there are bidirectional interactions between the gut microbiome 

and the host in humans (Davison et al., 2017; Dayama et al., 2020; Meisel et al., 2018) and non-

human animals (Fuess et al., 2021; Muehlbauer et al., 2021; Naya-Catala et al., 2021). These 

interactions affect a wide range of host phenotypes including metabolism, immunity, and 

physiology (McFall-Ngai et al., 2013). Recent studies have shown that host genetics can also 

shape their gut microbiome (Lopera-Maya et al., 2022; Piazzon et al., 2020). The evidence for 

benefits provided by the gut microbiota is growing for example, gut microbiota can improve 

nutrition absorption (Krajmalnik-Brown et al., 2012), facilitate resistance against pathogens 

(Ducarmon et al., 2019), train the immune system and even modify behaviour and mental state 

(Surana and Kasper, 2017). Moreover, the gut microbiota gain substantial benefits from their 

host (e.g., available nutrients and suitable habitat) resulting in a mutualistic relationship with the 

host. This provides the context for a unique coevolved process in which host and their gut 

microbiome interact in a mutualistic adaptive scenario (Minich et al., 2022; Escalas et al., 2021; 

Groussin et al., 2020). Coevolution is defined as the reciprocal adaptation process experienced 

by two organisms as the result of their reciprocal selection pressures; it is possible for the 

microbiome to evolve at the individual species level, as well as a community response to host-

mediated selection (Koskella and Bergelson, 2020).  

Many studies have shown the importance of the gut microbiome in healthy and diseased host 

states, which ultimately affects host fitness (Bozzi et al., 2021; Manor et al., 2020; Yao et al., 

2018). The gut microbiome has been shown to alter host gene expression (Davison et al., 2017; 

Nichols and Davenport, 2021), perhaps a mechanism for the effect of the microbiome on the 

host. However, the mechanisms and direction of these effects is still not clear since the evidence 

is largely correlational. Does a change in microbiome composition cause changes in host gene 

expression, and if so, which genes will be most impacted? It is clearly important to characterize 

the mechanisms through which the microbiome can cause changes in host gene expression.  

Fish live in diverse aquatic environments, but they all harbour complex and diverse 

microbiomes, and those microbial communities start developing when the eggs are laid 

(Llewellyn et al., 2014). The bidirectional interaction between the host gut and its associated 

microbes may arguably be better established in fish, relative to terrestrial animals, as fish are in 
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constant direct contact with the aquatic environmental microbiome through their gut, gills, and 

skin. Moreover, given the long evolutionary history of fish as a group, studying host–microbe 

co-evolution in fish may provide unique insights into the host–microbe relationships in general 

(Montalban-Arques et al., 2015). Characterizing the mechanisms of how the gut microbiota and 

gene expression processes of the host interact in a symbiotic manner will help explain the 

physiological processes that maintain the balance among these intricate cross-kingdom 

interactions and ultimately, help attempts to prevent dysbiosis (Nichols and Davenport, 2021).  

Most studies on host- microbiome interactions are correlative or associative analyses without 

clearly defined cause and effect (Surana and Kasper, 2017). To move beyond such studies, we 

must more directly address causation through perturbation experimental analyses (Xia and Sun, 

2017). Using probiotics and antibiotics to alter gut microbiome (bacterial communities) in 

healthy hosts can provide valuable experimental insight into the mechanisms of host-microbiome 

interactions. Antibiotics can be used for antibiotic-induced microbiome depletion (AIMD), this 

leads to changes in the structure and function of the gut microbial communities (Ferrer et al., 

2017). Furthermore, probiotics can also be used to alter the gut microbiome in a controlled 

manner, as well as stimulate the host intestinal immune system (Lee and Bak, 2011). 

Experimental perturbations of the gut microbial community with probiotic strains in human and 

animal disease treatment is well documented (Azad et al., 2018). However, the effect of 

probiotics in healthy individuals is not as well characterized.  

The direction and nature of host-gut microbiome interactions is still an open question in the 

study of the microbiome, although it is likely bidirectional and experimental analyses of the 

mechanisms behind these interactions are needed. Here, our goal was to explore a broad range of 

host gut tissue responses induced by the experimental manipulation of the gut microbiome. We 

chose Chinook salmon (Oncorhynchus tshawytscha) as our study organism as they are reared for 

commercial and conservation purposes and provide logistical advantages for a study such as 

ours. Specifically, we used antibiotic, probiotic and control diet treatments to manipulate the gut 

microbiome in families of Chinook salmon. We used 16S rRNA metabarcoding of the gut 

bacterial community, coupled with host gut tissue transcriptomics to; (i) quantify treatment 

effects on the host gut and the fish rearing water bacterial community compositions, (ii) 

determine the response of the host gut tissue transcriptome to the treatments, and (iii) use gene 

transcriptional profiling TaqmanTM qPCR to characterize the host response to the treatment-

altered gut microbiome. Given the long evolutionary history of the relationship between fish and 
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their microbiomes, we expect strong bidirectional effects, but predicted that the effects of the 

microbiome on the host are more pronounced. We specifically hypothesized that the host 

transcriptional responses to each treatment could be attributed to the abundance of specific 

bacterial taxa. The results obtained provide insight into the co-evolved symbiotic relationship 

between host and its associated microbiome that may inform future studies exploring host-

microbiome interactions and evolution. Additionally, our work will help in better using 

microbiome manipulation (probiotics, antibiotics) to improve health in fishes and potentially in 

other animals, including humans. 
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Materials and methods 

Study design  

We domesticated Chinook salmon from Yellow Island Aquaculture Ltd, an organic salmon farm 

on Quadra Island, BC, Canada to create a nested breeding design with two sires crossed with one 

dam (2×1) replicated six times. Eggs were fertilized in October 2019 and the eggs were 

incubated in replicate cells of vertical stack incubation trays. When the offspring reached the first 

feeding (March 2020) offspring from replicated incubation tray cells were transferred to 200 L 

tanks with well water flow of 2 L per minute with continuous aeration with a 16:8 h light-dark 

cycle. Fish were fed ~3% of their body weight three times per day until October 24th, 2020. At 

that time, 5 fish per family were moved to new 200 L tanks for a total of 72 tanks (12 

(families)*2 (replicates)* 3 (treatments – see below)).  

Microbiome manipulation 

We manipulated the gut microbiome of the fish in the tanks using control (untreated) feed, 

antibiotic treated feed and probiotic treated feed: 

Antibiotic treatment: Oxytetracycline (OTC), and Chloramphenicol (CAP), two broad spectrum 

antibiotics, were selected for the trial. Twenty-four tanks (for 12 (families)*2 (replicates)) were 

labelled as antibiotic and were treated with OTC (83 mg/kg/day concentration) (Kokou et al., 

2020; Rosado et al., 2019, Leal et al., 2019) for six days. After six days the fish were switched to 

a combination of Chloramphenicol (CAP) (42 mg/kg/day) (Bilandzic et al., 2012) plus the OTC 

for four more days, for a total of 10 days of antibiotic treatment. Fish were fed three times a day 

at approximately 3% of their body weight.  

Probiotic treatment: Twenty-four tanks (for 12 (families)*2 (replicates)) were labelled as 

probiotic treatment and fed commercially available Jamieson Probiotic Complex with 60 billion 

colony forming units (CFU) (Jamieson Laboratories, Canada; Supplementary Table S1). 

Specifically, the probiotic-treated feed (3 capsules per 100 gram of feed) was coated with 10 mL 

of sodium alginate (1%) and 10 mL of 0.5 % calcium chloride prior to mixing with the probiotic 

powder. Fish were fed three times a day at approximately 3% of their body weight.  

Control: Twenty-four tanks (for 12 (families)*2 (replicates)) were labelled as control group and 

fish were fed with regular feed without probiotic or antibiotic for ten days. Fish were fed three 

times a day at approximately 3% of their body weight (Fig. 1).  

Sampling 
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All fish were terminally sampled after the ten-day trial (November 3, 2020). The fish were not 

fed on the day of sampling. The final mean mass of the fish was 23.3 g (±7.2 SE) across all 

families and treatments (no treatment effect on fish body weight was detected). Three fish were 

dip netted from each tank and humanely euthanized immediately in an overdose solution of clove 

oil (Toews et al., 2019). Of the 72 tanks, four tanks (control) had 100 % mortality and those 

replicates were excluded from the study, bringing the total number of samples to 204 fish (72 

probiotic treated fish, 72 antibiotic treated fish, 60 control fish) and 68 water samples (one per 

tank)). The sampled fish were immediately weighed and dissected, with the entire GI tract placed 

in a 50 mL tube with 35 mL of a highly concentrated salt buffer (ammonium sulfate, 1 M sodium 

citrate, 0.5 M EDTA, H2SO4 to bring the pH to 5.2) for preservation for later RNA and DNA 

extraction. Additionally, 500 mL water samples were collected from each of the tanks (N=68) 

before sampling the fish and filtered immediately using 0.22-micron pore size, 47 mm diameter 

polycarbonate filters (Isopore™, Millipore, MA). All samples (tissue in preservative and the 

filters) were stored at –20 °C, until used for DNA or RNA extraction.  

Lab Analyses 

The lab analyses consisted of three related but separate protocols (Figure 1). The first was to 

assess the bacterial composition of the fish gut and rearing water microbiomes using 16S rRNA 

metabarcoding. The second was to determine the whole transcriptome response to treatment by 

RNA-Seq of gut tissue from offspring form a single family. The third analysis was designed to 

better characterize the transcriptional profile response to the treatments using nanofluidic array 

qPCR analysis of 50 gene loci selected using the RNA-Seq analysis.  

Bacterial DNA extraction and 16S rRNA gene library preparation  

DNA was extracted from fish hindgut content using a sucrose lysis buffer solution method 

previously described (Shahraki et al., 2019) and extracted DNA was subsequently stored at –20 

°C, until further analysis. Additionally, the PCR conditions and 16S rRNA primer sets (1st and 

second PCR) were the same as those used in previously described methods (Sadeghi et al., 

2021). Briefly, the V5 (787 F-acctgcctgccg-ATTAGATACCCNGGTAG) and V6 (1046 R-

acgccaccgagc-CGACAGCCATGCANCACCT) variable regions of the 16S rRNA were selected 

for PCR amplification with a PCR cycle program of 95 °C for 3 min followed by 28 cycles of 95 

°C for 30 s, 55 °C for 30 s, and 72 °C for 1 m, and a final step at 72 °C for 7 m. A second short-

cycle PCR (7 cycles) using purified first PCR products ligated the adaptor and barcode (10 -12 

bp) sequences to the amplicons as required for sample identification and sequencing. During the 
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first and second PCR, nine samples failed amplification and 263 samples (195 gut samples, and 

68 water samples) remained for the gel extraction. For each 96 well PCR plate, one negative 

control consisting of PCR mix (of first and second PCR) with ultra-pure water instead of DNA 

template was included. The pooled purified PCR amplicon mix (i.e., sequencing library) was 

sequenced on an ION S5 Next-Generation Sequencing system.  

16S Metabarcode Sequence Data Processing 

The resulting FASTQ file was analyzed using the Quantitative Insights Into Microbial Ecology 

(QIIME2-2020.11) platform (Bolyen et al., 2019). The FASTQ sequence file was demultiplexed 

and the DADA2 pipeline was used to denoise single-end sequences, dereplicate and filter 

chimeras. This was followed by Amplicon Sequence Variant (ASV) picking using the 

removeBimeraDenovo function with the “consensus” method, while default values were used for 

the other parameters (Callahan et al., 2016). Taxonomic classification was done through the 

feature-classifier plugin (Bokulich et al., 2018) using the SILVA 138-99 reference database 

(Quast et al., 2013). This plugin supports taxonomic classification of features using the Naive 

Bayes method. All ASVs were aligned with mafft (Katoh et al., 2002) and used to construct a 

phylogeny with fasttree (Price et al., 2010). A total of 8,820,568 sequences with 19,776 ASVs 

were obtained for the 267 samples (195 gut samples, 68 water samples, and 4 negative controls). 

The four negative controls had 1 to 7 reads and were excluded from the rest of the study. Using a 

taxon filter-table, ASVs related to eukaryotes, mitochondria, chloroplasts (combined ~ 1%), and 

unassigned (1%), were removed, resulting in a total of 8,655,659 (98%) sequences remaining. 

Furthermore, samples with low sequence depth (less than 3000 reads), low abundance taxa (less 

than 10 ASVs) and ASVs that showed up in only one sample were removed. This decreased the 

total number of samples to 255 samples (189 gut samples, 66 water samples) with 8,217,478 

sequences and 2888 ASVs. The 8 deleted samples were not related to specific treatment type or 

family (antibiotic treatment (one water sample), probiotic treatment (4 gut samples, and one 

water sample), control (two gut samples)). Alpha diversity indices (Chao1 (a metric for species 

richness), and Faith’s phylogenetic diversity (PD) (a metric that incorporates both species 

richness and species evenness while correcting for phylogenetic distance)) of bacterial 

communities were calculated using the QIIME2 alpha diversity plugin. The ASV table was 

rarefied to 3000 reads per sample for the alpha diversity estimation (rarefaction curves plateaued 

at 3000 reads). Bray–Curtis, and Jaccard  dissimilarity distance matrixes were calculated to 

estimate β-diversity.  
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RNA extraction 

RNA was extracted from host hindgut tissue using TRIzol® reagent (Life Technologies, 

Mississauga, ON, CAT=15596018) following the manufacturer’s protocol. RNA was dissolved 

in sterile water and treated with TURBO™ DNase (Life Technologies, Mississauga, ON) to 

remove genomic DNA contamination and preserved at –80°C until RNA sequencing or cDNA 

synthesis and qPCR were performed (see below).  

RNA sequencing and transcriptome assembly 

A total of 18 gut tissue samples from one family, but from all 3 treatments (6 fish per treatment), 

were used for transcriptome analyses by RNAseq. Fish from one family were used to minimize 

differences due to genetic variability among individuals. RNA quality was assessed using the 

Eukaryotic RNA 6000 Nano assay on a 2100 Bioanalyzer (Agilent, Mississauga, ON). All 

samples had an RIN > 7 and a 28S:18S rRNA ratio >1.0. RNAseq libraries were prepared and 

sequenced at the McGill University and Genome Quebec Innovation Centre using the Illumina 

NovaSeq 6000 S4 PE100 protocol and 100-bp paired-end sequencing. To remove potentially 

contaminating rRNA sequences, raw sequences were filtered against eight default rRNA 

databases using SortMeRNA v2.1 (Kopylova et al., 2012). The sequences were then quality-

filtered using Trimmomatic v0.38 (Bolger et al., 2014). The non-rRNA sequences were aligned 

to the Chinook salmon (GCF_002872995.1_Otsh_v1.0; 

https://www.ncbi.nlm.nih.gov/assembly/GCF_002872995.1/) reference genome using the 

splicing aligner HISAT2 (Kim et al., 2015). FeatureCounts (Liao et al., 2014), was used to 

calculate the number of transcript sequence fragments assigned to each gene.  

Differential expression gene analysis  

The output from FeatureCounts was imported into DESeq2 (version ‘1.32.0’) (Love et al., 2014) 

in R (R version 4.1.1) (Team, 2013) for normalization and differentially expressed genes 

analysis.  

qPCR Primer/probe optimization and cDNA synthesis  

Primer and probe optimization: Fifty transcripts (genes) that were significantly DE between 

antibiotic and probiotic treatments versus the control treatment in the DESeq2 analysis were 

selected for printing on OpenArray Taqman qPCR chips (Supplementary Table S2). Four 

endogenous control genes (β-2-microglobulin, β-Actin, ribosomal protein L13, and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) were selected from previous studies 

(Geffroy et al., 2021; Limbu et al., 2018; Toews et al., 2019) to normalise the transcription 
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profiles of the candidate transcripts Primers for the candidate transcripts were designed using 

Geneious Software v7.1.5 (http://www.geneious.com) and optimized on DNA from Chinook 

salmon fry. After PCR optimization, the primers were tested on a subset of our cDNA samples 

with SyBr® Green Dye I (Thermo Fisher Scientific) following the manufacturer's protocol on 

the QuantStudio 12K Flex Real‐Time PCR System (Thermo Fisher Scientific). After testing 

positive for amplification of the expected sized fragment using SyBr® Green assays, new qPCR 

primers and Taqman® probes were developed using Primer Express® Software v3.0.1 (Thermo 

Fisher Scientific) for all 54 genes (50 candidate and 4 control genes; Supplementary Table 1). 

The qPCR primers spanned intron‐exon boundaries with a short amplicon size (50–100 bp). The 

Taqman® probe was designed for a melting temperature between 57 and 60 °C. 

cDNA synthesis: RNA was quality tested on a random subset of the samples both on a 2100 

Bioanalyzer and on 2% agarose gels. RNA Integrity Number (RIN) values were consistent 

among samples, ranging between 7 and 9.8, while gel images showed the expected rRNA bands. 

The RNA concentration for each sample was estimated by Spark® multimode microplate reader 

and NanoQuant Plate™ (Tecan, Morrisville, NC, USA). All total RNA preparations had purity 

values of 1.8 – 2.1 (A260/A280) with concentrations ranging from 2,000 to 5,000 ng/μL. 

TURBO DNA-free™ Kits (Thermo Fisher Scientific, cat. no. AM1907) were used to remove 

genomic DNA contamination. Total RNA was converted to cDNA using High Capacity cDNA 

Kits (Applied Biosystems, Ontario, Canada), following the manufacturer's protocol. Reverse 

transcriptase reactions contained 10 µL of total RNA at a concentration of 200 ng/μL, 2 µL of 

10X RT random primers (Applied Biosystems), 0.8 µL of dNTP (100mM), 50 U of MultiScribe 

RT (Applied Biosystems) and 40 U of RNase Inhibitor (Applied Biosystems) in a 2 µL of 10X 

RT buffer at a final volume of 20 µL. RT reactions were incubated at 25°C for 10 min followed 

by 37°C for 120 min and were stopped by incubating at 85°C for 5 min. cDNA samples were 

stored at –20°C until further analysis.  

OpenArray high-throughput qPCR 

TaqMan® OpenArray® chips from Applied Biosystems (Burlington, ON, Canada) were used to 

quantify transcription at the 54 genes (50 candidate and 4 endogenous control genes) on a 

QuantStudio 12K Flex Real‐Time PCR System following the manufacturer's protocol. Forty-

eight cDNA samples were run (two chips for 48 samples) for each of the 54 genes on each chip. 

A 5 μL reaction volume which includes 1.2 μL of cDNA (100ng/µL/per sample), 1.3 μL of 

ddH2O and 2.5 μL of TaqMan® OpenArray® Real‐Time PCR Master Mix (Applied Biosystems, 
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Burlington, ON, Canada) was used, aliquoted across a 384‐well plate and then loaded onto the 

TaqMan® OpenArray® chips using the OpenArray® AccuFill System. A total of 10 chips were 

used for 213 cDNA samples. The samples were randomly distributed among the chips. 

ExpressionSuite Software (Applied Biosystems, Thermo Fisher Scientific, Carlsbad, CA, USA) 

was used to analyse the endogenous control genes. Of four endogenous control genes, β-Actin 

was selected for normalization due to lower among-sample variation compared to the three other 

endogenous control genes. Subsequently, all 10 chips were normalized with the selected 

endogenous control gene (β-Actin) together in ExpressionSuite Software v1.0.3 (Applied 

Biosystems, Burlington, Ontario, Canada). Moreover, ExpressionSuite Software was used to 

calculate raw critical threshold (CT) values and the relative critical threshold values (ΔCT). 

Values produced by this platform are already corrected for the efficiency of the amplification 

(Molina-Lopez et al., 2020). We tested for replicate effect using Paired sample T test in SPSS 

(IBM SPSS Statistics for Windows, Version 27.0. Armonk, NY: IBM Corp). As we found no 

evidence for a replicate effect (P value > 0.05), CT and ΔCT values were averaged between the 

replicate and only one CT or ΔCT value was used for each gene. 

Statistical analysis 

Treatment effects on bacterial community composition 

Aquatic bacterial community composition: To test for the effect of treatment on the bacterial 

community composition in the hold tank water, taxonomical compositions of the bacterial 

communities were visualized using stacked barplots and Pie charts of the relative abundance of 

the bacteria at the phylum and family level using the online tool MicrobiomeAnalyst (Chong et 

al., 2020) as well as R packages (“microbiome” and “phyloseq”). Moreover, differences in alpha 

diversity indices (Chao1 and PD) among the treatments (antibiotic, probiotic, control) for the 

tank water bacterial communities were tested using a Kruskal-Wallis (KW) rank test. In the case 

of a significant association, a post hoc Dunn tests with Bonferroni corrected P values was done. 

To visualize among-treatment divergence in the tank water bacterial communities, a Principal-

coordinate analysis (PCoA) using two measures of community dissimilarity (Bray–Curtis, and 

Jaccard) were created. Thus, the significance of the observed clusters was assessed using 

permutational multivariate analysis of variance (PERMANOVA) and permutational analysis of 

multivariate dispersions (PERMDISP) in Primer 6 (v6.1.15) as well as QIIME2 (qiime diversity 

beta-group-significance). Pairwise comparisons were performed in cases of significant 

PERMANOVA among treatment groups.  
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Fish gut bacterial community composition: The effect of treatment on taxonomic composition of 

the gut sample bacterial communities was visualized using Pie charts and stacked barplots of the 

relative abundance of the bacterial taxa at the family and phylum level (Chong et al., 2020). To 

identify treatment and parental effects on gut microbial community, alpha (Chao1 and PD) 

diversity indices for gut samples were compared using the KW rank test in SPSS (IBM SPSS 

Statistics for Windows, Version 27.0. Armonk, NY: IBM Corp). To visualize treatment effects 

on bacterial community structure, a PCoA using the Bray-Curtis distance matrix was used to 

generate scatterplot of the first two PCoA axes in R (version 4.1.1). Moreover, PERMDISP and 

PERMANOVA analyses were performed in R (version 4.1.1) to test for treatment and parental 

(dams, sires) effects on bacterial community composition. Additionally, QIIME2 was used for 

creating a PCoA plot as well as PERMANOVA analysis using the Jaccard distance matrix. 

Pairwise comparisons were performed when significant differences among the treatment groups 

were detected to identify specific treatment effects.  

Comparison between fish gut and aquatic bacterial community composition: Fish gut bacterial 

community composition was compared against the rearing water bacterial community at both the 

alpha and beta diversity level. Alpha diversity measures (Chao1 and PD) of gut and water 

samples were compared using Mann-Whitney U test in SPSS (IBM SPSS Statistics for 

Windows, Version 27.0. Armonk, NY: IBM Corp). PCoA first and second axes were used to 

visualize clustering of the samples based on sample type (gut or water) based on both Jaccard 

and Bray-Curtis distance matrixes. Subsequently, PERMDISP and PERMANOVA analyses 

were performed in R (version 4.1.1) to test sample type effect on bacterial community 

composition. 

Gut transcriptome response to treatment 

The DESeq2 (version ‘1.32.0’) package in R (version 4.1.1) was used to identify differentially 

expressed transcripts in the host gut transcriptome between any of the treatment groups in three 

pairwise comparisons (antibiotic vs control, probiotic vs control, antibiotic vs probiotic). The 

package uses a Wald test to test the significance of gene transcription differences. To identify 

differentially expressed transcripts, Benjamini–Hochberg corrections for multiple testing was 

used (false discovery rate (FDA) < 0.05). We identified differentially expressed transcripts as 

those genes with thresholds of FDR < 0.05 and |log2 FC| > 1. Volcano plots of differentially 

expressed genes between the treatments were generated by using the FC and the log-scaled 

adjusted P value using the EnhancedVolcano package (Blighe et al., 2021) in R.  
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Transcriptional profile (qPCR) response to treatment 

The 50 selected candidate transcripts (hereafter “genes”) were tested to determine which genes 

showed a transcription response to either of the treatments. Two genes (cfap58, ubr4) were 

dropped from the analysis due to failure of PCR amplification for most of the samples, thus 48 

candidate genes were included for the rest of the study. To reduce the number of independent 

variables and to avoid over fitting the models, we used Principal Component Analyses (PCA) on 

the qPCR data for the 48 selected genes using “prcomp” (which is a part of the R statistical 

analysis package) and factoextra package (1.0.7) (Kassambara and Mundt, 2017) in R (version 

4.1.1). Based on a threshold of Eigenvalue > 1, and % variance explained > 2%, the first nine PC 

axes were selected. We used Linear mixed models (LMM) (lmerTest package (v3.1.3)) 

(Kuznetsova et al., 2017) in R with the selected PC axes to test for the effect of treatment (fixed 

effect), and the random effects of dam, sire, fish body weight, tank ID and chip effect, with all 

interaction terms for fixed and random factors on gene transcription patterns. Chip ID, body 

weight, dam, treatment×dam, treatment×sire effects were nonsignificant before FDR correction 

and were removed from the model. When any of the nine PCs were found to exhibit significant 

effects with any of the independent variables (treatments, dam, sire, body weight, tank ID, or 

chip effect), we examined the individual gene transcription loading values. We used fviz_contrib 

within the factoextra package (1.0.7) to identify genes with contributions to the PC greater than 

expected (Kassambara and Mundt, 2017). The identified genes were included in a second 

analysis that used LMM with the ΔCT values for the selected genes and the same independent 

variables (treatment, dam, sire, body weight, tank ID and chip effect), including all interaction 

terms for fixed and random factors. Nonsignificant factors (Chip ID, body weight, dam, and all 

interactions) were removed from the model and the analysis was re-run. Lastly, a sequential 

Bonferroni P value correction was applied for multiple testing correction (Rice, 1989). 

Correlation between gut bacterial community and host transcriptional profile 

To investigate the direct effect of variation in the gut microbiome composition on host gene 

expression patterns, Spearman's rank correlation coefficient (Spearman's rho) was performed 

using the function cor.test in R (R version 4.2.3). We selected common bacterial taxa (bacteria 

families with more than 5% contribution to total sequence reads counts within each treatment; (7 

taxonomic families) and individual genes with evidence for possible treatment effects (P value 

<0.1 (9 genes)) from the gene-level analysis described above. Moreover, a Holm-Bonferroni 

(sequential) P value correction was applied for multiple testing correction (Rice, 1989). We 
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visualized the pattern of correlation across all genes and bacterial taxa using a heatmap generated 

in the pheatmap function in R.   
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Results 

Impact of antibiotics and probiotics on aquatic and fish microbiome.  

Microbial community associated with water: We characterized the rearing tank water bacterial 

communities at two taxonomic levels; the phylum and family. Tank bacterial community 

diversity diverged among the treatments, with the top 10 most abundant families making up the 

majority of reads. Proteobacteria were the most common phylum among all treatments (control 

(70%), antibiotic (68%), probiotic (51%)). Bacteroidota (13 %), and Actinobacteriota (17%) 

were also common phylum in the control treatment water. Moreover, in the antibiotic treated 

water, Firmicutes (24%) and Bacteroidota (12%) were common phyla after Proteobacteria. On 

the other hand, in the probiotic treated water, Bacteroidota (12%) and Firmicutes (8%) were the 

common phyla after Proteobacteria (Supplementary Figure S1). At the family level, the most 

common aquatic associated bacterial taxa were members of Comamonadaceae, a family of the 

Betaproteobacteria accounting for 28%, 30%, and 35% bacterial taxa in control, probiotic, and 

antibiotic waters, respectively. Mycoplasmataceae were found in all samples, but at relatively 

higher abundance in antibiotic challenge water compared to probiotic and control waters. 

Members of Oxalobacteraceae were also found in all sampled tanks but at higher abundance in 

the probiotic and control tanks relative to the antibiotic tanks. Other notable freshwater-

associated bacterial taxa at the family level were Flavobacteriaceae, Pseudomonadaceae, 

Sporichthyaceae and Aeromonadaceae (Figure 2A).  

To quantify treatment effects on the aquatic bacterial communities, alpha and beta diversity 

indices for water samples were compared for the three treatment groups (antibiotic, probiotic, 

control). Alpha diversity analysis (Chao1, PD) showed no significant differences among the 

groups (Chao1: KW 5, P > 0.05; PD: KW 3, P > 0.05). However, our PCoA plot showed clear 

separation of antibiotic treatment group from the other groups (Figure 2B). PERMDISP (P value 

< 0.05) and PERMANOVA (F-value: 8.9; R-squared: 0.22; P value < 0.001) results confirmed 

that the overall community structures were significantly different among the three groups. 

Pairwise comparison also showed that the three groups are different from each other, but with the 

probiotic treatment group compared to antibiotic treatment group showing the highest 

dissimilarity (probiotic- control F: 2.17, P<0.001; probiotic- antibiotic F: 2.86, P< 0.001; control-

antibiotic F: 2.77, P < 0.001). Moreover, the average dissimilarity within treatments was higher 

for the control tanks (73.2%) compared to our probiotic (65.4%) and antibiotic treatment tanks 
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(61.8%). Jaccard distance matrix analyses showed similar results with significant differences 

among the groups (Supplementary Figure S2A, Supplementary Tables S3, S4). 

Microbial community associated with gut: Firmicutes were the most common phylum for the 

control (46%) and probiotic (49%) group fish (Supplementary Figure S3A). On the other hand, 

members of Desulfobacterota were the most common bacteria in the antibiotic treated fish gut 

microbiomes (Supplementary Figure S3A). We also compared members of Firmicutes phylum 

among the treatments at the family level. Within the Firmicutes phylum, Mycoplasmataceae was 

the most common gut associated bacterial taxa across all treatments, in addition to other 

important taxa (Supplementary Figure S3B). For example, control and probiotic treated fish had 

Mycoplasmataceae (control (65%), probiotic (50%)), Streptococcaceae (control (30%), probiotic 

(28%)), and Lactobacillaceae (control (2%), probiotic (17%)) present. However, in the antibiotic 

group, different families were present within Firmicutes phylum (Mycoplasmataceae (68%), 

Streptococcaceae (14%), and Leuconostocaceae (5%) (Supplementary Figure S3B). At the 

family level, the most common gut associated bacterial taxa across all treatment groups were 

members of Desulfovibrionaceae (related to Desulfobacterota phylum) and Mycoplasmataceae 

(Figure 3A). While Streptococcaceae had high relative abundances in control group, samples in 

probiotic groups had high relative abundances Lactobacillaceae. Moreover, members of 

Pseudomonadaceae had high relative abundances in antibiotic group (Figure 3A). Unlike in the 

tank water microbiome, Mycoplasmataceae was higher in the control and probiotic groups 

compared to the antibiotic group. At the genus level, we also found two potential fish associated 

pathogen groups, Enterovibrio and Photobacterium (from Vibrionaceae family), in the fish gut 

microbiome; however, they were at low abundance based on their read count.  

To identify the treatment and parental (dams and sires) effects on the gut bacterial community, 

alpha diversity indices for gut samples were compared. Alpha diversity analysis (Chao1, PD) for 

the gut microbiome showed no significant differences among the treatments (Chao1: KW 2.8, P 

> 0.05; PD: KW 3.2, P > 0.05), sires (Chao1: KW 6.9, P > 0.05; PD: KW 6.8, P > 0.05), and 

dams (Chao1: KW 5.3, P > 0.05; PD: KW 8.9, P > 0.05). Beta diversity variation was also 

explored using Bray-Curtis distance matrices and a PCoA plot. The PCoA plot showed weak 

separation among the samples based on treatments (Figure 3B). PERMDISP and PERMANOVA 

results confirmed that the overall bacterial community structures were significantly different 

among the treatments (Table 1). Treatment alone had the highest influence on the gut microbial 

community (PERMDISP: P value < 0.005; PERMANOVA: Pseudo-F:6.1, P value < 0.05). 



 
 

17 

Pairwise comparisons also showed that the three treatment groups exhibit significant difference 

in beta-diversity, with the probiotic versus control treatment samples showing the highest 

dissimilarity (probiotic- control F: 3.01, P<0.001; probiotic- antibiotic F: 2.85, P< 0.001; 

control-antibiotic F: 1.52, P < 0.05). Moreover, the average within treatment group bacterial 

community dissimilarity was higher for the control (82.2%) than the probiotic (77%) and 

antibiotic treatments (80.5%), indicating that the control group had higher diversity than the 

other two groups in the fish hindgut. Dams alone did not have significant effects. However, sires 

had marginal significant effect effects on bacterial community structures (Table 1). Jaccard 

distance matrix analyses also showed significant differences among the treatment groups for the 

fish gut microbiome (Supplementary Figure S2B, Supplementary Tables S3, S4). 

Association between gut and aquatic microbial community: We evaluated the relationship 

between the tank water microbiome and the fish gut microbiome. Chao1 and PD (diversity 

measures) showed significant differences in the species richness of the two sample types; overall, 

diversity was significantly higher in the water samples than gut samples (P <0.001, Mann-

Whitney U test: 2191.5). The PCoA plot (Figure 4) showed clear separation between the gut and 

water samples. Moreover, PERMDISP and PERMANOVA test also revealed that the clusters 

showed in PCoA plot were significantly different (PERMDISP: P value < 0.01; PERMANOVA: 

Pseudo-F: 39.6, P value < 0.05). Additionally, Jaccard distance matrix analyses revealed similar 

results with significant differences among the treatment groups for fish gut microbiome 

composition (Supplementary Figure S2B, Supplementary Tables S3, S4). 

Treatment effects on the host gut transcriptome. 

To determine if antibiotic and probiotic-induced changes in the microbiome led changes in the 

host gut transcriptome, RNA-Seq was used to determine host transcript levels in the hindgut. 

Pairwise treatment comparisons resulted in 96 (control vs antibiotic; 35 control upregulated and 

61 control downregulated), 105 (control vs probiotic; 61 control upregulated, and 44 control 

downregulated), 120 (antibiotic vs probiotic; 84 antibiotic upregulated, and 36 antibiotic 

downregulated) transcripts that were differentially expressed among treatments (Benjamini-

Hochberg false-discovery rate (BH FDR) 0.1, |log2 FC| > 0.25). However, for selecting candidate 

genes for the OpenArray high-throughput qPCR analyses, we took a conservative approach and 

we only selected genes with transcripts that were significantly expressed at |log2 FC| > 1 and 

FDR P value < 0.05 (Supplementary Figure S4). This decreased the differentially expressed 

transcripts to 29 (control vs antibiotic), 29 (control vs probiotic), and 27 transcripts (antibiotic vs 
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probiotic) (Table 2). For the control versus antibiotic group comparisons, the selected genes 

related to cellular process (e.g., cell activation, cell communication, cell cycle, and cell death) 

were upregulated and genes related to metabolism and response to stimuli and stress were 

downregulated in antibiotic group (Table 2). While in the control versus probiotic group 

comparisons, genes related to regulation of a variety of functions (regulation of meiosis, 

intracellular protein transport, angiogenesis, transmembrane transporter, cell adhesion, negative 

regulation of apoptotic process) were downregulated and genes related to post-translation 

modifications were up-regulated in the probiotic treated fish (Table 2). Moreover, when we 

compared antibiotic against probiotic group transcription, genes related to cellular process 

(mostly apoptotic process) were up-regulated in antibiotic group while genes related to cell 

adhesion, regulation of transcription were up-regulated in probiotic group (Table 2).  

 
OpenArray high-throughput qRT‐PCR 

The LMM analysis showed PCs 4, 5, 6, 7 and 9 were significantly affected by treatment (Table 

3). We identified only those genes whose contributions to the significantly affected principal 

component axes were important (Supplementary Figure S5) and selected them for analyses. In 

our analysis we also included tank, body weight, and OpenArray chip ID as random effects to 

correct for possible technical, environmental, and body size effects. Chip and body weight were 

not significant for any of the genes and were dropped from our analyses. Sire effects (nested 

within dam) were not significant after FDR correction. Moreover, a significant tank effect was 

observed for only one gene (anxa1, p < 0.05) before FDR correction. We found no significant 

effects for dam‐by‐treatment or sire-by‐treatment interactions. After including FDR correction 

into our model, aifm3, manf, and prmt3 still showed a significant treatment effect (Table 4).  

Correlation between gut bacterial community and host transcriptional profile  

Spearman's rank correlation analysis was carried out to evaluate the potential link between 

bacterial taxon abundance (at the family level) for taxa common to the gut and differentially 

transcribed genes, while controlling for treatment and family effect. The abundance of 

Lactobacillaceae, Bifidobacteriaceae, and Aeromonadaceae were negatively and positively 

correlated with several gene transcription levels (Figure 5). However, after incorporating Holm-

Bonferroni P value correction, only Lactobacillaceae, and Bifidobacteriaceae was negatively 

correlated with manf, and prmt3 genes (Figure 5, and Supplementary Table S5).   
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Discussion 

Interactions between fish hosts and their microbiomes have been an under-studied area of 

research, perhaps due to the complexity of the host-microbiome relationship making the 

detection of specific microbial features that impact the host phenotype challenging. We 

approached this problem by manipulating gut microbiomes and measured the impact on key 

candidate gene regulation – such effects are likely mechanisms for microbes to affect host 

phenotype and health. We found that our treatments resulted in changes in host gene expression 

patterns, and those changes were mostly related to immune function and cell motility/integrity. 

By correcting for the direct effects of the treatment, as well as the quantitative genetic effects of 

family, we showed that changes in microbial communities do lead to changes in host physiology. 

Given the putative function of the responding genes, our work indicates a likely effect on host 

fitness as well. Indeed, many recent studies have shown that microbial symbionts are critical 

biological components for host traits closely associated with fitness, such as immune system 

development and function (Fuess et al., 2021; Langlois et al., 2021; Rosshart et al., 2017). 

This is the first study to consider and compare the impact of probiotics and antibiotics 

administered to captive fish on the rearing water microbial communities and we found that the 

aquatic microbial communities in the rearing tanks were significantly influenced by the feed 

treatments. This was not expected as the fish food treatment itself represented a small proportion 

of the tank volume, especially given the low flow through water effect. One possible factor is 

that up 90% of administered antibiotics are excreted in the urine and faeces of the fish, still in the 

active form (Polianciuc et al., 2020). The common bacterial phyla we report in the tank water 

were also reported in other studies that showed Proteobacteria, Bacteroidota, Firmicutes are the 

dominant taxa in water where fish are held (Chiarello et al., 2015; He et al., 2018; Stevick et al., 

2019; Uren Webster et al., 2018; Zhang et al., 2019). Nevertheless, we observed significant 

treatment effects on the rearing water bacterial communities, one possible explanation would be 

antibiotic-associated diarrhea leading to more fish gut-associated microbial excretion. Another 

reason could be antibiotic-susceptible taxa being replaced by taxa resistant to antimicrobial 

agents (e.g., Mycoplasmataceae (Firmicutes) (antibiotic (15%), control (1%), probiotic (3%)). 

Since the aquatic microbiome itself plays a role in maintaining fish health (Blancheton et al., 

2013) quantifying the unexpected effects of feed-based treatment on the rearing water is 

unexpected and important as it may contribute to dysbiosis and poor health outcomes in the fish. 

Although the negative effects of antibiotics on healthy fish have been reported before, few 
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studies have considered the effect of antibiotic treatment on the rearing water microbiome. 

Furthermore, our study showed that probiotic feed treatment also affected the water microbiome. 

Previous studies showed that treating water with probiotics can improve water quality (Elsabagh 

et al., 2018; Tabassum et al., 2021).  

The microbial communities present in fish rearing water are thought to affect the initial 

colonization of the fish microbiota during development (Llewellyn et al., 2014; Talwar et al., 

2018). However, similar to other studies (Uren Webster et al., 2018; Wu et al., 2018), our fish 

gut microbiomes were distinct from the water sample microbiomes. This indicates that the fish 

host gut microbiome is likely largely independent of the water microbial community and that 

other factors such as diet and host genome may be contributing disproportionally (Talwar et al., 

2018).  

Our principal goal was to use probiotic and antibiotic treatments to alter the Chinook salmon gut 

microbiome to determine the potential role of gut microbiota composition variation in host-

microbiome interactions. However, we also assessed how the gut microbial community reacted 

to the treatments. We found that, while fish gut bacterial community alpha diversity was not 

affected by the treatments, beta diversity was significantly different among all three treatments. 

Similar results were reported in other studies, indicating community richness (alpha diversity) 

did not respond to treatment with probiotics and antibiotics, but beta diversity did (Hernandez-

Perez et al., 2022; Kokou et al., 2020; Laursen et al., 2017, Rasmussen et al., 2022). One 

possible reason for this is that using antibiotics does not necessarily mean a reduced diversity of 

bacterial taxa. Indeed, a review showed that individuals with dysbiosis (potentially caused by 

treatment) can have even more diverse microbial community than healthy individuals (Berg et 

al., 2020). For example, Rosado et al (2019) showed that treatment of farmed seabass 

(Dicentrarchus labrax) with OTC caused a decrease in core bacterial community diversity in the 

gill and an increase in the skin. One reason that our probiotic treatment did not change bacterial 

community alpha diversity may be we treated healthy fish. Previous studies in human have 

shown that probiotics in healthy patients (healthy state) does not greatly impact the resident 

microbial populations (Eloe-Fadrosh et al., 2015; Lahti et al., 2013). In general, external stimuli 

that affect the intestinal environment can drive a hierarchical series of microbiome responses; 

resistance, resilience, redundancy or finally dysbiosis−depending on if the disturbance 

overcomes the intestinal microbial ecosystem (Lozupone et al., 2012; Moya and Ferrer, 2016; 

Sommer et al., 2017). It appears that the microbial responses to probiotics in our study is either 
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resistance or resilience, as previous studies have shown that the bacterial communities tended to 

be more resilient to external stimuli. On the other hand, treatment with antibiotics tends to result 

in either of resilience, redundancy or dysbiosis. Moreover, apart from the treatment effect, 

overall, the fish gut microbiome in our study was divided into two clusters and none of our 

measured factors could explain the two clusters (Figure 3A). This could be due to other 

unmeasured factors (e.g., sex) that may be contributing to variation in the fish microbiome.   

We predicted that the gut microbial community would respond to the treatments through an 

increase in beneficial gut bacteria (probiotic treatment) or through a decrease in the beneficial 

microbes with a related increase in the number of potential pathogens (antibiotic treatment). This 

was based on the expectation that antibiotics can cause dysbiosis in the gut, resulting in elevated 

levels of opportunistic pathogens (Dethlefsen and Relman, 2011; Francino, 2015), while 

prebiotics and probiotics are expected to increase the frequency of gut barrier-protecting bacteria 

such as Lactobacillaceae and Bifidobacteriaceae (Xiao et al., 2014). In this study, bacteria with 

potential probiotic properties (Lactobacillaceae, Bifidobacteriaceae, Streptococcaceae) were 

higher in the probiotic group compared to other treatment groups, as expected. On the other 

hand, Pseudomonadaceae and Aeromonadaceae had higher relative abundances in the antibiotic 

treated fish. Similar patterns of response to probiotics and antibiotics in bacterial community 

structure and composition have been reported by others (Falcinelli et al., 2016; Kokou et al., 

2020; Navarrete et al., 2008; Rutten et al., 2015). For example, Kokou et al (2020) showed that 

after seven days of antibiotic treatment, the European seabass (Dicentrarchus labrax) 

microbiome increased in Staphylococcus, Pseudomonas genera (Proteobacteria). OTC treatment 

was reported to reduce gut microbial diversity in Atlantic salmon, while enhancing possible 

opportunistic pathogens belonging to Aeromonas spp. likely due to eliminating competing 

microorganisms (Navarrete et al., 2008). Moreover, Falcinelli et al (2016) showed that 

Firmicutes, specifically Lactobacillus genus, were significantly higher in probiotic treated 

Zebrafish (Danio rerio) larvae relative to controls.  

Studies in humans (Qin et al., 2010) and fishes (Boutin et al., 2014) have reported that the gut 

microbiome varies substantially at the individual and population level, and the transcriptome of 

the fish gut appears to correlate with this variation (Franzosa et al., 2014; Qin et al., 2010). 

Moreover, Thaiss et al (2016) showed that treatment with antibiotics will change the mouse gut 

microbiome, and that the microbiome in turn regulates fluctuations in the host transcriptome and 

epigenome. In our study, we showed that our treatment altered the gut microbiota, then we tested 
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if these changes were associated with changes in host gene expression. Specifically, we showed 

that several genes related to cellular processes such as cell activation, cell communication, and 

cell death were upregulated after treatment with antibiotics in the feed. Although previous 

studies have shown a direct effect of antibiotic treatment on gene transcription in humans (Ryu et 

al., 2017), antibiotic treatment had a limited effect on gene expression in germ-free mice 

(Morgun et al., 2015, Ruiz et al., 2017), providing evidence that the microbiome mediates the 

effects of orally administered antibiotics on the host. In this study we found that our antibiotic 

treatment resulted in the upregulation of genes related to cell death. Moreover, bacteria from the 

Firmicutes and Bacteroidetes phyla were reduced while members of the Proteobacteria phylum 

increased. Zarrinpar et al (2018) showed a similar shift the bacterial community in the mouse 

cecal; however, a cecal transcriptome analysis showed that the changes in the bacterial 

community resulted in changes in the expression of genes related to cellular growth and 

proliferation, as well as cell death and survival pathways. This suggests that colonic remodeling 

after treatment with antibiotics is directly driving changes in the host transcriptome. 

Additionally, in our antibiotic treatment group, we showed increased transcription of the mrp7 

(multidrug resistance-associated protein 7-like) gene. Moreover, our qPCR analyses showed 

upregulation of aifm3 gene in antibiotic group. A study by Stoddard et al (2019) in zebrafish 

showed that after introducing antibiotics to fish, inflammatory gene transcription was 

downregulated and apoptotic genes such as aifm3 were upregulated within 24 hours. 

Antibiotics are designed to pass the gut barrier and become systemic; however, probiotics are 

live microorganisms that are not able to pass the lumen barrier. Probiotics can directly modulate 

host physiology by interacting with host cells (mostly immune cells), and through indirect 

changes in microbiome composition (Langlois et al., 2021). We showed that genes related to 

post-translation modifications were over-expressed in the probiotic treatment group, relative to 

the control and antibiotic treatment groups. Previous studies showed that probiotic diet 

supplements elicit a proinflammatory response in fish (Nayak, 2010) and honeybees (Daisley et 

al., 2020) which promotes more effective pathogen clearance and improved disease resistance. In 

this study we found that our treatment with probiotics indeed changes the bacterial community 

composition with increased numbers of potential probiotics taxa (Lactobacillaceae and 

Bifidobacteriaceae). Moreover, our treatment with probiotics showed fewer genes related to 

apoptosis process responding, relative to the antibiotics group. However, this was not the case 

for the control treatment, which was expected as the fish in control group were healthy. Finally, 
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we noticed that our probiotic treatment did change the expression of several genes related to 

immune function as reported in other studies (Petrof et al., 2004; Tomosada et al., 2013). For 

example, Tomosada et al (2013), showed that Bifidobacteria strains can have immunoregulatory 

effect in the intestinal epithelial cells by modulation the ubiquitin-editing enzyme. Moreover, 

similar to this study, Willms et al. (2022) also showed that beneficial bacteria can promote 

intestinal angiogenesis in Zebrafish. The precise mechanism of action of probiotics remains to be 

elucidated, especially in healthy states.  

One approach to characterize the bidirectional interactions between the host and the microbiome 

is to perturb the gut and measure the response of the host (such as in AIMD studies). In this 

study, we used antibiotics and probiotics to modify the microbial communities within the gut and 

measured host gene transcription responses to those modifications. We explored this effect using 

correlation between multiple common bacterial taxa and host gene transcription. The results of 

that analysis were consistent with a microbiome-mediated effect on the host. We found that 

specific microbial taxa are affecting the regulation of several host genes, for example, the 

abundance of Lactobacillaceae and Bifidobacteriaceae were negatively associated with the 

transcription of the prmt3 and manf host genes. Previous work has shown that prmt3 gene as a 

post-translational modification is involved in a number of cellular processes, such as protein 

trafficking, signal transduction, and transcriptional regulation (Bedford and Richard, 2005; Choi 

et al., 2008). Moreover, upregulation of manf gene can active innate immune cells and repairing 

damaged tissue (Neves et al., 2016; Sereno et al., 2017). However, further studies will be 

required to determine the specific association of Lactobacillaceae with manf host gene.  

The direction of interaction between fish gut and microbiome is not clear, yet it is the basis of the 

co-evolution of the host with it’s associated microbiomes. In this study we experimentally 

modified the fish gut microbiome and evaluated host gut tissue responses to those perturbation 

using transcriptome analysis and transcriptional profiling coupled with a controlled breeding 

design to control for host genome variation. Short term (10 days) perturbation of the juvenile 

Chinook salmon gut microbiome with antibiotics and probiotics affected the microbiome 

composition and host gene expression patterns. This study achieved a number of important goals: 

(1) characterized the effects of antibiotics and probiotics on the aquatic bacterial community (2) 

characterized juvenile Chinook salmon gut microbiome response to antibiotic and probiotic 

treatment (3) characterized the host gut tissue transcriptional response to antibiotic and probiotic 

treatments. We showed that our treatments with antibiotics and probiotics not only changed the 
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Chinook salmon microbiome (composition), but we also observed significant changes at the gene 

expression level in the gut tissue of the fish. This study provides insight into a long-standing co-

evolved symbiotic relationship between fish gut tissue and its associated microbiome. Moreover, 

understanding factors influencing the fish gut microbiome and its influence on host health and 

fitness will help in better sustainable growth for the aquaculture.  
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Table 1. Multivariate statistical testing (PERMANOVA) of effects of treatment, dams, and sires 

(nested within dams) on microbial community beta diversity (Bray-Curtis dissimilarity matrix).  
 

Source df SS MS Pseudo-F P(perm) 

Treatment 2 41246 20623 6.1 0.001 

Dams 5 23505 4700 1.1 0.22 

Sires (Dams) 6 24259 4043 1.3 0.06 

Res 151 4.6 3107.6 - - 

Total 186 6.5 - - - 
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Table 2. Comparison of gene expression levels and differentially expressed gene distributions 
between the treatment groups (|log2 Fold Change| > 1 and FDR P value < 0.05). 
 

Genes Gene name Gene 
abbreviation 

Base 
Mean 

log2 
FD 

P value padj 

Control Vs Antibiotic 
LOC112234113 transmembrane protein 220-like tmem220 40.0 4.68 1.09E-08 0.000 

ubr4 ubiquitin protein ligase E3 component n-recognin 4 ubr4 149.1 -2.75 5.55E-07 0.005 
LOC112248188 annexin A1-like anxa1 123.0 -5.56 6.34E-07 0.005 
LOC112241821 kinase D-interacting substrate of 220 kDa B-like kidins220 558.8 -1.12 1.35E-06 0.007 
LOC112241820 NTPase KAP family P-loop domain-containing protein 1-like nkpd1 422.9 -1.36 1.20E-06 0.007 
LOC112255867 neuronal acetylcholine receptor subunit alpha-3-like chrna3 88.5 1.10 1.73E-06 0.008 
LOC112220969 macrophage-stimulating protein receptor-like mst1r 47.2 -3.38 2.10E-06 0.008 
LOC112248679 golgin subfamily A member 7-like golga7 6.7 -6.86 1.97E-06 0.008 
LOC112245911 vacuolar protein sorting-associated protein 33A vps33a 57.2 5.09 3.59E-06 0.009 
LOC112216100 cyclin-dependent kinase 11B cdk11b 32.7 -4.1 3.38E-05 0.03 
LOC112231356 free fatty acid receptor 2-like ffar2 21.3 -3.66 4.05E-06 0.009 
LOC112259970 vacuolar protein-sorting-associated protein 25-like vps25 12.4 -3.52 3.82E-06 0.009 
LOC112258258  septin-8-A SEPTIN8 42.1 3.84 4.24E-06 0.008 

xrra1 X-ray radiation resistance associated 1 xrra1 2201.2 1.07 6.86E-06 0.011 
LOC112246816 HCLS1 binding protein 3 hs1bp3 160.1 -4.37 6.66E-06 0.011 

nsrp1 nuclear speckle splicing regulatory protein 1 nsrp1 21.1 -3.91 6.33E-06 0.011 
LOC112239977

* 
apoptosis inducing factor mitochondria associated 3 aifm3 14.9 -5.00 6.54E-06 0.011 

LOC112232613 peroxisomal biogenesis factor 14 pex14 17.2 -4.31 7.21E-06 0.011 
cfap58 cilia and flagella associated protein 58 cfap58 302.4 1.73 1.04E-05 0.014 

LOC112218626 WAS protein family homolog 1 wash1 58.3 1.22 1.11E-05 0.014 
LOC112215983 natriuretic peptide B nppb 34.2 1.61 1.06E-05 0.014 
LOC112261371 echinoidin echinoidin 58.3 1.2 1.18E-05 0.014 
LOC112245791 multidrug resistance-associated protein 7-like mrp7 28.4 -4.01 9.57E-06 0.014 
LOC112234485 uncharacterized uncharacterized 192.0 -4.76 1.23E-05 0.015 
LOC112243336 SET domain containing 2, histone lysine methyltransferase setd2 86.5 -1.29 1.37E-05 0.016 
LOC112251319 phosphatase and actin regulator 1 phactr1 23.1 -3.97 2.82E-05 0.030 
LOC112265673 serine protease 16 prss16 41.2 3.69 4.34E-05 0.043 
LOC112249106 piezo-type mechanosensitive ion channel component 1 piezo1 41.2 3.69 4.34E-05 0.043 
LOC112232636 ER degradation enhancer, mannosidase alpha-like 2 edem2 29.8 4.52 4.83E-05 0.047 

Control Vs Probiotics 
LOC112242158 Sorting nexin-10A snx10b 7818.8 1.24 9.94E-10 0.000 
LOC112232343 Heat shock factor-binding protein 1-like hsbp1 131.3 -6.57 1.91E-08 0.000 
LOC112245911 Vacuolar protein sorting-associated protein 33A vps33a 57.2 5.40 3.37E-07 0.002 
LOC112246837 COMM domain containing 10 commd10 31.4 -5.88 3.12E-07 0.002 
LOC112241820 NTPase KAP family P-loop domain-containing protein 1-like nkpd1 422.9 -1.35 5.06E-07 0.002 
LOC112220855 COP9 signalosome complex subunit 6 cops6 138.4 -5.74 5.03E-07 0.002 
LOC112218768 WEE2 oocyte meiosis inhibiting kinase wee2 353.9 1.15 9.19E-07 0.003 
LOC112253929 homeobox protein PKNOX1 pknox1 18.1 -5.02 8.06E-07 0.003 
LOC112234113 transmembrane protein 220-like tmem220 40.0 3.60 1.73E-06 0.004 

prmt3* protein arginine methyltransferase 3 prmt3 138.8 -5.25 3.34E-06 0.007 
LOC112255055 LSM3 homolog, U6 small nuclear RNA and mRNA 

degradation associated 
lsm3 114.8 -7.27 0.00001 0.017 

LOC112264620 THO complex subunit 4 alyref 138.8 -5.25 0.000003 0.007 
LOC112248608 B-cell linker protein-like blnk 37.6 -4.01 3.57E-06 0.007 
LOC112246700 cytochrome b-c1 complex subunit 6, mitochondrial-like uqcrh 97.9 4.75 9.35E-06 0.015 
LOC112219606 transmembrane protein 38B tmem38b 114.8 -7.27 1.11E-05 0.017 
LOC112249934 syndecan-1 sdc1 71.6 -3.41 1.27E-05 0.017 
LOC112214559 lysophospholipid acyltransferase lpcat4 42.1 3.46 1.27E-05 0.017 
LOC112217687 R-spondin-3-like rspo3 90.9 1.38 2.33E-05 0.028 
LOC112264739 proteasome subunit beta type-4-like psmb4 97.9 -4.25 3.29E-05 0.034 
LOC112261503 sodium-dependent multivitamin transporter slc5a6 291.4 1.80 3.44E-05 0.035 
LOC112263481 CD151 antigen cd151 18.5 4.07 3.89E-05 0.037 
LOC112232610 phosphogluconate dehydrogenase pgd 155.3 -3.97 4.62E-05 0.040 

rabep2* rab GTPase-binding effector protein 2 rabep2 46.8 -3.05 4.56E-05 0.040 
sidt2 SID1 transmembrane family, member 2 sidt2 19.7 4.66 4.79E-05 0.040 

LOC112248204 low-density lipoprotein receptor-related protein 2 lrp2 12.9 5.16 5.71E-05 0.045 
LOC112242147 uncharacterized uncharacterized 291.3 1.8 3.44E-05 0.034 
LOC112254714 ras-related protein Rab-34-like rab34b 558.7 -1.03 2.59E-06 0.005 
LOC112234485 uncharacterized uncharacterized 191.9 -5.59 7.11E-08 0.0007 
LOC112241821 kinase D-interacting substrate of 220 kDa B-like kidins220 558.7 -1.03 2.59E-06 0.005 
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Antibiotic Vs Probiotic 
LOC112216146 FERM domain containing 4Bb frmd4bb 24.1 3.93 3.97E-08 0.001 
LOC112232343 heat shock factor-binding protein 1-like hsbp1 131.3 -6.47 1.22E-07 0.002 
LOC112220855 COP9 signalosome complex subunit 6 cops6 138.4 -6.27 2.05E-07 0.002 
LOC112248188 annexin A1-like anxa1 123.0 5.74 2.91E-07 0.002 
LOC112265459 arsenite methyltransferase-like as3mt 57.5 -4.33 2.39E-07 0.002 
LOC112232636 ER degradation enhancer, mannosidase alpha-like 2 edem2 29.8 -5.67 3.23E-07 0.002 
LOC112218768 WEE2 oocyte meiosis inhibiting kinase wee2 353.9 1.19 1.16E-06 0.004 
LOC112232613 peroxisomal biogenesis factor 14 pex14 17.2 4.82 1.14E-06 0.004 
LOC112252883 transient receptor potential cation channel subfamily V 

member 5 
trpv5 160.4 -1.01 1.43E-06 0.005 

LOC112222087
* mesencephalic astrocyte-derived neurotrophic factor manf 43.9 -2.96 1.98E-06 0.006 

LOC112246837 COMM domain containing 10 commd10 31.4 -5.39 4.10E-06 0.010 
nsrp1 nuclear speckle splicing regulatory protein 1 nsrp1 21.1 4.00 4.35E-06 0.010 

LOC112239977 apoptosis inducing factor mitochondria associated 3 aifm3 14.9 5.17 4.30E-06 0.010 

LOC112249580 transcription factor 12 tcf12 40.7 -1.1 5.96754E-
06 0.01 

LOC112220311 Occludin a ocln 2096.9 1.05 7.94E-06 0.016 
LOC112231356 free fatty acid receptor 2-like ffar2 21.3 3.47 1.10E-05 0.020 
LOC112264739 proteasome subunit beta type-4-like psmb4 97.9 -4.59 2.06E-05 0.033 
LOC112237710  dispanin subfamily A member 2b dspa2b  780.5 1.89 2.69E-05 0.035 
LOC112262831 polyubiquitin ub 687.1 2.32 2.65E-05 0.035 
LOC112245658 trafficking kinesin-binding protein 1 trak1 36.8 2.52 2.38E-05 0.035 
LOC112215983 natriuretic peptide B nppb 34.2 -1.54 2.60E-05 0.035 
LOC112218750 protein mono-ADP-ribosyltransferase  parp12 39.3 3.13 2.94E-05 0.036 
LOC112225266 interferon alpha/beta receptor 2 ifnar2 158.6 1.07 3.60E-05 0.043 
LOC112217407 protein PML pml 442.7 1.36 4.40E-05 0.048 

ano7 anoctamin 7 ano7 62.4 -3.31 4.93E-05 0.049 
LOC112245441 uncharacterized uncharacterized 20.3 2.37 4.77E-05 0.049 
LOC112225425 T cell differentiation protein 2 mal2 155.6 1.05 6.50E-05 0.049 

* Indicate that these genes were also significant in our OpenArray high-throughput qRT‐PCR analysis.  
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Table 3: LMM model of PC1-9 (Eigenvalue > 1, and % variance explained > 2%) on the qPCR 

data for the 48 selected genes test for the effect of treatment.  

PCA 
axes 

Type III 
Sum of 
Squares 

df Mean 
Square F Sig. 

PC1 64.65 2 32.32 1.75 0.17 
PC2 5.19 2 2.59 0.44 0.64 
PC3 7.91 2 3.95 1.42 0.285 
PC4 27.45 2 13.72 9.59 0.0002 ***a 
PC5 31.93 2 15.96 14.44 1.038e-05 *** 
PC6 12.64 2 6.32 5.99 0.0097 ** 
PC7 12.19 2 6.09 4.44 0.01 * 
PC8 3.16 2 1.58 1.64 0.23 
PC9 10.62 2 5.31 5.93 0.003 ** 
a. Signif. codes: 0.01 < P ≤ 0.05*, 0.001 < P ≤ 0.01**, P ≤ 0.001*** 
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Table 4: Results of the LMM analysis for significance levels for treatment, dam, sire (nested in 

dam), tank (nested in sire nested in dam) effects for each. Body weight, dam, treatment×dam, 

treatment×sire effects were nonsignificant before FDR correction and were removed from the 

model. Treatment was considered as fixed effects, with body weight, dam, and sire effects as 

random effects. The dependent variable was log transformed ΔCT.  
Genes Probiotics 

vs Control 
Antibiotics 
VS Control 

Treatment Sire (nested 
within dam) 

Tank 
(sire(dam)) 

uqcrh 0.9 0.14 0.11 0.036 * 0.32 
sidt2 0.07 0.17 0.08 0.09 0.43 

rabep2 0.05*a 0.60 0.015* 0.78 0.45 
piezo1 0.06 0.25 0.18 1.00 1.00 
ffar2 0.71 0.14 0.09 0.83 0.89 
trpv5 0.52 0.88 0.62 0.33 0.98 
aifm3 0.04* 0.89 0.002 **b 0.009 ** 0.99 

ub 0.78 0.14 0.05* 0.62 1.00 
dspa2b 0.4 0.20 0.06 0.07 1.00 

pml 0.58 0.39 0.60 0.01 * 0.99 
nkpd1 0.27 0.33 0.47 0.04 * 1.00 

tmem38b 0.41 0.02* 0.07 0.13 0.98 
pknox1 0.63 0.44 0.43 1.00 1.00 
manf 0.0001*** 0.87 5.6e-06 *** 1.00 0.14 
ifitm3 0.44 0.35 0.25 0.17 0.49 
ifnar2 0.4 0.80 0.77 0.02 * 0.99 
anxa1 0.57 0.31 0.19 0.13 0.02* 
prmt3 0.0027** 0.16 0.001 *** 0.37 1.00 

a. Significant codes: 0.01 < P ≤ 0.05*, 0.001 < P ≤ 0.01**, P ≤ 0.001*** 

b. Significant bold P value indicates significant after P value correction.  
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 Figure 1: Experimental design and the number of samples collected for each experiment. 

 
 
 
 
 
 
 



 
 

36 

 
 

Figure 2: Panel (A) showing relative abundance (top 10) of water bacterial community 

composition presented at the family level. The ‘other’ taxa category includes the sum of all 

bacterial families. Panel B: Scatterplot of the first two axes from the PCoA of the tank water 

bacterial community where the treated fish were held. Treatment is shown by colour with the 

95% ellipses. 
 

 



 
 

37 

 

 

Figure 3. Panel (A) showing relative abundance (top 10) of gut bacterial community composition 

presented at the family level. The ‘other’ taxa category includes the sum of all bacterial families. 

Panel (B) Scatterplot of the first two axes from the PCoA of the Chinook salmon gut bacterial 

community. Treatment is shown by colour with the 95% ellipses. 
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Figure 4. Scatterplot of the first two axes from the PCoA of the Chinook salmon gut as well as 

water bacterial community. Sample type is shown by colour with the 95% ellipses. 
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Figure 5. Hierarchical clustering of the 7 core bacterial taxa and association with gene 

expression. Columns correspond to the 7 core bacterial taxa; rows correspond to 9 selected 

differentially expressed genes. Red and blue denote positive and negative associations, 

respectively. The intensity of the colors represents the degree of association between the genus 

abundance and bacterial taxa are based on Spearman’s Rank Correlation coefficient rho. Stars in 

each square represent significant P values (adjusted).  

 




