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Abstract 

Beyond the study of the mean, functional ecology lacks a concise characterization of trait 

variance patterns across spatiotemporal scales. Traits are measured in different ways, using 

different metrics, and at different spatial (and rarely temporal) scales. This study expands on 

previous research by applying a ubiquitous and widely used empirical model – Taylor's Power 

Law – to functional trait variance with the goal of identifying general patterns of trait variance 

scaling (the behavior of trait variance across scales). We compiled data on tree seedling 

communities monitored over 10 years across 213 2m2 plots and functional trait data from a 

subtropical forest in Puerto Rico. We examined trait-based Taylor's Power Law at nested spatial 

and temporal scales. The scaling of variance with the mean was idiosyncratic across traits 

suggesting the drivers of variation likely differ across traits which may make variance scaling 

theory elusive. However, slopes varied more in space than through time, suggesting spatial 

environmental variability may have a larger role in driving trait variance than temporal 

variability. Empirical models that characterize taxonomic patterns across spatiotemporal scales, 

like Taylor’s Power Law, can provide insight into the scaling of functional traits, a necessary 

next step towards a more predictive trait-based ecology.  

 

Keywords: Puerto Rico, seed mass, seedling censuses, specific leaf area, Taylor's Power Law, 
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Introduction 

A key first step in building a more predictive ecology is to understand how biological 

patterns change with scale (Wiens 1989, Levin 1992, Chase et al. 2018). All natural systems 

show variability over spatiotemporal scales and the phenotypic composition of communities is 

no exception (Smith et al. 2013, Asner et al. 2017). The magnitude of trait variation across 

species in a community depends on spatial and temporal scales examined, yet consensus on 

whether trait variance (in the mathematical sense) varies systematically over space or time is 

lacking (Smith et al. 2013, Jarzyna and Jetz 2018, Zhang et al. 2018). Without a clear 

understanding of trait variation patterns across spatial and temporal scales, the predictability and 

generalizability of functional approaches remain limited.  

In a recent paper, Hulshof and Umaña (2023) call for the characterization of trait 

variation across spatiotemporal scales by taking advantage of existing empirical models used to 

characterize taxonomic patterns. Taylor’s Power Law is of particular interest given that it can 

integrate variation across temporal and spatial scales (Taylor 1961, Adler et al. 2005, White et al. 

2010). Taylor's Power Law describes the proportional relationship between (population) mean 

and variance where the slope typically varies between 1 and 2 (Taylor 1961). This is a 

fundamental relationship reported across taxa and biomes (Taylor et al. 1988, Döring et al. 2015, 

Cobain et al. 2019) but has been rarely applied to other dimensions of biodiversity beyond 

taxonomic units (but see Xu 2016, Ulrich et al. 2021). The underlying explanations for Taylor's 

Power Law (at least for populations) range from biological mechanisms, including the role of 

fluctuating immigration and population growth rates (Taylor and Taylor 1977, Anderson et al. 

1982, Cohen et al. 2013) to purely statistical mechanisms where the skewness of the population 

distribution in space or time is sufficient for explaining the pattern of mean-variance scaling 



(Cohen and Xu 2015, Xiao et al. 2015). We extend this relationship to traits by comparing trait 

means and variances of plant communities monitored over time and across a large area. In this 

trait-based extension, the existence of trait-based Taylor’s Power Law – a power-function 

increase in trait variance with trait means – regardless of the trait could point to statistical 

mechanisms where the pattern should be more visible in more skewed trait distributions. 

Alternatively, trait-dependent mean-variance scaling could point to biological processes related 

to trait selection and niche space in spatiotemporally heterogeneous environments. 

We suggest that the slope of this relationship will vary as a result of biological processes 

and spatiotemporal environmental variability (Hulshof and Umaña 2023), such that at increasing 

spatiotemporal scales (greater environmental variability) the relationship between log-

transformed trait mean and log-transformed trait variance should exhibit steeper positive slopes 

(Kalyuzhny et al. 2014, Hulshof and Umaña 2023) (Figure 1). A key assumption underlying the 

integration of spatiotemporal scales into this existing empirical model is that environmental 

variability increases with both area and time. Larger areas generally encompass a mosaic of 

environmental conditions, which is reflected by greater spatial heterogeneity, and longer time 

spans should encompass greater climatic variability. This increasing environmental variability 

should thus promote the colonization of species with “novel” functions able to take advantage of 

the increased number of niches contained in larger areas and longer periods (Chesson and 

Warner 1981, Armstrong and Mcgehee 2008) and ultimately lead to greater variance in 

functional composition. 

  In this study, we examine trait-based Taylor’s Power Law relationships by integrating 

decade-long annual census data from seedling plots located in a subtropical wet forest in Puerto 

Rico with species-level trait data. We focus on three commonly measured functional traits, 



specific leaf area, seed mass, and wood specific gravity, representing key dimensions of resource 

acquisition and reproductive strategies important for determining assembly of tropical forest 

communities (Díaz et al. 2016). We used seedling census data, instead of adult data, because 

seedling dynamics are faster and can be monitored over shorter periods (e.g., annually), while 

adult censuses in this forest take place approximately every 5 years and turnover rates are much 

slower. The questions that framed our study were: Is it possible to use community trait mean 

values to predict community trait variance values? Does the relationship between log-

transformed trait mean and log-transformed trait variance change systematically as spatial and 

temporal scales increase? Are these patterns trait dependent? Trait-based Taylor's Power Law 

relationships revealed variable trends across functional traits which generally showed more 

stable patterns across temporal than spatial scales. Generalities in trait variation patterns may 

point to unifying principles acting across space and time, aiding in the development of a 

predictive theory of variance scaling.  

 Methods 

Study site and census data –We compiled census and functional trait data from tree communities 

distributed along a 16-ha permanent plot located in a subtropical wet forest of northeastern 

Puerto Rico (18°200°N, 65°490°W) (Thompson et al. 2002). We used data on 213 2 × 1m 

seedling plots monitored annually for survival and recruitment from 2007 to 2016 (Appendix S1: 

see Section S1, and Figure S1) (Data available in Zimmerman 2018). The study site has a long 

history of natural and anthropogenic disturbance including hurricanes and fruit plantations that 

have altered the functional composition and dynamics of this forest (Thompson et al. 2002, 

Umaña et al. 2023). 



 Functional traits – Species-level specific leaf area (SLA, cm2 g-1), seed mass (SM, g), and wood 

specific gravity (WSG, g cm-3) were collected from all woody species in the 16-ha plot following 

standardized protocols (Cornelissen et al. 2003, Swenson and Enquist 2008) (Appendix S1: see 

Section S1 and Table S1) (Data available in Swenson and Umaña 2015). 

Data Analysis – To fit a trait-based Taylor's Power Law, we calculated plot-level trait 

unweighted means and variances based on species composition of tree seedling communities and 

fit power laws to trait variance at increasing spatial and temporal scales. Across spatial scales, 

we calculated trait variance and mean across species with increasing radial distance from one 

plot until all plots were encompassed. We repeated this same procedure for each of the 213 

seedling plots across all censuses from 2007 to 2016. That is, at each spatial scale in a given 

census, we calculated the community mean and variance per trait. Next, we defined 10 major 

categories to obtain the same number of slopes for temporal (10 years) and spatial scales. The 

categories were defined using different radial distances as follows: 1) less than 50 m; 2) between 

51 and 100 m; 3) between 101 and 150 m; and so on every 50 m (we also ran the analyses 

applying different categories, but the results were largely consistent with those presented here). 

For each spatial category, we calculated the slopes between the log-transformed trait variance 

and log-transformed trait mean. Then, we calculated the correlation between slopes and spatial 

categories.  

Across temporal scales, we first calculated trait variance and mean across species per 

seedling plot for nested temporal scales beginning with periods of a single census (census period 

t1, t2, t3, etc.), followed by periods of two consecutive censuses (census period t1-t2, t2-t3, t3-t4, 

etc.) and so on until a period encompassing all 10 censuses (census period t1 to t10). Because this 

procedure resulted in a variable number of data points for each temporal grain (e.g., for the 1-



census temporal grain we had 10 values per plot, but for the 10-censuses temporal grain we had 1 

value per plot), we calculated the mean value across all census combinations per temporal grain, 

so that for each temporal grain we had a single value for trait variance and mean per plot. Next, 

we calculated the slopes between the log-transformed trait variance and log-transformed trait 

mean at different time spans and accumulated areas. Then, we calculated the correlation between 

slopes and temporal grain.  

Results 

Temporal Trait-based Taylor's Power Law – The statistical significance of temporal Taylor's 

Power Law was dependent on the trait (Figure 2A, B, Table S2). For SLA and SM, log-

transformed variance and mean were positively related, and the slopes were greater than 1, in 

line with expectations from Taylor's Power Law (Figure 2A). However, for WSG this 

relationship was generally flat with slopes ranging between 0.10 and 0.76. With increasing 

temporal extent, we observed relatively constant slopes for SLA and WSG and a positive trend 

for SM (Figure 2B, Table S3). The only exception was the WSG slope at a 1-year time span 

(slope = 0.10), which was associated with an outlying point– one plot showed extremely low 

variance.  

Spatial Trait-based Taylor's Power Law – As with the temporal trends, the statistical 

significance of spatial Taylor's Power Law was dependent on the trait (Figure 3A, B). For SLA 

and SM, log-transformed variance and mean were positively related, but for WSG the 

relationship was negative (Figure 3A). For SLA, slopes were always greater than 1 indicating a 

power-function type increase in trait variance with the mean. For SM, slopes ranged from 3.30 to 

0.91 indicating that trait variance approaches a constant. For WSG, slopes were negative 

indicating that trait variance decreases in a power-function fashion as the trait mean increases. 



When integrating data across space, slopes change in a systematic manner; for SLA, slopes 

increased, and for SM and WSG, slopes decreased with increasing area (Figure 3B, Table S3).   

 Discussion 

Characterizing patterns of trait variation over spatiotemporal scales is a necessary step 

towards a generalizable framework in trait-based ecology. In this study, we extended Taylor’s 

Power Law to trait variance using seedling communities from a species-rich subtropical wet 

forest. While some results are consistent with previously reported taxonomic patterns – 

supporting the existence of Taylor's Power Law for some traits – the application of the trait 

dimension reveals additional complexities discussed in more detail below.   

Notably, trait variance scaled positively with the mean for SLA and SM, yet the 

relationship between WSG variance and the mean was flat or negative (Figures 2 and 3). This 

likely reflects the degree of variation or skewness across trait types and energetic costs of trait 

variance; foliar traits are known to be more variable than wood traits (Kattge et al. 2011, Siefert 

et al. 2015) and SM generally varies several orders of magnitude and exhibits greater skewness 

among co-occurring species (Rees and Venable 2007). For example, in our study site, mean 

WSG per plot ranged between 0.26 and 0.82 g cm-3 while SM ranged between 0.0007 and 13.2 g 

with a highly skewed distribution (Appendix S1: Table S1, Figure S2). This variation in the 

magnitude and skewness of traits may influence the visibility of Taylor’s Power Law because 

when the range of log (mean) values is large the relationship tends to be more visible (Taylor et 

al. 1988, Döring et al. 2015). In addition, variance-mean slopes greater than one found for both 

SLA and SM indicate that as mean trait values increase, subsequent increases in variance 

become larger. In other words, gram for gram, variance is greater for larger SLA and SM values. 

This is intuitive for SLA considering the energetic costs of leaf construction. Low SLA values 



are indicative of greater cell wall concentrations and energetically expensive carbon-based 

secondary compounds like lignins and tannins (Coley et al. 1985). Whereas high SLA values are 

indicative of greater concentrations of structural compounds such as hemicellulose and cellulose 

which are, in comparison, less energetically costly (Niinemets and Kull 1999). Thus, varying 

1cm2 for a leaf that is small and thick (low SLA) incurs greater energetic costs compared to 

varying the same area for a leaf that is large and thin (high SLA). Independent of the mechanism 

underlying Taylor’s Power Law, our results indicate this may be a useful model for predicting 

trait variances based on trait means, but these predictions may vary depending on the trait. 

Predicting trait variances based on trait means has clear applications for improving ecosystem 

demography models which can incorporate species-level trait variances in addition to species 

mean trait values (e.g., ED2, Medvigy et al. 2009)). 

In addition, our analyses of Taylor's Power Law showed that variation in slopes between 

trait variance and means were generally stable across time (for SLA and WSG) but showed 

systematic variation across space. Stable variance-mean slopes across temporal scales contradicts 

our expectation of increasing slopes at larger temporal scales (encompassing greater seasonality 

or climatic variability). It is possible the relatively short study period (10 years) did not 

encompass sufficient climatic variation to affect the relationship between trait variance and 

means for SLA and WSG and/or that these traits were weakly affected by the temporal variation 

during the period studied. We recommend determining the validity of Taylor’s Power Law for 

longer time periods including major temporal fluctuations, to determine whether patterns 

detected in this study are general and point to fundamental drivers of global plant trait variation 

(e.g., Diaz et al. 2016). Interestingly, SM was the only trait that showed a positive trend over a 

longer time span, indicating that the variance for a given mean is larger at longer temporal scales 



than at shorter ones. We interpret this as a combined effect of the high variation in magnitude of 

this trait, which increases the visibility of Taylor Power Law functions, and an increased climatic 

variability over time that in turn, increases the number of niches. For instance, as the studied 

forest undergoes secondary succession, the process generates a replacement of species that 

exhibit different ecological strategies, with pioneer species that tend to have small SM being 

subsequently replaced by old growth species that exhibit large SM. 

  Across spatial scales, the slopes of Taylor's Power Law either consistently increased 

(SLA) or decreased (SM and WSG) (Figure 3B). The increasing slopes at larger spatial scales 

(observed for SLA), indicates that the change in trait variance for a given mean is larger when 

larger areas are considered. This pattern is consistent with our expectations and could be the 

outcome of increased spatial environmental heterogeneity at larger spatial scales (Cobain et al. 

2019, Ulrich et al. 2021). In this forest, the 16-ha plot where seedling plots were located, 

encompasses substantial spatial heterogeneity associated with land-use history; the northern 

portion of the plot (3/4 parts) was used for fruit plantations and selective logging before 1940, 

while the southern portion (1/4) experienced less anthropogenic activity (Thompson et al. 2002). 

This spatial heterogeneity was accentuated after hurricanes (Georges and Hugo in 1991 and 

1998, respectively) (Uriarte et al. 2009) and could explain some of the observed patterns in SLA 

– species with high SLA tend to dominate disturbed areas, while species with low SLA are 

common in more mature forests (Grime 1979, Westoby 1998). In contrast, the shallower 

(positive) slopes at larger areas found for SM, indicate that changes in trait variance becomes 

smaller with increasing area. This likely occurs because the range of SM values is mostly, if not 

completely, encompassed by larger spatial scales. In other words, there seems to be an upper 

limit to the total variance of SM in this system. This pattern points to upper constraints on the 



magnitude of trait variation and potentially to ecosystem function (de Camargo et al. 2019, 

Ulrich et al. 2021) and may also help explain the large variation of traits reported at local scales 

(e.g., (Leffler and Enquist 2002, Freschet et al. 2011, Hulshof et al. 2013). Finally, for WSG we 

observed declining variance-mean slopes at increasing areas, but the slopes were negative. This 

indicates that trait variance decreases in a power-function fashion with mean values and the 

decreasing rate is faster as area increases. On an energetic basis, denser wood requires more 

carbon and is energetically more expensive per unit volume than lighter woods (Enquist et al. 

1998). Together, the trends reported here for Taylor's Power Law across spatial scales reveal 

systematic variation in slopes dependent on the type of trait, pointing to the roles of different 

biological processes and constraints.   

Independently of the traits examined, variability in trait variance across time was always 

lower than variability in trait variance across space. This result has key implications for 

predicting species coexistence where spatial variability may have a greater influence on 

coexistence than temporal variability, at least for the relatively short period that were studied 

(Snyder 2008). It would be important to examine these trends for periods including major 

climatic events such as hurricanes, and test if temporal variation remains minor relative to spatial 

variation (Tippett and Cohen 2016, Cohen et al. 2016). Further, the high variation for some traits 

(e.g., SLA) at the relatively constrained spatial and temporal scales examined here, suggest that 

small-scale processes like those emerging from species interactions are key drivers of trait 

variation. This finding has implications for trait sampling strategies and, more broadly, for 

understanding spatial and temporal dynamics of plant communities worldwide.  

 Conclusion 



The contrasting results across nested spatial and temporal scales shown here suggest a variable 

role of biological drivers associated with environmental heterogeneity underlying a trait-based 

analog of Taylor’s Power Law. In our study system (a small subtropical island once heavily 

deforested and increasingly frequented by storms), disturbance history plays an important role in 

driving patterns of trait and environmental variation across spatial scales (Thompson et al. 2002, 

Uriarte et al. 2009). Our findings point to fundamental relationships worth examining across 

other systems varying in spatiotemporal environmental variability. Two findings in particular, 

the upper constraint on trait variance and greater trait variance due to spatial relative to temporal 

scales, have broad implications for understanding species coexistence and ecosystem function. 

Characterizing patterns of trait variance promises to advance trait-based ecology and improve the 

predictability of ecological models. Integrating information over space and time will allow us to 

identify processes operating at different scales, resolve potential inconsistencies between spatial 

and temporal components, and understand the impact of ongoing increases in spatiotemporal 

environmental variability on natural systems worldwide.  

 

Acknowledgments: We thank Nathan G. Swenson for his comments on an earlier version of the 

manuscript, John Bithorn, Jimena Forero-M, Chris Nytch, Setch Rifkin, Sarah Stankavich, Jill 

Thompson, Maria Uriarte, Jess Zimmerman, and the LTER volunteers for conducting the 

seedling censuses and collecting trait data. This study was based on work supported by the 

National Science foundation under Grants BSR-8811902, DEB-9411973, DEB-9705814, DEB-

0080538, DEB-0218039, DEB-0620910, DEB-1239764, DEB-1546686, DEB-1831952, DEB-

0614659 and 11222325. MNU was supported by DEB-2016678, CMH was supported by NSF 

CAREER-2042453.  



 

Author contributions: CMH and MNU conceived the idea. MNU performed the analyses and 

wrote the first draft of the manuscript, CMH contributed substantially to editing. 

 

Conflicts of interest: the authors declare no conflicts of interest. 

 

Literature cited 

Adler, P. B., E. P. White, W. K. Lauenroth, D. M. Kaufman, A. Rassweiler, and J. A. Rusak. 2005. 

Evidence for a general Species-Time-Area Relationship. Ecology 86:2032–2039. 

Anderson, R. M., D. M. Gordon, M. J. Crawley, and M. P. Hassell. 1982. Variability in the abundance 

of animal and plant species. Nature 296:245–248. 

Armstrong, R. A., and R. Mcgehee. 2008. Competitive exclusion. 1980 115:151–170. 

Asner, G. P., R. E. Martin, C. B. Anderson, K. Kryston, N. Vaughn, D. E. Knapp, L. P. Bentley, et al. 

2017. Scale dependence of canopy trait distributions along a tropical forest elevation gradient. 

New Phytologist 214:973–988. 

de Camargo, U., T. Roslin, and O. Ovaskainen. 2019. Spatio-temporal scaling of biodiversity in 

acoustic tropical bird communities. Ecography 42:1936–1947. 

Chase, J. M., B. J. McGill, D. J. McGlinn, F. May, S. A. Blowes, X. Xiao, T. M. Knight, et al. 2018. 

Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change 

across communities. Ecology Letters 21:1737–1751. 

Chesson, P., and R. Warner. 1981. Environmental variability promotes coexistence in lottery 

competitive systems. The American Naturalist 117:923–943. 



Cobain, M. R. D., M. Brede, and C. N. Trueman. 2019. Taylor’s power law captures the effects of 

environmental variability on community structure: An example from fishes in the North Sea. 

Journal of Animal Ecology 88:290–301. 

Cohen, J. E., and M. Xu. 2015. Random sampling of skewed distributions implies Taylor’s power law 

of fluctuation scaling. Proceedings of the National Academy of Sciences of the United States of 

America 112:7749–7754. 

Cohen, J. E., M. Xu, and W. S. F. Schuster. 2013. Stochastic multiplicative population growth 

predicts and interprets taylor’s power law of fluctuation scaling. Proceedings of the Royal 

Society B: Biological Sciences 280. 

Coley, P. D., J. P. Bryant, and S. F. Chaping. 1985. Resource availabity and plant antiherbivore 

defense. Science 230:895–899. 

Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D. E. Gurvich, P. B. Reich, et al. 

2003. A handbook of protocols for standardised and easy measurement of plant functional traits 

worldwide. Australian Journal of Botany 51:335–380. 

Díaz, S., J. Kattge, J. H. C. Cornelissen, I. J. Wright, S. Lavorel, S. Dray, B. Reu, et al. 2016. The 

global spectrum of plant form and function. Nature 529:1–17. 

Döring, T. F., S. Knapp, and J. E. Cohen. 2015. Taylor’s power law and the stability of crop yields. 

Field Crops Research 183:294–302. 

Enquist, B. J., J. H. Brown, and G. B. West. 1998. Allometric scaling of plant energetics and 

population density. Nature 395:163–165. 

Freschet, G. T., A. T. C. Dias, D. D. Ackerly, R. Aerts, P. M. Van Bodegom, W. K. Cornwell, M. 

Dong, et al. 2011. Global to community scale differences in the prevalence of convergent over 



divergent leaf trait distributions in plant assemblages. Global Ecology and Biogeography 

20:755–765. 

Grime, J. P. 1979. Plant strategies and vegetation processes. First edition. John Wiley and Sons., 

Chichester, UK. 

Hulshof, C. M., C. Violle, M. J. Spasojevic, B. McGill, E. Damschen, S. Harrison, and B. J. Enquist. 

2013. Intra-specific and inter-specific variation in specific leaf area reveal the importance of 

abiotic and biotic drivers of species diversity across elevation and latitude. Journal of Vegetation 

Science 24:921–931. 

Jarzyna, M. A., and W. Jetz. 2018. Taxonomic and functional diversity change is scale dependent. 

Nature Communications 9. 

Kalyuzhny, M., Y. Schreiber, R. Chocron, C. H. Flather, R. Kadmon, D. A. Kessler, and N. M. 

Shnerb. 2014. Temporal fluctuation scaling in populations and communities. Ecology 95:1701–

1709. 

Kattge, J., S. Díaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bonisch, E. Garnier, et al. 2011. TRY - a 

global database of plant traits. Global Change Biology 17:2905–2935. 

Leffler, A. J., and B. J. Enquist. 2002. Carbon isotope composition of tree leaves from Guanacaste, 

Costa Rica: Comparison across tropical forests and tree life history. Journal of Tropical Ecology 

18:151–159. 

Levin, S. A. 1992. The Problem of Pattern and Scale in Ecology : The Robert H . MacArthur Award 

Lecture. Ecology 73:1943–1967. 

Medvigy, D., S. C. Wofsy, J. W. Munger, D. Y. Hollinger, and P. R. Moorcroft. 2009. Mechanistic 

scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model 

version 2. Journal of Geophysical Research: Biogeosciences 114:1–21. 



Niinemets, Ü., and O. Kull. 1999. Biomass investment in leaf lamina versus lamina support in relation 

to growth irradiance and leaf size in temperate deciduous trees. Tree Physiology 19:349–358. 

Rees, M., and D. L. Venable. 2007. Why do big plants make big seeds? Journal of Ecology 95:926–

936. 

Siefert, A., C. Violle, L. Chalmandrier, C. H. Albert, A. Taudiere, A. Fajardo, L. W. Aarssen, et al. 

2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant 

communities. Ecology Letters 18:1406–1419. 

Smith, A. B., B. Sandel, N. J. B. Kraft, and S. Carey. 2013. Characterizing scale-dependent 

community assembly using the functional-diversity-area relationship. Ecology 94:2392–02. 

Snyder, R. E. 2008. When does environmental variation most influence species coexistence? 

Theoretical Ecology 1:129–139. 

Swenson, Nathan G.; Umana, M. N. 2015. Data from: Interspecific functional convergence and 

divergence and intraspecific negative density dependence underlie the seed-to-seedling transition 

in tropical trees, Dryad, Dataset, https://doi.org/10.5061/dryad.j2r53 

Swenson, N. G., and B. J. Enquist. 2008. The relationship between stem and branch wood specific 

gravity and the ability of each measure to predict leaf area. American Journal of Botany 95:516–

519. 

Taylor, L. R. 1961. Aggregation, variance and the mean. Nature 1:732–735. 

Taylor, L. R., J. N. Perry, I. P. Woiwod, and R. A. J. Taylor. 1988. Specificity of the spatial power-

law exponent in ecology and agriculture. Nature 332:721–722. 

Taylor, L. R., and R. A. J. Taylor. 1977. Aggregation, migration and population mechanics. Nature 

265:415–421. 



Thompson, J., N. Brokaw, J. K. Zimmerman, R. B. Waide, E. M. Everham III, D. J. Lodge, C. M. 

Taylor, D. García-Montiel, and M. Fluet. 2002. Land use history, environment, and tree 

composition in a tropical forest. Ecological Applications 12:1344–1363. 

Tippett, M. K., and J. E. Cohen. 2016. Tornado outbreak variability follows Taylor’s power law of 

fluctuation scaling and increases dramatically with severity. Nature Communications 7:4–10. 

Ulrich, W., B. Kusumoto, T. Shiono, and Y. Kubota. 2021. Latitudinal gradients and scaling regions 

in trait space: Taylor’s power law in Japanese woody plants. Global Ecology and Biogeography 

30:1334–1343. 

Umaña, M. N., J. Needham, J. Forero-Montaña, C. J. Nytch, N. G. Swenson, J. Thompson, M. 

Uriarte, et al. in press. Demographic trade-offs and functional shifts in a hurricane-impacted 

tropical forest. Annals of Botany. 

Uriarte, M., C. D. Canham, J. Thompson, J. K. Zimmerman, L. Murphy, A. M. Sabat, N. Fetcher, et 

al. 2009. Natural disturbance and human land use as determinants of tropical forest dynamics: 

results from a forest simulator. Ecological Monographs 79:423–443. 

Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199:213–

227. 

White, E. P., S. K. M Ernest, P. B. Adler, A. H. Hurlbert, and S. K. Lyons. 2010. Integrating spatial 

and temporal approaches to understanding species richness. Philosophical Transactions of the 

Royal Society B: Biological Sciences 365:3633–3643. 

Wiens, J. A. 1989. Spatial scaling in ecology. Functional Ecology 3:385–397. 

Xiao, X., K. J. Locey, and E. P. White. 2015. A process-independent explanation for the general form 

of Taylor’s law. American Naturalist 186:E51–E60. 



Xu, M. 2016. Ecological scaling laws link individual body size variation to population abundance 

fluctuation. Oikos 125:288–299. 

Zhang, H., H. Y. H. Chen, J. Lian, R. John, L. Ronghua, H. Liu, W. Ye, F. Berninger, and Q. Ye. 

2018. Using functional trait diversity patterns to disentangle the scale-dependent ecological 

processes in a subtropical forest. Functional Ecology 32:1379–1389. 

Zimmerman, J. 2018. LFDP phenology plot seedlings-16 ha plot ver 5347491. Environmental Data 

Initiative. https://doi.org/10.6073/pasta/45e4817e74b51b9533b1bd4115415569 

  
 



Figures 

Figure 1. Schematic diagram depicting the predictions of the effect of increasing temporal and 

spatial scales on Taylor’s Power Law – the relationship between log-transformed trait variance 

and mean. A) Temporal heterogeneity increases with scale. B) Spatial heterogeneity increases 

with scale (colors/patterns indicate different habitat types). C) Prediction: steeper slopes as 

spatial and temporal scales increase. 

 

Figure 2. Trait-based Taylor's Power Law across increasing temporal grain for 213 seedling 

plots in Puerto Rico monitored annually over 10 years. Brown colors indicate a larger 

accumulated time or area using 10 spatial grain categories (1: less than 50 m; 2: 51 and 100 m; 3: 

101 and 150 m; and so on every 50 m in radius distance). A) Relationship between log-

transformed trait variance and log-transformed trait means. B) Variation in slopes between log-

transformed trait variance and log-transformed trait means at increasing temporal grains. The 

shaded gray area in the top plot and the error bars in the bottom plots represent the 95% 

confidence intervals. SLA: specific leaf area (cm2 g-1); SM: seed mass (g); WSG: wood specific 

gravity (cm3g-1). 

 

Figure 3. Trait-based Taylor's Power Law across increasing spatial grain for 213 seedling plots 

in Puerto Rico monitored annually over 10 years.  A) Relationship between log-transformed trait 

variance and log-transformed trait means. B) Variation in slopes between log-transformed trait 

variance and log-transformed trait means at increasing area grain categories. Colors and 

acronyms are the same as in Figure 2. 




