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Abstract

Consumers mediate nutrient cycling through excretion and egestion across

most ecosystems. In nutrient-poor tropical waters such as coral reefs, nutrient

cycling is critical for maintaining productivity. While the cycling of

fish-derived inorganic nutrients via excretion has been extensively investi-

gated, the role of egestion for nutrient cycling has remained poorly explored.

We sampled the fecal contents of 570 individual fishes across 40 species,

representing six dominant trophic guilds of coral reef fishes in Moorea, French

Polynesia. We measured fecal macro- (proteins, carbohydrates, lipids) and

micro- (calcium, copper, iron, magnesium, manganese, zinc) nutrients and

compared the fecal nutrient quantity and quality across trophic guilds, taxa,

and body size. Macro- and micronutrient concentrations in fish feces varied

markedly across species. Genera and trophic guild best predicted fecal nutrient

concentrations. In addition, nutrient composition in feces was unique

among species within both trophic guilds (herbivores and corallivores) and

genera (Acanthurus and Chaetodon). Particularly, certain coral reef fishes

(e.g., Thalassoma hardwicke, Chromis xanthura, Chaetodon pelewensis and

Acanthurus pyroferus) harbored relatively high concentrations of micronutrients

(e.g., Mn, Mg, Zn and Fe, respectively) that are known to contribute to ocean

productivity and positively impact coral physiological performances. Given the

nutrient-rich profiles across reef fish feces, conserving holistic reef fish commu-

nities ensures the availability of nutritional pools on coral reefs. We therefore

suggest that better integration of consumer egestion dynamics into food web

models and ecosystem-scale processes will facilitate an improved understanding

of coral reef functioning.
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INTRODUCTION

Nutrient cycling is important in driving ecosystem func-
tion and sustaining biological diversity (Cherel et al., 2011;

DeAngelis et al., 1989; Ratnarajah et al., 2014; Stears
et al., 2018; Williams et al., 2018). Animals cycle nutrients
by sequestering, transporting, transforming, and releasing
nutrients as waste products by excretion (elimination of
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assimilated food) and egestion (elimination of unassimilated
food) (Atkinson et al., 2017; Vanni, 2002). For example,
wildebeest transport nitrogen across the Serengeti, while
baleen whales concentrate and deposit trace metals in
pelagic waters (McNaughton et al., 1988; Ratnarajah
et al., 2014). However, biodiversity loss is increasing at an
alarming rate due to local and global disturbances with
the potential to alter system-wide nutrient dynamics
(Barnosky et al., 2011; Pereira et al., 2012). Despite the
importance of animals in cycling nutrients across many
ecosystems, we know remarkably little about how indi-
vidual species within communities and their associated
traits (e.g., taxonomy, diet) may influence their role for
system-wide nutrient cycling (but see Allgeier et al., 2017;
Peters et al., 2019; Wing et al., 2021). This is particularly
true in highly diverse ecosystems such as coral reefs,
which host a quarter of the global marine biodiversity
(Carpenter et al., 2008; Plaisance et al., 2011).

Coral reefs are among the most productive ecosys-
tems on Earth (Hatcher, 1988). In these oligotrophic sys-
tems, primary producers take up dissolved inorganic
nutrients as rapidly as they are released because near-reef
concentrations are typically low (Souter & Lindén, 2000).
Hence, nutrient cycling by consumers is vital in
maintaining high productivity (Allgeier et al., 2017;
De Goeij et al., 2013). Coral reef fishes comprise some of
the highest biomass of consumers on coral reefs (Jackson
et al., 2001; Sorokin, 1993), and their high biodiversity
(e.g., taxonomic and functional diversity) can sustain crit-
ical ecosystem processes (Brandl et al., 2019; Lefcheck
et al., 2019). Fish are involved in important top-down
ecosystem functions, including predation and the removal
of algae and detritus (Bellwood et al., 2004; Brandl et al.,
2019; Green & Bellwood, 2009; Schiettekatte et al., 2022;
Tebbett et al., 2022). However, reef fishes also support coral
reefs via bottom-up processes by supplying inorganic
nutrients (nitrogen [N] and phosphorus [P]) to the reef eco-
system via excretion and egestion (Allgeier et al., 2017;
Burkepile et al., 2013; Holbrook et al., 2008; Meyer et al.,
1983). In fact, schooling fish that shelter within corals may
stimulate coral growth by up to 21% through the provision-
ing of N and P (Meyer & Schultz., 1985), and these nutrients
may enhance resistance to thermal stress in corals (Chase
et al., 2018; Shantz et al., 2023).

Although much focus has been on the inorganic nutri-
ents derived from fish excretion (Allgeier et al., 2017;
Burkepile et al., 2013; Munsterman et al., 2021; Schiettekatte
et al., 2022), fish feces (via egestion) also harbor key nutrients
(Bray et al., 1981; Pinnegar & Polunin, 2006) that may play
significant roles in coral reef ecosystem functioning
(Meyer & Schultz, 1985; Rempel et al., 2022; Schiettekatte
et al., 2023; Williams et al., 2018). The scarce literature avail-
able on the subject suggests that coral reef fish feces may

contain macronutrients (i.e., proteins, carbohydrates, lipids)
andmicronutrients (e.g., zinc, iron, magnesium) that vary in
concentration across species and trophic guilds, which may
greatly alter the value of fecal material for other organisms
(Bailey & Robertson, 1982; Crossman et al., 2005). However,
this has only been investigated across a small number of reef
fish species. It stands to reason that the identity and concen-
tration of bothmacro- andmicronutrients in feces (hereinaf-
ter referred to as the “nutrient profile”) may largely depend
on taxonomy, trophic guild (broadly defined here by fish
diet), and life phase of coral reef fishes. As such, nutrients
derived from the feces of different fishes could represent a
diverse pool of resources for corals and other reef macro
and microorganisms. In particular, certain minerals
(Mg, Mn, Fe) appear to mitigate coral bleaching during
thermal stress and may be especially important in resil-
ience to climate change (Biscéré et al., 2018; Ferrier-Pagès
et al., 2018; Houlbrèque & Ferrier-Pagès, 2009). Gaining
additional insights into the diversity and abundance of
nutrients supplied by reef fishes via egestion may reveal a
more nuanced picture of the functional roles of fishes as
nutrient recyclers.

Here, we compare fecal nutrient profiles across a diverse
range of coral reef fish species. Specifically, we quantify
macro- (proteins, carbohydrates, lipids) and micro-
(calcium, copper, iron, magnesium, manganese, and zinc)
nutrients, in addition to water content and ash, for 570 indi-
viduals across 40 species, 10 families, and six trophic guilds
in Moorea, French Polynesia. We selected these nutrients
because they are involved in fundamental biochemical and
physiological processes (e.g., photosynthesis and cellular
respiration) across many organisms and are identified as
critical nutrients for many coral reef taxa (Ferrier-Pagès
et al., 2018). The objectives of our study are to (1) character-
ize the macro- and micronutrients in the feces of a diverse
reef fish community and (2) determine how fecal nutrient
profiles vary across fish traits, including body size, taxon-
omy (family, genus, species), and trophic guild.

METHODS

Sample collection

We collected fishes around Moorea, French Polynesia
(17.5388� S, 149.8295� W) between July and August 2018
and August 2019 in two separate datasets. Dataset 1
includes fish individuals (N = 317) that were collected at
the North Shore forereef, fringing reef, and backreef hab-
itats across 14 sites. A subset of fishes from Dataset 1
(N = 34) was collected from roadside stands during this
sampling time, but the precise collection sites around
Moorea are unknown and these collection sites were
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classified according to stand location (e.g., East or West).
Dataset 2 includes fish individuals (N = 253) collected on
the northern, eastern, and western shores of Moorea
across the forereef, reef crest, backreef, and fringing reef
habitats across 48 sites. In total, we collected 570 individ-
uals across 40 species (minimum four individuals per
species) of fish and 61 different sites. These species
represent 70% of non-elasmobranch fish biomass on coral
reefs in Moorea (Brooks, 2022). These fishes represent
10 families (Acanthuridae, Balistidae, Chaetodontidae,
Cirrhitidae, Holocentridae, Labridae, Lutjanidae,
Monacanthidae, Pomacentridae, Serranidae), spanning
six trophic guilds (corallivores, detritivores, herbivores,
invertivores, piscivores, and planktivores) as guided by
the MCR LTER (Brooks, 2022), FishBase (Froese &
Pauly, 2022) and Parravicini et al. (2020) (Appendix S1:
Tables S1 and S2). Fishes were collected via spearfishing
between 0945 and 1500 and were transported on ice back
to either the University of California Gump Research
Station (Dataset 1) or the Centre de Recherches Insulaires
et Observatoire de l’Environnement (CRIOBE) in Moorea
(Dataset 2). In the lab, fish were weighed (g) and
measured for fork length (Dataset 1) or total length
(Dataset 2) (cm). Feces were removed from the last 4 cm
of the large intestine and were either kept in 1.5 mL
Eppendorf vials at −20�C and transported back to
University of California Santa Barbara in the United States
(Dataset 1, N = 317) and freeze-dried for >36 h each to
measure water content, and ground using a conical glass
homogenizing pestle, or both frozen and freeze-dried for
>24 h each at CRIOBE Moorea and transported to the
CRIOBE in Perpignan, France, where samples were ground
to a fine powder using a homogenizer (Dataset 2, N = 253).

Macronutrient quantification

Macronutrients (protein, lipid, carbohydrate) and ash
were assessed only for Dataset 1 and full methods are
described in Appendix S1: Text S1. For protein and carbo-
hydrate analysis, we measured 10 mg of homogenized
sample into 2 mL screw cap vials, diluted each sample
with MilliQ water with a dilution factor of 100, and
homogenized samples at 6 m/s for four 30 s cycles
(Fisher Brand Bead Mill 24) with ~10 mg 0.5 mm zirco-
nium oxide beads. These homogenates were stored in
−20�C until further use. To measure total protein, we
used a modified bicinchoninic (BCA) assay (Barbarino &
Lourenço, 2005; Mann & Gallager, 1985). Using a thawed
aliquot (50 μL) of the homogenate, we precipitated the
protein from the sample or bovine albumin serum (BSA)
standard with 72% trichloroacetic acid (TCA) and removed
the supernatant to eliminate potential interferences,

including lipids and free amino acids. We then followed a
modified microplate BCA assay protocol (Thermoscientific
Pierce BCA Kit) to measure absorbance at 562 nm in trip-
licate in a spectrophotometer multi-mode plate reader
(SpectraMax id3, Molecular Devices). We measured carbo-
hydrate using a modified version of the phenol-sulfuric
acid method to determine total sugar in glucose equivalents.
We extracted the carbohydrate from the samples (250 μL
aliquot of the homogenate thawed, re-homogenized for 30 s
at 6 m/s) and standard using cold 15% TCA, incubated
samples at 4�C for 30 min, spun in a micro centrifuge
(1000 rpm, 10 min), and collected the supernatant
containing carbohydrates. We then estimated the carbo-
hydrate concentration using the phenol-sulfuric acid
method (DuBois et al., 1956) with a modified microplate
method (Masuko et al., 2005). We measured absorbance
in triplicates at 490 nm with glucose as the standard
(SpectraMax id3, Molecular Devices).

To measure lipid content, we followed the methods of
Mann and Gallager (1985) and Johnson et al. (2017). We
measured samples in duplicates (40–50 mg; 5–10 mg
when minimal sample available) into solvent-washed test
tubes, added and vortexed with 100 μL water and 1.5 mL
chloroform: methanol (1:2). Samples were then incubated
at 4�C for 10 min and centrifuged (4000 rpm, 5 min),
with the supernatant removed to a separate test tube. The
remaining sample was re-extracted in 1.5 mL chloroform:
methanol (2:1) and the supernatants were pooled, mixed
with 950 μL NaCl (0.7%), and incubated at 4�C for
30 min. To separate the phases, samples were then
centrifuged (4000 rpm, 5 min). The lower phase was
measured for volume, and 1 mL was then deposited onto
a pre-weighed aluminum weighing boat and dried
overnight. The lipid was re-weighed, then weight was
extrapolated to the entire bottom layer volume to deter-
mine lipid concentration. For ash, we pre-combusted alu-
minum weighing boats at 450�C for 6 h and pre-heated
the samples in an oven at 100�C overnight to ensure full
water loss. We combusted pre-weighed samples in a muf-
fle furnace for 6 h at 450�C and then reweighed samples
to obtain ash content.

Micronutrient quantification

Micronutrients (calcium [Ca], copper [Cu], iron [Fe],
magnesium [Mg], manganese [Mn], and/or zinc [Zn])
were assessed in duplicate from Dataset 1 (N = 157) and
a subset of Dataset 2 (N = 65) following modified
methods of Ratnarajah et al. (2018). We chose these
micronutrients because they have been identified as
critical nutrients for many coral reef taxa, especially
reef-building corals (Ferrier-Pagès et al., 2018). Briefly,
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we manually homogenized each sample and weighed
8–40 mg subsample into metal-free acid-cleaned 50 mL
polypropylene vials (Ultimate Clean Cup, Environmental
Express). Samples were acid-digested (2–5 mL concen-
trated nitric acid; Plasma Pure Grade, Fisher Scientific
and 0.125 mL of 30% hydrogen peroxide) overnight. They
were then heated to 90�C for 2 h, cooled, and diluted to
5% nitric acid. Identical procedures were followed for
blanks. Samples were then analyzed by inductively
coupled plasma mass spectroscopy (ICP-MS) at the Bren
School of Environmental Science and Management at
University of California, Santa Barbara facilities. A sepa-
rate subset of samples from Dataset 2 (N = 185) were
analyzed at University of Michigan for micronutrients
(Ca, Cu, Fe, Mg, Mn, and/or Zn) and prepped and mea-
sured by ICP-MS according to Rempel et al. (2022). Both
procedures followed similar protocols and resulted in
similar measurements; therefore, micronutrients were
pooled. When measurements were returned as negatives,
they contained nutrient concentrations too low to detect
and were reported as 0.

Data analyses

All statistical analyses were performed in R (version
2022.02.0) using the packages vegan (Oksanen et al.,
2022), pairwiseAdonis (Martinez Arbizu, 2020) and lme4
(Bates et al., 2014). We assessed relationships between
macro-/micronutrients and reef fish trophic guilds or spe-
cies by using non-metric multidimensional scaling (NMDS)
ordinations on log-transformed nutrients, based on a
Bray–Curtis dissimilarity index (Bray & Curtis, 1957), using
the “envfit” function to visualize patterns and identify cor-
relations between nutrients and trophic guilds or species.
We then conducted separate NMDS analyses within spe-
cific trophic guilds (corallivores and herbivores) and gen-
era (Chaetodon and Acanthurus) because these groups had
large sample sizes, are abundant around Moorea, and play
key roles in coral reef ecosystem functioning (Brooks,
2022; Tebbett et al., 2022). To test the effects of trophic
guilds and species on nutrient contents, we computed per-
mutational analyses of variance (PERMANOVAs) based on
Bray–Curtis dissimilarity index and 999 permutations with
“site” included as a random effect. Pairwise differences
were tested using the function “pairwiseAdonis,” and
p-values were adjusted according to a Bonferroni–Holm
correction to account for multiple comparisons.

Next, to determine which variables best predicted
nutrient content, we ran a series of mixed effects models
with fixed effects (family, genus, species, body mass, and
trophic guild) tested independently, additively, and inter-
actively for each macro- and micronutrient. There were

61 unique collection sites, classified by distinct GPS
coordinates or distinct roadside stand spots, so we
included “site” as a random effect. Collinear variables
(family, genus, and species) were not tested additively or
interactively with each other. Complementary models
were compared using the Bayesian Information Criterion
(BIC), where the lowest BIC score was accepted as the
best fit; however, only models with ΔBIC <7 were con-
sidered in the analyses (Jerde et al., 2019).

Data residuals were tested for normality, homogene-
ity, and moderate correlation, and data were log
transformed when they did not fit normality assump-
tions. Outliers (N = 15) were removed if values were out-
side 1.5× interquartile range across all individuals and
within a species. If values for one individual were deter-
mined to be outliers for more than two macro- or
micronutrients, this suggests that samples were contami-
nated or not processed correctly, so all nutrients of that
type (either macro- or micro-) were removed for that
individual (Grubbs, 1950; Wing et al., 2021). We stan-
dardized the length metrics across the two datasets,
converting all lengths to total lengths using published
species-specific scaling parameters (Brooks & Adam,
2019). We sampled 570 individuals across 40 species to
capture the coral reef fish community; however, some of
our sampled species were underrepresented for certain
fecal nutrients. We therefore present sample sizes with
mean ± SD values (Appendix S1: Tables S1 and S2) and
graphically present results from species with ≥ four indi-
viduals for major macronutrients (carbohydrate, lipid,
protein) or micronutrients (Ca, Cu, Fe, Mg, Mn, Zn),
resulting in 26 species for macro- and 39 species for
micronutrients. For NMDS ordinations, we include spe-
cies with ≥ four individuals each measured for all major
macro- or micronutrients.

RESULTS

Feces macronutrient composition

The concentration of fecal macronutrients varied sub-
stantially across 26 coral reef fish species (Figure 1,
Appendix S1: Table S1). Ash and water were the primary
components of fish feces across all species (Figure 1A,
Appendix S1: Table S1). However, the mean protein con-
centration of feces varied 33-fold, from 1.4% dry weight
(DW) in Acanthurus olivaceus to 45.7% DW in Naso
lituratus (Appendix S1: Table S1). The mean carbohydrate
concentration varied 13-fold, from 0.5% DW in Scarus
psittacus to 6.3% DW in Acanthurus nigrofuscus
(Appendix S1). For lipids, Amanses scopas contained
the lowest concentration at 1% mean DW, compared to
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Odonus niger at 9% mean DW, a 9-fold difference
(Appendix S1: Table S1). Meanwhile, N. lituratus had the
lowest mean ash content at 31.5% DW compared to
A. scopas at 89.5% DW (Appendix S1: Table S1).

Variation in macronutrients across trophic
guilds

Macronutrient concentrations (protein, carbohydrate,
lipid) varied by trophic guild (Figure 1a,b). For instance,
we found that invertivores and detritivores egested the
highest relative proportion of ash. Corallivore and herbi-
vore feces contained relatively high proportions of pro-
tein. We did not have an adequate sample size to
measure macronutrients in planktivores or piscivores.

OurNMDSordination analyses according tomacronutri-
ents revealed clustering by the five trophic guilds (Figure 2a)
and the trophic guild had a significant effect on macronutri-
ent concentration (PERMANOVA, F4 = 9.59, R2 = 0.20,
p < 0.001). Detritivores were distinct from all trophic groups
in their fecal macronutrients (pairwiseAdonis, p < 0.05 for
all comparisons), as well as herbivores, corallivores, and
invertivores from one another (pairwiseAdonis, p < 0.05 for
all comparisons), while other trophic groups did not statisti-
cally differ from one another.

The concentration of macronutrients egested by fishes
was best predicted by genus or trophic guild, and/or in
conjunction with mass (Appendix S1: Table S3). Trophic

guild was the best predictor for lipid concentration
(χ2 = 39.57, df = 5, p < 0.001) as well as for carbohydrate
concentration in conjunction with body mass (log[mass]:
χ2 = 13.86, df = 1, p < 0.001; trophic guild: χ2 = 46.03,
df = 5, p < 0.0001) (Appendix S1: Table S3). In contrast,
genus was the best predictor of ash content (χ2 = 164.94,
df = 17, p < 0.0001) as well as for protein concentration
either alone (genus: χ2 = 666.89, df = 18, p < 0.0001), or
in conjunction with body mass (log[mass]: χ2 = 14.68,
df = 1, p < 0.0001; genus: χ2 = 677.85, df = 18,
p < 0.0001) (Appendix S1: Table S3).

Feces micronutrient composition

Fecal micronutrients varied extensively across 39 coral
reef fish species (Figures 2 and 3, Appendix S1: Table S2).
Mean copper concentrations in feces ranged from 0 ppm
in Chlorurus spilurus, Ctenochaetus flavicauda and Scarus
psittacus to 163 ppm in Thalassoma hardwicke feces
(Figure 3, Appendix S1: Table S2). A ~1800-fold differ-
ence was measured in mean Fe concentrations, from
24 ppm in Amanses scopas to 43,015 ppm in Acanthurus
pyroferus feces (Appendix S1: Table S2). For Mg, A. scopas
had the lowest fecal concentration with a mean of 3116 ppm
while Chromis xanthura had a mean of 65,863 ppm Mg, a
21-fold difference (Figure 3, Appendix S1: Table S2). Species
such as T. hardwicke had no measurable fecal Ca, whereas
A. scopas contained a mean of 398,207 ppm of fecal Ca

a

b

F I GURE 1 Mean macronutrient content across trophic guilds normalized to (a) 100% feces weight and (b) 100% feces dry weight

(excludes water). Data represent species with N ≥ 4 individuals per species and depicts normalized means for three corallivore species, four

detritivore species, six herbivore species, and three invertivore species.
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(Figure 3, Appendix S1: Table S2). On the other hand,
A. scopas showed the lowest mean concentration of Mn at
0.6 ppmwhile T. hardwicke had the highest mean concen-
tration of fecal Mn at 167 ppm (Figure 3, Appendix S1:
Table S2). The mean Zn concentration varied ~1800-fold,
from 0.4 ppm in Scarus psittacus feces to 784 ppm in
Chaetodon pelewensis feces (Figure 3, Appendix S1:
Table S2).

Variation in micronutrients across trophic
guilds

Examining fecal micronutrients across trophic guilds
(Figure 3) revealed trends that also emerged on the

NMDS ordinations (Figure 2b). We observed limited
clustering among trophic guilds (Figure 2b). The ordina-
tion showed a tight clustering among piscivores,
detritivores, and corallivores compared to the other tro-
phic guilds (Figure 2b). Trophic guilds significantly dif-
fered in micronutrient concentrations (PERMANOVA,
F5 = 8.52 R2 = 0.17, p < 0.001), including differences in
detritivore fecal nutrients compared to all trophic guilds
(pairwiseAdonis, p < 0.05 for all comparisons) and differ-
ences in corallivore and planktivore, corallivore and
invertivore, and herbivore and planktivore fecal nutrients
(pairwiseAdonis, p < 0.05 for above comparisons)
(Appendix S1: Table S5).

There was no single best variable (species, genus, fam-
ily, mass, or trophic guild) that consistently predicted the

Protein

Lipid
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Micronutrientsb

F I GURE 2 Non-metric multidimensional scaling (NMDS) ordinations of fecal (a) macronutrients (carb [carbohydrates], protein, lipid)

(k = 2, stress = 0.119, N = 159) and (b) micronutrients (calcium [Ca], copper [Cu], iron [Fe], magnesium [Mg], manganese [Mn], and zinc

[Zn]) across individuals (k = 2, stress = 0.041, N = 249) by trophic guild. Plots are based on the Bray–Curtis dissimilarity index and

nutrients are shown as vectors, scaled down by 50% in (b). Ellipses depict 95% confidence interval. Each data point represents an individual.

The macronutrient plot excludes piscivores due to a small sample size.
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concentration of micronutrients egested by fishes
(Appendix S1: Table S6). Trophic guild was the best
predictor for Ca (χ2 = 75.92, df = 5, p < 0.0001) and
Cu (χ2 = 96.54, df = 5, p < 0.0001) concentrations
(Appendix S1: Table S6). In contrast, genus was the best
predictor for Fe (χ2 = 173.06, df = 22, p < 0.0001), Mn
(χ2 = 249.04, df = 22, p < 0.0001), and Zn (χ2 = 277.96,

df = 23, p < 0.0001) concentrations, whereas family was
the best predictor for Mg concentration (χ2 = 66.89,
df = 10, p < 0.0001) (Appendix S1: Table S6). Body mass
was a common (though non-significant) additive predictor
for nutrients; Cu concentrations increased with body mass
whereas Fe, Ca, Mn, and Zn concentrations decreased
with body mass (Appendix S1: Table S6).
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Variation in micronutrient quantities
within trophic guilds and within genera

In addition to the differences in nutrient profiles across
trophic guilds, differences in fecal micronutrient profiles
also are apparent within trophic guilds (i.e., herbivore
Figure 4a, corallivore Figure 4b). The NMDS ordination
for fecal micronutrient concentrations of herbivore spe-
cies revealed clustering (Figure 4a), and micronutrient
concentrations significantly differed across herbivore spe-
cies (PERMANOVA F9 = 8.99, R2 = 0.50, p < 0.001).
Distinct clusters separated N. lituratus from C. spilurus,
P. lacrymatus, S. psittacus, and S. nigricans, as well as
S. psittacus from A. nigrofuscus, A. triostegus, N. lituratus,
P. lacrymatus and Z. scopas for example (pairwiseAdonis,
p < 0.05 for above comparisons) (Figure 4a; Appendix S1:
Table S5). A. nigrofuscus also differed from A. triostegus
and C. spilurus, as well as S. nigricans from Z. scopas
(pairwiseAdonis, p < 0.05 for above comparisons)
(Figure 4a; Appendix S1: Table S5). When investigating
patterns of micronutrient concentrations within the her-
bivorous genus Acanthurus, we observed that the four

species formed distinct clusters (Figure 4c; PERMANOVA
F3 = 11.17, R2 = 0.61, p < 0.001) and all four Acanthurus
species significantly differed in micronutrient concentra-
tions (pairwiseAdonis, p < 0.05 for all comparisons)
(Appendix S1: Table S5).

For corallivores, the NMDS ordination for fecal
micronutrient concentrations across seven species also
revealed clustering (Figure 4b), and these species dif-
fered significantly in their micronutrient concentrations
(PERMANOVA, F6 = 22.45, R 2 = 0.80, p < 0.001).
Chaetodon quadrimaculatus differed significantly in
micronutrient concentrations from C. reticulatus, and
C. vagabundus (pariwiseAdonis, p < 0.05 for above
comparisons) (Figure 4b; Appendix S1: Table S5).
Additionally, A. scopas significantly differed from
C. ornatissimus and C. reticulatus, and H. chrysostomus
differed from C. ornatissimus (pairwiseAdonis, p < 0.05
for above comparisons) for example. When we investi-
gated ordination patterns of micronutrient concentrations
within the genus Chaetodon, there was tight clustering,
and these micronutrient profiles differed significantly
across species differed significantly (PERMANOVA,
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F4 = 8.19, R2 = 0.55, p < 0.001) (Figure 4d). The micronu-
trient profile of C. quadrimaculatus differed from
C. citrinellus, C. reticulatus, and C. vagabundus, in addition
to C. citrinellus differing from C. ornatissimus and
C. reticulatus (pariwiseAdonis, p < 0.05 for above compar-
isons) (Figure 4d; Appendix S1: Table S5).

DISCUSSION

High productivity on coral reefs is facilitated by the effi-
cient internal cycling of energy and nutrients. Reef fishes
are a dominant consumer group on reefs, but how they
recycle different types of nutrients in their feces has not
been studied in detail. We measured the fecal nutrient
composition from 570 coral reef fish individuals spanning
40 species and representing 70% of non-elasmobranch
fish biomass around Moorea, French Polynesia (Brooks,
2022). We found that feces are diverse in nutrient quan-
tity and quality across fish species. The best predictor
variable (body size, taxonomy, and trophic guild) for
macro- and micronutrient concentrations varied for each
nutrient, highlighting the complexity of interactions in
nutrient recycling in coral reef ecosystems. We measured
biologically important minerals for corals (Cu, Fe, and/or
Zn) (Ferrier-Pagès et al., 2018) in the feces of corallivores,
planktivores, invertivores, and piscivores, and we demon-
strate significant variability in concentrations in herbi-
vores and corallivores. The composition of fecal nutrients

varied substantially across trophic guilds as well as across
species within the same trophic guilds, especially for
herbivores and corallivores, and across species within the
genera Acanthurus and Chaetodon. Thus, when consider-
ing the nutrients that fishes recycle in their feces, some
trophic guilds and even species within these trophic guilds
contribute unique nutrient profiles (Figures 4 and 5). The
variation in fecal nutrient concentrations across fish spe-
cies underscores the diversity of reef fish functional roles
and reinforces their importance for nutrient supply and
ecosystem functioning on coral reefs.

Compared to the breadth of knowledge in terrestrial
systems (Beard et al., 2002; Leslie et al., 2008; Pastor
et al., 1993; Veldhuis et al., 2018), our understanding of
how aquatic consumers recycle nutrients via their feces is
surprisingly small. Although the egestion of nitrogen,
phosphorous, and carbon is increasingly incorporated into
bioenergetic models for aquatic consumers (Atkinson
et al., 2017; Schiettekatte et al., 2020, 2023; Williams
et al., 2018), fecal micronutrient composition has remained
largely unexplored, especially for reef fishes where only a
limited set of species and trophic groups have been investi-
gated (Bailey & Robertson, 1982; Crossman et al., 2005).
Our findings align with previous results, as we found simi-
lar concentrations of ash, protein, carbohydrate, and lipid
concentrations in the feces of the few overlapping species,
including Acanthurus olivaceus and Ctenochaetus striatus
(Appendix S1; Bailey & Robertson, 1982). However, we
found higher protein concentrations in species such as

F I GURE 5 Summary schematic demonstrating mean micronutrient (Ca, Mg, Fe, Zn, Mn, Cu) contribution by primary trophic guilds of

coral reef fishes in ppm. To maintain the y-axis scale Ca, Mg, and Fe are represented as fractions of original values by 1000 (Ca) and

100 (Mg and Fe). The benthos is included below to contextualize the approximate quantity of nutrients that may disperse into the water

column and land on benthos. Trophic guilds are represented by species within each guild (fishualize: Schiettekatte et al., 2019).
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Naso lituratus. Herbivores show highly variable amino acid
absorption efficiencies (Crossman et al., 2005), which may
explain the high and variable protein values reported here.
Similar to Schiettekatte et al. (2023), which compares
CNP across reef fish feces, we found that the quality of fish
feces varied strongly across and within trophic guilds. The
consistency of fecal nutrient concentrations in the same
species across different studies, despite relatively different
locations (Moorea, Palau, and the Great Barrier Reef),
reflects the shared nutritional requirements and broad
feeding behaviors across these species (Bailey &
Robertson, 1982; Crossman et al., 2005).

Fecal nutrient content represents components from
unassimilated food. Thus, we can directly link species’ diets
to their fecal nutrient content. Given that fine-scale
partitioning has been demonstrated in coral reef fish diets
(Casey et al., 2019), we would expect this to translate to dif-
ferences in fecal nutrient profiles. Corallivores, for example,
feed on coral polyps, which are rich in lipids (8%–40% DW)
(Stimson, 1987) and proteins (15%–23% DW) but are char-
acterized by lower concentrations in carbohydrates (0.62%
DW) (Ben-David-Zaslow & Benayahu, 1999). Moreover,
coral tissue can contain relatively high levels of trace metals
such as Zn (467 ppm DW) and Mg (533 ppm DW)
(Hanna & Muir, 1990), and dead coral skeleton consist of
3.20% Mg (32,000 ppm) (Goldberg et al., 2019). Consistent
with their trophic guild, we found that obligate corallivores,
such as Chaetodon pelewensis and C. reticulatus, harbored
higher fecal concentrations of Zn and Mg than the faculta-
tive corallivore C. vagabundus that has a more generalized
diet including algae (Froese & Pauly, 2022), which is gener-
ally lower in these elemental concentrations (Rempel
et al., 2022). Dietary content also mirrored fecal nutrients of
Chromis xanthura, which consume planktonic diets that
are generally rich in Fe and Zn and exhibited high fecal
concentrations of these nutrients (Twining et al., 2004).

Although we show significant effects of taxonomy,
body size, and trophic guild on fecal nutrient recycling,
we found high intra-specific variability in nutrient con-
centrations for some species (e.g., Acanthurus pyroferus,
Thalassoma hardwicke, Odonus niger) and could not
account for all extrinsic and intrinsic factors that influence
diet and metabolism (Ben-David-Zaslow & Benayahu, 1999;
Lowman et al., 2021; Stimson, 1987). For example, some
fishes may switch their diet across seasons and
physio-chemical water conditions (Clements & Choat, 1993;
Johnson et al., 2017). In addition, local stressors such as
marine pollution (e.g., nearshore reefs exposed to pollution
in Moorea, see Adam et al., 2021) can lead to significant
changes in benthic composition on coral reefs (Adam et al.,
2021; Bonanno & Orlando-Bonaca, 2018; Hanna & Muir,
1990), ultimately affecting diet and muscle tissue nutrient
content (Robinson et al., 2022). These environmental factors

likely influence some taxa, life stages, or trophic guilds to
shape patterns of nutrient recycling. Our finding that feces
nutrient composition was generally not well predicted by
broader taxonomy (family) and instead often showed high
inter- and intra-specific variability in composition, contrasts
with the finding that family is the best predictor of excretion
rates in fish (Allgeier et al., 2021; Vanni et al., 2002). Thus,
studying egestion as a form of fish-mediated nutrient supply
demonstrates that each fish may contribute to nutrient
recycling in distinct ways.

We identify diverse nutrient profiles, demonstrating
that a suite of critical nutrients is recycled and potentially
provided to benthic organisms such as corals, algae, and
microorganisms via fish feces. Corals in particular,
require an array of micro- and macronutrients (e.g., N, P,
Mg, Mn, Fe, Cu, and Zn) to sustain their metabolism
(Ferrier-Pagès et al., 2018). For instance, nutrients produced
by fishes can have positive effects on coral growth and were
shown to increase coral thermal tolerance (Meyer et al.,
1983; Shantz et al., 2023). In addition, Mg, Mn, and Fe are
known to ensure proper photo-physiological performance
of coral symbiotic dinoflagellates, especially during periods
of thermal stress (Ferrier-Pagès et al., 2018). Heterotrophic
feeding supplies coral dinoflagellate symbionts with Mg,
Mn, and Fe, which comprise antioxidant enzyme structures
that scavenge reactive oxygen species (ROS) produced in
excess during thermal stress (Ferrier-Pagès et al., 2018;
Weis, 2008). Mn and Fe are also critical for photosynthesis
because of their implication in chlorophyll production and
amino acid synthesis, and elements such as Cu and Zn are
cofactors to critical enzymes involved in metabolism (Morel
et al., 1994; Twining & Baines, 2013). The organic nutrients
released from egestion as particulate matter may serve as
food for heterotrophs including corals (Hatcher, 1988;
Robertson, 1982). These nutrients may also provide a sub-
strate for bacterial decomposition (Turner, 2002) that may
make some of these nutrients more bioavailable to other
organisms. However, the bioavailability of nutrients will
largely determine their contribution to nutrient recycling
on coral reefs. Future research needs to assess the bioavail-
ability of fish-derived nutrients through feces to corals,
algae, and other macro- and micro-organisms.

Compared to other marine species, coral reef fish feces
are rich in certain nutrients. We found that some coral reef
fish species contained one to two orders of magnitude
greater fecal Fe concentrations (e.g., Acanthurus pyroferus
43,015 mg kg−1) than found in sperm whales (757 mg kg−1)
and predatory seabirds, like the south polar skua
(3928 mg kg−1). We further found that a small-bodied
wrasse, Thalassoma hardwicke, had a four-fold greater fecal
Mn concentration than multiple species of whales, seabirds,
and seals (167 mg kg−1 vs. 22–43 mg kg−1) (Ratnarajah
et al., 2014; Wing et al., 2021). Despite their small size
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compared to the above marine animals, coral reef fishes
represent a high proportion of biomass within their ecosys-
tem; thus, their total fecal output represents a large nutrient
contribution. Thus, the loss of species or trophic guilds has
the potential to shift food webs and further alter nutrient
recycling (Allgeier et al., 2017; Halvorson & Atkinson, 2019;
Peters et al., 2019). Overfishing often removes larger and/or
higher trophic level fish (piscivores, herbivores, detritivores)
on coral reefs, and the loss of these individuals could cas-
cade down to benthic communities and impact nutrient
recycling (Allgeier et al., 2016; Micheli et al., 2014; Mumby
et al., 2006; Zaneveld et al., 2016). Species that are targeted
by small-scale fisheries around Moorea (Nassiri et al., 2021)
tend to have nutrient-rich fecal profiles. For instance,
fisheries-targeted piscivores (e.g., Epibulus insidiator and
Cephalopholis argus) showed relatively high fecal Zn con-
centrations in our study while targeted detritivores
(e.g., Acanthurus olivaceus) typically contained relatively
high fecal Ca concentrations. Species like Chlorurus spilurus
and Naso lituratus are also commonly targeted by recrea-
tional fishing (Nassiri et al., 2021), and while they are both
herbivores, these species supply distinct fecal micronutrient
profiles. The loss of any of these species could directly trans-
late to the loss of certain key nutrient recycling pathways,
with negative consequences for coral reef community struc-
ture and functioning.

CONCLUSION

Here, we highlight a missing functional link of nutrient
recycling in a key group of consumers, coral reef fishes,
and reveal the diversity of nutrients cycled by reef fishes
through egestion. Many closely related coral reef fish spe-
cies have minimal overlap in their trophic niches (Brandl
et al., 2020; Casey et al., 2019; Eurich et al., 2019;
Pozas-Schacre et al., 2021). Similarly, our results show
that reef fish feces differ in nutrient profiles at the level
of trophic guilds as well as, in some cases, at the
species-level. By enabling the recycling of a diversity of
macro- and micronutrients, fish communities may confer
benefits to many other species that inhabit coral reefs.
However, global and local stressors (e.g., pollution,
overfishing) are changing reef landscapes and fish assem-
blages, threatening the nutrient recycling pathway pro-
vided by reef fishes. Thus, it is important for both
terrestrial and marine environments to continue to reveal
the underappreciated functional roles that many groups
of animals play in nutrient cycling.
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