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Appendix A: Notations

Let UpB,β,Hq “ pU1pB,Hq
T, U2pB,β,Hq

T, U3pβ,Hq
TqT be the estimating function of our

proposed method, where U1pB,Hq “ B ´ 1
n
XH, U2pB,β,Hq “ H1

p
BTB ´ 1

2pw
M̃pβ,Hq ´

1
p
XTB, U3pβ,Hq “ n´1

řn
i“1

pf p01qpyi|βhiqbhi
pfpyi|βhiq

, where M̃pβ,Hq is defined in Section 2. Let

‖M ‖1 be the 1-norm of an arbitrary matrix M, i.e. the maximum of the absolute column

sums. Let ‖M ‖2 be the 2-norm of an arbitrary matrix M, i.e. the maximum singular value

of M. Mb2 “ MMT for an arbitrary matrix M. Let ‖ v ‖ be the 2-norm of an arbitrary

d-dimensional vector v “ pv1, ¨ ¨ ¨ , vdq
T, i.e. ‖ v ‖“ p

řd
j“1 v

2
j q

1{2. f p01qpy,vq “ Bfpy,vq{Bv

and f p01qpy | vq “ Bfpy | vq{Bv, Let Dp0αqfpy,vq “ Bαfpy,vq

Bv
α1
1 ¨¨¨Bv

αd
d

, α “ pα1, . . . , αdq, Sα,r “

1



tpα1, . . . , αdq :
d
ř

j“1

αj “ ru, r ě 2, vα “ vα1
1 ¨ ¨ ¨ vαdd and α! “ α1!α2! ¨ ¨ ¨αd!, where fpy,vqand

fpy | vq are defined in Section 4.

Denote ΣX “ varpxiq and Σu “ varpuiq. Let

pfpy | vq “

řn
j“1Kbypyj ´ yqKbpβ0hj0 ´ vq

řn
j“1Kbpβ0hj0 ´ vq

, pf p01q
py | vq “ B pfpy | vq{Bv,

mpβ,h, yq “
f p01qpy | βhq b h

fpy | βhq
, pmpβ,h, yq “

pf p01qpy | βhq b h

pfpy | βhq
,

τpvq “ n´1
n
ÿ

j“1

Kbpβ0hj0 ´ vq,

9τpvq “ ´n´1
n
ÿ

j“1

9Kbpβ0hj0 ´ vq,

φpy,vq “ n´1
n
ÿ

j“1

Kbypyj ´ yqKbpβ0hj0 ´ vq,

φp01q
py,vq “ ´n´1

n
ÿ

j“1

Kbypyj ´ yq 9Kbpβ0hj0 ´ vq.

Appendix B: Proof of Proposition 1

Proof. Based on model (1) in Section 2, we have

p´1ΣX “ p´1B0B
T

0 ` p
´1Σu.

Note ‖ Σu ‖1ď supj |λj| ď M by the model setting, so we obtain p´1 ‖ ΣX ´ B0B
T

0 ‖1“

p´1 ‖ Σu ‖1Ñ 0 when p Ñ 8. Now let WR2WT be the singular value decomposition

of ΣX, where W “ pw1, . . . ,wpq and the first nonzero element of wl is positive for l “
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1, . . . , p, and R2 “ diagpr2
1, . . . , r

2
pq with r2

1 ě r2
2 ě . . . ě r2

p ě 0. We further define

Wq “ pw1, . . . ,wqq and R2
q “ diagpr2

1, . . . , r
2
qq. Next, let the singular value decomposition

of B0 be B0 “ AΩVT, where Ω is a q ˆ q diagonal matrix with positive entries on the

diagonal ordered in decreasing order, and A is a q ˆ q orthogonal matrix with wT
l al ě 0,

l “ 1, . . . , q, and V is a qˆq orthogonal matrix. Then B0B
T

0 “ VΩ2VT. According to (A1)

and (A4) of Proposition 1 and following the same line in Jiang et al.1, we can show

R2
q,Wq,Ω,A can be identified and ‖ A´Wq ‖2Ñ 0, p´1{2 ‖ Ω´Rq ‖2Ñ 0 when pÑ 8.

(1)

Now, we show B0 can be identified when pÑ 8. Since B0 “ AΩVT, ‖ A´Wq ‖2Ñ 0

and p´1{2 ‖ Ω´Rq ‖2Ñ 0, we have

p´1{2 ‖ B0 ´WqRqV
T ‖2 “ p´1{2 ‖ AΩVT

´WqRqV
T ‖2

ď ‖ Ap´1{2
pΩ´RqqV

T ‖2 ` ‖ pA´Wqqp
´1{2RqV

T ‖2

ď ‖ p´1{2
pΩ´Rqq ‖2 ` ‖ pA´Wqq ‖2‖ p´1{2Rq ‖2

Ñ 0. (2)

Note that the first nonzero element in each column of Wq is positive, ‖ A ´Wq ‖2Ñ 0

implies that the first element in each column of A that has nonzero limit is also positive

when p is sufficiently large. Hence by Condition (A1), we conclude that V is an identity

matrix. This couples with (1), so B0 can be identified.

Now, we show H0 is identifiable. Firstly, we show p´1uT
i ui “ Opp1q. By Eu8

ij ď M in
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(A2), we have

p´1uT
i ui “

1

p

p
ÿ

l“1

Epu2
ilq `Op

˜

tvarpp´1
p
ÿ

l“1

u2
ilqu

1{2

¸

ď M `Op

˜

p´1E
 

p

p
ÿ

l“1

u2
ilq

2
(1{2

¸

“ Opp1q.

Thus,

p´1uT
i ui “ Opp1q. (3)

Next, we show p´1
p
ř

l“1

X2
il “ Opp1q. From

p´1
p
ÿ

l“1

X2
il “ h

T

i0p
´1B

T

0B0hi0 ` p
´1uT

i ui ` 2p´1
p
ÿ

l“1

uilb
T

l0hi0

ď 2h
T

i0p
´1B

T

0B0hi0 ` 2p´1uT
i ui

“ 2h
T

i0p
´1B

T

0B0hi0 ` 2p´1uT
i ui

and equation (3), we obtain

p´1
p
ÿ

l“1

X2
il “ Opp1q. (4)

Moreover, by equation (2) and (4), we have

‖ p´1B
T

0xi ´ p
´1RqW

T
q xi ‖2

ď p´1{2 ‖ B0 ´WqRq ‖2 p
´1{2 ‖ xi ‖2

“ p´1{2 ‖ B0 ´WqRq ‖2

˜

p´1
p
ÿ

l“1

X2
il

¸1{2

Ñ 0. (5)
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Furthermore, we get

hi0 Ñ Σ´1
Λ lim

pÑ8
p´1B

T

0xi ´ Σ´1
Λ lim

pÑ8
p´1BT

0 ui

Ñ Σ´1
Λ lim

pÑ8
p´1RqW

T
q xi (6)

in probability because limpÑ8 p
´1B

T

0ui “ 0 in probability by (A3). Combining with (1) and

(6), hi0 is uniquely identified. So H0 is identifiable. Once H0 is unique, β0 is also unique

from Conditions (A1) and (C4). l

Appendix C: Asymptotic Properties of pβ

Preliminary Lemma

Lemma 1. Under Conditions (C1)-(C2), we have

sup
v
|τpvq ´ πpvq| “ Op

!

br ` logpnq{
?
nbd

)

,

sup
v
‖ 9τpvq ´ 9πpvq ‖ “ Op

!

br ` logpnq{
?
nbd`2

)

,

sup
y,v
|φpy,vq ´ fpy,vq| “ Op

"

br ` bry ` logpnq{
b

nbybd
*

,

sup
y,v
‖ φp01q

py,vq ´ f p01q
py,vq ‖ “ Op

"

br ` bry ` logpnq{
b

nbybd`2

*

.

Proof. The first equality and third equality are directly followed by the multivariate kernel

density estimation’s asymptotic property. Next we give the proof of the forth equality and

the proof of the second equality is similar and hence is omitted .

Denote Vj “ β0hj0 and BM “ tpy,vq : |y| ď M,v P r´M,M sd Ă Rdu,BCM is the

complement of BM for any M ą 0. Hereafter, we use C for generic positive constants,
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wherever applicable. By Condition (C2), for a given n, there exists a M ą 0 such that

sup
py,vqPBCM

}f p01q
py,vq} ă br ` bry ` logpnq{

?
nbd`3, (7)

P
 

pyj,Vjq P p´8,M ´ C ´ bsd`1
(

ě 1´ pbr ` bryqbyb
d`1

´ byb
d`1logpnq{

b

nbybd`2 and

P
 

pyj,Vjq P r´M ` C ` b,8qd`1
(

ď pbr ` bryqbyb
d`1

` byb
d`1logpnq{

b

nbybd`2.

Let Itx P Au be the indicator function of x for any set A. Moreover,

sup
py,vqPBCM

‖ Etφp01q
py,vqu ‖

“ sup
py,vqPBCM

‖ Et´Kbypyj ´ yq 9KbpVj ´ vqu ‖

ď
C

bybd`1
sup

py,vqPBCM

ˇ

ˇEItyj P ry ´ b, y ` bs, pVj ´ vq P r0, bsdu
ˇ

ˇ

ď
2dC

bybd`1

ˇ

ˇ1´ P
 

pyj,Vjq P p´8,M ´ C ´ bsd`1
(

` P
 

pyj,Vjq P r´M ` C ` b,8qd`1
(
ˇ

ˇ

ď C2d
"

br ` bry ` logpnq{
b

nbybd`2

*

. (8)

From equation (7) and (8), we obtain

sup
py,vqPBCM

‖ φp01q
py,vq ´ f p01q

py,vq ‖“ Op

"

br ` bry ` logpnq{
b

nbybd`2

*

(9)

By example 38 of Pollard2 and the Euclidean function class of Pakes and Pollard3, the class

of functions of z indexed by pb, yq of the form Qb,ypzq “ b´1Kppz ´ yq{bqpy P R, b ą 0q is

Euclidean. And by Condition (C1) and Lemma (2.13) of Pakes of Pollard(1989), the class of

functions of w indexed by pb,vq of the form Q̃b,vpwq “ b´2 9Kppw´vq{bqpv P r´M,M sd, b ą
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0q is also Euclidean. Further, by Lemma (2.14) of Pakes and Pollard(1989), the class of

functions of pz,wq indexed by pb, y,vq of the form Jb,y,vpz,wq “ Kbpz´yq 9Kbpw´vqppy,vq P

BM , b ą 0q is Euclidean. Let sj “ pyj ´ yq{by and tj “ pVj ´ vq{b, we obtain

Et‖ K2
bypyj ´ yq

9Kb2
b pβ0hj ´ vq ‖2u

“

ż

‖ K2
bypyj ´ yq

9Kb2
b pVj ´ vq ‖2 fpyj,VjqdyjdVj

“
1

by

1

bd`2

ż

‖ K2
psjq 9Kb2

ptjq ‖2 fpy ` bysj,v ` btjqdsjdtj

ď M
1

by

1

bd`2

for some M ą 0. By Theorem of 2.37 of Pollard2, we get

sup
py,vqPBM

‖ φp01q
py,vq ´ Eφp01q

py,vq ‖“ op

"

logpnq{
b

nbybd`2

*

. (10)

And we have

‖ Etφp01q
py,vqu ´ f p01q

py,vq ‖

“ ‖ Et´Kbypyj ´ yq 9Kbpβ0hj0 ´ vqu ´ f p01q
py,vq ‖

“ ‖ ´1{b

ż

Kpsjq 9Kptjqfpy ` bysj,v ` btjqdsjdtj ´ f p01q
py,vq ‖

“

›

›

›

›

´1{b

ż

9Kptjqfpy,v ` btjqdtj `Opbryq ´ f p01q
py,vq

›

›

›

›

“

›

›

›

›

´ 1{b

ż

9Kptjqtfpy,vq ` f p01q
py,vqbtj `

r´1
ÿ

l“2

ÿ

αPSα,l

Dp0αqfpy,vqpbtjq
α

`
ÿ

αPSα,r

Dp0αqfpy,vqtαj b
r
udtj `Opb

´1bryq ´ f
p01q
py,vq

›

›

›

›

“ Opbr ` bryq (11)

7



uniformly over BM .

Combining (9), (10) and (11), we obtain

sup
y,v
‖ φp01q

py,vq ´ f p01q
py,vq ‖“ Op

"

br ` bry ` logpnq{
b

nbybd`2

*

.

l

Lemma 2. Under conditions (C1)-(C2), we have

sup
y,v
| pfpy | vq ´ fpy | vq| “ Op

"

br ` bry ` logpnq{
b

nbybd
*

,

sup
y,v
‖ pf p01q

py | vq ´ f p01q
py | vq ‖ “ Op

"

br ` bry ` logpnq{
b

nbybd`2

*

.

Proof. From Lemma 1, we have

sup
y,v
| pfpy | vq ´ fpy | vq|

“ sup
y,v

ˇ

ˇ

ˇ

ˇ

φpy,vq

τpvq
´
fpy,vq

πpvq

ˇ

ˇ

ˇ

ˇ

ď sup
y,v

ˇ

ˇ

ˇ

ˇ

φpy,vq ´ fpy,vq

πpvq

ˇ

ˇ

ˇ

ˇ

` sup
y,v

ˇ

ˇ

ˇ

ˇ

fpy,vqtτpvq ´ fpvqu

π2pvq

ˇ

ˇ

ˇ

ˇ

` sup
y,v

ˇ

ˇ

ˇ

ˇ

tτpvq ´ fpvqutφpy,vq ´ fpy,vqu

πpvqτpvq

ˇ

ˇ

ˇ

ˇ

` sup
y,v

ˇ

ˇ

ˇ

ˇ

fpy,vqtτpvq ´ fpvqu2

π2pvqτpvq

ˇ

ˇ

ˇ

ˇ

“ Oppb
r
` bry ` logpnq{

b

nbybdq.

Then the first equation of Lemma 2 holds. Similarly, the second equation holds by Lemma

1. This completes the proof of Lemma 2. l

Lemma 3. Under Conditions (C1)-(C4) and the same other Conditions in Proposition 1,

define ηji “ p´1h
T

j0B
T

0ui, ζij “ p´1uT
j ui ´ γppj, iq, γppj, iq “ Epp´1uT

j uiq, ξji “ p´1h
T

i0B
T

0uj,
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and define Vpn to be the diagonal matrix consisting of the largest q eigenvalues of ppnq´1XTX,

that is, Vpn “ p´1
pBT

pB. We have the decomposition

phi ´ hi0 “ V1ipX,uq `V2ipX,uq `V3ipX,uq `Oppn
´1
` p´1

q, (12)

where

V1ipX,uq “ V ´1
pn n

´1
n
ÿ

j“1

phjηji “ Oppp
´1{2

q,

V2ipX,uq “ V ´1
pn n

´1
n
ÿ

j“1

phjpζji ` ξjiq “ Optp´1{2n´1{2
u,

V3ipX,uq “ V ´1
pn n

´1
n
ÿ

j“1

phjγppj, iq “ Optp´1{2n´1{2
u.

Furthermore, we have

V1ipX,uq “ pp
´1B

T

0B0q
´1p´1

p
ÿ

j“1

bj0uij `Oppn
´1
q.

Therefore,

phi ´ hi0 “ pp
´1B

T

0B0q
´1p´1

p
ÿ

j“1

bj0uij `VipX,uq “ Oppp
´1{2

` n´1
q, (13)

where VipX,uq “ V2ipX,uq `V3ipX,uq `Oppn
´1 ` p´1q “ Oppn

´1q.

Proof. By Condition (C3), we have 1
2pw

M̃pβ,Hq “ opp1q. And U2pB,β,Hq is asymptoti-

cally equivalent to

U2pB,Hq “ Hp
1

p
BTBq ´

1

p
XTB. (14)
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By U1ppB, pHq “ 0, U2ppB, pHq “ 0, substituting pB “ n´1XpH into (14), we obtain

pHpp´1
pBT

pBq “ rppnq´1XTXspH. (15)

It’s easy to get that the estimated factor matrix pH is the unit eigenvectors corresponding

to the q largest eigenvalues of n ˆ n matrix ppnq´1XTX, p´1
pBT

pB is the diagonal matrix

consisting of the first q largest eigenvalues of ppnq´1XTX, and the factor loading pB “

n´1XpH. Then we complete the proof by Lemma 3 of Jiang et al.1. l

Lemma 4. Under Conditions (C1)-(C3), we have

R1
4
“ n´1{2

n
ÿ

i“1

t pmpβ0,
phi, yiq ´ pmpβ0,hi0, yiqu “ Oppn

1{2p´1
` n´1{2

q,

R2
4
“ n´1{2

n
ÿ

i“1

tmpβ0,
phi, yiq ´mpβ0,hi0, yiqu “ Oppn

1{2p´1
` n´1{2

q,

R3
4
“ n´1{2

n
ÿ

i“1

t pmpβ0,hi0, yiq ´mpβ0,hi0, yiqu “ Op

 

br ` bry ` n
1{2b2r

y `

n1{2b2r
` logpnq2{pn1{2byb

d`2
q
(

.

Proof. Firstly, we investigate the order of R1. From the consistency of phi and a Taylor

expansion, we have

R1 “ n´1{2
n
ÿ

i“1

tpB pmpβ0,hi, yiq{Bh
T
i |hi“hi0qp

phi ´ hi0qu

` Oprn´1{2 1

2

n
ÿ

i“1

‖ B2
pmpβ0,hi, yiq{pBhiBh

T
i q |hi“h˚i

‖2‖ phi ´ hi0 ‖2
2s

“ n´1{2
n
ÿ

i“1

!

pB pmpβ0,hi, yiq{Bh
T
i |hi“hi0qp

phi ´ hi0q
)

`Oppn
1{2
pp´1

` n´2
qq

“ R10 `Op

 

n1{2
pp´1

` n´2
q
(

, (16)
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where the second equality is followed from Lemma 3, R10 “ R11 `R12, and

R11 “ pnpq´1{2
n
ÿ

i“1

pB pmpβ0,hi, yiq{Bh
T
i |hi“hi0qpp

´1B
T

0B0q
´1p´1{2

p
ÿ

j“1

bj0uij,

R12 “ n´1{2
n
ÿ

i“1

 

pB pmpβ0,hi, yiq{Bh
T
i |hi“hi0qVipX,uq

(

“ Op

 

n1{2
pp´1

` n´1
q
(

.

The order of R12 is obtained by (13) in Lemma 3.

Now we consider R11. First note that EpR11q “ 0, because hi, yi are independent with

ui and Epuijq “ 0. Further by Condition (A2) of Proposition, we have

EpRb2
11 q “ p´1E

„

pB pmpβ0,hi, yiq{Bh
T
i |hi“hi0q

#

pp´1B
T

0B0q
´1p´1{2

p
ÿ

j“1

bj0uij

+b2

ˆpB pmpβ0,hi, yiq{Bh
T
i |hi“hi0q

T



“ Opp´1
q.

The first equality holds because the cross product terms have mean 0 by the fact that uij, ukl

are independent for i ‰ k and have mean 0. Thus,

R11 “ Oppp
´1{2

q. (17)

Hence R10 “ Oppn
1{2p´1 ` n´1{2q. Combining with (16), we have

R1 “ Oppn
1{2p´1

` n´1{2
q.

Similarly, we have R2 “ Oppn
1{2p´1 ` n´1{2q.

11



Finally, we consider the order of R3. Since

R3 “ n´1{2
n
ÿ

i“1

t pmpβ0,hi0, yiq ´mpβ0,hi0, yiqu

“ n´1{2
n
ÿ

i“1

#

pf p01qpyi | β0hi0q b hi0
pfpyi | β0hi0q

´
f p01qpyi | β0hi0q b hi0

fpyi | β0hi0q

+

“ n´1{2
n
ÿ

i“1

"

”

pf p01qpyi | β0hi0q ´ f
p01qpyi | β0hi0q

ı

b hi0

pfpyi | β0hi0q

´

f p01qpyi | β0hi0q b hi0

”

pfpyi | β0hi0q ´ fpyi | β0hi0q
ı

fpyi | β0hi0q

*

“ Oppb
r
` bry ` logpnq{

b

nbybd`2 ` n1{2b2r
` n1{2b2r

y ` logpnq2{pn1{2byb
d`2
q

` Oppb
r
` bry ` logpnq{

b

nbybd ` n
1{2b2r

` n1{2b2r
y ` logpnq2{pn1{2byb

d
qq

“ Op

 

br ` bry ` n
1{2b2r

y ` n
1{2b2r

` logpnq2{pn1{2byb
d`2
q
(

.

where the fourth equality is followed by Lemma 2 and Lemma 4 in Ma and Zhu4, then the

proof of Lemma 4 is completed. l

Proof of Theorem 1

Firstly, we prove the consistency of pβ. By U3p
pβ, pHq “ 0, We have n´1

řn
i“1 pmppβ, phi, yiq “ 0,

which implies n´1
řn
i“1 pmppβ,hi0, yiq “ opp1q because phi ´ hi0 “ Oppp

´1{2 ` n´1q by Lemma

3. Furthermore, by the uniform consistency of kernel estimation and sample mean, we have

E
!

mppβ,hi0, yiq
)

“ opp1q. Thus,

E

«

f p01qpyi | pβhi0q b hi0

fpyi | pβhi0q

ff

´ E

„

f p01qpyi | β0hi0q b hi0
fpyi | β0hi0q



“ opp1q. (18)
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Then the condition (C4) implies that as a function of β,

E

„

f p01qpyi | βhi0q b hi0
fpyi | βhi0q



(19)

has a non-singular derivative matrix in the neighborhood of its root β0. Consequently,

(19) is an invertible function in the neighborhood of β0. Then by (18) and the continuous

mapping theorem, we have pβ ´ β0 “ opp1q. The proof of Theorem 1 is completed. l

Proof of Theorem 2

From the consistency of pβ in Theorem 1 and a Taylor expansion, we have

?
nU3p

pβ, pHq “ n´1{2
n
ÿ

i“1

pmppβ, phi, yiq

“ R´T
?
nveclppβ ´ β0q, (20)

where

R “ n´1{2
n
ÿ

i“1

pmpβ0,
phi, yiq,

T “ ´n´1
n
ÿ

i“1

B pmpβ, phi, yiq{Bveclpβq|β“β˚ .

where β˚ is a point on the line connecting pβ and β0. Now we decompose R as R “

R0 `R1 ´R2 `R3, where

R0 “ n´1{2
n
ÿ

i“1

mpβ0,
phi, yiq

13



and R1,R2,R3 are defined in Lemma 4. By the Taylor expansion, we have

R0 “ n´1{2
n
ÿ

i“1

mpβ0,hi0, yiq ` n
´1{2

n
ÿ

i“1

pBmpβ0,hi, yiq{Bh
T
i |hi“hi0qp

phi ´ hi0q

` Op

˜

n´1{2 1

2

n
ÿ

i“1

‖ B2mpβ0,hi0, yiq{pBhiBh
T
i q|hi“h˚i

‖2‖ pphi ´ hi0q ‖2
2

¸

“ n´1{2
n
ÿ

i“1

mpβ0,hi0, yiq ` pnpq
´1{2

n
ÿ

i“1

pBmpβ0,hi, yiq{Bh
T
i |hi“hi0qpp

´1B
T

0B0q
´1p´1{2

p
ÿ

j“1

bj0uij

` n´1{2
n
ÿ

i“1

pBmpβ0,hi, yiq{Bh
T
i |hi“hi0qVipX,uq `Optn

1{2
pp´1

` n´2
qu

“ n´1{2
n
ÿ

i“1

mpβ0,hi0, yiq `R00 `Optn
´1{2

` n1{2p´1
u,

where h˚i is the point on the line connecting phi and hi0,the second equality and third equality

are followed by Lemma 3, and

R00 “ pnpq
´1{2

n
ÿ

i“1

pBmpβ0,hi, yiq{Bh
T
i |hi“hi0qpp

´1B
T

0B0q
´1p´1{2

p
ÿ

j“1

bj0uij.

Now EpR00q “ 0 because Epuijq “ 0 and uij is independent of hi,yi, and

EpRb2
00 q

“ Etpnpq´1{2
n
ÿ

i“1

pBmpβ0,hi, yiq{Bh
T
i |hi“hi0qpp

´1B
T

0B0q
´1p´1{2

p
ÿ

j“1

bj0uiju
b2

“ p´1EtpBmpβ0,hi, yiq{Bh
T
i |hi“hi0qpp

´1B
T

0B0q
´1p´1{2

p
ÿ

j“1

bj0uiju
b2

“ p´1E

#

pBmpβ0,hi, yiq{Bh
T
i |hi“hi0qtpp

´1B
T

0B0q
´1p´1{2

p
ÿ

j“1

bj0uiju
b2
pBmpβ0,hi, yiq{Bh

T
i |hi“hi0q

T

+

“ Opp´1
q.
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Thus, we have R00 “ Oppp
´1{2q. Further, we have

R0 “ n´1{2
n
ÿ

i“1

mpβ0,hi0, yiq `Optn
´1{2

` n1{2p´1
` p´1{2

u.

Further, from Lemma 4, we obtain

R1 ´R2 `R3 “ Op
 

n1{2p´1
` n´1{2

` br ` bry ` n
1{2b2r

y ` n
1{2b2r

` logpnq2{pn1{2byb
d`2
q
(

.

As a result, we have

R “ R0 `R1 ´R2 `R3

“ n´1{2
n
ÿ

i“1

mpβ0,hi0, yiq

` Op
 

n1{2p´1
` n´1{2

` br ` bry ` n
1{2b2r

y ` n
1{2b2r

` logpnq2{pn1{2byb
d`2
q
(

. (21)

Moreover, by the consistency of kernel estimators, phi ´ hi0 “ opp1q and pβ ´ β0 “ opp1q, we

have T “ T0 ` opp1q, where

T0 “ ´E

"

B
f p01qpyi | β0hi0q b hi0

fpyi | β0hi0q
{Bveclpβ0q

*

.

Finally, by equations (20), (21) and U3p
pβ, pHq “ 0, we obtain

?
nveclppβ ´ β0q “ T´1

0 n´1{2
n
ÿ

i“1

mpβ0,hi0, yiq

` Op
 

n1{2p´1
` n´1{2

` br ` bry ` n
1{2b2r

y ` n
1{2b2r

` logpnq2{pn1{2byb
d`2
q
(

.
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Under Condition (C3), we have

Op
 

n1{2p´1
` n´1{2

` br ` bry ` n
1{2b2r

y ` n
1{2b2r

` logpnq2{pn1{2byb
d`2
q
(

“ opp1q.

Thus, we conclude

?
nveclppβ ´ β0q

d
Ñ Np0,Σβq,

where Σβ “ T´1
0 Etmpβ0,hi0, yiqm

Tpβ0,hi0, yiqupT
´1
0 q

T. Further, let lipβq “ logtfpyi|βhi0qu,

then we have mpβ0,hi0, yiq “
Blipβq
Bβ

|β“β0
,T0 “ ´Et

B2lipβq

BβBβT
|β“β0

u, Etmpβ0,hi0, yiqm
Tpβ0,hi0, yiqu “

EtpBlipβq
Bβ

|β“β0
qp
Blipβq
Bβ

|β“β0
qT u. In addition, we know T0 “ ´Et

B2lipβq

BβBβT
|β“β0

u “ EtpBlipβq
Bβ

|β“β0

qp
Blipβq
Bβ

|β“β0
qT u. Hence, Σβ “ T´1

0 . Thus, we obtain

?
nveclppβ ´ β0q

d
Ñ Np0,T´1

0 q.

Finally, we complete the proof of Theorem 2. l
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Appendix D: Additional results in numerical studies

and real data analysis

D.1. Addtional results in numerical studies

Table S1: The number of outliers out of 1000 repeats and the corresponding ratio for the
proposed method (Proposed) and other five benchmarking methods, where cases (I, II) and
(II, II) represents (Xmodel I, Ymodel II) and (Xmodel II, Ymodel II), respectively.

p Case Proposed oracle SF-SIR SF-PHD SF-DR SF-SAVE
500 (I,II) #Outlier 56 79 51 51 30 51

Ratio 0.056 0.079 0.051 0.051 0.03 0.051
(II,II) #Outlier 62 83 3 30 43 25

Ratio 0.062 0.083 0.003 0.03 0.043 0.025
1000 (I,II) #Outlier 6 0 60 60 9 60

Ratio 0.006 0.00 0.06 0.06 0.009 0.06
(II,II) #Outlier 6 0 3 23 35 24

Ratio 0.006 0.00 0.003 0.023 0.035 0.024

We use resampling method in Subsection 5.2.2 to estimate the standard errors for αj, j “

1, . . . , p, and summarize the ESE’s and the SSE’s in Table S2.

Table S2: Comparison of SSE and ESE for α̂j, j “ 1, . . . , 10 under both Y models.
α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

Ymodel III SSE .171 .204 .171 .199 .195 .234 .200 .194 .222 .117
ESE .103 .159 .176 .194 .183 .203 .180 .178 .175 .194

Ymodel IV SSE .115 .173 .130 .170 .190 .186 .181 .163 .116 .115
ESE .103 .157 .161 .147 .161 .135 .163 .162 .162 .144

D.2. Backgrounds on the GTEx data pre-processing

We list the backgrouds on the pre-processing of the GTEx data, whose full document could

be found at https://www.gtexportal.org/home/methods.
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• Expression Y : gene expression values for all samples from a given tissue were normal-

ized using the following procedure.

1. Genes were selected based on expression thresholds of ¿0.1 RPKM in at least 10

individuals and 6 reads in at least 10 individuals.

2. Expression values were quantile normalized to the average empirical distribution

observed across samples.

3. For each gene, expression values were inverse quantile normalized to a standard

normal distribution across samples.

• Genotypes X: variants were imputed using 1000 Genomes Project Phase I, version 3.

The following post-imputation genotype filters were applied.

1. Call Rate Threshold 95%.

2. Info score Threshold 0.4.

3. Minor Allele Frequency ě 1% (a tissue specific cutoff, as sample sets vary by

tissue.

• Covariates

1. Top 3 genotyping principal components.

2. A set of covariates identified using the Probabilistic Estimation of Expression

Residuals (PEER) method5, calculated for the normalized expression matrices

(described below). The number of PEER factors was determined as function of

sample size (n): 15 factors for n ă 150, 30 factors for 150 ď n ď 250, and 35

factors for n ě 250, based on optimizing for the number of eGenes discovered.
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3. Genotyping array platform (Illumina OMNI 5M or 2.5M array).

4. Sex.

D.3. Comparison of FUN-LDA scores between the proposed

method and SFADR

Figure S1 shows the comparison plot of the identified eQTLs from SFADR and the proposed

method.
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Figure S1: Comparison of the identified eQTLs from SFADR and the proposed method
(Proposed), where the x-axis denotes the location of each SNP, and the y-axis denotes the
FUN-LDA functional annotation scores. SNPs are colored in red if identified as eQTLs by
Proposed only, in green if by SFADR only, in black if by both methods and in gray if not
by any method.

We present a similar finding of the 10 SNPs in cluster 4 in Figure S3. There are relatively
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Figure S2: (a): DB index versus number of clusters; (b): Factor loading 2 versus factor
loading 1 for each cluster.

large functional scores across multiple tissues in cluster 4, with the top tissues including

left ventricle, skeletal muscle, right ventricle, lung, colonic mucosa, brain and liver. The

top three SNPs in this cluster are rs3131971, rs3131967 and rs61768165 with functional

scores greater than 0.2. Their cross-tissue functional scores among the top tissues are plot-

ted in Figure S3(b); SNP rs3131971 has strong signals across all tissues, while rs3131967

and rs61768165 have high functional scores on several top tissues, including skeletal mus-

cle, brain, colonic mucosa and Duodenum smooth muscle; SNPs rs3131971 and rs3131967

present strong associations in the GTEx samples, and are captured by both univariate

regression and the proposed method, while rs61768165 is identified only by the proposed

method; in contrast, because of limited power, SFADR only identifies rs3131967.
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Figure S3: Top: Locations of the SNPs in cluster 4 and their functional scores in lung
tissues. Bottom: Distribution of functional scores of the cluster 4 SNPs across multiple
tissues. The darkest blue bars represent the proportions of SNPs with functional scores are
larger than 0.1, the lightest bars represent the proportions with scores smaller than 0.001,
and the median blue ones represent the proportions of SNPs with scores between 0.001 and
0.1. The solid circles, triangles, and squares are the cross-tissue function scores of SNPs
rs3131967, rs3131971, and rs61768165, respectively.
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Figure S4: Comparison of the eQTLs identified by the proposed method (Proposed), SFADR
and UR. (a) A Venn diagram of identified SNPs after the Bonferroni correction; (b) A
dot plot for comparison of the eQTLs identified by Proposed and SFADR, where the x-
axis denotes the location of each SNP, and the y-axis denotes the FUN-LDA functional
annotation scores and the dashed line represents 0.3 in the y-axis. SNPs are colored in red
if identified as eQTLs by Proposed only, in green if by SFADR only, in black if by both
methods and in gray if not by any method; (c) A dot plot for comparison of the eQTLs
identified by Proposed and UR. SNPs are colored in red if identified as eQTLs by Proposed
only, in blue if by UR only, in black if by both methods and in gray if not by any method.
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