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Expression quantitative trait loci (eQTL) studies utilize regression models to
explain the variance of gene expressions with genetic loci or single nucleotide
polymorphisms (SNPs). However, regression models for eQTL are challenged
by the presence of high dimensional non-sparse and correlated SNPs with small
effects, and nonlinear relationships between responses and SNPs. Principal com-
ponent analyses are commonly conducted for dimension reduction without
considering responses. Because of that, this non-supervised learning method
often does not work well when the focus is on discovery of the response-covariate
relationship. We propose a new supervised structural dimensional reduction
method for semiparametric regression models with high dimensional and
correlated covariates; we extract low-dimensional latent features from a vast
number of correlated SNPs while accounting for their relationships, possibly
nonlinear, with gene expressions. Our model identifies important SNPs asso-
ciated with gene expressions and estimates the association parameters via a
likelihood-based algorithm. A GTEx data application on a cancer related gene is
presented with 18 novel eQTLs detected by our method. In addition, extensive
simulations show that our method outperforms the other competing methods
in bias, efficiency, and computational cost.
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1 INTRODUCTION

An expression quantitative trait locus (eQTL) is a locus that explains variation in a gene expression phenotype.1 Iden-
tification of eQTLs helps characterize functional sequence variation, understand basic processes underpinning gene
regulation, facilitate interpretation of genome-wide association studies and decipher biology of complex diseases.1
Genotype-Tissue Expression (GTEx) Program, as an NIH initiative, established a data resource and tissue depot for eQTL
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studies on multiple human tissues across individuals.2 Of our particular interest is to investigate which loci are related
to the expression of ENSG00000225880.4, a gene associated with lung cancer susceptibility. Our motivating dataset is
from GTEx, including samples of lung tissue collected from 278 subjects. For each tissue sample, the expression of
ENSG00000225880.4 was measured, along with 117 SNPs in the flanking region of this gene within a window of size
20kb.3 eQTL studies, including ours, often suffer from power limitations4 with a large number of candidate loci or single
nucleotide polymorphisms (SNPs) to detect; variants in neighboring regions of a candidate gene can vary from hundreds
to millions.5

For extracting relevant features out of a massive number of candidates, commonly used are variable selection methods,
including Bridge regression,6 Lasso,7 SCAD,8 Elastic net,9 adaptive Lasso,10 and Dantzig selector.11 Variable screening
methods, for example, Fan and Lv,12 Fan et al,13 Zhao and Li,14 Fan et al,15 Li et al,16 and Ma et al,17 have also emerged
as a powerful means for effectively eliminating unimportant covariates.

Often, the validity of these selection/screening methods hinges upon a sparsity assumption, for example, only a
limited number of SNPs are associated with gene expressions, a beta-min condition that the effects of signals are
well above from 0, and a partial faithfulness assumption, that is, signal variables are at most weakly correlated with
noise variables. However, these conditions may fail in our eQTL analysis. For instance, we have applied the adap-
tive lasso10 to the aforementioned GTEx data, and found the correlations between the selected and unselected SNPs
could be as large as 0.8. Wu et al18 used a partial linear model and incorporated correlations among covariates via
a network structure, while applying variable selection to determine important variables (ie, SNPs) under a sparsity
assumption.

To circumvent the sparsity assumption, Fan et al,19 by borrowing deep learning ideas,20,21 proposed a factor model
for dimension reduction (FADR) under a linearity condition on the latent variables;22 to relax the linearity condition,
Jiang et al3 proposed a semiparametric method, termed semiparametric factor model for dimension reduction (SFADR),
which showed improved power in identifying eQTLs and provided useful insight into the dependence among candidate
SNPs. However, both Fan et al19 and Jiang et al3 are non-supervised in the sense that latent factors are extracted without
considering responses. Therefore, the obtained latent factors (eg, linear combinations of SNPs) may not well quantify the
dependence between gene expressions and SNPs.23

We propose supervised structural learning of semiparametric regression models with high-dimensional covariates
for eQTL analyses. As opposed to the literature, our method extracts low-dimensional latent features by using the cor-
relations among the predictors as well as the relationships between the response and these predictors. We further adopt
a flexible multi-index nonparametric model to capture the dependence between the response and the latent factors and
derive a likelihood based estimator to achieve efficient estimation. Our method has several advantages. First, our method
does not require the linearity condition on the latent variables. Second, our model allows the distributions of the response
and the latent variables, as well as the forecasting function linking the response and the latent factors, to be unspecified.
Third, our likelihood-based estimators are efficient, even with unspecified forecasting functions and response distribu-
tion functions. Finally, our estimators for high dimensional parameters have a closed-form at each iterative step, greatly
facilitating computation.

To find the eQTLs related to the expression of ENSG00000225880.4, we have applied the proposed method to analyze
the aforementioned GTEx data and compared the results with those obtained by univariate association analyses5 and
by SFADR;3 see Figure 1A. A total of 18 SNPs are uniquely identified by the new method, while the SNPs identified by
SFADR are a subset of those obtained from univariate association analyses. For validation, we have adopted a functional
annotation score, termed FUN-LDA,24,25 ranging from 0 to 1 with larger values indicating higher likelihoods to be an
eQTL; see Figure 1B for the FUN-LDA scores of the candidate SNPs by chromosomal locations, which shows a cluster of
SNPs nearing the target gene (the gray box) have high FUN-LDA scores, and moreover, our method empowers detection
of eQTLs outside the range of the target gene.

The article is organized as follows. Section 2 describes the model and the proposed estimation method; Section 3
describes an iterative computational strategy where infinite dimensional parameters can be explicitly expressed in
each step and further propose a BIC-type procedure to select the structural dimension; the theoretical proper-
ties of the proposed estimator are summarized in Section 4; the performance of the proposed estimation proce-
dure is assessed through simulation studies in Section 5. Section 6 applies our model together with the proposed
estimation procedure to analyze the data set regarding the eQTL study in the GTEx project. A brief discussion
about further research in this direction is given in Section 7. Technical proofs are relegated to Supplementary
Materials.
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F I G U R E 1 (A) A Venn diagram of detected SNPs after the Bonferroni correction, where UR is for univariate regression;
(B) Comparison of the identified eQTLs from UR and the proposed method (proposed), where the x-axis denotes the location of each SNP,
and the y-axis denotes the FUN-LDA functional annotation scores, and the dashed line represents 0.3 in the y-axis. SNPs are colored in red if
identified as eQTLs by proposed only, in blue if by UR only, in black if by both methods and in gray if not by any of them.

2 MODEL AND ESTIMATION

Consider n independent subjects. Let yi be the outcome and xi = (xi1, … , xip)T be the covariates for subject i = 1, … ,n,
where p > n. We assume the relationship between yi and xi is fully captured by a latent factor hi, that is, yi is independent
with xi given hi, and stipulate the following models,3,19

xi = Bhi + ui, (1)

yi = 𝜓(𝜷T
1 hi, … , 𝜷T

dhi, 𝜖i), (2)

where𝜓 is an unknown forecasting function, hi = (hi1, … , hiq)T is a q-dimensional vector of latent factors,𝜷 j, j = 1, … , d
are q-dimensional parameter vectors with d ⩽ q, B = (b1, … ,bp)T is a p × q deterministic matrix, ui = (ui1, … ,uip)T
with cov(ui) = diag(𝜆1, … , 𝜆p) and supj |𝜆j| ⩽ M < ∞, and 𝜖i is a random error independent of hi and ui. We require
d < q ≪ p and ui,hi, and 𝜖i are independent. That is, yi depends on the latent factors hi only through d predictive indices
𝜷T

1 hi, … , 𝜷T
dhi. In the following, for compactness we write 𝜷 = (𝜷1, … , 𝜷d)T, a d × q matrix, H = (h1, … ,hn)T, an n × q

matrix, y = (y1, … , yn)T, a vector, and X = (x1, … , xn)T, an n × p matrix.
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Models (1) and (2) jointly describe the relationship between yi and xi by the quantity3 𝜶 = (𝜶1, … ,𝜶p)T ≡
B(BTB)−1𝜷 ∈ Rp×d. By testing H0 ∶ 𝜶j = 0, we identify whether variable j is significantly associated with yi. If it is, the
effect strength of xij can be measured by the norm of 𝜶j, which ranks SNPs in the rest of the article.

To make (1) and (2) identifiable, we impose three constraints: (E1) the upper d × d of 𝜷T is an identity matrix;
n−1HT H = Iq; (E2) BT B is diagonal with decreasing diagonal elements; and (E3) the first non-zero element in each column
of B is positive. Furthermore, without loss of generality, we assume E(xij) = 0 and E(hi) = 0.

Fitting models (1) and (2) is challenging as both 𝜓 and hi are unknown. Since (1) is a classical factor model,
Fan et al19 and Jiang et al3 fitted (1) and (2) via a sequential approach: they first estimated latent factors hi
via principal component analysis (PCA); then they fitted (2) by plugging in the estimated hi. This unsupervised
method, which estimates latent factors while ignoring their relationships with the response, may not fully capture
the dependence of responses on latent factors. On the other hand, estimating latent factors while accounting for
their associations with yi is complicated by that 𝜓 is unknown. We address these issues by proposing a supervised
learning method, which builds upon f (yi|𝜷hi), the conditional density of yi given 𝜷hi. We estimate Ω = (B,H, 𝜷) by
maximizing

l(Ω; y,X) =
n∑

i=1
log{̂f (yi|𝜷hi)} − w||X −HBT||2F , (3)

where ̂f (yi|𝜷hi) is the kernel smoothing estimate of f (yi|𝜷hi). That is,

̂f (yi|𝜷hi) =
∑n

j=1Kby(Yj − yi)b(𝜷hj − 𝜷hi)
∑n

j=1b(𝜷hj − 𝜷hi)
,

where Kby(y) = K(y∕by)∕by is a kernel function with a bandwidth by and b(v) = 1∕bd∏d
l=1K(vl∕b) is a product kernel

function with a bandwidth b for a vector v = (v1, … , vd)T. For simplicity of notation, the bandwidth b is not
variable-specific; based on our numerical experience, component-specific bandwidths make little differences.

Models (1) and (2) imply f (yi, xi|hi) = f (yi|𝜷hi)f (xi|hi) = f (yi|𝜷hi)Πp
j=1f (xij|hi). If uij ∼ N(0, 𝜎2), the loglikelihood

can be written as
∑n

i=1 log{f (yi|𝜷hi)} − 1
2𝜎2 ||X −HBT||2F − C, which is equal to (3) up to a constant C. Effectively, (3)

generalizes the normal likelihood function and does not require specifying the distributions of yi or ui.
The first term on the right side of (3) characterizes the dependence of yi on hi. Without it, our estimator

for hi would degenerate to the PCA-based estimator used in References 19 and 3; by including it in l(Ω; y,X),
our supervised estimator for hi makes full use of both the information among xi as well as the dependence of
yi on xi.

3 IMPLEMENTATION

3.1 An algorithm to estimate B and H alternatingly

As l(Ω; y,X) involves the high dimensional parameters of B and H, a direct maximization can be prohibitive. We design
an iterative algorithm to alternatingly estimate B and H at each step.

We first obtain the initial value (B(0)
,H(0)) for (B,H) from the principal component method,19 and then obtain the

initial value 𝜷 (0) for 𝜷 from directional regression method26 given (yi,h(0)i ), i = 1, … ,n. Denote by B(k−1)
,H(k−1), and 𝜷 (k−1)

the estimates of B,H, and 𝜷 obtained after the (k − 1)th iteration, respectively. In the kth iteration, we update these
estimates alternatingly.

• Updating B. Differentiating l(Ω; y,X) with respect bj, j = 1, … , p and setting the derivatives to zero leads to the
following estimation equations,

bj =

( n∑

i=1
hihT

i

)−1 n∑

i=1
xijhi, j = 1, … , p.
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With the identification condition of n−1∑n
i=1hihT

i = Iq, we have

Bn =
1
n

XH(k−1)
.

To adhere to the identification condition on B, we further perform a singular value decomposition (SVD) to get
Bn = S1Λ1∕2D1 and update B(k−1) by B(k) = S1Λ1∕2. It is easy to see that B(k)TB(k) = Λ is a diagonal matrix with decreasing
elements and B(k) is a p × q matrix.

• Updating H. Differentiating l(Ω; y,X) with respect hi, i = 1, … ,n, and setting the derivatives to zero leads to the
following estimation equations:

hi =

( p∑

j=1
bjbT

j

)−1 {
𝜷T
̂f (01)(yi|𝜷hi)

2ŵf (yi|𝜷hi)
+

p∑

j=1
xijbj

}

, i = 1, … ,n,

where ̂f (01)(yi|𝜷hi) = 𝜕̂f (yi|𝜷hi)∕𝜕(𝜷hi). Thus we obtain

Hn =
{
̃M(𝜷(k−1)

,H(k−1))∕(2w) + XB(k)} (B(k)T B(k))−1
,

where ̃M(𝜷,H) = {m1(𝜷,h1)T,m2(𝜷,h2)T, … ,mn(𝜷,hn)T}T with mi(𝜷,hi) = 𝜷T
̂f (01)(yi|𝜷hi)∕̂f (yi|𝜷hi). Likewise, with

the identification condition of H, we perform SVD to get Hn = S2VD2 and update H(k−1) by H(k) =
√

nS2. It is easy to
see that H(k)′H(k) = nIq.

• Updating 𝜷 with

𝜷(k) = arg max
𝜷

n∑

i=1
log

{
̂f
(

yi|𝜷h(k)i

)}

, (4)

subject to that the upper d × d block of 𝜷 (k)T is an identity matrix. We use the Matlab function fmincon to carry out the
constrained optimization, which incurs little computing time.

We repeat the iterations until convergence, that is, |l(Ω(k); y,X) − l(Ω(k−1); y,X)| ⩽ a0, where a0 is a prespecified small
number. We denote the final estimates by (̂B, ̂H, ̂𝜷).

With large p and n, calculating B and H can constitute the main bulk of computation. However, the closed-form
updates of B and H at each step have made our algorithm computationally efficient.

3.2 Tuning

We use the BIC criterion or cross-validation to select tuning parameters, including the bandwidth parameters (b, by), the
dimension of latent factors q, number of indices d and weighted parameter w. We detail the implementation for each of
them. We also utilize simulations in Section 5 to verify the utility of our selection procedures.

We use the “kde” function in MATLAB to estimate the multivariate density function f (Y |𝜷h), which provided several
data-driven bandwidth selection methods, including likelihood cross validation, local cross validation, rule of thumb,
and plug-in estimator of Reference 27 and so forth; see the details at https://github.com/feiyoung/npReg/tree/master/
%40kde. Because of its satisfactory performance, we have opted to use the rule of thumb method for bandwidth selection
in our implementation.

We selected the structural dimension (q, d) based on a BIC-type procedure.28,29 Specifically, we select the optimal (q, d)
through maximizing

BIC(q, d) =
n∑

i=1
log

(
̂f (Yi|̂hî𝜷)

)

− 1
2

df (d, q)
log(n)

n
, (5)

https://github.com/feiyoung/npReg/tree/master/%40kde
https://github.com/feiyoung/npReg/tree/master/%40kde
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where df (d, q) is the degree of freedom. To calculate df (q, d), we approximate Yi via Yi ≈
∑d

j=1𝛾j,j(𝜷T
j hi)2 +

∑
j>k 𝛾j,k(𝜷T

j hi𝜷
T
k hi) +

∑d
j=1𝛾j𝜷

T
j hi + 𝛾0 and get the fitted values ̂Yi of Yi, i = 1, … ,n. Then we follow the method of Ye30 to

evaluate df (q, d) by ̂df (q, d) =
∑n

i=1𝜕
̂Yi∕𝜕Yi where 𝜕̂Yi∕𝜕Yi is estimated by local linear regression of ̂Yi on Yi to obtain the

derivative estimates. In simulation studies and in the analysis of real data example, we perform the selection of q and d
on grids of the possible structural dimensions.

The weight w was chosen by maximizing quasi-loglikelihood
∑n

i=1 log{̂f (yi|̂𝜷(w)̂hi(w))} − w
∑n

i=1∑p
j=1(xij − ̂bj(w)T̂hi(w))2 + log(w)np∕2 on the grid {p−t

, t ∈ [0, 1)}. We test the performance of our tuning procedure via
simulation studies in Section 5, which show that the selection procedure works well.

Remark 1. Since the estimator for𝜷 is an estimated maximum likelihood estimator, nice theoretical properties
hold. Specifically, in Theorem 2, we show that the proposed estimator for 𝜷 is consistent and asymptotical
normal, and the asymptotic variance is the same as the one obtained based on maximum likelihood function
where the true f (Y |𝜷h) is known. Thus, the proposed algorithm possesses not only computational simplicity
but also estimation efficiency.

4 THEORETICAL PROPERTIES

We now establish the large sample properties, including the model identifiability, consistency and the asymptotic nor-
mality, as well as the efficiency of the proposed estimator for 𝜷. Their proofs are deferred to Supplementary Materials. To
establish the asymptotic properties, we need extra notations and conditions. Throughout, we let hi0 be the vector of the
true factors and bj0be the true loadings, with H0 and B0 being the corresponding matrices. Write the true value of 𝜷 as
𝜷0, and write 𝜆min() and 𝜆max() as the minimum and maximum eigenvalues of a symmetric matrix, respectively.
Let Γ = limp→∞ p−1∑p

j=1𝜆jbj0bT
j0 and ΣΛ = limp→∞ p−1BT

0 B0. Let 𝜋h(⋅) be the pdf of hi0, 𝜋(⋅) be the pdf of 𝜷0hi0, f (⋅, ⋅) be the
joint pdf of (yi, 𝜷0hi0), f (⋅|⋅) be the conditional pdf of yi given 𝜷0hi0 and f (01)(y|v) = 𝜕f (y|v)∕𝜕v.

First, we state the identifiability in the following proposition.

Proposition 1. If

(A1) (H0,B0, 𝜷0) satisfy the identifiability conditions (E1)–(E3).
(A2) There exists a constant M, independent of p and n, such that E(||hi0||

4
2) ≤ M, supj ||bj0||2 ≤ M, and

E(u8
ij) ≤ M for all j = 1, … , p.

(A3) p−1∕2∑p
j=1bj0uij

d
−−→N(0,Γ) as p → ∞.

(A4) There are two positive constant c1, c2 such that c1 < 𝜆min(ΣΛ) < 𝜆max(ΣΛ) < c2 and Condition (C4) in the
following hold, then B0,H0 and 𝜷0 are unique when p → ∞.

In Reference 3, they require boundedness of two type of norm about bj, which is not necessary due to the equivalence
of norm. In addition, some requirements on the random variable ui such as, for every i, j, p−1∕2∑p

l=1|uilujl − E(uilujl)|4 ≤ M,
are restrictive and may be infeasible in practice. In fact, we only need the conclusion p−1uT

i ui = Op(1) which can be
obtained from Conditions (A2) in Proposition 1. Finally, we need an extra condition (C4) to ensure the existence of the
proposed estimators.

Then we give the conditions for the asymptotical properties of ̂𝜷.
(C1) The univariate kernel function K(⋅) is Lipschitz, has compact support and satisfies

∫

K(v)dv = 1,
∫

vsK(v)dv = 0, 1 ≤ s ≤ r − 1, 0 ≠
∫

vrK(v)dv < ∞,

that is, K(⋅) has order of r. The derivative ̇K(v) = dK(v)∕dv is Lipschitz continuous. The d-dimensional kernel
function is a product of d univariate kernel functions, that is,b(v) = (v∕b)∕bd = Πd

l=1Kb(vl)=̂Πd
l=1K(vl∕b)∕bd

for v = (v1, v2, … , vd)T.
(C2) 𝜋h(⋅) and 𝜋(⋅) are bounded from zero and infinity. The functions 𝜋(v) and f (y, v) have (r + 1)th order derivatives

and their (r + 1)th derivatives are locally Lipschitz continuous.
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(C3) p →∞, n1∕2p−1 → 0 and wp → ∞ as n → ∞, the bandwidths satisfy b = o(n−1∕(4r)), by = o(n−1∕(4r)) and
(bybd+2n1∕2)∕log2(n)→ ∞.

(C4) E
[
f (01)(yi|𝜷hi0)⊗ hi0∕f (yi|𝜷hi0)

]
is a smooth vector function of 𝜷, has unique root and has non-singular

derivative matrix at 𝜷0.
Estimation of the derivative f (01)(⋅ | ⋅) is required for estimating 𝜷 and H. Non-parametric estimators for the derivative

functions converge more slowly than the function estimate itself, so a higher-order kernel K(⋅),31 described in Condition
(C1), is needed here to ensure sufficient convergence rate. Condition (C2) contains some mild requirements to simplify
the mathematical derivation. Condition (C3) puts some restrictions on the bandwidth choice in relation to the dimension
d and the sample size n, and on w. When p is large enough, the mild condition wp →∞ in (C3) avoids the issues of
over-fitting bias and inflated type I error due to using the information of yi to estimate hi. Condition (C4) guarantees
identifiability for 𝜷 and the existence of the asymptotic variance for ̂𝜷.

Remark 2. Condition (C3) indicates p can diverge with n at any rate that is faster than
√

n, including expo-
nential rate. In our simulations, we also included the cases with n = 300 while p = 500 and 1000, which shows
that the performance of proposed method gets better as p increases.

Theorem 1. Under Conditions (C1)–(C4) and the same other conditions in Proposition 1, ̂𝜷 → 𝜷0 in probability
when n →∞.

Theorem 2. Under Conditions (C1)–(C4) and the same other conditions in Proposition 1,
√

nvecl(̂𝜷 − 𝜷0) →
N(0,T−1

0 ) in distribution when n →∞. Here, vecl() is the vector formed by concatenating the columns of the
right d × (q − d) block of the d × q matrix , T0 = E

[

{𝜕l0(𝜷; yi,hi0)∕𝜕vecl(𝜷)}{𝜕l0(𝜷; yi,hi0)∕𝜕vecl(𝜷)}T
|𝜷=𝜷0

]

and l0(𝜷; yi,hi0) = vecl{f (01)(yi|𝜷hi0)hT
i0∕f (yi|𝜷hi0)}. The asymptotic covariance matrix of the proposed estimator

̂𝜷 achieves the efficient estimation variance bound hence is efficient.

Remark 3. Our objective function (3) can be regarded as a penalized likelihood function, where the first
term is the likelihood and the second term is the penalty function. Note that the penalty term is not on
𝜷 so is not directly linked to the estimator for 𝜷. The estimator for 𝜷 is based on the first term, which
is the likelihood function alone, so that the estimator for 𝜷 is efficient, although the likelihood function
itself depends on hi, i = 1, … ,n. We proved that as long as ||̂hi − hi0|| = op(n−1∕4), the

√
n-consistency and

asymptotical efficiency of ̂𝜷 can be ensured. Under proper choice of weight w, for example, wp →∞, we
have ̂hi − hi0 = Op(p−1∕2 + n−1) by Lemma 3 of Supplementary Materials. Combining with n1∕2p−1 → 0 in
Condition (C3), ̂hi does satisfy the required condition.

Remark 4. We note that the results in Theorem 2 do not depend on the bandwidths b and by, hence the
bandwidths, as long as they are in the range specified by Condition (C3), is not crucial for the asymptotic
performance of the estimate. This observation is confirmed by our simulation studies. A practical implica-
tion of this result is that our estimates are not sensitive to the bandwidths choice, which greatly simplifies the
practical implementation of our method. A rough selecting method for b and by is enough.

5 NUMERICAL STUDIES

We conduct simulations to compare the finite-sample performance of the proposed method with those of factor analysis
and dimension reduction (FADR19) and its semiparametric version (SFADR3), in combination with various dimen-
sion reduction techniques, including sliced inverse regression (SIR22), principal Hessian directions (PHD32), directional
regression (DR26), sliced average variance estimation (SAVE33); these estimators are labeled as FADR-SIR, FADR-PHD,
FADR-DR, FADR-SAVE, SFADR-SIR, SFADR-PHD, SFADR-DR, and SFADR-SAVE. To assess the efficiency of the
proposed method, we compare it with the “Oracle” estimator, where the density f (Y |𝜷h) is known.

As outlined in Section 3.2, we also investigate the performance of the methods for choosing (q, d), which are important
for the performance of the proposed method. Define the Euclidean distance (ED) between the resulting estimators ̂𝜷 and
the true values 𝜷0 as dist(̂𝜷, 𝜷0) = ||̂𝜷(̂𝜷

T
̂𝜷)−1̂𝜷

T
− 𝜷0(𝜷T

0𝜷0)−1𝜷T
0 ||F . We evaluate the performance of the estimators via ED,

biases, standard deviation (SD), and the root of the mean squared errors (RMSE), based on 1000 replications of the data
(xi, yi), i = 1, … ,n = 300.
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5.1 Simulation 1: Estimation accuracy

5.1.1 Simulation settings

We give the settings for the factor model (1). First, to construct B0, we generate n independent p dimensional random
vectors, zi’s, from a multivariate normal distribution with mean zero and covariance matrix (𝜎ij)p×p with 𝜎ij = 0.5|i−j|. Let
Z = (z1, … , zn)T. Then we perform eigen-decomposition on ZZT, retain the n × q orthogonal matrix E that spans the
eigenspace corresponding to the first q largest eigenvalues, and define B0 =

√
1∕6ZTE. It holds that BT

0 B0 is a diagonal
matrix with decreasing diagonal entries. We next consider two versions of factor models for X : Xmodel I ensures xi satisfy
the linear condition,22 while Xmodel II does not. In all these factor models, ui ∼ N(0, 0.1Ip).

Xmodel I: hi0 is from a multivariate normal distribution with mean zero and covariance matrix (𝜎ij)q×q with
𝜎ij = 0.5|i−j|.

Xmodel II: hi0 = (hi1, … , hiq)T, where (hi1, hi2)T are generated from two-dimensional normal distribution with mean
zero and covariance matrix (𝜎ij)2×2 with 𝜎ij = 0.5|i−j|; hi3 = |hi1 + hi2| + hi1𝜉i1; hi4 = |hi1 + hi2|

2 + |hi2|𝜉i2,
where 𝜉i1, 𝜉i2 are independently generated from the standard normal distribution; hi5 is generated from a
Bernoulli distribution with success probability exp(hi2)∕{1 + exp(hi2)}, and hi6 is a Bernoulli random
variable with success probability Φ(hi2), where Φ is the standard normal distribution function. Then we
center and normalize H0 = (h10, … ,hn0)T so that H0 satisfies the identification of H0 described in
Section 2.

We next present the settings for the sufficient dimension-reduction model (2) for Y , termed Ymodel.

Ymodel I: yi = (hT
i0𝜷1)2 + 2|hT

i0𝜷2 + 1| + 0.1(hT
i0𝜷1)2𝜖i,

Ymodel II: yi = sin(hT
i0𝜷1) + 2 cos(hT

i0𝜷2) + 0.1𝜖i,

where 𝜖i ∼ N(0, 1), 𝜷0 = (𝜷1, 𝜷2)T ∈ R2×6 with 𝜷1 = (1, 0, 1, 1, 1, 1)T , 𝜷2 = (0, 1,−1, 1,−1, 1)T .

5.1.2 Comparison results

We summarize the results of the comparisons of our method with the Oracle method, and various FADR and SFADR
estimators, including SFADR-SIR, FADR-SIR, SFADR-PHD, FADR-PHD, SFADR-DR, FADR-DR, SFADR-SAVE and
FADR-SAVE (further abbreviated in the tables and figures as SF-SIR, F-SIR, SF-PHD, F-PHD, SF-DR, F-DR, SF-SAVE
and F-SAVE, respectively). With n = 300 and p = 500, 1000 and based on 1000 replicates, Tables 1–4 present biases, SDs
and RMSEs of ̂𝜷 for (Xmodel I, Ymodel I) and (Xmodel II, Ymodel I), and Figure 2 illustrates the ED of ̂𝜷 for (Xmodel
I, Ymodel II) and (Xmodel II, Ymodel II) obtained by using these methods. The evaluation of 𝛽11, 𝛽12, 𝛽21, and 𝛽22 is not
provided since they are constrained by the identifiability conditions.

We observe the following. First, our estimator yields a smaller root mean squared error than the other competing
approaches in all of the settings considered, regardless of the dimension of X and whether the linearity condition22 on H is
satisfied (Xmodel I) or not (Xmodel II). Relative to the Oracle estimator, the average empirical efficiency of the proposed
method, FADR-SIR, FADR-PHD, FADR-DR, FADR-SAVE, SFADR-SIR, SFADR-PHD, SFADR-DR, and SFADR-SAVE is,
respectively, 90.98%, 55.63%, 1.37%, 25.52%, 1.99%, 56.68%, 5.09%, 47.48%, and 4.29%, indicating that the proposed esti-
mator is nearly efficient, as stated in Theorem 2. The average empirical efficiency relative to the Oracle method is defined
as 1

(q−d)d
∑

j≥d+1,k≤d
SDOracle( ̂𝛽 jk)

SD( ̂𝛽 jk)
ranging from 0 to 1, with a larger number indicating higher estimation efficiency. Second, the

variation of ̂𝜷 decreases with increasing p for all of the methods (except for FADR in Xmodel II), which is not surprising
as a higher dimension of xi may mean more information on the latent factors of hi. On the other hand, the variation for
FADR increases when p increases in Xmodel II, because Xmodel II does not satisfy the linearity condition on the latent
factors required by FADR. Figure 2 shows the proposed method outperforms SFADR and FADR and is close to the Oracle
method in the ED. We also note the instability of the proposed method, oracle method and SFADR methods in Figure 2.
When p = 500, the proportions of the outliers for the Oracle, proposed and SFADR methods are approximately 5%; when
p = 1000, the proportion for the proposed method drops to 0.6%, while the proportion remains approximately 5% for the
SFADR method (SF-SIR, SF-PHD, and SF-SAVE), as shown in Table S1 in Supplementary Materials. Figure 2 implies that
the instability is induced by the estimation of factors, highlighting the importance of our supervised learning of factors.
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T A B L E 1 Bias, SD, and RMSE of ̂𝜷 with Xmodel I, Ymodel I, n = 300, and p = 500.

Oracle Proposed SF-SIR F-SIR SF-PHD F-PHD SF-DR F-DR SF-SAVE F-SAVE

𝜷13 Bias −3e−4 3e−3 2e−3 0.28 2e−3 0.24 5e−3 0.03 −4e−3 0.05

SD 0.07 0.08 0.08 7.76 0.14 3.02 0.09 0.76 0.13 1.57

RMSE 0.07 0.08 0.08 7.77 0.14 3.03 0.09 0.76 0.13 1.57

𝜷14 Bias −3e−4 1e−4 2e−3 −0.02 −2e−3 0.20 2e−4 0.03 7e−4 0.04

SD 0.08 0.08 0.08 12.79 0.14 4.50 0.09 0.58 0.12 1.87

RMSE 0.08 0.08 0.08 12.79 0.14 4.51 0.09 0.58 0.12 1.87

𝜷15 Bias −4e−4 1e−3 4e−3 −0.28 −0.01 0.15 4e−4 0.05 4e−3 0.02

SD 0.08 0.08 0.10 2.49 0.14 3.19 0.09 0.65 0.13 1.40

RMSE 0.08 0.08 0.10 2.50 0.14 3.19 0.09 0.66 0.13 1.41

𝜷16 Bias −2e−4 −2e−3 4e−3 −1.07 −9e−3 0.21 1e−3 0.04 3e−3 0.06

SD 0.08 0.08 0.08 6.09 0.13 3.32 0.09 0.59 0.12 1.93

RMSE 0.08 0.08 0.08 6.18 0.13 3.32 0.09 0.60 0.12 1.93

𝜷23 Bias 2e−4 −3e−3 2e−3 0.72 −4e−3 −0.08 2e−3 −0.19 2e−3 −0.04

SD 0.07 0.07 0.19 3.27 0.10 1.05 0.10 3.73 0.09 0.72

RMSE 0.07 0.07 0.19 3.35 0.10 1.05 0.10 3.74 0.09 0.72

𝜷24 Bias −6e−4 3e−3 9e−3 −0.11 5e−3 0.13 2e−4 0.10 −9e−4 0.05

SD 0.06 0.07 0.17 5.08 0.10 2.08 0.11 1.80 0.09 0.67

RMSE 0.06 0.07 0.17 5.08 0.10 2.08 0.11 1.80 0.09 0.67

𝜷25 Bias 4e−04 −4e−3 1e−3 0.10 −4e−4 −0.09 −4e−3 −0.03 −8e−4 −0.03

SD 0.06 0.07 0.18 1.86 0.10 1.04 0.11 2.85 0.09 0.67

RMSE 0.06 0.07 0.18 1.86 0.10 1.05 0.11 2.85 0.09 0.67

𝜷26 Bias −5e−4 3e−3 9e−3 0.01 2e−4 0.14 4e−3 0.10 −1e−4 0.06

SD 0.07 0.07 0.21 2.58 0.10 1.92 0.10 1.87 0.09 0.75

RMSE 0.07 0.07 0.21 2.58 0.10 1.92 0.10 1.88 0.09 0.75

Intuitively, as the objective function of the proposed method does not involve the distributions of errors in models (1)
and (2), the proposed method should be robust to the errors’ distribution. To verify this, we generate uij in Xmodel I or 𝜖i
in Ymodel I from an exponential distribution Exp(1) − 1 with mean zero, and consider three cases with (n, p) = (300,100):
uij ∼ Exp(1) − 1 while 𝜖i ∼ N(0, 1); uij ∼ N(0, 1)while 𝜖i ∼ Exp(1) − 1; and both of them are non-normal. We compare the
proposed method with SF-SIR and F-SAVE, and find it outperformed the latter two as shown in Simulation 1; Figure 3
also suggests that the proposed method was robust to non-normal errors and outperformed the two other methods in
estimation accuracy.

We examine the performance of using the criterion (5) described in Section 3.2 for selecting (q, d). Specifically, we
calculate the frequency of (q, d) pairs selected by the criterion based on 200 repetitions in (Xmodel I, Ymodel II) and
(Xmodel II, Ymodel II), respectively. We report the results in Table 5 with (n, p) = (300, 50). It appears that (5) works well
by identifying the true (q, d) = (6, 2).

5.2 Simulation 2: Data-driven simulation

Here, we conduct two data-driven simulation studies to investigate the performance of ranking SNPs and testing the
significance of eQTLs based on the quantity 𝜶 = (𝜶1, … ,𝜶p)T ≡ B(BTB)−1𝜷 ∈ Rp×d, which describes the relationship
between yi and xi. Particularly, the norm of 𝜶j is used to rank SNPs, and the testing H0 ∶ 𝜶j = 0 to identify whether the
variable j is significantly associated with the outcome yi. We set (n, p) = (300, 100) to mimic the real data, that is, p < n.
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T A B L E 2 Bias, SD, and RMSE of ̂𝜷 with Xmodel I, Ymodel I, n = 300, and p = 1000.

Oracle Proposed SF-SIR F-SIR SF-PHD F-PHD SF-DR F-DR SF-SAVE F-SAVE

𝜷13 Bias −2e−3 4e−3 4e−3 0.68 −5e−4 0.18 2e−3 0.05 −2e−3 0.10

SD 0.08 0.08 0.09 4.18 0.13 2.65 0.09 0.73 0.13 0.67

RMSE 0.08 0.08 0.09 4.24 0.13 2.65 0.09 0.73 0.13 0.68

𝜷14 Bias −2e−3 −1e−3 7e−4 0.64 −9e−3 0.19 −1e−3 0.02 −1e−4 0.08

SD 0.07 0.08 0.09 7.63 0.13 2.38 0.09 0.49 0.12 0.65

RMSE 0.07 0.08 0.09 7.66 0.13 2.39 0.09 0.49 0.12 0.66

𝜷15 Bias −2e−3 5e−3 7e−3 −0.17 −3e−3 0.17 3e−3 0.03 −0.01 0.11

SD 0.08 0.08 0.09 1.21 0.14 2.72 0.09 0.63 0.12 0.74

RMSE 0.08 0.08 0.09 1.22 0.14 2.73 0.09 0.63 0.12 0.75

𝜷16 Bias −7e−4 6e−4 1e−3 −1.30 −2e−3 0.18 8e−4 0.03 −5e−3 0.09

SD 0.08 0.08 0.09 1.99 0.14 2.56 0.09 0.46 0.12 0.66

RMSE 0.08 0.08 0.09 2.38 0.14 2.57 0.09 0.46 0.12 0.67

𝜷23 Bias 2e−3 −1e−3 −8e−3 0.10 6e−4 −0.08 −2e−4 −0.23 2e−3 −0.04

SD 0.07 0.07 0.10 2.46 0.09 0.86 0.10 1.94 0.08 0.60

RMSE 0.07 0.07 0.10 2.45 0.09 0.86 0.10 1.95 0.08 0.60

𝜷24 Bias −2e−3 3e−3 0.01 5e−3 −9e−4 0.06 2e−3 0.21 3e−4 0.04

SD 0.06 0.07 0.12 2.18 0.09 1.07 0.10 1.49 0.08 0.70

RMSE 0.06 0.07 0.13 2.18 0.09 1.08 0.10 1.51 0.08 0.70

𝜷25 Bias 2e−3 −5e−4 −0.01 0.14 4e−3 −0.06 1e−3 −0.21 −4e−3 −0.04

SD 0.06 0.06 0.08 0.99 0.10 1.00 0.10 1.56 0.09 0.66

RMSE 0.06 0.06 0.08 1.00 0.10 1.00 0.10 1.57 0.09 0.66

𝜷26 Bias −1e−3 2e−3 −2e−3 1.57 −1e−3 0.06 1e−3 0.21 −4e−4 0.04

SD 0.06 0.06 0.13 1.69 0.10 1.00 0.10 1.44 0.08 0.82

RMSE 0.06 0.06 0.13 2.30 0.10 1.00 0.10 1.45 0.08 0.82

5.2.1 Ranking SNPs

In this simulation, we consider the same data generation process as Simulation 1. Following Yang et al,35 we use
the top T consistent rate (CR), defined as |T

1 ∩
T
0 |

T
, to measure the performance of ranking SNPs, where T

1 and T
0

are the top T SNPs from a method and the truth, respectively. A larger CR implies better performance. We take
T = 10, 20, … , 60.

Figure 4 summarizes CR of the proposed method, SF-SIR, F-SAVE as well as univariate regression (UR). We obtain
the ranks for UR based on the P-values: the top SNP has the least P-value. Figure 4 shows that the proposed method
achieves the highest consistent rate among all cases considered, and the UR has the lowest consistent rate, indicating the
importance of structural learning for high-dimensional correlated covariates.

5.2.2 Testing eQTLs

We generate Z = (zT
1 , … , zT

n)T and E similarly with those in Simulation 1 except that zi is generated from s-dimensional
multivariate normal distribution and E is an n × s orthogonal matrix with s = 10. We then define B1 = ZTE and
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T A B L E 3 Bias, SD, and RMSE of ̂𝜷 with Xmodel II, Ymodel I, n = 300, and p = 500.

Oracle Proposed SF-SIR SF-PHD SF-DR F-DR SF-SAVE F-SAVE

𝜷13 Bias −6e−4 0.02 0.02 0.20 −0.09 1.23 0.09 −0.61

SD 0.10 0.11 0.17 0.75 0.12 5.69 0.20 32.90

RMSE 0.10 0.12 0.17 0.78 0.14 5.83 0.22 32.91

𝜷14 Bias 1e−3 0.03 6e−3 0.12 0.03 0.51 0.02 −1.04

SD 0.10 0.10 0.11 0.92 0.12 8.89 0.23 37.19

RMSE 0.10 0.11 0.11 0.93 0.12 8.90 0.23 37.20

𝜷15 Bias 1e−3 −4e−2 8e−3 −0.06 −0.15 −0.50 −0.06 −0.61

SD 0.10 0.11 0.23 0.49 0.11 0.84 0.15 3.82

RMSE 0.10 0.12 0.23 0.50 0.18 0.98 0.16 3.87

𝜷16 Bias −4e−3 −0.01 8e−3 0.04 −0.04 −0.48 −0.02 −2.10

SD 0.09 0.11 0.14 0.88 0.12 0.89 0.16 20.91

RMSE 0.09 0.11 0.14 0.88 0.13 1.01 0.16 21.02

𝜷23 Bias 4e−3 0.01 −4e−4 −0.18 −0.07 −1.62 −0.06 −1.63

SD 0.10 0.10 0.12 0.97 0.13 10.41 0.19 25.79

RMSE 0.10 0.10 0.12 0.98 0.14 10.54 0.20 25.85

𝜷24 Bias −1e−3 0.03 0.01 0.08 0.04 4.74 0.03 1.32

SD 0.10 0.10 0.57 0.81 0.12 76.27 0.19 17.22

RMSE 0.10 0.10 0.57 0.82 0.13 76.46 0.20 17.27

𝜷25 Bias −2e−3 0.01 −8e−3 −0.21 −0.06 0.49 −0.07 0.34

SD 0.09 0.11 0.46 0.91 0.12 2.11 0.15 3.59

RMSE 0.09 0.11 0.46 0.94 0.13 2.17 0.16 3.60

𝜷26 Bias −8e−3 0.01 0.02 0.13 −0.11 −0.65 0.04 −0.46

SD 0.08 0.11 0.76 1.08 0.14 8.70 0.17 7.58

RMSE 0.08 0.11 0.76 1.09 0.18 8.72 0.18 7.60

Note: The results of F-SIR and F-PHD are not presented due to the very poor performance.

B0 = [B1 ∶ On×(p−s)], where On×(p−s) is an n × (p − s)-dimensional matrix with entries 0. We consider factor model Xmodel
I with 𝜎ij = 0.1|i−j|, and set two kinds of models for Y as

Ymodel III: yi = sin(hT
i0𝜷) + 2 cos(hT

i0𝜷) + 2𝜖i,

Ymodel IV: yi = hT
i0𝜷 + 2𝜖i,

where 𝜖i ∼ N(0, 1) and 𝜷 = (1,−0.5, 1,−1, 0,−1)T . Under this setting, 𝜶j ≠ 0 when j ≤ 10 and 𝜶j = 0 if j > 10. To test
the hypothesis H0 ∶ 𝜶j = 0, we first estimate the standard error of 𝜶̂ using resampling method.36 Concretely, we gen-
erate Vi, i = 1, … ,n independently and identically distributed by N(1, 1), and obtain the estimator ̃Ω = (̃B, ̃H, ̃𝜷) by
maximizing ̃l(Ω; y,X) =

∑n
i=1Vi log{̂f (yi|𝜷hi)} − 𝜔

∑n
i=1

∑p
j=1Vi(xij − hTbj)2 and then obtain 𝜶̃ = ̃B(̃B

T
̃B)−1̃𝜷

T
. Repeating

the sampling 100 times, we then obtain the estimated variance-covariance matrix for parameter 𝜶. With s = 10, the
estimated standard error (ESE) of 𝛼j, j = 1, … , 10 and the sampling standard deviation (SSE) for both Y models are sum-
marized in Table S2 of Supplementary Materials based on 1000 replications, suggesting that the ESE’s agree well with the
corresponding SSE’s. This implies that the performance of the ESE based on resampling method in Jin et al36 is quite sat-
isfactory. Table 6 summarizes the performance of testing results under level 0.1 using TPR, FPR, and AUC criteria based
on 1000 replications, where TPRj represents the rate that the nonzero 𝜶j is correctly identified as non-zero, and FPR rep-
resents the rate that all zero 𝜶j, j = s + 1, … , p are incorrectly selected. Table 6 shows that the FPR is close to 0.1 and
TPRj, j = 1, … , 10 are much larger than FPR under Ymodel III and Ymodel IV. Besides, the AUC’s for both Y models
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T A B L E 4 Bias, SD, and RMSE of ̂𝜷 with Xmodel II, Ymodel I, n = 300, and p = 1000.

Oracle Proposed SF-SIR SF-PHD SF-DR F-DR SF-SAVE F-SAVE

𝜷13 Bias −1e−3 0.02 0.02 0.21 −0.08 3.86 0.09 −7.90

SD 0.09 0.11 0.16 0.71 0.11 95.12 0.17 153.55

RMSE 0.09 0.11 0.16 0.74 0.14 95.20 0.19 153.75

𝜷14 Bias 2e−4 0.02 6e−3 0.11 0.03 −10.50 0.02 −7.16

SD 0.10 0.10 0.11 0.63 0.11 354.04 0.20 495.61

RMSE 0.10 0.10 0.11 0.64 0.12 354.20 0.20 495.66

𝜷15 Bias 5e−4 −0.04 6e−4 −0.05 −0.15 0.03 −0.06 −0.10

SD 0.10 0.11 0.10 0.40 0.12 19.01 0.15 79.75

RMSE 0.10 0.11 0.10 0.40 0.18 19.01 0.16 79.75

𝜷16 Bias −5e−3 −6e−3 0.01 0.06 −0.04 −3.31 −0.02 −11.41

SD 0.09 0.11 0.14 0.79 0.12 91.22 0.14 323.47

RMSE 0.09 0.11 0.14 0.79 0.12 91.28 0.14 323.67

𝜷23 Bias 4e−3 0.02 2e−3 −0.17 −0.06 8.38 −0.06 3.30

SD 0.10 0.10 0.11 0.73 0.12 337.00 0.16 150.71

RMSE 0.10 0.10 0.11 0.75 0.13 337.09 0.17 150.74

𝜷24 Bias −2e−3 0.03 9e−3 0.08 0.04 −35.27 0.01 −14.68

SD 0.09 0.10 0.12 0.76 0.11 1256.46 0.20 301.05

RMSE 0.09 0.10 0.12 0.76 0.12 1257.00 0.20 301.41

𝜷25 Bias −9e−4 0.02 −0.02 −0.21 −0.06 2.33 −0.07 2.83

SD 0.08 0.10 0.11 0.69 0.11 66.93 0.14 49.19

RMSE 0.08 0.10 0.11 0.72 0.12 66.97 0.16 49.27

𝜷26 Bias −8e−3 0.01 0.01 0.12 −0.10 −10.33 0.04 −5.02

SD 0.07 0.11 0.25 0.80 0.13 323.56 0.14 172.85

RMSE 0.07 0.11 0.25 0.81 0.17 323.73 0.14 172.92

Note: The results of F-SIR and F-PHD are not presented due to the very poor performance.

are around 0.85. The results in Table 6 indicate that the associations between yi and xi can be correctly tested with high
probability.

6 GTEX DATA ANALYSIS

6.1 Background and data

We apply our method to analyze the aforementioned data with n = 278 samples of lung tissue from the GTEx project.
The response variable of interest is the expression level of gene ENSG00000225-880.4 measured by RNA-seq techniques.
Located on Chromosome 1, this gene belongs to the category of lincRNA (long intergenic non-protein coding RNA) and
is related to lung cancer. To improve the identification of eQTLs, we used the RNAK normalization method, which is
commonly-used in eQTL analysis,37,38 to transform the expression into a standard Gaussian. Although all the subjects
were genome-wide genotyped, for more power we use the target locus approach39,40 by focusing on the loci within 20kb
in the flanking regions of the target gene. We end up with a total of 117 loci. Following the eQTL analysis in Li et al38, we
include in our model gender, platform, three principal components of expressions of genome-wide genes, and 35 principal
components of genome-wide SNPs, a total of 40 variables, to adjust for population characteristics and batch effects; see
Appendix D2 in Supplementary Materials for the GTEx data preprocessing. The following delineates the application of
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F I G U R E 2 Comparison of Euclidean distance with n = 300. The points in gray are outliers that are greater than the third quartile
plus/minus 1.5× interquartile range.34 (A) p = 500 under Xmodel I and Ymodel II. (B) p = 500 under Xmodel II and Ymodel II. (C) p = 1000
under Xmodel I and Ymodel II. (D) p = 1000 under Xmodel II and Ymodel II.

F I G U R E 3 Comparison of estimation accuracy for the proposed method and two other competitors.
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T A B L E 5 Frequency of (q, d) selected over 200 repetitions under Ymodel II with (n, p) = (300, 50).

q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

Xmodel I d = 1 0 0 0 0 0 0

d = 2 - 0 0 0 198 2

d = 3 - - 0 0 0 0

Xmodel II d = 1 0 0 0 0 0 0

d = 2 - 0 0 0 189 11

d = 3 - - 0 0 0 0

F I G U R E 4 Comparison of the proposed method and other three methods in ranking SNPs.

T A B L E 6 Performance of testing the hypothesis H0 ∶ 𝜶j = 0 for j = 1, … , d under level 0.1.

TPRj

Model ⧵ j 1 2 3 4 5 6 7 8 9 10 FPR AUC

Ymodel III 0.950 0.714 0.890 0.608 0.611 0.765 0.639 0.625 0.923 0.943 0.137 0.858

Ymodel IV 0.920 0.584 0.873 0.666 0.575 0.807 0.546 0.552 0.915 0.979 0.126 0.849

Abbreviations: FPR, the rate that all zero 𝜶j is incorrectly selected; TPRj, the rate that the nonzero 𝜶j is correctly identified.

the proposed method to identify eQTLs among these 117 candidate loci, and the comparison with the results obtained
from standard GTEx analyses and from the SFADR methods (SFADR-SIR, SFADR-PHD, SFADR-DR, SFADR-SAVE) in
Jiang et al.3

6.2 Implementations of the methods under comparison

Standard GTEx analyses are done via the univariate association regression, which is to regress the target gene expressions
against genetic variants one at a time while controlling for those 40 adjusters. In contrast, our proposed method is designed
to accommodate all of the SNPs in the model, while accounting for their correlations. As such, it empowers detection of
eQTLs and elucidate SNPs’ roles in regulating gene expressions. To implement the proposed method, we first choose the



LIU et al. 3159

T A B L E 7 BIC values under various structural dimensions.

q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

d = 1 −727.48 −674.29 −644.07 −720.43 −688.75 −720.02

d = 2 - −713.32 −735.82 −694.06 −685.95 −700.05

T A B L E 8 Estimates of 𝜷.

𝜷12 𝜷13 𝜷14

Est −0.3490 −0.6444 −0.4037

ESE 0.1785 0.1292 0.1648

P-value 0.0505 0.0000 0.0143

structural dimensions (q, d) using BIC as outlined in (5). As shown in Table 7, we determine an optimal structure with
(q, d) = (4, 1) that has the largest BIC value.

Under (q, d) = (4, 1), we subsequently estimate 𝜷,B, and H by using the proposed method, and report the point
estimates (Est), estimated standard errors (SE) and P-values for 𝜷 in Table 8, where the ESE for ̂𝜷 is calculated using
resampling method based on 100 repetitions, as described in Section 5.2.2. Compared with SFADR, the Pearson’s correla-
tion coefficient Cor(̂Ĥ𝜷, ̂HSFADR̂𝜷SFADR) is 0.0896, implying a large difference between our method and SFADR. To further
assess the effects of individual SNPs on the gene expression, we estimate 𝜶 with 𝜶̂ = ̂B(̂B

T
̂B)−1̂𝜷

T
∈ Rp, of which the last

117 elements correspond to the effects of SNPs on the gene expression level in the sufficient direction. We then test null
hypothesis H0 ∶ 𝜶j = 0, j = 41, … , 157 to identify the SNPs that are significantly associated with the expression levels of
ENSG00000225880.4.

6.3 Comparisons of model predictiveness

We first use two-fold cross validation over 100 random splits to evaluate and compare the predictiveness of the proposed
model, the SFADR models in Jiang et al3 and the FADR methods in Fan et al.19 The cross-validated prediction errors
averaging over 100 random splits are 1.0086, 1.0257, 1.0511, and 1.0464 for the SFADR-SIR, SFADR-PHD, SFADR-DR,
and SFADR-SAVE methods, respectively, and are 1.2420, 1.2916, 1.3215, and 1.3106 for the FADR-SIR, FADR-PHD,
FADR-DR, and FADR-SAVE methods, respectively. In contrast, the average prediction error of our method is 0.9714, the
smallest among all of the methods. As expected, FADR has the poorest model predictiveness due to its restrictive assump-
tions (ie, linearity conditions on factors), whereas, by relaxing this assumption and using more flexible semi-parametric
approaches, both SFADR and the proposed method improve model fitness. The supervised learning in the proposed
method further enhances model fitness compared to the SFADR approaches. Since the univariate regression approach
in GTEx analysis uses separate pair-wise regressions and for fairness, we have opted not to compare its model adequacy
with the other approaches.

6.4 Comparisons of the identified SNPs

Various methods have identified different numbers of eQTLs after the Bonferroni correction; the univariate regression
approach (UR), the proposed supervised factoring approach, and the unsupervised SFADR methods, respectively, detect
76, 54, and 27 SNPs that are significantly associated with the expression levels of ENSG00000225880.4, and the SNPs
identified by SFADR methods were all contained in the SNPs identified by UR; see Figure 1A for a Venn diagram of
these identified eQTLs. Among the SNPs identified by the proposed method or by the univariate analyses, 36 SNPs are
detected by both, 40 are uniquely identified by the univariate analyses, and 18 are uniquely identified by the proposed
method. Moreover, the unsupervised factoring SFADR methods identify much fewer SNPs (only 27), 85% of which are
also identified by the proposed method.
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6.5 Validations of the identified eQTLs

As genetic variants nearing the target gene are likely to be correlated, some eQTLs might be falsely identified due to
their high correlations with the true functional variants. To validate the identified eQTLs from the proposed method, and
compare them with those identified by UR, we turn to the newly developed FUN-LDA scores.24,25 FUN-LDA scores inte-
grate epigenetic annotations from several large scale epigenomics projects such as ENCODE and Roadmap Epigenomics
to predict the likelihood of an individual SNP to be a true functional variant in specific cell types and tissues; eQTLs
with high FUN-LDA scores have a high chance to be actual functional variants, and those with near-zero FUN-LDA
scores may be false positives; see Figure 1B for the FUN-LDA scores of all the 117 candidate SNPs. As expected, near
ENSG00000225880.4, identified by both the proposed approach and univariate regression is a cluster of SNPs with high
FUN-LDA scores. Outside the range of ENSG00000225880.4, there are 3 SNPs with FUN-LDA scores larger than 0.3. The
proposed method is able to identify all these three, while univariate regression and SFDAR can only locate two and one of
them, respectively (Figures 1B and S1 in Supplementary Materials). Out of 40 SNPs identified only by UR, 8.8% of them
have high functional scores (ie, FUN-LDA> 0.1) in lung tissues; among the 18 SNPs uniquely identified by the proposed
method, 16.7% of them have functional scores larger than 0.1. Taken altogether, we conclude that our joint analytical
model may be more suitable for identifying functional variants than the traditional univariate analysis.

To demonstrate the proposed method’s capability of identifying the eQTLs in the case of n < p, we only use the half
of samples, the first 139 out of 278, to detect the eQTLs by comparing the proposed method with UR and SFADR. The
proposed method, UR and SFADR, respectively, identified 42, 47 and 11 SNPs that were significantly associated with the
expression levels of target gene; see Figure S2A in the Supplementary Materials for a Venn diagram of these identified
eQTLs. Furthermore, we count the number of the identified SNPs whose FUN-LDA scores are greater than 0.3 or 0.1.
Among the 117 SNPs, there are 5 and 12 SNPs with FUN-LDA scores greater than 0.3 and 0.1, respectively. The proposed
method, UR and SFADR, respectively, identified 3, 1 and 1 SNPs with FUN-LDA scores greater than 0.3; and 6, 4 and 1
SNPs with FUN-LDA scores greater than 0.1. See Figure S2B,C in the Supplementary Materials for more details. When
comparing with the proposed method using the full data, we find that out of the three SNPs whose FUN-LDA scores are
greater than 0.3, there are two overlapped SNPs (rs3131967 and rs2905042), and out of the six SNPs whose scores are
greater than 0.1, there are five overlapped SNPs. This fact indicates the robustness of the proposed method for GTEx data
analysis.

6.6 Cluster eQTLs using the estimated factor loadings

Presumably, our proposed method can gain power for eQTL detection by utilizing the similar factor loadings of the SNPs.
To see this, we cluster the identified eQTLs by our proposed method based on their factor loadings, determine the number
of clusters by minimizing the DB index41 as shown in Figure S2A in Supplementary Materials, and end up with 4 well
separated clusters as shown in Figure S2B in Supplementary Materials. Figure 5A further plots the locations of the 25
SNPs in cluster 2, along with their functional scores in lung tissues. In particular, the top 2 SNPs in the cluster are SNPs
rs2905042 and rs2286139 with functional scores greater than 0.2. Figure 5B plots the distributions of the functional scores
of the 25 SNPs in cluster 2 across 36 tissue types, where the darkest bars represent the proportion of SNPs with functional
scores larger than 0.1 (likely functional variants), and the lightest bars represent the proportion of those with scores
smaller than 0.001. The two top tissues with the largest proportions of true functional SNPs in this cluster are skeletal
muscles, suggesting functional SNPs in cluster 2 are more likely to be expressed in muscle tissues. The two top SNPs
rs2905042 and rs2286139 have moderate functional scores in lung tissues, and high scores across several muscle type
tissues, including skeletal, Psoas and left ventricle muscles. However, with a weak signal, rs2905042 is not identified by
UR, but by borrowing information from the shared factor loadings with rs2286139, the proposed supervised factoring
method is able to identify both of them as eQTLs. On the other hand, the SFADR does not detect either rs2905042 or
rs2286139. We also present a similar finding of the 10 SNPs in cluster 4; see Figure S3 in Supplementary Materials.

7 DISCUSSION

We propose a supervised structural dimensional reduction method for semiparametric regression models with
high-dimensional covariates, which seamlessly integrates factor analysis and sufficient dimension reduction under a
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penalized likelihood framework. There are several merits. First, by making full use of the information about correlations
among covariates and relationships between responses and covariates, the method can handle high dimensional corre-
lated covariates while embracing the blessing of high dimensionality. Second, the method is flexible enough to handle
unspecified distributions of responses and forecasting functions, while relaxing the linearity condition on the latent fac-
tors in Fan et al.19 Moreover, to overcome the computational challenges, we have proposed an efficient iterative algorithm
which benefits from closed-form solutions at each iteration. Last but not least, our method yields important findings from
a GTEx study by identifying new SNPs that may regulate the expression of a lung cancer related gene.
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