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ABSTRACT

Connected autonomous vehicles (CAVs) hold the promise of not only enhancing functional

safety but also improving mobility and the efficiency of transportation systems. The CAV is a

cyber-physical system (CPS) that contains many networked electronic control units (ECUs), sen-

sors, actuators, wireless interfaces, and an advanced driver assistant system (ADAS). Just like other

CPS, CAVs rely on data gathered from the sensors, actuators, and software for critical decision-

making to enhance efficiency, reliability, safety, and functionality. Besides, CAVs utilize connec-

tivity to improve drivers’ and passengers’ experience by integrating built-in wireless interfaces like

WiFi, Bluetooth, etc. The growing connectivity feature of modern vehicles is marking them more

vulnerable to cyberattacks. Many researchers have successfully exploited the remote connectivity-

induced attack surface. According to the recent industry report (1) on cyberattacks on CAVs indi-

cated that more than 700 incidents were reported targeting vehicular systems between 2010-2020.

Among them, in 27.63% of these incidents, attackers tried to control or manipulate the vehicle

which could jeopardize passenger safety. Based on the literature, several intrusion detection-based

solutions have been proposed to detect attacks on CAVs. While the solutions are effective against

a certain range of attack vectors, they are limited in scope and effectiveness. For instance, existing

solutions are unable to localize the attack. In addition, existing state-of-the-art require thousands

of in-vehicular network (IVN) packets for intrusion detection. It is therefore important to develop

reliable, robust, and real-time security solutions to safeguard CAVs by mitigating emerging cyber

threats.

This dissertation aims to address the aforementioned cybersecurity challenges of CAVs by de-

veloping a robust and reliable framework to safeguard against attacks at different points through

a multi-layered framework. Each layer of the proposed solution aims at neutralizing cyberattacks

on in-vehicle networks by breaking some critical links in the attack chain. The first layer of the

proposed framework aims to protect IVNs by developing a sender identification algorithm that uti-

lizes the unclonable signal attributes to fingerprint transmitting ECUs. The proposed framework

is novel and efficient that leverages the uniqueness of physical signals to create images and uses

a deep learning algorithm for attack detection and localization. The second layer aims to protect

IVNs against firmware attacks using ECU behavioral fingerprinting through a data-driven graph

theory-based approach. The proposed methodology takes advantage of a huge amount of IVN data
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to model the normal behavior of the network by using graph analytics and develops a network

monitoring system to detect unusual behavior created by attackers.

The effectiveness of the proposed multilayered framework is evaluated by conducting a series

of experiments using bench testing and as well on vehicular public data. The experimental results

suggest that the proposed multilayered framework is capable of detecting IVN message injection

attacks with higher accuracy and can reliably localize the attacker on the network. Additionally,

the thesis hypothesis and solution were validated by conducting market research through active

participation in both the regional and final programs of the National Science Foundation (NSF)

I-Corps. In the future, I plan to build a prototype of the proposed framework and deploy it in actual

vehicles for rigorous field-testing.
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CHAPTER 1

Introduction

Vehicles are considered as one of the greatest inventions in the past 1000 years (8). They were

first invented in 1885 and now it has become an integral part of the world’s economy. According

to the bureau of labor statistics, more than 872k people are directly employed by the automotive

industry (9) as there is a very large vehicular market demand. In 2020, the north american auto-

motive industry has produced 13.4 million vehicles and In the last 10 years, billions of vehicles

have been sold only in the USA reported by (10). With the increasing curve of market demand,

the transformation of vehicles is happening rapidly. Nowadays they are not only used as a form of

transportation but also considered as IOT systems as they are equipped with sensors and have high

computational power. Currently in the global automotive industry, there are three disruptive trends

that may change the industry: autonomous driving, shared mobility, connectivity, and electrifica-

tion (11). While autonomous vehicles perceive surroundings through sensors and use connectivity

to collect other vehicles’ intent and status to improve mobility, electric vehicles aim to reduce

fuel consumption and control CO2 emissions to protect the environment. This work focuses on

autonomous vehicles & connectivity problems rather than the electric transformation problems.

1.1 Connected autonomous vehicle - future mobility model

Connectivity & automation are the foundational attributes of autonomous vehicles. The connec-

tivity is the backbone of the connected vehicles where the vehicles communicate with each other.

On the other hand, automation is the foundation of self-driving cars. These two technologies can

improve the luxury features, functional safety and traffic mobility in vehicles. As a demonstration,

recent work shows that these technologies can reduce traffic accidents and improve transport sys-

tem efficiency (12). According to the author in (13), the accident rate will be lower if human errors

can be reduced and connectivity & automation can be used for this purpose. They can also be used

to improve the lifestyle of citizens. They can help people who are not able to drive a vehicle to

travel anywhere they want. They can even contribute to the complex operations of product delivery
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hence reducing human involvement in the risky task.

These two technologies are merged by the automotive industry to evolve the term ’connected

autonomous vehicle’ (CAV). Where the connectivity gathers information from the vehicle’s sur-

roundings and passes it to the intelligent decision-making unit of a vehicle. The vehicle can take

the right decision using this valuable information. Although we have not reached the highest level

of automation, there are some vehicles in the market that are at level 3 (controlled automation).

Fully automated vehicles i.e. level 5 automation is not possible unless the decision-making unit

of the vehicle is trustworthy and capable of performing driving tasks like an actual human without

any fear of cyber attackers.

1.2 Brain of the CAV

The complex tasks inside a vehicle are performed by small mini computers called Electronic Con-

trol Units (ECUs). More precisely, they are a set of microcontrollers and are controlled by em-

bedded software programs. According to (14), Modern vehicles contain around 70 to 100 of these

ECUs and are connected through one or more in-vehicle networks. To operate the vehicle function-

ality, ECUs receives signals from the sensors and depending on the data, it controls the actuators of

a vehicle. Each ECU is responsible for performing mini tasks and sharing important information

with other ECUs. That is why, ECUs are called the brain of the vehicle.

1.3 Current security challenges of CAVs

Once the vehicle was considered a closed system when it was used only as a form of transportation.

Back in those days, the only way to access the in-vehicle network data was to check the OBD-II

port of the vehicle. But with the advancement of wireless technology, the vehicles can be accessed

using bluetooth, wifi, hotspot etc. As a result, they are turned into open IoT systems nowadays

that can be accessed externally. These external interactions can be used as an attack surface to

perform attacks on the vehicles by exposing confidentiality, the integrity of the in-vehicle network.

According to Forbes magazine (15), almost every automotive manufacturer has been hacked at

least once. As an impact, the manufacturers had to recall vehicles for fixing (Chrysler recalling 1.4

million Jeep cars in 2015, (16)), shut down the production in the factory (Honda in august, 2020

due to ransomware attack, (1)), OTA automotive software update (Tesla in 2016 after message

injection attack by Keen Security Lab of Tencent, (17)), etc. Earlier, the security of automotive

systems was overlooked most of the time, until recently both the government and the automakers

are paying attention to this matter. In March 2016 the FBI issued a warning about the potential

security weakness of the car’s on-board system. The automakers are launching different bug bounty
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programmers to make their vehicles more secure. . In 2020, OEMs, such as Tesla, GM, Ford,

FCA, Daimler, & more and the Tire-1 companies all host bug-bounty programs on platforms like

BugCrowd, HackerOne, or their own websites (1). And the program is actually working for them.

Uber’s bug-bounty program has received 1,500 plus software vulnerabilities reports by 2020. It

has increased 13 % in 2020 from 2019. Companies like Tesla offered $1 million and a car as a bug

bounty reward as well (17). So, nowadays, arguably the automotive security research area is an

active research field.

The number of cyber attacks on vehicles is increasing exponentially because of the increased

interaction of vehicles with the outside world. Apart from the driver, any outsider can access the

vehicles through a wireless or wired medium. These connections can be used as attack surfaces

and make an impact on the security of the vehicle. For example, a gray hat hacker connected an

Arduino to the car OBD-II port and injected a message to the in-vehicle network of a Mercedes in

2019. Wireless attacks are growing significantly as well. Between 2010 to 2020, 79.6% of attacks

have been performed remotely. Among the huge number of attack reports, the black hat hackers

were responsible for 54.6 % of all the attacks (1). The target of the hackers is actually breaching

data/privacy, controlling or manipulating car systems, disrupting service/business, fraud, tracking

location, violating the privacy, etc. According to the 2021 report of (1), 27.63 % incidents tried

to control or manipulate the car system or disrupt service or business. The previous incident like

the famous hack from Charlie Miller and Chris Valasek in 2015 (16), tesla hack from the keen

lab, etc (17). manipulated or controlled the car by injecting malicious messages to the in-vehicular

networks (IVNs). That is why securing IVNs is one of the trending works in the cyber security

space.

1.4 Problem statement

This thesis aims to identify, localize & mitigate cyber attacks to protect the in-vehicular network

that bridges the safety-critical ECUs in a modern vehicle. The goal of this work is to safeguard

CAVs against growing attack surfaces and vectors by developing holistic solutions through mul-

tiple seamlessly integrated layers of defense, with each layer aiming to mitigate a specific set of

attacks. The reason for defense systems in different layers is important due to the difference in the

nature of attack models. The attack models are discussed briefly in chapter 3. The intruder who

wants to misguide the vehicle by making the in-vehicle network unavailable can be identified by

the intrusion detection system based on the network packet-level analysis. This approach is called

the behavioral analysis of the in-vehicle network. However, this approach can not localize the

compromised ECU or the physical channel. To achieve the sender information, physical signals

are needed to be analyzed and linked to either to the specific channel or to the ECU. That is why
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IDS in the multiple layers of the in-vehicle networks is needed to mitigate cyber attacks.

1.5 Research objective

The following are the specific research objective for the thesis.

• Investigate message injection attacks in automotive IVNs.

• Design & develop novel multilayred framework to detect message injection attacks in IVNs.

• Evaluate the performance of the proposed frameworks using bench testing.

• Design & evaluate a framework to execute various message injection attack using an actual

vehicle.

1.6 Outline of the dissertation

The thesis aims to detect cyber attacks for connected autonomous vehicles and localize the attacker

to isolate the attack points. To achieve this, chapter 2 presents the overview of in-vehicle networks.

Chapter 3, the access points for the intruders to access the IVNs is explained. The chapter is

named as threat modeling and also holds the motivation of the attacker & the impact of the attack.

In chapter 4, the related work is presented and the research problem is identified. The proposed

multilayered framework is presented in chapter 5. Chapter 6,7,8 and Chapter 9 represents the

detail of intrusion detection using behavioral fingerprinting approach and physical fingerprinting

approach. Finally, the report is ended with a discussion & future work.
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CHAPTER 2

CAV In-vehicle Network

2.1 In-vehicle network(IVN) protocols

Current automotive vehicles use multiple communication protocols to exchange information be-

tween ECUs, vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and vehicle to pedestri-

ans(V2P). The IVN protocols have their own characteristics like speed, specification and use cases.

They help to reduce the complex wiring system of a car thus making it easy to maintain & reducing

cost. This section presents the conventional automotive networking protocols such as LIN, MOST,

CAN, FlexRay, Ethernet, etc.

2.1.1 LIN

Local Interconnect Network (LIN) was introduced in the late 90’s as a low-cost alternative of CAN

bus protocol to connect components in a car (18). It allows serial communication in a master-

slave architecture that has a data rate of 20-25 kbit/s. However, due to the low bandwidth of data

communication, it is impractical to use a high-speed communication system. But it became so

popular to connect non-critical subsystems where the speed of communication is not considered as

an issue because the protocol itself is low cost. It has been used in subsystems are like adjusting

seats, mirrors, or controlling car windows, etc (19).

2.1.2 MOST

Media Oriented System Transport (MOST) is a high-speed multimedia network protocol and was

developed in 1988 by MOST corporation (20). By architecture, it supports up to 64 ECUs to

connect in a ring topology structure. It has a data rate of 24.8 Mbit/s to the maximum. (19). Due

to the support of high-speed communication, it became popular for the car infotainment system.

World’s renowned car manufacturers like BMW, Mercedes-Benz, Porsche, Audi, Volkswagen,

Jaguar, Hyundai, Toyota, Land Rover and many others using MOST for many years (21).
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Figure 2.1: In-Vehicle Network Architecture.

2.1.3 FlexRay

FlexRay is another in-vehicle communication protocol and was first introduced in vehicles by

BMW in 2006 (20). It has a data rate of 10 Mbit/s. That means, it supports high-speed communi-

cation between ECUs and is used for applications like active suspensions, adaptive cruise control,

etc (19). BMW 7 Series is the first car that used FlexRay fully in the car (20). Other interesting

characteristics of FlexRay are, it can fit any kind of topological network structure.

2.1.4 CAN

Controller area network (CAN) is the most widely used in-vehicle communication protocol. It was

developed by German company Robert Bosch GmbH in 1980 (22) and was first made public in

1986 (20). The introduction of CAN protocol dramatically solved the complex wiring issue in a

vehicle and it became popular in a short time. By architecture, it is a broadcasting system and any

ECU can access the bus anytime it wants. For their access control, Carrier Sense Multiple Access

with Collision Detection (CSMA/CD) is used with the help of a few bits in the CAN message frame

called arbitration ID (23). In terms of speed, it has a data rate of 1 Mbit/s. Due to its simplicity and
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Table 2.1: The in-vehicle network buses specification(4)

AE CAN FlexRay MOST LIN

Bandwidth (Mb/s) 1000 (developing) 1 or 10 (CANFD) 20 150 0.02

Max number
No of switches 30 22 64 16

of nodes

Network length 15 m per link 40 m 24 m 1280 m 40 m

Messaging IP based Multi-master Multi-master
Cyclic frames

Master-slave
/streams

Cost High Low Low High Very low

Safety-critical Proven other
Yes Yes Yes No

functionality industry

Availability Growing Many Few One Many

Cabling UTP UTP UTP Optical,UTP 1-wire

Main applications
Infotainment,

General bus
Safety-critical,

Infotainment
Seats, doors,

Backbone (future) X-by-wire switches

easy plug & play feature it is used in communication between safety-critical ECUs and is used by

most of the leading car manufacturers in the world.

2.1.5 Ethernet

Another popular IVN used nowadays is the Ethernet. It is a physical network that connects differ-

ent components of a vehicle. The popularity of Ethernet is visible by its recent use by Hyundai,

BMW and Volkswagen (24). But as a communication protocol Ethernet is not new, it has been used

in computer networking for more than 20 years and was not considered for the automotive industry

because of OEM’s automotive requirement. But extensive research work to develop driverless ve-

hicle and camera-based ADAS systems has convinced the automotive industry that its components

need high speed, higher bandwidth buses. As a result, IEEE 802.3 Ethernet was introduced by

automotive makers. The modern software & electronics in vehicles can introduce exciting func-

tionalities because of the speed and bandwidth offered by Ethernet. Unlike CAN protocol, Ethernet

protocol has sender and receiver information in the message packet and is considered more secure.
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2.2 Heterogeneity of IVN architectures

Current automotive networks are considered as an internet of things (IOT) where they are equipped

with 70-100 ECUs. These ECUs serve different functionalities in a vehicle where some function-

alities require real time interactions among ADAS cameras, sensors (ultrasonic, lidar, radar), pow-

ertrain sensors, actuators, etc. and some requires low data rates such as door lock/unlock, window

lock/unlock. To satisfy different need of data rate of different units, different IVN protocols are

used in a car heterogeneously. As the IVN protocols contribute to the overall production cost of the

vehicle, this heterogeneously network architecture is highly adopted by the industry like shown in

figure 2.1. This multiple different networks are supported by a computationally expensive intelli-

gent device called gateway which works as a master in a master-slave network. This heterogeneity

of networks poses different security challenges in a vehicle. To make a vehicle safe we can replace

everything with the most secured network which is not so cost-efficient. For example, automotive

Ethernet has a data rate of 10 MB/s to 100 GB/sec and has source and destination address in the

message packet to ensure CIA in data communication, but it is so costly to implement in the vehi-

cle as it requires switches to connect multiple ECUs and itself they are expensive. So, to connect

everything with the automotive Ethernet is not feasible and cost inefficient. So, the Heterogeneity

of automotive IVN is here to stay for next generation of vehicles.
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CHAPTER 3

IVN Threat-Model

A cyber attack is defined by unauthorized access (physical/remote) to a system with the intent

of interrupting, destroying it, and/or modifying, controlling its’ behavior that can be motivated

to achieve financial gains. This chapter comprises the details of cyber attacks on the automotive

platform. As a part of that, we first started the chapter with the touch points the attacker can choose

to enter the system, then we discuss how an attacker can take advantage of multiple attack surfaces

to launch an attack. After that, the motivation of the attacker is discussed. Finally, we talk about the

current report of the impact of the automotive cyberattacks and the built-in security vulnerabilities

of IVNs.

3.1 CAV attack surfaces & attack vectors

Current vehicles have different interfaces that are used to establish access directly or indirectly to

a vehicular system. In this sub section, we discuss the connectivity ports of the vehicle and how

they can be used to mount an attack on a vehicle. The can come in the form of a physical interface

or wireless interface.

3.1.1 Physical interfaces

Physical access ports are the touchpoints that can be used to gain access to the vehicle by intruders

with the help of some hardware connection. For example the OBD-II port of a car, any cable con-

nector (USB/AUX, etc.), CD/DVD players, etc. OBD-II port provides a significant direct physical

access opportunity to the vehicle. It is mandated by US federal law and is currently used in all

vehicles. Using the OBD-II port anyone can directly access the internal in-vehicle networks. This

can be used by the attacker as a weapon to perform attacks on the automotive network. As shown

in table 3.1 the pin 6 and pin 14 can be used to access the CAN bus directly. Any message injection

attack or denial of service attack (DoS) can be mounted on a vehicle using the OBD-II port.
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Table 3.1: OBD-II pinout description

Pin Description Pin Description

1 Vendor option 9 Vendor Option

2 J1850 Bus + 10 J1850 Bus

3 Vendor Option 11 Vendor Option

4 Chassis Ground 12 Vendor Option

5 Signal Ground 13 Vendor Option

6 CAN (J-2234) High 14 CAN (J-2234) Low

7 ISO 9141-2 K-Line 15 ISO 9141-2 Low

8 Vendor Option 16 Battery Power

CD players are used as a form of entertainment feature in a vehicle that can play audio or video.

Audio and videos are a very essential element of entertainment and vehicles all over the world

support most of the formats of audio (mp3, WMA, etc.) and videos (mp4, 3gp, etc.). However,

researchers have identified vulnerabilities in the CD players. In (25), researchers were able to

bypass the security of the CD player by embedding a text file in a WMA audio file. The player was

unable to detect the text file while playing the audio. However, this is considered as a low-level

threat surface as the popularity of CD players is decreasing day by day. Currently, all the vehicular

system provides the feature of connecting cable to the system. They can be used to charge phones,

play music, etc. They can be even used for firmware updates as well. The above-mentioned

vulnerability of the CD player remains valid for mounting cyber attacks via cable connection.

3.1.2 Short range wireless interfaces

The short-range wireless access medium includes bluetooth, RFID, keyless entry, tire pressure

monitoring system, dedicated short-range communication network, etc. They all can be used as

a backdoor to mount cyberattacks. For example, bluetooth is very popular in vehicles nowadays.

They are used as a wireless medium that connects mobile devices to the vehicular infotainment

system. It supports the hand-free control of the sound system which helps the driver focus on

driving and indirectly reduces accidents. However, most modern cars allow the users to sync and

operate the mobile phones in the car infotainment system. This can be risky as the intruders can

collect vital trip information using malicious applications.

Almost all modern vehicles use the RFID based remote key and keyless entry. RFID based

remote key is the feature to prevent car theft because the car can not be started if the remote key

is near the car. Keyless entry technology is used to unlock the car wirelessly. These wireless

interfaces can be used to perform attacks as well. According to the reports of upstream 25.3
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Figure 3.1: Current vehicle as an IOT system

% incidents happened through the keyless entry system. The tire pressure monitoring system

acknowledges the status of the tire and sends a digital telemetry signal to alert the driver if the

pressure is low. It is mandated by US law that every vehicle should have this feature. However, It

can be used as an attack surface to send a false alerts to the driver according to (26).

3.1.3 Medium range wireless access

Directed short-range communication (DSRC) is a wireless interface that enables vehicles to inter-

act with other vehicles or with the infrastructures. This interface plays a vital role in the function-

ality of connected vehicles. This can also be used as an attack vector to send false information to

the receiver. Apart from that, an intruder can use wifi to establish connectivity with the car as well.

The intelligent vehicles are currently equipped with Wi-Fi and consequently, they can connect to

the internet via Wi-Fi hotspots on the roadway within the same range of the vehicle. However,

some of these wireless hotspots might put the vehicle at risk for a variety of reasons. For instance,

these wireless hotspots may employ outdated encryption standards, putting the vehicle security

at risk.Such as the Wireless Encryption Protocol (WEP) in earliest version is deemed weak and

vulnerable to hacking. This vulnerability introduced Wi-Fi protected access (WPA) as the wireless

networking standard, but it, too, was proven to have flaws. Furthermore, these wireless hotspots

may expose vehicles to a rogue or fake Wi-Fi hotspot (27). For example, in the case of the vehicle
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connect to a malicious hotspot, this allows the hacker to operate many activities on the vehicle

such as transfer malicious code to the vehicle. As a demonstration, Nie et al.(17) were able to

remotely hack a Tesla vehicle by exploiting the way that the secret key to an installed Wi-Fi was

saved in plain text. Furthermore, Nakhila et al. (27) showed that by connecting to an illegitimate

Wi-Fi access point, an attacker may eavesdrop on Wi-Fi activity. Vanhoef et al. also looked at the

possibility of Denial of Service attacks against Wi-Fi Protected Access (28).

3.1.4 Long range wireless access

The long-distance digital access channels, which are divided into two types: broadcast channels

and addressable channels, have been deployed in intelligent vehicles now. The broadcast channels,

such as GPS, Traffic Message Channel, Satellite Radio, and Digital Radio, are indirect channels

that receivers tune into as part of a media system that is connected to other important ECUs. How-

ever, because it is difficult to attribute and command multiple channels at once, these channels are

subject to external surface attacks, which might allow an attacker to manipulate channels and their

behavior. The addressable Channels, as opposed to broadcast channels, are direct channels that

frequently employ cellular phone and data networks and may be accessed over arbitrary distances.

However, this type of long-range wireless is vulnerable to attack by the remote transfer system that

provides continuous connectivity through cellular voice and data networks (25).

The intelligent vehicles are currently equipped with cellular network technologies such as LTE,

3G, 4G and now 5G (29) and consequently, they can communicate to either another vehicle (V2V)

or the infrastructure (V2I) at long distances on the scale of miles (30). Cellular networks, on the

other hand, are prone to eavesdropping and jamming attacks (31). Cichonski et al. demonstrated

that LTE can be hacked easily by jamming attacks and eavesdropping attacks (31). Other work by

Muhammad et al. (32) demonstrated that the LTE and 5G-based vehicular networks are vulnerable

to a huge number of attacks. This allows attackers to track vehicle whereabouts in order to get

access to the vehicle and carry out harmful operations inside it. For instance, Miller et al. (33)

have been able to hack and stop a Jeep Cherokee running on a highway remotely through 4G.

3.2 Motivation of the attacker

The motivation and goal of the attacker are as follows.

3.2.1 Theft

Theft is the main motivation of the attacker in most cases. It is a booming “business” among crim-

inals, with rising numbers reported worldwide. The UK reported a 60% rise in car thefts in 2020
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while in India a gang of thieves in India was arrested for stealing over 100 vehicles using electronic

devices (1). From a technical point of view, an attacker can use the vulnerability of the keyless

entry of the vehicle to unlock it, deactivate the security alarm of the vehicle and start it without the

key. This break-in can result into steal the vehicle or owner’s personal belongings or/and important

documents. In a recent event, automotive security experts said they have discovered a technique

for car theft that depends on having direct access to a car’s system bus via the electrical wiring of

a headlight. (34).

3.2.2 Privacy breach

An attacker could infringe the privacy of drivers by infusing spyware into a vehicle. An attacker

could steal and access sensitive and private data about the driver for example, where he is located,

his driving propensities, his credentials, his visa and banking information, his telephone number

and call history, the music he tunes in to, and considerably more. According to an IBM Security

report (35), a third party was able to gain access to the personal information of 27.7 million Texas

drivers. An attacker can aim to obtain confidential information about a vehicle. Confidential in-

formation actually means the reverse engineering of an in-vehicle network or retrieving the source

code of ECUs. By this attacker can sell the intellectual property to other companies for financial

gain.

3.2.3 Electronic tuning

Electronic tuning happens when one tries to modify the ECU level of the vehicle in an unautho-

rized way. For example, one can try to reprogram the ECU to lower to millage of the vehicle

before selling it to others. In another way, an owner can try to install more powerful equipment

by programming the ECUs. Or he/she can buy a cheap ECU as a replacement to install it by

him/herself. This can motivate someone to tune electronic equipment in a vehicle and can result in

serious consequences in the future.

3.2.4 Financial gain

An attacker can restrict the driver’s access to his vehicle by infecting the vehicle remotely with

ransomware which can disable the vehicle’s functionalities such as immobilize the motor, locking

the in-vehicle radio and locking the doors. Such an attack could restrict the vehicle’s functionalities

in a way that the proprietor’s car keys can no longer activate them. The attackers would then be able

to demand payoff before these functionalities were re-enabled. As a demonstration for academic

research purposes only, work by wolf et al. (36) showed that vehicle ransomware can be easily
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created and deployed. Additionally, researchers from McAfee security (37) demonstrated that the

ransomware can block the use of the vehicle until the ransom is paid. Furthermore, fraud can be a

major route for hackers to bring in cash. Hacked vehicles could give access to stalkers to be able

to track the vehicle identification number of any potential victim through GPS since all intelligent

vehicles nowadays have GPS. So in an event that an attacker can track any vehicle, the attacker

can begin assistance for anybody that needs to track someone can in exchange for money. As a

result, the attacker can gain a lot of money by tracking hundreds of vehicles. It’s an extraordinary

business. As an example of that, according to a report from Boston 25 News (38), an attacker was

able to track a vehicle for many years by hiding a GPS tracking device on the victim’s car. Another

way of hackers to bring cash is automated toll booth payments, it may create more points of entry

for hackers to steal individual information, for example, visa or banking data. Hackers are hoping

to put forth the greatest benefit for the base attempt since the intelligent vehicles are going to have

a lot of payment systems in order to provide the comfort for the driver to pay via his vehicle when

he goes to toll roads and parking lots (39).

3.3 Impact of cyber attack

Attack impact is the consequence of cyber attacks. It is actually the scenario of a post-attack situ-

ation. From 2010-2020, there were more than 700 incidents reported that targeted the automotive

systems. Among them, 30% incidents have resulted in data/privacy breaching. 28.14 % times the

attacker stole the vehicle or just broke in (1). The attackers tried to control or manipulate the vehi-

cle system 27.63 % times. The remaining incidents interrupted automotive production or violated

the privacy of the owner or tracked the trip route of the driver. Although, the incidents that resulted

in vehicular theft or data breaching is high in number, the incidents where the attacker manipulated

or controlled the vehicle are considered as a threat to the passenger of the vehicle or even a threat

for the pedestrians also. This section leads us to question how architecturally secured is the IVNs?

3.4 Security analysis of IVNs

As mentioned in the introduction section, vehicle connectivity can be leveraged by intruders and

they can misguide the vehicle. It is considered a serious issue because passengers’ life can be

at risk if the hackers can remotely take control of the vehicle. In this section, we discuss the

loopholes that each IVNs create architecturally. The MOST protocol is not discussed here as best

to our knowledge, there is no work that takes advantage of MOST protocol to perform attacks.
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Figure 3.2: Cyber attack impact on automotive based on the actual events from 2010-2020 (1)

3.4.1 LIN

LIN is known as low cost IVN that connects non safety critical sensors and ECUs in a vehicle.

By architecture it is a single wire system and has UART serial interface (40). Modern vehicle

systems connect a master and several slaves to form a LIN network and they send two types of

message in the bus i.e. (i) unconditional message frame & (ii) event triggered message frame. In

an unconditional message frame the master specifies a slave to respond with a message and the

slave follows the command. The event triggered message frame is sent to the bus by the master

when information is requested from the slave. The main difference between unconditional message

frame and event triggered message frame is the response of the slaves. Unlike the unconditional

message frame, the slave did not respond in an unchanged state upon receiving the event trigger

message frame. From an intruder point of view, this feature can be used to perform attacks. As

master initiates action for all the slaves, gaining access to one of those gives the attacker access

to the bus. Apart from this another type of attack has been reported by the researchers. That is

sending the sleep command (41). Although this is considered as the unique advantage of LIN

communication protocol to go to sleep mode to save power, it can be exploited by the attacker

to disable the LIN bus system in a vehicle. Lastly, the normal state of a LIN bus system can be

hampered by an attacker using electromagnetic interference as it is a single wire system (40).
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3.4.2 FlexRay

The FlexRay is another IVN protocol that provides high-speed communication between ECUs.

It has been used recently in several applications such as adaptive cruise control and active sus-

pensions (19). It is tailored to the demands of today’s automotive industry, with features such as

flexible data transfers, support for any kind of topological network structure, fault-tolerant oper-

ation, and greater data throughput than prior standard protocols. It is also a dual-channel system

that supports both asynchronous and real-time data transfer modes (20). Although it provides some

protection features of data availability and data integrity since it uses CRC as a kind of data protec-

tion against transmission mistakes. Nevertheless, these features do not imply any guarantee of data

confidentiality, authenticity, or freshness. A FlexRay network, in reality, does not have directly ac-

cessible interfaces, instead, it connects to other network protocols through gateways. Access to the

FlexRay bus can be gained through such gateways. This makes the FlexRay protocol is insuffi-

ciently protected against attacks and makes the FlexRay bus is a likely target for attackers since the

ECUs attached to it are utilized to provide control and mobility in the vehicles. These cyberattacks

can target the in-vehicle network’s control and maneuverability ECUs, causing significant harm to

the driver. A variety of attacks have been easily created and developed on the FlexRay standard

protocol including the Nilsson-Larson attacker model (42), in which an adversary has access to

the in-vehicle network via the wireless gateway and can read, modify, flood, steal, drop, monitor,

record, broadcast, spoof and replay messages. Also, the Man-in-the-middle attacks, or intercepting

and dropping messages, are possible with such an adversary (43).

3.4.3 CAN

Controller area network (CAN) is known as the de facto standard for IVN communication. Ar-

chitecturally it is a broadcasting system that means any CAN messages sent to the bus can be

accessed by all the components connected to the network. This makes the vehicular networking

system more simple and solves the complex wiring problem. But the design of the protocol lacks

authentication features because it does not have any field containing sender or receiver information

in their message frame.A typical standard CAN dataframe has 111 bits at most. Out of them, it

has a unique arbitration ID (11 bits), that is used to control the accessibility of the CAN bus by

establishing priority scheme. According to the scheme, lower arbitration ID has a higher priority

to send messages to the bus. That means if two ECUs try to send CAN message to the bus at the

same time, the protocol lets the sender with lower arbitration ID to send message first before the

other one. Theoretically, if an ECU sends a CAN message with an arbitration ID of 0000 contin-

uously, then the other ECUs will not get chance to transmit messages to the bus. There is also 15

bit CRC field in CAN dataframe that is calculated from the data fields(0-8 bytes), but that only
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Figure 3.3: Different CAN bus channel scenarios

protects the data loads. By default there is no other ways to provide security to the CAN message

frame. The attacker can take advantage of the CAN bus protocol characteristics discussed above

and manipulate the bus. To be more specific, there is three important properties of the protocol that

an intruder can utilize to perform attacks according to the state of the arts (3). First, the broadcast-

ing nature provides a way for the attackers to read all the CAN messages in the network without

getting noticed. Secondly, the priority scheme of the protocol can be misused by the intruder and

denial of service attack can be performed by sending highest priority CAN message continuously.

Finally, due to the lacking of sender identification an attacker can act as an authorized ECU and

can send CAN messages to the bus to perform spoofing attack. The following are the message

injection attack scenarios in CAN bus channel.

3.4.3.1 CAN bus message injection attack scenarios

Based on the above described adversary model, we consider the normal CAN-bus data (attack-free)

in addition to four kinds of attack scenarios which are spoofing, fuzzy, DoS and replay as shown

in figure 7.1.

Spoofing attack: This attack happens when an attacker injects a single message of randomly

spoofed CAN identifier with arbitrary data like shown in figure 7.1 (d) Subsequently, it causes

unintended vehicle behaviors since all ECUs will receive that message. To exploit the spoofing

attack, an attacker can inject arbitrary data into one message of the in-vehicle messages and chose

the target identifier of that message to create unexpected behaviors for the vehicle. Such behaviors

include turning the signal lamps light irregularly, flickering the instrument board in incalculable
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ways, disabling the braking system and shaking the steering wheel colossally. (44; 45)

Fuzzy attack: This attack occurs when an attacker injects multiple messages with arbitrary

data of randomly multiple spoofed CAN identifiers, unlike the spoofing attack which occurs by

injecting only a single message of randomly a single spoofed CAN identifier. As a result, all ECUs

will receive various messages which cause unintended vehicle behaviors like gearshift changes

automatically, disabling the braking system, instrument panel blinks in incalculable manners and

the steering wheel shakes gigantically. Figure Figure 7.1 (c) shows the fuzzy attack scenario in

CAN bus. (44; 3)

DoS attack: This attack happens when an attacker injects high priority of CAN messages such as

the 0x000 CAN ID packet in a short cycle on the CAN bus. Figure 7.1 (b) To exploit the spoofing

attack, an attacker can easily occupy the bus by injecting the highest priority identifier of CAN

messages such as 0x000 in a short cycle on the CAN bus. Subsequently, it yields latencies of other

messages and causes threats in regards to availability with no reaction to the driver’s commands

since all ECUs share a single bus. Unlike the spoofing and fuzzy attacks, the DoS attack delays

the normal messages through the occupancy of the CAN bus rather than cripple the functions of a

vehicle. (44; 3)

Replay attack: To mount a replay attack, the adversary needs to compromise atleast two ECUs,

one as a strong attacker and the other as a weak attacker, as shown in Figure 7.1 (e). The adversary

monitors and learns which messages are sent at what frequency by the weakly attacked ECU, and

then the strong attacker transmits the message with the ID of the compromised ECU at the same

frequency. (46; 3)

3.4.4 CAN FD

As the CAN FD is designed based on CAN protocol. Unfortunately, it has most of the security

limitations CAN protocol posses (47). Although it has a larger payload field than the CAN, so

encryption based algorithms can be used to solve the security threats in CAN FD. However, it

requires new hardware because current ECUs are 8-16-bit processors without cryptographic ac-

celeration capabilities, and also requires a key management system. Moreover, the security of

message encryption algorithms is also questionable as MAC uses the bandwidth.

3.4.5 Automotive Ethernet

The Ethernet has recently been employed in camera based ADAS systems and self-driving vehicles

(48). It is a physical network that allows various components of a vehicle to be connected to each

other. The Ethernet protocol offers greater features compared to the standard CAN protocol such

as speed, flexibility, bandwidth, cost-effectiveness, and interoperability. The Ethernet protocol is
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also considered more secure compared to the standard CAN protocol since it relies on the TCP/IP

protocol, which includes the sender and receiver’s information in the message packet, which elim-

inates the need to broadcast each message. However, because Ethernet has long been the actual

standard protocol for linking computers, years of expertise hacking computers may be applied to

hacking vehicles. Furthermore, the Ethernet protocol might be vulnerable to attacks since it relies

on TCP/IP protocol which focuses on communication for resource sharing. A variety of attacks

have been implemented on TCP/IP protocol including source address attacks, sequence number

spoofing attacks and mad authentication attacks (49). Another possible issue is that open-source

protocol is not highly appreciated in the automotive sector due to common copyleft rules that

compel companies to publicly reveal code updates and enhancements. Furthermore, the lack of

validation of the open-source protocol implementations may cause further implementation issues,

which potentially exposing serious vulnerabilities.
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CHAPTER 4

Background & Related Work

4.1 Background

In modern electric vehicles, actuators and sensors are controlled through the electronic control

units (ECUs). ECU is a device in modern vehicles which control electric subsystems. The ECUs

are responsible for a variety of vehicle functions including engine control, braking, airbag deploy-

ment, door lock/unlock, antilock braking system (ABS), parking support system. Various network

protocols have been proposed for in-vehicle communication between ECUs, such as controller area

network (CAN), local interconnected network (LIN), media oriented system transport (MOST), au-

tomotive Ethernet, etc. (50). Based on the standards the automotive in-vehicle networks need to

have atleast physical, datalink layer configurations, defined by the Open Systems Interconnection

(OSI) model. CAN protocol is most commonly used for in-vehicle communication due to its ro-

bustness. Robert Bosch GmbH developed the CAN Protocol and published CAN 2.0 specification

A and B in 1991 (51). In 1993, the international organization for standardization (ISO) released

standard ISO 11898 for CAN protocol (51). Some of the advantages of CAN protocol are it de-

creased the cost of wiring in vehicles, had built-in error detection, increased robustness, higher

speeds, and much more flexibility (52). CAN protocol consists of multiple abstraction layers. The

two important layers are the physical Layer and the transfer Layer.

4.1.1 Physical layer

CAN is a broadcast-based communication protocol that is utilized in many different applications

that have complex structure topology and require reliable communication between devices e.g. au-

tomotive, aerospace and trains etc. (53). CAN has 2 types of physical layer standards, low speed

and high speed, which determine how the the CAN bus is structured and the speeds of the CAN

network(50). The low speed standard has a baud rate up to 125 Kbps that requires a single wired

bus and devices that self terminate by 120 ohm resistors on the CAN Bus (51). A high speed CAN

bus consists of 2 wired half duplex serial network technology (51). The wires are called CAN
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High (CAN-H) and CAN Low (CAN-L), which terminate at 120 ohms resistor. CAN is equipped

to operate smoothly in different types of environments because of the electromagnetic shielding.

CAN prevents electromagnetic interference (EMI) and protects communications from electromag-

netic radiations that an automobile under goes daily. To prevent magnetic field radiation, the pair

of wires are twisted. Furthermore, to prevent electric field radiation, a coaxial cable is used for the

2 wires. Also, another issue that can occur is electrostatic discharge (ESD) on the CAN Bus and it

is prevented by the CAN transceiver.

Figure 4.1: CAN-bus differential voltage representation.

One main key feature of the CAN Protocol is that it supports centralized communication control

over ECU (53). ECUs can communicate with other ECUs on the network, and each ECU requires a

micro-controller, CAN Controller, and CAN transceiver as shown in Fig. 4.2. The micro-controller

controls when the message should be transmitted and analyzes messages received from the bus.

The micro-controller is connected to the CAN controller which has two pins, transmitter (CAN-

TX) and receiver (CAN-RX) (51). These two pins are connected to the CAN Transceiver and

have digital voltages of 0V for logical ’0’ and 5V for logical ’1’. The actual CAN bus does not

support these voltages. Therefore, the CAN transceiver converts the digital logic voltages into a

differential signal (53). The CAN transceiver drives and detects data communication to and from

the bus. The differential voltages are outputs and consist of 2 states of voltages, dominant (or

logical 0) and recessive (logical 1) (53). The differential voltages for the dominant (0) are 3.5V on

CANH and 1.5V on CANL (54; 53; 55; 56; 45; 18; 57; 58). In addition, the differential voltages for

the recessive (1) are 2.5V on both CAN-H and CAN-L. Figure 4.1 shows the CAN bus differential

voltage representation. The two pins on the CAN Transceiver are connected directly to the bus

which allows the ECU to transmit and receive messages from the bus (51). How the messages are

transferred over, through the bus is discussed in the following section.
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Figure 4.2: Electronic Control Unit.

4.1.2 Data link layer

The data link layer abstraction receives messages from the physical layer and transmits those mes-

sages using the CAN bus. This layer is responsible for timing synchronization, message framing,

arbitration, acknowledgement, fault confinement, error detection, and signaling (59). These prop-

erties of the transfer layer are very important to the robustness of the CAN protocol which allows

safe message communication between ECUs. These messages allow ECUs to communicate with

any other ECU by the way of broadcasting the message to the shared CAN bus. Messages in CAN

protocol are usually event driven which means an event must occur before any communication is

established (60)(55). All other ECUs receive the transmitted message and depending on the pa-

rameters in the message, the ECU will either accept or reject the message. Communication in CAN

protocol consists of 4 types of frames which are sent to all ECUs. These 4 types of frames operate

differently and consists of different number of parameters. The types of frames are as follows, the

Data Frame, Remote Frame, Error Frame, and Overload Frame (51). The 4 frames can be classified

as error message frames or data message frames. The error message frames communicate errors

that occur on the data message frames during the transmission on the CAN bus and they consist of

the Error Frame and Overload frame. The data messages communicate actual data or request data

to be communicated, which include the Data Frame and the Remote Frame. A data message frame,

as shown in Figure 4.3, can have a maximum of 126 bits and consists of the following parameters:

• Start of Frame (SOF): The Start of Frame is a single dominant(0) bit which marks the start

of a message and is used to synchronize the ECUs on the bus (51).
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• Identifier (ID): The Identifier determines the priority of the message.The lower the ID value,

the higher the priority and vice-versa (51). There are 2 types of ID’s which are standard

ID’S and extended ID’S. Standard ID’s consist of 11 bits and extended ID’s consists of 29

bits (51).

• Remote Transmission Request (RTR): The Remote Transmission Request is made up of one

bit (51). If the bit is set to dominant (0), the message is considered as a Remote Frame (51).

However, if the message is set to recessive (1), the message is considered as a Data Frame

(51).

• Control: The Control consists of 6 bits which defines the type of data that will be transmitted

(61). The first bit is the Identifier Extension (IDE) bit which determines if the ID is a standard

ID (11-bits) set to dominant(0) or extended ID (29-bits) set to recessive(1) (61). The second

bit is the Reserved Bit (R0) which is always dominant (0) and reserved for future needs (61).

The next 4 bits are the Data Length Code (DLC) which determine the size of the data (in

bytes) being transmitted (61).

• Data: The data consists of a maximum of 8 bytes depending on the set value of the DLC in

the control setup (51). The data can send any type of information such as the temperature,

speed and tire pressures.

• Cyclic Redundancy Check-(CRC): The Cyclic Redundancy Check consists of 16 bits, 15

message error correction bits and a recessive (1) delimiter bit (51). The CRC checks if the

message transmitted is the same without any corruption and corrects any data corruption

(51).

• Acknowledge (ACK): The Acknowledgement bits consist of the ACK bit and a recessive (1)

delimiter bit (51). The ACK indicates an error free message has been sent (51). Every ECU

that has received an accurate message overwrites this recessive bit from the original message

as a dominant bit indicating success (51). If any of the ECUs detect an error, this bit is left as

recessive indicating that there was an error and the message should be discarded and resent

(51).

Figure 4.3: CAN message frame
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• End of Frame (EOF): The End of Frame consists of 7 recessive (1) bits (51).

• Inter-frame Space (IFS): The Inter-frame Space consists of 3 consecutive recessive (1) bits

which separate a data frame and remote frame (51). The proceeding bit will be regarded as

the SOF bit of the next frame.

These message parameter fields allows CAN Protocol to be very flexible and have many dif-

ferent applications. The most important parameters from above are the ID, control, and the data

fields.

One of the issues when using a single communication bus for transmitting and receiving mes-

sages is determining which ECU has control over the bus when two ECUs request bus access

simultaneously. To resolve the issue, CAN Protocol implements bit-wise arbitration on the ID

field of a frame to determine its priority (51). As stated above under the Identifier parameter, the

lower the ID the higher the priority, and the higher the ID the lower the priority. For an ECU to win

bit-wise arbitration, the ID’s will be compared bit by bit and the dominant bit will always win the

arbitration over the recessive bit (51). The ECU with the recessive bit will forfeit the arbitration

until another opportunity arises (51).

4.2 Securing IVN - related work

Several security solutions against different kinds of message injection attack in the vehicular CAN

bus, have been explored in prior work. The solutions can be classified according to (1) the specific

technology used to address cyberattacks, and (2) the extent of the solution’s coverage based on the

OSI layer.

4.2.1 State-of-the-art classification

We divide these security solutions into five categories which are: time analysis based-solution, en-

tropy based-solution, machine learning based-solution, fingerprinting based-solution and message

authentication based-solution.

Time analysis based-solution Lee et al. (46) and song et al. (62) proposed a method of detecting

an intrusion based on an analysis of the time interval of the CAN data by monitoring both the

request time and the response time of the CAN data traffic. Although these models are considered

to be lightweight, nevertheless they still have their limitations, especially when the in-vehicle en-

vironment change frequently; these limitations can be the continuous need for calibration and data

update.
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Entropy analysis based-solution Work by Müter et al.(63; 64) proposed an IDS that is based on

monitoring the state of the traffic of the CAN bus and the entropy in in-vehicle networks. Despite

this technique does not require any hardware modifications, nevertheless, this approach cannot

detect irregular messages incoming.

Machine learning and deep learning based-solution Several methods that were recently pro-

posed to detect intrusions on the CAN bus based on machine learning techniques (65; 66; 67; 68; 2).

Such a method includes regression learning (65) and machine learning (66; 2). Additionally, the

authors of (67; 68) proposed the use of the neural networks to detect an intrusion on the CAN

bus. However, these methods are not feasible for a vehicular network due to the limited computing

power of the ECUs to procedure the complex process.

Fingerprinting based-solution Multiple bodies of work have adopted physical fingerprinting

techniques for IDS (53; 69; 70). For example, Avatefipour et al.(53) proposed a physical fin-

gerprinting approach to detect the spoofing attack based on each physical ECU feature and the

physical channel features. However, their technique can be failed when the channel length is

increased which makes the physical ECU features are negligible. Additionally, work by (70) pro-

posed a clock-based intrusion detection system (CIDS) that is used to fingerprint each ECU based

on using the clock skew characteristic of ECUs. Although their approach is efficient, it is exhibited

that CIDS can be failed against the spoofing attacker who can observe the clock skew and adjust

his transmission accordingly (71).

Message authentication based-solution Several researchers have tried to secure a CAN channel

from message injection attacks by implementing the cryptographic approach by appending mes-

sage authentication code to the CAN packets (72; 73; 74; 75). For instance, Groza et al. (73) used

the time synchronization of CAN messages with the help of key chains and proposed an authenti-

cation method. Work by Oguma et al. (72) proposed a novel verification server by implementing a

master slave network while using CAN in order to authorize ECUs. Another researcher Lin et al.

(74) proposed to send extra message to a CAN network to act as an heart beat signal to implement

authentication. But it uses the available bandwidth of the CAN channel and can be an extra burden

to the time critical network. Additionally, Herrewege et al. (75) proposed to append a unique hash

message to the CAN data frame to authenticate CAN messages. Although these above mentioned

methods provide some degree of security, but they need additional resources to implement on a

CAN network.

4.2.2 State-of-the-art in OSI layer

Moreover, the state-of-the-art works can be described by their appearance in the layered OSI

model. They are the data link layer solutions and physical link layer solutions.
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4.2.2.1 Data link layer

Multiple bodies of work have adopted machine learning techniques for detecting intrusions on the

CAN bus (76; 77; 78). For example, Theissler (76) proposed an anomaly detection system based

on multivariate time series. An ensemble anomaly detector was made comprising of two-class

and one-class classifiers in order to detect both known and unknown fault types in various driving

conditions. However, his approach has limitations, especially when the in-vehicle environment

changes frequently; these limitations can be the continuous need for calibration and data update.

Other work by Barletta et al (77) proposed an IDS based on a combination of an unsupervised

Kohonen Self-Organizing Map (SOM) network and k-means algorithm. The CAN IDs, time stamp,

DLC and data field were used as features in order to identify attack messages sent on the CAN

bus. Other work by Markovitz and Wool (78) proposed an anomaly detection system based on

monitoring Constant fields, Multi-Value fields and Counter or Sensor fields of the CAN bus traffic.

They used the Ternary Content Addressable Memory (TCAM) model to characterize those fields

and build a model for the CAN bus messages based on those field types. Although they were

able to achieve a low false-positive rate by evaluating their system on synthetic CAN bus traffic

simulating 10 different message IDs. However, they didn’t evaluate their system on actual attacks

and against real CAN bus messages.

In (46) the author used the CAN bus remote frame to detect anomaly. The Idea was so simple

that at random time each ECU uses the remote frame to request data from other ECUs. It will wait

for a certain threshold amount of time for the response. If it does not hear back from the requested

ECU, it flags an anomaly. It works really well for DoS and fuzzy attacks. In terms of impersonate

attack, the experimental result showed that the reply characteristics will be different in attacked

ECUs than the authorized ECUs. The main weakness of the method is the threshold time to work.

After sending the remote frame the author waited for 7 messages for the response to take a decision

about attack. It was not properly discussed.

In (5) the author proposed an intrusion detection system based on CAN bus message pattern.

The proposed system has two stages in detecting anomaly in CAN bus data. The first stage is about

learning the safe pattern and the second stage is to check the new upcoming CAN bus message

pattern in the safe learnt pattern matrix. Where a pattern means sequential CAN bus arbitration ID.

According to the author, if a CAN message with ID A comes just after a CAN message with ID B

in the CAN bus, A and B has a safe pattern. In the test every CAN message where A and B comes

one after another is flagged as safe. The main strength of this proposal is it is fit in a system with

low computational power. The main drawback of this work is it is vulnerable to smart attackers.

Other researchers use the periodicity of CAN’s message to detect anomaly (62) . Empirically,

ECUs generates CAN message at a specific frequency. As a result, it is possible to detect anomalies

in inter-arrival time when an external attacker injects messages. Another frequency-based IDS
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uses a one-class support vector machine to detect anomalies with high accuracy (79). However,

real CAN message prone to variation, and often exhibits inconsistent inter-arrival time, reduces the

reliability of these schemes.

Additionally, Minawi et al (80) proposed an IDS that utilizes machine learning and provides

critical alerting features to protect vehicle operations. The CAN ID and Data field were the primary

features used to determine if a message is benign or malicious. Furthermore, the Random Tree

algorithm was used to achieve high accuracy in detecting DoS, impersonation, and Fuzzy injection

attacks. Other work by Martinelli et al (81) proposed an IDS by considering the eight data bytes of

the CAN packet as a primary feature to determine if a message is benign or malicious. Four fuzzy

algorithms of classification were used: FuzzyRoughNN, NN, DiscernibilityClassifier and FURIA.

These algorithms were applied to the eight bytes features and they were able to achieve 0.85 to

1 precession. Other work by Avatefipour et al (82) proposed an IDS for CAN bus based on the

frequency of message IDs patterns that are transmitted in given normal traffic. A modified one

class SVM was constructed and used based on a new meta-heuristic optimization algorithm called

the Modified Bat Algorithm (MBA). Their IDS was evaluated on two datasets in the scope of CAN

bus traffic anomaly detection. Although their IDS achieved a low false-positive rate. Nevertheless,

it can’t detect massages injection stacks. Additionally, Yang et al (83) proposed an IDS based on

tree-based machine learning algorithms. The CAN IDs and the data field were used as features

to detect threats both on the CAN bus and external networks. Although their system was able

to achieve high accuracy by testing their IDS on two data sets for both intra-vehicle and external

networks. However, their IDS has a high computational cost.

Several methods were recently proposed to detect intrusions on the CAN bus based on deep

learning techniques (84; 85; 67; 86; 44; 87). Such a method includes an IDS based on a deep con-

volutional neural network (DCNN) to protect the CAN bus of the vehicle. The DCNN learns the

network traffic patterns and detects malicious traffic without hand-designed features (87). Further-

more, work by Loukas et al (86) proposed a cloud-based cyber-physical IDS for vehicles by using

the deep learning technique. Eight features were used to detect an intrusion which are network

incoming and outgoing rates, CPU utilization, the rate of the written data to the disk, the time

between two consecutive encoders, accelerometer readings, power consumption and the overall

current drawn by the vehicle. However, by using RNN, they were able to achieve only 79% accu-

racy. Other work by Hossain et al (85) proposed a long short-term memory (LSTM) deep learning

model-based on the intrusions on the CAN bus. The CAN ID, DLC and data field were used as

features for in-vehicle CAN bus network attack. Other work by Seo et al (44) proposed an IDS

model for the in-vehicle network based on GAN deep learning model. A large number of CAN

IDs have been encoded and random fake data in the training process have been used instead of the

real attack data. Although they were able to achieve an average of 98% accuracy. Nevertheless,
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their model was not able to distinguish anomalous traffic caused by normal malfunctioning of elec-

tronic components from anomalous traffic caused by intentional attacks by hackers. Additionally,

Hanselmann et al (84) proposed an IDS based on a neural network architecture that is trained in

an unsupervised manner. The CAN IDs and timestamp were used as features in order to detect

intrusions and anomalies on the CAN bus. Although they were able to achieve high accuracy by

evaluating their system on synthetic CAN bus traffic. However, they didn’t evaluate their system

on actual attacks and against real CAN bus messages.

In (88) the author distinguished all the possible cyber attacks to the CAN bus into three cate-

gories. They are (i) Weak Attacker, (ii) Medium Attacker and (iii) Strong Attacker. All the attacks

were named from these attackers as random ID attacks, all zero ID attacks, replay ID attacks,

Spoofing ID attacks etc. To prevent those attacks, a two stage novel Intrusion detection system

was proposed. The first stage is the rule based IDS and the last one is the deep learning based

IDS. Each CAN message first enters the first stage of IDS. This stage IDS considers a few prop-

erties to detect anomalous CAN messages. They are valid arbitration IDs of CAN message, time

interval between two CAN message, message frequency of certain arbitration ID etc. The message

marked as safe in this step enters the last stage of IDS for another verification. These last steps

used deep learning to classify the anomalous CAN message. Artificial Neural Network algorithm

with 5 hidden layers has been used for this purpose. To implement this deep learning algorithm

four features have been selected. They are CAN message arbitration ID, message frequency in the

past one second, relative distance between arbitration IDs and change in system entropy.

Although the above solutions provide some degree of security as shown in table 8.2. However,

in addition to the additional resources required and complex computation costs needed, the deep

learning approach is not sufficient for a vehicular network due to the limited computing power

of the ECUs to procedure the complex process. Unlike prior work, we propose a lightweight IDS

based on a new eight features. We find that the newly explored eight features are significant features

to detect attacks on CAN bus messages with a high detection rate with minimal time without any

modification in the standard procedure of the CAN protocol.

4.2.2.2 Physical link layer

Multiple bodies of work have been proposed by the academic community for preventing attacks

on automotive vehicular network reported in past years (89), which are caused by CAN protocol’s

inability to identify sender in a network. One approach to integrate security to CAN protocol is

to apply cryptography i.e. encryption and decryption scheme to CAN frames (90). While this

approach can provide confidentiality of data (one important concept of CIA triad), but due to the

limited data rate and the urgency to satisfy real time system requirements, the CAN protocol is not

suitable for cryptographic approaches (91). Moreover for this kind of solution, key management is
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Table 4.1: A comparison of state-of-the-art IDSs using machine learning techniques

Ref no Machine learning algorithms Features

(76) Ensemble classifier Timestamp

(77) SOM and k-means CAN IDs, timestamp, DLC and data field

(78) One-class classifier Constant, Multi-Value, and Sensor fields

(80) Random Tree CAN IDs and data field

(81)

NN, Discernibility Classifier,

Data fieldand FURI

(82) One-class-classifier The frequency of message IDs patterns

(83) Tree-based CAN IDs and data field

(87) DCNN The network traffic patterns

(86) RNN

Network in and out rates,

CPU utilization, written data rates,

time between two consecutive encoders,

accelerometer readings, power consumption,

and the overall current drawn by vehicle

(85) Deep Learning CAN IDs, DLC, and data field

(44) GAN Deep Learning CAN IDs

(84) DNN CAN IDs and timestamp

(2) SVM, KNN CAN IDs and data field

an extra burden for a time critical system (7).

To ensure integrity in the CAN bus one approach is to implement message authentication

scheme (92) by including a message authentication code (MAC) inside CAN frame. While it

makes the CAN bus secure but according to the standards, the least size of the MAC is 64 bit to

prevent collisions (7). So, the challenge of implementing the MAC based approaches is to add 64

bit MAC along with the data that needs to be transported to the network where the data field can

only hold up to 64 bits of data (figure 4.3). To overcome the approach, researchers proposed two

kind of MAC implementations. one is instead of using 64 bit MAC, they were using a truncated

MAC to include integrity to CAN protocol (93; 94; 92) and the other approach is to use CAN+

protocol, an improvement of the existing CAN (95; 96) where additional data can be sent in time

intervals to authenticate CAN messages. For example, researchers in crafted a 4 byte MAC and

put it into the data field of the CAN packet to authenticate CAN message. The disadvantage of

truncating CAN data field to include MAC (93; 94) is, it limits the size of data payload to be

transmitted in a CAN packet and restrict the CAN protocol to transmit 8 bytes data payload. The

proposed works in (95) sends two CAN messages where one contains the data payload the other

one contains the MAC address. The approach resolves the issues originated by the truncated MAC

approaches but it uses the limited traffic bandwidth of CAN network (1 Mbit/s) (6) as it needs to

send two packets of data to securely send a single CAN data payload.

Apart from the CAN message authentication techniques, researchers have considered to fin-

gerprint CAN senders by using physical unclonable characteristics such as clock skews (97) and

voltage (7; 6; 98). The main idea of this approach is to identify the source of CAN transmitters.
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Table 4.2: Computational complexity of common state-of-the-art statistical features

Feature name Equation Time complexity

Minimum min = min(xi) Θ(n)

Maximum max = max(xi) Θ(n)

Mean x =
∑

n

i=1
xi

n
= x1+x2+...+xn

n
Θ(n)

Variance s2 =
∑

n

i=1
(xi−x)2

n−1
=

∑
n

i=1
x2

i
−nx2

n−1
Θ(n2)

Skewness skewness =
∑

n

i=1
(xi−x)3

(n−1)∗σ3 Θ(n2)

Kurtosis kurtosis = µ4

σ4 Θ(n2)

The concept is adopted from the famous physical layer identification (PLI) (99) technique where

the unique characteristics of transmitters are extracted to link the physical signals to the senders.

The techniques for CAN PLI can be classified into two categories.

Clock skew based fingerprinting: The quartz crystal clock determines the different clock fre-

quencies on an ECU, resulting in random clock drifts which can be used to uniquely identify an

ECU. Cho and Shin proposed a Clock-based IDS (CIDS) (97) which exploits the intervals of peri-

odic message to estimate the clock skews as the fingerprint of the transmitter ECU. The idea was

used to estimate clock behaviors of ECUs to detect the intrusion and identify the source of the mes-

sage. They have tried to fingerprint ECU and used it to detect anomaly. The proposed method uses

the periodic behavior of CAN messages to fingerprint each ECU. It actually creates a base clock

behavior of each ECU and uses that as a reference for detecting anomaly. Any deviation from the

base clock behavior is marked as an anomaly. The author has performed their experiment on not

only CAN bus prototype but also on real vehicles. The author in (100) indicated one drawback of

this proposed method. The method uses CAN message periodicity to fingerprint ECU. But in the

vehicle, it is possible to send CAN messages with different arbitration IDs from a single ECU. In

that case a single ECU will have a different fingerprint. And it opposes the initial assumption of

the method. Moreover, this method is only effective in a temperature-stable environment(101). On

the other hand, the strongest part of the work is, it can handle most of the attacks.

Voltage based fingerprinting: Authenticating the CAN message transmitter based on the unique
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and immutable physical characteristics such as the voltage, is termed as physical fingerprinting.

This area of research has gained popularity now a days where utilizing the voltage characteristics

is the core idea. For example, Kneib et al. (101) used voltages for fingerprinting ECUs, utilizing

rising edge, falling edge of the dominant bits. The framework achieved an accuracy of 99.85% in

identifying ECUs by using statistical features like mean, standard deviation, variance, skewness,

kurtosis, root mean square, maximum and energy etc. Researchers in (6) extracted time domain

and frequency domain statistical features using voltages captured from the ECUs and proposed a

neural network based ECU classifier. They achieved an accuracy of 98.3% on an experimental

setup using microcontrollers. Authors in (7) proposed an edge based identification method using

voltage collected using picoscope (software defined oscilloscope) and a naive bayes classifier. As

a feature they used statistical time domain features such as mean, variance, skewness, kurtosis,

radio max plateau, plateau, overshoot height, irregularity, centroid, flatness, power and maximum.

Similar work has been proposed in (102) that uses 10 time domain features and 10 frequency do-

main features and achieved an accuracy of 98.94 % accuracy at maximum while voltage data is

collected using an oscilloscope at a sampling rate of 2 GS/s. Bellaire et al. (98) proposed a ma-

chine learning based ECU fingerprinting framework by handcrafting signal processing features on

voltage data such as transient response length, maximum transient voltage, energy of the transient

period, average dominant bit steady-state value, peak noise frequency and average noise. Similar

kind of approaches are also proposed in (103; 104).
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CHAPTER 5

Multilayered Framework

5.1 Generalized intrusion detection system architecture

Although the IVNs are not security proven at least in terms of their architecture, nevertheless they

have been used in automotive systems for decades and the production of vehicles is increasing

day by day due to the high market demands. For providing a better passenger experience, these

vehicles are equipped with intelligent software and are treated as cyber-physical systems. As the

safety of passengers is directly related to the security IVN, there are two popular approaches in

general that can increase the security of safety-critical IVNs (i.e. CAN bus). The first one is

implementing an encryption algorithm to secure the CAN bus channel. The other one is to monitor

the network traffic data and/or analog CAN signal and report unusual behavior. One process of

providing solutions by using CAN data is data driven technology (i.e. statistical machine learning

and deep learning), which is currently becoming famous in the domain of network security. In this

section, a brief description of the intersection point between machine learning and IVN security

will be discussed. The section will present an overview of the machine learning pipeline when it is

used in IVN security. The overall diagram of the machine learning pipeline is displayed in figure

5.1.

As the CAN bus in modern vehicles is exposed to a huge number of threats and becomes an

attractive target for attackers, the need for an Intrusion Detection System (IDS) for the CAN bus is

becoming one of the most important security components in modern vehicles. The existing IDSs

for the CAN bus can be divided into behavior-based IDS and fingerprinting-based IDS. Where

the behavior-based IDS lies on the data link layer and the fingerprinting-based IDS lies on the

physical layer. The behavior-based IDS is used to monitor the network traffic data in the data

link layer and report unusual behavior while the fingerprinting-based IDS is used to utilize the

physical characteristics of the analog CAN signal in the physical layer and report any anomalies.

One process of using the network traffic data and the physical characteristics of the analog CAN

signal in order to build an automated solution is machine learning technology, which is currently
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Figure 5.1: Machine learning pipeline in CAN security

becoming one of the most popular technologies in the domain of security.

5.1.1 CAN data acquisition

The first step for implementing a machine learning system to defend CAN bus against cyberattacks,

is to acquire CAN data. The data acquisition is a complex process where the researcher needs to

access the CAN bus of the vehicle first. To access the CAN bus, a standardized connector to

a vehicle is needed and is called OBD-II. Since 2006, the OBD-II port was required for every

consumer vehicle and was mandated by law in the USA. The OBD-II port has 16 pins and they are

summarized in the Table in 8.1. The CAN - H and CAN - L pins can be wired to a microcontroller

unit like an Arduino with the help of a CAN bus shield (CAN bus transceiver) to capture raw CAN

bus data traffic. There are also few commercial dongle interfaces available that can be used to

capture raw CAN bus data like panda OBD-II OBD2 interface, OpenXC, OBDLink SX, etc. The

streamed CAN bus raw data can be captured in the data link layer of Open Systems Interconnection

(OSI) model as network traffic and is presented in figure 5.2. As the data acquisition from an

actual vehicle needs to be accessed through the OBD-II port, preparation should be taken for

safety according to (105). To avoid this complex task people have also used car simulators with a

virtual CAN like ICSim which is becoming popular day by day. Researcher’s in (105; 106; 107)

have gathered CAN bus traffic data using the ICSim simulator. The simulator simulates a car’s

instrument cluster, e.g. speedometer, its controls, e.g. throttle and steering, and the corresponding

CAN traffic. It is built based on the SocketCAN - a Linux-based library for the CAN network.

According to (107), the CAN traffic generated from ICSim seems realistic like real vehicular traffic.
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Figure 5.2: CAN bus data acquisition in data link layer and physical link layer

On the other hand, the CAN bus data can be collected in the physical layer of the OSI model

shown in figure 5.2 that is the analog data (voltages). To collect the analog CAN signals data

TivaC, TM4C123GXL, MCP, TriCore, NXP MPC, STM32, and oscilloscope instruments can be

used (53; 54; 108; 109; 110; 69; 111; 112).

Table 5.1: Physical layer features

Feature Type Feature Name

Time-Domain Features

Maximum, Minimum, Mean, Variance, Std-Dev, Average Deviation,

Non-Negative Count, Zero Crossing Rate (ZCR), Root Mean Square,

(RMS), Amplitude, Energy, Power, Skewness, Kurtosis

Frequency-Domain Features

Spectral Std-Dev, Spectral Entropy, Spectral Spread,Spectral Flux,

Spectral Roll off, Spectral Skewness,Spectral Brightness,

Spectral Kurtosis, Spectral Flatness, Spectral Centroid, Irregularity K

Signal Descriptive Features Ratio Max Plateau, Plateau, Overshoot Height, Maximum

Deep Features Deep features were extracted using Recurrent Neural Network (RNN)

5.1.1.1 Available public dataset

While capturing CAN bus traffic in the data link layer is pretty straightforward, there are few

variations when analog CAN signals are captured. When talking about analog CAN signal, the

researchers in (53; 54; 108) have used an oscilloscope with 2 (GS/s) in order to collect 144k sam-

ples,4.147M samples, and 3.15M samples of the CAN signals where the CAN signals are captured

of different CAN cable types with various lengths, as well as different number of ECUs with the

same input of the CAN bus message. Similarly, work in (110; 69) have used an oscilloscope with

2.5 (GS/s) and 1 (GS/s), in order to record the CAN signals frames. Other work in (112) have used
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Table 5.2: Available public datasets

Dataset Reference CAN data source type

(46) KIA Soul

(113) Ford Escape

(114) Synthetic CAN bus data

an MCP2515 controller and an MCP2551 transceiver and by using a 20 (MS/s), they were able

to capture 56.56k frames of the CAN signals where the CAN signals were recorded at the output

of ten ECUs. Similarly, work in (109) have also used the MCP2515 controller and the MCP2551

transceiver to capture the CAN signal and they were able to capture 48.128k frames of the CAN

signals of five ECUs by using only 2 (MS/s). Additional work in (111) have used TM4C123GXL

microcontroller integrated with TivaC instrument and by using 50 (MS/s), they were able to collect

10k frames of the CAN signal of ten ECUs. Unfortunately, none of the aforementioned datasets are

publicly available for researchers. On the other hand, when talking about the data link layer, the

CAN traffic is captured and is publicly available for researchers. The CAN datasets are presented

in table 5.4.

While real vehicle data provides a realistic nature of the attacked or attack free condition of

a vehicle, synthetic CAN bus data can provide different types of attacked scenario that can be a

challenge to gather from a real vehicle. By design, a vehicle is very complex system and it takes a

lot of time to learn about the system before performing attacks. On the other hand synthetic CAN

bus data can be cost and time efficient to collect and conduct further research. But, the data from

real vehicle provides actual characteristics under an attacked situation.

Table 5.3: OBD-II pinout description

Pin Description Pin Description

1 Vendor option 9 Vendor Option

2 J1850 Bus + 10 J1850 Bus

3 Vendor Option 11 Vendor Option

4 Chassis Ground 12 Vendor Option

5 Signal Ground 13 Vendor Option

6 CAN (J-2234) High 14 CAN (J-2234) Low

7 ISO 9141-2 K-Line 15 ISO 9141-2 Low

8 Vendor Option 16 Battery Power
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5.1.1.2 Data acquisition using test-bed

According to the state-of-the-art, the researchers in (111) were able to build a testbed consisting of

ten Arduino Unos, each with two identical CAN shields, and use a TM4C123GXL microcontroller

combined with a TivaC instrument with using 50 (MS/s) in order to capture CAN signal frames.

Other work in (112) and kneib2020easi were able to create testbeds in order to collect the CAN

signals frames from the Fiat 500 and the Porsche Panamera vehicles. The testbeds in (112) and

kneib2020easi are consisting of ten Arduino Unos and five Arduino Unos, respectively. Each Ar-

duino Uno is equipped with two identical CAN shields and both work in (112) and kneib2020easi

have used an MCP2515 controller and an MCP2551 transceiver using 20 (MS/s) and 2 (MS/s), re-

spectively in order to record CAN signal frames from both the Fiat 500 and the Porsche Panamera

vehicles. Additionally, two Raspberry Pis where each one is equipped with a CAN Shield were

connected to increase the number of ECUs. One of the Raspberry Pis was connected to the OBD-II

port and the second one was connected to the CAN bus in order to capture CAN signal frames.

5.1.2 Data processing

Data processing is a step of using domain knowledge to extract information (characteristics, prop-

erties, attributes) from raw data. The success of machine learning depends on this information

which makes the learning easier if the extracted characteristics correlate with the target class. On

the other hand, if the class is a very complex function of the extracted information, you may not

be able to learn it properly. Often, the raw data is not in a form that is amenable to learning, but

you can construct features from it. This is typically where most of the effort in a machine learning

project goes. It is also one of the most interesting parts, where intuition, creativity, and “black art”

are as important as the technical stuff. To implement machine learning, it is important to choose

attributes that are different between the benign CAN bus traffic and the malicious CAN bus traffic.

This subsection will provide an overview of the feature extraction, engineering & selection process

when applying machine learning in the domain of CAN bus security.

5.1.2.1 Feature extraction

To extract important information from the CAN data, first, it is important to understand the CAN

bus traffic. For standard CAN bus protocol, each ECU sends at most 111 bits CAN message in the

bus. Out of 111 bits, 11 bit is known as arbitration ID, 0-8 byte data payload, and the remaining

consists of start bit, RTR bit, CRC bit and end bits, etc. The figure 5.3 shows a packet of CAN

messages. These portions of CAN bus messages have been used as machine learning features

for years. Especially, CAN arbitration ID and the data fields have been used in (80; 82; 83) for
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Figure 5.3: CAN bus message frame

detecting benign and malicious CAN bus messages. Apart from these traditional features, authors

in (76) used the timestamp of each message and used it as a feature for the classification.

5.1.2.2 Feature engineering

The above-described sub section shows that there are few features in the CAN bus data. Obviously,

too few features can not show the complexity of the data, which will affect the intrusion detection

performance. So, to increase the performance of machine learning models the idea is to generate

features that represent hidden differentiable characteristics of the CAN bus. To do this, one popular

approach is to construct entropy-based features (115; 66), where two or more features are used to

generate a new feature that improves the attack detection rate of the model. Another popular

technique is to extract graph theory-based features from CAN message (3; 116). This interesting

approach considers a window of CAN messages to construct a graph and then extracts graph-based

attributes like a number of edges, nodes, degree of nodes, etc to use as machine learning features.

For example, in (116), the author took every 200 CAN message into consideration and built a graph

using them. He further used these graphs to gather features i.e. number of edges, number of nodes,

radius, diameter, density, reciprocity, average cluster coefficient, and assortativity coefficient. The

result section shows the effectiveness of feature engineering in CAN security. The graph-based

features approach shows better performance than the traditional CAN bus message features by at

most 1.44% when using the same machine learning algorithm as the attack detector.

When working with analog CAN signals, feature engineering is a mandatory step. According

to the state-of-the-art, statistical features were extracted from CAN analog voltages and used in

intrusion detection. Fingerprinting based IDSs (53; 54; 108; 109; 110; 69; 111; 112) utilizes this

approach in order to detect any anomalies. Where these statistical features represent the signal

fingerprint in addition to the associated ECU. These statistical features can be classified into four

main types which are time-domain features, frequency-domain features, signal descriptive features,

and deep features. These statistical features are presented in table 5.3.
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5.1.2.3 Feature selection

The last important task before training the model is to select the appropriate features. This process

can be done manually or automatically. The main goal of this sub-process is to select the features

that correlate with the target variable. People sometimes think this process is the least important

step than feature extraction or engineering and does not affect the accuracy of the model. In fact,

by using irrelevant features the model memorizes rather than generalizes the problem from the

training data. Thus they decrease the accuracy of the model. In CAN bus security research, the

two most common approaches are selecting features based on the feature differences (116) or

based on a feature rank score on the model prediction (83). For example, in (116), the author

plotted the graph features as box-plots for attack free and attacked graphs and selected 7 features

out of the 8 features which have high feature difference in terms of data distribution. The feature,

‘a number of nodes’ is the same for both the attacked and attack-free graphs, hence does not have

a significant effect on the model’s prediction. To determine a ranking score between the features

using a machine learning algorithm on the training data is another way for selecting the features.

The tree-based algorithms calculate the importance of each feature based on every single tree

and then average the output of the trees to make the result more reliable. Additionally, different

traditional feature selection methods such as information gain, entropy, and Gini coefficient can be

utilized also for this purpose.

5.1.3 Algorithms to detect CAN bus attack

In a machine learning project, the next task after feature selection is modeling. It is the process of

constructing a mathematical equation by iterating a set of data to find a perfect line that can either

categorize the data or predict future values. This process can be broken down into three parts,

first one is algorithm selection, then hyperparameter tuning and finally model validation. In the

following subsections, the description of these three procedures will be explained in terms of CAN

bus data.

5.1.3.1 Algorithm selection

The selection of machine learning algorithms in CAN data security is dependent on the quality

of data and available differential features. In a modern vehicle, there are 70-100 ECUs and they

communicate with each other very frequently, hence we can assume there is a large amount of

data available for detecting CAN bus attacks. So, KNN, decision trees, or kernel SVM algorithms

can be used. (116; 2) used KNN & kernel SVM, (80; 83) used decision trees to detect CAN bus

attacks and achieved high accuracy in detection. Author in (84; 44; 85) used deep learning-based

algorithms to detect CAN bus intrusion which is computationally expensive as shown in Table 4.
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Table 5.4: Experimental environment for deep learning-based algorithms

Paper CPU GPU RAM

(84) 3.50 GHz N/A 32 GB

(44) 3.60 GHz yes 32 GB

(85) 2.20 GHz yes 16 GB

When working with the physical CAN signals, according to the state-of-the-art fingerprinting

based IDSs (53; 54; 108; 109; 110; 69; 111; 112), work in (111; 112) have used Artificial Neural

Network (ANN) algorithm to detect any anomalies in the CAN bus. Similarly, work in (54; 53)

have also used ANN algorithm to detect any anomalies in the CAN bus, where 70% and 65%

of the collected samples were used for training the model and the 30% and 35% of the collected

samples were used for testing. Other work in (108) have used a recurrent neural network with long

short-term memory (RNN-LSTM) to detect any anomalies in the CAN bus. Additional work in

(110; 69) have used Support Vector Machine (SVM), ANN, and Bagged Decision Tree (BDT) to

detect any anomalies in the CAN bus. Similarly, work in (109) have used the same algorithms used

in (110; 69) in addition to Logistic Regression (LR) and Naive Bayes to detect any anomalies in

the CAN bus.

5.1.3.2 Hyperparameter tuning

To train an unbiased, highly efficient machine learning model, it is important to tune the hyperpa-

rameters of the selected algorithm and select the parameters before moving to model validation. In

CAN bus security, the state-of-the-art papers do not explain the hyperparameter tuning, hence an

example is given how the hyperparameter can be selected using the KNN algorithm. This will help

to interpolate the model and provide an idea of how tuning can be done. In the KNN algorithm,

k is a parameter that needs to be tuned. But unfortunately, there is no conventional way to tune

the parameter. The go-to approach is to try with different values of k, monitor the training and

test error rates and finally choose the k with a relatively smaller amount of test and training errors

among them. Figure 5.4 shows the results of applying the KNN algorithm with different values of

k with the selected features in paper (116) while using the same public dataset (46). According

to the plot the value of k = 4 is chosen on the training data as it provides the smaller training and

test errors. But the whole hyperparameter process can be automated as shown by the authors in

(117; 118).
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Figure 5.4: Tuning number of nearest neighbors (k) in KNN algorithm

5.1.3.3 Model validation

Once the hyperparameters are set, the model is finally trained and ready to be validated. It is

always advisable to validate the model with an unknown set of data. This will help the researcher

to understand whether the model has been generalized from the training data or it has only been

memorized. To execute this step, the total data set can be divided into three chunks into a ratio of

60%:20%:20%. (i) training data, (ii) test data & (iii) validate data. The training data and test data

are used till the hyperparameter tuning and the validation dataset will be used to measure the final

performance of the model. For example, with a k of 4, the KNN achieved an accuracy of 98.00 %

when working with 8 graph-based CAN feature from (116).

5.1.4 Challenges of ML in IVN research

The first challenge of applying machine learning to secure IVN is to supply quality network data

to the model. The CAN data acquisition is not a straightforward task where access to the network

of the vehicle is required to capture such data. Acquiring network data from an actual vehicle is a

complex process, hence people usually build vehicular networking prototypes which is also chal-

lenging. Because this process requires extra analog data acquisition devices such as an oscilloscope

which is expensive is not portable. The oscilloscope can be replaced by low-cost microcontrollers

but they need to be programmed additionally. To capture quality physical layer data, a higher sam-

pling rate should be used to read analog voltage and it is also a challenging task (109). On the other

hand, while using automotive network’s data link layer data in the machine learning model, feature
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engineering needs extra attention because of the lack of direct features. Another challenge is mon-

itoring and detecting any anomalies in the CAN bus in real-time, where the majority of research

so far has been done to detect intrusions using datasets and is not suitable for real-time detection.

Moreover, there is no well-known and widely recognized dataset that can be used to assess the

effectiveness of intrusion detection systems for the vehicles and unfortunately, no datasets for the

physical layer are publicly available for the researchers. The limited computing power of the ECUs

to process a complex machine learning to detect any anomalies in IVN are also challenging.

5.1.5 Future opportunities in this domain

One critical threat to vehicles nowadays is malware -a Malicious software designed to gain unau-

thorized access to data or to disrupt computer operations. Malware can infect vehicles via a variety

of interface vulnerabilities including wireless connections with roadside networks, Wi-Fi hotspots,

Internet connectivity, Bluetooth, and culler networks like 5G. It can also infect vehicles through

cell phones, removable media, iPods and laptops that are associated directly with vehicles (25).

Malware can cause a wide range of disturbances and harm to the vehicle system once it is inside

the vehicle (119). Some examples of how malware affects the vehicle’s regular operations are:

tampering with the in-car radio so the driver can’t turn it on, locking automotive functions such

as locking the car doors, occupying the memory and CPU cycles of the ECUs, and disabling the

vehicle’s safety features (119). The above-mentioned examples all believe that vehicle systems are

a high priority that must be appropriately handled in order to effectively safeguard them. Accord-

ing to the state-of-the-art (120), machine learning approaches are successful in production level

applications for defending malware. and we think the machine learning techniques can be used in

the future to address such cases and protect the vehicle systems from malware effectively.

5.2 Multilayered framework

This research is divided into mainly two parts. In one part intrusion detection systems are based on

performing behavioral analysis of the in-vehicle network. The second part tries to link the signal

to the sender by characterizing the unclonable signals that flow through the CAN bus physical

channel. The whole concept is described by the figure in 5.1. Both the approaches follow the

pipeline. It starts with acquiring CAN bus data. For the behavioral fingerprinting, it is the in-

vehicle CAN bus network traffic data. And for the physical fingerprinting analysis, it is the physical

signal acquired from the CAN bus channel. Then different features are extracted from the data to

gain more information about the system. Finally, the features are used to train a model to detect

vehicle cyber attacks in different layers. In this section intrusion detection in two layers is discussed
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briefly.

5.2.1 Behavioral fingerprinting

The first layer is to build a defense mechanism system by learning the general behavior of the

in-vehicle network and continuously monitoring the nature of the network. Any deviation from

the natural behavior can be flagged as an attack. Because the motivation of the attacker is to inject

malicious messages into the network and misguide the vehicle. The beauty of this approach is

that it can easily detect DoS, fuzzy, and spoofing attacks (46; 3). Few researchers have used this

approach to detect CAN bus attacks. However, we will propose novel behavioral methods to detect

CAN bus attacks.

To generalize the in-vehicle network behavior, the sequential CAN bus message will be trans-

formed into temporal graphs. Then the graph theory-based features will be used to estimate the

normal behavior of the network. The reason for using graph theory is that it has been used for

anomaly detection in the industries like finance, computer & social networking, data centers, etc.

for decades (121). In our case, the graph theory properties will be used to model the network

behavior and will be used as a base to detect CAN bus attacks.

Generally, in the area of network security, machine learning-based & statistical based ap-

proaches are becoming popular day by day (122; 123; 124). Because the fundamental concepts

of machine learning algorithms are a good fit for this purpose since they analyze the data to gen-

eralize system behavior. These algorithms try to mimic the human learning system by finding

patterns from past incidents and taking decisions according to the knowledge. Based on this, un-

wanted system behavior can be detected. That’s why a statistical machine learning algorithm is a

perfect approach for attack detection of any kind of system.

5.2.2 Physical fingerprinting

Behavioral analysis technique works great in detecting spoofing, DoS, or fuzzy attack, while the

localization of the compromised ECU still remains a challenge in this approach. However, by

default, in a CAN bus network linking the CAN packet to the sender node remains a challenge.

Because there is no sender information in the CAN message packet. There is CAN arbitration ID

which rather uses a conflict resolver by prioritizing each message. In order to localize the compro-

mised ECU, physical fingerprinting techniques are applied that use physical signal attributes of the

received packets to link to the sender.

Although, the CAN packets do not have the sender information embedded in it, there is two

natural random artifact that is unique in CAN bus channel.
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Figure 5.5: ECU signals are influenced when two different ECUs are added at the same location

on the same CAN bus.

• Device artifact

• Channel artifact

The electronic device artifact originates in the manufacturing process due to material asymme-

try. On the other hand, the channel electrical signal gains some distortion due to the channel it

propagates as well. Therefore, the uniqueness and randomness of the material of the electronic

device can be found in the physical raw signal it generates. And again the unique channel also

imposes its’ artifacts to the physical channel as well. Figure 5.5 shows if two ECUs are connected

to the same point and send the same data packet, the physical signal will be different due to the

different electronic device material artifact.

As these characteristics are unclonable and unique thus can be used to build profiles of receiving

packets to the sender easily. These profiles can be used to find our compromised sender in a CAN

bus attack scenario. This section provides step by step description of the intrusion detection system

using physical fingerprinting of CAN bus signals.
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CHAPTER 6

Behavioral Fingerprinting via Graph Theory -

Statistical Approach

As mentioned in chapter 4, CAN protocol has some serious security breaches in its core. The

protocol actually works like a broadcasting system where it contains no mechanism for checking

the identity of sender. Several researchers have tried to provide solutions to increase security of

CAN bus (70; 125; 46; 126). Most of them work for a certain types of attack situations. Currently

The increasing amount of research work on autonomous vehicle inspired us to work on detecting

anomaly in CAN bus for autonomous vehicle.

Several researchers have proposed different solutions for defending against cyber attacks in a

vehicular system. The attack can be performed through either a weak or an strong agent. Weak

agent can spoof CAN bus by injecting with arbitration ID with high priority (ID 0000, DoS Attack)

or with any arbitration ID (Spoofing or Fuzzy Attack) (70; 46). On the other hand, a strong agent

uses two attackers at the same time to perform attacks. In that case one attacker tries to damage

the targeted ECU and the other attacker sends CAN bus message with the targeted ECU arbitration

ID (70; 46) . In (5) the author proposes an anomaly identification technique based on recurring

sequential message IDs. The idea was so simple that in a CAN bus system, if two message IDs

come one by one, they are more likely to appear again. But this is vulnerable to weak and strong

attacks. We have considered this concept and tries to find complex relationship about CAN bus

data.

Graph is popular for finding complex relation about data. And is used hugely in anomaly

detection techniques. Graph based anomaly detection techniques are used in the industries like

finance, fraud detection, computer and social networking, data centre monitoring etc (121) . On

graph based structured data it is pretty easy to find out the unusual substructure (127). The unusual

substructure can be used flagged as an anomaly. First, We have tried to construct graph from CAN

bus data and then search unusual behaviour to flag as anomaly. Our experimental result showed

significant success in detecting anomaly in this approach.

On a graph based on an attack free CAN bus data, the distribution of edge remains normal in
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nature. On attack scenario, significant differences were found in terms weak attacks and strong

attacks. In terms of a strong attack, if we consider distribution of maximum degree of a set of

graphs, the attack root cause can be found. In summary we can claim that distribution of graph

properties based on CAN bus message can provide a strong protection against all kind of cyber

attacks.

In particular the major contribution of this work is as follows:

• It is the first ever Graph based cyber attack defence system for CAN bus communication.

• It is the first ever Chi - Square implementation for detecting attack in CAN bus communica-

tion.

• We propose a four stage IDS for detecting cyber attack on CAN bus system. Here, Graph

based approach was used to find out patterns in the data set and chi square test is used to

compare two data pattern distributions.

• The proposed algorithm has detected attacks without any change in CAN protocol. There-

fore, it is applicable to any in common vehicles using CAN protocol.

In summary, the work has demonstrated the usability of graph properties in CAN bus environ-

ment to detect attacks. The rest of the chapter is organized as follows: section 6.1 presents the

attack model, 6.2 presents the proposed methodology. At the end of this section, we present details

about the experimental results and limitation, respectively.

6.1 Attack model

These inside and outside attackers can initiate different kind of attacks in the CAN bus. If we

generalize those attacks, we can represent it like the following.

• Fabrication Attack: Through an in-vehicle ECU compromised to be a strong attacker, the

adversary fabricates and injects messages with forged ID, DLC, and data. The objective of

this attack is to override any periodic messages sent by a legitimate safety-critical ECU so

that their receiver ECUs get distracted or become inoperable. Example. DoS attack (74),

spoofing attack (128), fuzzy attack (46).

• Suspension Attack: To mount a suspension attack, the adversary needs only one weakly

compromised ECU, i.e., become a weak attacker. The objective of this attack is to

stop/suspend the weakly compromised ECU’s message transmissions, thus preventing the

delivery/propagation of information it acquired, to other ECUs (129) . Effect of the attack is
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Figure 6.1: CAN bus attack scenario. (a) Fabrication attack, (b) Suspension attack and (c) Mas-

querade attack

for some ECUs, they must receive certain information from other ECUs to function properly.

Therefore, the suspension attack can harm not only the (weakly) compromised ECU itself

but also other receiver ECUs. Example. DoS attack (74)

• Masquerade Attack: To mount a masquerade attack (74), the adversary needs to compromise

two ECUs, one as a strong attacker and the other as a weak attacker. the adversary monitors

and learns which messages are sent at what frequency by its weaker attacker and then the

Strong attacker transmits message with the ID of the weak attacker at the same frequency.

Example: replay attack or impersonate attack (110) .

6.2 Methodology

An Intrusion Detection System (IDS) to secure the CAN bus communication system is proposed

in this section. To detect the anomaly, an strong intrusion detection system is required.In this

work, a four step CAN bus anomaly detection system has been introduced. The proposed IDS first

builds an hypothesis based on benign CAN bus data. It takes the graph properties as a base to

build the hypothesis. When the the benign CAN message hypothesis is achieved, the IDS can take

decision about a unknown chunk of CAN messages by a hypothesis testing. Figure 6.2 shows the

overview of our graph based intrusion detection system for controller area network.The IDS uses

statistical analysis as a base for detecting anomalies and is divided into few of steps. They are (i)

transferring CAN bus message to a more meaningful structure (Graph) (ii) extracting graph based

features based on the node - edge relation (iii) constructing hypothesis based on the safe population

window, (iv) comparing test population window to the base population This section is organized

as following.
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Figure 6.2: Graph based intrusion detection system

6.2.1 Methodology terminologies

Throughout this section few terminologies were used. For better understanding it will be better

to be familiar to those terms. they are window and population window. A range of raw CAN bus

messages will be called as a single window. A window can be the length of CAN messages. We

took 200 messages as the window size. In the results section we will talk about it in detail.And then

comes the population window. It is actually a set of Windows. It actually represents a distribution

of windows and is used by our methodology to perform hypothesis testing.

6.2.2 Transferring CAN message to graph

In (5), the author proposes an anomaly identification technique based on recurring sequential mes-

sage IDs. The idea was so simple that in a CAN bus system, if two message IDs come one by

one, they are more likely to appear again. He has achieved good success in defending the normal

attacks. But this model is vulnerable to intelligent attacks. We considered this as an starting point

for our IDS. We have divided the CAN bus messages into a number of windows and then tried to

derive relation among all the arbitration IDs for each window. We know that Graphs are a common

method to indicate relationship among data. Its purpose is to present data that are too complicated

to express using simple text or words. For that reason it has now turned into one of the most

popular fields of research. As graph theory can represent complex relationships of data in a very

simple manner. After this step of IDs we will have a lot of CAN bus data windows in a meaningful
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CAN bus message Converted graph

Figure 6.3: Generated directed graph from CAN messages

structure.

So, first a meaningful structure from raw CAN bus data is extracted. This is the graph building

part. Each window is selected from the dataset and graphs were built. The figure 6.3 shows a

generated graph from a CAN bus data. The nodes of the graph represent arbitration IDs of the

CAN bus message. Any edge between two nodes indicates CAN bus sequential messages. And

the direction of the edge indicates the order of the sequence of the messages. For example, if node

0440 has an edge with node 043f and the direction of the edge goes to 043f from 0440, it means

data with arbitration ID 0440 and 043f was emitted in the CAN bus one after another with message

0440 was followed by message with arbitration ID 043f. The figure 6.3 contains 14 arbitration IDs

as nodes and the edges show us the flow of messages through the CAN bus.

6.2.3 Extracting graph based features based on the node - edge relation

We know that graph comes with different properties, depending on the structure like number of

edges, number of nodes, the in-degree, the out-degree. In this step, our proposed method will

characterize each of the windows first and then will build the population window. To extract graph

properties from a graph constructed using a window of CAN message, our methodology has used

the outcomes of stage 1. Table 6.1 shows the extracted graph features from CAN bus message

and their significance. The general graph feature like vertex, edge, degree, cycle and root can be

extracted from the CAN bus message chunk. The experimental result suggests the edge distribution

has a significant feature difference between the benign and malicious CAN bus message. Hence,

the IDS considered the edge distribution as a base for the IDS.

6.2.4 Constructing hypothesis based on the safe Population window

In this step of IDS, a hypothesis is built based on the information of the population window. We

have used the popular Chi Square statistical test to build the hypothesis. A Chi Square test can be
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Table 6.1: Graph properties in terms of CAN messages

Properties Significance in Graph Significance in CAN bus

Vertex Node of the graph Arbitration ID

Edge Link between two nodes Arbitration ID sequence

Degree How many Neighbors How many arbitration IDs are

sequential with current ID

Cycle Loop between the nodes Loop between the sequential arbitration ID

Root Start of the graph First CAN bus message

defined as the following equation.

X2
c =

c
∑

i=0

(Oi − Ei)
2/Ei (6.1)

Where c is the degree of freedom, X2
c is the value to compare against the base hypothesis. O is

the observed value and E is the expected value. By the end of this stage our proposed model will

provide us a value that will indicate the difference between two distributions. We will be using this

value in the next stage to detect anomalous population.

6.2.5 Comparing test population window to the base population window

This step of the IDS consists of two functionalities. The first one is to calculate the chi square

value for the test population window and the last one to compare the value with the threshold. By

using the following formula we can detect anomalous population.

Attack free if X2
c <= threshold (6.2)

Attack if X2
c > threshold (6.3)

The threshold value is selected using the chi square table. The threshold value depends on the

degree of freedom and the level of significance value. Level of significance was tuned properly

and discussed in the result section.

6.3 Experimental result

In order to verify the proposed methodology, a real CAN dataset is used to perform analysis on

an Intel Xeon(R) 3.8 GHz 8-core processor with 32 GB RAM using our proposed algorithm in
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Python language. For the dataset 23k graphs were extracted to do the analysis. This chapter the

result section is discussed on several different aspects. First the graph based feature extraction is

discussed.

6.3.1 Graph feature extraction

The goal for this experiment is to find features from those graphs that can distinguish the benign

CAN data and malicious CAN data. For this experiment a real vehicle data set provided by (46)

is chosen. These datasets includes (i) Attack free CAN data, (ii) DoS attack CAN data, (iii) Fuzzy

attack CAN data, (iv) Spoofing attack CAN data.

The real vehicular CAN bus data are divided into a few windows first. The size of the window

is 200 messages. Then the graph for each of the windows is built and graph properties like edge

number, node number, degree etc for each window are derived. The following figures show the

detailed characteristics about graphs that are built with attack free CAN bus data set, DoS attack

CAN bus data set, Fuzzy attack CAN bus data set and spoofing attack CAN bus data set.

Figure 6.4: Edge distribution

Figure 6.5: Maximum degree distribution

Figure 6.4 and 6.5 shows information about the details of edge and degree of the graph for

different kinds of attacks. In figure 6.4 (a) and figure 6.5 (a) represents the data distributions of

number of edges of each graph and frequency of maximum degree of a collection of graph data

for attack free normal CAN message. Figure 6.4 (a) clearly shows the edge distribution maintains

a normal distribution. Figure 6.4 (b), 6.4 (c), 6.4 (d) and 6.4 (e) represent the distribution of edges

for DoS, fuzzy, spoofing and replay (impersonate) attack sequentially. Like the attack free edge

distribution, the DoS, fuzzy, spoofing attack edge distribution do not have the normal form. For
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DoS attack it is positively skewed, for spoofing and fuzzy attack it is bimodal. If we consider

figure 6.4 (e), the edge distribution for replay (impersonate attack) is nearly similar to attack free

distribution. That’s why this attack is known as the most intelligent attack and can perform similar

behavior like the attack free state of the CAN bus system.

Figure 6.5 shows the maximum degree frequency of a graph collection. If we look closely

at 6.5 (a), it is clear that in an attack free state, a CAN message with ID 0140 has formed more

pairs with other CAN messages in every certain period of time. 6.5 (b) represents the situation of

maximum degree for DoS attack. And the figure clearly proves the definition of DoS attack ( CAN

message with highest priority appears most of the time to block the channel , so CAN message with

arbitration ID 0000 appeared most in the collection of graph). Figure 6.5 (c), 6.5 (d) and 6.5 (e)

indicates the maximum degree distribution for fuzzy, spoofing and replay attack correspondingly.

The data distributions of different attacks are not only different from the attack free CAN bus

distribution but also different from each other attacks. In terms of statistical terms we can summa-

rize the overall situation of the data distributions by the following table.

Table 6.2: Statistical analysis of different kind of attacks

Analysis Attack DoS Spoofing Fuzzy Replay

free attack attack attack attack

Mean (Edge) 44.59 46.60 49.12 79.82 75.17

Median (Edge) 44.0 45.0 49.0 46.0 75.0

Skewness (edge) Moderate High Similar Moderate Similar

Max degree ID 0140 0000 0316 0545 0164

(%) (16.9) (30.8) (46.4) (16.8) (31)

We have only considered the central tendency or mean of the distribution and the asymmetry of

probabilistic distribution. If we consider the mean of edges in a graph collection, attack free graph

distribution has a mean of 44.59, on the other hand DoS, fuzzy, spoofing and replay attack has mean

of 46.60, 49.12, 79.82 and 75.17 correspondingly. The table also shows the skewness of all the

edge distributions for attack free and all kinds of attacked dataset. Spoofing and replay attack edge

distribution seems symmetric. on the other hand, attack free and fuzzy attack edge distribution is

moderately positive skewed. And finally DoS attack edge distribution is highly skewed. If we look

at the maximum degree of CAN arbitration ID in the graph distribution, we find variation of CAN

message appeared as maximum degree in each kind of attack.

Finally, Those exploratory analysis proves that the conversion between raw CAN data to graph

gives us a clear indication. And that is we can fetch some extraordinary information from the

converted graph. Finally, the graph properties can be used to distinguish different situations (attack
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free, DoS, Fuzzy, Spoofing, replay etc) of the CAN bus system.

6.3.2 Graph size selection

The number of CAN messages considered to build a graph is an important parameter. Because

it will impact the attack detection time for the proposed approach. So, it is important to tune the

graph size in order to keep the approach lightweight and at the same time also efficient. As each

graph will represent a chunk of CAN messages, so it is important that each chunk will contain

information for most of the unique arbitration IDs. So, the percentage of unique arbitration IDs

in each graph is calculated and is shown in figure x. The figure shows that if each graph is built

considering 200 CAN bus messages, 90% of all arbitration IDs appear in each graph on average.

If we consider 100 CAN bus messages per graph only 84% of all arbitration IDs appear in each

graph on average. Increasing graph size to 500 CAN messages does not increase the percentage

of unique CAN arbitration IDs much. It increases the computation of 300 CAN messages while it

only increases 1% extra information about all the arbitration IDs.

Figure 6.6: Selection of the block size.

6.3.3 LoS parameter tuning

The significance level is the probability of rejecting a hypothesis. It is important because the

threshold value changes depending on the level of significance. Our test result showed the best

level of significance we should choose for picking up the threshold value for comparing attack free
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or attacked distribution. The threshold for chi square test depends on the degree of freedom and

the level of significance directly. (130) The equation is as follows,

DoF = (i− 1) ∗ (j − 1) (6.4)

Where i is the number of rows and j is the number of columns considered for the distribution.

In our case we have two rows. One for the reference distribution and the other for test distribution.

And column number is 6 as we divided each of the two distributions into 6 portions and compared

them. We divided them into 6 portions was totally intentional.
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Figure 6.7: Level of significance tuning

From our exploratory analysis we know the attack free edge distribution is normally distributed.

And that is our reference distribution in chi square. Besides, in statistics the empirical rule states

that in a normal distribution 99.7 data points should be within (mean ± 3 ∗ (standard deviation))

of the distribution. So, we divided the reference and test distribution into 6 portions ranging from

(mean− 3 ∗ (standard deviation)) to (mean+3 ∗ (standard deviation)) in a step of single standard

deviation initially. But in (131), researchers proved that for detecting outliers, considering median

in place of mean gives better results. That means, Both median and mean signifies central tendency

of a distribution but median does not affected by anomalous data. For that reason, we divided
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the reference and test distribution ranging from (median − 3 ∗ (median standard deviation)) to

(median+ 3 ∗ (median standard deviation)) ie 6 portions with a step of single standard deviation.

So, the column number is 6 and row is 2. From the equation we get our degree of freedom is 5.

From the chi square table (132) we can choose the level of significance given the threshold and

the degree of freedom. Our exploratory analysis showed the distribution of different attacks has

different patterns. Hence, we propose different levels for DoS, Fuzzy and Spoofing attack. Figure

6.7 suggests a significance level is 0.01 (threshold 15.086) give us the best accuracy for DoS attack.

In terms of Spoofing attack and fuzzy, we propose a significance level of 0.001 (threshold 20.515)

and 0.1 (threshold 9.24).

(a) Attack free (b) DoS attack

(c) Fuzzy attack (d) Spoofing attack

Figure 6.8: Chi Square test (base and test distribution plot)

6.3.4 Detection of DoS, fuzzy & spoofing attack

For detecting the attack using chi square, first a base hypothesis is made by explorating the attack

free CAN data. We call it a base distribution. After any distribution can be compared with the base

hypothesis and differences can be found easily. Figure 6.8 (a) has a visual representation of our

Chi Square test for attack free distribution. The distribution colored as green represents the safe
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distribution and on the other hand, the blue distribution represents the distribution we want to test.

We take one of the distributions built from the attack free CAN data for test. And figure 6.8 (a)

shows they are similar. After that test distributions built from DoS, fuzzy and spoofing attack was

chosen for comparison with the safe distribution. Figure 6.8 (a) , 6.8 (b), 6.8 (c) shows the test

distribution is significantly different from the safe distribution. For testing DoS, Fuzzy, Spoofing

attack and attack free data sets we have only used edge distribution of graphs and found significant

results.

Figure 6.9 shows that our methodology has achieved a very good accuracy in detecting all three

attacks described in the section when they are individually tested. The misclassification rate is

very low. It is 0.0526% and 0.1% for DoS and Fuzzy attack. For spoofing attacks we were able to

classify all of the test cases successfully.
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Figure 6.9: Confusion matrix
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6.3.5 Detection of replay attack

To detect the smart attack, the central tendency theorem does not provide a good amount of accu-

racy. This is because the benign graph edge distribution and reply attack edge distribution is nearly

similar in shape. We were able to achieve 66% accuracy. In terms of replay (smart) attack, there

is no change in edge distribution between malicious and benign CAN bus data set. For that the

maximum degree was considered of a particular arbitration ID in a distribution. Our result showed

that the attacked arbitration ID (Example in figure 6.10 (a) 0164 arbitration ID) has different dis-

tribution when reply attack is made (after 250 seconds in the dataset) and other safe arbitration ID

maintains an identical distribution. (Example 0220 arbitration ID in figure 6.10 (b) ).

3 4 5 6 7 8 9 10 11

Maxim um  degree of arbit rat ion ID 0164

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
u

e
n

c
y

Replay at tack scenario (at tacked node)

After 250s

0-250s

(a) Replay attack arbitration ID

0 2 4 6 8 10 12

Degree of arbit rat ion ID 0220

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
re

q
u

e
n

c
y

(b) Attack free arbitration ID

Figure 6.10: Maximum degree analysis for replay attack

6.3.6 Detection of a mix attack

To measure the efficiency against a mix of DoS, fuzzy and spoofing attack the data sets were

merged together and the efficiency were measured with respect to different levels of significance.

Figure 6.9 (d) shows a level of significance of 0.1 gives us a maximum of 90.16% accuracy. At

this level of significance a minimum of 9.84% misclassification rate has been achieved also.

6.3.7 Comparison with the state-of-the-art

The efficiency of the proposed approach to detect an attack in CAN’s message was evaluated by

comparing it to one of the state-of-the-art IDS (5). To the knowledge this is the only methodology

that uses CAN bus message sequence to identify CAN attacks. The proposed method is also con-

structing a graph to find a pattern among CAN bus message arbitration IDs and using it to detect an

attack. Therefore we implemented their approach in the same experimental environment using an-

other real vehicular CAN message dataset (46) to estimate the effectiveness of our approach. When

we considered spoofing attack, the proposed methodology has 13.73% better accuracy compared
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to the existing method, as shown in Table 6.3. When we consider a fuzzy attack, the proposed

method exhibits comparable accuracy, however, for DoS attack, the proposed methodology shows

5.26% lower accuracy to the existing ID sequence method. One of the most attractive features of

the proposed method is it can detect replay attacks with 66% accuracy, while the existing method

could not detect any replay attacks. Table 6.3 shows the misclassification rate of the proposed

method compared with the state-of-the-art (5).

Table 6.3: Comparison with the state-of-the-art (5)

DoS Spoofing Fuzzy Replay

Method detection detection detection detection

rate (%) rate (%) rate (%) (Yes/No)

Graph based IDS 94.74 100 100 Yes

State of the art (5) 100 99.04 86.23 No

6.4 Discussion

As the involvement of modern technologies in the vehicular industry is increasing the number of

cyber threats, we very much need a robust security mechanism to detect them. In this framework,

we analyzed the characteristics of all kinds of CAN monitoring-based attacks and proposed a four-

stage IDS with the help of graph theory, statistical analysis, and the chi-square method. To the best

of our knowledge, this is the first graph based IDS for CAN bus communication. Our experimental

results show that we have a very low misclassification rate in detecting attacks or attack free data.

Apart from that this work has some limitations. First is that it takes around 200 CAN messages to

build graph and then 1500 graph distribution to take a decision. It means 3,00,000 CAN message

to take a decision. In the future, we will like to see how minimum number of CAN message is

required to detect attack using graph based approach. Moreover, we would like to consider other

graph properties such as distribution of nodes, cycles, weighted edges etc. In addition, we will

apply different machine learning algorithms in place of the chi-square test to identify anomalies.
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CHAPTER 7

Behavioral Fingerprinting via Graph Theory -

Machine Learning Approach

To increase CAN bus security researchers have proposed several solutions by providing message

authentication (133) (74) (73). But, these solutions are not practical on CAN bus protocol since

CAN bus has limited data byte (8 bytes). Additionally, the implementation of message authen-

tication will add overhead and will limit the existing bandwidth (500 kbps). So, the techniques

like designing IDS (intrusion detection system) is becoming more popular as they do not limit

bandwidth (87) and do not modify existing CAN bus protocol.

In this chapter, an IDS is proposed to detect DoS, fuzzy and spoofing CAN bus attacks by using

machine learning. Popular machine learning algorithms SVM (support vector machines) and KNN

(k-nearest neighbors) are used for intrusion detection. SVM and KNN have been used recently by

(2) to increase CAN security. Unlike (2), the proposed IDS uses seven features (six novel features

and a single feature from the state-of-the-art (3)) with high feature differences among benign and

malicious CAN messages, which gives better classification accuracy. The experimental results

show that the selected seven features represent the accurate behavior of CAN benign and malicious

messages. The proposed work is inspired by the work done in (3). The author converted the CAN

messages into graphs and used a single graph property i.e edges to detect CAN bus attack by

using the statistical chi-square method. Unlike (3), new seven graph-based CAN bus features are

explored that are used to detect CAN intrusions. Moreover, the proposed IDS can detect attacks

using a single graph, whereas (3) needs distribution of graphs for CAN bus attack detection. The

followings are the contribution of this chapter:

• To the best of our knowledge, this is the first machine learning-based CAN bus IDS that uses

graph-based features.

• The IDS takes advantage of a total of seven graph-based properties that represent the actual

behavior of the CAN bus.
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• The experimental results show that the classification based on graph-based features are per-

forming better than classification based on traditional CAN bus message features.

• The proposed IDS can detect three types of CAN attack and is applicable to in-vehicle net-

works.

7.1 Attack model

In this section, we first present the adversary model. Afterward, we discuss three attack scenarios

that can seriously ruin in-vehicle functions: spoofing attack, fuzzy attack, and Denial-of-Service

(DoS) attack.

7.1.1 Adversary characteristics

In this chapter, we assume an adversary can physically or remotely compromise in-vehicle ECUs

via several attack surfaces such as OBD-II, CD players, USB, Bluetooth, and cellular (25). We

consider an attacker who wants to control or disable or paralyze in-vehicle ECUs’ functionality.

An attacker can accomplish this by either injecting arbitrary messages repeatedly into the CAN bus

or by injecting unauthenticated messages with a spoofed ID into the in-vehicle network. In this

chapter, we discuss three kinds of attackers who can inject malicious messages in the in-vehicle

network through the CAN bus. We assume an attacker can inject malicious messages in order to

control and breakdowns vehicle functionality. Accordingly, we consider three types of message

injection attacks which are spoofing, fuzzy and DoS attacks.

7.1.2 Attack Scenarios

Based on the above described adversary model, we consider the normal CAN-bus data (attack-

free) in addition to three kinds of attack scenarios which are spoofing, fuzzy and DoS as shown in

Figure 4.

Spoofing attack: This attack happens when an attacker injects a single message of randomly

spoofed CAN identifier with arbitrary data. Subsequently, it causes unintended vehicle behaviors

since all ECUs will receive that message. To exploit the spoofing attack, an attacker can inject

arbitrary data into one message of the in-vehicle messages and chose the target identifier of that

message to create unexpected behaviors for the vehicle. Such behaviors include turning the signal

lamps light irregularly, flickering the instrument board in incalculable ways, disabling the braking

system and shaking the steering wheel colossally.
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Figure 7.1: Different CAN bus channel scenarios

Fuzzy attack: This attack occurs when an attacker injects multiple messages with arbitrary

data of randomly multiple spoofed CAN identifiers, unlike the spoofing attack which occurs by

injecting only a single message of randomly a single spoofed CAN identifier. As a result, all ECUs

will receive various messages which cause unintended vehicle behaviors like gearshift changes

automatically, disabling the braking system, instrument panel blinks in incalculable manners and

the steering wheel shakes gigantically.

DoS attack: This attack happens when an attacker injects high priority of CAN messages such

as the 0x000 CAN ID packet in a short cycle on the CAN bus. To exploit the spoofing attack,

an attacker can easily occupy the bus by injecting the highest priority identifier of CAN messages

such as 0x000 in a short cycle on the CAN bus. Subsequently, it yields latencies of other messages

and causes threats in regards to availability with no reaction to the driver’s commands since all

ECUs share a single bus. Unlike the spoofing and fuzzy attacks, the DoS attack delays the normal

messages through the occupancy of the CAN bus rather than cripple the functions of a vehicle.

7.2 Methodology

This section presents the proposed IDS in detail. Sub-section 3.1 starts with the overview of the

IDS. It is followed by a CAN bus message to graph conversion. Sub-section 3.3 represents the
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Figure 7.2: Overview of the proposed IDS

extraction of graph properties from CAN message based graphs. And finally we conclude the

section with classification of CAN bus graphs section.

7.2.1 Overview of the IDS

As shown in figure 5, the proposed IDS has three main sub-components of conversion of CAN bus

messages to graph structure, extraction of graph properties from CAN message based converted

graphs and classification of CAN bus graphs based on the graph features. First the CAN bus

messages are converted into graph structures. In the feature extraction phase 8 features have been

extracted based on the properties of the graph. Based on the feature differences between benign

CAN bus graphs and malicious CAN bus graphs, 7 features were selected for classification phase.

In the classification , support vector machine (SVM)(134) and K-nearest neighbor (KNN) (135)

is used on the selected features based on attack free CAN bus message and attacked CAN bus

message. Experimental result shows classification with SVM and KNN based on the selected

features exhibits good accuracy in attack in CAN bus.

7.2.2 Conversion of CAN bus message to graph

To extract the normal behavior of CAN bus system, author in (3), considers a window of CAN bus

messages and converts it to a graph. Our proposed IDS takes these concepts and converts a chunk
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Figure 7.3: CAN bus message to graph conversion

of CAN messages into a meaningful graph structure. To build a graph, the CAN arbitration ID

of every CAN bus message is considered as a node and an edge is put between two graph nodes

(arbitration IDs) if two CAN messages come sequentially on after another. Figure 6 shows how

a chunk of CAN messages CAN be converted to a graph. As graphs can find meaningful hidden

structure of data, so graphs converted from CAN bus data, represent the meaningful behavior of

CAN bus.

7.2.3 Graph properties as features

In graph theory, the properties like number of nodes, number of edges etc. are totally dependent

on graph structure. To distinguish between benign CAN bus data with malicious (DoS, fuzzy

and spooning attack) data the initial plan is to choose the properties that show the characteristics

of the graph. Hence, the proposed IDS extracts graph properties like number of nodes, number

of edges (3), radius (136), diameter (137), density (138), reciprocity (139), average clustering

coefficient (140) and assortativity coefficient (141). Figure 7.4 shows the box plot for each of

these graph properties mentioned above in different CAN bus attack free and attack scenarios. The

plots clearly show that number of nodes is not distinguishable between benign and malicious CAN

bus scenarios. Hence the proposed IDS excludes the number of nodes from classification feature

list and selects the other 7 differential features.

7.2.4 Classification of attack detection

The classification step is dependent on the feature extraction & selection process. It takes the

selected 8 features as an input and classifies benign and malignant CAN bus data. Two popular

machine learning algorithms i.e support vector machines (SVM) and k-nearest neighbor (KNN)

are applied to classify the performance.

62



Figure 7.4: Graph based CAN features
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• Support Vector Machine (SVM)(134): SVM is a supervised learning algorithm used for

classification and regression problems. It actually tries to find a suitable hyperplane in a

finite dimension of data that clearly classifies the training data points. In the testing phase,

the test instances are compared with the hyperplane to predict the appropriate category of the

instance. The algorithm is used in many applications like classification of images, satellite

data, categorization of text & hypertext data, handwritten recognition etc. successfully over

the years (142).

• K-Nearest Neighbor (KNN) (135): KNN is a non-parametric machine learning algorithm

that can be used for both classification and regression. It does not make any assumptions

on the underlying data distribution. In the training phase it keeps the similar data near to

each other and it is utilized during the testing phase. First , the distances between training

data and a test instance are measured; And finally using majority voting among the k-nearest

training instances, the class of the test instance is predicted.

Our assumptions and selected features exhibit excellent results in classifying attack free and

attacked CAN bus messages.

7.3 Experimental result

7.3.1 Description of the dataset

To verify the effectiveness of the proposed IDS, an experiment is designed and performed on real

vehicular dataset (87). The dataset contains three kinds of CAN bus attack data along with benign

CAN data. That is DoS attack, fuzzy attack and spoofing attack. Table 8.1 shows the summary

of the dataset. To prepare the dataset for our proposed IDS, the CAN messages are converted

to temporal graphs. Along the lines of the authors in (3), each graph is built using 200 CAN

messages.Using the dataset, we were able to extract 5,558 DoS attack graphs, 2,802 fuzzy attack

graphs and 11,263 spoofing attack graphs.

7.3.2 Validation metrics

Each datafile of the selected dataset was fed into the classifier and was treated as a binary classi-

fication problem. The performance of the proposed IDS was validated based on precision, recall,

F-1 score, accuracy and area under the receiver operating characteristic curve. Out of them pre-

cision and recall is considered to measure the quality and quantity respectively. The F-1 score

is used to find how precise the classifier is. In the experiment accuracy means the percentage of
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Table 7.1: CAN traffic dataset details

No of No of No of No of

Dataset CAN Graphs attack- attack

messages free graphs graphs

DoS attack 3,631,600 18,158 5,558 12,600

Fuzzy attack 3,053,400 15,267 2,802 12,465

Spoofing attack (RMP) 4,566,200 22,831 11,263 11,568

correctly classified graphs. The area under the receiver operating characteristic curve is considered

to measure the ability of the classifier to classify benign and malignant graphs. The equations for

this performance metrics can be found here (143) .

7.3.3 Simulation result

The proposed IDS was designed and implemented using python programming language on a 1.8

GHz windows 10 computer system with 16 GB RAM. The selected dataset was fed into two types

of machine learning classifier i.e (i) SVM & (ii) KNN and the performance was measured based

on the validation metrics discussed in subsection 4.2. First, 60% of the overall data is considered

as the training dataset. The remaining 40% is divided into two equal halves as a validation dataset

and test dataset. The reason for using a validation set is to fine tune the classifier hyper-parameters

on unknown data while the classifier is fit using training data. The total separate test dataset

helps to eliminate the overfitting tendency of a model. While feeding the dataset files into SVM

classifier, we achieved accuracy of 99.90%, 99.93% & 96.43% for DoS, fuzzy and spoofing attack

respectively. On the other hand, KNN provided accuracy of 99.86%, 99.79% & 96.55%. In order

to check the robustness of the IDS, a mix attack by combining DoS, fuzzy & spoofing attack dataset

is also performed. While defending the mix attack the SVM classifier achieved 97.92% accuracy

while the KNN has achieved 97.99% accuracy. Table 8.3 shows the details about all the validation

metrics discussed in subsection 4.2 while defending DoS, fuzzy, spoofing & combined attack.

7.3.4 Comparison with the state-of-the-art

Finally, the proposed IDS is compared with one of the state of the art works (2). The particular

reason for choosing (2) for comparison is because it uses CAN bus data message frames as fea-

tures to detect CAN intrusion using SVM and KNN classifiers. Therefore the effectiveness of the

proposed IDS is compared with the state of the art by considering accuracy on real vehicular CAN

bus data . While tested on 20% data, (2) achieved accuracy of 97.40% & 96.50% while using SVM
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Table 7.2: The results of the fuzzy and the DoS attacks

Attack Classifier Accuracy Precision Recall F-1 AUC-ROC score

DoS attack
SVM 99.90 0.9994 0.9969 0.9981 0.9969

KNN 99.86 0.9993 0.9955 0.9977 0.9955

Fuzzy attack
SVM 99.43 0.9996 0.9952 0.9973 0.9952

KNN 99.79 0.9989 0.9865 0.9926 0.9865

Spoofing attack
SVM 96.43 0.9761 0.9363 0.9537 0.9361

KNN 96.55 0.9767 0.9384 0.9554 0.9385

Combined attack
SVM 97.92 0.9861 0.9609 0.9726 0.9608

KNN 97.99 0.9895 0.9623 0.9737 0.9623
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Figure 7.5: Comparison with the state-of-the-art (2) in combine attack scenario

& KNN. On the other hand the SVM & KNN based on our proposed graph based features achieved

accuracy of 97.92% & 97.99% respectively. Figure 7.5 shows the comparison between the state of

the art (2) and proposed IDS. The figure clearly demonstrates that the proposed IDS has achieved

better accuracy than the state of the art for both SVM & KNN.

7.4 Discussion

In the modern transportation system, more and more connectivity is added in vehicles with the

outside world. More connectivity adds more threat surfaces in vehicles which poses serious threat

to the safety of passengers and security of vehicles. In order to make the in-vehicle network secure

a strong intrusion detection system is required. In this chapter, a CAN intrusion detection system

is proposed that uses graph based features to detect CAN attack. This novel and pragmatic ap-
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proach uses graph based features to classify authentic and malicious CAN messages for in-vehicle

communication. The experimental results showed that using graph-based features, an accuracy of

97.92% & 97.99% was achieved using SVM & KNN algorithms respectively. In future, we would

like to consider other graph properties to detect intrusion for in-vehicle communication. In addi-

tion, we will apply different machine learning algorithms in place of the SVM & KNN to see the

robustness of the selected features.
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CHAPTER 8

Behavioral Fingerprinting via Graph Theory -

Ensemble Machine Learning Approach

As mentioned above, most of the current vehicles have some degree of autonomous features that

interact with the environment through Bluetooth, WiFi and Cellular, etc, which can be exposed

to the remote attacks (144). For example, the authors in (25) demonstrated that an attacker can

compromise the in-vehicle ECUs remotely. Once the ECU is compromised, an attacker can take

control or paralyze the vehicle entirely by injecting malicious messages in the in-vehicle networks

(113). As another demonstration, Miller et al. (33) have hacked a Jeep Cherokee remotely and

misguided it while running on a highway remotely. As a consequence, 1.4 million vehicles were

recalled by the car manufacturer. In 2016, Keen Security Lab of Tencent was able to perform

message injection attack remotely while the vehicle is on driving mode as well as parking mode

(17). Due to these remote attacks, automotive security has become one of the most critical issues

that may caused by the vulnerabilities or bug of different sub-systems in a vehicle. The automotive

companies are also concerned of these cyber threats and most of them have bug-bounty programs

(1).

This chapter presents a novel lightweight IDS framework to reliably detect anomalies in the

CAN bus traffic in order to secure the automotive system. Work in (3) has demonstrated that

CAN traffic can be modeled using a finite state machine and proposed a graph-based IDS for CAN

protocol. However, this state-of-the-art work (3) requires around 300,000 CAN message for attack

detection which is one of the limitations of this approach. Unlike the prior work, our approach aims

to improve the response time of the graph-based IDS proposed in (3). The proposed lightweight

graph-based IDS requires a single chunk (consisting of only 200 CAN message) for attack detec-

tion by calculating the graph neighborhood-based similarity scores. To increase the reliability of

the IDS, an ensemble based approach is applied to the similarity scores. The performance of the

proposed IDS is evaluated on a real vehicular CAN dataset consisting of three different types of

CAN message injection attacks(spoofing, fuzzy & DoS attacks). The experimental results indicate

that the proposed method improves the state-of-the-art and is capable of reliably detect attacks.

68



Overall, this chapter makes the following contributions:

• Proposes a lightweight IDS based on graph neighborhood similarity analysis to improve the

performance, reliability and accuracy of the CAN protocol.

• Develops a novel algorithm to detect anomalies on transmitted CAN bus by comparing any

single graph of CAN messages with multiple graphs of attack-free CAN messages. This

algorithm is beneficial to detect message injection attacks with low detection time.

• Evaluates the performance of the proposed IDS against three kinds of message injection

attacks(spoofing, fuzzy & DoS attacks).

8.1 Attack model

At first the adversary model is presented in this section. Then, three different types of message

injection attack (spoofing, fuzzy and DoS attack) targeting the CAN bus is presented in details.

8.1.1 Adversary model

We know that current vehicles are equipped with both wired and wireless interfaces like OBD-II,

CD players, USB, Bluetooth, Wi-Fi and cellular (25). We assume that an intruder can use these

interfaces as attack surfaces to gain access to the vehicle & try to control the vehicle. As a part

of that the hacker may try to inject malicious message to the CAN bus to disable, or paralyze the

in-vehicle ECUs’ functionalities. The attacks performed by message injection can be defined by

three types which are spoofing, fuzzy and DoS attack.

8.1.2 Attack scenarios

The attacker can send unauthorized messages to a CAN network by using the above mentioned

attack surfaces and can change the network traffic in a CAN network. We present the traffic of

packets of CAN bus channel under attack free normal scenario, spoofing attack scenario, DoS

attack scenario & fuzzy attack scenario in this subsection. Figure 8.1 shows the overview of these

scenarios.

Spoofing attack: If an attacker injects CAN messages with an specific authorized arbitration

ID (AID), he can misguide the vehicle as the receiving ECUs can not distinguish the authorized

and unauthorized CAN message with the AID. For example, the intruder can control safety critical

functions (disabling brake, shaking vehicle) and non-safety critical (radio on-off, light on-off)

functions.
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Figure 8.1: Attack-free , DoS, Fuzzy and spoofing attack scenarios on a CAN bus.

  ID   DLC                  DATA                        Timestamp
05f0    2       00 00 0e 00 00 00 00 00          2.084334
04f0    8       00 00 00 00 00 00 00 00          2.116588
0690   8       00 00 00 00 00 00 00 00          2.124836
04f0    8       00 00 00 00 00 00 00 00          2.126036
05f0    2       00 00 00 00 00 00 00 00          2.134353
0690   8       00 00 00 00 00 00 00 00          2.135407
04f0    8       00 00 00 80 00 eb b6 13          2.144996
0130   8       00 00 40 ff 00 00 41 3d            2.156946
0131   8       00 00 40 00 00 00 41 9b          2.157975
0140   8       00 00 00 00 02 29 21 f0           2.158382

04f0

0690 05f0 0130

0131

0140

(a) (b) (c)

Figure 8.2: (a) CAN bus data, (b) Informative neighbors of ID 04f0, (c) Uninformative neighbors

of ID 0131.
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Fuzzy attack: If an attacker sends CAN messages with multiple authorized AIDs in CAN mes-

sages, then fuzzy attack happens. Unlike the spoofing attack, the intruder can control multiple

vehicle functions at once in fuzzy attack. But it needs more work for the intruder to map multiple

AIDs that control vehicle functions.

DoS attack: In DoS attack, the attacker try to utilize the CAN protocol prioritization schema to

paralyze the vehicle. To disable the entire vehicle, the attack keeps sending high priority message

(theoretically 0x000) and can occupy the channel while making it unavailable for other authorized

ECUs.

8.2 Methodology

This section presents the details of the proposed lightweight IDS method. To understand its inter-

nals better, first, the conversion of CAN message arbitration IDs into a graph neighbor to neighbor

(N-N) relation is introduced in section IV-A. Afterward, graph structural similarity measure tech-

niques using the neighbors of graph nodes are presented and similarity of two blocks of CAN

messages based on those techniques is described in section IV-B. Lastly, the final architecture of

the ensemble-based IDS is presented in section IV-C.

8.2.1 Conversion of CAN IDs into graph N-N relation

At first, a block of CAN messages is converted into relational directed graphs (vertex and edges)

and the neighbors of each CAN arbitration ID (vertex) from the graphs are extracted. In a particular

graph, we assume two CAN arbitration IDs are considered to be neighbors or have an edge if

they are sequentially transmitted as messages into the CAN bus channel one after another. For

instance, If a CAN message with arbitration ID B is sent into the bus channel after a CAN message

with arbitration ID A, then B is a neighbor of A. Figure 8.2 shows an example of the process of

extracting the neighbors of arbitration ID 04f0 and 0131 from a bundle of the CAN messages. In

the same way, a block of CAN messages is converted into the graph N-N relation.

Additionally, every arbitration ID is categorized into two categories which are informative and

uninformative based on the number of its neighbors. Any arbitration ID, who has only one neigh-

bor, is considered an uninformative arbitration ID. Otherwise, it is an informative ID. Figure 8.2

(b) and (c) show an example of the informative and uninformative arbitration IDs, respectively.

8.2.2 Similarity between two graphs

The neighbors of the informative graph vertices can be used to determine the structural equivalence

of two CAN arbitration IDs as uninformative vertices do not provide much information. According
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Figure 8.3: Architecture of ensemble-based IDS.

to graph theory, two vertices are said to be equivalent or similar if they have same neighbors. In a

real network, perfectly similar nodes are rare to find. Therefore similarity measurement notion like

Jaccard score (145), Pearson correlation coefficient (146) etc are used. According to (146), when

working with various sized or complex networks, the Jaccard score can not quantify the diversity

of graphs, while the Pearson correlation coefficient works in such scenario. Hence, the technique

Jaccard is said to be insensitive to the smart attack i.e. spoofing attack, while it works perfectly

for suspension attacks i.e DoS & fuzzy. Our experimental result proves that as well. In summary,

Jaccard similarity technique is used in this IDS in order to detect suspension attacks such as DoS

& fuzzy attack. While the Pearson correlation coefficient is used to detect spoofing attack.

8.2.2.1 Similarity using jaccard score

Jaccard similarity measure technique is a mathematical (145) way to quantify relationship between

two vertices of graph.

Based on the process of converting a block of the CAN messages into the graph N-N relation

which was described in subsection IV-A, two sets of neighbors of a CAN arbitration ID can be

extracted from two blocks of CAN messages. Figure 8.4 shows the similarity of neighbors of an

arbitration ID in two different blocks of transmitted CAN messages. It can be observed from figure

8.4 that the intersection area in the figure indicates the similarity of neighbors of an arbitration

ID between two blocks of captured CAN message at different times. In other words, the larger

overlapping area means the neighbors of the arbitration ID are more similar in the CAN network.

Thus the neighbors can be used to determine how similar two graph structure is. This process

can be formulated by equation (1) based on the jaccard similarity measure technique (145). This
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technique provides a numeric value that indicates similarity between two vertices of two graphs.

Then vertices similarity is used to determine similarity between the two graphs. Based on the

characteristics of the CAN network, only informative nodes are used to determine graph similarity

and we consider two graphs are similar if at least 50% nodes are similar between the two graphs.

A1 A2
A1 ∩ A2 

A1 = Neighbors of A in block 1
A2 = Neighbors of A in block 2
A1 ∩ A2 = Similar neighbors of A 
between block 1 and block 2

Figure 8.4: Neighbor similarity of a single arbitration ID between two blocks of CAN messages.

Out of them jaccard similarity (145) (for DoS & fuzzy attack) and Pearson correlation coeffi-

cient (for spoofing attack) are used to determine similarity equation. Theoretically, DoS attack &

fuzzy attack is responsible for the CAN traffic changes for all CAN AIDs. Hence, jaccard sim-

ilarity method is a perfect fit for the two attacks and seems insensitive to spoofing attack. The

experimental observation shown in the result section proves that as well. On the other hand, spoof-

ing attack only changes the CAN traffic of a single CAN AID. So, pearson correlation coefficient

algorithm seems perfect for spoofing attack. jaccard similarity equation (145) given in (1) and

pearson correlation coefficient is given in (2).

Jaccard Similarity =

(

(A1 ∩ A2)

(A1 ∪ A2)
× 100%

)

(8.1)

8.2.2.2 Similarity using Pearson correlation coefficient

To compare complex networks, another popular technique can be used which is pearson correlation

coefficient (146). It can be used in several areas like social media engineering, medical science etc

for many years. It can be formulated by equation (8.2). Where, α and β can be in degree or out

degree, E is the number of edges in the graph, jαi is the α-degree of source node i and kβ
i is the

β-degree of target node j , j̄α = E−1 ×
∑

i j
α
i , σα = E−1 ×

∑

i(j
α
i − j̄α)2, k̄β and σβ are similar

respectively (146). To find similarity between two CAN graphs, the two graphs are first quantified

using this technique and the they are considered to be similar if their quantified values remain
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  ID   DLC                  DATA                        Timestamp
05f0    2       00 00 0e 00 00 00 00 00          2.084334
04f0    8       00 00 00 00 00 00 00 00          2.116588
0690   8       00 00 00 00 00 00 00 00          2.124836
04f0    8       00 00 00 00 00 00 00 00          2.126036
05f0    2       00 00 00 00 00 00 00 00          2.134353
0690   8       00 00 00 00 00 00 00 00          2.135407
04f0    8       00 00 00 80 00 eb b6 13          2.144996
0130   8       00 00 40 ff 00 00 41 3d            2.156946
0131   8       00 00 40 00 00 00 41 9b          2.157975
0140   8       00 00 00 00 02 29 21 f0           2.158382

  ID   DLC                  DATA                        Timestamp
05f0    2       00 00 0e 00 00 00 00 00          2.084334
04f0    8       00 00 00 00 00 00 00 00          2.116588
0690   8       00 00 00 00 00 00 00 00          2.124836
04f0    8       00 00 00 00 00 00 00 00          2.126036
05f0    2       00 00 00 00 00 00 00 00          2.134353
0690   8       00 00 00 00 00 00 00 00          2.135407
04f0    8       00 00 00 80 00 eb b6 13          2.144996
0130   8       00 00 40 ff 00 00 41 3d            2.156946
0131   8       00 00 40 00 00 00 41 9b          2.157975
0140   8       00 00 00 00 02 29 21 f0           2.158382

Block 1

Block 2

fx(Block 1, Block 2)

0 - Similar

1 - Dissimilar

Figure 8.5: Similarity between two blocks of CAN bus message based on neighborhood similarity.

within a certain distance (threshold).

r(α, β) =

(

E−1 ×
∑

i[(j
α
i − j̄α)× (kβ

i − k̄β)]
)

(σα × σβ)
(8.2)

The above-discussed similarity techniques are used to find out the similarity between two blocks

of CAN messages. We consider an arbitration ID that appeared into two blocks of CAN messages

as similar if its score is more than or equal to a specific threshold value. Otherwise, we consider

it as dissimilar. To compare two blocks of CAN messages, out of these one of the blocks contains

only attack-free CAN messages and the other one contains unknown CAN messages which can be

either attack-free or a mix of attack-free and attacked CAN messages. First, each unknown block

of CAN messages is compared to a number of attack-free blocks of CAN messages. Second, if

any arbitration ID in the unknown block has a similarity with any of the attack-free blocks greater

than a decided threshold value, the arbitration ID is considered to be a benign ID as it has similar

neighbors that are extracted from the attack-free Block; otherwise, it is considered as a malicious

ID. Third, by following this method, the benign and malicious arbitration IDs can be extracted for

the unknown CAN block. In order to reduce the overhead of extracting the benign and malicious

arbitration IDs, the IDS does not consider the uninformative arbitration IDs, which have only

one neighbor for a block of CAN messages due to its lack of information about other neighbors.

Finally, the IDS considers the unknown block to be benign if the number of benign arbitration
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IDs is greater than the number of the malicious arbitration IDs, Otherwise, the unknown block is

considered malicious. In general, this technique can be used to find out the similarity between any

two blocks of CAN messages. We choose to use the arbitration IDs to distinguish CAN message

blocks because the attack models discussed in Section III-B use arbitration ID as a weapon to

perform the attacks. Figure 8.5 shows the similarity between two blocks of CAN bus messages

arbitration IDs based on the neighborhood similarity technique.

8.2.3 Ensemble-based IDS

The main goal of the IDS is to detect message injection attacks in CAN bus by taking a block of

CAN messages as input and try to detect the presence of abnormality. To achieve the goal, the

proposed IDS first divides the benign (attack-free) CAN bus messages into k graphs, which are

modeled to form classifiers, and are called weak classifiers. Each formed graph out of those k

graphs has n number of CAN messages. Afterwords Each of the weak classifier compares a single

block of unknown CAN messages (test graph) to verify if it is either similar to the the attack-free

graph or not. If the similarity is determined, then, the test block of CAN bus messages is considered

normal. Otherwise, the IDS considers it as an attack. Finally, In order to make the final decision,

the k weak classifiers are assembled to produce a strong classifier that considers the majority voting

method (147) as a basis to identify an unknown block. The IDS considers the graph as attack-free

if more than 50% of weak classifiers vote the test graph is similar to graphs constructed using

benign CAN messages. Otherwise, the graph is labeled as attacked graph. Figure 8.3 shows the

final architecture of the ensemble-based IDS.

8.3 Experimental result

In this section, the performance of the proposed IDS is evaluated via simulation on a real CAN bus

dataset (87). Attack-free, spoofing, fuzzy and DoS attacks’ related data files are used in the exper-

iment. These data files consist of malicious and benign CAN messages. So, in order to evaluate

the robustness of the proposed IDS, different performance evaluation metrics are considered such

as the attack detection rate, the attack-free detection rate, the accuracy, precision, recall, F1-score

and detection time. In the following subsections, the selection of simulation hyperparameters and

the simulation results subsections are presented one by one at first. Then, the comparison between

the proposed IDS and state-of-the-art is presented to end the performance evaluation.
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8.3.1 Description of the dataset

The overall performance of the IDS is evaluated on a publicly available real vehicular dataset

(46) focusing mainly on normal, spoofing, fuzzy and DoS attacks CAN bus messages. Table 8.1

shows a detailed overview of the used dataset for our experiment. Dataset spoofing, fuzzy and DoS

attacks have a mix of benign and malicious CAN messages, whereas, the attack-free dataset has

only normal (benign) CAN messages. From the fuzzy attack dataset and spoofing attack dataset,

12485 and 11,812 blocks of malicious CAN messages were extracted respectively while the DoS

attack dataset has 12653 blocks of a malicious CAN message. The attack-free dataset does not

have any malicious CAN messages. So, the number of blocks of benign CAN message for the

attack-free dataset, fuzzy attack dataset, DoS and spoofing attack dataset is 18565, 6709, 5675 and

11,296 respectively.

Table 8.1: CAN traffic dataset details

No of No of No of No of

Dataset CAN CAN attack- attack

messages blocks free blocks blocks

Attack free 37,13,000 18,565 18,565 0

Fuzzy 3,838,860 19,194 6,709 12,485

DoS 3,665,771 18,328 5,675 12,653

Spoofing 4,621,702 23,108 11,296 11,812

8.3.2 Selection of hyperparameters

In order to achieve the goal of an efficient and robust IDS, two parameters are tuned and the optimal

value of each parameter is determined. These parameters are the block size of CAN messages and

the number of weak classifiers.

8.3.2.1 Impact of block size

The main objective of this subsection is to find the impact of block size on the accuracy of the

proposed IDS. Block size is the number of CAN messages that eventually fed as input to the weak

classifiers. The block size parameter is selected by performing an experiment on the attack-free

CAN dataset which has 28 unique arbitration IDs. In order to find the optimal block size, we need

most of the arbitration IDs of the CAN bus channel to appear in each block in order to have the

maximum information about the CAN bus channel. Therefore, the percentage of unique arbitration
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IDs across different sizes of benign CAN message blocks is determined as shown in Figure 6.6 .

According to figure 6.6, a block size of 200 CAN message allows 90% of total arbitration IDs of

the CAN bus channel to appear in each block. Although the block size of 500 messages increases

the unique appearance of arbitration IDs by only 1% in each block, nevertheless, it increases the

iteration of neighbor extraction of each block by 300 messages. Subsequently, it yields more

latencies on processing each block. Therefore, the block size is chosen to be 200 messages per

block.

8.3.2.2 Number of the weak classifiers

To classify an unknown block of CAN messages, the block was compared with several blocks of

attack-free CAN messages. Each comparison task is called a weak classifier. In order to determine

the optimal number of the weak classifiers, we placed a hypothesis to test the proposed IDS on

the DoS attack dataset which is more critical than spoofing and fuzzy attacks, therefore, we tested

our IDS on 651 blocks of the DoS attack dataset across a different number of the weak classifiers.

The performance of the IDS based on our hypothesis is observed across a different number of

weak classifiers as displayed in Table 8.2. According to Table 8.2, we find that using 500 classi-

fiers provides the highest detection rate and the minimum processing time of classifying a single

unknown-block, whereas using 1000 classifiers requires processing time about two times of using

500 classifiers to classify a single unknown-block even though using 1000 classifiers provides less

detection rate than using 500 classifiers. Therefore, we chose 500 to be the optimal number of

weak classifiers. To validate our hypothesis, the results section demonstrates that our hypothesis is

successfully able to provide high accuracy on detecting not only DoS attack but also fuzzy attack

and attack-free (normal CAN messages).

Table 8.2: Comparison of weak classifiers

No of weak DoS attack Single block proc-

classifiers detection rate (%) essing time (ms)

500 93.85 156.02

750 93.85 227.49

1000 93.54 296.4

8.3.2.3 Selection of the optimal threshold

We consider an arbitration ID as benign if it has a certain overlapping or similar neighbors in

two blocks of CAN messages. We use a Jaccard similarity score to calculate the similarity of
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Figure 8.6: Detection ratio by Jaccard score of (a) Fuzzy, (b) DoS and Pearson correlation coeffi-

cient of (c) Spoofing attack

neighbors of an arbitration ID between two blocks of CAN messages in terms of DoS & fuzzy

attack. Those two blocks are considered similar if the Jaccard similarity score is greater than or

equal to a specified threshold value. In order to determine the optimal Jaccard score threshold

value, we tested our system on attack-free, DoS attack and fuzzy attack datasets across different

threshold values as shown in Figure 8.6 (a) & (b), it is observed that using a threshold of 25%

provides the highest detection rate of the attack-free, DoS attack and fuzzy attack. Consequently,

we chose 25% to be the optimal value of the Jaccard similarity score.

When working with smart attacks i.e spoofing, the Pearson correlation coefficient is used to

find similarities between two graphs. As stated in subsection IV-B, perfectly similar graphs are

unlikely to found in the real world, a threshold is needed to be tuned. In this situation, the threshold

is determined in terms of attack detection rate and attack free detection rate and is calibrated

by changing the percentage distance between Pearson correlation coefficient of the two graphs.

According to the experimental result, it is decided that a threshold of 80% provides the highest

detection rate for spoofing attacks.

Table 8.3: Experimental results for attack free, fuzzy attack, DoS attack & spoofing attack

Dataset Attack-free Attack detection Accuracy Detection Precision Recall F1-score

detection rate (%) rate (%) (%) time (ms) (%) (%) (%)

Attack-free 99.21 N/A 99.21 186.86 100 99 100

Fuzzy attack 99.38 99.51 99.46 183.24 99.38 99.45 99.41

DoS attack 92.86 99.66 97.55 149.64 98.03 96.26 97.09

Spoofing attack 89.89 92.93 91.01 73.61 91.39 91.41 91.37
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8.3.3 Simulation results

To evaluate the performance of the proposed IDS, our algorithm is developed using Python pro-

gramming language on a 1.8 GHz laptop with 16 GB of RAM, windows 10 os and it is tested on

attack-free, spoofing, fuzzy and DoS attack datasets(87). As mentioned earlier, the attack detection

rate, the attack-free detection rate, the accuracy, precision, recall and F1-score have been calculated

by using the equations are given in (143), respectively. Also, the detection time which is the time

required to identify an attack or attack-free block has been considered to evaluate the performance

of the proposed IDS. Table 8.3 shows the results of attack-free, fuzzy, DoS and spoofing attacks. It

can be observed that our IDS is able to detect the attack-free, fuzzy, DoS and spoofing attack with

the accuracy of 99.21%, 99.51%, 99.66% and 92.93% respectively. Furthermore, we observe that

our IDS can detect a fuzzy attack with 99.38% in less than 0.2 second with 99.46 accuracy and

the DoS attack with 92.86% in only 0.15 second with 97.55% accuracy while using the Jaccard

similarity technique. When using the same technique for detecting spoofing attacks the proposed

IDS achieved an accuracy of 66% only. While using the Pearson correlation coefficient technique

the proposed IDS achieved an accuracy of 91.01% with an attack detection rate of 92.93 % for

spoofing attacks. The detection time is surprisingly less than fuzzy and DoS attack detection and

it is 73.61 ms. Additionally, our IDS is able to classify a single block of CAN messages from an

attack-free dataset within 186.86 ms on average.

Attack Detection Rate =
TP

TP + TN
(8.3)

Attack-Free Detection Rate =
FP

FP + FN
(8.4)

Accuracy =
TP + FP

TP + FP + TN + FN
(8.5)

Precision =
TP

TP + FP
(8.6)

Recall =
TP

TP + FN
(8.7)

F1-Score = 2×
precision× recall

precision+ recall
(8.8)

Where TP (True Positive) is the number of the correctly identified attacked blocks, TN (True

Negative) is the number of the incorrectly identified attacked blocks, FP (False Positive) is the

number of the correctly identified attack-free blocks and FN (False Negative) is the number of the
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incorrectly identified attack-free blocks.

8.3.4 Comparison with state-of-the-art

Finally, the proposed IDS is compared with one of the state-of-the-art works (3) that converts

CAN bus data into graphs and detects intrusion by performing statistical analysis. Therefore, the

effectiveness of our proposed approach is evaluated by comparing with (3) using the same real

vehicular CAN message datasets (87). The experiment is done in the same computer environment

also.

The experimental result shows, unlike (3), our IDS can detect if a single graph (200 CAN bus

messages) is malicious or benign , while (3) requires a distribution of graphs (300,000 CAN bus

messages) to detect attack. Apart from that, the comparison has also done in terms of accuracy of

combined attacks (DoS & fuzzy attacks and DoS, fuzzy & spooging attacks) shown in table 8.4.

According to our experiment, the proposed IDS achieved a combined accuracy of 98.53% for DoS

& fuzzy attack, while (3) achieved 86.84% combined accuracy while using the chosen dataset.

When defending against a combination of DoS, fuzzy & spoofing attack the proposed IDS showed

5.85% lower misclassification rate than the state-of-the-art (3).

Table 8.4: Comparison with the state-of-the-art (3) in terms of attack detection accuracy against

combined attacks

Approach DoS & fuzzy DoS, fuzzy &

attack (%) spoofing attack (%)

Propose IDS 98.53 96.01

(3) 86.84 90.16

8.4 Discussion

The need for a computationally efficient IDS for modern vehicles is becoming one of the most

essential security components as these vehicles are exposed to a huge number of threats. In this

chapter, we introduced a lightweight IDS for the CAN bus which can detect message injection

attacks on the CAN bus based on the analysis of the graph neighborhood similarity. We developed

a novel algorithm to detect anomalies on transmitted CAN bus by comparing any single block of

CAN messages with blocks of attack-free CAN messages. We evaluated our approach against three

types of message injection attacks which are spoofing, fuzzy and DoS attacks on real vehicular
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Figure 8.7: Comparison between the proposed IDS with the state-of-the-art(3) using combined

attack datasets.

CAN bus data. The results demonstrated that the proposed IDS can successfully detect spoofing

attacks, fuzzy attacks and a DoS attack which can be the most perilous attack for vehicles in

minimal time with an accuracy of 96.01%. We believe that our IDS contributes to improving

vehicle security without making any change in the CAN protocol. As future work, we plan to

evaluate our system against other attacks. Finally, to confirm practicality, an empirical experiment

needs to be carried out to test our approach under various real-world scenarios.
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CHAPTER 9

Physical Fingerprinting via Deep Learning

To solve the above-mentioned IVN security vulnerability, different approaches have been imple-

mented by security researchers (148; 149; 150; 151). These solutions can be broadly categorized

into two categories. (1) cryptography based solutions (152; 153; 154), (155), (2) intrusion detection

system based solution (156; 157; 158). The traditional cryptography-based solutions can provide

some degree of security but they are computationally expensive and uses the network bandwidth

which is critical for CAN-based vehicle networks (7). Moreover, these cryptography-based solu-

tions are vulnerable to replay attack (156). Recently, researchers have proposed intrusion detection

system-based solutions for detecting CAN cyberattacks by implementing the famous physical layer

identification (99) techniques (6),(7),(159). The fundamental idea of this approach is, the analog

signal behaviors of data transmitters have slight variations which are introduced in the design,

fabrication and manufacturing process. Researchers show that even manufactured in the same

production lot, two same digital devices have unique artifacts in their signaling behavior which is

difficult to control and duplicate (160). Avatefipour et al. were able to extract those unique artifacts

and proposed a framework based on a neural network for CAN sender identification by utilizing the

extracted distortions (6). Likewise, in the last 5 years researchers (7; 98; 161; 162) have proposed a

lot of frameworks that are effective in CAN transmitter identification. While, the frameworks offer

a high percentage of accuracy, but the core architecture of these methods depends on handcrafted

feature engineering. As the approaches rely on neural network-based methods, feature engineering

remains an essential step in the testing phase of the framework. In some cases, the feature engi-

neering becomes computationally so expensive, that the real-time sender identification remains a

challenge. Additionally, a significant amount of data is required for training neural networks, and

obtaining sufficient data poses a challenge for automotive platforms with limited resources (7).

Therefore, the high cost of feature engineering and the limited availability of training data, specif-

ically physical voltage signals, are the primary factors hindering the application of deep learning

in physical fingerprinting research for in-vehicle automotive purposes. Hence, this chapter aims to

answer the following research question: ”is it feasible to identify the sender of the CAN message

using an affordable approach that employs deep neural networks?”
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In order to integrate a transmitter identification strategy to the existing CAN protocol, this chap-

ter proposes a framework that is based on the intersection between physical layer identification (99)

and computer vision technique. To fingerprint, the proposed framework first extracts distortions

from the analog signals sent by the ECUs. Then the distortions are converted into visual repre-

sentation (images) by using recurrence plot technique (163) which are are distinctive in human

eyes. To automate the process of ECU identification, the images are fed into deep neural networks

(Mobilenetv2 (164) and EfficientNet (165)) to learn patterns of the signals from those generated

images. To eliminate the requirement of large amount of training data, the framework utilizes trans-

fer learning (166) approach and retrains pretrained models to solve sender identification. Finally,

the trained model is tested to evaluate the performance of the proposed framework. According to

the evaluation, it achieves better accuracy in identifying the CAN senders and is lightweight in

terms of computational cost.

The main contribution of the chapter is as follows:

• To the best of our knowledge, this is the first CAN sender identification framework that

utilizes the concept of deep learning based computer vision task and transfer learning.

• The framework takes advantage of recurrence plot to visualize the dynamics of the senders

to fingerprint ECUs.

• Based on the experimental settings with 8 ECUs, the framework identifies senders with an

accuracy of 98.34% where 0.05 ms is needed to process a feature of a single observation for

identification.

• The framework does not change the underlying architecture of basic CAN protocol, thus

making it applicable to all CAN protocol based vehicles.

9.1 Spoofing attack model

Due to the absence of sender or receiver address as discussed above, CAN network is susceptible

to spoofing attack (6; 7; 167; 101). The attack can be defined as when a compromised ECU tries to

send CAN data by impersonating an authorized ECU with same or different CAN AID. In a modern

vehicle, this can happen by two different scenarios. One is when an attacker takes control of an

authorized ECU utilizing its code vulnerabilities. The compromised ECU can impersonate any

other authorized ECU connected to the network. And the other scenario is when an attacker gains

access to the vehicle by external connectivity (e.g. via OBD-II port or using WiFi or bluetooth).

It is an feasible attack example as having OBD-II on every vehicle is considered an automotive

standard, with pin 6 and pin 14 representing the CAN interface that can be used to connect external
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Figure 9.1: Spoofing attack in CAN network

devices (168). Lets consider a CAN network with 3 ECUs as shown as Figure 9.1 (a), where the

color of the message represents the unique arbitration ID and data payload for a corresponding

ECU. subfigure (b) and (c) represents two scenarios where, subfigure (b) shows where an attacker

took control of an existing ECU and try to spoof ECU 2 and ECU 3. On the other hand, subfigure

(c) shows one spoofing attack where the attacker gains access to the bus as an external entity and

impersonate ECU1 and ECU 2. As the CAN protocol lacks authentication capability by default, it

is an challenge for receiving ECU to determine whether the message is benign or malicious. This

kind of attack is easily implementable in today’s vehicle as the chapter performed in section 9.3.6.

9.2 Methodology

In this section the proposed framework for identifying CAN message senders is described. The

phases of this methodology is described in a bottom up fashion, where the core idea of physical

layer identification in the subsection A is presented first. Then the technique of image generation

using the physical characteristics is describes in subsection B and finally in subsection C, the entire

proposed framework is explained.

9.2.1 Linking CAN signal to the transmitter

Physical layer identification is a popular concept for identification of senders in connected net-

works for so many years (99; 169). The fundamental idea of this approach is, the behavior of

senders in terms of analog signal has slight variations. The differences are introduced in the design,

fabrication and manufacturing process, even two identical digital devices that are manufactured in

the same production lot, have unique artifacts which is difficult to control and duplicate (6; 7; 101).

In a practical world, although it can be reproduced by reverse-engineering, but the process is diffi-

cult if not impossible for a determined attacker. Fig. 9.2 illustrates the amount of inherent variation

between two different CAN transmitters.

84



Data points

Vo
lta

ge

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ECU 1 ECU 2

Figure 9.2: Analog signal difference of two ECUs

The framework uses the above mentioned inherent variation of the CAN transmitter and uses

them to fingerprint the transmitter as it is unique. The Figure 9.3 shows how a CAN signal stays in

an idea condition and how it distorts in practical world. The spikes from the idea line is considered

as the impurity of each CAN transmitter which is identical to it. The proposed work uses it to

create a unique signal characteristics profiling for transmitters.

Again the question remains how to extract the tiny variations? Which is called distortions of the

analog voltage. Lets assume, V is a collection of analog voltage signal captured from the CAN-H

wire where,

V = (V1, V2, V3....Vn) (9.1)

Ideally, Vi should be 3.5 when it is a dominant bit and 2.5 when it is a recessive bit. In real

world, the unique artifacts add noise to the ideal value and creates spikes (see 9.3). In order to

extract the unique variations, the spiking points needs to be subtracted from 3.5 or 2.5 depending

on it is a dominant or recessive bit. So, the unique artifacts (Distortions, Di) of an ECU is,

Di = (Vi − Tj) (9.2)

where Tj is either 3.5 or 2.5 depending on if the bit is dominant or recessive.
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Figure 9.3: CAN-H signals with unique artifacts

9.2.2 Representing signal profiling by recurrence plots

In this phase of the proposed method, the extracted unique slight variations of CAN senders are

used to create images for each transmitter. The variations are turned into images via the recurrence

plot (RP) (163) technique where each image represents the pattern of a sender. The initial purpose

of recurrence plots was to create a visualisation of the recurrences of a system’s states in a phase-

space (with dimension n) within a small deviation ϵ. That means, a recurrence of a state at time

i and at a different time j is marked within a two-dimensional squared matrix with ones and

zeros (black and white points in a plot), where both axis represent time. The RP can be formally

expressed by the following matrix in equation 3 (163).

Rij = Θ(ϵ− |
−→
Di −

−→
Dj|) i, j = 1....n (9.3)

Where Di and Dj is the distortions extracted in equation 2. The matrix can be used to create an

image which is actually a correlation plot. The image is the representation of a CAN transmitter

as it is created form the unique physical characteristics. The proposed work uses the images in

identifying the source of CAN signals by considering it as an image classification problem.

9.2.3 Source identification of ECUs

Finally, the framework proposes a framework that uses the above mentioned steps to identify the

source of CAN ECUs. Figure 9.4 shows overall architecture of our source identification frame-

86



work. The proposed architecture first extracts the unique artifacts of the CAN transmitters. Then

the recurrence plots are created from the extracted distortions which are a representation of unique-

ness of CAN transmitters. Finally, the recurrence plots are used to train and test a deep learning

model. In Figure 9.4 the green line shows the training phase and the red line represents the testing

phase of the system. The data processing needed for the framework is to extract the unique artifacts

and the creation of recurrence plot, which is same for both the training and testing phase. For the

selection of deep learning architecture, we have chosen two popular network MobileNetV2 (170)

and EfficientNet (165) for the experiment.
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Figure 9.4: Source identification of CAN message senders

9.3 Experimental result

In this section the effectiveness of the proposed methodology is evaluated by conducting exper-

iments in the laboratory where subsection A presents the experimental setup. It is followed by

subsection B, C i.e. the generation of recurrence plot of CAN senders and the performance of the

proposed framework consecutively. Then the effect of environmental factors over the proposed

framework is discussed in subsection D and effect of information aware downsampling is pre-

sented in subsection E. Finally, the performance of spoof detection in a vehicle test bench and the
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comparison with the state-of-the-art is presented in subsection F and G respectively to conclude

the section.

9.3.1 Experimental setup

To verify the effectiveness of the proposed framework, an experiment is designed (Figure 9.5)

on a CAN protocol based test bed that has total 8 ECU built by Arduino Uno microcontrollers

connected to CAN transceivers where each ECU has 1 meter channel length. Physical signal for

each ECU is captured using a DSO1012A oscilloscope with a sampling rate of 2GSa/s, 100MHz

bandwidth, and 8-bit vertical resolution. The data was collected in a laboratory environment from

the CAN-H pin which ideally ranges from 3.5v to 2.5v. Multiple programming languages are used

in this experiment as the microcontrollers are programmed using C programming language and

Python is used for training & testing deep learning models and result analysis. The experimental

testbed is set up in a plug and play mode, because some of the experiments were done using 4

ECUs and some of the experiments were conducted using 8 ECUs. To check the performance of

the proposed framework on a real vehicle, an experiment is designed on a vehicle test bench that is

based on the GM Sierra 2020 model for spoof detection also (elaborated extensively in subsection

F).

Figure 9.5: Experimental settings

9.3.2 Generation of recurrence plot of CAN senders

The goal of this subsection was to create recurrence plot by using distortions captured from the

CAN transmitters and visualize them in human eyes. To perform that experiment we collected
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analog signals from 4 ECUs using the testbed described in subsection A and extracted the distor-

tions of the ECUs. The distortions are mapped to create recurrence plot and saved as images for

visualization. Each image was generated from 96 voltage data points (length of CAN-H dominant

bit) started from the peak of the voltage signals. Figure 9.6 shows the generated plots of 4 ECUs

where each row has images for each ECU. It indicates that, the images has their own patterns and

they are different to each other visually.

ECU 1

ECU 2

ECU 3

ECU 4

Figure 9.6: Recurrence plot representing 4 ECUs

Visually RPs provide some useful insights about the sender ECUs. But the question arises how

much information the RPs contain to distinguish the CAN transmitters. In order to do so, an ex-

periment was deigned to quantify the RPs generated from the CAN ECU signals. To achieve that,

a recurrence quantification analysis was performed to quantify the RPs by extracting recurrence

properties from the generated RPs. We used recurrence parameters (171) such as recurrence rate,

entropy diagonal lines, longest diagonal line length, laminarity, divergence, additional diagonal

line length to perform data analysis. To do so, a Python program is written to generate RPs from

CAN high analog voltages collected from 8 ECUs and then the images are used to perform recur-
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Figure 9.7: Feature differences of recurrence quantification parameters

rence quantification analysis (RQA) in an Apple M1 chip computer with 8 GB RAM. For RQA,

the images are fed into python library PyRQA (172) and the parameters are extracted for rigorous

analysis. To see the feature differences of the ECUs in terms of RQ parameters the data is plotted

in a box plot shown in Figure 9.7. The figure shows that the 8 ECUs have notable variations when

compared against the 6 recurrence parameters.

9.3.3 Performance of the proposed framework

This experiment evaluates the accuracy of sender identification in a CAN network using the pro-

posed framework. The main goal of this subsection is to demonstrate the applicability of image

classification via deep learning models in CAN physical fingerprinting. To achieve this, the pro-

posed framework is validated against deep learning networks using (Mobilenetv2 (164) and Effi-

cientNet (165)) architecture. First the data from 8 ECUs are collected from the testbed described

in subsection A, then data processing which involves extraction of distortion & image generation is

done in an Apple M1 computer with 8 GB RAM and finally, the training and testing of deep learn-

ing architecture is performed in a Google-Colab environment. The code for the data processing,

model training and model testing is written in Python programming language.

To conduct the experiment 131,760 analog voltage data points are gathered in total and 1098

images were created as described in subsection B where each ECU has 250 images and each

image has a dimension of 192X192 pixels. To handle the smaller number of images we used

transfer learning (173), where a trained model is tuned to solve a problem which is unknown to
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Table 9.1: CAN sender identification using deep learning models

Algorithm Accuracy(%) Feature processing time (ms)

Efficientnet 95.04 0.07

Mobilenetv2 97.52 0.07

the trained model. In order to do so, a pre-trained MobileNetV2, trained with a public dataset

(imagenet (174)) with 1,700,505 parameters is selected and it’s weights are used to retrain the

model to solve the CAN sender identification problem. For retraining the model, 70% data was

used, while the retrained model is tested with 15% and validated with remaining 15% data. Table

9.1 shows the result of the simulation. It indicates, Mobilenetv2 architecture achieves a maximum

validation accuracy of 97.52%. To check the performance of the proposed methodology while

using a different deep learning algorithm, the same experiment was repeated using an EfficientNet

model pre-trained on imagenet dataset (174) with 5,338,572 parameters. It was re-trained using

70% data and tested using 15% data where the image dimension was 224X224 pixels. Finally,

the performance of the methodology was measured by validating the trained model with 15%

remaining data. The experimental result shows that the EfficientNet achieves a validation accuracy

of 95.04%. While using both MobileNetv2 and EfficientNet it takes 0.07 ms per image on average

for data processing task which involves noise extraction and image creation.

9.3.4 Effect of environmental factors on the proposed IDS

This subsection represents the analysis of the effect of environmental conditions on the perfor-

mance of the proposed framework. It is important because, the foundation of the proposed method-

ology is image classification where the images are created from the distortions present in electri-

cal signals and the signal characteristics are sensitive to environmental factors like temperature,

amount of moisture contamination, aging, etc. (175). These factors, if not accounted for, could

lead to incorrect identification of the senders in real-world scenarios. In order to verify their ef-

fect, data is collected from a setup testbed with 8 ECUs and then analysis is performed to measure

performance of the proposed framework under the presence of noise that may be produced by en-

vironmental factors. To add the noise, a simulation is created by adding Additive White Gaussian

Noise (AWGN) (176) of different percentage of the voltage distortions (1%, 2%, 3%, 4%, 5% &

10%) to the voltage signals. The overall experiment is divided into two different steps, first one is

adding AWGN to the electrical signals and creating the images by using the noisy distortions. Fig-

ure 9.8 shows the distorted images that are generated from different level of noisy voltages. in the

subfigure (a) represents an image generated without AWGN, while subfigure b,c,d,e,f,g represents
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images with 1%, 2%, 3%, 4%, 5% & 10% added AWGN. The noiseless and noisy figures clearly

indicates that the noises caused by environmental factors has significant effect on the images gen-

erated by the voltage distortions while there is deviation from the original image increases with the

addition of level of noises to the voltages.

a) Noiseless image b) Noise level 1% c) Noise level 2%

e) Noise level 4% f) Noise level 5% g) Noise level 10%d) Noise level 3%

Figure 9.8: Images generated from voltages under different environmental conditions

In the second step of the experiment, a deep learning model is trained using the noiseless orig-

inal noise, while the images with noise is tested against the trained model and the model perfor-

mance is evaluated in terms of sender identification accuracy (shown in Table 9.2). While introduc-

ing 1% noise in the testing data the performance of the proposed framework degrades by a 30.23%

so the proposed model is sensitive to environmental noise. To check the performance of the pro-

posed approach when the model is retrained, again the trained model is retrained by adding images

with 1% AWGN and tested against noisy images. Later the trained model was retrained with 2%

noise and model performance against noisy images was evaluated again. The experimental result is

summarized and shown in Table 9.2. According to it, when the generated images with 1% AWGN

are introduced during the model training with noiseless images, testing accuracy improves signifi-

cantly for noisy images (1%, 2%, 3%, 4%, 5% and 10% GN). Although the training data had only

noisy images with low AWGN (1%), the trained model was able to classify noisy images with

an improvement of maximum 34.47% and minimum 19.37%. Again, when the model was again

retrained by introducing noisy images with 2% AWGN and the model can identify senders with

an maximum upgrade of 9.2% in terms of accuracy. So, it can be concluded that, the proposed

framework is performs better if the model is retrained with noisy images.
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Table 9.2: Effect of environmental factors over the proposed framework

Training Testing Model

images images performance

Noiseless 1% AWGN 2% AWGN AWGN (%) Accuracy (%)

Yes No No 0 98.34

Yes No No 1 68.11

Yes No No 2 61.09

Yes No No 3 55.81

Yes No No 4 51.05

Yes No No 5 47.00

Yes No No 10 33.47

Yes Yes No 1 94.77

Yes Yes No 2 95.56

Yes Yes No 3 92.31

Yes Yes No 4 85.45

Yes Yes No 5 80.94

Yes Yes No 10 52.84

Yes Yes Yes 2 96.82

Yes Yes Yes 3 95.99

Yes Yes Yes 4 94.65

Yes Yes Yes 5 89.13

Yes Yes Yes 10 61.52
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9.3.5 Effect of selective (information aware down sampling) sampling on the

proposed framework

Since, the amount of data to be processed for generating each image has a larger influence on the

required computing power, a major goal is to reduce the required amount of sampling points. To

reduce the sampling points considered to create the image, an experiment with rigorous analysis is

conducted. If we look carefully, the backbone of the methodology is the images which are created

from the distortions of the ECUs. Again, the distortions are created from analog voltage signal

of the CAN signals. Figure 9.9 shows the plot of analog signal captured form an ECU and it is

clearly visible that, the signals has spikes at the beginning and gradually it settles down in terms of

voltage. From that we can infer that, the distortions which is extracted from the overshoot portion

of analog signals (marked as a red box in Figure 9.9) holds significant unique information which

is vital in sender identification. and after that we have data points that are less informative. Based

on that observation, an experiment was conducted where images were generated by varying the

informative and uninformative data points. Then the images are fed into a MobileNetV2 model for

evaluation. So, in order to verify that an simulation is designed where images generated by three

approaches are tested against MobileNetV2 model and the validation accuracy are evaluated. They

are,

• Truncated sampling: images generated using all the informative points .

• Custom odd sampling: images generated using all informative points and the odd sampling

points of uninformative portions aka .

• 5th sequence sampling: images generated using all the informative points and the (0,5,10,

15 ...nth) sampling points in uninformative portions.

Table 9.3: Performance analysis on information aware down sampling

Sampling method Accuracy(%) Processing time (ms)

Truncated sampling 94.21 0.04

Custom odd sampling 95.05 0.06

5th sequence sampling 98.34 0.05

To conduct the above mentioned experiments, analog voltage samples for 8 ECUs are collected

using the experimental setup described in subsection A and images are generated using the trun-

cated sampling, the custom odd sampling and the 5th sequence sampling methods. The images are
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Informative data points

Signal overshoot

Figure 9.9: Information aware down sampling technique

then trained, tested and validated with the MobileNetV2 deep learning architecture and evaluated

based on validation accuracy that is shown in Table 9.3. According to the analysis, 5th sequence

sampling achieved a validation accuracy of 97.93% which is better than the accuracy achieved

while using truncated sampling and custom odd sampling. Where the truncated sampling is faster

than the other two approaches in data processing by at least .01 ms.

9.3.6 Spoof detection on vehicle test bench

To evaluate the performance on an actual vehicle test bench, an experiment is conducted where the

goal is to detect spoofing attack using the proposed methodology. First an experiment is setup on

a laboratory vehicle test bench (Model: GM Sierra, Year: 2020) shown as Figure 9.10 to perform

spoofing attack by changing the vehicle gear from park to drive mode using a raspberry pi 4 model

B, where analog voltage data is captured using a picoscope 2205 A with a sampling rate of 25

MS/s. After that, analog voltage data is captured again with the same sampling rate of 25 MS/s

when the vehicle is put to drive mode from park mode using the vehicle gearshift. Although the

attacker ECU was sending the same data we can see form Figure 9.11 the data send by the attacker

has different analog voltage profile than the authorized ECU. The Figure 9.11 shows that the two

sets of benign CAN-H signal data from authorized ECU, marked in blue & orange and captured at

different times, differ from the two sets of CAN-H data from the attacker, marked in green & purple

and captured at different times. However, when sent from the same CAN ECU, the data from both

95



Attacker ECU Signal 
acquisition 

device

OBD-II

Figure 9.10: Spoofing attack on vehicle test bench

the authorized ECU and the attacker appear almost identical. It is clear form the figure that, the

ECUs has their own fingerprint in their CAN-H dominant bit analog data which is different from

3.5v (marked as red in Figure 9.11).

Table 9.4: Performance under spoofing attack on laboratory vehicle bench

Data Sample Accuracy(%) Precision(%) Recall(%) F1 score(%)

No attack 97.78 100 97.78 98.87

Spoofing attack 100 96.72 100 98.33

Combined (spoof attack + no attack) 98.89 98.36 98.89 98.60

The analog voltages then prepossessed in a computer with 8 GM RAM and 416 images are

generated from the distortions for both ECUs using Python programming language, where 240

were from authorized ECU and 176 were from attacker ECU. As the dataset is comparatively

small we did data augmentation technique to flip each images from left to right and prepared a data

size of 832 images. The images are then retrained using a pre-trained MobileNetV2 deep learning

architecture where 70% data are used as training, 15% for tuning the model and 15% for testing the

trained model. The performance of the proposed methodology is evaluated against metrics such
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Figure 9.11: Analog voltage data for an authorized ECU and an attacker ECU

as (1) attack detection accuracy, precision, recall, f1-score and (2) benign data detection accuracy,

precision, recall and f1-score. The simulation result is summarized in Table 9.4 and it shows

that the proposed methodology detects spoofing attack with 100% accuracy while it achieves a

precision of 96.72%, recall of 100% and f1-score of 98.33%. On the other hand, it detects benign

data with an accuracy of 97.78%, precision of 100%, recall of 100% and f1-score of 98.33%. So,

finally, it can be concluded that, the proposed methodology is efficient and applicable to today’s

vehicles as it achieved an combined accuracy of 98.89% in detecting spoofed and benign data in

the vehicle test bench.

Table 9.5: Comparison with the state-of-the-art (6; 7)

Approach Accuracy(%) Precision (%)) Recall(%) F1 (%)) time (ms)

(6) 97.13 97.00 97.00 95.75 1.35

(7) 89.24 89.63 89.63 89.38 0.95

KNN 94.97 95.00 95.38 95.13 238

SVM 95.82 95.75 96.13 95.75 238

Proposed IDS 98.34 98.63 98.25 98.38 0.05
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9.3.7 Performance comparison with the state-of-the-art

Finally the proposed methodology is compared against the state-of-the-art sender identification

methods (6) and (7) where (6) trains a Neural Network and (7) builds a Support Vector Machine

(SVM) model using statistical features. In order to do so, the state-of-the-art (6) methodology

extracts the distortion of the ECUs at first and handcrafts 11 statistical analysis based features

including 6 time domain features i.e. maximum, minimum, mean, variance, skewness, kurtosis and

5 frequency domain features i.e. spectral standard deviation, spectral kurtosis, spectral skewness,

spectral centroid, irregularity k to feed into an artificial neural network to evaluate the performance

of their approach. While simulating their approach with data gathered from 8 ECU using the

experimental setup described in subsection A, an validation accuracy of 97.13% as achieved while

the proposed framework achieved 98.34%. But in terms of data processing (feature engineering),

the state-of-the-art takes 27 times more than the proposed framework. The proposed methodology

creates the a single recurrence plot for testing the model in 0.05 ms time using the 5th sequence

information aware down sampling while, the state-of-the-art (6) generates 11 statistical features

in 1.35 ms for identifying a single CAN sender which is computationally more expensive (see

Table 9.5). Again the proposed approach is compared against (7) where the authors use signal

characteristics by extracting 12 features such as maximum, mean, variance, skewness, kurtosis,

centroid, flatness, power, irregularity, plateau, max plateau ratio and overshoot height to train

machine learning model. While training & testing a SVM model, the state-of-the-art degrades by

9.1% in terms of sender identification accuracy than the proposed methodology and needs 0.95 ms

to process features which is 19 times slower than the proposed approach. In addition to that, the

proposed approach is compared with traditional machine learning based approaches i.e. K-Nearest

Neighbors(KNN) and SVM where recurrence quantification parameters are used as features to fit

machine learning models. Based on the data collected form 8 CAN ECUs, KNN achieved an

accuracy of 94.97% and SVM achieved an accuracy of 95.82% while the feature generation took

around 238 ms. It clearly shows that the proposed methodology is better both in terms of accuracy

of identifying senders and feature processing time.

9.3.8 Discussion

Like other physical fingerprinting based approaches (6; 7; 167; 103), the proposed methodology is

also sensitive to environmental effects such as temperature, aging, moisture, etc. (175) as electrical

signal characteristics exhibit variations during car operation. According to (91), these deviations

are monotonic and non-uniform, so it is hard to predict if not impossible. The effective solution

in this scenario is to re-train the model to capture the updated deviations of this signal parameters

(101; 177). Our experimental analysis (subsection D under section V) also proves that the effect
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of environmental conditions can be handled by updating the fingerprinting through re-training

the deep learning model. Additionally, in terms of the attacks that are fed via the gateway of

the vehicle, can remain undetected as the unique characteristics of attacker can be overridden

by the unique characteristics of the gateway (7). Additional security measures like behavioral

fingerprinting based approaches like (178; 179) are recommended to safeguard in the scenario.
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CHAPTER 10

Conclusions

In conclusion, this dissertation successfully addresses the current state-of-the-art IVN message in-

jection attacks and highlights that developing robust and reliable solutions to identify, localize, and

mitigate cybersecurity threats to CAVs is of societal importance. As a gist, it successfully mitigates

cyberattack in a fashion by proposing a multilayered framework that is reliable and computation-

ally efficient. The performance of this framework is validated against a series of experiments on

public dataset and collected dataset inside the UM-Dearborn ISSF laboratory. This has translated

into a series of 7 academic publications and 1 under review article respectively[as of july 2023].

The first layer of the proposed framework aims to protect in-vehicle networks by develop-

ing real-time message authentication, intrusion detection, and localization based on unclonable

signal attributes for physical fingerprinting of electronic control units (ECUs). The approach ex-

ploits uniqueness in physical signal attributes, leverages statistical signal processing and parame-

ter modeling techniques for physical fingerprint estimation, and uses statistical machine learning

methods for transmitting ECU identification and localization. The second layer aims to protect

in-vehicle networks against firmware/software-level attacks using ECU behavioral fingerprinting

through data-driven statistical graph analytics. The approach targeted by the research team here is

the transformation of sequential in-vehicle network data into a directed-graph to leverage statistical

graph analytics for ECU behavior modeling and intrusion detection.

The proposed physical fingerprinting framework solves the CAN protocol’s inability to iden-

tify the sender by modeling the problem as an image classification problem. It introduces a novel

approach for creating images utilizing uniqueness of the analog signal of CAN senders and it clas-

sifies the images using deep learning model to identify CAN ECUs. As, the proposed method only

requires to generate an image for the identification of ECUs, it can be a better alternative than the

handcrafted feature engineering process in CAN physical fingerprinting. As per contributing to the

state-of-the-art, to the best of our knowledge the proposed methodology is the first ever work that

utilizes the concept of computer vision in CAN sender identification problem. The experimental

result shows that it is effective as it achieved an accuracy of 100% in modern vehicle test bench and
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efficient as it only requires an image to identify sender. The potential of this proposed methodol-

ogy is beyond CAN because the methodology is not protocol dependent. Hence, it has a potential

to identify sender in in-vehicle networking protocols such as FlexRay, Ethernet, MOST, etc. In

the future, we would like to investigate, the effectiveness of the methodology in other in-vehicle

networking protocols and would evaluate the performance of other deep learning architectures than

MobileNetV2 & EfficientNet. The need for a computationally efficient IDS for modern vehicles

is becoming one of the most essential security components as these vehicles are exposed to a huge

number of threats and this work opens a new dimension of mitigating cyberattack in real time.

The behavioral fingerprinting framework models the graph theory to detect IVN intrusion by

generalizing the network traffic. The proposed framework examines the performance of the IDS by

focusing on two different categories, (i) based on detection algorithm, (ii) based on graph features.

The effectiveness of the idea of learning natural behavior and deviation of nature of IVN networks

is evaluated by statistical approach, general machine learning approach and a novel ensemble based

approach. To check the effectiveness of graph theory we analyzed the characteristics of all kinds

of CAN monitoring-based attacks and proposed a four-stage IDS with the help of graph theory,

statistical analysis, and the chi-square method.To the best of our knowledge, this is the first graph

based IDS for CAN bus communication. Our experimental results show that we have a very

low misclassification rate in detecting attacks or attack free data. Moreover, a CAN intrusion

detection system is proposed that uses graph based features to detect CAN attack using traditional

machine learning algorithms (SVM and KNN). This novel and pragmatic approach uses graph

based features to classify authentic and malicious CAN messages for in-vehicle communication.

The experimental results showed that using graph-based features, an accuracy of 97.92% & 97.99%

was achieved using SVM & KNN algorithms respectively. In the course of time, we would like to

consider other graph properties to detect intrusion for in-vehicle communication. In addition, we

will apply different machine learning algorithms in place of the SVM & KNN to see the robustness

of the selected features.

The ensemble based novel approach a lightweight IDS is introduced for the CAN bus which can

detect message injection attacks on the CAN bus based on the analysis of the graph neighborhood

similarity. I developed a novel algorithm to detect anomalies on transmitted CAN bus by com-

paring any single block of CAN messages with blocks of attack-free CAN messages. I evaluated

our approach against three types of message injection attacks which are spoofing, fuzzy and DoS

attacks on real vehicular CAN bus data. The results demonstrated that the proposed IDS can suc-

cessfully detect spoofing attacks, fuzzy attacks and a DoS attack which can be the most perilous

attack for vehicles in minimal time with an accuracy of 96.01%. I believe that our IDS contributes

to improving vehicle security without making any change in the CAN protocol. As a future work,

I plan to evaluate our system against other attacks. Finally, to confirm practicality, an empirical
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experiment needs to be carried out to test our approach under various real-world scenarios.

However, the behavioral fingerprinting approach has a limitation and it needs to be taken into

account while interpreting the finding of the study. That is the behavioral approaches proposed

in the methodology is protocol dependent. In this layer, the foundation of the proposed method-

ologies are graph theory and the constructed graphs considers the CAN arbitration ID as nodes,

so, the proposed methodologies become specific to CAN network. While applying the behavioral

approaches to other IVN networks like Automotive Ethernet, LIN, MOST, etc. need additional

work. Which means it is essential to find relations between subsequent IVN messages to construct

graphs. On the other hand, the physical fingerprinting approach is protocol independent because

the underlying kernel relies on distortions in voltages. In the future, a series of experiments needs

to be carried out to establish the connection of the number for ECUs over the sender identification

accuracy to evaluate the effectiveness of the proposed physical fingerprinting approach.

In summary, the thesis emphasizes the need to prioritize the security of the entire automotive

ecosystem to effectively safeguard modern cars. In addition to protecting IVNs, a focus on sensor

level security is necessary to guarantee the accuracy and dependability of data gathered by numer-

ous sensors positioned throughout the vehicle. Wireless security is equally crucial, particularly in

light of the development of Vehicle-to-Everything (V2X) communication, which allows vehicles

to communicate with other vehicles, infrastructure, and people. In addition to defending drivers

and passengers from potential dangers, strengthening cybersecurity measures at these crucial lev-

els will also increase public confidence in connected and autonomous vehicles, paving the road for

a safer and more secure transportation future.
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APPENDIX A

Glossary

This dissertation uses concepts from Computer Network, Machine-Learning and Cyber-Security.

Next, relevant terminology are defined for better reading.

A.1 Graph-Theory

• Assortativity - a preference for a network’s nodes to attach to others that are similar in some

way.

• Density - the ratio between the number of edges in a graph and the maximum number of

edges that the graph can contain.

• Diameter - The length of the shortest path between the most distanced nodes.

• Edge - A notion that connects multiple nodes in a graph.

• Graph - A non linear data structure that is constructed by nodes and edges.

• Node - A point that defines a graph.

• Radius - the minimum graph eccentricity of any graph vertex in a graph.

• Reciprocity - a measure of the likelihood of vertices in a directed network to be mutually

linked.

A.2 Machine-Learning

• Classification - Process of determining the class of data that has certain pattern.

• Class/label - A discrete value that data with certain pattern can be classified with.

103



• Convolutional-Neural-Network - A deep learning model for processing grid pattern data

such as image.

• Deep-Learning - A subset of machine learning and a type of convolutional neural network

that has more than three layers.

• Ensemble Learning - Refers to the algorithm that utilizes decision of two or more algorithm

to predict.

• Feature - The characteristics that can define a class.

• K-Nearest Neighbors - Supervised machine learning algorithm that can be used in classifi-

cation and regression problem.

• Support-Vector-Machine - Supervised machine learning algorithm that can be used in clas-

sification and regression problem.

A.3 Cyber-Security

• Availability - Policy that ensures resources are available consistently only to authorized

entities.

• Confidentiality - Refers set of rules to protecting information from unauthorized access.

• Integrity - Refers to set of rules that ensure information is not tempered while traveling from

source to destination.

• Intrusion-detection-system - A system that monitors network traffic to detect suspicious

behavior of a network.
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