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This paper considers the problem of inferring the acceleration acting on a spacecraft
in a near-circular orbit around a large planetary body when the acceleration is known to
act in the along-track direction. A segmented approach is analyzed where the acceleration
profile over a given period of time is approximated as a piecewise-constant profile. Noisy
measurements of the spacecraft’s position are collected throughout the acceleration profile,
from which the constant acceleration for each segment of the piecewise-constant profile can
be inferred. The primary contribution of this work is an analytical approximation for the
sensitivity of each measurement with respect to the constant acceleration of each segment. The
resulting analytically-approximated sensitivity matrix enables an analytical reconstruction of
the acceleration profile given a numerically-simulated reference trajectory. Applications of the
segmented approach for thrust inference for both discontinuous and continuous thrust profiles
are demonstrated. In particular, the reconstruction of a simulated thruster degradation profile
over the course of sixty hours is shown.

I. Introduction
The ability to characterize the thrust output of a propulsion system in space is a critical capability for the final

stages of propulsion system development as well as monitoring the thruster’s behavior during operations. Of particular
difficulty is thrust estimation for low-thrust propulsion systems such as electric propulsion and micro-propulsion systems
where the resulting propulsive acceleration may be too low (∼1 `m/s2) for measurement by onboard accelerometers.
Instead, low-thrust estimation relies on using the propulsion system to produce a force or torque on the parent spacecraft
and inferring the thrust output based on the dynamic response of the spacecraft. In the case of using the thruster to
produce a force, the spacecraft performs an orbital maneuver, such as an orbit raising maneuver by aligning the thrust
vector in the along-track direction. In the case of using the thruster to produce a torque, the spacecraft performs an
attitude maneuver. The thrust output of the propulsion system can then be inferred based on an estimate of the observed
change in spacecraft attitude or attitude rates as well as the estimated lever arm of the thruster.
The Space Electric Rocket Test (SERT) missions were the first missions to demonstrate in-space thrust estimation

techniques for low-acceleration propulsion systems using both orbital and attitude maneuvers. SERT I configured the
propulsion system to produce torques on the spacecraft and estimated thrust based on the change in the spacecraft’s
spin rate [1]. Alternatively, SERT II configured the propulsion system such that the propulsive acceleration had an
along-track component and estimated thrust based on the change in the spacecraft’s orbital radius [2]. Both SERT I and
SERT II carried on-board accelerometers in order to take instantaneous measurements of the acceleration produced by
their respective propulsion systems. However, the use of an on-board accelerometer with sufficient precision to measure
low (∼1 `m/s2) propulsive accelerations for a scientific mission may be a luxury. This is particularly true for small
spacecraft where such accelerometers may take up a significant portion of the spacecraft mass and volume budget [3].
The application and analysis of attitudemaneuvers for in-space thrust estimation has been under frequent consideration.

The Mars Cube One spacecraft performed in-space thrust estimation by measuring the total change in angular momentum
of the spacecraft [4]. In a similar procedure, the thrusters onboard Cassini were calibrated during measured flight
telemetry during reaction wheel biasing [5]. The University Würzburg Experimental satellite–4 also demonstrated the
use of attitude control maneuvers to measure the thrust magnitude as well as direction for multiple onboard thrusters [6].
Developments in the use of attitude control maneuvers for thrust estimation continue to be made, such as the inclusion
of angular velocity periodicity in the thrust estimation in order to improve thrust estimation in the presence of noisy
measurements [7]. Methods combining attitude maneuvers and small position maneuvers have also been considered [8].
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While methods for thrust estimation based on attitude maneuvers have demonstrated success for in-space thrust
estimation, such methods are not always applicable and may face significant uncertainty when applied on small spacecraft.
In order to perform an attitude maneuver, the thrust vector must be offset from the spacecraft center of mass such that
the propulsion system can produce a torque. For spacecraft that carry only a single thruster, such an offset is undesired
and precludes the use of attitude maneuvers for thrust estimation. In addition, in order to estimate the thrust of the
propulsion system, the lever arm of the propulsion system needs to be known. For small spacecraft the lever arm of the
propulsion system may be on the order of a few centimeters. As such, uncertainty in the thruster lever arm of only a few
millimeters would lead to 10% uncertainty in the thrust estimate. Uncertainty in the thruster lever arm can come from a
number of sources, including the thruster itself. For thrusters such as ionic-liquid electrospray thrusters which are based
on an array of individual emitters, spatial variation of emission across the array [9, 10] could lead to uncertainties in the
thruster lever arm of a few millimeters or more.
The development of propulsion systems for small spacecraft is also an extremely active research area; many low-thrust

propulsion systems for small spacecraft such as ionic-liquid electrospray thrusters [11, 12], film-evaporating water
microcapillaries [13], miniaturized ion thrusters [14], and plasma thrusters [15, 16] are actively under development and
will likely have in-space demonstrations in the near future. As such, the development of thrust estimation methods
that leverage orbital maneuvers is desired as they can be applied to a wider range of missions and avoid uncertainties
associated with the thruster lever arm for small spacecraft. One of the simplest approaches for low-thrust estimation
based on orbital maneuvers is to perform an orbit raise for a near-circular orbit. Simple analytical approximations for
estimating the thrust based on the initial and final orbital radius of the spacecraft exist, and were leveraged for the SERT
II mission [2], and continue to be used for recent in-space demonstrations of electric propulsion systems in order to
provide a rough verification of the propulsion system thrust output [17–19].
Numerical approaches for thrust estimation based on orbital maneuvers have also seen recent development. However,

many of the methods are not necessarily targeted at general thrust characterization and instead consider problems with
certain limitations. Methods that target maneuver detection for an uncooperative spacecraft that performs maneuvers at
an unknown time [20, 21] or when telemetry may not be available during the maneuver [22, 23] often leverage filtering
which limits the reconstruction of earlier portions of the propulsion system thrust and may not efficiently use all available
information. As such, methods directly targeted at thrust estimation for cooperative spacecraft based on iterative batch
filters [24] or the ensemble Kalman update [25] have also been analyzed and both show promising results.
This paper again targets the question of thrust estimation based on orbital maneuvers for cooperative spacecraft,

but takes a different approach from the prior numerical methods. Both Refs. [24] and [25] require the use of multiple
numerical simulations of the spacecraft trajectory—either for each iteration of the batch filter [24] or to estimate
the optimal Kalman gain with ensemble approaches [25]—which can be computationally expensive, especially for
high-fidelity models. Instead, this paper takes a more analytical approach to the thrust inference problem where only a
single simulation of the spacecraft trajectory is required as a reference for a linear update to the propulsive acceleration
profile. In addition, instead of estimating only a single average propulsive acceleration, a segmented reconstruction is
considered where time-varying propulsive accelerations can be represented as a piecewise-constant profile. This is
accomplished by deriving analytical approximations for the sensitivity of the spacecraft position with respect to the
acceleration magnitude of each segment of the piecewise-constant profile.
As a result, this paper develops a method that can be used to approximately reconstruct time-varying propulsive

accelerations based on orbital maneuvers where the spacecraft is assumed to be in a near-circular orbit and the
propulsive acceleration vector is assumed to be aligned in the along-track direction. The method is demonstrated on
both discontinuous acceleration profiles, such as thruster startup, and continuous acceleration profiles, such as thruster
degradation. In particular, the ability to reconstruct a sixty hour acceleration profile for a thruster undergoing thrust
degradation due to propellant depletion is demonstrated. The method can be generally applied to any accelerations
that act in the along-track direction which includes propulsive accelerations for orbit-raising maneuvers as well as
atmospheric drag for near-circular orbits.

II. Problem Statement
The problem addressed in this work is the inference of a spacecraft’s initial state as well as a piecewise-constant

along-track acceleration profile from noisy measurements of a spacecraft’s position. Specifically, given a vector of 𝑘
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measurement times,

𝜏 =

[
𝑡1 . . . 𝑡𝑘

]𝑇
(1)

it is assumed that a measurement of the spacecraft’s full position is provided in an inertial planetocentric frame (e.g. an
Earth-centered inertial frame). Note, there is no requirement that the measurement times be ordered chronologically,
but it typically will be. The measurement vector then contains 3𝑘 elements corresponding to the 𝑥, 𝑦, and 𝑧 position of
the spacecraft at each measurement time

𝑚 =

[
𝑥(𝑡1) 𝑦(𝑡1) 𝑧(𝑡1) . . . 𝑥(𝑡𝑘 ) 𝑦(𝑡𝑘 ) 𝑧(𝑡𝑘 )

]𝑇
(2)

with corresponding covariance matrix Σ𝑚.
The desired parameter vector contains the initial spacecraft state as well as the acceleration magnitudes for

a piecewise-constant representation of the along-track acceleration applied to the spacecraft throughout observed
measurement duration

𝜙 =

[
𝑥(𝑡0) 𝑦(𝑡0) 𝑧(𝑡0) 𝑣𝑥 (𝑡0) 𝑣𝑦 (𝑡0) 𝑣𝑧 (𝑡0) 𝛼1 . . . 𝛼𝑞

]𝑇
(3)

where 𝑡0 is the initial time of the maneuver and 𝛼1 through 𝛼𝑞 represent the acceleration magnitude for an 𝑞-segment
piecewise-constant representation of the along-track acceleration acting on the spacecraft. It is worth noting that each 𝛼𝑖
represents the total along-track acceleration acting on the spacecraft, which is inclusive of both propulsive acceleration
and atmospheric drag acceleration as the spacecraft is assumed to be in a near-circular orbit. For each segment a time
interval, Δ𝑡𝑖 , can be defined over which a constant along-track acceleration of 𝛼𝑖 acts on the spacecraft. The length of
the time interval is allowed to vary between time segments. In this work it is assumed that segments are sequentially
applied such that the end time of segment 𝑖 (𝑖 < 𝑞) is equal to the start time of segment 𝑖 + 1. As such, the overall length
of the maneuver is

𝑇 =

𝑞∑︁
𝑖=1

Δ𝑡𝑖 (4)

The prior covariance matrix for the parameter vector is defined to be the matrix Σ𝜙 .
Given a particular parameter vector as well as a gravitational field model for the planet of interest, it is relatively

simple to numerically simulate the corresponding measurement vector. The goal of this work is to infer a parameter
vector from an observed measurement vector in a linear manner. However, instead of working with the original inertial
representation of the initial state and measurements, deviations in the parameter vector as well as measurement residuals
will be considered in a local-vertical, local-horizontal frame. Assume at a particular time, 𝑡, the spacecraft has an
inertial position, [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)], and velocity, [𝑣𝑥 (𝑡), 𝑣𝑦 (𝑡), 𝑣𝑧 (𝑡)]. First, define the radial unit vector

𝑟 (𝑡) = 1√︁
𝑥(𝑡)2 + 𝑦(𝑡)2 + 𝑧(𝑡)2


𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

 (5)

and velocity unit vector

�̂�(𝑡) = 1√︃
𝑣𝑥 (𝑡)2 + 𝑣𝑦 (𝑡)2 + 𝑣𝑧 (𝑡)2


𝑣𝑥 (𝑡)
𝑣𝑦 (𝑡)
𝑣𝑧 (𝑡)

 (6)

Next define the cross-track unit vector

𝑐(𝑡) = 𝑟 (𝑡) × �̂�(𝑡)
‖𝑟 (𝑡) × �̂�(𝑡)‖ (7)

and along-track unit vector

�̂�(𝑡) = 𝑐(𝑡) × 𝑟 (𝑡) (8)
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The local-vertical, local-horizontal frame at a given time is then defined by the unit vectors {𝑟 (𝑡), �̂�(𝑡), 𝑐(𝑡)}. The
rotation matrix from the inertial frame to the local-vertical, local-horizontal frame is then

𝑅(𝑡) =

𝑟 (𝑡)𝑇

�̂�(𝑡)𝑇

𝑐(𝑡)𝑇

 (9)

Given deviations in the initial spacecraft position and velocity from the expected values, [Δ𝑥(𝑡0), Δ𝑦(𝑡0), Δ𝑧(𝑡0)]
and [Δ𝑣𝑥 (𝑡0), Δ𝑣𝑦 (𝑡0), Δ𝑣𝑧 (𝑡0)], define the deviations in the local-vertical, local-horizontal frame

Δ𝑟 (𝑡0)
Δ𝑎(𝑡0)
Δ𝑐(𝑡0)

 = 𝑅(𝑡0)

Δ𝑥(𝑡0)
Δ𝑦(𝑡0)
Δ𝑧(𝑡0)

 (10)

and 
Δ𝑣𝑟 (𝑡0)
Δ𝑣𝑎 (𝑡0)
Δ𝑣𝑐 (𝑡0)

 = 𝑅(𝑡0)

Δ𝑣𝑥 (𝑡0)
Δ𝑣𝑦 (𝑡0)
Δ𝑣𝑧 (𝑡0)

 (11)

where the rotation matrix is given by Eq. 9. Now define deviations in an alternate parameter vector, 𝜙, where the
position and velocity vectors are taken in the local-vertical, local-horizontal frame

Δ𝜙 =

[
Δ𝑟 (𝑡0) Δ𝑠(𝑡0) Δ𝑐(𝑡0) Δ𝑣𝑟 (𝑡0) Δ𝑣𝑠 (𝑡0) Δ𝑣𝑐 (𝑡0) Δ𝛼1 . . . Δ𝛼𝑞

]𝑇
(12)

The covariance matrix for the alternate parameter vector is given by

Σ̃𝜙 = 𝑅𝜙Σ𝜙𝑅
𝑇
𝜙 (13)

where

𝑅𝜙 =


𝑅(𝑡0) 03 03×𝑞
03 𝑅(𝑡0) 03×𝑞
0𝑞×3 0𝑞×3 𝐼𝑞

 (14)

and 03 is a 3 × 3 zero matrix, 03×𝑞 is a 3 × 𝑞 zero matrix, 0𝑞×3 is a 𝑞 × 3 zero matrix, and 𝐼𝑞 is a 𝑞 × 𝑞 identity matrix.
Similarly, deviations in the measurement vector need to be redefined to be in the local-vertical, local-horizontal

frame. Given a numerical simulation, represented as a vector function 𝑓 (𝑡, 𝜙), that can take the expected value of the
parameter vector and simulate measurements at the desired measurement times

𝑥(𝑡)
�̂�(𝑡)
𝑧(𝑡)

 = 𝑓 (𝑡, 𝜙) (15)

calculate the error between the simulated measurements and observed measurements at each measurement time
Δ𝑥(𝑡)
Δ𝑦(𝑡)
Δ𝑧(𝑡)

 =


𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

 − 𝑓 (𝑡, 𝜙) (16)

Finally, rotate the position errors into the local-vertical, local-horizontal frame with the rotation matrix calculated from
Eq. 9 using the simulated measurements 

Δ𝑟 (𝑡)
Δ𝑎(𝑡)
Δ𝑐(𝑡)

 = 𝑅(𝑡)

Δ𝑥(𝑡)
Δ𝑦(𝑡)
Δ𝑧(𝑡)

 (17)
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The deviations in the alternate measurement vector are then simply the deviations in the radial, along-track, and
cross-track position evaluated at the desired measurement times

Δ�̃� =

[
Δ𝑟 (𝑡1) Δ𝑎(𝑡1) Δ𝑐(𝑡1) . . . Δ𝑟 (𝑡𝑘 ) Δ𝑎(𝑡𝑘 ) Δ𝑐(𝑡𝑘 )

]𝑇
(18)

The covariance matrix for the alternate measurement vector is given by

Σ̃𝑚 = 𝑅𝑚Σ𝑚𝑅
𝑇
𝑚 (19)

where

𝑅𝑚 =


𝑅(𝑡1) 03 . . . 03
03 𝑅(𝑡2) . . . 03
...

...
. . .

...

03 03 . . . 𝑅(𝑡𝑘 )


(20)

Given deviations in the alternate parameter and measurement vectors, the goal of this work is to determine a linear
relationship between the two vectors

Δ�̃� = 𝐻Δ𝜙 (21)

Specifically, the goal is to analytically approximate the sensitivity matrix, 𝐻. The sensitivity matrix will be a (3𝑘)×(𝑞+6)
matrix describing the sensitivity of each measurement with respect to each parameter

𝐻 =



𝜕𝑟
𝜕𝑟0

(𝑡1) 𝜕𝑟
𝜕𝑎0

(𝑡1) 𝜕𝑟
𝜕𝑐0

(𝑡1) 𝜕𝑟
𝜕𝑣𝑟,0

(𝑡1) 𝜕𝑟
𝜕𝑣𝑎,0

(𝑡1) 𝜕𝑟
𝜕𝑣𝑐,0

(𝑡1) 𝜕𝑟
𝜕𝛼1

(𝑡1) . . . 𝜕𝑟
𝜕𝛼𝑞

(𝑡1)
𝜕𝑎
𝜕𝑟0

(𝑡1) 𝜕𝑎
𝜕𝑎0

(𝑡1) 𝜕𝑎
𝜕𝑐0

(𝑡1) 𝜕𝑎
𝜕𝑣𝑟,0

(𝑡1) 𝜕𝑎
𝜕𝑣𝑎,0

(𝑡1) 𝜕𝑎
𝜕𝑣𝑐,0

(𝑡1) 𝜕𝑎
𝜕𝛼1

(𝑡1) . . . 𝜕𝑎
𝜕𝛼𝑞

(𝑡1)
𝜕𝑐
𝜕𝑟0

(𝑡1) 𝜕𝑐
𝜕𝑎0

(𝑡1) 𝜕𝑐
𝜕𝑐0

(𝑡1) 𝜕𝑐
𝜕𝑣𝑟,0

(𝑡1) 𝜕𝑐
𝜕𝑣𝑎,0

(𝑡1) 𝜕𝑐
𝜕𝑣𝑐,0

(𝑡1) 𝜕𝑐
𝜕𝛼1

(𝑡1) . . . 𝜕𝑐
𝜕𝛼𝑞

(𝑡1)
...

...
...

...
...

...
...

...
𝜕𝑟
𝜕𝑟0

(𝑡𝑘 ) 𝜕𝑟
𝜕𝑎0

(𝑡𝑘 ) 𝜕𝑟
𝜕𝑐0

(𝑡𝑘 ) 𝜕𝑟
𝜕𝑣𝑟,0

(𝑡𝑘 ) 𝜕𝑟
𝜕𝑣𝑎,0

(𝑡𝑘 ) 𝜕𝑟
𝜕𝑣𝑐,0

(𝑡𝑘 ) 𝜕𝑟
𝜕𝛼1

(𝑡𝑘 ) . . . 𝜕𝑟
𝜕𝛼𝑞

(𝑡𝑘 )
𝜕𝑎
𝜕𝑟0

(𝑡𝑘 ) 𝜕𝑎
𝜕𝑎0

(𝑡𝑘 ) 𝜕𝑎
𝜕𝑐0

(𝑡𝑘 ) 𝜕𝑎
𝜕𝑣𝑟,0

(𝑡𝑘 ) 𝜕𝑎
𝜕𝑣𝑎,0

(𝑡𝑘 ) 𝜕𝑎
𝜕𝑣𝑐,0

(𝑡𝑘 ) 𝜕𝑎
𝜕𝛼1

(𝑡𝑘 ) . . . 𝜕𝑎
𝜕𝛼𝑞

(𝑡𝑘 )
𝜕𝑐
𝜕𝑟0

(𝑡𝑘 ) 𝜕𝑐
𝜕𝑎0

(𝑡𝑘 ) 𝜕𝑐
𝜕𝑐0

(𝑡𝑘 ) 𝜕𝑐
𝜕𝑣𝑟,0

(𝑡𝑘 ) 𝜕𝑐
𝜕𝑣𝑎,0

(𝑡𝑘 ) 𝜕𝑐
𝜕𝑣𝑐,0

(𝑡𝑘 ) 𝜕𝑐
𝜕𝛼1

(𝑡𝑘 ) . . . 𝜕𝑐
𝜕𝛼𝑞

(𝑡𝑘 )


(22)

Assuming an approximation of the sensitivity matrix can be found, the expected value and covariance of the parameter
vector can be updated according to

Δ𝜙 = Δ𝜙 + 𝐾Δ�̃� (23)

and

Σ̃𝜙 = (𝐼𝑞+6 − 𝐾𝐻)Σ̃𝜙 (24)

where 𝐼𝑞+6 is a (𝑞 + 6) × (𝑞 + 6) identity matrix and 𝐾 is the optimal Kalman gain calculated as

𝐾 = Σ̃𝜙𝐻
𝑇

(
𝐻Σ̃𝜙𝐻

𝑇 + Σ̃𝑚

)−1
(25)

which allows the acceleration magnitude of each segment of the piecewise-constant representation of the acceleration
profile to be inferred.
Assuming that the initial spacecraft orbit is near-circular, the first six columns of the sensitivitymatrix—corresponding

to the sensitivity of the measurements with respect to the initial spacecraft state in a local-vertical, local-horizontal
frame—are directly given by linear orbit theory [26]


Δ𝑟 (𝑡)
Δ𝑎(𝑡)
Δ𝑐(𝑡)

 ≈

4 − 3 cos(𝑛𝑡) 0 0 1

𝑛
sin(𝑛𝑡) 2

𝑛
(1 − cos(𝑛𝑡)) 0

6(sin(𝑛𝑡) − 𝑛𝑡) 1 0 − 2
𝑛
(1 − cos(𝑛𝑡)) 1

𝑛
(4 sin(𝑛𝑡) − 3𝑛𝑡) 0

0 0 cos(𝑛𝑡) 0 0 1
𝑛
sin(𝑛𝑡)





Δ𝑟0

Δ𝑎0

Δ𝑐0

Δ𝑣𝑟 ,0

Δ𝑣𝑎,0

Δ𝑣𝑐,0


(26)
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where 𝑛 is the mean motion of the spacecraft’s initial orbit. By evaluating these sensitivities at the desired measurement
times, the first six columns of the sensitivity matrix can be formed. The contribution of this work is determining
approximations for the sensitivity of the spacecraft position in a local-vertical, local-horizontal frame due to a segmented
along-track acceleration profile.

III. Trajectory Approximation
In order to determine approximations for the sensitivity of the spacecraft position in a local-vertical, local-horizontal

frame due to a segmented along-track acceleration profile, the first step will be to determine an analytical approximation
for the spacecraft’s overall trajectory. The specific energy of a spacecraft’s orbit, 𝜖 , is given by

𝜖 =
1
2
𝑣2 − `

𝑟
(27)

where 𝑣 is the speed of the spacecraft, ` is the gravitational parameter of the central body, and 𝑟 is the radial position of
the spacecraft. Assuming that the orbit is circular, then the specific energy can be written as a function of only the
orbital radius

𝜖 = −1
2
`

𝑟
(28)

The time derivative of the specific energy, the specific power, is therefore

𝑑𝜖

𝑑𝑡
=
1
2
`

𝑟2
𝑑𝑟

𝑑𝑡
(29)

If the spacecraft carries a propulsion system that produces a constant propulsive acceleration, 𝛼, and assuming
that the propulsive acceleration is aligned with the spacecraft’s velocity vector, then the specific power input to the
spacecraft’s orbit from the propulsion system is given by

𝑝 = 𝛼𝑣 = 𝛼

√︂
`

𝑟
(30)

Assuming that the only power input to the spacecraft’s orbit comes from its propulsion system, then Eqs. 29 and 30 can
be equated to give an ordinary differential equation for the orbital radius

𝑑𝑟

𝑑𝑡
=
2𝛼
√
`
𝑟3/2 (31)

This differential equation can be analytically integrated to give an approximation for the orbital radius as a function
of time

𝑟 (𝑡) = 𝑟0

(
1 − 𝛼√︁

`/𝑟0
𝑡

)−2
(32)

where 𝑟0 is the initial orbital radius. From the approximation of the spacecraft’s radial position over time, the angular
position of the spacecraft in the orbital plane can also be approximated

\ (𝑡) = \0 +
∫ 𝑡

0

√︂
`

𝑟3 (𝜏)
𝑑𝜏 (33)

= \0 +
1
4
`

𝛼𝑟20

1 −
(
1 − 𝛼√︁

`/𝑟0
𝑡

)4 (34)

where \0 is the initial angular position. This approximation of the spacecraft’s radial and angular position within
the orbital plane is well known and has been presented previously [27]. However, it is limited to a single propulsive
acceleration that acts for the entire duration of time.
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In order to account for a segmented acceleration profile, the trajectory approximation will need to be extended.
Assume that the acceleration profile is broken into two segments: 𝛼1 which acts on the time range 𝑡 ∈ [0,Δ𝑡1) and 𝛼2
which acts in the time range 𝑡 ∈ [Δ𝑡1,Δ𝑡1 + Δ𝑡2). Over the time range 𝑡 ∈ [0,Δ𝑡1) the radial position of the spacecraft
can be approximated with Eq. 32 and substituting in 𝛼1 for the along-track acceleration

𝑟1 (𝑡) = 𝑟0

(
1 − 𝛼1√︁

`/𝑟0
𝑡

)−2
𝑡 ∈ [0,Δ𝑡1) (35)

Over the time range 𝑡 ∈ [Δ𝑡1,Δ𝑡1 + Δ𝑡2) the along-track acceleration magnitude changes to 𝛼2. Continuing the
approximation that the spacecraft’s orbit is near-circular, then the radial position of the spacecraft can be approximated
from

𝑟2 (𝑡) = 𝑟 ′0

(
1 − 𝛼2√︁

`/𝑟 ′0
(𝑡 − Δ𝑡1)

)−2
𝑡 ∈ [Δ𝑡1,Δ𝑡1 + Δ𝑡2) (36)

where the initial radial position, 𝑟 ′0, is given by the radial position of the spacecraft at the end of the first segment

𝑟 ′0 = 𝑟1 (Δ𝑡1) = 𝑟0

(
1 − 𝛼1√︁

`/𝑟0
Δ𝑡1

)−2
(37)

which results in

𝑟2 (𝑡) = 𝑟0

(
1 − 𝛼1√︁

`/𝑟0
Δ𝑡1 −

𝛼2√︁
`/𝑟0

(𝑡 − Δ𝑡1)
)−2

𝑡 ∈ [Δ𝑡1,Δ𝑡1 + Δ𝑡2) (38)

This process can be extended to an arbitrary number of segments. For a particular segment, 𝑖, the approximation for
the radial position during the segment will be given by

𝑟𝑖 (𝑡) = 𝑟0

(
1 − Δ𝑣1:𝑖−1√︁

`/𝑟0
− 𝛼𝑖√︁

`/𝑟0
(𝑡 − 𝑇𝑖−1)

)−2
𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (39)

where

Δ𝑣1:𝑖−1 =
𝑖−1∑︁
𝑗=1
𝛼 𝑗Δ𝑡 𝑗 (40)

and

𝑇𝑖−1 =
𝑖−1∑︁
𝑗=1

Δ𝑡 𝑗 (41)

From the approximation of the radial position, the angular position of the spacecraft during segment 𝑖 can be approximated
from

\𝑖 (𝑡) = \0,𝑖 +
∫ 𝑇𝑖−1+Δ𝑡𝑖

𝑇𝑖−1

√︂
`

𝑟3 (𝜏)
𝑑𝜏 (42)

= \0,𝑖 +
1
4

`

𝑟20𝛼𝑖

Γ4𝑖 −
(
Γ𝑖 −

𝛼𝑖√︁
`/𝑟0

(𝑡 − 𝑇𝑖−1)
)4 𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (43)

where

Γ𝑖 = 1 −
Δ𝑣1:𝑖−1√︁
`/𝑟0

(44)

and the initial angular position for each segment is defined recursively as

\0,𝑖 =

{
\0 𝑖 = 1
\𝑖−1 (𝑇𝑖−1) 𝑖 > 1

(45)

7



IV. Sensitivity Approximation
Eqs. 39 and 43 give an approximation for the spacecraft’s position in the orbital plane under the influence of a

segmented along-track acceleration. The sensitivities required for the sensitivity matrix in Eq. 22 can be derived by
taking the partial derivatives of Eqs. 39 and 43 with respect to each acceleration in the segment. Note that the trajectory
approximation remains within a single orbit plane, therefore the derivative of the spacecraft’s cross-track position with
respect to any acceleration magnitude will be zero. Since the spacecraft position is given as a radial and angular position,
the derivative in the along-track direction can be approximated as

𝜕𝑎

𝜕𝛼𝑖
≈ 𝑟0

𝜕\

𝜕𝛼𝑖
(46)

Assume that the time of interest for calculating the sensitivity falls during segment 𝑖 of the along-track acceleration
profile. For the radial and angular positions, there are three derivative that need to be calculated. One derivative with
respect to the acceleration of the current segment, 𝛼𝑖 , another derivative with respect to the acceleration of previous
segments, 𝛼 𝑗 , 𝑗 < 𝑖, and a final derivative with respect to the acceleration of future segments, 𝛼 𝑗 , 𝑗 > 𝑖. Since neither
Eq. 39 nor Eq. 43 depend on the acceleration of future segments, the associated derivative will be zero in both cases.
Starting with the radial position, the derivative of the radial position with respect to the current acceleration, 𝛼𝑖 , is

given by

𝜕

𝜕𝛼𝑖
𝑟𝑖 (𝑡) =

2𝑟0 (𝑡 − 𝑇𝑖−1)√︁
`/𝑟0

(
1 − Δ𝑣1:𝑖−1√︁

`/𝑟0
− 𝛼𝑖√︁

`/𝑟0
(𝑡 − 𝑇𝑖−1)

)−3
𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (47)

which can be closely approximated as
𝜕

𝜕𝛼𝑖
𝑟𝑖 (𝑡) ≈

2𝑟0 (𝑡 − 𝑇𝑖−1)√︁
`/𝑟0

𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (48)

since in most practical cases,
√︁
`/𝑟0 � Δ𝑣1:𝑖−1 and

√︁
`/𝑟0 � 𝛼𝑖 (𝑡 − 𝑇𝑖−1). The derivative of the radial position with

respect to any prior acceleration, 𝛼 𝑗 , 𝑗 < 𝑖, is given by

𝜕

𝜕𝛼 𝑗

𝑟𝑖 (𝑡) =
(

𝜕

𝜕Δ𝑣1:𝑖−1
𝑟𝑖 (𝑡)

) (
𝜕

𝜕𝛼 𝑗

Δ𝑣1:𝑖−1

)
(49)

=
2𝑟0Δ𝑡 𝑗√︁
`/𝑟0

(
1 − Δ𝑣1:𝑖−1√︁

`/𝑟0
− 𝛼𝑖√︁

`/𝑟0
(𝑡 − 𝑇𝑖−1)

)−3
𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (50)

which can be closely approximated as
𝜕

𝜕𝛼 𝑗

𝑟𝑖 (𝑡) ≈
2𝑟0Δ𝑡 𝑗√︁
`/𝑟0

𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (51)

For the angular position, the derivative of the angular position with respect to the current acceleration, 𝛼𝑖 , is given by

𝜕

𝜕𝛼𝑖
\ (𝑡) = − 1

4𝑟0
(𝑡 − 𝑇𝑖)2

6Γ2𝑖 − 8Γ𝑖

(
𝛼𝑖√︁
`/𝑟0

(𝑡 − 𝑇𝑖)
)
+ 3

(
𝛼𝑖√︁
`/𝑟0

(𝑡 − 𝑇𝑖)
)2 (52)

Under the assumption that
√︁
`/𝑟0 � Δ𝑣1:𝑖−1 and

√︁
`/𝑟0 � 𝛼𝑖 (𝑡 − 𝑇𝑖−1) then Γ𝑖 ≈ 1 and the derivative of the angular

position with respect to the current acceleration can be approximated by
𝜕

𝜕𝛼𝑖
\𝑖 (𝑡) ≈ −3

2
1
𝑟0

(𝑡 − 𝑇𝑖−1)2 𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (53)

The derivative of the angular position with respect to any prior acceleration, 𝛼 𝑗 , 𝑗 < 𝑖, is given by

𝜕

𝜕𝛼 𝑗

\𝑖 (𝑡) =
(
𝜕

𝜕Γ𝑖

\𝑖 (𝑡)
) (

𝜕

𝜕Δ𝑣1:𝑖−1
Γ𝑖

) (
𝜕

𝜕𝛼 𝑗

Δ𝑣1:𝑖−1

)
(54)

= − 1
4𝑟0

Δ𝑡2𝑗

6Γ2𝑗 − 8Γ 𝑗

(
𝛼𝑖√︁
`/𝑟0

Δ𝑡 𝑗

)
+ 3

(
𝛼𝑖√︁
`/𝑟0

Δ𝑡 𝑗

)2 −
1
𝑟0
Δ𝑡 𝑗 (𝑡 − 𝑇𝑖)

[
3Γ2𝑖 − 3Γ𝑖

𝛼𝑖

𝑣0
(𝑡 − 𝑇𝑖) +

(
𝛼𝑖

𝑣0
(𝑡 − 𝑇𝑖)

)2]
(55)
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Under the assumption that
√︁
`/𝑟0 � Δ𝑣1:𝑖−1 and

√︁
`/𝑟0 � 𝛼𝑖 (𝑡 − 𝑇𝑖−1) then Γ 𝑗 ≈ Γ𝑖 ≈ 1 and the derivative of the

angular position with respect to any prior acceleration can be approximated by

𝜕

𝜕𝛼 𝑗

\ (𝑡) ≈ −
3Δ𝑡 𝑗
𝑟0

(
(𝑡 − 𝑇𝑗−1) −

1
2
Δ𝑡 𝑗

)
𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (56)

Given the approximate derivatives for the angular position, the derivatives for the along-track position can be calculated
from Eq. 46. The derivative of the along-track position with respect to the current acceleration, 𝛼𝑖 , can be approximated
by

𝜕

𝜕𝛼𝑖
𝑎(𝑡) ≈ −3

2
(𝑡 − 𝑇𝑖−1)2 𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (57)

and the derivative of the along-track position with respect to any prior acceleration, 𝛼 𝑗 , 𝑗 < 𝑖, can be approximated by

𝜕

𝜕𝛼 𝑗

𝑎(𝑡) ≈ −3Δ𝑡 𝑗
(
(𝑡 − 𝑇𝑗−1) −

1
2
Δ𝑡 𝑗

)
𝑡 ∈ [𝑇𝑖−1, 𝑇𝑖−1 + Δ𝑡𝑖) (58)

Therefore, for a given measurement time, the sensitivities required for the sensitivity matrix in Eq. 22 can be calculated
from Eqs. 48, 51, 57, and 58 depending on if the acceleration of interest is the acceleration of the current segment or
was prior to the current segment. The sensitivities with respect to accelerations of future segments will always be zero.
Given the number of approximations taken to derive the above derivatives, it is worth comparing the analytical

derivatives to numerically-determined derivatives. For the numerical comparison, the trajectory of a spacecraft initially
in a 400 km altitude orbit about Earth is simulated with a 30th-order spherical-harmonics representation of the Earth’s
gravitational field using Joint Gravity Model 3 coefficients [28]. A five-segment piece-wise constant along-track
acceleration is applied to the spacecraft with acceleration magnitudes for each segment randomized between -100–100
`m/s2. The length of each segment is also randomized on the range 5–10 hours. 1000 samples were collected where
for each sample the magnitude of a randomly-chosen acceleration was perturbed by a small acceleration on the range
Δ𝛼 ∈ [−10, 10] `m/s2 and the change in the radial and along-track position of the spacecraft was then calculated at a
randomly-chosen time. The nominal magnitudes and segment lengths for the accelerations were resampled between
simulations.
Figure 1 shows the calculated deviations in the radial and along-track position of the spacecraft normalized by the

analytically-derived derivatives in Eqs. 48, 51, 57, and 58 versus the applied deviations in the along-track acceleration
magnitude. If the analytically-derived derivatives were accurate, then all of the samples should fall on a line of slope one.
The samples do cluster around a line of slope one demonstrating that the analytically-derived derivatives do provide an
accurate approximation of the actual sensitivities. This test was conducted using a relatively high-fidelity model—a
30th-order spherical-harmonics representation of the Earth’s gravitational field—demonstrating that the derivatives
would be accurate for most practical scenarios.

V. Maneuver Reconstruction
Given the analytical approximations for the sensitivities of radial and along-track deviations in the spacecraft’s

position, the process of maneuver reconstruction is relatively simple. For an assumed Gaussian prior distribution of the
initial spacecraft state and magnitudes of each segment of the piece-wise constant along-track acceleration profile, first
simulate the spacecraft’s trajectory based on the mean values of each parameter and record the spacecraft’s position at
the desired measurement times. Given the simulated spacecraft position and the observed measurements, calculate the
deviations of the observed measurements from the simulated spacecraft position in a local-vertical, local-horizontal
plane in order to form the deviations in the alternate measurement vector in Eq. 18. In addition, determine the sensitivity
matrix from Eq. 22 using the analytical sensitivities defined by Eqs. 48, 51, 57, and 58.
Given the measurement deviations and sensitivity matrix, determine the required shift in the mean values of the

parameter vector according to Eq. 23, where initially Δ𝜙 = 0, as well as update the covariance of the parameter vector
according to Eq. 24. After applying the shift in the mean values of the parameter vector, estimates for the initial
spacecraft state as well as acceleration magnitudes for the piece-wise along-track acceleration profile conditioned on
the observed measurements of the spacecraft state are obtained. In this approach it is additionally assumed that the
simulation is free from model error and uncertainties in the initial spacecraft state and acceleration magnitudes will not
include uncertainty due to potential model error.
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Fig. 1 Numerically-determined deviations in radial and along-track position normalized by the analytically-
derived derivatives versus deviations in along-track acceleration magnitude.

VI. Applications
The maneuver reconstruction approach is quite general and can be applied to a number of applications. The following

examples demonstrate the reconstruction of various maneuvers ranging from maneuvers with discontinuities in the
acceleration profile—such as thruster startup—to smooth acceleration profiles—such as the degradation of a thruster
over extended firing periods. In all cases a 30th-order spherical-harmonics representation of the Earth’s gravitational
field is used to simulate the measurements and the reference trajectory used for inference and the spacecraft is assumed
to start in a 420 km altitude circular orbit around Earth. Note that due to the relatively low altitude of the spacecraft,
the inferred acceleration can be inclusive of both atmospheric drag and propulsive accelerations. Measurements of
the spacecraft’s position are assumed to be independently distributed and to have a zero-mean Gaussian distribution
with 3𝜎 uncertainty of 100 m. The prior distributions for the initial spacecraft position and velocity are assumed to be
independently distributed and zero-mean Gaussian distributions with 3𝜎 uncertainties of 100 m and 1 m/s respectively.
In the following examples, only the posterior distribution of the reconstructed acceleration profile is shown. The initial
spacecraft state was also inferred, but is omitted here.

A. Discontinuous Profiles
Figure 2 shows the prior and posterior distributions of the reconstruction of an acceleration profile with a single

discontinuity, perhaps representative of thruster startup. Error bars represent 3𝜎 uncertainty in the segmented
reconstruction. The true maneuver starts with an initial along-track acceleration of 0 `m/s2 before increasing to 5 `m/s2
2.5 hours later. The overall maneuver is assumed to take 10 hours with measurements collected once every minute. A
ten-segment profile is used for the reconstruction where the prior distribution for the magnitude of each segment is
assumed to be zero-mean Gaussian distributions with 3𝜎 uncertainty of 10 `m/s2. The posterior distributions of the
acceleration magnitudes for the segmented profile demonstrate that the true acceleration profile is captured quite well.
Of note is that the third segment is centered at 2.5 hour mark, where the true acceleration profile jumps from 0 `m/s2
to 5 `m/s2. The inferred magnitude for the acceleration of the third segment is close to 2.5 `m/s2, representing the
average acceleration of the true profile during the time period of the third segment. Across all segments, the posterior
uncertainty in the acceleration magnitude has an average 3𝜎 uncertainty of 1.7 `m/s2 with a minimum of 1.0 `m/s2 for
the first segment and a maximum of 3.2 `m/s2 for the final segment.
Figure 3 shows the prior and posterior distributions of the reconstruction of an acceleration profile with two

discontinuities, perhaps representative of a maneuver detection scenario. Error bars represent 3𝜎 uncertainty in the
segmented reconstruction. The true maneuver starts with an initial along-track acceleration of 0 `m/s2 before increasing
to 5 `m/s2 3.33 hours into the maneuver and then decreasing back to 0 `m/s2 6.67 hours into the maneuver. As before,
the overall maneuver is assumed to take 10 hours with measurements collected once every minute. A ten-segment profile
is used for the reconstruction where the prior distribution for the magnitude of each segment is assumed to be zero-mean
Gaussian distributions with 3𝜎 uncertainty of 10 `m/s2. The posterior distributions of the acceleration magnitudes for
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Fig. 2 Prior and posterior distributions of the along-track acceleration magnitudes when the true acceleration
profile has a single discontinuity. Error bars represent 3𝜎 uncertainty.

Fig. 3 Prior and posterior distributions of the along-track acceleration magnitudes when the true acceleration
profile has two discontinuities. Error bars represent 3𝜎 uncertainty.

the segmented profile again demonstrate that the true acceleration profile is captured quite well. In this profile, the true
acceleration magnitude changes partially into the fourth segment and towards the end of the seventh segment of the
segmented reconstruction. The primary impact of this is that the inferred magnitudes of the fourth and seventh segments
are slightly lower than 5 `m/s2 since the average true propulsive acceleration during both segments was slightly lower
than 5 `m/s2. A secondary impact is the the inferred magnitudes of the third and eighth segments are also lowered to
accommodate for the fact that the reconstructed acceleration profile contains along-track acceleration in regions where
the true acceleration is 0 `m/s2. However, even despite this phenomena, detection of the maneuver is quite feasible
based on the reconstructed acceleration profile. Since the prior uncertainties for this two-discontinuity profile are the
same as in the one-discontinuity profile, the posterior uncertainties in the acceleration magnitudes are the same as
before; across all segments, the posterior uncertainty in the acceleration magnitude has an average 3𝜎 uncertainty of 1.7
`m/s2 with a minimum of 1.0 `m/s2 for the first segment and a maximum of 3.2 `m/s2 for the final segment.

B. Continuous Profiles
Figure 4 shows the prior and posterior distributions of the reconstruction of an acceleration profile that is sinusoidal

according to

𝛼true = 𝛼0 sin (𝜔𝑡) (59)
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Fig. 4 Prior and posterior distributions of the along-track acceleration magnitudes when the true acceleration
profile is sinusoidal. Error bars represent 3𝜎 uncertainty.

Fig. 5 Prior and posterior distributions of the along-track acceleration magnitudes when the true acceleration
profile is an exponentiated quadratic. Error bars represent 3𝜎 uncertainty.

where 𝛼0 = 5 `m/s2 and 𝜔 = 0.4𝜋 1/s. Error bars represent 3𝜎 uncertainty in the segmented reconstruction. As before,
the overall maneuver is assumed to take 10 hours with measurements collected once every minute. A ten-segment
profile is used for the reconstruction where the prior distribution for the magnitude of each segment is assumed to be
zero-mean Gaussian distributions with 3𝜎 uncertainty of 10 `m/s2. The posterior distributions of the acceleration
magnitudes for the segmented profile reconstruct the sinusoidal profile by representing the approximate average value of
the sinusoidal profile during each segment. Figure 5 shows the prior and posterior distributions of the reconstruction of
an acceleration profile that is an exponentiated quadratic

𝛼true =


𝛼0 𝑡 < 𝑇/4

2𝛼0 exp
(
−

(
𝑡−𝑇 /4
𝑇 /4

)2)
− 𝛼0 𝑡 ≥ 𝑇/4

(60)

where 𝛼0 = 5 `m/s2 and 𝑇 = 10 hours. Error bars represent 3𝜎 uncertainty in the segmented reconstruction. The
overall maneuver length is kept at 10 hours and the measurement interval is still one minute. The same ten-segment
prior profile is used as in the sinusoidal case. Again the continuous acceleration profile is represented quite well with
the acceleration magnitude for each segment representing the approximate average value of the exponentiated quadratic
profile during each segment.
As a practical example for the reconstruction of continuous along-track acceleration profiles, the case of reconstructing

the approximate thrust decay of an electric propulsion system is considered. Electrospray thrusters have a thrust output
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Fig. 6 Prior and posterior distributions of the along-track acceleration magnitudes when the true acceleration
profile represents thruster degradation for an electrospray thruster. Error bars represent 3𝜎 uncertainty.

that, to close approximation, is directly proportional to the emitted current for a constant thruster potential [29, 30].
By using experimental data for the emitted current of an electrospray thruster over time, a representative thrust—and
therefore acceleration—profile can be obtained. Figure 6 shows the prior and posterior distributions of the reconstruction
of an acceleration profile based on the emitted current profile of an electrospray thruster from Ref. [31]. Error bars
represent 3𝜎 uncertainty in the segmented reconstruction. Given a current profile, the acceleration profile is determined
by scaling the current profile such that the initial acceleration is 10 `m/s2. The variations in acceleration during the first
45 hours are caused by minor performance changes in the thruster over time. The drop in acceleration past 45 hours was
caused by depletion of the propellant reservoir [31].
For the reconstruction of the acceleration profile, measurements were assumed to be collected once every hour. A

twenty-segment profile is used for the reconstruction where the prior distribution for the magnitude of each segment
is assumed to be a Gaussian distribution with mean of 10 `m/s2 and 3𝜎 uncertainty of 10 `m/s2. The reconstructed
profile is able to capture both the minor variations in propulsive acceleration during the first 45 hours as well as the
steeper drop in acceleration past 45 hours due to propellant depletion. The average posterior 3𝜎 uncertainty in the
acceleration magnitude of the different segments was 0.90 `m/s2. Such a technique could be used to characterize the
long-term behavior of various low-thrust propulsion systems such as thrust degradation due to erosion in Hall thrusters
[32] and pulsed-plasma thrusters [33]. While demonstrated here with electrospray thrusters, the method developed in
this paper is propulsion system agnostic and can be used for any low-thrust propulsion system.

VII. Conclusion
This paper demonstrates that arbitrary acceleration profiles can be reconstructed through a piece-wise constant

representation using analytical approximations for the sensitivity of a spacecraft’s radial and along-track position with
respect to the acceleration magnitude of each segment. Maneuver reconstruction was applied to both discontinuous and
continuous acceleration profiles, including profiles based on the potential long-term variation in thrust of an electrospray
thruster. The reconstructed acceleration profile was able to capture both minor variations in thrust during nominal
thruster operation as well as more-rapid changes in thrust due to propellant depletion. Such a technique could be used to
perform characterization of the long-term behavior of low-thrust propulsion systems.
The primary benefit of this work is that trajectories can be reconstructed with the simulation of only a single

reference trajectory as opposed to the multiple simulations required for prior ensemble or iterative approaches. The use
of only a single reference simulation dramatically reduces the computational cost of trajectory reconstruction, with the
long-term goal of developing a method that could be implemented directly onto a spacecraft onboard computer for
autonomous propulsion system characterization.
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