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Executive Summary
Powered exoskeletons are an important growing technology that can be used to augment users’ physical
abilities or provide gait rehabilitation/locomotion assistance. However, they require robust and
responsive control algorithms that allow the exoskeleton to match a user’s movement. The Michigan
Strength Augmenting Robotic Exoskeleton (M-STARX) team requested that we develop a sensing
system to be incorporated into their exoskeleton’s foot to classify behavioral states: standing, walking,
and running. This requires an original algorithm to process the raw data and output the behavioral state
so the M-STARX team will be able to create responsive controls that mimic and assist the user’s
movement. For this project, we aim to achieve a 95% accuracy in state classification while maintaining a
low manufacturing cost and easy integration with M-STARX’s exoskeleton. Most of the specifications
were determined based on the sponsor’s budget and requests. The final design was an inertial
measurement unit placed inside a 3D printed housing that transmits a signal of the accelerations and
rotational velocities in the x, y, and z directions. The signal is then processed using a fourier
decomposition to find the dominant frequency and magnitude. Then the algorithm determines the
behavioral state based on thresholds for the signal frequency and magnitude. Verification and validation
work was done using data collected by people incrementally going from standing to running then back
down as well as moving at randomized speeds. The algorithm’s classification was then compared to time
stamped video data to verify the accuracy. It was able to achieve an 80% accuracy in state classification,
but there is some future work that can be done to improve this. We concluded that increasing the sample
rate or changing the high level algorithm into a neural network may be some ways to achieve the desired
accuracy. Overall, the sensing system was able to achieve its goal of running in near real time (0.5 - 1.8
seconds delay) and classifying the behavioral state of the user.
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Project Introduction and Background
Exoskeletons are a field of technology that strives to push human boundaries and improve the quality of
life of people. As shown in Figure 1, these devices augment the physical ability of the user and/or act as
an assistive device generally by distributing loads and targeting joints.

Figure 1. (a) Weight-bearing and joint-targeting (b) applications in unimpaired users.
(c) Weight-bearing and joint-targeting (d) applications in clinical populations.1

Figure 2 on the next page provides specific examples of real-world applications of exoskeletons with
images. There are many types of exoskeletons differentiated by factors such as target body part and
intended usage.

1 Siviy, C., Baker, L.M., Quinlivan, B.T. et al., “Opportunities and challenges in the development of exoskeletons for locomotor assistance”,
Nat. Biomed. Eng (2022). https://doi.org/10.1038/s41551-022-00984-1
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Figure 2. Exoskeletons can be used by those who have difficulty walking (assistive device), first
responders, the military, industry workers, and rehabilitation centers.2 3 4 5 6

For both augmentation and assistive uses, the exoskeleton helps combat fatigue by reducing the overall
load the user bears. For the three applications shown in Figure 2 - first responders, military, and
industrial - the exo helps them lift much more than they are normally capable of, which means many
more people can be saved and labor-dependent productivity will increase. Despite the potential in how
exoskeletons can improve society, this field is mostly limited to research purposes in labs as there are
still many challenges blocking it from being widely available to the public. Exoskeletons can be
expensive, heavy, have limited motion and power ranges, and are usually uncomfortable to wear. Our
sponsor, the Michigan Strength Augmenting Robotic Exoskeleton (M-STARX) student engineering
design team, aims to advance the field of powered exoskeleton technology to a practical and useful level
by designing and building an exoskeleton that can help the user with everyday tasks and make a
difference in the real world. In general, it is difficult to mimic natural human movement and having a
robot predict a user’s actions. A major hurdle in making exoskeletons a feasible technology is creating a
robust and responsive control algorithm that can interpret what the user is doing and respond
appropriately almost instantaneously. One of the sponsor’s goals for the 2022-2023 academic year is to
make improvements to the design and control algorithm of their Leg Exoskeleton by automatically
identifying various behavior states to implement gait-specific assistive controls.

6 “Exoskeleton Enables and Enhances Movement in Physical Therapy Patients.” University Hospitals, University Hospitals, 25 Nov. 2020.

5 “Exoskeletons: Next-Gen Mobility and Efficiency.” The Timken Company, 27 Dec. 2022.

4 Gruss, Mike. “The Army Could Take a Run at Developing a Robotic 'Warrior Suit'.” Defense News, Defense News, 19 Aug. 2022.

3 Emergency Live. “Ambulance Professional Back Pain War: Technology, May You Help Me?” Emergency Live, 9 Sept. 2020.

2 Lusardi R, Tomelleri S and Wherton J (2021) Living With Assistive Robotics: Exploring the Everyday Use of Exoskeleton for Persons
With Spinal Cord Injury. Front. Med. Technol. 3:747632.
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M-STARX is asking the ME 450 team to develop and manufacture a sensing system to be incorporated
into the footplate of their exoskeleton that can be used to classify behavioral states including standing
and different gait patterns - meaning walking, jogging, running. The team also needs to program the
algorithm that can process the raw data and acquire relevant features from the sensing system. It should
output the identified behavior state of the user and be able to provide the data in a readable format for
the M-STARX team. The sponsor should then be able to integrate the final solution into the footplate of
the M-STARX exoskeleton and implement responsive controls to best assist the user based on their
movements. For integration, the sensing system will need to be able to physically attach to either the
user or the exoskeleton itself while keeping within any design requirements and specifications. The
system will also need to be able to connect to their power and processing system on their exoskeleton.

To understand the problem, the parts of the foot need to be broken down into a 2D system of points and
angles. In Figure 3 below, the leg and foot can be broken down into several major points at the knee,
ankle, toe, and heel. From this, the shank and foot angle from the figure can be derived as the angle
between them and the horizontal and vertical axis respectively.

Figure 3. Important joints and angles of the leg. Foot angle and shank
angle are in respect to the horizontal and vertical axis.7

Using IMUs will produce acceleration and angle data from the accelerometers and gyroscopes. We can
use this data to determine positions of key points and the shank and foot angles. Using an Arduino, we
can convert the data into a continuous signal for Matlab processing. The signals produced can be plotted
as a time series graph like Figure 4, which can then be analyzed using prior knowledge about kinematic
systems and linkages. This analysis will help us understand how each part of the gait cycle is mapped
onto the signal data. Also, with our understanding of controls and dynamic systems, we can produce a
model to better understand the expected response at each event in the gait cycle.

7 Owen et al., Journal of Prosthetics and Orthotics, 2017
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Figure 4. Ankle and knee angles with respect to the gait cycle. (A) refers to the
comfortable speed and (B) represents faster speeds. Solid lines are experiments
conducted with walking sticks, and dashed lines have no walking sticks.8

The models generated by the engineering fundamentals will help us make decisions on the algorithm
thresholds. It will inform the algorithm on how to identify individual events and when the gait cycle
changes from one stance to the next. This can also be used to assess whether the algorithm is working as
intended. If the algorithm works, the part of the gait cycles it identifies should match the model. The
mapping of the leg and foot motion can also act as a visual aid to check if both the model and algorithm
are accurate.

Finally theoretical analysis can be done using training data from academic research literature. The
training data can be used to validate the model and algorithm. Empirical testing can be done by attaching
the IMU onto a person and walking on a treadmill. The results from the IMUs can be recorded and put
through the algorithm to identify parts of the gait cycle while being visually compared to a video
recording. If the results match what the video recording shows, it would validate the chosen algorithm
and the parameters used.

Design Process
Choosing a design process that fits with our project is an important step to make a successful design.
When choosing our design process, we discussed many factors and criteria that would need to be
included in it. Since our project is more focused on due dates because we are in a class, a stage based
approach was decided to be an important characteristic of the design. We also were not very familiar
with the subject of the project, and so a problem based approach was chosen instead of a solution based
approach. We were unaware of the specific steps that might be required to take during the design
process, so we chose an abstract approach to be the most useful.9 We are interviewing stakeholders who
are knowledgeable in this field and then use that information to create an alpha design. Afterwards, we

9 Pahl, G., et. al., “Engineering Design: A Systemic Approach”, Springer, 2007.
8 Polese et al., Clinical Biomechanics, 2011

Team 15, Page 7



would compare this to our requirements and specifications and then iterate with an updated design. We
would then get feedback from the stakeholders about our updated design. This process met all the
requirements we chose as well as including an iterative approach that will allow us to go back to other
sections if we need to. We looked into many other designs as well to determine if they would be a better
model, but they fell short of some of our requirements.10 11

Benchmarking
Before diving any further into developing solutions and any testing, research was done to understand the
overall problem and what research related to what the team is trying to achieve has already been done.

As specified in the problem definition, an important aspect in the creation of a sensing system is
classifying behavioral states. The reason for the importance of these behavioral states is because an
exoskeleton needs to conform to, assist, and enhance human motion. For an exoskeleton to function
effectively, it needs to augment user motion and not hinder it. Gait allows us to understand how the
human body moves and how we would like an exoskeleton to interact. Gait is a cyclical process that
starts and ends from a single foot’s heel contact. Stride is another word that is widely used in place of
gait. This gait cycle can then be used to determine a person’s walking speed and cadence (how quickly a
full gait cycle can be completed). These values can then be used by the exoskeleton to augment or assist
the gait cycle. This gait cycle can then be broken down further into more categories during the cycle to
allow the exoskeleton to assist more accurately like in Figure 5 below.

Figure 5. Important increments that model how the human gait cycle performs during the gait cycle.12

One type of sensor that has been used to understand this gait cycle are pressure sensors, which includes
resistive, capacitive, and piezoelectric sensors. Figure 6 on the next page depicts how these pressure
sensors measure the pressure caused by the user on their foot as they go through the gait cycle.

12 Neumann, Donald.A., “Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation”, Elsevier Inc., 2017.
11 Ford Motor Company, Design Museum, http://www.crazyseoul.com/DM/FordPack.pdf.
10 Wynn, David, Clarkson, John, “Models of Designing”, University of Cambridge, 2005.
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Figure 6. Pressure sensing map of the user during different events during the gait cycle where HS is heel
strike, FF is foot flat, MSt is midstance, HO is heel off, TO is toe off, IS is initial swing, MSw is mid
swing.13

These pressure distributions can then be used to define every part of the gait cycle and allow the team to
create an algorithm that will predict user movement. However, an issue a foot pressure sensor has is
defining gait in the user’s different states or tasks. Various groups have designed algorithms that are able
to learn what a human’s gait cycle looks like and then understand the transition between the different
tasks.14 These attempts have yielded low success rates to define the transitions and are more successful
at identifying discrete changes. Since the only information that the pressure sensor obtains occurs at
specific moments throughout the gait cycle, it is not continuous and makes creating an algorithm that
will interpret the data in a useful way difficult. Achieving an accurate representation of the user’s
movement through a pressure distribution only is difficult and has not yet been accomplished with a
high success rate.

Another method for sensing a user’s gait cycle that is becoming more common in research labs due to its
usability is using an inertial measurement unit (IMU). An IMU consists of accelerometers, gyroscopes,
and magnetometers. Using many of these components, the IMU can measure angular rate, acceleration,
and magnetic field along three axes. The first two measurements are important to understanding the gait
cycle because it allows us to see the change that the user’s ankle makes as well as accelerations of the
foot during the gait cycle. Using these measurements, we can also create an algorithm that will predict
and augment the user’s movement through the gait cycle. Researchers using this method used
continuous parameterization that enabled the sensor to determine variation within a task and determined
more of the task’s specific features. The IMU continuously learned the phase, the phase rate, the ramp,
and stride length. Using these parameters, the researchers created experimental data plots of the user’s
gait cycle as shown in Figure 7 on the next page.

14 M. R. Tucker, et. al.,“Control strategies for active lower extremity prosthetics and orthotics: a review,” J. neuroengineering and
rehabilitation, vol. 12, no. 1, 2015.

13 Wafai, Linah, et. al., “Identification of Foot Pathologies Based on Plantar Pressure Asymmetry”, College of Engineering and Science,
Victoria University, 2015.
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Figure 7. (A) Image of an IMU attached to heel of foot that can determine the shank
angle ( ) and the foot angle ( ). (B) Model of degree vs phase of both the foot and𝜃

𝑠
𝜃
𝑓

shank.15

Both the pressure sensor and the IMU are useful tools in developing a way to sense user movement and
gait. These methods will both require developing algorithms that will clearly define (discretely or
continuously) different phases in the gait cycle. Pressure sensors have been used extensively for
measuring gait cycles, but struggle when the user changes the gait cycle. IMU’s use a different approach
to determine gait and can be more accurate due to their continuous sensing approach. It will be
important for us to test both these methods and determine which will be best for our purposes of
designing a sensor for M-STARX.

Concept Generation
After doing benchmarking on the current products and research for foot sensors, each member of the
team individually generated their own ideas for the design and then came together to generate new ideas
based off of and organize our cumulative total of ideas. We used divergent thinking in developing these
ideas and focused on thinking outside of the box to maximize the number of concepts. We categorized
our concepts into three sub-sections: sensors, housing, and algorithms. The function decomposition in
Figure 8 summarizes how each component plays into our behavior state classification solution. After the
final step in our generation of concepts, we analyzed what we had come up with. Further information on
all the different concepts that were generated for the parameters, sensors, and housing that were not
mentioned can be found in the appendix.

15 Medrano, Leo Roberto, et. al., “Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely
Uneven Terrain”, IEEE Transactions on Robotics, 2023.
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Figure 8. Functional decomposition of problem statement and potential solution.

Sensor Concepts
Some of the main concepts that were generated for sensors were an IMU, force sensing resistor, step
counter, weight sensor, and acoustic sensor. Each of these sensors would allow us to collect certain types
of features that would then affect how well we could classify a user’s behavioral state.

For our concept idea for IMU’s, we thought that some of the parameters that would prove useful in our
algorithm would be angle of the foot, angle of the shank, displacement, and acceleration. These
parameters can be found throughout the gait cycle which will allow us to get even more data for
classification. The IMU has a gyroscope and an accelerometer which allows us to find these parameters.

For our concept idea for force sensing resistors, we thought that using pressure as parameter for state
classification would be effective. Every time each foot touches the ground, pressure is applied at
different locations which can be measured. Force sensing resistors are pressure sensors and we would
have multiple at different locations to get a pressure map of the foot.

For our concept idea for a step counter, we would use a sensor that would be able to tell when contact is
made by each foot. This would allow us to identify the beginning and end of the gait cycle.

For our concept idea for a weight sensor, we would be able to determine the force that the foot makes
with the ground. This would allow us to determine different stages of the gait cycle based on how much
force is applied by a person on the ground based on their weight.

Finally, for our concept for an acoustic sensor, we would measure the sound that the foot makes as it
touches the ground. In this way, we would classify stages in the gait cycle based on how much sound is
made by the foot at each stage (i.e. running should create a larger sound due to the impact of the foot and
occur more frequently than walking).

Housing Concepts
Developing the housing involved two considerations: placement of the sensor(s) (i.e. ensure the
necessary data for state classification is collected) and increasing the robustness of the system (i.e.
eliminating any unintended movement and protecting the sensor from any damage). Some of the main
concepts that were generated for housing were putting sensors on the bottom of the foot, on the top of
the foot, and on the ankle.

For our concept of having the sensor on the bottom of the foot, since a lot happens with the foot as it
touches the ground, a foot sensor on the bottom of the foot would give us a lot of options for collecting
data.

For our concept of having a foot sensor on top of the foot, we wanted to protect a sensor that we might
use from getting damaged, which putting it on top of the foot would ensure.

Finally, for our concept of putting the foot sensor on the ankle, this would enable us to get data for both
the foot and the leg. This could be useful for getting even more data to help classify the events in the gait
cycle.
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Algorithm Concepts
Some of the main concepts that were generated for algorithms were thresholding, machine learning,
neural network, k–nearest neighbor, and logistic regression. For our concept idea for thresholding, we
would have the algorithm be able to define what the exact parameter values were for each specific
stage/event during the gait cycle. These parameter values would have a certain tolerance assigned to
them at each stage to account for unforeseen fluctuations. Using these defined thresholds, the algorithm
would be able to determine at what stage the user is in. The process the algorithm would undergo for
thresholding is called a decision tree. We would have ‘if’ statements that would check whether the
parameters at an instance of time would fit into different thresholds. Then if certain parameters fit, we
would have the algorithm tell us at what stage of the gait cycle the user was in.

For our concept idea for machine learning, we thought of using a support vector machine. This method
uses some of the same ideas as thresholding, but enables the parameter domains to which it chooses the
classification to be less static. The algorithm is able to adapt/learn where this classification is located in
reality based on its iteration process. This would allow us to get very accurate results.16

For our concept of a neural network, we would develop an algorithm that is able to think like a human
and adapt to changes. This is another machine learning classification method and would allow our
algorithm to be able to comprehend complex data sets.

For our concept of k-nearest neighbors (K-NN), we would compare points that are near each other.
Then, based on a defined allowable distance, it would determine the highest repeatability for each stage
of classification to determine the important events in the gait cycle.

Finally, for our concept for logistic regression, we would develop an algorithm that would be able to
find a linear model for the gait cycle. The algorithm would make a prediction as to what it thinks the
data will do based on previous data and then iterate based on the accuracy of its prediction until it
reaches sufficient accuracies.17

Design Context
Figure 9 on the next page identifies the stakeholders for the project including primary (those directly
affected by our work), secondary (those indirectly affected by our project), and tertiary (those who are
only remotely influenced by the project), and classified them according to the legend.

17 Ghalyan, M F, et. al., “Human Gait Cycle Classification Improvements Using Median and Root Mean Square Filters Based on EMG
Signals”, IOP Conf. Series: Materials Science and Engineering, 2021.

16 Suthaharan, Shan, “Machine Learning Models and Algorithms for Big Data Classification”, Springer, 2016.
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Figure 9. Graphic describing who the primary, secondary and tertiary stakeholders are and color coded
based on what type of stakeholder each one is based upon the legend.

Our resource providers include M-STARX, the University of Michigan (UM), and commercial sensor
suppliers. UM is supplying us with the $400 budget, M-STARX is supplying us with dimensions and
consultation, and commercial sensor suppliers are supplying us with the necessary sensors. Our problem
makers include competitors, regulatory boards, and skeptics. The competitors for our design are other
college exoskeleton teams such as the MSU STARX team. Regulatory boards may oppose our design if
the design is unsafe and don’t meet standards. The only standards we found that would be applicable to
our product pertained to recommended testing procedures for exoskeletons as opposed to their design.
ASTM F3443 − 20 outlines procedures for safely testing the load-bearing capabilities of exoskeletons,
ASTM F3444/F3444M − 20 specifies the standard practice for training users in operating exoskeletons,
and ASTM F3528 − 21 details testing procedures for exoskeletons.18 19 20 While these standards will be
important to evaluating our designs once we have a completed system to test, they do not contain
information of much use in guiding our design at this stage.

Skeptics may oppose our design because they do not believe foot sensors or exoskeletons will ever work
and therefore will oppose the research due to the cost. The supporters of the status quo include trainers
and the healthcare industry. Trainers would prefer not to have to learn how to train people who use
exoskeletons to assist their movement. They would have to learn how exoskeletons work and it would
be easier if they did not have to. The healthcare industry would also prefer to keep their current practices
to make profit rather than allowing people to recover faster and leaving their facilities earlier. Our
complementary organizations are researchers. Professors and other researchers will work with us and are
allied with us to determine how to classify gait cycles. The beneficiaries and customers of our project
are people with disabilities, EMTs, firefighters, and the military. All of these people/organizations would
benefit from our project either in an assistive or augmentative way. One group of influential bystanders
of our project are lawmakers. Lawmakers would be impacted if exoskeletons were made on the
commercial market. Since our project is designed to help exoskeletons achieve this goal, lawmakers
would be impacted as they would have to deal with new laws that will be created for the exoskeletons. It
is important to note as well that some of these stakeholders may overlap into the other classifications.

20 Standard Practice for Load Handling When Using an Exoskeleton, ASTM F3443 − 20.

19 Standard Practice for Training Exoskeleton Users, ASTM F3444/F3444M − 20.

18 Standard Test Method for Exoskeleton Use: Gait, ASTM F3528 − 21.
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We believe that the positive impact of our project can extend to the M-STARX team who will have more
development done toward their exoskeleton, as well as the intended users of said exoskeletons. Beyond
the beneficiaries, we want to ensure that people downstream of our project are not negatively affected by
our design decisions. Those who are training users to operate exoskeletons, for example, should ideally
not be burdened by designs that require special or counterintuitive operating techniques to use.

After considering our stakeholders, their interests, and how they might be affected by our design, we
made a map of some key stakeholders’ inputs to and outputs from our work, shown in Figure 10.

Figure 10. Stakeholder map detailing the main inputs and outputs from our project. The
stakeholders in the green dotted square include the M-STARX team. The colors associated
with the main primary stakeholder, other primary stakeholders, secondary stakeholders, and
tertiary stakeholder are red, green, blue, and yellow consecutively.

We’ve met with a few of these stakeholders already, including M-STARX’s project manager and lead
engineers, as well as Elliot Rouse, a UM professor researching assistive exoskeletons. Professor Rouse
has shared with the team what research on gait classification their lab has already conducted, which has
better guided the direction of this project after reconsidering what is feasible and has already been tried.
From these meetings, we’ve been able to better understand our user requirements and translate them into
specifications, as well as get a better idea of how technologies similar to ours are being implemented in
the status quo and how we might be able to solve a problem as complex as gait identification within the
time and resource constraints of ME 450.

Exoskeleton technology is currently a widely researched area of robotics and assistive devices. As such,
despite the fact that our primary stakeholders are members of the M-STARX team, the development of
our project can have more far reaching implications for exoskeleton research applications.
Commercially available exoskeletons are expensive enough to put them out of reach of most people,
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bringing down the cost of one of their key components may improve their affordability and accessibility.
With many exoskeletal assistive devices on the market being priced from $40,000 to $80,000, we want
to ensure that our project ameliorates the problem instead of entrenching it.21 For instance, current
approaches to gait identification usually use expensive pressure mapping insoles or myography
techniques that track muscle forces.22 These custom insoles have a significant mark-up due to the
customization involved in creating such personalized devices.

Developing a more affordable alternative to these sensor schemes by limiting the scope of our sensor
performance to stay within our cost constraints could create a solution which works for the purposes of
many research labs while driving down development costs. Keeping costs down would allow M-STARX
to buy or manufacture sensors in the future after the lifespan of the sensor has passed. This
cost-conscious approach could also yield benefits that extend beyond research.

The intellectual property the team creates will ultimately be owned by the university for the M-STARX
team. Because we are ourselves a university entity being a team of UM students, we have not yet
encountered any hurdles to our work as a result of intellectual property concerns. Indeed, working
within university organizations has given us the opportunity to reach out to multiple researchers at UM
and obtain valuable technical information to aid our research, like communicating with PhD student
Christopher Nesler about his work in foot pressure sensors. With this context in mind our team does not
believe that intellectual property restrictions will put any barriers in the way of our project.

User Requirements and Engineering Specifications
Meetings with the sponsor enabled the team to develop a list of requirements and targets that the final
solution will need to meet. The user requirements and engineering specifications resulting from these
discussions are summarized in Table 1 below.

Table 1. Problem requirements and quantified specification targets determined after multiple
discussions with the sponsor and research. Accuracy and Low Cost are the most important
according to the sponsor. The Flexibility specifications were found through research.23

23 Neumann, Donald.A., “Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation”, Elsevier Inc., 2017.
22 Prasanth, Hali, et al., “Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review”, National Library of Medicine, 2021.
21 Limakatso, Katleho, “Exoskeletons: Costs and Where to Buy One”, Health News, January 2023.
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As our solution moved more towards a software and algorithm-based approach throughout this project,
the necessary requirements and specifications shifted to those shown below in Table 2. These are more
focused on what was actually considered in our design after eliminating now-irrelevant requirements
like Dimensions and Foot Support. This table also includes a brief description of the validation and
verification results of each requirement after corresponding checks discussed later in the Verification
and Validation Approach section.

Table 2. Final algorithmic solution-oriented requirements and specifications.

User Requirements Priority Engineering Specifications Validation and
Verification Results

Accuracy High 95% accuracy in classifying behavioral
state (standing, walking, and running) 80% accuracy

Low Cost High ≤ $400 total BOM, $17.98 spent
Processing Speed Medium ≤ 1.5 second delay Confirmed
Integration Low Compatible with M-STARX Exoskeleton No hardware issues

The main requirements the sponsor has conveyed to the team to be the most important remains a high
classification accuracy and low cost solution. These are important as high accuracy signifies the solution
is working properly and a low cost ensures the team can recreate it in the future without having to worry
about it affecting the budget. There were two more requirements such as making sure it had a
moderately fast processing speed so it could run in near real-time, and that it can be integrated in the
M-STARX exoskeleton. The processing speed requirement is only of medium importance because we
do not expect to make large calculations and hit computing limits. The integration requirement is just to
make sure that the hardware of the system can actually be used without affecting the rest of the
exoskeleton, and that the software can be used with the rest of the exoskeleton code.

Concept Selection Process
Preliminary gut checking done by the team eliminated some of the generated concepts just based on
personal experience and knowledge (e.g. tracking radioactive decay with a radiation sensor is very
problematic). The curated list of requirements and specifications after discussions with the sponsor and
Professor Rouse made up the criteria the team used to evaluate the remaining concepts. Parameters,
sensors, and housing were each evaluated separately. The weights assigned to each requirement was
determined through team discussion and in consideration of the sponsor’s priorities.

The top scoring concepts from the three categories were then assembled into various combinations to
evaluate full solutions. The system combinations were formed based on the compatibility of the different
components (e.g. using resistance as the parameter will require the FSR (an IMU cannot be used), which
then limits the housing options to an insole or other concepts related to an underlying plate). A portion
of this Pugh chart is shown in Figure 11 on the next page, with the IMU scoring the highest in
combination with linear and angular speed calculations and placing the sensor on the ankle or top of the
foot.
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Figure 11. A portion of the Pugh chart used to evaluate the concepts with final scores for system combinations.

The process for choosing an algorithm was based on a separate evaluation of the pros and cons of each
of the algorithms discussed earlier: thresholding, ML, neural network, K-NN, and logistic regression.
Thresholding will be the easiest to build through experimentation and observation of the IMU signals to
define thresholds for different behavioral states, but it may not be able to classify the same states
between users with very different gaits as the thresholds may not encapsulate the full signal or portions
of the gaits. This would mean the algorithm would have to be calibrated to every person to ensure the
accuracy of the device. ML can resolve this by identifying trends and patterns to automatically build on
itself to handle varieties of data, but it is more difficult to program given our team’s unfamiliarity with
the field and would require much more time.24 The other algorithms are similar in that they are built off
ML, which itself is a very broad umbrella term - neural networks being a high-level unsupervised
version of ML. K-NN is a supervised ML system, so it would be more intuitive and easy to understand
while still being able to evolve on its own. However, it is constrained by the number of variables it can
handle and the need for tagged historical data, which we would need to collect for each behavior state
(Professor Rouse’s research only used walking data).25 Logistic regression is not very appropriate for the
functionality that we desire as, although it is efficient to train and very fast at classifying unknown
records, it is binary and constructs linear boundaries under the assumption of linearity between the
dependent and independent variables.26

Overall, all of these algorithms incorporate thresholding and modeling the system at some level, so we
plan to focus first on the simplest method of thresholding in the essence of time. Once the thresholding
algorithm is completed with relatively accurate results, we will try to enhance the overall processing and
accuracy (especially between different users) by implementing machine learning (potentially a neural
network) if there is enough time before the Design Expo.

26 “Advantages and Disadvantages of Logistic Regression.” GeeksforGeeks, GeeksforGeeks, 10 Jan. 2023.
25 Genesis, “Pros and Cons of K-Nearest Neighbors.” From The GENESIS, 25 Sept. 2018.
24 Prasanna. “Advantages and Disadvantages of Machine Learning: Pros and Cons of Machine Learning, Drawbacks and Benefits.”, 2022.

Team 15, Page 17



Alpha Design and Initial Testing
Moving forward with the IMU system as the selected concept, the team carried out some initial testing
and generated an alpha design. First, we purchased several IMUs to begin collecting data and building
the algorithm and housing. Specifically, the MPU-6050 is a Micro-Electro-Mechanical Systems
(MEMS) with both a 3-axis accelerometer and a 3-axis gyroscope (it also has a built-in temperature
sensor that we will likely not use). This sensor will allow us to measure acceleration, velocity,
orientation, displacement and many other motion-related parameters of a system or object. Figure 12
shows what the sensor looks like as well as its coordinate system. It is low cost and we were able to
easily acquire several for future testing where we have two IMUs on the user’s foot or if any are
damaged during the process.

Figure 12. The acquired IMU (MPU-6050) is very low cost and easily available. The accelerometer and
gyroscope can detect in three dimensions - as shown in the right diagram.27 28

We determined that the simplest way to acquire the data from the sensor was through Arduino. The work
space provided to us from the ME Department has the necessary hardware available - including an
Arduino Uno, breadboards, and jump wires. Figure 13 below shows the setup we used for initial testing.
Tape was used so that we could quickly piece together the IMU and breadboard holding the IMU as a
single unit and then attach the entire system to one of our team member’s pant legs. The Arduino board
was also connected to a laptop that was pulled along as the user walked. We plan to implement the
algorithm and power connections of our sensing system into the backpack of the M-STARX exoskeleton

Figure 13. Hardware setup used for initial testing. The IMU was connected to the Arduino with a breadboard and
jump cables for better stability as the cables did not have a robust connection to the IMU pins.

28 Last Minute Engineers, “In-Depth: Interface MPU6050 Accelerometer & Gyroscope Sensor with Arduino.”, 2022
27 Nasir,“Introduction to MPU6050.”, The Engineering Projects, 2019.
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All of the acquired IMU signals as the user walks on level ground was displayed using the Arduino
Serial Plotter in almost real time (with only a delay of 5 ms). Figure 14 is an annotated version of a
snapshot of the raw signal output from Arduino. Focusing on the signal with the most obvious trend, the
angular velocity in the z-direction, gz (pitch), corresponds accurately to the angular change of the user’s
ankle as they walk. Following the coordinate system of the IMU, gz increases positively as the ankle
leans forward and then rotates negatively for a longer period of time as the step is taken. It then
increases again and plateaus as the foot is planted after the step (flat-foot). The signal repeats
immediately as the user continues walking. The acceleration in the x- and y-directions, ax and ay, were
also identified to follow this same pattern - although with less obvious changes in amplitude. The other
four parameters will likely not be used for now as the acceleration in the z-direction, az, and angular
velocity in the x- and y-directions, gx (roll) and gy (yaw), provide information on the side-to-side
movement of the foot and we want to focus on forward movement in the beginning stages of our
algorithm. These three could become useful when trying to identify leaning or other behavior states we
are not covering. Temperature, temp, is not needed in general because we only care about movement in
this design (one of the parameters eliminated during concept generation).

Figure 14. Angular velocity in the z-direction has a signal that clearly indicates the trend of walking.

To further enhance the accuracy of our algorithm, we are also working on adding motion tracking to the
videos we have recorded of walking with the IMU to get accurate angular and directional changes to
better identify our thresholds. We will also need to manufacture a more robust housing piece to better
capture the user’s movement and eliminate noise. Figure 15 on the next page is a CAD model of our
initial design for the system. The plan is to place the IMU and Arduino board in a protective housing
that will be then strapped on to the user’s ankle. We hope to replicate this at the front of the foot as well
for the system to be able to classify behavioral states even more accurately.
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Figure 15. Housing for the Arduino board and IMU that will be attached to the user with a strap.

Our CAD model in Figure 15 shows our initial design concept for the housing. We intend to have straps
attaching an IMU to the top of the foot/shoe as well as an IMU attached to the heel. The next section
discusses in more detail the reasoning behind this design and why we believe it will be a better design
than just one IMU.

Engineering Analysis
To test our system and algorithm, we conducted experiments using the following process. We attached
the IMU to the ankle of a user and collected data of acceleration along the x, y, and z axis while they
were walking, jogging, and running. The roll, pitch and yaw of the system was also recorded during
these tests. We tested on treadmill with 0 incline to ensure this would be a basis for our algorithm’s
threshold values. We considered incline to be outside the scope of this project. After collecting data from
those behavioral states, we then began to collect data as a person was transitioning from one behavioral
state to another. This allowed us to better understand and refine the threshold values to determine when a
state changes from one to another. Each of these experiments were recorded with a camera to provide
visual verification if our system’s output matched the behavioral state in the video.

Problem Domain Analysis
Designing a sensing and classification system for an exoskeleton is a complex and challenging problem.
There are multiple factors that play into how well the system interacts with the rest of the exoskeleton
and user. By far and large, the main issue when developing a sensing and classification system is that it
needs to accurately understand what the user is doing at the moment. It needs to correctly classify the
behavioral state 95% of the time. Assessing the engineering specification of accuracy is difficult because
we may not always understand why the behavioral state was incorrectly classified. There are multiple
inputs that the algorithm uses to identify the correct state so when improving the accuracy, we would
need to investigate each individual input.

To meet the accuracy specification, we are using a thresholding algorithm to determine the person’s gait
and the behavioral state. The algorithm will depend on a large amount of data to fine tune and adjust the
thresholds. These adjustments to the thresholds will increase the accuracy in determining each event in
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the stances of the gait. Some critical decisions to consider for the future will be how close to real time
the algorithm will operate. Even though the data may be inputted in real time, the algorithm will need to
aggregate data points together to be able to produce an accurate result.

When solving this, the main technical skills used would be working with Arduino and Matlab code.
Experience and previous knowledge in designing a thresholding algorithm will be important in
developing the actual code. Currently the knowledge we lack is in determining the factors that go into
classifying the behavioral state. However, this will be supplemented by literature from previous
researchers who worked on gait analysis and predictive algorithms for exoskeletons as we continue our
own research. This will also be the case for when we want to build further on the algorithm by
developing it into a neural network that can self-learn and be more accurate for our sponsors to use.

By the end of the semester, the goal of this project is to produce a wearable device with IMU sensors
that will transmit data and output the current action of the person (standing, walking, jogging, or
running). The physical prototype will be developed during the second half of the semester to be used for
recording data.

Final Design
Moving forward with the alpha design, Figure 16 shows both the CAD and build models of the sensor
housing hardware. Foam, a zip tie, and a buckled belt strap are used to keep the IMU stable while
strapped to the user as they move.

Figure 16. (Left) Sensor housing CAD model. (Right) Full housing setup to stabilize IMU and strap to the user.

Figure 17 on the next page shows the entire housing and electrical components of the sensing system.
The IMU pins were soldered to the wires of an insulated cable that connects to the Arduino. In addition,
heat shrink and electrical tape were used to eliminate any exposed wire. This cable is long enough to
lead from the sensing system on the user’s ankle to the M-STARX exoskeleton backpack that houses all
of their controls. For now, we have built two sensing setups, but we have been only using one as it has
proven to provide enough data for state classification so far. Further testing with the second unit on the
user’s toe will be carried out to determine if there is any significant benefit.

Team 15, Page 21



Figure 17. Full sensing system including IMU, housing, and Arduino for data acquisition to be processed by
algorithm.

The full setup strapped onto the user and connected to a laptop can be seen in Figure 18. This was the
setup used for testing as the team still needs to integrate the system with the M-STARX exoskeleton. A
diagram of the IMU orientation when strapped to the user is also provided.

Figure 18. (Left) Data collection setup. (Right) Coordinate system of IMU sensor in relation to the user.

The yellow markers seen in Figure 18 were used for motion capture analysis in Kinovea software. This
analysis collects kinematic data on speed that could be used to further define our behavioral states. We
are focusing on general gait classification instead of transition phases or specific events within a gait, so
the motion capture video is currently being used for demonstration purposes only. This generalization of
the gaits also applies to the data collected from the IMU. As seen in Figure 19 on the next page, when
comparing the raw signals from standing, walking, and jogging against each other, the angular velocity
in the y-direction provides the most distinguishing pattern between the three gaits.
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Figure 19. Side-by-side comparison of raw standing, walking, and jogging signals from IMU.
Data from y-directional angular velocity provides the clearest signal for distinguishing between
gaits.

Zooming more into the y-directional angular velocity of a walking signal in Figure 20, the stride can be
broken down into the two phases of swing and stance as described in Figures 5 and 6. Four events
labeled as Heel Off, Swing, Heel Down, and Flat Foot are also included. This repeating pattern is also
reflected in the jogging and running signals the team has collected.
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Figure 20. Gait phase and event breakdown of y-directional angular velocity signal
collected from walking displays the repeating and easily-identifiable pattern in the human
stride.

This sinusoidal pattern of the y-direction gyroscope presented an opportunity for a simple method for
developing our algorithm: differentiating gait based on the frequency of the signal. We decided to
perform Fourier decompositions on the incoming signals, which converts the signal from the time
domain to the frequency domain and identifies a periodic signal’s sinusoidal components as shown in
Figure 21 below. Like the motion capture data, the full accelerometer and gyroscope data collected
could be potentially used to further narrow down on specific gait events, transition phases, and other
behavioral states, but, for the purposes of this project and what the sponsor wants, we will focus on this
Fourier method.

Figure 21. Fourier Decomposition Conceptual Diagram29

Our Fourier decomposition uses a fast Fourier transform (FFT) method to determine both the magnitude
and frequency of the highest amplitude sinusoid comprising the signal. An FFT is run every time a
datapoint is collected from the IMU. While some of our initial algorithm prototypes only ran an FFT on
a prerecorded subset of data across its entire recording interval, we realized that this method would be
infeasible for real-time gait identification. Our new algorithm architecture uses data framing to decide
the intervals on which to run FFTs, allowing gait identification in real-time. When the algorithm starts,
an FFT is run on the first incoming data point from the IMU. When the second data point is recorded, an
FFT is run on the first two data points. When the third datapoint is received, an FFT is run on the first
three data points, so on and so forth until a transition between gaits is detected.

When a transition between gaits is detected, the algorithm starts from scratch and only runs FFTs on data
points received after the transition. This cycle continues, effectively containing Fourier transforms to
dynamically sized frames of data in order to identify data as it is received in real-time. In the Simulink
model shown in Figure 22 on the next page, the “read” block determines the data framing based on
inputs from the “transition” block which identifies gait transitions, then sends this data to the “fourier”

29 Wormus, Robert, and Wayne Staab. “Fourier Analysis and Its Role in Hearing Aids.” Hearing Health & Technology Matters, HHTM, 24
Feb. 2022.
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block which runs the FFT on the appropriate data frame. From this FFT, maximum magnitude and
dominant frequency data are extracted and inputted to a stateflow model in which the heart of our
algorithm lies.

Figure 22. The Simulink model bins the incoming IMU data to process it and direct it to the stateflow
model.

Our stateflow model in Figure 23 compares incoming data from the FFT to fixed thresholds for
maximum magnitude and dominant frequency to determine the gait between standing, walking, jogging,
and running. In the figure below, the plot on the right shows the algorithm running on a user who is
walking. Notice that because of the data framing, the algorithm initially identifies the user to be
standing, outputting a zero. It takes five data points, a delay of half a second, for the algorithm to take
enough data to correctly identify that the user is walking and output a one. This test was used as an
initial verification of our algorithmic architecture’s ability to identify gait in real time.

Figure 23. (Left) Stateflow model of the different behavioral states. (Right) Identification delay plot.

Verification and Validation Approach
For us to verify that our algorithm meets the 95% accuracy level of correctly classifying gait cycles, we
plan to test the algorithm on multiple people of varying heights. This will ensure that the algorithm
thresholds can either be easily modified based on user height or can fit any user height. We may not

Team 15, Page 25



have enough time to test more than a few people with the time left for the project, so our algorithm may
be confined to users of similar heights. We have training data to help us narrow down what our
thresholds might be. This data does not encompass all types of people who might use the exoskeleton,
but will allow our algorithm to be much more accurate.

To further determine the accuracy of our algorithm, we plan to use specific speeds where the user makes
the transitions between walking and running. Then by running on a treadmill at those specific speeds, we
can check to see if our algorithm is accurately classifying the gait cycles. The transition speed between
walking to jogging/running is approximately 2 m/s.30 We plan to test this transition speed and test if it
can distinguish between variations of the speed to determine walking and jogging/running.

Using a treadmill, we collected data from members of this project team. This was done to mark the
speeds during the verification test and standardize the conditions. Each trial consisted of collecting 4
minutes of data. The first trial began with a standing start then moving at set speeds that increased from
0.9-2.7 m/s with 30 seconds at each set speed. Then the speeds were decreased back down to standing at
the same rate. The second trial was collected with randomized speeds at every interval. This data
collection was performed by all members on the team to then be validated versus the actual behavioral
states based on timestamps.

Figure 24 below shows an example of the verification process. We collected the y gyroscope signal data
which is compared to the current speed of the treadmill and the behavioral state predicted by the
algorithm. We found the raw data corresponded well with the raw signal. The speed changes were found
through manual time-stamping and had some slight variable alignment.

Figure 24. Plot of raw gyroscope data for y axis (top graph), the speed of the treadmill over time (middle
graph), and the behavioral state prediction from the algorithm (bottom graph).

In Figure 25 on the next page, we then compare the state prediction versus the actual state. The
evaluated algorithm accuracy is found by comparing predicted state and actual state. In the graph, the
gold data represents the algorithm’s prediction and the blue represents the actual state. The accuracy of

30 Rotstein et al., “Preferred Transition Speed between Walking and Running: Effects of Training Status”, American College of Sports
Medicine, 2005.
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the algorithm was determined to be 80.0%, including during transitions between states. This value
shows how well the algorithm can accurately predict a user’s movement through different gait patterns.
This value may be inaccurate due to the linear ramps that were assumed with the speed causing variable
alignment.

Figure 25. Plot of the algorithm state prediction compared to the actual states determined by speed and
time stamped data.

For the verification of our algorithm, we confirmed with our sponsor whether or not our design solved
the problem they had.

Discussion and Design Critiques
Overall, our solution proved to be successful in determining the behavior state of our tested users. There
is definitely more work that can be done to improve the accuracy of the algorithm as we did not achieve
the goal of a 95% accuracy - discussed later in the Recommendations and Future Work section. Table 3
below summarizes the strengths and weaknesses of our final solution.

Table 3. The final solutions accomplished the basic goals and needs of the team and our sponsor, but more
work needs to be done to improve on the overall accuracy of the state identification capability.

The main challenge in this project was collecting data and fine tuning the thresholding algorithm. This
was a challenge because it required that the data collected is in a controlled environment and has
multiple people to test the algorithm against multiple different gaits. By testing against a lot of different
walking patterns, we could validate whether our algorithm is accurate enough to meet the specifications.
Since people have different heights and maybe even the way they walk, this would cause the frequency
we determine for each of them to vary. People can get exhausted which would also cause a change in the
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frequency we would determine for the gait cycle. This would cause the algorithm to have to adjust to fit
these different frequencies and may cause the algorithm to not be able to determine walking, jogging,
running, etc. We planned to have multiple people test the design to determine if this will be a problem
and hopefully adjust our algorithm to fit people of varying gaits. In the end, we only tested on our team
members, so the sample size used is relatively small.

A challenge the team determined was distinguishing between jogging and running. Jogging and running
look very similar and are even too difficult to distinguish mathematically.31 It may not be possible for us
to distinguish them without a pressure sensor or other methods.32 We believe adding another IMU to the
other foot may allow us to calculate the flight phase or the phase where both feet are in the air. Since the
flight phase is different between jogging and running, we would be able to distinguish between jogging
and running.

The final problem we had to overcome was having wires that were too long. Since our sponsor would
like to integrate our design into their exoskeleton, they will need wires that can extend from the IMU on
the foot to the backpack controller they have on the user. Since the wire will have to be long to reach the
backpack, this can cause the signal from the IMU to deteriorate and give us sporadic data. To fix this
problem, we are very limited. We can add buffers along the wire to ensure the signal integrity, but this
method is very time consuming and does not always work. Signal integrity may be a problem with the
arduino and we could fix it by streaming the arduino through a separate board that has better signal
control. So far, we have not experienced this issue, but it is possible that it is an underlying cause of our
lowered accuracy that needs to be looked into.

As we were not able to connect our solution to the working M-STARX exoskeleton and controls system
to check compatibility and long-term usage, we have to hand it over to the M-STARX team to test and
fix since it is a problem that takes more time than we had investigate

Reflection
Our design impacts the world in many different ways. One of these impacts that our design makes is
with public health, safety, and welfare. Our design will be handed off to the M-STARX University of
Michigan project team who are making exoskeletons to augment a user’s movement. With our design
integrating into their exoskeleton, they will be able to more efficiently accomplish this task. Further
development and research of exoskeletons can not only help augment people, but will help assist users
as well. This will allow the public to use these exoskeletons in everyday life. It will help police officers,
the military, the elderly, and many more.

Another way our design will impact the world is in the global marketplace. Since our design will make
exoskeletons more efficient, other designs will not be able to compete. This will affect the marketplace
since one exoskeleton will outclass the others. It will not affect prices too much though since our design
is so inexpensive.

32 Mann et al., “Comparative electromyography of the lower extremity in jogging, running, and sprinting”, American Journal of Sports
Medicine, 1986.

31 Everett et al., “Lower Limb Position During Treadmill Jogging and Fast Running in Microgravity”, Aviation, Space, and Environmental
Medicine, 2009.
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The social and economic impacts of our design associated with manufacture, use, and/or disposal of the
design will be minimal. Since our design is so simple to manufacture in terms of price, material, and
labor, it will not impact either the environment or economy that much. The impact due to the disposal of
our design will also be minimal due to the same reasons.

A tool we used to characterize the potential societal impacts of our design was our stakeholder map
(Figure 10). We determined that our stakeholders would have societal impacts from our design are the
military, EMTs, disabled, and injured users. All of these groups would be either assisted or augmented
by our design and exoskeletons in general.

Some of the differences and similarities between the team members that influenced the approaches the
team took throughout the project were from the differences in backgrounds. Some of these background
differences could be caused due to the differences in classes taken, cultural differences, or even
personality differences. This may have caused different individuals on our team to have different ideas
or ways to approach problems. The final design may have been impacted by these differences.

An ethical consideration our team faced was what our design may be used for or by after we hand it off
to the M-STARX project team. We questioned whether it would be our fault if someone was injured due
to incorrect implementation of our design. We hope our design will be useful and those that integrate our
design will be ethical in their decision making.

Recommendations and Future Work
Although the sensing system and algorithm are working and can be implemented immediately into the
M-STARX exoskeleton, there can be future work done to this project to improve the accuracy and
provide more information about the user’s movement. Accuracy should be the main focus of future work
as this project did not reach the intended goal of 95% accuracy. In the discussion, we saw that the
accuracy fell short because of two main issues, transition times and blipping. On a system level
approach, we could consider using machine learning to better identify when a person switches states
which would reduce the transition times. If it can better understand the transition states, it can also
potentially reduce the amount of blipping. An alternative method to improving accuracy would be to
increase the sampling rate of the IMU and collect more data from a larger sample size. This method
would create more data points closer to real time for the algorithm to process so the transition times
would be shorter. Also, more data from a larger sample size can set better thresholds for the system
which should help reduce blipping.

Another problem we foresaw during prototyping was IMU drift. This causes the values of the data to be
inaccurate as the gyroscope may still move even when the foot has stopped. This causes a problem if we
would like our algorithm to be extremely accurate and to define different phases of the gait cycle. A
potential solution to this problem would be a correction value or a filter to adjust the values due to the
drift. We did not end up seeing too much of a problem because of this, but a filter could still help clean
up the data to make it easier for the algorithm to differentiate noisy signals from the various states.

Other recommendations we considered for this project would be to design built-in exoskeleton hardware
for the sensing system. This would make it easier to put all the hardware components in one central
location and have everything integrated. There could also be more work done into identifying gait events
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in the user. By using multiple IMU’s or considering other data collected, you could potentially identify
important gait events like heel strike or toe off. It may not be important now, but in the future it may be
beneficial to control algorithms if there was more information available.

Conclusions
Exoskeletons are complex technologies that have applications in many industries, but require
information and data to help it assist and emulate human motion. In this project, we aimed to develop a
sensing system and algorithm to determine the exoskeleton user’s behavioral state of standing, walking,
or running. We were able to create a 3D printed housing to hold the IMU and collect signals about a
person’s foot’s acceleration and angular velocity data in the x, y, and z directions. The y gyroscope data
best resembled the cyclic pattern of the gait cycle so we used that for our algorithm processing. We
applied a fourier decomposition on the signal to determine the dominant magnitude and frequency for
which we could then set thresholds based on testing and training data. This algorithm was then verified
through testing using a treadmill and then compared to time stamped video data. It was only able to
achieve 80% accuracy despite a goal of 95% accuracy. Although it falls short of the goal, there are some
recommendations that we considered that can help increase the accuracy and reduce the errors we saw.
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Appendix A. Tables of Additional Concepts Generated
Table A1. All other parameter ideas from concept generation not mentioned in the paper.

Concept Description

Pressure/Force Measure the pressure or force that each part of the foot causes with
contact with the ground

Resistance Measure the resistance of a wire or other device that changes
resistance as the foot makes contact

Muscle/Brain Signal Measure the muscle signals to determine how the body/leg is moving

Center of Mass Measure the center of mass of the body to develop a map over time of
the center of mass of the user

Displacement/Velocity/
Acceleration

Measure the kinematic values of the foot as it moves through the gait
cycle (x/z directions)

Magnetic Field Measure the magnetic field that each of the feet make when having
magnets placed on them

Light Use light to determine where the feet are located

Moment Measure the moment that the foot is making

Balance Measure where the balance of the user is to determine how they are
shifting from foot to foot

Tension Measure how much tension is caused by something external to the
user or the muscle

Angle Measure the angle changes that the foot/leg makes (foot/shank)

Temperature Measure the temperature distribution the feet make with the ground
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Table A2. All other sensor ideas from concept generation not mentioned in the paper.

Concept Description

Spring System Measure the displacement in the springs when they are attached to the
foot

Leveler Use an object that moves as the person moves and can determine the
angle by how much it moves

Roller Blades Instead of walking, use roller blades and can measure the
rotational/angular speeds of the wheels

Visual/Camera Use camera and motion tracking system to determine gait

Walking on Gel Able to sense when gel is displaced and can find out the length of the
gait cycle

Capacitive Pressure sensor that measures the voltage across the capacitive plates
as they are compressed by the feet

Piezoelectric Pressure sensor that measure the current created by a material that
creates a current when compressed

Rope-Pulley System
Rope connected to each foot that is connected to pulley that tries to
pull in the rope and then can measure the force as the legs pull the
rope

Temperature/Heat Measure a heat map of the foot as it presses on the ground/shoe

Radioactive Material Radioactive material on the foot and can measure the gamma rays

Manual Just manually push a button to determine when each foot makes
contact with the ground

LIDAR Use lasers on foot to measure the distance the feet are from the ground
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Table A3. All other housing ideas from concept generation not mentioned in the paper.

Concept Description

Manual Adjustment Have the user of the exo manually adjust using an adjustable strap,
shoe, etc.

Elastic Form Fit Have a material that is elastic and will stretch and come back to fit
around users foot

Insole Have something to be inserted into shoe

Metal Plate Simple metal plates that the user can fit their feet on

Acrylic Box A box that will fit around the foot and contain all the necessary
sensors

Multiple Plate Sizes Variations of plates to fit different feet sizes

Springs Springs that will house the feet and allow

Solar Powered Solar panels that will charge the sensors/batteries

Wind Powered Fans that will charge the sensors/batteries

Gaps/Hollow Hollow plate to minimize weight

Extend Exo to Foot Sensors attached to extended exo to the foot

Flexible/Hinge Flexible housing using hinge for the toes or some other type to allow
for easier maneuverability
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Appendix B. Build Design Bill of Materials
Many of the supplies used in this project were sourced from the University, so estimated costs and
potential sources are listed as well in Table B1 below. See the notes and Appendix C for more details on
quantities of each component used in the design. Many of the parts can be purchased from other sources
than the ones listed, so this BOM provides more of an idea of how our team accomplished our
prototyping than a more formal and exhaustive list. The total actually spent was $17.98. The estimated
cost of the entire project was $127.03.

Table B1. Bill of Materials of all components used in final design of sensing system.

Name Cost Source Notes
0.5" Polyethylene Foam $7.99 University / Amazon Cut to shape
3x Hi-Letgo MPU-6050 $9.99 Amazon Used only one in solution

4" Zip Ties $6.99 University / Amazon Optional (only need one)
6 Yd Buckles & Strap $11.99 Amazon Cut to length
2.0 A/B USB Cable $7.60 University / Arduino For uploading code and testing

Arduino Uno $27.60 University / Arduino Can switch to a newer model
Cable Pins $7.88 University / Amazon Need four connectors

Ethernet Cable $16.99 University / Amazon At least 4 wires and 4 ft long
FDM 3D Print $30.00 University (LBME) Cost roughly approximated
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Appendix C. Manufacturing/Fabrication Plan
These are instructions on how to manufacture the hardware components of the sensing system solution
broken into two main parts: preparing the sensor and the housing of the sensor. Note that some of the
figures and overall descriptions have already been shown/discussed in earlier sections of the report (e.g.
the Alpha Design and Initial Testing and Final Design sections).

Sensor Setup
Ideally, locate a long insulated cable (ours was about 4 ft long, should go from user’s ankle to their mid
back without issue) with four internal wires with male pin connectors (see Figure C1) attached. The pins
should fit into an Arduino pin without risk of coming loose. If such a cable cannot be found, one can be
made using an ethernet cable, exposing the wires (cutting off any extra wires if necessary), and crimping
on pin connectors using wire strippers and pliers.

Figure C1.Male pin connectors for reference.

The IMU used in this project is the Hi-Letgo MPU-6050 as seen in Figure C2. If not already done,
solder the short end of the bent pins to the sensor. The other end of the cable from earlier should have
four exposed wires that need to be soldered on the IMU VCC, Ground (GND), Serial Clock (SCL), and
Serial Data (SDA) pins. Make sure to use heat shrink to fully secure the connection and for safety.

Figure C2. (Left) MPU-6050 IMU with attached pins. (Right) Pinout diagram.
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Housing
We 3D printed the CAD model seen in Figure C3 (contact sponsor for file) using the UltiMaker S5. The
part was printed with polylactic acid (PLA), and the supports with polyvinyl alcohol (PVA).

Figure C3. Sensor housing CAD model.

Foam (and optionally a zip tie) was used to keep the sensor in place when placed into the housing. The
sensor should be oriented such that it follows the ankle component shown in Figure C4. A belt strap was
looped through the designated slot in the housing. The length is customizable to a user’s ankle.

Figure C4. Sensor orientation and placement in the housing and on the user.

Finally, the sensor can be connected to the Arduino board: VCC → 5V, GND→ GND, SCL → A5, and
SDA→ A4. Electrical tape was used to further secure the wire connections as seen in Figure C5.

Figure C5. Complete sensing system hardware.
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