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 Abstract 

 
Metal additive manufacturing (AM) involves a suite of processes where raw metal 

materials are joined or solidified under computer control to create three-dimensional objects. The 

AM process facilitates streamlined product development cycles, maximizes the potential of 

computer-aided design (CAD) to foster designers' creativity, and enables the fabrication of 

intricate, on-demand parts. AM has found applications in diverse fields, ranging from biomedical 

to aerospace, and even the oil and gas industry. However, its complexity and the array of process 

factors involved pose significant challenges in comprehensively understanding and optimizing 

microstructure evolution, a critical aspect for quality control and performance enhancement. 

Despite the considerable research efforts dedicated to studying the intricate AM process-

microstructure relationship, such as grain structures, porosity, and phase, numerous questions 

about microstructural development persist. This is primarily due to the complexity of the AM 

process and the variety of metal species involved. Key questions include: (1) How do dynamic 

thermal conditions influence microstructural development, particularly in the context of complex 

physics during AM of multi-phase metals (e.g., Ti-6Al-4V)? (2) How does the potential flow-

driven compositional redistribution affect the microstructural development of bimetals? (3) How 

can we employ cost-effective and swift data-driven modeling to expedite the establishment of 

complex AM process-microstructure relationships for microstructure optimization and quality 

control? 



 

xv 

To effectively address these questions, we employed a physics-based framework that 

includes experimental fabrication and validation, physics-based additive manufacturing modeling, 

and data-driven modeling to deepen our understanding of microstructural development. This 

research provides insights into microstructural evolution during AM of single metals and bimetals 

and proposes a cost-effective and efficient method for microstructural optimization through melt 

pool control. Specifically, we thoroughly examined the gradient structure featured with different 

phases in AM-fabricated Ti-6Al-4V, and systematically explored and validated the location-

dependent phase evolution. Additionally, we achieved a quantitative understanding of the 

bimetallic structures of SS316L and IN625 by directed energy deposition (DED). Finally, we 

established a data-driven modeling framework with experimental data inputs from the National 

Institute of Standards and Technology (NIST) for rapid extrapolative melt pool prediction for 

unbuilt parts. This study presents a physics-based framework allowing for a comprehensive 

understanding of microstructural evolution, with the goal of achieving microstructure optimization 

and quality control of AM products. 
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Chapter 1: Introduction 

1.1 Metal additive manufacturing  

 
Figure 1-1: Various industrial  applications of AM (Images downloaded from: http://www.all3dp.com, 
http://www.michelinmedia.com, http://luxcreo.com, http://wyss.harvard.edu, https://all3dp.com ). 

Additive Manufacturing (AM), commonly referred to as 3D printing, represents a paradigm 

shift in manufacturing technologies. Through an array of processes, raw materials are fused or 

joined, generally layer by layer, under computer control to fabricate complex three-dimensional 

objects. Unlike traditional manufacturing methods such as casting, forging, and machining, which 

are often limited by mold or tool shapes, AM harnesses the power of Computer-Aided Design 

(CAD) to foster design innovation and facilitate the fabrication of complex and custom 

components. AM is renowned for its efficiency, reduced waste, and ability to expedite product 

development cycles. Its applications are vast and diverse, spanning industries such as biomedical, 

aerospace, and oil and gas, as shown in Figure 1-1. Various techniques, such as Fused Deposition 

Modeling (FDM) for polymers, Stereolithography (SLA) for resins, and Inkjet Printing for 

ceramics, have been developed to cater to different materials. In metal additive manufacturing, 

high-energy beams such as lasers and electron beams are employed to provide the concentrated 

heat necessary for establishing metallurgical bonds between metal powders or wire with high 

https://all3dp.com/
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melting points, with the process typically conducted in an inert atmosphere to prevent oxidation 

and contamination. 

 
Figure 1-2: Schematic of the (a) powder bed fusion system (PBF) and (b) direct energy deposition system (DED).  

In metal additive manufacturing, Directed Energy Deposition (DED) ) [1][2][3][4][5] and 

Powder Bed Fusion (PBF) [6][7][8][9][10] stand as the two predominant techniques. Both share 

the common approach of using an energy source to partially melt raw materials, building objects 

layer by layer. However, their differences are rooted in the positioning of raw materials and their 

consequent strengths and ideal applications. DED, as depicted in Figure 1-2b, operates with the 

feedstock moving in sync with the heat source. This method is particularly efficient for quickly 

fabricating large components. Notably, DED can employ multiple materials within a single build, 

which is advantageous for creating functionally graded materials (FGMs) [11][12][13][14][15] 

and is also ideal for repair work or adding material to pre-existing components [16][17]. However, 

DED tends to sacrifice resolution and surface finish due to its focus on scale and speed. In contrast, 

PBF is known for its precision. In this technique, as shown in Figure 1-2a, the feedstock is usually 

a powder that is laid out on a build platform. The heat source then selectively melts the powder as 

per the design. This precision allows PBF to produce parts with intricate details and a high-quality 

surface finish. Nonetheless, PBF is more time-consuming and typically less efficient in material 

usage compared to DED. Therefore, DED is best suited for applications demanding large-scale, 
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rapid production, and the integration of multiple materials, such as FGMs. PBF, on the other hand, 

is the go-to technique for producing highly detailed, high-resolution parts where surface quality is 

essential. 

1.2 Complex AM processes and challenges 

While AM offers unparalleled advantages over traditional metal manufacturing methods, 

the interaction between the energy beam and feedstocks, coupled with layer stacking, introduces 

complexities into the metallurgical processes and underlying physics. Figure 1-3 illustrates the 

intricate physics surrounding the melt pool, including convection, fluid flow, radiation, balling, 

powder denudation, cyclic heating and remelting, super-fast cooling, and non-equilibrium 

solidification, among others. These phenomena are uncommon in traditional casting but are 

intrinsic to metal AM processes. Furthermore, AM processes are influenced by numerous 

parameters (up to 130 [18]), including energy input, scanning speed, hatch distance, and laser beam 

shape, as well as material properties (e.g., powder distribution, thermal conductivity) and 

characteristics of AM machines. These factors collectively contribute to the complexity of AM 

process control. 

 

Figure 1-3: Complicated physics around the melt pool [19].  
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The investigation of process-structure linkages is crucial for refining processes and 

optimizing microstructures, which, in turn, is vital for bolstering quality control and ultimately 

enhancing the performance of the final products. Nevertheless, the intricacy of the AM process, as 

previously analyzed, poses considerable challenges in comprehending the interplay between the 

AM process and microstructure. This intricacy renders the exploration of microstructure evolution 

and optimization via the AM process notably more arduous compared to conventional 

manufacturing methods like casting and sintering. These challenges have the potential to stymie 

advancements in performance and curtail the widespread utilization of AM technologies. However, 

surmounting these challenges is imperative for fully harnessing the capabilities that AM 

technologies offer. 

1.2.1 Motivation 

Great efforts have been devoted to studying complex AM process-microstructure relations 

for common metals such as Ni-, Fe-, Al-, Ti-based alloys. The investigation of microstructures 

primarily encompasses (1) grain structures, (2) porosity, and (3) phase transformation. Extensive 

studies concerning grain structures have revealed that the columnar microstructures prevalent in 

AM-fabricated parts can be attributed to the layer-by-layer construction way, rapid cooling rates, 

and steep thermal gradients. Porosity is another well-studied aspect, where the formation of pores 

is often associated with insufficient energy input, gas entrapment during the AM process, and 

inconsistent powder characteristics, such as particle size and distribution. However, when it comes 

to phase transformation, the research is not as extensive. The complexity of the AM process, 

particularly the layer-wise stacking method, results in position-dependent thermal conditions. This 

raises critical questions: How do these unique thermal conditions affect phase transformation? 

Especially how to understand and validate the phase evolution pathways in the context of complex 
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physics (e.g., location-dependent thermal history and fast cooling rates) during the AM process 

involving multi-phase metals like Ti-6Al-4V? 

Furthermore, AM techniques inherently excel at fabricating bimetallic structures, a domain 

where process-microstructure relationships remain ambiguous due to the dynamic variations in 

spatiotemporal composition throughout the AM process. Bimetallic structures, which enable 

location-specific properties, are prevalently found in functional materials, component repair, and 

welding joints. As a result, numerous bimetallic structures have been explored through AM 

techniques, particularly DED, but the emphasis has predominantly been on understanding and 

mitigating crack formation at the interfaces. The main reason is that the intricate interplay of 

compositions in bimetallic structures can often give rise to new brittle phases and facilitate crack 

initiation. Notably, the fluid convection within melt pools during the AM process tends to 

encourage a redistribution of spatially dependent compositions. This creates a novel mixing zone 

at the interface, which is distinct from the two parent materials and is a phenomenon that would 

not occur with a single metal due to its uniform composition. This would further raise the second 

question that is rarely mentioned in existing studies: how does the potential flow-driven 

compositional redistribution affect the microstructure evolution at the bimetal interface during AM 

process? 

Finally, the traditional approaches of employing experimental studies and physical 

modeling to analyze microstructure evolution in the multifaceted AM processes are not only costly 

but also time-consuming due to the trial-and-error nature of experimentation and extensive 

physical modeling phases. Recently, the advent of smart manufacturing has brought data-driven 

modeling to the forefront, positioning it as an efficient, cost-effective alternative with extensive 

applicability within the manufacturing sector. Data-driven modeling, by leveraging the power of 
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data analytics, offers a more streamlined approach to understanding and optimizing complex 

manufacturing processes. This emergence of data-driven modeling in the manufacturing arena 

gives rise to the third pertinent question of this study: How can the cost-effective and expedited 

capabilities of data-driven modeling be harnessed to accelerate the elucidation and establishment 

of complex AM process-microstructure relationships, ultimately contributing to more efficient 

microstructure optimization and quality control? 

1.2.2 Thesis Objectives 

This study aims to provide insight into relationships between complex AM processes and 

microstructures for single metals and bimetallic alloys. Through experiments, physical modeling, 

and data-driven modeling, this study would finally contribute toward the extended understanding 

of microstructural evolution and optimization during AM metallic materials. The specific 

objectives of this study, as frAM-ed by the three previously stated questions, are as follows: 

1. Identify phase evolution paths for as-built AM-ed Ti-6Al-4V featured with multiple phases 

using Finite Element Method (FEM)-based thermal simulation and Gleeble-simulator 

designed experiments. 

2. Quantitatively investigate grain nucleation and growth in AM-fabricated bimetallic 

structures composed of SS316L and IN625 using Computational Fluid Dynamics (CFD) 

and Phase Field Method (PFM) simulations. 

3. Utilize machine learning to enhance the prediction of melt pool characteristics during the 

additive manufacturing of IN625. 

1.3 Outline of this dissertation 

❖ Chapter 1 introduces metal additive manufacturing, its complexities, the motivations, and 

objectives of this study. 
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❖ Chapter 2 provides a literature review on microstructure problems in AM-fabricated single 

metals and bimetallic structures and identifies the questions in current research.  

❖ Chapter 3 investigates phase transformation pathways in AM-fabricated Ti-6Al-4V by 

combining experiments with the Gleeble simulator and FEM thermal simulation. 

❖ Chapter 4 studies the grain nucleation and growth of AM-ed bimetal structures composed 

of SS316L and IN625 using CFD and PFM simulations.  

❖ Chapter 5 focuses on enhancing melt pool prediction through machine learning, including 

input feature design and data denoising.  

❖ Chapter 6 provides conclusions and future work.  
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Chapter 2: Literature review 

2.1 Additive manufacturing process effect on single metal microstructures 

2.1.1 Grain structure  

In additive manufacturing (AM) of metallic alloys, two types of grain structures, columnar 

and equiaxed, typically form and vary in location [20]. Columnar grains predominantly form in 

the main body, as illustrated in Figure 2-1, a consequence of epitaxial growth encouraged by high 

thermal gradients and slower cooling rates [20]. This epitaxial growth is sustained in the layer-by-

layer deposition process, where melt-back of portions or the entirety of the previously deposited 

layer is essential and can be achieved through substantial energy input by increasing power levels 

[21][22]. During epitaxial growth, competitive grain growth can also occur. The columnar grains, 

favoring orientations such as <100> for fcc and bcc metals and <1010> for hcp metals, align with 

the maximum temperature gradient, thus outcompeting and crowding out other orientations 

[20][23]. Conversely, equiaxed grains primarily develop in the initial layers in contact with the 

substrate, and also in the top layers. The formation of equiaxed grains in the initial layers is a 

consequence of rapid heat dissipation into the substrate, leading to lower thermal gradients and 

higher solidification rates [24]. Additionally, partially melted powder can act as grain nuclei, 

further promoting the formation of equiaxed grains, especially in the top layers [25]. 
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Figure 2-1: EBSD maps of β-grain structures for AM-ed Ti6Al4V [26], Inconel 625 [27] and  AlSi10Mg [28]. 

To mitigate the anisotropic properties associated with columnar grain structures, columnar 

to equiaxed transition (CET) are normally encouraged. CET is closely related to the thermal 

gradient (G) and the growth interface velocity (R), both of which can be deftly manipulated 

through AM processes to modify the thermal conditions conducive to this transition. In this context, 

G-R maps have become an important tool in analyzing and understanding the regions where 

columnar-to-equiaxed transitions occur [29][30][31]. An effective proven strategy for inducing 

CET within the melt pool involves spot melting, such as point exposure scanning or the use of 

pulsed lasers [32], enabling maintaining a low G/R ratio [24][33]. Additionally, fine-tuning of 

parameters such as laser power, preheating temperature, and scanning speed is advised to further 

optimize the process [34]. Beyond these strategies, there are innovative methods to modulate the 

melt pool and enhance CET, which include (1) employing high-intensity ultrasound, where 

cavitation stirs the melt and activates nuclei [35], and (2) introducing foreign nucleant particles to 

augment the nucleation rate [36].  

2.1.2 Porosity 

Stacking manufacturing way decides that AM products are susceptible to the high risk of 

porosity. As shown in Figure 2-2, the porosity observed can be classified into two distinct 

categories based on their shape: spherical pores and irregular pores. Spherical pores are typically 

the result of gases becoming trapped during the process, attributed to factors such as moisture, 
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Marangoni convection, or material evaporation, and are primarily located within molten tracks 

[37]. On the other hand, irregular pores are largely the result of incomplete fusion or melting and 

insufficient hatching distances, and are predominantly situated at the boundaries of molten tracks, 

as depicted in Figure 2-2a. 

 
Figure 2-2: Visual examples of various types of pores in AM-produced metals: (a) lack-of-fusion pores in AM-ed 
Ti6Al4V [38] and (b) in IN 718 [39], (c) keyhole pores in AM-ed Ti6Al4V, gas pores in (d) AM-ed Ti6Al4V [38] 
and in (e) IN 718 [39], and  (f) hydrogen porosity in AM-ed AlSi10Mg [40]. 

It has been widely proved that the formation of pores is intricately linked to various aspects 

of the AM process, encompassing processing parameters, feedstock properties, and the ambient 

atmosphere within the chamber [41]. Elevated energy input, for instance through higher laser 

power, can induce metal evaporation, vapor cavities, and the entrapment of vapor within the melt 

pool, resulting in keyhole porosity (Figure 2-2c). Conversely, inadequate energy input can lead to 

incomplete melting of the powder, culminating in lack-of-fusion porosity. Striking the right 

balance in processing parameters is thus critical in mitigating pore formation [42]. Implementing 

preheating and drying procedures can lower moisture content, which is especially pertinent in 

decreasing hydrogen-related porosity (Figure 2-2f) in aluminum-based products [41]. Additionally, 

maintaining a stringent inert atmosphere is crucial in minimizing oxidation, ensuring proper 
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wetting, and promoting bonding between powder particles [22]. Furthermore, post-processing 

techniques such as hot isostatic pressing (HIP) are commonly employed to reduce residual porosity 

[43].  

2.1.3 Phase 

Phase research of AM-ed metallic products is quite complex in that (1) the diversity of 

metals being printed, many of which are multi-component and/or multi-phase in nature, (2) the 

dynamic thermal conditions experienced during the AM process, including rapid melting, 

solidification, and layer-wise thermal histories, and (3) different post-heat treatments employed. 

In particular, dynamic thermal conditions introduce complexities in phase evolution compared to 

traditionally cast counterparts. This complexity in phase diversity is especially pronounced in 

multi-phase alloys such as Ti-based and Fe-based alloys in comparison to others like Ni-based 

alloys. In this section, three common alloys used in AM - Ti-6Al-4V, SS316L, and IN625 - are 

reviewed as representatives for examining phase studies. 

2.1.3.1 Ti-6Al-4V 

Ti-6Al-4V, often referred to as TC4, is a prevalent titanium alloy notable for its exceptional 

fatigue behavior, strength-to-weight ratio, toughness, corrosion resistance, and biocompatibility, 

making it suitable for aerospace and medical applications [44]. As depicted in the phase diagram 

of Figure 2-3a, during cooling, the body-centered-cubic (BCC) beta (β) phase transforms into a 

hexagonal-close-packed (HCP) alpha (α) phase beyond the β transus point (Tbeta). However, the 

alpha phase can further evolve into diffusion-controlled α, and massive (αm) and martensitic (α′) 

phases depending on cooling rates as shown in Figure 2-3b, which represents a continuous cooling 

transformation (CCT) diagram. Table 2-1 summarizes the typical transformation products that 

arise at different cooling rates when cooling Ti-6Al-4V from Tbeta, which is also instrumental in 



 

12 

phase studies for AM-produced Ti-6Al-4V. Corresponding morphologies are illustrated in Figure 

2-4. 

 
Figure 2-3: (a) Phase diagram of the titanium alloys [45], and (b) Schematic continuous cooling diagram for Ti–
6Al–4V β-solution treated at 1050°C for 30 min [46]. 

Table 2-1 Characteristics of the products cooling form Beta phase [46][47]. 

Condition  
number 

Cooling 
Rate (℃/s) 

Transformation 
products Morphologies 

1 >410 Martensitic α′ Orthogonal α′ plate 
2 25~410 Massive αm  Blocky α 

3 < 25 Diffusion controlled α 
Sideplates along boundaries 

Colony morphology 
Basketweave morphology 
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Figure 2-4: The typical Optical micrographs of various cooling products [46] 

During the AM process, feedstock powders of Ti-6Al-4V are rapidly melted into the β 

phase to form melt pools, which undergo cyclical, extremely rapid cooling and heating due to 

consecutive layer deposition. The dominant phase, generally observed as martensitic α' due to the 

inherently high cooling rates (~105 K/s) in small, localized melt pools, is displayed in Figure 2-5a 

[44][48][49][50][51][52]. To achieve the desired α+β phase products with well-rounded 

mechanical properties, AM processes, including focal offset distance and energy density 

adjustments [53], and selective laser melting (SLM) processing routes [54] are optimized for the 

in-situ transformation of martensite into lamellar α+β phases (see Figure 2-5b). Additionally, post-

heat treatments can facilitate the formation of α+β [48][55] and a novel phase combination of α+α′ 

[56][57], as shown in Figure 2-5c. Other mixed phases are obtained in as-built samples like α′ and 

α+β [58], and α′ , αm, and α+β [59].   
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Figure 2-5: (a) SEM images of various α′ phases in as-built Ti-6Al-4V [51], (b) finer lamellar α+β phases through 
in-situ martensite decomposition [53], and (c) α+α′ phases through heat treatment [57] 

2.1.3.2 SS316L 

316 stainless steel (SS316L) is an important member of the austenitic stainless steel family, 

valued for its excellent weldability, machinability, and corrosion resistance, making it widely used 

in chemical, pharmaceutical, and food industries [60][61]. Unlike Ti-6Al-4V, martensitic phases 

are rarely observed in as-built SS316L, even at high cooling rates during the AM process, due to 

the high content of austenite stabilizers such as Ni and Cr [62][63] and low Ms temperature 

(normally below room temperature [64][65]). Generally, only the face-centered cubic (FCC) 

austenite (γ) phase is observed, as confirmed by X-ray diffraction (XRD) studies  [61][62][66][67], 

as shown in Figure 2-6a. Occasionally, trace amounts of ferrite (δ) phases with body-centered 

cubic (BCC) structures are detected [61][68]. Figure 2-6b illustrates that the phase composition of 

as-built 316L is predominantly austenite, with ferrite content less than 0.1%, which is below the 

XRD detection limit [61]. High-resolution TEM-EDX analysis reveals a high degree of chemical 

homogeneity in as-built 316L samples, with no evidence of micro- or nano-segregation [69]. In 

addition, participants like Si- and Mn-oxides form and distribute randomly in the samples [69].  
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Figure 2-6: (a) XRD patterns of the SS316L precursor powder and the as-built SS316L [67] and (b) EBSD phase 
fraction map of a selected area in as-built SS316L (red: ferrite; green: austenite) [68]. 

2.1.3.3 IN625 

In contrast to Ti-6Al-4V, IN625 primarily exhibits a face-centered cubic (FCC) structure 

within the Ni-Cr matrix and incorporates multiple elements such as Nb, Mo, Fe, Mn, and Si for 

solution strengthening. The alloy's mechanical properties are related to the precipitation of fine 

intermetallic phases (γ”[Ni3Nb]) and carbides (MC, M6C, and M23C6) during annealing at 

temperatures ranging from 550 to 850°C over an extended period [70]. The alloy performs well in 

terms of corrosion resistance, fatigue, and mechanical strength at high temperatures, making it 

ideal for high-temperature and high-pressure applications such as in aerospace and nuclear 

industries [71].  

As shown in Figure 2-7a, the AM process tends to result in elemental segregation, 

particularly of Nb and Mo, during the printing of IN625 due to the rapid cooling rates. This can 

lead to the formation of undesired phases. n particular, the brittle Laves phase, denoted as (Ni, Cr, 

Fe)2(Nb, Mo, Ti), can form interdentally due to the rapid cooling rates, as shown in Figure 2-7b. 

The formation of the Laves phase consumes matrix strengthening elements such as Nb and Mo, 

inhibiting the formation of γ’(Ni3Al(Ti)) and γ” (Ni3Nb) [70]. This can soften the matrix and 
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adversely affect mechanical properties [71][72]. Post-heat treatments are often employed to 

homogenize elemental segregation [73] and facilitate the dissolution of the Laves phase [70]. This 

may lead to the precipitation of carbides [71][74] (as seen in Figure 2-7c) and δ-phase [75] (as 

seen in Figure 2-7d). 

 
Figure 2-7: (a) Elemental X-ray maps of as-built IN625 sample [73], (b) SEM images of as-built IN625 to show the 
Laves phase [76], (c) SEM images of solution treated IN625 (1050 °C for 2 h) to NbC and (c) Microstructure of 
AM-ed IN625 after heat treatment of 1 h at 870 °C to show δ-phase [75]. 

2.1.4 Question 1 to be Addressed  

As reviewed in section 2.1, there has been substantial research and progress in 

understanding and controlling grain structures and porosity in additively manufactured (AM) 

metals. However, phase transformation, especially under the complex thermal conditions inherent 

in AM, has not garnered as much attention. The layer-by-layer fabrication process in AM leads to 

position-dependent thermal histories, and consequently, it is possible for different layers to 

experience different thermal treatments. This complexity poses a significant challenge in 

predicting and controlling microstructural evolution, which is also the reason why some cases 

show position-dependent phases. Thus, the question that arises is: How can the phase evolution 
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pathways be understood and validated, particularly in light of the complex, location-dependent 

thermal histories and rapid cooling rates in AM? Further research is required to decipher the 

interactions between these thermal conditions and phase transformations, ultimately aiming to 

facilitate the tailoring of microstructures to optimize the properties of the final product, such as in 

the case of Ti-6Al-4V. (e.g., Ti-6Al-4V). 

2.2 Additive manufacturing process effect on bimetal microstructures 

Bimetallic structures mainly feature utilization of two or more different materials for a 

layer-wise build-up, widely existing in functionally graded materials (FGM) and dissimilar 

material joints. This unique structure enables offering user-definable and spatial position-

dependent properties, thus meeting some special applications, such as nuclear plant and aerospace 

components [77], repair [16], and welding [78].  

Additive manufacturing (AM) techniques, particularly Direct Energy Deposition (DED), 

have been pivotal in streamlining the exploration and fabrication of bimetal structures. Examples 

include combinations like Ti-6Al-4V/Invar 36 [11], Ti-6Al-4V/304L [12], 304L/Invar 36 [13], 

IN718/copper alloy [79], and SS316/SS430 [80]. During the DED process, localized, successive, 

and diminutive melt pools are generated with high-power-density beams (e.g., laser and electron 

beams) and powder/wire feeding systems equipped with multiple nozzles moving coaxially. As a 

result, the spatial change of different materials and their contents are easily achievable via the 

continuous solidification of melt pools containing varying components, thus allowing the layer-

by-layer formation of various bimetallic structures even in one object. Thus, the DED method is 

inherently suitable for building bimetal structures compared to conventional fabrication methods 

such as sintering [81]. 
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Similar to dissimilar welding, a critical challenge in bimetallic structures is the 

susceptibility to cracking at the interface, which is often attributed to (1) the mismatch of thermal 

properties and immiscibility of constituent materials, and (2) the formation of detrimental phases. 

In a study attempting to construct a bimetallic structure of IN718 and Ti64, three build strategies 

were explored, including direct deposition, compositional gradation, and the use of an intermediate 

bond layer [82]. The results show that delamination occurs when directly depositing IN718 on 

Ti64 mainly due to the first reason. The second strategy also results in crack propagation and 

complete de-bonding at the region of 40–60 wt% IN718 due to the brittle intermetallic phase. 

However, employing vanadium carbide mixed with parent alloys as an intermediate layer proved 

successful in bonding the two immiscible alloys.  

Actually, the compositional gradation at the interface is usually created to avoid direct 

contact of two metallic materials, like most FGMs, to mitigate the properties mismatch. However, 

cracks and detrimental phases are still observed near the interface. For example, Fe-Ti 

intermetallics and σ-FeV phase are considered to account for the crack at the transition from 25 vol% 

Ti-6Al-4V/75 vol% V to 25 vol% SS304L/75 vol% V and 25% SS304L/75% V to 50% SS304L/50% 

V [12], while a secondary phase of (Mo, Nb)C was identified as the cause of crack development 

near the 82 wt% SS304L/18 wt% IN625 region in another study [14]. Intermetallic phases (FeTi, 

Fe2Ti, Ni3Ti, and NiTi2) have been considered why FGM cracked during the AM process. 

2.2.1 Question 2 to be Addressed 

As reviewed above, the research of AM-ed bimetals mainly focuses on the study to avoid 

the formation of detrimental phases and reducing crack susceptibility. However, the grain 

structures that form in the melt pool at the interface have garnered rarely attention. The as-

mentioned complex physic, especially the fluid convection in melt pools, would cause 
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compositional redistribution and generate a different mixing zone from two-parent materials, 

which does not work during the single metal AM due to identical composition distribution 

everywhere in the melt pools. So, this raises an imperative question: How does flow-driven 

compositional redistribution influence microstructure evolution at the bimetal interface, and how 

can this be quantitatively analyzed and understood? Further investigation into this phenomenon is 

necessary to optimize the properties and performance of AM bimetal structures. 

2.3 Optimization of microstructure by controlling melt pool.  

The melt pool, as an important AM process signature, has been proved to play a vital role 

in the microstructure and properties of AM-ed parts [83][84][85][86]. During the AM process, tiny 

melt pools are continuously formed along a computer-designed scan path under the exposure of 

high-density-power beams (e.g., laser beams). At the same time, metallurgic bonding occurs 

between adjacent melt pools in a track-wise (same layer) and layer-wise (different layers) way to 

form the final product. In this way, inappropriate melt pool sizes would provide many 

opportunities for defect generation (e.g., pores) and lead to poor performance. On the one hand, 

the melt pool with a small size would cause insufficient pool overlapping, resulting in incomplete 

melting and thus porosity formation [84][87]. On the other hand, the large melt pools arising from 

high energy inputs are likely subjected to keyhole issues [88], which would also cause excessive 

porosity [89]. These porosities would reduce the properties like tensile strength, fatigue limit, and 

corrosion resistance [90]. In addition, oversized melt pools easily cause much thermal loading to 

adjacent areas, increasing strain aging [91][92] pool. Large melt pools also likely worsen the 

surface quality [93]. Therefore, melt pools enable building a key bridge for the study of the AM 

process-microstructure relation [65]. Enabling control of the melt pool, including the prediction 
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and adjustment, is of great importance to avoid the porosity for microstructure optimization and 

ensure quality control. 

Physics-based modeling is a common approach that can be used to predict melt pools. In 

contrast to very expensive trial-and-error experimental methods, it provides an in-depth and 

quantitative understanding of the various physical phenomena associated with the melt pool (e.g., 

heat transfer and convection). In this case, the prediction of the melt pool at different printing 

conditions can be physic-informed rather than heavily relying on trial-and-error experiments. A 

simulation combining a finite difference method and a combined level set volume of fluid method, 

for example, can easily show that suitably increasing scanning speed could avoid cavity evolution 

and lead to a shallow lens-like melt pool [94]. However, high computational costs have been 

considered to hinder the widespread use of physics-based modeling [95]. For this reason, 

simplifications and assumptions such as using the 2D simulation domain, reducing the number of 

tracks and layers [42][24], and ignoring unimportant physics [96] have been commonly made, 

which, however, may cause significant model discrepancy with AM practice. Therefore, a cost-

saving and reliable alternative for melt pool prediction is urgently needed, and data-driven 

modeling is probably the most promising one so far, as it can provide faster and cheaper 

computation [97]. 

2.3.1 Question 3 to be Addressed 

As reviewed above, data-driven modeling has the potential to fast build the relations 

between AM process and microstructures, facilitated by the melt pool as an intermediary. The 

dimensions of the melt pool, such as its width, length, depth, or area, can be easily quantified. 

Furthermore, these dimensions have been found to be intricately linked with the evolution of 

specific microstructures, including columnar grain structure [98] and porosity [99]. Nevertheless, 
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traditional methods such as regression analysis or curve fitting prove inadequate for capturing the 

intricate physics inherent in the AM process. To achieve a better and highly accurate prediction 

and adjustment of the melt pool, the raised third question of this study is how to build inexpensive 

and fast data-driven modeling, including input design, to figure out the complex AM process-melt 

pool relationships, which then guide the microstructure optimization and quality control? 

2.4 Common Methods used for microstructural development understanding 

2.4.1 Experimental methods 

Extensive experimental research has been undertaken to investigate microstructural 

features. Conventional methods for examining microstructure morphology involve the use of 

optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron 

microscopy (TEM). Electron backscatter diffraction (EBSD) is employed for texture analysis, 

while X-ray diffraction (XRD) is utilized for phase identification. These experimental techniques 

offer valuable insights into the microstructural characteristics of materials processed through AM. 

2.4.2 Physical modeling 

Physical or physics-based modeling is a widely used approach to simulate the evolution of 

microstructures in both time and space during the AM process. The primary models for grain 

structure simulations include phase-field models (PFM) [20][24][100][101], cellular automata 

(CA) models [102][103][104] and Monte Carlo (MC) models [105][106]. In these models, thermal 

data is usually sourced from thermal-finite element simulations or thermal-computational fluid 

dynamics simulations. Phase-field models, in particular, have been employed to study the grain 

structure, porosity [42] and phase transformation [107]. 
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2.4.3 Data-driven modeling 

Data-driven modeling has garnered considerable attention in the AM community, with 

broad applications ranging from uncertainty quantification [108][109], classification [85][110], to 

prediction [111][112]. Researchers like Wang et al. have developed multilevel data-driven 

surrogate models to study uncertainty propagation, from process parameters to mechanical 

properties [113]. These models are capable of replacing intricate multi-physical models, such as 

thermal, grain growth, and elasto-viscoplastic models, to study the general process-structure-

property (PSP) relationship [114]. The growing trend in utilizing various monitors in the AM 

community has made the collection of abundant experimental data easier, furthering experimental 

data-driven modeling development. Mohammad et al. succeeded in using acoustic emission 

monitoring with machine learning for online defect detection [115], while Jamison et al. utilized 

two CCD cameras to obtain 3D-digital image correlation data, further employing a trained Naïve-

Bayes classifier to predict defect likelihood [116]. Among these applications, data-driven 

predictive modeling of melt pool characteristics, such as size, has garnered significant attention. 

Therefore, the study of microstructures in additive manufacturing is facilitated through a variety 

of methods, including experimental, physical modeling, and data-driven modeling. The combined 

use of these methods can lead to deep and comprehensive understanding of microstructural 

development and optimization in AM. 

. 
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Chapter 3: Phase evolution of AM-ed Ti-6Al-4V by a Gleeble and FEM-assisted methods 

3.1 Introduction 

3.1.1 Background 

For the first question, complicatedly position-dependent thermal conditions could 

complicate the microstructure, especially the phase transformation, which is has been proven by 

the diversity of phases, especially for the Ti-6Al-4V through the literature review. Unlike their 

casting counterparts, in which the expected α+β phases could be easily obtained thanks to the 

continuous cooling curve, AM-fabricated Ti-6Al-4V components are subject to complicated non-

equilibrium thermal cycles (TCs); thus, it is hard to directly achieve the α+β phases. To transform 

α′ and αm phases to be α+β phases, we usually resort to post-processing like annealing, which, 

however, would incur an additional cost. Nevertheless, if we well understand the mechanism of 

how TCs impacts phase evolution, it is possible to control the resulting phases in an as-fabricated 

build.  

TCs in AM, which originated from layer-wise printing under non-equilibrium 

thermodynamic conditions, shows two important characteristics, i.e., (1) periodical attenuation and 

(2) location dependence. Specifically, a fast heating rate, a high peak temperature, and a high 

cooling rate are present at the early stage, which are gradually degraded as the subsequent layers 

are deposited [117][118]. Moreover, different positions experience different temperature 

evolutions, i.e., position-dependent TCs. These characteristics have been demonstrated to affect 

the phase transformation at different locations significantly. The periodic attenuation of TCs would 

mainly lead to the gradient size of the α phase. For example, Galarraga et al. have found that α-
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lath thickness varies with distance from the build platform [38]. Kelly et al. also have reported a 

gradient in the individual α-lath thickness between the deposited layers [119]. The location 

dependence of TCs usually results in site-specific phases. Lu et al. [59] found that the bottom of 

the printed part shows an α+β structure, but the top exhibits α′ zone and α′+αm zone. Hence, all 

those experimental facts demonstrate a high possibility of forming an inherent gradient structure 

once using the AM method for building Ti-6Al-4V. However, the corresponding mechanism due 

to the TCs remains unclear. In fact, most researchers are mainly struggling with viably 

experimental methods to obtain the α+β structure. For example, they have adjusted manufacturing 

conditions like focal offset distance, energy density, layer thickness, inter-layer time, and part 

dimension to achieve α+β structure during AM [53][54][120]. Therefore, they are experimental-

oriented and rely on trial-and-error or similar empirical knowledge without taking advantage of 

the role of TCs in the control of resulting phases. This is primarily because real-time monitoring, 

like infrared (IR) cameras [121] is normally cost-intensive, and thermocouples are sometimes 

limited because they are mostly mounted on the substrate [122][123][124].  

Recently, we have experimentally found a gradient structure (~10 mm) composed of α+β, 

α′+αm, and α′ zones along the building direction on the top of AM-ed Ti-6Al-4V, which is different 

from the gradient (mainly in α-lath thickness) studied by Kelly’s [119]. It was also observed by 

Lu et al. [59] but without a comprehensive understanding. So, in this chapter, we aim to uncover 

how TCs affect the phase evolutions and act on this gradient structure formation by taking 

advantage of Gleeble-designed experiments, computational simulation, and thermodynamic 

methods. The gradient structure (~10 mm) is first characterized by optical microscopy, scanning 

electron microscopy, X-ray diffraction, and the Vickers hardness tester. To highlight the impact of 

the TCs, the water-quenched Ti-6Al-4V sample by Gleeble is compared with the AM-ed 



 

25 

counterpart. Then, the relationships between gradient structure, phase evolution, and TCs curves 

from the thermal simulation are systematically built on understanding the mechanisms of the phase 

evolution during AM of Ti-6Al-4V. Furthermore, another two Gleeble-assisted experiments are 

designed to explore the potential phase evolution existing in AM. Lastly, thermodynamic analyses 

are conducted to demonstrate the possible phase transformation.  

3.2 Experimental methods 

3.2.1 Directly laser deposition process of Ti-4Al-4V 

The AM cylinder is built by Optomec LENS 750 with a typical processing condition, 

including a scan speed of 17 mm/s and a laser power of 350 W (more processing details [121]). 

Normally, the layer thickness of directed energy deposition (such as DLD) is 0.3-1 mm, which is 

higher than that of powder bed fusion (PBF) (tens of microns) [125]. Herein, the layer thickness 

is set to 0.508 mm. The obtained top part with approximate Φ 7 × 25 mm in size is shown in Figure 

3-1a.  

3.2.2 Gleeble experiments  

Gleeble 3500D offers an alternative solution to explore the phase evolution that occurs 

during AM Ti-6Al-4V. As a physical simulator [126][127], Gleeble 3500D can be leveraged to 

design experiments, specifically the imitation of the fast heating and cooling processes. Also, 

highly sensitive thermocouples enable us to capture the real-time variation of temperature. 

Therefore, Gleeble has been widely employed to design controlled processing for the investigation 

of phase evolutions [128][129]. One typical example is that Kelly has used Gleeble 1500 to get 

two thermal cycles, in which the slow cooling rates (≤ 10 K/s) are used [130]. To further enhance 

the Gleeble-designed experiments, more than two TCs with an interval time of about several 

seconds and a fast cooling rate can be tailored using Gleeble to mimic the TCs of AM. This allows 
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for a comprehensive study correlating the gradient structure, TCs, and phase evolution during AM 

of Ti-6Al-4V. 

For the Gleeble experiments in this study, as-received Ti-6Al-4V plates purchased from 

Sigma-Aldrich Inc are machined to a small cubic sample (9 × 9 × 9 mm) by a diamond blade to 

ensure fast and uniform heating and cooling process. Hence, the temperature difference between 

the outer surface and the center of Gleeble-treated samples can be ignored. As illustrated in Figure 

3-1b, the cubic sample is sandwiched by graphite electrodes for the current flow. During the 

heating and cooling process, the chamber is full of argon to avoid oxidation. Also, the temperature 

is in-situ monitored by thermocouples that are welded (similar method with [46]) on the surface 

of cubic samples and recorded by the data acquisition system of Gleeble [131] for analyzing the 

cooling rate. There are three kinds of Gleeble-treated samples; (1) water-quenched sample: the 

machined cubic sample is heated up to 1100 °C for 10 minutes, followed by quenching with high-

speed water flow; (2) air-quenched sample: the machined cubic sample is heated up to 1100 °C 

for 10 minutes and then cooled by airflow; (3) TCs-treated sample: the machined cubic sample is 

quickly heated to 1100 °C and then gas quenched using pressurized argon nozzles at a sufficient 

rate to ensure martensitic transformation, followed by 800 °C annealing for a few seconds (more 

processing details [132]). This heating-quenching-fast annealing process, which is equivalent to 

one TC, has been repeated up to four times. The water-quenched sample is compared with the 

DLDed sample (sections 3.4.1 and 3.4.2). The rest of the Gleeble-treated samples are specifically 

analyzed in section 3.2.1 about verifying the possible phase evolution during AM of Ti-6Al-4V.  
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Figure 3-1: (a) The schematic diagram of the LENS machine with DLDed samples, and (b) Gleeble 3500D with a 
cubic sample. 

3.2.3 Characterization of the microstructure and mechanical testing 

The DLDed samples (the top part about 10 mm in height) and Gleeble-treated samples are 

cut to get a fresh cross-section and then ground using Struers Tegrapol-11 Polisher, followed by 

polishing with Buehler VibroMet-2 Polisher. The polished specimens are examined by X-ray 

diffraction (XRD) and then etched with Kroll’s reagent of 2 ml HF, 4 ml HNO3 and 50 ml H2O 

for 25s. Ultrasonic cleaning is performed for optical microscopy (OM) and scanning electron 

microscopy (SEM). Also, a Leco Vickers Microhardness Tester (LM-300AT) is used for 

examining the properties. ImageJ software is used to analyze the size of various phases. 

3.3 Computational method: thermal modelling 

A finite-element-based simulation model based on the element birth and death technique 

[133][134] is applied to investigate the TCs during the DLD process quantitatively. A transient 

temperature distribution T (x,y,z,t) is simulated by solving the following Eq. (3-1) governing heat 

transfer energy balance: 

 𝜌𝜌𝐶𝐶𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛻𝛻 ⋅ (𝑘𝑘𝛻𝛻𝑑𝑑) + 𝑄𝑄(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑑𝑑) (3-1) 



 

28 

where k, ρ, and Cp are conductivity, density, and specific heat, respectively, as listed in 

Table 3-1. The input energy from the laser heat source (Q) [20][135] is calculated using a double 

ellipsoid model as an input in ABAQUS/2018 using a DFLUX subroutine [108], expressed as:   

𝑄𝑄 =
6√3𝑃𝑃𝑃𝑃𝑃𝑃
𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋√𝜋𝜋

𝑒𝑒𝑥𝑥𝑒𝑒 �−3 �
(𝑥𝑥 + 𝑣𝑣𝑑𝑑)2

𝑎𝑎2
+

(𝑦𝑦 + 𝑣𝑣𝑑𝑑)2

𝑎𝑎2
+

(𝑦𝑦 + 𝑣𝑣𝑑𝑑)2

𝑎𝑎2 �� (3-2) 

Here, η and P represent energy absorption efficiency and laser power, respectively. The 

other parameters are tabulated in Table 3-2. Due to a lack of the preheating process [121], the 

initial boundary condition T = Ta= 25 °C (ambient temperature) is set for the substrate and all 

elements. During DLD, heat loss for deposited parts composed of convection and radiation are 

considered [58] for all surfaces that expose in an argon atmosphere, expressed as:  

𝑘𝑘𝛻𝛻𝑑𝑑 = −ℎ ⋅ (𝑑𝑑 − 𝑑𝑑𝑎𝑎) − 𝜎𝜎𝜎𝜎 ⋅ �𝑑𝑑4 − 𝑑𝑑𝑎𝑎4� (3-3) 

where h, ε, and σ are the heat convective coefficient, emissivity, and Stefan-Boltzmann 

constant, respectively. It should be noted that latent heat used for phase transformation is ignored 

[58] due to the negligible contribution compared with the heat source [20]. A relatively higher heat 

convective coefficient (h) compared with that used in PBF [117] is adopted considering the direct 

exposure of deposited parts to the atmosphere of argon flow instead of surrounding by loose 

powders during DLD. The built part is simplified into single-line built geometry to reduce 

computation time and achieve multiply layers depositions [118] and verified with experimental 

results [121] in section 3.1.1. Other simulation parameters are listed in Table 3-2. 

Table 3-1 Coefficients for density, specific heat, and conductivity of Ti-6Al-4V [20][117].  

Material 
properties Unit Symbol Value as a function of temperature (T) 

Specific heat W/(m·K) Cp 531.1+0.1185T+ 1.883 × 10−5T2 −7.921 × 10−9T3 

Conductivity J/(kg·K) k  4.968+4.973 × 10−3T+ 8.044 × 10−6T2 −2.008 × 10−9T3 

Density kg/m3 ρ  4.652 × 103−0.9391T+9.255 × 10−4T2−3.133 × 10−7T3 
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Table 3-2 Processing parameters of the thermal model [20][117].  

Processing parameters  Unit Symbol value 

Laser power W P 350 

Absorption efficiency  η 0.8 

Layer height mm  0.5 

Scanning speed mm/s v 17.0 

Beam diameter  μm a 200.0 

Penetration depth μm b 20.0 

heat convective coefficient W/m2 ·K h 12.0 

Emissivity  ε 0.49 

Stefan-Boltzmann constant W/m2·K4 σ 5.67 × 10−8 

3.4 Results 

3.4.1 Phase and microstructures 

The etched optical microscopy images of the water-quenched sample by Gleeble and the 

gradient structure for the DLDed sample are shown in Figure 3-2e and Figure 3-2b, which are used 

to characterize microstructural defects, grain size, and morphology in a macro size. Very few 

defects are observed in both samples, but the grain (refer to prior β grain herein) size and 

morphology are significantly different. Specifically, the DLDed sample shows two kinds of grain 

structures: (1) columnar structures on the edge side of DLDed samples (right side of Figure 3-2b) 

with about 45 degrees from the building direction (by red cycles about 1mm), and (2) equiaxed 

grains (about 400 μm) in the middle cross-section (left side of Figure 3-2b). For the water-

quenched sample in Gleeble, as shown in Figure 3-2e, equiaxed grains prevail with a size of about 

300 μm. However, before heat treatment, the as-received sample for the Gleeble experiment 
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(Figure 3-2d) shows typical rolled grain structures with elongated small grains. The change of 

grain shape is mainly attributed to a 10-min holding time at 1100 °C, leading to a complete β grain 

structural transformation and subsequent grain growth [44].  

 
Figure 3-2: (a) the schematic of cross-section for DLDed Ti-6Al-4V, and (b) the optical microscopy (OM) 
characterization of the gradient structure in DLDed Ti-6Al-4V, as indicated by red rectangular box in (a). (c) the 
schematic of samples involved in Gleeble: (d) OM characterization of the as-received Ti-6Al-4V for the Gleeble 
experiment, (e) OM characterization of the water-quenched sample in Gleeble, and (f) part of the local amplification 
region of (e). 

To examine the possible phases, the X-ray diffraction pattern collected from the cross-

sections of the gradient structure in the DLDed sample, as shown in Figure 3-2a, compared with 

patterns from that of as-received and water-quenched samples under a velocity of 1 degree/min 
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and a step of 0.02 degree. It can be easily observed that both the gradient structure (blue line) and 

the as-received sample (yellow line) indicate the evident presence of the peak of the β phase. 

However, there is no β phase peak detected by X-ray diffraction for water-quenched samples 

(green line). Hence, the identified β phase only exists in the gradient structure and as-received 

sample. Moreover, such an obvious diffraction peak of the β phase in the gradient structure also 

reveals the existence of the α phase because α and β phases usually appear together to form the 

common α+β structure in Ti-6Al-4V [55]. This structure is easily further confirmed by OM and 

SEM in the following analysis. The as-received sample with the known rolled α+β microstructure 

demonstrates this point due to the same strong β phase peak. For the water-quenched sample, we 

know the sample is cooled from 1100 °C to 400 °C within 0.01s. Therefore, the achieved cooling 

rate of 7000 °C/s indicates a fully martensitic structure (α′) [46] without the detected β phase. 

Moreover, α′ possibly exists in the DLDed sample because the existence of α′ phase leads to a 

wider α/α′ reflection [136] compared with the known α+β phases for the as-received sample. For 

this reason, the water-quenched sample with a pure martensitic structure presents the broadest α/α′ 

reflection. Therefore, the gradient structure in DLDed Ti-6Al-4V is probably composed of α+β+α′. 

 
Figure 3-3: XRD patterns of the cross-section of three different samples. Blue, green and yellow lines corresponding 
to gradient structure in DLDed sample (blue rectangular box in Figure 3-2a), water-quenched sample by Gleeble 
(Figure 3-2e), and the as-received Ti-6Al-4V for Gleeble experiment (Figure 3-2d), separately. 



 

32 

 To locate those possible phases mentioned above and analyze their features in gradient 

structure of DLDed sample, magnified OM and high-resolution SEM images (after etched) from 

each zone (Figure 3-2b) are shown in Figure 3-4 and Figure 3-5 separately. Obviously, the phase 

species and features are different from each other in different zones, especially the morphological 

change at prior β grain boundaries (GBs), which help identify the main phases corresponding to 

each zone. In detail, zone1, about 2.21mm with five deposited layers, is primarily composed of the 

typical α+β structure, including GB-α and lamellar α+β, similar to the structure of Figure 3-5a [46]. 

This structure arises from a diffusion-controlled transformation by slow cooling and annealing 

[48]. The α phase prefers to nucleate at and grow along prior β GBs to form a continuous α layer 

(also called GB-α [137]), indicated by black arrows in Figure 3-4e and 4f. Note that the thickness 

of GB-α is observed to decrease along the Z direction (also observed by Tan et al. [122]), especially 

GB-α in zone2 nearly disappears, pointed by the black arrow in Figure 3-4e. Besides, the gradual 

variation of lamellar α+β structures is captured by SEM images in Figure 3-5f, e, and d. Fine 

lamellar α+β structures (details are shown in Figure 3-5g) are dominant in Figure 3-5d in the top 

section of zone1. The fine lamellar structures are all replaced by large lamellar structures in the 

bottom zone1 (Figure 3-5f), and the captured lamellar structures, as shown in Figure 3-5e, 

demonstrate the transitional process. 

For zone2 about 5.4 mm with 11 layers, indicated by Figure 3-4c, 4d, 5b, and 5c, it can 

preliminarily postulate that αm and needle-like α′ phases without GB-α and α plates are inside prior 

β grains by comparing the similar OM image of Figure 3 [46]. Also, the αm phase can be further 

confirmed and distinguished with the GB allotriomorphic α phase from two aspects through SEM 

images: (1) the location and (2) shape and size. First, the GB allotriomorphic α phases are 

distributed along prior β GBs [130][138]. On the contrary, αm phases include both GB-crossing 
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and non-GB-crossing types, as stated by Lu et al. [59]. Herein, the circled αm phases, as shown in 

Figure 3-5b and 5c, belong to the non-GB-crossing case because there is a lack of discovery of 

prior β GBs adjacent αm phases. The isolated αm phase is surrounded by martensite α′ phases from 

SEM observations. For shape and size, the αm phase is patch-shaped and about dozens of microns 

in size, similar to the discovered αm by SEM [59]. It is different from the discovered GB 

allotriomorphic α phases, which are mostly shown as discontinuous side plates with a width below 

several microns [138]. All these analyses, combined with SEM images, further confirm the 

existence of the αm phase in zone2. 

 
Figure 3-4: optical microscopy (OM) characterization of gradient structure in DLDed Ti-6Al-4V along building 
direction, i.e., (f)~(a): (a)(b) zone3, i.e., α′ zone, (c)(d) zone2, i.e., αm+α′ zone , and (e)(f) zone1, i.e., α+β zone. 
Black arrows indicate GB-α at the prior β grain boundaries, green arrows correspond to the αm near prior β 
boundaries, and red arrows point to the sharp edge without GB-α and αm at prior β boundaries. 
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zone3 is about 1.53 mm composed of three deposited layers. It is featured with a sharp 

prior β GBs (marked by red arrows in Figure 3-4a and 4b) and the martensite needles [139] inside 

the prior β grain. By observing the SEM image of Figure 3-5a, the largest α′ phase pointed by the 

red arrow is called “primary α′ ” across the entire parent β phase, and other finer α′ phases are 

ordinarily parallel or perpendicular to the primary α′ [51]. Therefore, zone3 is a pure martensitic 

structure full of α′ phases similar to that of the water-quenched sample by Gleeble (Figure 3-2f) 

and Figure 3.2 [46].  

 
Figure 3-5: Scanning electron microscopy (SEM) characterization of gradient structure in DLDed Ti-6Al-4V along 
building direction, i.e., (f)~(a): (a) zone3, i.e., α′ zone, (b)(c) zone2, i.e., αm+α′ zone, and (d)(e)(f) zone1, i.e., α+β 
zone. (g) part of the local amplification region of (d). 

    In summary, a graded structure changing from the α+β zone, αm+α′ zone to α′ zone along 

the building direction on the top of the DLDed sample (about 10 mm height) is confirmed. 
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3.4.2 Vickers hardness testing 

To further explore the graded properties, Vickers hardness tests are performed as a function 

of location along the Z or building direction for the DLDed sample, as shown in the left side of 

Figure 3-6, while the testing results of the water-quenched sample by Gleeble are shown on the 

right side. As can be seen, DLDed Ti-6Al-4V shows a continually increasing trend of 

microhardness along the building direction overall, but some fluctuations exist. Specifically, at the 

bottom of the sample, the hardness of a typical α+β lamellar structure in zone1 is about 340~355 

HV, consistent with the testing results [140]. With the decreased size of α layers, the hardness 

verifies an increasing trend [141] for the α+β lamellar structure along the Z direction, which is 

consistent with the increased hardness along the Z direction in zone1. The hardness of the water-

quenched sample by Gleeble is examined by about 390 HV, similar to the top zone of DLDed 

samples with a pure martensitic structure. Note that the hardness on the surface shows a decreased 

trend. 

 
Figure 3-6: Micro-hardness profile measured along the building direction of gradient structure in DLDed Ti-4Al-6V 
(left side) and water-quenched Ti-4Al-6V by Gleeble (right side). 
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3.5 Discussion  

3.5.1 The analyses of phase evolution 

3.5.1.1 Phase transformation pathway of α′ zone 

Firstly, the chosen TCs of the LM (M=12) layer (at the middle point of each layer) are 

plotted and verified with the experimental results, mainly including the peak temperature and the 

cooling rate of the melt pool. Specifically, the simulated peak temperature is about 2201.63 ℃, 

which is coincided with the maximum temperature (~ 2100 to 2500 °C ) measured by the IR 

camera [121]. Also, the simulated cooling rate (23748.23 ℃/s) between the peak temperature and 

the melting temperature indicated by the yellow rectangle in Figure 3-7 is consistent with the 

experimentally measured value (~ 12200 to 38500 °C/s) with a layer thickness of 0.508 mm [121]. 

Note that the cooling rate used for studying phase evolution herein mainly refers to the dT/dt 

between the β transus point (Tbeta) and the martensite-start point (Ms) [118], as shown in the red 

rectangle in Figure 3-7. Here, TCM-N is used to represent the N TC of the LM layer, in which M and 

N count starting from the top layer and the first TC, respectively. Also, multiple TCs are produced 

because the laser beam repeatedly scans over the recording. Therefore, for example, L12, as shown 

in Figure 3-7, corresponds to 12 TCs, i.e., TC12-1, TC12-2, TC12-3 (indicated in the purple rectangle) 

~ TC12-12. It should be noted that although the β transus is set as a condition herein that all phases 

completely transfer to β phase during heating, the temperature slightly below the β transus of 980 

°C still can contribute to incomplete transformation to the β phase. More quantitative discussions 

can refer to [142] and are not involved in this paper. 
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Figure 3-7: The computational TCs, i.e., TC12-1~ TC12-12 of LM (M=12): The cooling rate of the melt pool and 
phase evolution are shown in red rectangular and yellow rectangular, separately. The purple rectangular indicates the 
TC12-3. 

Prior to discussing the phase evolution, some criteria, shown in Table 3-3, should also be 

clarified. In detail, the following principles [118] are followed. 

1. If the cooling rate is above 400 ℃/s, the peak temperature is above Tbeta (980 ℃) and the 

bottom temperature (the lowest temperature in each TC) is below Ms (575 ℃), the 

diffusionless transformation of β → α′ mainly occurs [118].  

2. If the cooling rate is between 25~400 ℃/s, the peak temperature is above Tbeta, and the 

bottom temperature is below Ms, the diffusionless transformation of β → α′ + αm mainly 

occurs [118]. It should be noted that the transformations happen locally, i.e., β → α′ or β 

→ αm occurs at different locations and is highly independent of each other. 

3. If the cooling rate is above 25 ℃/s and the peak temperature is below Tbeta, the metastable 

phases, i.e., α′ and αm, are mainly retained. 

4. If the cooling rate is below 25 ℃/s with the temperature between 400~800 ℃, the 
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diffusion-controlled phase transformation of α′+αm→ α+β [53][59] and the growth of α and 

β phases occur. Note that α′ → α+β or αm→ α+β also happens locally. 

Of course, the heating process possibly results in the slight decomposition of α′ and αm, 

which is not considered due to the short-time heating process (about 0.028~0.4s). Also, the liquid 

phase, formed above the melting point of 1660 ℃, is not discussed in this paper. Besides, the 

diffusionless transformation already partially happened as long as the cooling rate is above 25 ℃/s 

even when the bottom temperature is above Ms. Hence, the non-equilibrium transformation in 

Conditions 1 and 2 is still qualitatively considered herein. 

Table 3-3 Phase evolution criteria. 

Condition number Cooling 
Rate (℃/s) 

Peak 
Temperature 

(℃) 

Bottom 
temperature 

(℃) 

Main Phase 
transformation 

1 >410 >Tbeta < Ms β → α′ 
2 25~410 >Tbeta < Ms β→α′+αm 

3 >25 <Tbeta any retained α′ and αm 

4 <25 400~800 
α′+αm→ α+β 

the growth of α and β 
 

 
    Figure 3-8 presents the computed TCs at center points of the top 3 layers, namely, L1, 

L2, and L3, constituting the α′ zone. For L1, which experiences only one TC, i.e., TC1-1, the phase 

transformation of α+β→β firstly happens when the laser and raw powders travel through the center 

of L1 with the peaking temperature > Tbeta, followed by β→α′ phase transformation at the cooling 

rate of 412 ℃/s that satisfies the condition 1 in Table 3-3. So, the whole phase evolution for L1 is 

α+β→β→α′. For L2, TC2-1 (with the cooling rate of 460 ℃/s) results in the same phase evolution 

of α+β→β→ α′ as that of L1. However, TC2-2 heats the α′ back to β while the laser beam travels 

over L2 for the second time, followed by β→ α′ transformation during the cooling process at the 

cooling rate of 412.4 ℃/s corresponds to condition 1 again. Hence, the phase evolution for L2 is 
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α+β→β→α′→β→α′. For L3, because one more TC (TC3-2) leads to one more →β→α′ 

transformation, L3 goes through the phase evolution of α+β→(β→α′)2 →β→α′, where the 

subscript indicates the number of TCs. One should note that β→α′+αm (condition 2) possibly 

happens in TC3-3 because the cooling rate is just 409.7 ℃/s, resulting in the martensitic zones with 

a little αm (pointed by the red arrow in Figure 3-8b) at the intersection between α′ zone and α′+αm 

zone. In summary, the phase evolution for L1, L2, and L3 is α+β→ (β→ α′) M, where the subscript 

indicates the times of (β→ α′) and M ≤3. This kind of phase evolution is mainly credited to two 

factors, i.e., (1) peak temperature (> Tbeta), and (2) cooling rate (>410 ℃/s). 

 
Figure 3-8: (a) The computed TCs at center points of the top 3 layers. (b) optical image of intersection between α′ 
zone and α′+αm zone. M, and N corresponding to the number of layers and TCs, are numbered starting from the top 
layer and the first TC, respectively. 

3.5.1.2 Phase transformation pathway of α′+αm zone 

Figure 3-9a presents the chosen computed TCs at center points of L4~L12 layers, mainly 

constituting α′+αm zone (Figure 3-9b). Obviously, the peak temperature and the cooling rate both 

decrease with an increase of TC number N, thus leading to a further phase evolution according to 

the criterion listed in Table 3-3. 
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Specifically, for L4 and L6, two factors, namely, peak temperature (> Tbeta) and cooling rate 

(>410 ℃/s) are still satisfied by almost every TC beside the last TC (TCM-M); hence the phase 

evolution is still α+β→(β→α′)M-1 when N≤M-1, i.e., before the last TC. When N=M, the cooling 

rate for TC4-4 and TC6-6 reduces to 400, and 370 ℃/s respectively but the peak temperature is still 

above Tbeta, marked by red cycles, so the final phase transformation for last TC changes to 

→β→α′+αm (condition 2). The whole phase evolution develops into α+β→(β→α′)M-1→β→α′+αm 

(M=4 and 6). For the following layers (M≥7), the phase evolution of α+β→(β→α′) M-1→β→α′+αm 

occurs in normally when N=6 in this paper, indicated by green and blue cycles. When N>6, the 

cooling rate of TCs successively decreases to 25~ 410℃/s, and also the peak temperature decrease 

much to below Tbeta. In that case, the condition 3 is satisfied, thus enabling the produced non-

equilibrium phases, i.e., α′ and αm retained, which will be discussed in 5.2.1. Hence, the overall 

phase evolution for α′+αm becomes α+β→(β→α′)M-K-1→β→α′+αm→ (α′+αm→α′+αm)K, where 

M≥4 and K≥0. Particularly, the slowest cooling rate at TC12-12 is still about 30 ℃/s, indicating the 

retained α′ and αm phases even at TC12-12. Therefore, the β→α′+αm transformation and retained α′ 

and αm lead to the formation of α′+αm zone due to the continuously decreased peak temperature (< 

Tbeta) and cooling rate (25~410 ℃/s).  
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Figure 3-9: The computed TCs at center points of the next 9 layers (L4~L12). Monitoring locations for TCs are at 
the center point of each layer. The αm phase is marked by red arrows. 

3.5.1.3 Phase transformation pathway of α + β zone 

The α+β zone, formed below the α′+αm zone, primarily comes from the decomposition of 

non-equilibrium phases α′ and αm that are the retained α′ and αm phases from the aforementioned 

evolution of →α′+αm→(α′+αm→α′+αm)K. The formation of the α+β zone only when M≥15 means 

that the produced α′ and αm suffer further degraded TCs (N ≥15) featured with two aspects, that is, 

(1) peak temperature (400 ~800 °C), and (2) cooling rate below 25 ℃/s.  

      In terms of the deposition temperature (400 ~800 °C),  Xu et al. have experimentally 

studied that martensitic structures (α′) of AM-ed Ti-6Al-4V prefer to decompose between 400 

~800 °C [53]), leading to a fine lamellar α+β structure. Meanwhile, αm can further transfer to the 

fine α+β structure [59]. Therefore, the discovered fine α+β structures (~1 μm), as shown in Figure 

3-5d, 5e, and 5g, demonstrate the decomposition of all the metastable phase (α′/αm), i.e., α′+αm→ 

α+β. On the other hand, the cooling rate has already reduced to 30 ℃/s of TC12-12, as shown in 

Figure 3-9. Based on the degraded trend [143], the cooling rate of below 25 ℃/s is able to happen 

when M≥15, and thus, condition 4 is satisfied. Hence, the phase evolution becomes α+β→(β→α′) 
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M-K-2→β→α′+αm→(α′+αm →α′+αm)K→α+β. Considering the growth of the formed α and β phase 

with more TCs [48], the whole phase evolution becomes α+β→(β→α′) M-K-L-2→ β→α′+αm 

→(α′+αm →α′+αm) K→ α+β→ (α+β→ α+β) L, in which L (≥0) represents the limited number of 

TCs used for phase growth of α and β phases. The whole location phase evolution for all zones is 

summarized as Figure 3-10. 

 
Figure 3-10: Left side related to the phase evolution for each zone in the gradient structure of DLDed Ti-6Al-4V, 
i.e., α′, α′+αm, α+β zones. M is the number of layers, K and L indicate the times of TCs used for (transformation). 
Right side corresponding to Greeble-quenched counterpart. 

It is also worth noting that some transformations possibly partially happen and are complete 

after several TCs. For example, one TC may not support a full transformation of α′+αm→α+β due 

to the very fast heat and cooling process in one second. Meanwhile, some quantitative details may 

need further updated models [144], and strict verifications, especially the verification of the phase 

transformation process is hard due to the transient transformation process and the difficulty of 

monitoring temperature during AM. Hence, the following sections provide two referable methods 

further to study some involved phase evolutions during AM of Ti-6Al-4V.  
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3.5.2 Phase evolution of αm and α′ 

3.5.2.1 Gleeble designed experiments 

Two phase evolutions involving αm and α′ phases are demonstrated here by specifically 

designed experiments using Gleeble-treated samples, including (1) αm, and α′ phases are obtained 

from the β phase, and (2) αm and α′ can be retained after TCs. For the first one, the air-quenched 

sample by Gleeble is cooled at a rate of 30 °C/s according to the data acquisition system. The 

obtained sample is shown in Figure 3-11a, in which αm is observed near GBs [59], as pointed by 

red arrows. A similar transformation has been reported [46], which concluded that the cooling rate 

between 25 and 410 °C/s could lead to a mixed structure of αm and α′. The cooling rate of this 

range does not support the formation of GB allotriomorphic α [130]. This observation thus 

demonstrates the phase transformation in αm+α′ zone2, shown in Figure 3-4c, d, and Figure 3-5b, 

and c.  

To verify the second phase evolution, i.e., αm and α′ retained after TCs using TCs-treated 

samples. The IQ (Image Quality) maps obtained after each quenching process in one, three, and 

four TCs, are shown in Figure 3-11b, c, and d, respectively. After the first quenching process, the 

α′ phase with untransformed α [132], shown in Figure 3-11b is obtained. However, after three and 

four TCs, the structure is composed of the α′ phase and the patch-shaped αm phase that is distributed 

near the GBs [59][46] (pointed by red arrows in Figure 3-11c and d) without any untransformed 

α. Although the performed TCs by Gleeble is not identical to the TCs of DLD, it still verifies three 

things: (1) suitable TCs can induce the formation of α′ and αm, (2) multiply TCs can lead to a fully 

αm and α′ structure, and (3) non-equilibrium phases, i.e., α′ and αm can be retained after multiply 

TCs. 
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Figure 3-11 The microstructural profiles: (a) the OM image of the etched sample with a cooling rate of 30 °C/s; (b), 
(c) and (d) corresponding to the IQ (Image Quality) maps of the as-received sample got after quenching process in 
one, three and four TCs, individually. Red arrows point to the αm phase. 

3.5.2.2 Thermodynamic analysis 

The thermodynamic approach is an effective way to analyze possible phase transformations 

[145][146]; here, the molar Gibbs free energy of HCP (α′, αm, and α) and BCC (β) phases are 

compared to estimate phase transformations and study the kinetic pathways considering the 

cooling rate. The molar Gibbs free energies of HCP and BCC phases of Ti-6Al-4V, as a function 

of temperature and the atomic fraction of Al and V, are directly taken from the thermodynamic 

database [145].  
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𝐺𝐺𝜑𝜑 = 𝑥𝑥𝐴𝐴𝐴𝐴 ⋅ 𝐺𝐺𝐴𝐴𝐴𝐴
𝜑𝜑 + 𝑥𝑥𝑇𝑇𝑇𝑇 ⋅ 𝐺𝐺𝑇𝑇𝑇𝑇

𝜑𝜑 + 𝑥𝑥𝑉𝑉 ⋅ 𝐺𝐺𝑉𝑉
𝜑𝜑 + 𝑅𝑅𝑑𝑑(𝑥𝑥𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙 𝑥𝑥𝐴𝐴𝐴𝐴 + 𝑥𝑥𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙 𝑥𝑥𝑇𝑇𝑇𝑇 + 𝑥𝑥𝑉𝑉 𝑙𝑙𝑙𝑙 𝑥𝑥𝑉𝑉) 

+𝑥𝑥𝐴𝐴𝐴𝐴 ⋅ 𝑥𝑥𝑇𝑇𝑇𝑇�𝐿𝐿𝐴𝐴𝐴𝐴−𝑇𝑇𝑇𝑇
𝜑𝜑,𝐴𝐴 (𝑥𝑥𝐴𝐴𝐴𝐴 − 𝑥𝑥𝑇𝑇𝑇𝑇)

𝑛𝑛

0

𝐴𝐴

+ 𝑥𝑥𝑇𝑇𝑇𝑇 ⋅ 𝑥𝑥𝑉𝑉�𝐿𝐿𝑇𝑇𝑇𝑇−𝑉𝑉
𝜑𝜑,𝐴𝐴 (𝑥𝑥𝑇𝑇𝑇𝑇 − 𝑥𝑥𝑉𝑉)

𝑛𝑛

0

𝐴𝐴

 

+𝑥𝑥𝐴𝐴𝐴𝐴 ⋅ 𝑥𝑥𝑉𝑉�𝐿𝐿𝐴𝐴𝐴𝐴−𝑉𝑉
𝜑𝜑,𝐴𝐴 (𝑥𝑥𝐴𝐴𝐴𝐴 − 𝑥𝑥𝑉𝑉)

𝑛𝑛

0

+ 𝑥𝑥𝐴𝐴𝐴𝐴 ⋅ 𝑥𝑥𝑇𝑇𝑇𝑇 ⋅ 𝑥𝑥𝑉𝑉�𝐿𝐿𝐴𝐴𝐴𝐴−𝑇𝑇𝑇𝑇−𝑉𝑉
𝜑𝜑,𝑜𝑜

𝑛𝑛

0

 

(3-4) 

where φ represents either the α or the β phase. More details about a similar method are 

adopted by Xiao et al. [147].  

The massive transformation (to form αm) is characterized by composition-invariance and 

interface-controlled kinetics [148], the Gibbs free energy of β (the blue line) and αm (the purple 

line in Figure 3-12) are calculated with the same atomic fraction of (X(Al), X(V)) = (0.1019,0.036) 

that corresponds to 6wt.% Al and 4wt.%V. Another high-temperature HCP structure (α′) from 

martensitic transformation is also a typical diffusionless structure without any compositional 

variation. The main difference for these two transformations is that martensitic transformation is 

achieved by a cooperative movement of atoms (slip or twinning), while the massive reaction occurs 

by nucleation and short-range diffusional jumps across the massive/matrix interface [149]. Hence 

the Gibbs energy of α′ should be similar to αm, and thus α′ can transfer to αm thermodynamically 

with each other in an isothermal condition. Also, the high-temperature β phase has a higher Gibbs 

free energy than that of all HCP phases below a critical temperature of Tc= 976 °C that, close to 

Tbeta. When the temperature is higher than Tc, all the HCP phases tend to transfer to the β phase 

with a lower Gibbs energy. But solidification is a fast process in DLD, and the rapid cooling rate 

was also considered to provide a significant driving force for nucleation and phase transformation 

during cooling [145]. Hence, the Gibbs free energy of HCP structures should be lower (the red line 

in Figure 3-12), and thus the αm and α′ are more easily formed compared with the isothermal 

counterparts. In terms of the thermodynamic difference between α′ and αm phase, the α′ structure 
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has higher energy than the αm product because of the high mismatch and dislocations in the lath, 

while the αm product is mainly at GBs and the mismatch can be partially relaxed near grain 

boundaries, as shown in Figure 3-11a, c, and d. Hence, when considering the contributions of the 

driving force by cooling rate and even the compositional variations with a decreased temperature, 

the α′ phase might transfer to αm (for more details [145]).  

 
Figure 3-12: The Gibbs free energy changes as a function of temperature with different phases. 

3.6 Chapter conclusions 

In this paper, a Gleeble-assisted method was adopted to help study the possible phase 

evolution during AM of Ti-6Al-4V combined with the graded structure obtained on the top of 

DEDed Ti-6Al-4V cylinders. The graded structure of about 10 mm consists of the α+β zone (2.21 

mm), α′+αm zone (5.4mm) to α′ zone (1.53mm) along the building direction. The hardness tests 

show an increasing trend from about 340 to 390 HV. The location-dependent TCs arising from 

continually depositing new layers during AM are emphasized, and it is the main factor that 

contributes to the formation of this graded structure. Based on the graded structure, the phase 

evolutions, including β → α′, β → α′+αm, α′+αm→ α+β, and the growth of α and β phases are 

plotted as a function of the height along AM building direction. Particularly, α′ and αm 
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transformation and retention under TCs are verified by the Gleeble-designed experiments, and the 

possibility of various phase transformations is proved by a thermodynamic method. These research 

methods provide practical ways to study microstructural and phase changes under complicated 

thermal or physical environments. Also, the explored mechanisms of phase evolution are 

applicable to the large and practical AM-ed parts, thus providing insights into engineering phase 

structures of practical components. 
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Chapter 4: Quantitative simulations of grain nucleation and growth at additively 

manufactured bimetallic interfaces of SS316L and IN625 

4.1 Introduction 

4.1.1 Background 

For the second question, the physics of fluid convection in the melt pools would possibly 

change the grain microstructures, especially at the interface of bimetals. During AM bimetals, the 

melt liquid flows would essentially change compositional distribution and generate a different 

mixing zone that different from two-parent materials, which, however, does not work during the 

single metal AM due to identical composition distribution everywhere in the melt pools. So, how 

does the potential flow-driven compositional distribution affect the grain structures at the bimetal 

interface require a deep understanding. 

To experimentally investigate the flow convections, flow tracers and high-energy 

synchrotron micro-radiography techniques have been adopted [150][151]. Aucott et al. have 

pointed out that surface tension effects are considered a dominant driving force for melt pool flow, 

which is highly sensitive to specific elements like sulfur (S), enabling a flow pattern reversion 

[151]. Other driving forces, such as the Marangoni effect, vaporization, hydraulic pressure, 

buoyance force for melt flow, have also been analyzed [152]. Among them, the buoyance force 

and the Marangoni effect account for liquid convection from low-density zone to high-density 

zone and from high-temperature zone to low-temperature zone, respectively. Zhao et al. have 

reported that the fluid flow may lead to increased interface velocity (R) and suppress epitaxial 

growth during printing Co-Cr-Mo alloy [153]. These studies suggest that different 



 

49 

materials/compositions would cause different liquid flow behaviors and likely further affect the 

solidified microstructure evolution. However, most of the as-mentioned modifications and studies 

are limited to the AM-ed single/homogeneous material, and few works have studied the effect of 

fluid convection in the melt pool on the solidification behaviors during AM of bimaterial structures.  

The complex physics of the mass and heat transfer in the melt pool, caused by the fluid 

convection at the bimaterial interface, likely results in distinctive solidification behaviors against 

the AM-ed single material. Recently, Chen et al. have built bimetallic structures of SS316L and 

IN625 by DED. The experimental observations indicate that different deposition sequences lead 

to completely different resultant microstructures (columnar/mixed grains) at the interface; the 

analysis has suggested it is related to flow behaviors, composition redistribution, and liquidus 

temperature [154]. However, most studies of bimetallic structures focus on the crack formation 

[155] and [156]. The underlying mechanisms governing different microstructures in the melt pool 

are still not well uncovered, especially the nucleation and grain growth processes demanding 

further quantitative investigations. It is still a daunting challenge to experimentally decipher either 

the flow behavior-induced composition changes or the composition redistribution-driven 

microstructure evolution process during AM of dissimilar material structures, which necessities 

the adoption of computational simulations. 

The phase-field method (PFM), as a practical simulation tool, has been increasingly applied 

to simulate microstructural evolution during AM process. This is due to its unique advantage in 

accurately describing the diffuse interface without the need to explicitly track the moving interface 

[157]. Lu et al. have developed a PFM to investigate the solidified microstructures for AM-ed Ti-

6Al-4V [100]. Keller et al. have simulated and studied micro-segregation for AM-ed IN625 by 

integrating the finite element method with the CALPHAD method [158]. The PFM has been used 
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to successfully simulate microstructure evolution during the layer-by-layer AM process and 

investigate site-specific microstructures [20] and particle coalescence [42]. In addition, the 

mechanisms governing the columnar to equiaxed transition (CET) of grain structures under 

different AM conditions have been thoroughly studied [24]. These studies show that PFM is 

capable of accomplishing simulations of the microstructural evolution of AM processes, including 

melting/remelting, nucleation, solidification, and grain growth. With the possibility of achieving 

coupling of complex temperature fields and liquidus temperatures, this simulation approach has 

the potential to achieve an effective in-situ investigation of the DED process of bimetallic 

structures, which are currently not achievable experimentally. 

In this study, multi-physics modeling, mainly including a phase-field model and CFD, was 

developed to gain insights into the nucleation and grain growth process of DED bimetallic 

structures through two cases. Case1 is the deposition of IN625 on SS316L, denoted as 

IN625/SS316L, and Case2 is the deposition of SS316L on IN625, denoted as SS316L/IN625. How 

different flow behaviors affect the composition redistribution and the liquidus temperature for the 

two cases was examined first, followed by the analysis of the melt pool features of AM-ed 

bimetallic structures that differ from the AM-ed single material counterparts. Then, the 

temperature field and liquidus temperature information were fed to PFM for predicting the 

nucleation and grain growth process. Predictions of final grain morphologies were compared with 

experimental observations. Finally, the different microstructural evolutions for both cases, 

including nucleation and grain growth, were quantitatively analyzed. 

4.2 The methodology framework  

The developed framework, including multi-physics modeling and experimental validation, 

is shown in Figure 4-1a. The CFD model is employed to study the temperature field (I) and flow 
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behaviors (II) during the AM process. Then the flow patterns (II) are utilized as the input in the 

convection-diffusion simulation to verify the convection effects on compositional redistribution at 

the interface, i.e., mixing zone, as illustrated in Figure 4-1b. Meanwhile, the experimental 

examination by energy dispersive spectroscopy (EDS) is performed to validate the simulation 

results. Note that the mixing zone mainly refers to the specific region where the composition 

distribution is different from that of parent materials/bimaterial (about 60 μm along building 

direction [154]). In principle, the mixing zone is located at the interface, around which composition 

exchanges easily due to the presence of flow convection in the melt pool [159][160]. Three regions, 

i.e., two parent materials (presented as A and B) and the mixing zone at the interface can be 

observed in Figure 4-1b. Such a special configuration is thus called a sandwich structure herein. 

The liquidus temperature of this sandwich structure along building direction, as the input for PFM 

in Figure 4-1a, is obtained from a published paper [154], in which the values of parent material 

herein are 1623.0 K for IN625 and 1698.0 K for SS316L. CALPHAD method has been used to 

calculate the liquidus temperature of the middle mixing zone by using Thermo-Calc software and 

the thermodynamic database (TCFE8 steel/Fe-alloy), allowing for liquidus prediction of the 

location with a known composition distribution and has been adopted [161][162]. Finally, the PFM 

result is validated by comparing the final simulated grain structures with electron back-scattered 

diffraction (EBSD) images. In brief, combined computational and experimental efforts are devoted 

herein for concretely revealing the mechanisms of nucleation and grain growth, as shown in Figure 

4-1. 
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Figure 4-1: A workflow summarizes the framework combined multi-physics modeling and experimental methods to 
compressively carry out the study of nucleation and grain growth at the AM-ed bimetallic interfaces of SS316L and 
IN625. Subfigure (b) shows a sandwich structure of the melt pool considering the flow behaviors, where a mixing 
zone is at the interface. (I) and (II) from the CFD model indicate the temperature field and flow behaviors separately 

4.3 Experimental methods  

The Case1 (IN625/SS316L) and Case2 (SS316L/IN625) structures are additively 

manufactured by alternately depositing eight layers of SS316L and IN625 powders on the SS304L 

substrate using a high-power high-deposition system [154]. The commercial powders of SS316L 

(Sandvik, 45~150 μm in diameter) and IN625 (Carpenter Technology, 120~270 μm in diameter) 

are deposited with a flow rate of 20.5 g/min. Meanwhile, a 2KW laser beam (4 mm spot size) 

coaxially moves with a speed of 25 inches per minute. A simple line scanning pattern is adopted 

with a step-over of 2.5 mm. All the printing processes are done in an inert gas environment to 

avoid oxidation, and other process parameters can be referred to [154]. As shown in Figure 4-2, 

the printed sample with a part build volume of 110 × 10 × 65 mm3 is located at the center of the 
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SS304L substrate. The obtained samples are then sectioned along with the ZY plan, indicated by 

yellow color in Figure 4-2. The following metallographic preparation is carried out by mounting 

the sectioned sample in epoxy and polishing it to 1 μm diamond suspensions. Electrolytic etching 

and vibratory polish are applied to further improve surface finish for microstructural examinations. 

The metallographic samples include microstructures of Case1 and Case2. A scanning electron 

microscope (SEM) equipped with energy dispersive spectroscopy (EDS) is used to obtain the 

elemental composition across the bimetal interface. The EDS results are used to validate the 

predictions of the convection-diffusion simulation, as shown in Figure 4-1. Electron back-scattered 

diffraction (EBSD) analysis is performed to figure out microstructures used to corroborate PFM 

predictions. In addition, ImageJ software is used to analyze the size of different grains 

quantitatively. 

 
Figure 4-2: The schematic of AM-ed sample by directed energy deposition (DED) technique. Z is the building 
direction, Y is the scanning direction, and X is the step-over direction. 

4.4 Computational methods 

In this section, the two-layer single-track deposition is simulated for both cases. 

Specifically, the two cases are directly modeled by depositing IN625 on SS316L (Case1) or 

SS316L on IN625 (Case2) for simplification and computational efficiency while maintaining the 

physical understanding of underlying mechanisms. Note that the model can be easily extended to 

multi-layer depositions by iterative solutions. 



 

54 

4.4.1 Transient temperature field and flow behavior modeling     

In this section, the two-layer single-track deposition is simulated for both cases. 

Specifically, the two cases are directly modeled by depositing IN625 on SS316L (Case1) or 

SS316L on IN625 (Case2) for simplification and computational efficiency while maintaining the 

physical understanding of underlying mechanisms. Note that the model can be easily extended to 

multi-layer depositions by iterative solutions. 

Commercial CFD software, Flow 3D, as employed by Wang and Zou (2019)), is used to 

calculate the heat transfer and flow behaviors during depositing IN625 on SS316L (Case1) and 

SS316L on IN625 (Case2), which are investigated separately. The thermal-fluid dynamics process 

is modeled by simultaneously solving the mass, momentum, and energy conservation equations 

[163], which are listed in Eq. (4-1) through (4-3), respectively. 

 𝜕𝜕𝜌𝜌
𝜕𝜕𝑑𝑑

+ 𝛻𝛻 · (𝜌𝜌𝒖𝒖) = 0 (4-1) 

 𝜕𝜕
𝜕𝜕𝑑𝑑

(𝜌𝜌𝒖𝒖) + 𝛻𝛻 ⋅ (𝜌𝜌𝒖𝒖⊗ 𝒖𝒖) = −𝛻𝛻 ⋅ 𝑒𝑒 + 𝛻𝛻 ⋅ (𝜇𝜇𝛻𝛻𝒖𝒖) − 𝑆𝑆𝑚𝑚 
(4-2) 

 𝜕𝜕
𝜕𝜕𝑑𝑑

(𝜌𝜌𝜌𝜌) + 𝛻𝛻 ⋅ (𝜌𝜌𝒖𝒖𝜌𝜌) = 𝛻𝛻 ⋅ (𝑘𝑘𝛻𝛻𝑑𝑑) − 𝜌𝜌𝒖𝒖𝛻𝛻𝜌𝜌 
(4-3) 

where ρ is the fluid density, t is time, u is the velocity vector, p is pressure, μ is dynamic 

viscosity, T is temperature, and k is thermal conductivity. Sm in Eq. (4-2) is the momentum source 

term driven by multiple forces (e.g., Marangoni force), and the ∇ H in Eq. (4-3) is used to consider 

the latent heat caused by phase change (e.g., solid-liquid transition), detailed in [163].  

Figure 4-3a presents the modeling geometry, whole boundary conditions, and mesh 

configurations. The dimensions, including the bottom rectangle-shape previous layers and top 

partial cylinder-shape deposited layer, are clearly indicated at the cross-section. The width and 

height of the deposition layer are consistent with the experimental observations. Note that such a 
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simplification using the partial cylinder as a deposited layer has been utilized in previous thermal-

mechanical analysis [164][165], in which a general agreement in temperature field and melt pools 

were observed with and without this simplification. The good agreement between CFD-predicted 

melt pool shape and optical microscopy observations in previous research  has demonstrated the 

effectiveness of this CFD model [154]. 

 

Figure 4-3: (a) Geometry model, whole boundary conditions, and mesh configurations for the CFD modeling, where 
h, ε, and σ are the heat convection coefficient, emissivity, and Stefan-Boltzmann constant, respectively. (b) The 
temperature-dependent surface tension of IN625 and SS316L. 

The whole boundary conditions are shown in Figure 4-3a: including (1) thermal boundary 

conditions mainly includes Gaussian distributed-laser power density loading on the deposited layer 

surface, (2) heat loss by both the convective and radiative heat transfer through all surfaces that 

expose in inert gas, and (3) the surface tension shear stress is applied on the deposited layer surface 

using an implicit option in Flow 3D as the pressure boundary condition [166], which causes the 

temperature-driven Marangoni effect. The temperature-dependent surface tension of both SS316 

and IN625 is demonstrated in Figure 4-3b. However, the composition-driven Marangoni effect is 
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not considered. Other temperature-dependent properties (i.e., thermal conductivity, density, and 

specific heat capacity) of the two materials can be referred to [154]. The initial condition is 273 K 

and 1 atm, as presented in Figure 4-3a. 

The common volume-of-fluid (VOF) method is used to track the free surface boundary of 

two parent materials [159][166], as expressed by Eq. (4-4), in which F is fluid volume fraction, 

and u is the velocity vector. F=0 indicates a void cell without liquid metal, and  F = 1 indicates a 

liquid cell full of liquid metal. 0 < F < 1 indicates an interface cell containing the void-fluid 

interface. The effect of the second phase on the VOF equation mainly comes from the 

inhomogeneous material and fluid properties, e.g., thermal conductivity, laser absorption rate, and 

fluid viscosity, which determine the fluid velocity by the governing equations (Eqs. (4-1), (4-2) 

and (4-3)) and thus affect the deformation of the free surface. The property of the mixture is the 

weighted average of the volume fraction of parent materials [167]. Note that herein the temperature 

field (I) and flow vectors (II) are got from the CFD model, as shown in Figure 4-1. 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

+ 𝛻𝛻 · (𝜕𝜕 · 𝒖𝒖) = 0 (4-4) 

To further examine the flow effect on the element redistribution at the interface, a common 

convection-diffusion simulation is used to correlate the flow velocity field with the element 

concentration [168], which is described as,  

 𝜕𝜕
𝜕𝜕𝑑𝑑

(𝜌𝜌𝐶𝐶𝑇𝑇) + 𝛻𝛻 ⋅ (𝜌𝜌𝒖𝒖𝐶𝐶𝑇𝑇) = 𝛻𝛻 ⋅ (𝜌𝜌𝐷𝐷𝑇𝑇𝑚𝑚𝛻𝛻𝐶𝐶𝑇𝑇) − 𝑆𝑆𝑇𝑇𝑐𝑐 (4-5) 

where ci is the concentration of element i, u is the velocity field, and D m 
i is the 

multicomponent mixture-averaged diffusion coefficient, expressed as Dim=(1-fi)/(∑k=i χk/Dik) 

[168]. The concentration source term SC 
i  owing to phase change is set as zero here when ignoring 

the solute partition [169]. Further, based on elemental analyses by EDS and convection-diffusion 
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simulations, the liquidus temperature close to interface and its range can be calculated by 

CALPHAD method and finally act as one input for PFM, as shown in Figure 4-1. 

4.4.2 3D solidification phase-field modeling 

In this section, the two-layer single-track deposition is simulated for both cases. 

Specifically, the two cases are directly modeled by depositing IN625 on SS316L (Case1) or 

SS316L on IN625 (Case2) for simplification and computational efficiency while maintaining the 

physical understanding of underlying mechanisms. Note that the model can be easily extended to 

multi-layer depositions by iterative solutions. 

The performed 3D PFM is developed based on previous studies [20][24], allowing for the 

simulation of microstructure evolution during the layer-by-layer AM process. As shown in Figure 

4-1, this model is capable of incorporating the movement of the complex 3D temperature field 

indicated by (I). It also considers the flow behavior effects via liquidus temperature that is another 

input. During simulating AM process, a series of order parameters, i.e., Φq(r, t) (q=1~Q), are used 

to describe the structure of a polycrystalline simulation cell at a given time t at each position r 

within the simulation cell [170][171]. The continuous change of Φq(r, t) between 0 and 1 avoids 

the sharp change of interface and the explicit trace of grain boundaries [29]. The time-dependent 

Ginzburg-Landau equations (Eq. (4-6)) coupled with the total (Eq. (4-8)) and local (Eq. (4-9)) free 

energy equations are solved for the evolution of order parameters with time (t) and space (r), and 

the relative equations are given as follows. 

 
𝜕𝜕𝜙𝜙𝑞𝑞(𝒓𝒓, 𝑑𝑑)

𝜕𝜕𝑑𝑑
= −𝐿𝐿𝑞𝑞(𝑑𝑑)

𝛿𝛿𝜕𝜕(𝑑𝑑)
𝛿𝛿𝜙𝜙𝑞𝑞(𝒓𝒓, 𝑑𝑑)

 (𝑞𝑞 = 1,2, . . . ,𝑄𝑄) (4-6) 

 
𝐿𝐿𝑞𝑞(𝑑𝑑) = 𝐿𝐿0∗ ⋅ �

𝑑𝑑
𝑑𝑑𝑎𝑎
�
𝑚𝑚

⋅ 𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝛥𝛥𝛥𝛥
𝑅𝑅𝑔𝑔𝑑𝑑

� 
(4-7) 
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𝜕𝜕(𝑑𝑑) = ��𝑤𝑤 ⋅ 𝑃𝑃0 �𝜙𝜙1(𝒓𝒓, 𝑑𝑑),𝜙𝜙2(𝒓𝒓, 𝑑𝑑), . . . ,𝜙𝜙𝑄𝑄(𝒓𝒓, 𝑑𝑑)� + �
𝜅𝜅𝑞𝑞
2
�𝛻𝛻𝜙𝜙𝑞𝑞(𝒓𝒓, 𝑑𝑑)2�

𝑄𝑄

𝑞𝑞=1

� 𝑑𝑑𝒓𝒓 
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In Eq. (4-6), the modified Arrhenius type equation of kinetic rate coefficient Lq(T) is 

adopted to incorporate the effects of temperature and thermal gradient on grain boundary mobility 

[20][24], as expressed by Eq. (4-7). {κq} are positive gradient energy coefficients related to the 

grain boundary energy, w is the barrier height. f0({φq(r, t)}) accounts for the local free energy 

density. a, b and c are constants with a = b >0 and c > b/2. so that f0 possesses 2Q degenerate 

minima. The polycrystalline grains are presented by those minima located at (φ1, φ2, …, φQ) = (±1, 

0, …, 0), (0, ±1, …, 0), …, (0, 0, …, ±1) [170]. Therefore, this phase-field model focuses more on 

grain growth evolution during AM process. In comparison with dendrite growth simulation, it 

brings a great advantage in effectively performing the simulation on a domain that is larger than 

several millimeters, allowing observing the simultaneous growth of grains in a moving melt pool. 

By contrast, the dendrite simulation is normally conducted with a relatively small scale (~ 100 

μm), normally limiting the simulation domain in one grain or several grains yet exponentially 

increasing computational cost. Considering the effects of flow behaviors on a melt pool-size scale, 

the grain growth model is suitably adopted herein, and the effects of flow behaviors on the grain 

evolution in a moving melt pool can be well studied. Solute partition and trapping are important 

phenomena in rapid solidification during AM (i.e., a non-equilibrium solidification process), yet 

more closely related to secondary dendrite arm growth [172][173]. The solute trapping can be 

manifested with a revised partition coefficient that is a function of solidification velocity/rate (R 
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as mentioned). Therefore, Solute trapping is implicitly considered by incorporating an R-

dependent partition coefficient in calculating constitutional undercooling to be detailed below. 

Further, in order to predict the nucleation initiation, the nucleation undercooling is incorporated 

by using the common method [24] as follows.  

Three different undercoolings, i.e., ∆Tt thermal undercooling, ∆Tr curvature undercooling, 

and ∆Tc constitutional undercooling, are summed to account for the total undercooling, ∆T, given 

as: 

 𝛥𝛥𝑑𝑑 = 𝛥𝛥𝑑𝑑𝑡𝑡 + 𝛥𝛥𝑑𝑑𝑟𝑟 + 𝛥𝛥𝑑𝑑𝑐𝑐 =
𝛥𝛥ℎ𝑣𝑣
𝑎𝑎𝑝𝑝

𝐼𝐼𝑣𝑣(𝑃𝑃𝑡𝑡) +
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+ 𝑚𝑚𝐶𝐶0(𝑘𝑘𝑟𝑟 − 1) �
𝐼𝐼𝑣𝑣(𝑃𝑃𝑐𝑐)
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where Δhv is the fusion enthalpy per unit volume, cp is the specific heat, Γ represents the 

Gibbs-Thomson coefficient, the Ivantsov function Iv(P) = Pexp(P)E(P), where E(P) = ∫∞ 
P exp(-t)/tdt. 

Pc(=rR/2D) and Pt(=rR/2h) are the solutal and thermal Peclet numbers, respectively, in which D 

is the solute diffusion coefficient in the liquid, h represents the thermal diffusivity of the melt, and 

r is the dendrite tip radius coupled with rapid thermal gradient [174]. m represents the liquidus 

slope, kr is the revised partition coefficient obtained by mapping the k-R relationship [173]. The R 

(~ 0.1 m·s -1) is calculated using cooling rate and temperature gradient based on the temperature 

field got from CFD [31]. Then, the heterogeneous nucleation density against ∆T is characterized 

by a Gaussian distribution [175] as follows. 
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where ΔTN and ΔTσ are the mean undercooling, and standard deviation of undercooling, 

respectively, and nmax is the maximum density of nucleation sites. Then, the density of new grains 

δnv={n[ΔT(t)]- n[ΔT(t - Δt)]} formed in each time step and effective volume Vea=dx3 are used to 

obtain the probability of nucleation at each lattice site Pv [168]. 
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 𝑃𝑃𝑣𝑣 = 𝛿𝛿𝑙𝑙𝑣𝑣𝑉𝑉𝑒𝑒𝑎𝑎 = {𝑙𝑙[𝛥𝛥𝑑𝑑(𝑑𝑑)] − 𝑙𝑙[𝛥𝛥𝑑𝑑(𝑑𝑑 − 𝛥𝛥𝑑𝑑)]}𝑑𝑑𝑥𝑥3 (4-12) 

At each lattice site, once Pv is above the random number with 0 and 1 generated by the 

computer, a new nucleus forms in the melt pools. Other parameters used are listed in Table 4-1. 

Note that the liquidus temperature of the mixing zone is included in Sec. 4.5.1.  

Table 4-1: Physical parameters of the IN625 [154][158][176][177][178] and SS316L alloys [154] [179][180][181]. 

Property (units) Symbol Values for IN625  Values for SS316L 

Liquidus temperature (K) TLi 1623.0  1698.0 
Solidus temperature (K) TSo 1563.0  1673.0  

Specific heat cp 40.07 (J∙K-1∙mol-1) 4.85×106 (J∙K-1∙m-3)  

Liquidus slope (K∙(at%)-1) m -10.50 -5.5  
Solute concentration of Ni 

in liquid (wt.%) C0 58 8  

Thermal diffusivity (m2∙s-1) h 6.16×10-6  7.0 ×10- 
Solute diffusion coefficient 

(m2∙s-1) D 3.12×10-9  0.8×10-9  

Enthalpy of fusion Δhv 2.04×104 (J∙mol-1)  1.77×109 (J∙m-1)  
Gibbs-Thomson coefficient 

(K∙m) Γ 3.65×10-7  2.8×10-7   

Figure 4-4 presents the coupled temperature field, geometry, boundary conditions, and 

initial conditions for FPM, where only the interface region (above ~0.8 mm and below ~1.45 mm) 

is modeled. In the model, two sets of parameters, i.e., the order parameters Φ (r1, t) and the 

temperature field T (r1, t) are included to represent the grain structures and the tempo-spatial 

thermal distribution. For the initial condition, i.e., when t=0, Φq (r1, 0) = 0 for the deposited layer 

and Φq2(r1, 0) = 1 for the previous layer indicating a polycrystalline structure before deposition. 

zero flux is applied on the top and bottom surfaces, and the periodic boundary conditions are 

applied on the surrounding surfaces. Temperature field T (r1, t) is obtained by mapping the 

temperature stored in the CFD model. The relative coordinates and the temperature of each 

coordinate remain unchanged; meanwhile, the absolute coordinates are changed to map and move 

the entire temperature field from CFD to FPM (TF) [165][165]. Therefore, no initial thermal 

boundary is required. 
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Figure 4-4: Schematic illustration of the grain growth model, including boundary conditions, dimensions, order 
parameters, and coupled temperature field. 

4.5 Results and discussion 

4.5.1 Flow behaviors, composition redistribution, and liquidus temperature 

This section mainly aims to correlate the flow behaviors with the composition 

redistribution and then the liquidus temperature. Figure 4-5a and b compare the flow behaviors 

simulated by the CFD for both cases, i.e., IN625/SS316L (case 1) and SS316L/IN625 (case 2). 

Case1 mainly presents an expected clockwise flow field in the longitudinal section of the melt pool 

(see Figure 4-5a). This molten material flows from the back to the front of the melt pool and then 

rises up. While Case2 shows two distinct flow zones, i.e., one is at the front of the melt pool with 

a clockwise flow, and the other is at the rear of the melt pool with an anticlockwise (see Figure 

4-5b). The front one has a similar flow pattern as Case1 yet at the front melt pool. The rear one 
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flows from the front to the rear and then to the up. The difference can be attributed to the thermo-

physical properties mismatch-induced changes of surface tension, which is considered as the 

primary driving force for flow convection [151]. Specifically, the SS316L has a relatively higher 

laser absorption rate and larger thermal conductivity but lower viscosity than IN625.  

Figure 4-5e and f present the variation of each element for both cases along the EDS 

scanning line, as indicated by the arrow lines in Figure 4-5a, c, and Figure 4-5b, d. Different zones 

can be distinguished by directly observing the compositional changes. Besides the zones with 

parent materials, i.e., SS316L (Z2) and IN625 (Z3), the remarkable transition zone (Z1) for both 

cases is identified by the turning point indicated by black circles. Case1 shows a continuous 

changing trend for the mixing zone (i.e., transition zone or Z1 in Case1) between Z2 and Z3, 

indicating a good implementation of blending by the clockwise flow convection. By contrast, there 

is one more zone in the mixing zone in Case2 featured with a composition abnormal-change (thus 

nAM-ed as CACZ or Z4 herein); this zone breaks the continuous variation of composition in Case2. 

The mixing zone caused by flow behaviors for Case2 is thus composed of Z1 and Z4. This unusual 

Z4 demonstrates that the expected well-mixing (like Case1) is interrupted by the anticlockwise 

flow at the rear region of the melt pool (see Figure 4-5b), which counteract the effect of the front 

clockwise flow. The height of the mixing zone for both cases is about 60 μm at the interface, which 

implies the strong effect of flow behaviors. 
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Figure 4-5: (a)(c)(e) Case1: IN625/SS316L, and (b)(d)(f) Case2: SS316L/ IN625. The flow filed for (a) Case1 and 
(b) Case2. The position of composition tests by EDS line scanning in SEM images: (c) yellow arrow line for Case1 
and (d) black arrow line for Case2, which are also indicated by the arrow line in (a) and (b). The EDS results for 
Case1 (e) and Case2 (f), in which Z1, Z2, Z3, and Z4 are transition zone, SS316L zone, IN625 zone, and 
composition abnormal-change zone (CACZ), separately. All the information is reorganized based on the reference 
[154]. 

Figure 4-6a and b show the simulation results from the convection-diffusion model given 

in Eq. (4-5) using the CFD flow velocity as the input. Obviously, the two cases show totally 

different composition distributions, which can be divided into different zones similar to EDS 

results, particularly the presence of CACZ in Case2. This is potentially attributed to distinctive 

flow behaviors between Case 1 and Case 2. Specifically, the clockwise flow in both cases with the 

negative vectors below 0.032 m/s at the beginning stage in the bottom melt pool leads to the 

transition zone (Z1). In addition to the clockwise flow, the anticlockwise flow for Case2 

corresponding to a large positive flow vector up to 0.507 m/s sharply changes compositions at the 

upper melt pool, contributing to the formation of Z4. It is therefore concluded that the different 
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flow behaviors lead to the formation of different composition zones through the proposed 

simulation method.  

 

Figure 4-6: The simulated compositional distributions after incorporating the flow behavior for (a) Case1 and (b) 
Case2. The calculated liquidus temperatures for (a) Case1 and (b) Case2 are based on the CALPHAD method and 
elemental distribution along the EDS line [154]. 

Figure 4-6c and d present the liquidus temperature (TL) for the mixing zone along the EDS 

scanning line (Figure 4-5c and d). The obtainment of TL is based on the CALPHAD calculations 

[154]. Comparing Figure 4-6a with b, the two cases show different trends of liquidus temperature 

that follow the change of Fe element with a relatively high melting point. The liquidus temperature 

for Case1 shows a continuously decreasing trend yet with an opposite trend for Case2. Usually, 

the deposition sequence of dissimilar materials mainly determines the overall liquidus temperature 

trend for the mixing zone, i.e., from high melting point metal (SS316L) decreasing to relatively 

low melt point metal (IN625). It should be noted that the composition-abnormal change zone 

(CACZ) exists in the mixing zone of Case2, causing a relatively high liquidus temperature in this 
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localized region; by contrast, CACZ formation results from the anticlockwise flow, which is not 

seen in Case1.  

The obtained liquidus temperature of the mixing zone is together with the liquidus 

temperature of IN625 and SS316L, forming the integrated liquidus temperature for both cases 

along the building direction. Here, this constructed liquidus temperature (TL) will be extended 

along the Y direction (scanning direction) as one input for FPM, which will be used to determine 

the state (liquid or solid) for a given location in the simulation domain by comparison with the 

temperature field (TF). Following this, the effects of composition redistribution (caused by flow 

behaviors) are considered and incorporated into the FPM further to uncover the microstructural 

evolution process (e.g., nucleation and grain growth) for both cases. 

4.5.2 The temperature field and melt pool morphology 

Figure 4-7c and d compare the temperature field (TF) from the CFD simulations for Case1 

and Case2, respectively. There is an apparent difference between the temperature field for the two 

cases. The main distinction is a larger high-temperature (> 1563 K) zone for Case2 compared to 

Case1. This is because the deposited layer of SS316L in Case2 enables absorption of more energy 

than the IN625 counterpart for Case1 due to the fact of laser absorption rate: 38~45% of SS316L > 

30~35% of IN625. It should be noted that the state of any position in the simulation domain can 

be determined by comparing the liquidus temperature (TL) and temperature field (TF). For example, 

once the temperature difference ∆TFL (= TF -TL) is above zero at a given position, this position is 

liquid.  

Figure 4-7a and b present the melt pool for Case1 and Case2, respectively. The melt pool 

is extracted from the temperature field and then colored according to the liquidus and solidus 

temperature contour lines of IN625 and SS316L used by [154]. Compared with the AM-ed single 
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material, it is evident that the melt pools of the AM-ed bimetallic structure are much more 

complicated. The most remarkable feature is a sandwich structure composed of outside bimetals 

and middle composition mixing zone, with each zone governed by different solidification rules 

due to different materials. Another difference is the irregular solid-liquid interface or the melt pool 

boundary, in contrast to a regular arc-curve interface and edge in the melt pool for the AM-ed 

single material. These sandwich structures and complicated shapes likely lead to a different 

solidification process compared with the AM-ed single material. Moreover, the various zones in 

these two melt pools show different distributions and morphologies, resulting in different 

solidification behaviors. For example, the melted zone of IN625 for Case2 is larger than that of 

SS316L for Case1, suggesting a larger remelting zone in Case2 than that in Case1. Therefore, the 

corresponding resultant microstructures and evolution processes are also different, as revealed in 

detail in Sec. 3.3. 

 
Figure 4-7: The temperature field for Case1 (c) and Case2 (d) based on CFD simulation [154]. The exacted melt 
pool from the temperature field for Case1 (a) and Case2 (b). 

4.5.3 Mechanism of nucleation and grain growth 

4.5.3.1 Final grain morphologies 

Figure 4-8 shows the simulated and experimental [154] results for both cases. It can be 

seen that simulated and experimental grain morphologies for each case are consistent, yet two 

cases present different grain shapes and distributions. The columnar structure prevails in Case1; 
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in contrast, the deposition layer of Case2 shows two different grain morphologies along the 

building direction, i.e., (1) columnar grains at the interface and (2) equiaxed grains above the 

columnar grains.  

 

Figure 4-8: (a)(b) Case1: IN625/SS316L, and (c)(d)(e) Case2: SS316L/ IN625, where (a)(c) are PFM predictions, 
(d) is the enlarged view indicated by the white rectangular box indicated in (c), and (b)(e) are experimental EBSD 
images, performed by [154]. 

The comparisons of grain size and shape based on EBSD results and PFM predictions are 

quantified using ImageJ software and shown in Figure 4-9. For Case1, the main size of the 

simulated columnar grains is between 670~820 µm in length and 54~145 µm in width. Those 

columnar grains grow slightly inclined towards scanning direction about 8 degrees. These PFM 

simulated results exhibit a good consistency with EBSD observed grain size: 560~770 µm in 

length and 58~86 µm in width as well as 7~15 aspect ratio, see Figure 4-9a. 

As shown in Figure 4-9b for Case2, PFM predicted columnar grains have a length of 

285~327 µm and a width of 88~147 µm, which are also consistent with EBSD observations: 

254~440 µm in length and 133~203 in width. In particular, both of the aspect ratios are between 
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1.4~3. As shown in Figure 4-9c, the size of equiaxed grains keep well consistent (34~60 µm) 

between EBSD results and PFM predictions. These show the effectiveness of the PFM model, and 

the process of nucleation and grain growth corresponding to two cases are further unveiled in the 

following two sections. 

 

Figure 4-9: Box plots for grain comparisons between EBSD observations and PFM predictions. 

4.5.3.2 The nucleation and grain growth at the interface of IN625/SS316L 

This section mainly focuses on the nucleation and grain growth at the interface during 

depositing IN625 on SS316L (Case1). To illustrate the involved mechanisms, the real-time 

microstructure simulations and corresponding ∆TFL map (the difference between temperature field 

and liquidus temperature) are performed and depicted, as shown in Figure 4-10. According to the 

solidification position and sequence, The DED process can be divided into three stages.  

The stage1, as indicated in Figure 4-10a, is a melting process when the temperature field 

(TF) is partially moving into the simulated domain. According to the ∆TFL map, the red color 

indicates the liquid, including deposited IN625 and the partially remelted previous layer of SS316L, 
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forming an arc-shaped melt pool in the SS316L zone, which is consistent with the contour line of 

SS316L liquidus, as shown in Figure 4-7a. Note that the liquid state is the white color in the PFM 

domain. Considering the well-mixing zone caused by flow behaviors at the interface, the whole 

melt pool in stage1 is a liquid sandwich structure composed of liquid deposited IN625, a well-

mixing zone in the middle, and partially remelt SS316L. 

 

Figure 4-10: (a)~(d) present the simulated grain evolution process with time for Case1, i.e., depositing IN625 on 
SS316L, where the corresponding ∆TFL map indicates the difference between temperature field (TF) and liquidus 
temperature (TL). 
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The stage2, shown in Figure 4-10b, is initial solidification. On the one hand, more parts of 

previous layers of SS316L are remelted with the continuous movement of the temperature field, 

as indicated by the larger red color zone in the ∆TFL map penetrating the blue color zone compared 

with the stage1. On the other hand, the blue zone expands along the building direction (blue arrow) 

into the red zone at the rightmost simulated domain, indicating that the melt pool bottom tail 

initially evolves to the mushy zone like most AM-ed single materials [24]. This is mainly due to a 

high liquidus temperature (1698 K) of SS316L located at the bottom of the melt pool, where a 

relatively low-temperature field is shown in Figure 4-10b. Thus, initial solidification should occur 

in this mushy zone. 

The stage3 is mainly involved in considerably epitaxial grain growth as the temperature 

field continuously moves forward, as presented in Figure 4-10c. Accompanied by the blue color 

region further replacing the red color zone along the building direction, epitaxial grain growth 

dominates in the expended blue color zone (~150 µm in length), indicated by black arrows. The 

tilt growth of grains is related to thermal gradient (G) [20]. The epitaxial growth is caused by the 

relatively small undercooling (ΔTN < 1.0 K) of the IN625 zone (similar result for IN718 by Liu et 

al. [20] ), which rarely triggers the heterogeneous nucleation and formation of new nuclei. 

Consequently, the apparent columnar grain formation prevails, as shown in Figure 4-10d, leading 

to columnar grain-dominated structure (Figure 4-8a and b), which is observed in other as-

fabricated AM-ed IN625 [182][183][184]. 

To further verify the columnar growth mechanisms, rapid solidification conditions 

[31][185][186]are examined via the thermal gradient (G), the velocity or growth rate (R), and their 

ratio ε at the liquid/solid (L/S) interface. As shown in Figure 4-11, there are significant differences 

in G, R, and ε at the L/S interface since the L/S interface of the bimetallic structure is very complex 
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compared to that of AM-ed single metal. Compared with a printed single material [24], the change 

of G and R is not continuous and smooth along arc length due to a sandwich structured L/S liquidus 

temperature that is decided by SS316L, mixing zone, and IN625. Therefore, the ratio for different 

regions should be analyzed separately. The calculated ratio of G/R, which governs the 

solidification mode [185], for Case1 is shown in Figure 4-11b. The value of G/R for the bottom 

SS316L zone is larger than 107 K·s·mm-2, leading to a high probability of forming columnar 

structures [185][187]. The IN625 zone (Z3) mainly shows a columnar growth trend with G/R 

ranging from 107 to 108 K·s·m-2, indicative of a columnar growth [188]. As for the transition zone 

(Z1) with a much higher ratio than that of SS316L (Z2) and IN625 (Z3), columnar growth is also 

preferred. Overall, the melt pool for Case1 shows a preference for columnar growth like most AM-

ed single materials. 

 

Figure 4-11: (a) shows the thermal gradient (G) and the velocity or growth rate (R) at solid-liquid (S/L) interface, 
and (b) presents the ratio of G/R for the S/L interface for Case1. 

4.5.3.3 The nucleation and grain growth at the interface of SS316L/ IN625 

Figure 4-12 presents the simulated grain structure and corresponding ∆TFL map for Case2 

as a function of time. It is clear that the evolution process significantly differs from that of Case1, 

i.e., columnar growth. In general, the as-fabricated AM-ed SS316L preferentially presents 
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columnar grain morphology [61][189][190][191].However, in Case2, the common columnar 

structures are interrupted when depositing SS316L on IN625, as demonstrated by the experimental 

result in Figure 4-8e. This DED process is divided into four stages according to the solidification 

position and sequence.  

The stage1 is similar to that of Case1, i.e., a melting process in the rightmost simulation 

domain, consistent with the red color zone in ∆TFL map, as shown in Figure 4-12a. The liquid 

sandwich structure is different from that of Case1, and it is composed of top deposited SS316L, 

middle mixing zone, and bottom partially remelt IN625. Note that the remelt area is apparently 

deeper and larger than that of Case1 due to high energy absorption by top SS316L and the presence 

of IN625 at the bottom with a low melting point.  

The stage2 is also about initial solidification, yet the position is different from that of Case1 

and general AM-ed single material. As shown in Figure 4-12b of the ∆TFL map, the red color zone 

expends along the moving direction, and a small red zone in the rightmost edge changes to blue 

color (indicated by green dash cycle) compared with stage1. Therefore, this changed zone initially 

becomes a mushy zone, followed by initial nucleation, as verified by simulated structure (indicated 

by dotted circles, ~ 30 µm). The nucleation begins in the middle place and just above the interface, 

corresponding to the suddenly changed composition zone (CACZ). This is because the CACZ has 

a high and comparable liquidus temperature as SS316L. Noteworthy is that complicated flow 

behaviors in Case2 drive the formation of CACZ.  

The stage3 is shown in Figure 4-12c. As the temperature field continues to move forward, 

new nuclei (~30 µm) are formed continuously forward at the CACZ height position. Meanwhile, 

the color of some sites at the left domain changes to blue in the ∆TFL map, indicated by the 

rectangular box. This place belongs to the SS316L zone right above the CACZ, in which 
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significant nucleation undercooling (∆TN ~35 K) would lead to abundant nuclei (25~45 µm). In 

this case, the nucleus in the bottom CACZ can only grow downward. Another common growing 

way is coalescence, and the new nucleus and small grains are likely merged to develop large grains 

[170].  

 

Figure 4-12: (a)~(e) present the simulated grain evolution process with time when SS613L depositing on IN625 
(Case2), where the ∆TFL indicates the difference between temperature field (TF) and liquidus temperature (TL) at the 
corresponding time. 
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The stage4 is mainly involved in the solidification of the bottom IN625 zone. By observing 

Figure 4-12d, the further expanded mushy zone starts to cover the IN625 zone because the red 

color of the zone indicated by the golden cycle in ∆TFL map is partially substituted by blue color 

compared with that in stage3. Due to the calculated low undercooling (∆TN ~1.2 K) and the low 

nucleation rate, existing grains beside IN625 would favor epitaxial growth. Meanwhile, many new 

grains constantly form at the SS316L zone. Note that remelting happens in the SS316L zone due 

to the zigzag-shaped S/L interface (indicated by the dotted rectangular box), in contrast with a 

smooth arc curve for most simulated melt pools [24][185]. As shown in Figure 4-12e, the top 

SS316L zone finally evolves to many small equiaxed grains due to the high undercooling. 

However, thanks to the limited space under the CACZ, the bottom CACZ grains can only continue 

to grow downward epitaxially to a length of 285~327 µm with a width of 88~147 µm in the end, 

as presented in Figure 4-8e. These grains have an aspect ratio of 1.4~3, thus regarded as short 

columnar grains herein. It should be noted that different ratio values are used to distinguish 

columnar and equiaxed grains, such as 3 used  by Rafieazad et al [192]. 

Figure 4-13a presents the G, R, and their ratio for Case2. Compared with Case1, the first 

difference is that the L/S interface for Case2 (670 μm) is longer than that of Case1 (350 μm), which 

is evident by comparing the melt pool morphology in Figure 4-7a, and b. Second, the calculated 

values (i.e., G, R, and G/R) also differ from Case1. Here, the G/R is the main focus due to its close 

relationship with final grain structures. In the IN625 zone (Z3) of Case2, the relative high G/R 

(8×108 ~3×109 K·s·m-2 ) also leads to a propensity for epitaxial growth [188]. By contrast, the G/R 

of SS316L zone (Z2) in Case2 (2×106~ 107 K·s·m-2) is lower than 107 K·s·mm-2, which is 

considered to encourage the development of equiaxed grains [185][187][193]. As for the mixing 

zone, the CACZ zone (Z4) close to the SS316L zone (Z2) has a low ratio value, also leading to a 
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high nucleation rate, shown in stage1. The transition zone (Z1) shows a high ratio value like the 

IN625 zone (Z3), hence potentially preferring a low nucleation rate and epitaxial growth. Overall, 

the melt pool for Case2 shows different grain formation preferences for different zones with an 

unusual solidification sequence. 

 

Figure 4-13: (a) shows the thermal gradient (G) and the velocity or growth rate (R) at the solid-liquid (S/L) interface, 
and (b) presents the ratio of G/R for the S/L interface for Case2. 

4.6 Chapter conclusions 

In this chapter, the nucleation and grain growth at the interface for DED-ed bimetallic 

structures (i.e., IN625/SS316L and SS316L/IN625) are simulated, and the main conclusions can 

be drawn as follows: 

• Due to the high energy absorption rate of SS316L and low thermal conductivity of IN625, 

a deeper melt pool and longer solid-liquid interface are obtained of SS316L/IN625 than 

that of IN625/SS316L. Meanwhile, two opposite flows are present in the melt pool of 

SS316L/IN625, while the only clockwise flow is at the rear of the melt pool of 

IN625/SS316L. 

• By incorporating the continuous liquidus temperature of SS316L/IN625 and non-

continuous one of IN625/SS316L caused by different flow behaviors and compositional 
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redistribution into the phase-field model, grain morphologies for both cases are predicted 

and agreed with the EBSD observations quantitively, which proves the effectiveness of the 

developed multi-physics modeling. 

• IN625/SS316L mainly presents epitaxial grain growth based on SS316L substrate, leading 

to a general columnar structure similar to AM-ed single materials. By contrast, the initial 

solidification in SS316L/IN625 happens at the abrupt composition change zone in the 

middle melt pool arising from two opposite flows, accompanied by considerable nucleation 

due to the high undercooling (>30 K). Such a special solidification sequence leads to a 

mixed grain structure, i.e., columnar grains on the bottom and small equiaxed grains on the 

top. 

     This study would remind the potential effects of flow behaviors on nucleation and grain 

growth and likely give more insights into different microstructure formations for AM-ed bimaterial 

structures. In particular, the mixed grain structure in SS316L/IN625 has the potential to avoid the 

anisotropic properties that commonly exist with a columnar structure. However, for the accurate 

quantitative prediction of microstructural evolutions, the whole 3D temperature field and volume 

EDS  scanning [194] is required and then incorporated into the 3D phase-field model in the future. 

Furthermore, due to the noise in experimental results and the complexity of physical phenomena 

like flow behaviors, the machine learning technique will be introduced to speed up the 

understanding and tailoring processing-structures-properties for AM-ed bimaterial structures in 

future work. 
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Chapter 5: Using machine learning to improve melt pool prediction in additive 

manufacturing: data denoising and predictive modeling 

5.1 Introduction 

5.1.1 Background 

Question 3 raises a vital concern: How to create an inexpensive and rapid data-driven 

model that can effectively navigate the complex AM process-melt pool relationships, guiding both 

microstructure optimization and quality control? The primary objective, therefore, is to achieve 

precise melt pool prediction during the AM process using data-driven modeling.  

The applications of data-driven modeling in the AM community have been reviewed in 

Section 2.4.3. Among these applications, data-driven predictive modeling of melt pool size has 

become an area of significant interest. The primary challenge associated with this is the careful 

selection, or even the design, of input features that can precisely capture the dynamic evolution of 

the melt pool. Existing melt pool modeling often builds upon simple AM process parameters like 

laser power and scanning speed, or includes material properties to expand the number of input 

features (up to 23 in total) [195]. Despite the enhancement, these simple input features overlook 

crucial physics that influence melt pool development, notably the evident thermal accumulation 

from adjacent scanning tracks or layers. Advanced models like the neighboring-effect modeling 

(NBEM) [196] and the L-NBEM model [197] have introduced innovative input features (i.e., time 

and distance neighboring-effect factors) to address this, outperforming general models (e.g., 

Power-Velocity Model and Energy Density Model). Other model has designed a so-called (pre-

scan) initial temperature specifically to take into account the effect of thermal history on the melt 
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pool size [198]. However, these hand-designed input features rely strictly on domain experts and 

tend to lose the information of neighboring effects and other potential physics. 

Integrating as much scientific knowledge as possible into designed inputs has been 

considered a promising way to improve data-driven modeling performance, striving to obtain more 

physics-strengthened correlations. Thus, various physics-related variables have been explored as 

inputs, such as energy density, surface tension force, Richardson number, and Marangoni number 

[90][199]. In this paper, various physical principles related to melt pool dynamics are considered, 

such as (1) laser on/off; (2) turning points; (3) strong heat dissipation at the boundaries, along with 

many inherent uncertainties in the AM process [2]. The complexity of these factors complicates 

melt pool dynamics and hinders sufficient physics-related variable design. In response, raw 

information of preceding laser spots (referred to as scanning history) is employed as input features, 

bringing two potential advantages. First, enormous raw information inputs would include the 

neighboring effect and also contain the uncertainty of inputs themselves and even other possible 

unknown physics. Second, the adoption of raw information would save time without requiring a 

repeated and complex calculation process of physics-related variables (resorting to physical 

models [90][199]) or hand-designed input features. Due to the complexity of the high-dimensional 

scanning history, machine learning (ML) techniques, specifically multi-layer perceptron (MLP), 

are implemented. The ML modeling with multi-layer perceptron (MLP) enables taking full 

advantage of unrivaled approximation capability and versatility in handling high-dimensional 

problems of neural networks (NN) even with many input features. Moreover, ML's self-adaptation 

[200] allows derivation of complex relationships, including thermal history and other influences, 

thus enhancing prediction performance. Therefore, this developed method takes full advantage of 
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the ML’s ability to interpret as many factors, including physic effects, as possible from the 

scanning history that affects the melt pool dynamics. 

However, experimental data are frequently subjected to noise interference due to the 

complexity of the physical environment, particularly due to the interaction between the laser beam 

and powders. This interaction initiates a series of complex physical phenomena such as convection, 

fluid flow, and radiation. As shown in Figure 5-1, during in situ capturing melt pools by using 

optical-based monitoring (e.g., high-speed cameras) [201], the plume and spatter are usually 

observed [85][202][203][204][205][206]. The formation of plumes originates from the ionization 

of metallic vapor [201], while the generation of spatters is widely attributed to the recoil pressure 

which propels some liquid droplets to escape the melt pool [201][202]. The contrast similarities 

between these physics-induced phenomena (plumes and spatters) and the melt pool pose a 

considerable challenge to the accurate extraction of melt pool morphology through standard 

thresholding operations [205][207]. Furthermore, manual interventions are impractical and labor-

intensive when dealing with high-throughput experimental images. Despite the clear necessity, 

advanced and efficient denoising processes are yet to be incorporated in current experimental data-

driven melt pool modeling strategies [196][197]. As such, the need for a sophisticated and efficient 

denoising process is crucial to ensure accurate melt pool extraction. 
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Figure 5-1: Typical examples for plume and spatter exposed under the high-speed camera with references (a) [85] 
(b) [204], and (c)(d) [202]. 

This study proposes an experimental data-driven melt pool predictive modeling framework, 

integrating experimental data denoising, scanning history inputs, and machine learning techniques. 

It aims to offer highly efficient and accurate melt pool area prediction performance compared to 

up-to-date experimental-data-driven models. The following sections introduce the extensive raw 

data, including melt pool images from the experiment conducted by NIST, and present a 

convolutional neural network (CNN)-based model designed to efficiently denoise melt pool 

images. Further, the data-driven melt pool predictive model based on artificial neural network 

(ANN) is trained, incorporating scanning history as input features, to derive more complex 

relationships between scanning history and melt pool areas. The trained ANN model's 

extrapolative prediction abilities are then evaluated, followed by a discussion on the necessity of 

the denoising process.  

5.2 Experiment and Raw data 

The National Institute of Standards and Technology (NIST), committed to creating 

standards and benchmarks for the Additive Manufacturing (AM) community, has developed the 

Additive Manufacturing Metrology Testbed (AMMT). This tool serves as a process image 



 

81 

acquisition device aimed at obtaining high-quality experimental data [111][197]. Utilizing the 

AMMT, the optical signal of the melt pool is retained and monitored through a coaxially aligned 

high-speed camera. The signal is then captured according to digital commands, as depicted in 

Figure 5-2a, which results in the creation of numerous melt pool images. Comprehensive details 

regarding the AMMT acquisition system can be found in references [111][197][208]. 

 

Figure 5-2: (a) Snapshot of AM commands, and (b) visualization of scanning path, including the laser-activated 
zone. 

The raw data encompasses two main components: (1) digital commands and (2) melt pool 

images. As illustrated in Figure 5-2a, the former category includes information such as laser spot 

coordinates, corresponding laser power, and the camera's ON/OFF sequence (e.g., represented by 

2/0 in the command). The visualization of the printing path and fabrication zone is constructed 

from these commands, as demonstrated in Figure 5-2b. The printing or scanning path follows a 

zigzag pattern [209] with the red region indicating the fabrication zone where the laser power is 

above zero watts, alluding to a rectangular part (see Figure 5-2b). Figure 5-2a only provides a 
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glimpse of a partial dataset; a complete dataset for printing a part consists of 25,051 lines of 

commands and 1,498 captured melt pool images when the camera is ON. 

Figure 5-3 presents examples of raw melt pool images taken by the AMMT. These images 

are of two distinct types: (1) melt pool without noise (see Figure 5-3a and b), and (2) melt pool 

with noise (see Figure 5-3c~f). the former often resembles a burning comet with a tail, highlighted 

by the white region. Conversely, the latter exhibits the melt pool and spatters simultaneously, 

where the noise (i.e., the spatter) is either isolated from or attached to the main melt pool, marked 

by red arrows. Obviously, the splatter can lead to inaccurate measurements of the melt pool area 

[85] for the model training, which then reduces the accuracy of the trained relationships and 

prediction performance. Therefore, denoising processing is typically required to improve the 

quality of data.  

 

Figure 5-3: A few representative experimental melt pool images captured by Additive Manufacturing Metrology 
Testbed (AMMT) at the National Institute of Standards and Technology (NIST) 

Note that sufficient high-quality are vital to guarantee the success of data-driven modeling 

[84]. In this context, a large number of experimental melt pool images after the denoising process 

are essential to satisfy this prerequisite. As mentioned above, one dataset for a single part includes 

25,051 rows of commands and 1,498 captured images corresponding to 1,498 laser spots. In total, 

32 datasets corresponding to 32 parts built at different locations in the same layer using the 
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identical printing pattern would result in 801632 rows of commands and 47936 melt pool images. 

This acquisition method used to obtain melt pool morphology shows a great potential to replace 

the general ex-situ characterization methods (e.g., optical microscope and scanning electron 

microscope). This potential stems from the direct relationship between the captured images and 

melt pool morphology. General methods for acquiring morphology are intricate, time-consuming, 

and costly due to multiple process steps and machinery [81][78]. In contrast, the advantage of 

intensive acquisition of in-situ melt pool morphology by AMMT is unparalleled. Further quality 

improvement of raw melt pool images is discussed in Section 5.3.1.  

5.3 Machine learning methodologies 

5.3.1 Convolutional neural network for denoising processing 

The deep convolutional neural network (CNN) is selected among various machine learning 

(ML) algorithms for image denoising processing in this study. CNN features local connections, 

weight sharing, pooling, and multi-layer stack utilization, conferring substantial benefits in image 

processing. Within the Additive Manufacturing (AM) community, CNN has been extensively 

applied for tasks such as AM process monitoring [202], material property prediction [210], 

anomaly detection [211], quality monitoring [212]. For the extraction of the primary features of 

melt pools during denoising processing, the CNN structure utilized is illustrated in Figure 5-4.  

This structure comprises both convolution and deconvolution sections. The convolution part 

contains normalization layers, convolution layers, activation layers with the ReLU function, and 

pooling layers. Conversely, the deconvolution part encompasses upsampling layers, deconvolution 

layers, and output layers. This specific CNN is capable of intricate feature extraction, such as 

boundaries, textures, and morphologies [213]. A smooth and elliptical-shaped boundary mainly 

characterizes a real melt pool, whereas a noised melt pool exhibits an abnormal boundary due to 
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spatter interference. Thus, CNN is apt for denoising processing, removing spatter effects by 

autonomously adapting and learning regular boundary features. 

Before the execution of CNN model training and validation, all raw melt pool images must 

undergo pre-processing to extract a clear region of interest (RoI). This involves image thresholding 

and hue inverting, as displayed in Figure 5-4. The primary principle for selecting the threshold 

level is to render the melt pool post-thresholding operation analogous to manual measurement 

[205][207]. Note that although the selected threshold level might not precisely represent the real 

melt pool, it enables the analysis of changing trends when considered a uniform standard. In this 

work, we use a grayscale level of 80% for all raw images, following NIST requirements. Grayscale 

varies from 0 (black) to 255 (white), with higher grayscale areas corresponding to higher 

temperature ranges. Subsequent to the thresholding operation, hue inverting is carried out to 

accentuate the region of interest (RoI) with black color. The resulting images are referred to as 

pre-processed raw images, as demonstrated on the right side of Figure 5-4. 

 

Figure 5-4: The developed convolutional neural network (CNN) model for denoising process of melt pool images 

Training the CNN model successfully demands an ample number of input-output pairs to 

facilitate a full feature extraction of real melt pools and to eliminate spatter noise. These pairs 
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consist of noised images and their corresponding denoised counterparts, as indicated in Figure 5-4. 

A total of 1130 input-output pairs are generated, with 80% allocated for training and the remainder 

for validation. Denoising numerous noisy images manually to create required input-output pairs is 

impractical. Consequently, we generate such datasets in reverse by synthesizing noisy melt pools 

from clean ones. The input images are synthesized by introducing noise into pre-processed raw 

images devoid of noise (as outputs), forming synthetic images as inputs, as revealed on the left 

side of Figure 5-4. The designed noise in Figure 5-4 is created by imitating real noise throughout 

the NIST dataset, including its size, shape, and distributions (i.e., isolated or sometimes attached). 

Section 5.4.1 will present the validation result, and the data denoising capability of the CNN 

learned from synthetic melt pool images will be transferred directly to process real noisy images 

(see Section 5.4.2 for results). The derived noise-free images will then facilitate high-quality melt 

pool area data generation for predictive modeling in subsequent section. 

5.3.2 Artificial neural network for melt pool prediction 

This section mainly introduces our machine learning model for melt pool prediction and 

its structure comparison with the recent predictive models (NBEM and L-NBEM). Given the high-

dimensional scanning history as input, artificial neural networks (ANNs) are trained for melt pool 

prediction, with the design portrayed in Figure 5-5. The multi-layer perceptron (MLP) artificial 

neural network utilized consists of one input layer, two hidden layers, and one output layer, with 

60 neurons used per hidden layer. This optimal configuration yields improved results while 

minimizing computational costs. 

The output layer represents the prediction objective, Ai, where the subscript i refers to the 

ith melt pool image. This aligns with the ith ‘2’ order in the camera trigger column of the commands 

(Figure 5-2a). The melt pool area, A, is calculated using the center black color (each pixel grid is 
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64 µm2) of denoised processed melt pool images by the trained CNN modeling outlined in Section 

5.3.1. 

The input layer includes (1) raw scanning history and (2) information regarding predictive 

laser spot i. The information of (2) mainly consists of the power Pi from commends and scan speed 

Vi , easily obtained as the distance-to-time interval ratio. These inputs symbolize the current energy 

density effects on the predictive melt pool area, in line with prior models [197][208]. Such 

considerations are reinforced by numerous studies demonstrating the close relationship between 

power, speed, energy density, and melt pool size [96]. 

 

Figure 5-5: Structure of the Artificial Neural Network, where ∆di-1 and ∆ti-1 correspond to distance and the time gap 
between points i-1 and the predictive point i, respectively, and Pi-1, Vi-1, and Ai-1 indicate the power, scan speed, and 
melt pool area of laser spot i-1, respectively. Subscript i, for example, corresponds to the ith melt pool images, i.e., 
the ith ‘2’ order of the camera trigger column in the commands (Figure 5-2a) in sequence. 

The raw scanning history input must encompass sufficient past raw information, 

safeguarding the ANN from inaccuracies instigated by human-designed factors. This approach 

empowers the neural network to autonomously learn, iterate, and discern underlying laws, 

accounting for neighboring effects and other potential physics. In detail, the scanning history for 

predicting Ai mainly comprises the five kinds of information from the past 50 points (from i-1 to 

i-50), as presented in Figure 5-5. Using laser point i-1 as an example, the ∆di-1 and the ∆ti-1 are the 
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Euclidean and time distance between point i-1 and the predictive point i, readily obtained from the 

commands. Other inputs for the past point i-1 include Pi-1, Vi-1, and Ai-1, providing raw data about 

power, scan speed, and melt pool area respectively. Due to the inclusion of 50 past points, there 

are 250 total inputs for scanning history. This evidently conserves more raw information compared 

to the two featured factors employed in the previous NBEM model. Additionally, the scanning 

history is more transparent and obtainable than the complex feature derivation process. When 

predicting the initial 50 points, zero values are set if there are insufficient inputs. 

 

Table 5-1: Comparisons between our model, NBEM model, and L-NBEM model 

Model Preparation Inputs Output Prediction tool 

NBEM Characterize θ∆t 
i , θ∆d 

i , Pi , Vi Ai quadratic regression 
model 

L-NBEM Characterize θ∆t 
i , θ∆d 

i , Pi, Vi, Aavg, Amax, Avar, 
ti, J, λ Ai ANN 

Ours Denoising (∆di-50 …∆di-1, ∆ti-1, Pi-1, Vi-1, 
Ai-1), Pi, Vi Ai ANN 

* θ∆t 

i  NBEM time factor, θ∆d 

i  NBEM distance factor, Pi laser power, and Vi scan speed belong to track-wise inputs 
[208]. The layer-wise input variables [197] include J total energy input on the previous layer, λ laser idle time gap 
between previous layer and current layer, ti building time from start point to the laser spot and Aavg mean, Amax 
maximum, and Avar standard deviation of the melt pool area of the L-NBEM region. Ai presents the melt pool area to 
be predicted. 

Table 5-1 summarizes the structure comparisons of the aforementioned two recent melt 

pool predictive models and our developed counterparts, focusing on preparation, inputs, and 

training tools. Initially, the preparation phase for our model training entails a denoising process to 

exclude spatter effects on the real melt pool area (A), thereby enhancing input accuracy. 

Conversely, the other two models emphasize the acquisition of neighboring effect factors, 

undergoing a complex design and derivation process that necessitates professional, in-depth, and 

thoughtful consideration.  
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Secondly, the inputs for all three models vary except for the laser power Pi and scanning 

speed Vi, which directly relate to the melt pool area Ai. For the NBEM model, the two more inputs 

are mainly the neighboring factors responsible for neighboring effects. The L-NBEM model 

includes factors related to the previous layer, such as the total energy input J of the previous layer, 

the laser idle time gap λ between the previous layer and the current layer, the build time ti from the 

starting point to the laser point, and the average Aavg, maximum Amax, and standard deviation Avar 

of the melt pool area. Clearly, factors that might influence the impact of past laser points on 

predicted points should be included as inputs in various forms, such as neighboring factors and 

inputs reflecting previous-layer effects. It should be noted that our focus is mainly on single-layer 

printing, similar to the NBEM model, without the need to consider other layer effects. In this study, 

the influence of previous laser spots is considered through scanning history inputs depicted in 

Figure 5-5. Gathering 250 values of scanning history inputs from the past 50 laser spots furnishes 

sufficient raw information. Specifically, the inputs of previous melt pool areas encapsulate the 

physical effect results directly and contain the fluctuation of melt pool area development. Lastly, 

the utilization of ANN within our model enables the self-adaptation of all potential physical effects 

on the predictive spot, afforded by the vast array of raw scanning history inputs. By contrast, 

though the quadratic regression model coupled with two featured factors can learn the effects of 

past laser points, it may concurrently lose partial information. In this study, 32 datasets are 

randomly divided into two parts: one containing 26 datasets for training models and the remaining 

part (6 groups) for testing. Namely, the 26 constructed parts are employed for model training to 

predict the melt pools for the other six unbuilt counterparts under different AM processes, hence 

adhering to an extrapolative predictive method. 
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5.4 Results 

5.4.1 Denoising modeling validation 

Figure 5-6a shows synthetic noisy melt pools as inputs, the CNN-predicted melt pool by 

trained CNN modeling, and the pre-processed melt pools, namely, ground truth. The CNN-

predicted melt images exhibit negligible differences from the ground truth, affirming the efficacy 

of the CNN model in eliminating the introduced noise and accurately replicating the actual melt 

pool. The model proves particularly effective when the noise is isolated from the melt pools, and 

in instances where the noise adheres to the melt pool, the model is able to accurately distinguish 

the boundaries of the melt pool and remove the excess as noise. Figure 5-6b presents the training 

and validation loss curves [214] to evaluate the designed CNN model. The close parallelism of 

these curves suggests that the Artificial Neural Network (ANN) model is well-trained, free from 

both overfitting and underfitting [215]. The gradual decrease of the training and validation loss 

culminates in a low value of 0.0003 after 175 epochs, further indicating that the CNN model has 

been well trained and validated using the designated data (Figure 5-4). This trained and validated 

CNN model is then utilized to process the noisy raw images as detailed in Section 5.4.1. Finally, 

the denoised images will be employed to calculate the melt pool area based on the pixel area for 

the actual melt pool, which is one of the inputs and the training objective for our predictive models. 
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Figure 5-6: (a) Eight validation results, and (b) the training and validation loss plots of the CNN model. 

5.4.2 Melt pool denoising 

Figure 5-7 shows the raw melt pool image sourced from NIST, corresponding noisy melt 

pool image by pre-processing (i.e., image thresholding operation and hue inverting), denoised 

images by the trained-CNN, and ground truth (manually denoised). The area of each melt pool is 

provided for quantitative comparison. Pre-processing reveals that some small black spots persist 

in the pre-processed images (i.e., noisy melt pool in Figure 5-4). This confirms that the 

thresholding operation is incapable of entirely eliminating spatters. Consequently, the calculated 

melt pool area may exceed the ground truth, leading to an overestimation of the melt pool area. 

This underscores the importance of the subsequent denoising process by the trained CNN to yield 

an accurate melt pool area close to the ground truth, thereby improving prediction. 
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Figure 5-7: Eight testing results of the denoising process performed on real noisy melt pool images by the trained 
CNN. 

Upon performing the denoising process with the CNN model, it is evident that the denoised 

melt pool closely mirrors the ground truth, with only minor differences in certain cases. This 

validates the effectiveness and capability of the developed CNN model to eradicate spatter noise 

from real noisy melt pool images. When compared with the calculated area, the denoised results 

align well with the corresponding ground truth. The area discrepancy caused by spatters can reduce 

by up to 15% following the denoising process. It is worth noting that minor differences between 

noisy and denoised pools may occur when the spatter adheres to the melt pool boundary. 

Nonetheless, the trained CNN can accurately delineate the actual melt pool boundaries, making 

the denoised melt pool closely resemble the ground truth. 

5.4.3 Melt pool prediction  

Figure 5-8 compares the performance of our predictive model with the NBEM model using 

the Average Relative Error Magnitude (AREM). The AREM is a widely-used metric for evaluating 

prediction performance [111][197][201][216], signifying the average error for all predictions in a 

given testing dataset. For a rigorous comparison, the NBEM is revised using the same ANN model 

for training, while retaining the original input features designed for the previous NBEM model, as 
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shown in Table 5-1: Comparisons between our model, NBEM model, and L-NBEM model. Using 

our datasets, the highest AREM of NBEM is approximately 18%, with an average of 14.8%, as 

illustrated in Figure 5-8. In contrast, our proposed model exhibits excellent performance, with an 

AREM value as low as about 2.8%. This represents an at least 80% reduction in AREM compared 

to the NBEM model, thereby significantly improving prediction accuracy. This can largely be 

attributed to the input design, particularly the immense raw information of scanning history. These 

inputs enable the ANN to fully incorporate scanning history as a condition to inform melt pool 

development at the predictive location. Moreover, unlike L-NBEM [197] and revised NBEM, there 

are no significant AREM fluctuations for all testing datasets, reflecting the stability and 

generalizability of the proposed model.  

However, it should be acknowledged that the denoising process has a negligible impact on 

AREM, as presented in Figure 5-8. The improvement resulting from data denoising is not apparent 

in this context due to the exceptionally small number and distribution of noise in all datasets. To 

verify this, we examine the area difference caused by noise. Figure 5-9a presents the accumulated 

area difference caused by noise in each dataset. Overall, it is evident that noise causes relatively 

small accumulation area differences in 32 datasets, with only eight datasets showing an 

accumulated area difference ranging from 192 to 5056 μm2. Even for dataset 1 with the highest 

accumulated area difference, over 99.1% of raw images are free of noise, as shown in Figure 5-9b. 

Consequently, noise data comprise only a small portion of the datasets. This can be attributed to 

the small range of laser power and low energy density used during AM [203][217][218] and the 

well-designed AMMT system [111][197]. Noise side effects are further discussed in Section 5.5.1. 
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Figure 5-8: Comparison of average relative error magnitude (AREM) in melt pool area prediction between NBEM 
and our model (with/without noise) for different testing groups. 

 

Figure 5-9: (a) cumulated area difference of melt pool between ground truth and noisy melt pool for each dataset, 
and (b) the relative frequency of melt pool area difference for dataset 1. 

To visually compare the prediction results of different models with ground truth, the melt 

pool area distributions of testing datasets 16 and 23 are mapped into contour plots, as shown in 

Figure 5-10. It is evident that all models can predict the general trend of area change, especially 

for the large melt pool at the turning points where significant heat accumulation occurs. However, 

the similarity of the predictions by different models to the ground truth varies. The area predicted 

by our model is almost consistent with the ground truth due to the exceptionally low AREM of 

2.8%, further demonstrating the high predictive performance and reliability of our proposed model. 

In contrast, the overall predictions by NBEM are slightly lower than the ground truth, particularly 
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evident at the turning points with the highest heat accumulation. Moreover, NBEM fails to 

accurately predict the slight fluctuations of the melt pool (indicated by black circles) at locations 

where heat accumulation is not significant enough. Even worse, the P-V model can only determine 

the relative size of the melt pool where heat build-up is most intense, resulting in significantly 

lower overall prediction results compared to the ground truth. In summary, the combination of the 

designed scanning history input features and the ANN technique significantly improves the 

prediction performance of our model. Note that these conclusions do not negate the importance of 

the denoising process, which will be further discussed in Section 5.5.1. 

 

Figure 5-10: Contour plots of the melt pool area predicted by different models as well as ground truth for testing 
dataset 16 and 23. 

5.5 Discussion 

5.5.1 Noise effects 

Although the current datasets provided by NIST contain rare noise, it is widely observed 

that the melt pool exposed under a high-speed camera is susceptible to interference from spatters 

and plumes [203][204][205][206]. Therefore, the denoising process remains essential for studies 

focused on melt pools. To further demonstrate the significance of data denoising in improving 
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model performance, we intentionally increase the noise level in the melt pool datasets. This 

comprehensive examination allows us to understand how noise deteriorates prediction 

performance and emphasizes the importance of the denoising process proposed in this research. 

 

Figure 5-11: With a designed Gaussian normal distribution noise, the AREM changes with (a) noise proportion and 
(c) noise size (times of initial added noise size AIANS) for each testing dataset. The average AREM changes against 
(b) noise proportion and (d) noise size. 

The artificial designed method is performed by adding a specific noise size (noise area) in 

a certain proportion of the raw data (the melt pool area) as noised melt pools in each dataset. The 

added noise follows a Gaussian normal distribution, with a mean value of 350.89 μm2 and a 

standard deviation of 256.88 μm2, calculated based on all existing noisy data in the entire datasets. 

Note that 350.89 μm2 is set as the initial added noise size (AIANS). Figure 5-11 shows the variations 

in AREM as a function of noise proportion and noise size, represented as times of AIANS. These 

two factors significantly influence prediction performance. As shown in Figure 5-11a, with a 
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constant noise size (10 times of AIANS), the AREM obviously increases with noise proportion for 

each dataset, along with increased fluctuations. The average AREM linearly increases from 2.88% 

to 27.24% as the noise proportion varies from 0 to 40%, as shown in Figure 5-11b. When fixing a 

30% noise addition, a similar trend is observed with noise size, as depicted in Figure Figure 5-11c. 

The average AREM also linearly increases from 2.88% to 42.25%. 

To better visualize the noise side effects, the melt pool area distributions of dataset 16 

before and after noise addition and prediction are mapped into contour plots, as presented in Figure 

5-12. Comparing Figure 5-12c and 12e with 12a, it is evident that the presence of noise leads to 

chaotic prediction results, severely deviating from the ground truth (Figure 5-12). From Figure 

5-12a, the ARME for the predictions of Figure 5-12c and Figure 5-12e is 12.6% and 24.4%, 

respectively, compared to a very low AREM of 3.0% in Figure 5-12a, which closely resembles the 

ground truth. This difference is mainly attributed to the fact that the prediction model trained using 

noisy datasets fails to learn the underlying relationships and physics accurately, as the noise 

presence likely misleads the relationships established during model training. To further examine 

whether the model trained using noisy datasets can identify the noise, noise is added into the 

ground truth shown in Figure 5-12d. In contrast, more deviation from ground truth is presented in 

Figure 5-12c, indicating that models trained using noisy datasets cannot automatically learn the 

noise interference and produce results similar to those in Figure 5-12d. This further emphasizes 

the necessity to remove noise before training the ANN model. As more and larger noise is added, 

the predictions presented in Figure 5-12e show a much more disordered distribution, indicating 

that trained model has almost completely lost its predictive ability and even is unable to learn the 

thermal accumulation physics at the turning points.  
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Figure 5-12: Contour plots of (a) melt pool area predictions by the trained ANN model with noise-free datasets, i.e., 
Figure 5-10c, (b) ground truth, i.e., Figure 5-10a, (c)(e) melt pool area predictions by the trained ANN model with 
noisy datasets, and (d)(f) ground truth with noise addition in dataset 16. 

5.6 Chapter conclusions 

In summary, we have proposed an experimental data-driven model by using the machine 

learning technique, enabling fast extrapolative melt pool prediction for unbuilt parts. Some 

important conclusions are listed as below: 

1. The denoising process is performed using a convolutional neural network (CNN) model 

trained on synthetic melt pool images as inputs containing designed noise (e.g., spatters) 
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and corresponding real melt pools as outputs. This ensures sufficient exposure to real melt 

pool features under various noise interferences. The trained model can accurately identify 

the real melt pool and effectively exclude spatters, ensuring the accurate calculation of the 

melt pool area as the input for our predictive model. 

2. An artificial neural network (ANN) is trained for melt pool area prediction using the 

extensive datasets from NIST. The input design of scanning history results in a significant 

reduction in the average relative error magnitude (AREM) to 2.8% compared to the recent 

NBEM model's 14.8%, an 81% reduction. This improvement can be attributed to the 

scanning history inputs containing vast raw information of past laser spots, allowing the 

multi-layer perceptron of the ANN to self-adapt to melt pool development effects (e.g., 

physics and fluctuation). 

3. We have demonstrated that noise can deteriorate prediction performance through 

artificially designed noise strategies. Increasing the proportion and size of noise results in 

the ANN model losing its ability to learn thermal physics accurately, leading to an inability 

to predict melt pools with noise interference. Therefore, the denoising process is essential 

to remove noise interference and establish a reliable association between the input and the 

target (melt pool area in this study). 

 
This designed method can be easily extended to multi-layer printing by incorporating the 

scanning history, including qualified laser spot information from previous layers. Additionally, 

other ML models (e.g., random forest model and support vector machine) can be used for 

parametric studies and further comparisons [219], which are not addressed in this paper due to the 

exceptionally small AREM achieved (2.8%). However, the AMMT system enables in-situ 

capturing of the 2D surface of the melt pool, but visualizing the 3D melt pool shape quickly 

remains a challenge with the existing in-situ monitors. Incorporating a physical model or a physics-
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informed data-driven model may be a possible approach to correlate the captured 2D melt pool 

with the 3D counterpart in the future.  
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Chapter 6:  Conclusion and Perspectives 

In this dissertation, the focus was placed on the intricate processes of additive 

manufacturing (AM), with particular attention given to the microstructural development 

understanding in the context of dynamic thermal conditions, flow-driven compositional 

redistribution, and data-driven modeling. . The ultimate objective is to deepen understanding of 

the complex AM process-microstructure relationship for enhanced quality control and 

performance improvement. 

Throughout the conducted studies, a comprehensive understanding was gained on 

microstructural development under dynamic conditions. Specifically, the gradient structures 

featured with different phases in AM-fabricated Ti-6Al-4V were thoroughly examined. Thermal 

simulation and experimental design enabled the systematic exploration and validation of location-

dependent phase evolution, which results from periodically attenuated thermal cycles. Moreover, 

the study has shown that flow behaviors at the interface of the bimetallic structures of SS316L and 

IN625 during directed energy deposition (DED) could lead to composition redistribution. This, in 

turn, changes the liquidus temperature in the mixing zone at the interface, influencing the 

solidification sequence and the final grain structure. These findings significantly enhance our 

understanding of bimetal additive manufacturing. Finally, in order to efficiently establish the 

complex AM process-microstructure relationships for microstructure optimization  and quality 

control, a data-driven modeling framework was established. By harnessing experimental data 

inputs from the National Institute of Standards and Technology (NIST), this framework facilitates 

swift and cost-effective extrapolative melt pool predictions for unbuilt parts. 



 

101 

However, it is important to recognize that the research conducted in this dissertation is only 

a part of the broader narrative on AM microstructural evolution and optimization due to the 

complex physics of AM processes. As such, several perspectives for future work emerge: 

Broadening Metal Species Scope: The study focused on Ti-6Al-4V and bimetallic 

structures of SS316L and IN625. Expanding the metal species scope to include other metals used 

in AM would further enrich the understanding of AM microstructure development, which can 

boost material development and customization. 

Expanding Data-Driven Modeling: While the data-driven modeling framework 

established shows promise, there is always room for practical application. Future work could focus 

on reverse design of processing parameters to get desired microstructures and even properties.  

Investigating Other Microstructural Features: Apart from phase evolution and grain 

structure, other microstructural features, such as defects and texture, can also significantly 

influence the final product quality and performance in AM. Future studies can integrate these 

aspects into the AM process-microstructure relationship. 

Incorporating Real-time Process Monitoring: Real-time monitoring techniques can be 

incorporated into the AM process to provide continuous data, enabling in-situ detection. Then in-

situ correction of defects or variations can be achieved via adapted AM process, guided by rapid 

data-driven modeling feedback. 

In conclusion, the findings within this dissertation contribute to the ongoing conversation 

around microstructural evolution in metal additive manufacturing. The approaches adopted and 

insights gleaned represent one attempt among many to grapple with the complexities of the AM 

process-microstructure relations. There is much work to be done and many questions still to answer. 

It is hoped that this work provides a useful platform (i.e., the physics-based framework) for other 
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researchers and serves to catalyze further exploration of this transformative technology. We are 

still at the foothills of understanding, and the potential for discovery and improvement in this field 

remains vast. 
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