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ABSTRACT

With recent advancements in the automotive world and the introduction of autonomous vehicles,

more software-driven electrical components and wireless connectivity are being introduced to

increase reliability and improve safety systems for modern vehicles. However, these advanced

systems also bring new risks, particularly from the security perspective, as attack surfaces are

expanding and new attacks are emerging. Automotive security has become a real and important

issue. For modern vehicles, in-vehicle networks that connect Electronic Control Units (ECUs) have

increasingly become targets of vehicle cyberattacks. Researchers have demonstrated that attackers

can intentionally control a vehicle by gaining access to the in-vehicle network, posing security and

safety risks for vehicles and passengers.

Intrusion Detection Systems (IDSs) provide effective countermeasures for IT systems. However,

they cannot be applied to automotive systems directly due to the challenges posed by real-time

automotive systems. Some schemes for in-vehicle networks have limitations in detecting certain

critical attacks, while others need to improve their efficiency to meet the challenges of real-

time requirements. Existing CAN IDS designs based on anomaly detection usually follow two

approaches: rule-based and machine learning-based. Generally, rule-based approaches are more

efficient but lack abilities to detect certain types of attacks. It is difficult, if not impossible, to come

up with a complete set of rules that can cover all abnormal behaviors. Machine learning-based

approaches usually achieve relatively high detection accuracy but, at the same time, often involve

high computational costs as well as a higher rate of false positives. Moreover, many existing schemes

do not consider the real-time requirements of in-vehicle networks and the memory constraints of

ECUs. In addition, their evaluations often rely on simulated data or data collected from only one

or a few vehicles, given the lack of standard benchmark datasets in this domain.

This dissertation aims to address the challenges mentioned above. We (1) investigate how

xi



existing IDS schemes work and understand their strengths and weaknesses, and conduct a detailed

literate review and an empirical comparative study to provide a comprehensive understanding; (2)

design a new hybrid approach for efficient and accurate intrusion detection. Specifically, we explore

the combination of rule-based and machine learning-based approaches to build a two-stage IDS

framework that inherits the advantages of both; (3) propose a novel IDS based on Binarized Neural

Network (BNN) to accelerate intrusion detection with the consideration of real-time demand

of in-vehicle networks. Furthermore, it can be further accelerated by hardware through Field-

Programmable Grid Arrays (FPGAs); (4) present a new Binarized Convolutional Neural Network

(BCNN)-based IDS to stick a balance between accuracy and acceleration. In particular, we design

an input generator that helps machine learning models learn better for higher accuracy; (5) collect

real Controller Area Network (CAN) data from seven different vehicle models from different OEMs;

and (6) evaluate the proposed schemes with real CAN data. Our research includes a comparative

study to provide a comprehensive understanding of existing IDSs, the development of a novel

hybrid IDS framework, the exploration of BNN and BCNN to design advanced IDSs suited for

in-vehicle environments, the data collection from seven different real vehicles, and the evaluation

of the IDSs we proposed. Results show that our research is promising, and the proposed schemes

have the potential to improve vehicle security significantly. Overall, this dissertation develops novel

IDSs to effectively and efficiently protect in-vehicle networks and meet the unique challenges posed

by real-time requirements of in-vehicle networks. This research provides innovative solutions to

enhance the security of in-vehicle networks, ensuring vehicle security in an increasingly connected

and autonomous world.
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CHAPTER 1

Introduction

1.1 Motivation and Overview

The transportation industry is experiencing a revolutionary transformation led by the rapid de-

velopment of autonomous and connected vehicle technologies together with powerful new mo-

bility services. These services support new types of mobility and promise to virtually eliminate

crashes and fatalities, which are chronic problems in the current landscape of the automotive world

[86, 52, 80, 90]. In order to deliver these promising services, automotive manufacturers have to

eliminate malicious actors in such ecosystems to minimize their impact. Automotive cybersecurity

is a significant problem in today’s automotive industry. With more software models and external

interfaces being added to modern vehicles to support emerging mobility services, in-vehicle net-

works connecting tens of Electronic Control Units (ECUs) are no longer in isolated environments.

They may be subject to various cyberattacks. Such attacks have been successfully demonstrated on

Controller Area Network (CAN), the most predominant in-vehicle bus communication protocol,

showing that the security of in-vehicle networks has become a critical issue [54, 71, 73, 72]. In these

attacks, adversaries are able to access in-vehicle networks and send arbitrary CAN messages to

interrupt the normal operations of the target vehicle, which may lead to serious safety consequences

[73, 81, 82].

To protect in-vehicle networks from those automotive cyberattacks, two major categories of

work have been proposed: 1) message authentication and sender identification, and 2) Intrusion
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Detection System (IDS). Message authentication and sender identification schemes can be efficient

for Internet security and provide a certain level of security but generally have a high communication

overhead. Implementing authentication mechanisms for in-vehicle networks presents significant

challenges because real-time communication and processing are prerequisites for these systems.

Although these strategies can work on advanced ECUs or gateways with higher computational

capabilities, their implementation will need altering or reprogramming every device, leading to

substantial deployment challenges. Furthermore, the message space in in-vehicle networks is

limited, leaving little room for additional elements such as message authentication code (MAC).

Some Original Equipment Manufacturers (OEMs) are considering the use of authentication within

the Controller Area Network Flexible Data-Rate (CAN-FD), which provides up to a 64-byte payload.

However, this solution is primarily designed for new vehicles, and it is generally not feasible

to retrofit it onto existing vehicles already on the roads. Importantly, it should be highlighted

that a successfully implemented authentication scheme can become ineffective if one or more

ECUs become compromised. Because these ECUs are a legitimate part of the vehicle and are

often configured with the correct credentials for secure communication, a breach in their security

can render the authentication method ineffective. For IDSs, they generally cost no additional

communication overhead, and their implementation involves integration as extensions on a single

ECU or a gateway, greatly simplifying the installation process. Typically, an IDS protects in-

vehicle networks by continuously monitoring network traffic and identifying potentially malicious

messages.

In-vehicle networks enable ECUs to coordinate critical functions like transmission, engine, body,

and chassis control. Unexplored vulnerabilities and unresolved issues can cause security or safety

issues for both vehicles and passengers. In this work, we aim to protect vehicles by developing

efficient IDS systems that consider the real-time reliability demands of in-vehicle networks.
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1.2 Challenges

Efforts from various sectors - academia, industry, and government bodies - have been dedicated to

enhancing vehicle security. The need to secure in-vehicle networks is critical as it directly relates

to driver and passenger safety. We must enhance the security of in-vehicle networks, which is the

core of vehicles. Anomaly-based IDSs are widely recognized as an effective strategy to secure

these networks and thwart malicious attacks. It is essential to investigate 1) whether existing IDS

schemes work effectively and efficiently, and 2) whether IDS schemes meet the demand of real-time

communications of in-vehicle networks.

Existing IDS Schemes for In-Vehicle Networks: Currently, there are two primary approaches

used for intrusion detection: rule-based and machine learning-based. For rule-based approaches,

various “rules” based on characteristics (such as periodicity, frequency, or entropy) of normal CAN

messages are derived, and CAN messages not following these rules are considered potentially

malicious [71, 14, 101, 76, 69, 122]. Usually, these systems are computationally inexpensive.

However, it is a challenging task, if not impossible, to construct a complete set of rules that can

cover all normal behaviors of the CAN traffic, especially in complicated situations where messages

may be sent non-periodically or on demand. Consequently, in realistic attack scenarios, a rule-based

system can provide low detection rates. In order to achieve higher detection rates, various machine

learning techniques, such as deep neural networks, are introduced to design new generations of

IDSs [125, 78, 49, 50, 126, 57, 102, 97, 130]. However, machine learning-based IDSs can suffer

from high false positives and typically involve high processing latency and computational costs.

Real-Time Communication Demands in In-Vehicle Networks: Advanced machine learning

algorithms have been utilized for intrusion detection. Neural networks have shown remarkable

capabilities in complicated applications, including image classification, semantic segmentation,

and object detection [59, 45]. However, they generally have high computational complexity,

usually require considerable computing resources, and often result in large power consumption.

A neural network model can require hundreds of Megabytes (MBs) of memory [100, 140, 6, 39].

This requirement for memory access is often the bottleneck of system performance as well as
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energy efficiency [104]. Deploying complex neural networks on resource-constrained devices in

embedded environments can be challenging. Given the real-time communication requirements of

the in-vehicle networks, an IDS for such networks needs to be compact and exhibits fast detection

response. Another crucial consideration is the inherent trade-off between accuracy and speed. It is

a widely accepted principle that, in general, in order to achieve faster processing speed, a degree

of accuracy can be sacrificed. Therefore, the challenge is to balance efficient and accurate IDS to

ensure reliable and secure in-vehicle networks.

1.3 Contributions

Improving the security of in-vehicle networks, and by extension, the vehicles themselves, is critical

as it directly impacts the safety of drivers and passengers. In order to enhance the security of

in-vehicle networks, it is important to evaluate existing state-of-the-art defense schemes. We need

to analyze whether existing schemes fail to handle threats effectively and efficiently. Also, we must

consider whether IDS schemes are suitable for fulfilling the real-time communication demands in

in-vehicle networks. Through such an understanding, we design new IDSs to secure in-vehicle

networks better and further ensure the safety of vehicles.

In this dissertation, the main contributions are as follows: (i) We perform a comparative study of

various IDSs. Representative existing schemes are implemented and evaluated on the same platform

based on the same real CAN data, adversary model, and evaluation metrics. The analysis reveals

insights into the strengths and weaknesses of these systems, providing a comparative understanding

and guidance for future advancements in CAN IDS. (ii) We design and implement a new IDS

framework for efficient and accurate intrusion detection. The proposed IDS combines traditional

rule-based IDS techniques with emerging machine learning methods to achieve a balance between

detection accuracy and efficiency. It is capable of detecting various types of attacks, including

those that many schemes cannot. This hybrid IDS framework also allows future updates, and each

component can be replaced by other rules or machine learning algorithms accordingly. (iii) We
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propose and implement a new IDS to accelerate in-vehicle network intrusion detection by using a

Binarized Neural Network (BNN). Considering the embedded environment of in-vehicle networks

and real-time demands, the proposed IDS aims to provide faster detection, smaller memory cost, and

lower power consumption. The IDS is also compatible with hardware acceleration techniques for

further acceleration. (iv) We develop and implement a new IDS utilizing Binarized Convolutional

Neural Network (BCNN) for higher accuracy while maintaining the benefits of BNN. The proposed

IDS keeps the advantages of binarization while striving for a balance between accuracy and

acceleration, ultimately aiming to achieve improved accuracy.

1.3.1 An Empirical Comparative Study on IDS for CAN

We conduct an empirical comparative study of in-vehicle network IDSs in the existing literature.

The focus of this study is to investigate their strengths and weaknesses. Each IDS is implemented

and evaluated on the same platform using the same dataset, adversary model, and evaluation

metrics, which ensures a fair and comprehensive comparison. This study aims to provide a

comprehensive understanding and valuable insights, guide future research directions, and help

design robust and efficient in-vehicle network IDSs, ultimately helping to advance the field of

automotive cybersecurity.

1.3.2 A Hybrid Approach Toward Efficient and Accurate Intrusion Detection

for In-Vehicle Networks

Currently, there are two primary approaches used for intrusion detection: rule-based and machine

learning-based. Our analysis shows that existing rule-based or machine learning-based IDSs have

their own limitations. Rule-based approaches are efficient but can have low accuracy due to

limitations in detecting certain types of attacks which are often sophisticated and common, and

can occur in real attack scenarios. Machine learning-based approaches have comparably higher

detection accuracy but, at the same time, have high computational costs. Moreover, machine
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learning-based approaches also have inherent limitations in detecting certain types of attacks. To

overcome those limitations and defend against various vehicle attacks, we propose a new hybrid IDS

framework with two stages. The proposed scheme combines traditional rule-based IDS techniques

with emerging machine learning methods to achieve a balance between detection accuracy and

efficiency. More specifically, we use machine learning methods to achieve a high detection rate

while keeping the low computational requirement by offsetting the detection with a rule-based

component. Our experiments with CAN data collected from four different real vehicle models

demonstrate the effectiveness and efficiency of the proposed hybrid IDS. An additional benefit of

this IDS is its flexibility as a framework, where the rule-based or machine learning components

can be replaced based on specific needs or requirements. This offers the advantage of adapting the

IDS to different scenarios and optimizing its detection capabilities on a case-by-case basis. Our

experimental evaluations on four real vehicle datasets demonstrate that the proposed IDS detects

various types of attacks with a low false positive rate of 0.066%.

1.3.3 Accelerating In-Vehicle Network Intrusion Detection System Using Bi-

narized Neural Network

Machine learning-based IDSs usually exhibit higher detection accuracy. However, those systems

generally involve high latency, require considerable memory space, and often result in high energy

consumption. To accelerate intrusion detection and also reduce memory and energy costs, we

propose a new IDS system using BNN. Compared to full-precision counterparts, BNNs offer

faster detection, smaller memory cost, and lower energy consumption. Moreover, BNNs can be

further accelerated by leveraging Field-Programmable Grid Arrays (FPGAs) since BNNs cut down

hardware consumption. The proposed IDS is based on a BNN model that suits CAN messages and

takes advantage of sequential features of messages rather than each individual message. We also

explore various design choices for BNN, including increasing network width and depth, to improve

accuracy since BNNs typically sacrifice accuracy. The performance of our IDS is evaluated with

four different real vehicle datasets. Experimental results show that the proposed IDS reduces
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the detection latency (3 times faster) on the same CPU platform while maintaining acceptable

detection rates compared with full-precision models. Furthermore, we examine the proposed IDS

on multiple platforms, and our results show that using FPGA hardware reduces the detection

latency dramatically (128 times faster) with lower power consumption compared to an embedded

CPU device. In addition, we evaluate BNNs with different designs. Results demonstrate that wider

or deeper models definitely improve accuracy at the cost of increased latency and model sizes to

varying degrees. Applications are recommended to choose the appropriate model design for their

needs based on the available resources they have.

1.3.4 Efficient and Effective In-Vehicle Intrusion Detection System Using

Binarized Convolutional Neural Network

Current BNN-based IDSs, while providing acceleration benefits, often fall short when it comes to

offering high accuracy in securing CAN. Our goal is to maintain the advantages of BNNs while

improving their accuracy. To this end, we propose a novel IDS utilizing BCNN. This IDS fits CAN

traffic and takes advantage of temporal and spatial features of CAN messages instead of individual

messages. In particular, we design an input generator that exploits the temporal sequential pattern

and spatially local correlation of messages to facilitate model learning and ensure high-accuracy

performance. Our experimental results show that the proposed IDS effectively reduces memory

cost and detection latency while maintaining high detection rates. Specifically, our IDS runs 4

times faster and utilizes only 3.3% of the memory space required by a full-precision CNN-based

IDS. At the same time, it achieves 90.2% of the accuracy of the CNN-based IDS and improves

11.9% of the accuracy of the state-of-the-art BNN-based IDS design.

Scope of This Dissertation

Focus on CAN: In-vehicle networks include Local Interconnect Network (LIN), CAN, FlexRay,

CAN with Flexible Data-Rate (CAN-FD), Media Oriented Systems Transport (MOST), Ethernet,

etc. In this work, we primarily focus on CAN among those protocols. As the de facto standard
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for in-vehicle networks, CAN is relatively low-cost, efficient, and reliable. CAN is mandatory for

all cars sold in the US, and almost all new passenger cars manufactured in Europe are equipped

with it. In addition to automotive usage, CAN is adopted by other industries, including railways,

aircraft, aerospace, and medical equipment. Since these applications are directly related to safety

concerns, it is crucial to secure CAN effectively.

Focus on Anomaly Detection: There are two intrusion detection methods: anomaly-based

and signature-based. We delve into anomaly-based IDS to protect in-vehicle networks against

malicious activities. The anomaly-based method utilizes a normalized baseline and monitors

deviations between the current traffic and the baseline. Once an abnormal event occurs, an alert

is triggered. The normalized baseline is generated by analyzing the normal traffic of the protected

vehicle. The signature-based method, also called misuse detection, leverages predefined attack

signatures to monitor current traffic and detect intrusions. This method accurately identifies

attacks corresponding to the attack signatures, offering high precision with minimal false positives.

However, it lacks the ability to catch attacks that are not predefined. Currently, knowledge of attack

signatures is limited, and there is no comprehensive database for vehicle cyberattacks. Hence,

this method is not as developed as anomaly-based detection for in-vehicle networks. Our focus

is primarily on anomaly detection, which is able to identify any abnormal state in addition to the

attack state.

When we mention “rule-based” methods, we specifically refer to a subtype of anomaly detection

methods: the rule-based anomaly detection methods. These rules are created by studying the

characteristics of normal in-vehicle network data. Then, they are applied to differentiate between

normal and abnormal behaviors.

1.4 Organization

This dissertation is organized as follows. Chapter 2 introduces the detailed background, including

an overview of in-vehicle networks, existing risks, and defense countermeasures against in-vehicle
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attacks. Chapter 3 provides a literature review on IDS research for in-vehicle networks. Chapter 4

presents a comparative study of existing IDSs. Chapter 5 proposes a novel hybrid IDS framework

designed for in-vehicle networks. Chapter 6 introduces a binarized neural network approach to

accelerate in-vehicle network intrusion detection. Chapter 7 demonstrates an IDS utilizing binarized

convolutional neural network to improve detection accuracy while maintaining an accelerated

detection process. Finally, we conclude the dissertation and discuss future work in Chapter 8.
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CHAPTER 2

Background

With recent advancements in the automotive industry and the emergence of autonomous and

connected vehicles, the security of the Controller Area Network (CAN) has become increasingly

crucial. Modern vehicles are no longer isolated mechanical systems, and electronic controls and

x-by-wire systems now control almost every aspect of a car. Furthermore, the evolving reality that

cars will soon be driving autonomously, as well as increasing connectivity between vehicles and

other elements (V2X), further highlights the importance of automotive cybersecurity.

To evaluate the capability of attackers, researchers demonstrate that attackers are able to access

the CAN network via a variety of attacking interfaces such as tire-pressure monitoring system

(TPMS), Bluetooth, telematics, and on-board diagnostics II (OBD-II) and take the whole control

of the victim vehicle [13, 73, 81, 82, 51, 21]. The authors of [73] present how to control a Jeep

Cherokee which is driving on a highway by manipulating the compromised ECU remotely. The

researchers design and launch several remote attacks on the Tesla Model S/X in both Parking and

Driving mode [81, 82]. Their studies show that attackers are able to access the Autopilot electronic

control unit (ECU) in the vehicle and execute remote attacks by exploiting vulnerabilities.

In this chapter, we first provide an overview of in-vehicle networks, and then we introduce the

risks of CAN and discuss attack procedures. Next, we review related defense countermeasures,

including message authentication and sender identification, and intrusion detection systems. Finally,

we provide an overview of various techniques related to effective IDS design.
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2.1 Controller Area Network (CAN)

In this work, we focus on CAN, the most widely used protocol for in-vehicle communication.

In addition to CAN, there are multiple protocols for in-vehicle data communications, such as

FlexRay and Local Interconnect Network (LIN). FlexRay is designed to provide fast and reliable

communication, but it has more complicated operations and is more expensive than CAN [4, 88].

LIN is usually used in low-speed applications for non-critical functions. CAN is the most widely

used in-vehicle communication protocol for real-time and safety-related components. It is able to

build reliable interconnections between ECUs/nodes through a multi-master broadcast serial bus

system for safety-critical functions, including the powertrain, engine management, transmission

system, and anti-brake system [107, 20, 16].

CAN Frame: The CAN bus is a message broadcast bus transmitting messages that carry up to

64-bit data. In the bus, data is exchanged among ECUs through messages which help maintain

data consistency and deliver information among ECUs for making control decisions. Figure 2.1

illustrates the structure of a CAN frame, a universal format adhered to by all CAN messages for data

transmission. A message includes: Start-of-Frame (1 bit), Identifier (11 bits or 29 bits), Control

field (6 bits), Data field (0-8 bytes), CRC field (16 bits), ACK field (2 bits), End-of-Frame (7 bits)

and Inter-Frame Space (3 bits). Note that a frame featuring an 11-bit ID is a standard CAN frame,

aligning with the CAN 2.0A protocol, while a frame carrying a 29-bit ID suggests an extended

CAN frame, supporting the CAN 2.0B protocol. The latter protocol maintains compatibility with

CAN 2.0A. As per the CAN standard, every CAN implementation must support the standard frame

format and be resilient to the extended frame format. Furthermore, there is an extension to the

original CAN, known as CAN with Flexible Data-Rate (CAN-FD), which expands the ID field to

encompass up to 512 bits.

Message Broadcast: CAN bus is a message-oriented network. Each CAN message has no

addressing scheme. That is, messages are not transmitted from one node to another node based on

addresses. Instead, messages are assigned CAN IDs for communication. Each ECU is configured

to accept CAN messages with specific IDs and disregard others at compile time. This design
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Figure 2.1: CAN frame format

offers flexibility; for instance, adding an ECU does not affect existing nodes. When a message

is broadcasted, every ECU on the bus receives it. If the message’s ID does not match an ECU’s

pre-configured list, it will be discarded; otherwise, it will be accepted and processed further. Figure

2.2 shows a typical CAN bus data transfer process. When ECU 1 sends out a message, both ECU

2 and ECU 3 receive it. ECU 2, after checking the message’s ID and finding it does not match

its specifications, discards the message. On the other hand, ECU 3 recognizes the ID and, as it is

configured to accept such messages, processes it further.

Figure 2.2: CAN bus topology

CAN Bus Arbitration: CAN operates as a broadcast communication network, leveraging message

priority for collision detection and arbitration. Each ECU first evaluates the bus status before

transmitting a message, ensuring to proceed only if the bus is idle. If the bus is occupied, the

ECU will postpone its transmission to the next available opportunity. When several ECUs try to

transmit messages at the same time, conflicts can occur. However, the CAN arbitration mechanism

addresses and resolves these issues. CAN arbitration operates on the principle that a message’s

priority is inversely proportional to its ID value – a lower ID corresponds to a higher message

priority [20, 18, 107, 16]. Imagine a situation where three CAN messages, labeled with IDs
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0x0002, 0x003, and 0x00AF, are being sent to the CAN bus at the same time. Based on the

arbitration rules, the message with ID 0x0002 will be prioritized and broadcasted first because

it has the highest priority given its lowest ID value. The other messages with higher ID values,

indicating lower priorities, will wait their turn for subsequent transmission.

Typical CAN Setup: In a typical CAN setup, every ECU is associated with a unique set of

message IDs for sending messages. A message from an ECU is assigned with an ID from the

unique set of that ECU. Since message ID sets of different ECUs are unique and non-overlapped

with each other, messages with the same ID must be sent from the same ECU. In other words,

a valid ID corresponds to one and only one sender ECU. Each ECU is also configured to accept

messages based on another subset of message IDs, and those subsets might overlap across different

ECUs. This setup allows a single message sent by one ECU can be accepted and processed by

multiple ECUs.

2.2 CAN Risks

2.2.1 CAN Vulnerabilities

CAN is developed to provide reliable communications with high efficiency and low cost. Although

CAN physical layer has strong error detection through CRC, bit stuffing, etc., it has no security

protection. The CAN vulnerabilities come from the facts: it is a broadcast bus; each node decides

if it should process the message; message priority is based on ID value; messages are not encrypted

or authenticated. Such design results in many potential vulnerabilities for CAN: 1) all nodes see the

entire traffic as plain text, allowing eavesdropping and learning the patterns of the target ECU; 2)

any (including the outside intruder and the inside intruder - a compromised ECU) node can send any

arbitrary message and no one knows who send that message; 3) the broadcast nature and relying on

arbitration to win bus access makes DoS attack possible, and 4) answers to standard challenges that

are needed for authentication especially when doing sensitive things, such as reflashing components

or firmware update, are stored in memory, etc. The aforementioned vulnerabilities make in-vehicle
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networks vulnerable to attacks. For example, since there is no sender ECU identification, the

attacker who compromises an ECU can send malicious messages that disrupt the bus and even

cause control system failure without leaving a trace.

2.2.2 In-Vehicle Attacks

In order to enhance the security of in-vehicle networks, it is crucial to study various types of

attacks, as researchers have demonstrated various techniques for launching attacks. In this section,

we introduce a general attack procedure for in-vehicle networks, review existing interfaces for

automotive cyberattacks, and summarize attack methodologies used in related studies.

Figure 2.3: Attack Scenario on CAN

General Attack Procedure: Figure 2.3 shows a general attack scenario for CAN. A general

attack procedure can be divided into three phases [66, 94]: investigation phase, preparatory phase,

and attack phase. In the investigation phase, to access the target in-vehicle network, attackers

determine an interface that can be used, such as the OBD-II port and telematics system. Malicious

nodes can then be built through the chosen interface to launch an attack. The malicious node can

be a laptop, an external ECU, a compromised ECU, or a telematics system infected by malware. In

the preparatory phase, the malicious node eavesdrops and analyzes CAN messages transmitted on

the bus. Since messages are broadcast to all the ECUs deployed on the CAN bus, all transmitted

CAN messages can be sniffed and recorded. Attackers are able to further analyze the historical
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CAN trace and build malicious CAN messages to launch attacks. In the attack phase, attackers

are able to implement various types of attacks, such as injecting malicious messages. It is noted

that attackers have to repeat the preparatory phase when they have new target vehicles because the

implementation of CAN is different from vehicle models. Therefore, malicious messages cannot

be reused to attack other different vehicle models.

Available Interfaces: Multiple interfaces can be leveraged by adversaries to access in-vehicle

networks of a modern vehicle, such as the OBD-II port, CD player, USB port, and telematics

systems such as GM’s OnStar, Audi’s Connect and BMW’s Connected Drive [13, 66]. The OBD-

II port supports on-board diagnostic standards, and it is designed for diagnosing vehicles and

reprogramming the firmware of ECUs. It not only offers diagnostic and emissions measurement

information but also additional information, such as body control, engine control, chassis control,

etc. Most experimental attacks for in-vehicle networks are implemented through the OBD-II port.

A laptop connecting the OBD-II port can monitor and record the messages transmitted on the

CAN bus. Besides, some commercial OBD-II scan tools provide wireless connection options for

smartphones, which makes wireless attacks possible such as through Bluetooth or Wi-Fi. Another

interface is the telematics system that supports media entertainment, the Global Position System

(GPS), and the cellular network. Modern vehicles are commonly equipped with a multi-functional

telematics system to connect to external networks, which makes the telematics system become

a target of vehicle cyberattacks. By exploiting available interfaces, adversaries are capable of

accessing a target in-vehicle network. They can then launch various types of attacks and even

intentionally control the target vehicle.

Attacking Methodologies: Several methodologies have been proven to be effective in existing

studies [13, 66], and they are summarized as follows:

• Message Sniffing: Because of the broadcast nature of CAN, a malicious node can eavesdrop

on all the messages transmitted on the CAN bus. By accessing an in-vehicle network via

available interfaces such as the OBD-II port and telematics system, adversaries are able to

monitor the real-time traffic on the bus and record all transmitted messages. Adversaries can
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know details of the CAN messages by analyzing recorded messages. As the range of valid

CAN messages is not large, some functions of certain ECUs can be revealed by conducting

fuzzing tests [54].

• Message Injection: Adversaries can send malicious messages to the CAN bus by controlling a

malicious node. The malicious node can be a laptop connecting the OBD-II port, an external

ECU connecting to the bus, or a reprogrammed/compromised ECU. Because of the broadcast

nature of CAN, malicious messages can be transmitted to the bus and listened to by all nodes.

To attack a certain ECU, attackers can inject a carefully crafted malicious message with an

appropriate ID accepted by the target ECU.

• Message Falsifying: Adversaries can design malicious messages to launch specific attacks

based on an analysis of the semantic meaning of CAN messages. Those malicious messages

contain altered data that can mislead or even control corresponding legitimate ECUs. For

example, adversaries are able to launch attacks by falsifying messages to modify the reading

of the speedometer, the fuel level, the information shown on the instrument panel cluster, or

even affect the function of the transmission system. Such attacks can not only fool the driver

but also cause critical safety issues.

• Message Replay: When adversaries have some valid messages, they can send such messages

back to the CAN bus via a malicious node. ECUs are not able to check the freshness of

the messages as well as the source of the received messages, because the CAN protocol has

no authentication mechanism. This type of attack can cause critical safety issues without

much effort for adversaries as it can be easily implemented. For example, an attacker is able

to operate a stationary car by injecting valid messages related to the engine control into the

in-vehicle network.

• Denial-of-Service (DoS) Attack: As the ID of each CAN message indicates the priority,

adversaries can leverage it to launch DoS attacks. During this attack, messages with the

highest priority are injected into the CAN bus, and normal nodes have to wait for the next
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ideal status of the bus. This attack can be easily implemented by injecting CAN messages

with the highest priority all the time. It can disable communications of normal ECUs on the

bus and result in critical safety issues.

2.3 CAN Defenses

To protect CAN from attacks, various schemes are proposed for CAN defenses. Two main lines are

1) message authentication and sender identification, and 2) intrusion detection system.

2.3.1 Message Authentication and Sender Identification

Various message authentication or sender identification schemes have been proposed for CAN to

defend against cyberattacks. Several cryptographic protocol proposals, most of them based on the

use of message authentication code (MAC), have been proposed for CAN message authentication

[83, 106, 105, 96, 118, 63, 85, 27, 28, 115]. However, due to the highly restricting space in CAN

message (a CAN message is at most 8 bytes in length) and the demanding real-time requirement,

to have a practical and deployable solution for CAN authentication is still a challenging job.

To improve efficiency for real-time detection, an anonymous ID scheme is proposed to provide

implicit sender identification to prevent broadcasting from unauthorized senders in [32]. Since

both the sender and target receiver can generate the anonymous IDs beforehand, this scheme is effi-

cient and only adds negligible delay to the identification process. An explicit sender identification

scheme is proposed based on the fingerprinting of ECUs by using clock skews [14].

All the message authentication and sender identification schemes aim to protect the integrity and

verify the originality of CAN messages. Even though these schemes can be effective in defending

against attacks originating from unauthorized devices which have access to the CAN, they are

limited to defending against attacks originating from the inside - compromised ECUs. Because

these ECUs are legitimate parts of the vehicle, they are usually configured with the right credential

to conduct secure communication.
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2.3.2 Intrusion Detection Systems

Parallel to authentication methods, intrusion detection system (IDS) schemes are designed to

secure in-vehicle networks. IDSs are able to detect a wide variety of threats in real time and can be

updated as new threats emerge. Moreover, an IDS can easily be integrated into existing vehicles,

a convenience not often found with other methods like message encryption or authentication.

The ability to retrofit an ECU or a gateway equipped with an IDS, without necessitating changes

to the existing vehicle architecture, highlights the practicality and versatility of IDSs. These

IDSs are usually rule-based or machine learning-based, working to detect malicious activities by

distinguishing between normal and abnormal behaviors.

Rule-based IDSs leverage the features derived from static analysis of CAN messages, such as

their consistent intervals [101, 69]. However, this approach encounters limitations when dealing

with aperiodic or inconsistent messages. Other detection features can be the entropy of CAN

messages, the fluctuation in system entropy, the message sequence, or the inter-message time

distribution. However, IDSs, relying on sequence pattern recognition, are susceptible to replay

attacks, resulting in high false alarm rates and low detection rates. These rule-based IDSs may find

it challenging to cope with complex types of attacks that are not defined within their threat models,

resulting in lower detection rates.

Given the rising complexity of attacks, advanced data analysis techniques like machine learning

and neural network are being used to improve detection [50, 94, 58]. Algorithms such as deep

neural network (DNN) have been employed to build anomaly detection models. Even so, machine

learning-based IDSs, while typically offering superior accuracy, often fail to consider the real-time

requirements and resource constraints of the CAN bus environment. Furthermore, they may be

inadequate in detecting certain kinds of attacks, and some systems need to preprocess CAN data,

causing processing delays and providing limited information for intrusion detection. In addtion,

processing time evaluations are only reported by a few IDSs studies, and detection time can

significantly vary based on system complexity, emphasizing the need for further improvement and

consideration of real-time requirements of in-vehicle networks.
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With the continuous evolution of automotive technologies, maintaining effective and robust

security measures is critical. IDSs, given their adaptability, potential real-time detection capabil-

ities, and ease of integration into existing vehicles, can help to address CAN vulnerabilities and

ensure a secure in-vehicle network environment. Existing IDSs may perform effectively against

specific threats but struggle when faced with more sophisticated attacks not covered in their threat

models. There is an increasing necessity to incorporate considerations of real-time performance in

the development of future IDSs for in-vehicle networks.

2.4 Accelerating Neural Network

The design and implementation of efficient IDS for in-vehicle networks need techniques that

maximize performance while minimizing resource usage. Given that vehicles typically have

limited computational resources, it is crucial to optimize the computational efficiency of neural

network-based IDS models. Several techniques have been proposed to address this challenge, such

as pruning, quantization, and hardware acceleration.

Model pruning is a strategy for neural network optimization that involves eliminating unim-

portant or redundant parameters from the network. It is a technique that is designed to reduce

the computational complexity and memory footprint of the model without significantly affecting

its performance. Early work by Han et al. [34] demonstrates the effectiveness of pruning neural

networks for improved efficiency. Their method removes connections with small weights, reducing

the model size without significantly impacting accuracy. More recent research has explored struc-

tured pruning, where entire neurons, layers, or feature maps are removed, enabling more significant

computational savings [60, 40].

Quantization is another popular method for accelerating neural networks. It reduces the pre-

cision of the weights and sometimes the activations in the network, reducing memory usage and

computation requirements. Several works have shown that neural networks can maintain reasonable

performance with lower-precision weights, often as low as 1-2 bits [95, 43]. Quantization not only
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reduces the memory footprint but also allows for the use of lower-precision arithmetic, leading to

faster computation [17].

Hardware acceleration is a direct approach to improve the computation speed of neural networks.

Specialized hardware accelerators like Graphics Processing Units (GPUs), Tensor Processing Units

(TPUs), and Field-Programmable Gate Arrays (FPGAs) are used to expedite the calculations in

neural networks. For instance, GPUs have long been used to accelerate neural network computation

due to their parallel processing capabilities [55]. More recently, custom accelerators like TPUs

have been developed specifically for accelerating neural networks [48]. FPGAs have also been used

due to their reprogrammable nature and efficient parallelism for certain types of computation [119].

2.5 Binarized Neural Network

Due to the high computation cost and the large model size, advanced neural network techniques

can be challenging to deploy in embedded environments. Some studies aim to make deep learning

faster and smaller without sacrificing overmuch accuracy. Han et al. [33] discuss that neurons not

contributing much to the network can be removed from the network. The pruning network is sparser

and potentially smaller with fewer calculations. Iandola et al.[46] present a method to reduce the

number of parameters for network size reduction. Both aforementioned methods can make the

model size smaller to some extent, but they cannot guarantee a big size reduction when most

neurons in the network significantly contribute to the network or the model is not over-parametered.

Researchers propose a quantized network in the extreme case: Binarized Neural Network [17, 8].

They introduce a method to train neural networks with binary weights and activations. The result

of BNNs is obvious compared to 32-bit DNNs [17]. BNNs can require up to 32 times smaller

memory size and 32 times fewer memory accesses. However, BNNs may not be able to provide

higher accuracy compared to their corresponding full-precision models. Various methods have

been reported to improve BNN accuracy [12]. Some studies focus on improving a model structure.

Bulat et al. [12] design a hierarchical network and suggest making each layer wider by adding more
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neurons in hidden layers. Tang et al. [108] propose to use partial binarization during training,

and only binarizing groups of kernels that have a greater impact on overall performance. Another

direction of improving the accuracy of BNNs is to extend core principles of binarization itself, such

as scaling with a gain term. Gain terms [95] can be used to give more capacity to a network when

multiple gain terms are used within a dot product or to form a linear combination of parallel dot

products.

2.6 Deep Learning on FPGAs

Deep learning applications with demanding real-time responses rely on parallelism computing

in inference phases [31]. In the early years, since GPUs are specifically designed for video and

image rendering, using GPUs for deep learning became widely accepted. GPUs are able to

process numerous arithmetic operations in parallel so that they can offer considerable acceleration.

However, compared with Application-Specific Integrated Circuits (ASICs), which are specially

optimized for deep learning applications, GPUs do not deliver as much energy efficiency as ASICs

at the same performance. While there is no single hardware architecture working perfectly for all

deep learning applications, FPGAs provide distinct advantages over GPUs and ASICs in certain

use cases. FPGAs offer flexibility and cost efficiency with circuitry that can be reprogrammed

for desired functionalities. In comparison to GPUs, FPGAs provide decent performance in deep

learning applications in which low latency and high power efficiency are critical. Compared with

ASICs, FPGAs can be fine-tuned even after being manufactured to set a balance of power efficiency

and performance with specific requirements. As accelerator devices, FPGAs can be used in the deep

training phase, which has already been widely deployed in the cloud server by leading technology

companies, such as Microsoft Azure [92]. It is also feasible to use FPGAs as embedded devices

in the inference phase. Unlike powerful and expensive FPGAs in cloud servers, embedded FPGAs

have limited logic resources and memory bandwidth, which makes them difficult to perform a

full-size, full-precision deep learning inference [141]. To bridge this gap, one of the approaches
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[135, 30] is to optimize deep learning computation and memory access in FPGAs by efficiently

increasing the utilization of the design space. Another approach proposed in [62] is to simplify

the deep learning model by reducing the precision of floating-point operations and then fit this

size-reduced model onto an embedded FPGA device.
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CHAPTER 3

Literature Review

The growing complexity of vehicle systems, the increasing connections between vehicles and the

external environment, along with emerging cyber threats, highlights the urgent need for effective

security measures. Intrusion Detection Systems (IDSs) offer a crucial line of defense against these

threats. In this chapter, we explore the literature on IDS and emerging trends, and delve into details

of effective IDS design and related techniques.

3.1 Rule-based IDS

Various rule-based IDSs, which exploit different characteristics of CAN messages, have been

proposed over the years [128, 94]. Certain proposals leverage the fact that most CAN messages

are sent at fixed intervals. For instance, the study by Song et al. detects message injection attacks

by analyzing traffic anomalies based on an assumption that all CAN messages are generated at a

regular frequency or interval [101]. The methods proposed in [7] rely on analyzing distributions

in inter-message time and monitoring changes during the detection. Similarly, the clock-based IDS

proposed by Cho et al. uses the periodic nature of many CAN messages to detect anomalies and

fingerprint ECUs [14]. While lightweight and efficient, these time-interval approaches fall short

when faced with attacks involving aperiodic messages.

Other approaches focus on monitoring the entropy of CAN messages or changes in system

entropy for intrusion detection. The methods proposed by Muter et al. and Marchetti et al.

rely on analyzing distributions in inter-message time and tracking entropy changes during the
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detection process [76, 69]. Furthermore, the sequence pattern of CAN message ID can also be

leveraged for intrusion detection [68]. Nevertheless, sequence pattern-based IDSs often struggle

in defending against replay attacks, as the message sequences of such attacks have been observed

during the modeling process and are therefore marked as genuine. Moreover, these systems, which

only exploit recurring patterns of two consecutive messages, are ineffective against well-designed

message injection attacks. As a result, they yield a low detection rate and high false alarm rate,

presenting a critical issue for IDSs.

In addition, various other information has been explored for intrusion detection systems. For

example, an IDS based on the entropy of bits in the ID section is proposed by Wang et al [122].

However, their results show that only the detection of higher-priority CAN messages achieves

a higher detection rate, and their conclusions are only based on one CAN trace collected from

one vehicle. Given the varied CAN implementations across different vehicles from different

manufacturers, their scheme may provide unreliable performance over different datasets. An IDS

based on the Hamming distance is proposed by Stabili et al. [103], but it shows poor performance

on replay attacks. Lastly, Muter et al. suggest using a set of different in-vehicle sensors to verify

message formality, location, data range, and data plausibility, but without implementation [77].

In summary, the aforementioned schemes usually perform well with specific threat models, but

they may miss sophisticated attacks not included in those models. As such, these IDSs demonstrate

a need for further improvement.

3.2 Machine Learning-based IDS

Given cars have become more connected and complicated, attacks are becoming more sophisti-

cated. Some advanced data analytic techniques such as machine learning and deep neural network

(DNN) are considered to improve detection rates, especially in detecting more sophisticated attacks

or unknown attacks which can escape free from being caught by detection methods exploiting

regularity, periodicity, or other CAN data characteristics, such as simple sequence patterns. Ma-
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chine learning-based IDSs for in-vehicle networks have been proposed for applying hidden patterns

[79, 111, 49, 125, 126, 102, 97, 42, 130]. These schemes use different machine learning algorithms

as well as various data features to train the model and detect anomalies. In [79] and [125], they use

data extracted from the OBD-II port to train the machine learning models for detecting anomalous

activities in vehicles. The data used in [125] has clear semantic meanings about the control system

by using OBD-II parameter IDs. As inputs are interpreted data, it adds delay in data processing.

Moreover, since only a limited set of messages can provide clear semantic meaning, the proposed

IDS has a limited amount of information to rely on for anomaly detection. The work of [79]

uses the Hidden Markov Model while [125] and [102] use Artificial Neural Network (ANN) and

Convolutional Neural Network (CNN), respectively. In [111], a one-class support vector machine

is used to detect deviations from normal frequencies of CAN messages. The bit pattern in the data

field (64-bit) of CAN messages and a DNN model are used for intrusion detection [49]. Results

show that the DNN-based approach outperforms ANN-based approaches in detection accuracy.

Generative Adversarial Networks (GAN) based IDSs are proposed in [97, 130]. Note that [130]

requires DBC (Data Base CAN) file, which is kept strictly confidential by the automotive OEM,

to train their GAN model. The authors of [126] propose a vehicular intrusion detection system,

named VIDS, that includes two parts: a lightweight domain-based model and a crossdomain-based

model. The domain-based model utilizes LSTM, a Recurrent Neural Network (RNN), and takes

the time frequency difference between CAN messages as input. The crossdomain-model uses the

data field (64-bit) values in each CAN message as input for ANN to detect anomalies.

All machine learning-based schemes usually involve high computation costs. Although all

proposed IDSs are supposed to work in real-time, only a few of them report an evaluation of the

processing delay time. In the work of [49], they report a real-time processing delay of 2.05 ms-3.78

ms per CAN message, depending on the number of layers used in the DNN model. In another

work [2], the authors conduct a time complexity analysis on a different number of layers. In their

evaluation, the best detection processing time is about 5-6 ms with two hidden layers. With the

increase of the hidden layer, the detection can cost up to 20 ms with sixteen layers.
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3.2.1 General Machine Learning-based Approach

The application of classical machine learning methods to IDS has been a significant area of focus

in cybersecurity research. The basis for this approach is to employ machine learning techniques

that enable computers to learn from and make decisions or predictions based on data. Machine

learning provides a range of advantages, such as the capability to handle large-scale data, learn and

adapt to new patterns, and make predictions with high accuracy [99].

As an example, decision trees have been widely utilized in IDS due to their interpretability and

ability to handle both categorical and numerical data. A study by Kumar et al. [56] uses decision

tree-based ensembles for network-based intrusion detection, demonstrating their effectiveness.

Similarly, Support Vector Machines (SVMs) have been adopted for their ability to handle high-

dimensional spaces and their robustness against overfitting. Tao et al. [109] showcase an anomaly

detection system using a genetic algorithm and SVMs that detected attacks effectively.

The k-Nearest Neighbor (KNN) algorithm, owing to its simplicity and efficacy in multi-class

classification problems, has also found its use in IDS. A study by Rao et al. [10] successfully

employs KNN in a network intrusion detection system, highlighting its efficiency. Moreover,

clustering algorithms like K-means and density-based spatial clustering of applications with noise

(DBSCAN) have also been leveraged to develop IDS. A study by Peng et al. [89] utilizes clustering

techniques to detect anomalies in a network traffic dataset, showcasing their potential over big data.

In addition, ensemble learning methods have gained popularity, offering improved performance by

combining the strengths of multiple learning models. A study by Illy et al. [47] demonstrates the

effectiveness of this approach through two levels of detection in network intrusion detection.

Despite the promises shown by classical machine learning techniques in IDS, it is worth noting

that these methods often require significant feature engineering and may struggle with dynamic,

evolving threats [132]. Nevertheless, applying these techniques to intrusion detection provides a

robust foundation upon which more advanced systems can be built.
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3.2.2 Neural Network-based Approach

3.2.2.1 Intrusion Detection Using Sequential Patterns

Machine learning techniques have proven to be successful at conducting intrusion detection through-

out the years, and intrusion detection using sequential patterns is one of the research directions.

Oliveira et al. propose an approach by using sequential patterns of data, and their results show that

anomaly detection can be better addressed from a sequential perspective [84]. Xing et al. categorize

three types of classification methods based on the sequence pattern of data [131]. The first one

is the feature-based method that transforms sequences into feature vectors through feature selec-

tions and then applies classification methods. This method introduces an additional preprocessing

step before the classification. The second method is the distance-based method that examines the

similarity among sequences. This method may not work effectively in environments that involve a

large-scale database, as it is difficult to calculate the distances of all reference sequences. The last

method utilizes machine learning algorithms, such as naive bayes, markov model, hidden markov

model, and neural networks, to build sequence models for sequence classification. However, for

high accuracy, they usually involve high computation costs and require large amounts of data in the

training process. Wang et al. propose a malicious traffic classification method using CNN [124].

By transforming the raw network traffic data as images for their training and testing of the CNN

classifier, there is no necessity to introduce any hand-designed features or feature selections. To

protect CAN in particular, with a similar design, a CNN-based IDS is proposed [102]. CAN mes-

sages are converted to image-like frames with grid structure rather than feature vectors, so therefore

their CNN classifier is able to learn the sequential patterns of CAN traffic to detect intrusions. Their

experiments demonstrate that the proposed IDS has low false negative rates and error rates.

3.2.2.2 Intrusion Detection Using Spatial Features

Neural networks have been widely and successfully used for intrusion detection, and spatial feature

is one of the commonly used traffic data features [123]. To exploit spatial features, traffic is first
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converted into traffic image frames. Subsequently, image classification techniques are employed to

learn from these frames. This knowledge is then applied to classify images for intrusion detection.

For CAN IDSs, several studies consider spatial features of CAN traffic. A CNN-based IDS approach

is proposed [102], where CAN IDs are transformed into image frames rather than feature vectors.

However, the proposed IDS is limited to detecting malicious messages with altered data sections.

Another CAN IDS provides a design to convert CAN traffic data [138]. The design takes both the

ID section and the data section into account to enable the IDS to detect more attack types, such as

attack messages that only contain malicious data. In addition, some studies propose that CNN can

work with other machine learning approaches, including LSTM [67, 123], whereas those schemes

tend to be large in scale and can be problematic when deploying them to specific environments

such as embedded systems.
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CHAPTER 4

Empirical Comparative Study

Numerous Intrusion Detection System (IDS) schemes are proposed to protect in-vehicle networks.

These schemes have been examined through diverse datasets, evaluation metrics, and adversary

models. Their evaluations can be limited when depending on simulated data, data from a single

vehicle, or considering only a certain type of attack. Moreover, these schemes have shown varied

detection accuracy due to the use of different datasets and a narrow focus on specific attack types.

Therefore, understanding the effectiveness of a particular IDS can be challenging. To gain a

comprehensive understanding, it is crucial to evaluate these schemes under the same conditions,

employing the same types of attacks, datasets, and evaluation metrics.

In this chapter, we implement representative existing schemes to provide a comprehensive

understanding of CAN IDS. We begin by explaining the adversary model we used. We then detail

our data collection. Next, we discuss the evaluation metrics employed in this study. Finally, we

conduct a comparative study on rule-based IDS schemes and machine learning-based IDS schemes

respectively.

4.1 Adversary Model

We consider general adversary models, which cover most known attack scenarios against CAN

communication, in contrast to the limited scope often found in other studies. In this section, we

present the adversary models used in this comparative study. We first introduce the various types of
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attacks that can be performed against CAN. Following this, we discuss different types of adversaries

with different levels of capabilities.

Understanding how adversaries gain access to the vehicle’s bus is important to the context.

Direct access typically involves a physical connection to the CAN bus, usually through the On-

Board Diagnostics-II (OBD-II) port. Such access provides a direct path to the in-vehicle network,

making all ECUs potentially exposed [13]. In more severe cases, adversaries can compromise

an ECU, potentially controlling the specific subsystem and having the ability to send malicious

CAN messages throughout the in-vehicle network [14]. Another type of access is indirect access

which occurs remotely, leveraging the vehicle’s wireless interfaces. These interfaces range from

unsecured or weakly secured Wi-Fi networks to Bluetooth interfaces or even the vehicle’s cellular

connectivity. Through these channels, adversaries are able to remotely inject malicious CAN

messages, initiate unauthorized control commands, or disrupt the normal operations of the in-

vehicle network. Whether access to the target CAN bus is achieved directly or indirectly, it paves

the way for adversaries to launch a variety of attacks.

4.1.1 Attack Types

Depending on whether the attacker can change (increase or decrease) the original CAN traffic

normal volume, we consider the following types of attacks:

Injection Attack: In this attack, the attacker injects malicious CAN messages into the bus,

which increases CAN traffic volume. As shown in Figure 4.1 (a), the attacker injects malicious

messages (in red) that increase the rate of the CAN messages so that it is higher than normal.

There is no need to compromise an ECU to launch this type of attack, and the attacker may send

CAN messages directly to the bus via an extra ECU. Specifically, based on the content of CAN

messages, attacks of this type can be further classified as follows:

• Random ID Attack: In this attack, the attacker generates random CAN messages and injects

them into the bus. The attacker does not need to have any prior knowledge of the target

vehicle.
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Figure 4.1: Types of attacks: (a) injection attack, (b) drop attack, and (c) masquerade attack

• All Zero ID Attack: In this attack, the attacker injects messages with the ID set to zero. Since

a lower ID value represents a higher priority, a zero ID message has the highest priority. The

attacker’s goal is to occupy the bus to a certain extent such that it can cause the DoS effect

for other ECUs, which may fail to function, resulting in some severe safety consequences.

• Replay Attack: In this attack, the attacker injects messages that he has seen before. The

attacker collects CAN messages transmitted on the bus and replays them later. Because CAN

lacks freshness protection mechanisms, the attacker can implement this attack easily.

• Spoofing Attack: In this attack, the attacker injects spoofed messages pretending to be from

a valid ECU. To create a valid spoofed message, the attacker needs to know the format of

messages sent from the target ECU. The attacker can acquire such knowledge by looking at the

proprietary DBC file (CAN database) to see if it is accessible or through reverse engineering,
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as CAN messages are transmitted in plaintext. This attack can cause the ECU to malfunction.

When an attacker seeks to control the vehicle, they can transmit messages with specific IDs to

the bus. As a result, the targeted ECU will receive messages from both the legitimate ECU and the

attacker. To ensure the malicious messages take precedence over the authentic ones, the attacker

has to transmit them at a faster rate than the original ECU. While a typical message injection

attack might involve the attacker sending twice as many messages as the normal rate, in real-world

scenarios, the volume of malicious messages can surge, sometimes being 20 to 100 times more

than the regular messages [72].

Drop Attack: In this attack, the attacker drops messages that are supposed to be transmitted,

decreasing the overall CAN traffic volume. As shown in Figure 4.1 (b), the attacker drops multiple

normal messages (in green and yellow) that decrease the overall volume of the CAN traffic. The

attacker needs to control a compromised ECU, and then the attacker is able to stop or suspend

selected or all CAN messages which should be sent to the bus by manipulating the compromised

ECU. As a result, the compromised ECU looks like it is “disconnected” from the bus, which can

result in serious errors for the attacked vehicle.

Masquerade Attack: In this attack, the attacker sends masqueraded CAN messages to replace

the real ones, as shown in Figure 4.1 (c). This attack will not change the CAN traffic volume on

the bus. The attacker needs to compromise an ECU as the prerequisite. The attacker can execute

this attack by initiating a drop attack to disable an ECU, followed by injecting spoofed messages

impersonating the disabled ECU, or by directly manipulating the input/output of a compromised

ECU to send CAN messages with malicious content.

4.1.2 Adversary Types

We consider that an adversary can have three different levels of capabilities.:

• Weak: A weak adversary has no idea about the semantic meaning of CAN messages of the

target vehicle and has no possession of previous CAN traffic traces. So a weak adversary can
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only send random and simple messages. The objective of the weak attacker is to compromise

the usability of normal messages or to win the arbitration. A weak adversary can typically

execute the random ID attack and the all zero ID attack.

• Medium: A medium adversary has all the capabilities of a weak adversary. In addition, it

can have access to current or previous traffic traces, have knowledge about the specification

of certain CAN IDs either through reverse engineering or learning from other sources such

as the proprietary DBC file, and have access to a compromised ECU to drop certain CAN

messages which should be sent. The objective of the medium adversary is to harass the CAN

bus or disturb the vehicle’s behaviors. A medium attacker can launch all types of injection

attacks, including the replay attack and the spoofing attack, and the drop attack.

• Strong: A strong adversary possesses all the capabilities of a medium adversary, with the

added ability to execute masquerade attacks. To achieve this, the attacker must analyze the

CAN message traffic in-depth, focusing on aspects like message frequency distribution. This

attack does not alter the usual volume of CAN traffic.

4.2 Data Collection

Although the intrusion detection research field has standard benchmark datasets, like the popular

KDD’99 and its related sub-dataset NSL-KDD [110], a significant gap persists with the lack of

standard benchmarks for in-vehicle network IDSs. While many researchers rely on simulated

data, utilizing actual in-vehicle data is crucial for accurately evaluating proposed schemes. Some

evaluations are conducted using data from a single vehicle or only a small number of CAN messages

are collected within a few minutes, making claims of their effectiveness questionable. Furthermore,

it is uncertain whether these schemes can deliver comparable performance in different in-vehicle

environments due to variations in CAN implementation and setup across manufacturers.

To address these issues and facilitate systematic evaluations, we collect datasets from a variety

of vehicle models and production years. It is important to note that all vehicles used in this study
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are unmodified, serial production vehicles with valid licenses. In this section, we first outline our

data collection setup, followed by an overview and discussion of the datasets collected from seven

real vehicles.

4.2.1 Equipment and Routes

To collect data, we use the CANalyst-II device that supports different protocols, including CAN,

CANopen, and SAE J1939 protocol. This CAN analyzer collects CAN data via the on-board

diagnostics II (OBD-II) port. As an on-board diagnostic standard, OBD-II port is mandatory for

all vehicles sold in the US. Although it is mainly used for diagnostic and emissions measurements,

it also provides additional information, including engine control, body control, and chassis control

information. The OBD-II port has 16-pin, and it is typically located on the left side of the driver’s

dashboard, near the steering column. To collect data, the analyzer must be connected to a laptop

with the supporting software installed through a USB port. Then, the CAN Analyzer is plugged

into the OBD-II port of the vehicle, which is operating normally.

We collect datasets from seven real vehicles of various models from different manufacturers.

CAN messages are collected under normal operations for 20-40 minutes. For example, we collect

datasets from a 2018 Honda Civic during four round trips on a road segment on campus, as shown

in Figure 4.2, all under normal operations.

4.2.2 Datasets and Message Characterization

Details of the datasets are presented in Table 4.1. The second column represents the total number of

messages in each dataset. The third column indicates the number of unique message IDs, varying

by manufacturer and vehicle model. The fourth column provides the number of periodic messages.

Many CAN messages with specific IDs are sent to the bus at regular intervals. This periodicity

feature plays an important role in CAN IDS design. Monitoring the periodicity of messages is

one of the key detection features. This feature is widely exploited by a range of existing schemes,

including both rule-based and machine learning-based schemes. We notice two datasets contain
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Figure 4.2: Driving path of data collection

aperiodic messages: 2019 Chrysler Pacifica and 2013 Ford Fusion. In the 2019 Chrysler Pacifica,

there are 173 distinct IDs: 132 of them are sent periodically at intervals ranging from 1 ms to 2

seconds, and 41 of them are sent aperiodically. In the 2013 Ford Fusion, there are 79 distinct IDs:

70 of them are sent periodically at intervals ranging from 20 ms to 1 minute, and 9 of them are sent

aperiodically. All messages are sent periodically in the other five datasets.

The normal distribution is considered an appropriate criterion for determining whether a message

is periodic [20]. When messages with specific IDs are transmitted periodically, the time intervals

between them should adhere to a normal distribution. For example, as demonstrated in Figure 4.3,

the distribution of time intervals for the example ID 0x224 aligns well with a normal distribution.

To classify a message as periodic, we utilize standard deviation and the coefficient of variation.

We have a set of time intervals for a unique ID, denoted as 𝑇 = {𝑇1, · · · , 𝑇𝑛}, where 𝑇𝑖 is the 𝑖𝑡ℎ

interval in the list, and 𝑛 represents the total number of values in the list. We calculate the mean 𝑇 ,

the standard deviation 𝜎, and the coefficient of variation 𝑐𝑣 of these time intervals as follows:
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Table 4.1: Details of datasets

Name of
Dataset

Number of
Messages

Number of
Unique IDs

Number of
Periodic Messages

Chevrolet Volt
2013 4,536,342 106 All

Chrysler Pacifica
2019 2,470,310 173 132

Ford Fusion
2006 808,423 17 All

Ford Fusion
2007 710,244 20 All

Ford Fusion
2013 2,158,201 79 70

Honda Accord
2006 243,762 13 All

Honda Civic
2018 1,806,780 54 All

𝑇 =

∑𝑛
𝑖=1 𝑇𝑖

𝑛
=
𝑇1 + 𝑇2 + · · · + 𝑇𝑛

𝑛
(4.1)

𝜎 =

√√√√∑𝑛
𝑖=1

(
𝑇𝑖 − 𝑇

)2

𝑛 − 1
(4.2)

𝑐𝑣 =
𝜎

𝑇
(4.3)

We use the coefficient of variation, represented as 𝑐𝑣, to determine periodicity. This measure is

specifically used to understand if messages associated with a certain ID are sent at regular intervals.

The 𝑐𝑣 presents a relative estimation of the standard deviation, thereby providing a measure of

variability relative to the mean.

When an ID’s 𝑐𝑣 value falls below a predetermined threshold, it is labeled periodic. The

threshold value for defining periodicity should be set carefully; it is usually established between

36



Figure 4.3: Distribution of time intervals for ID 0x224

10% and 20%, according to standard practice in the field. In our experiments, the threshold value

of 20% is selected with consideration of the distribution of all 𝑐𝑣 values present in datasets.

4.3 Evaluation Metrics

To provide a clear comparison among various IDSs, it is critical to apply the same evaluation

metrics consistently across all schemes. This strategy eliminates potential biases or discrepancies

that may arise from the use of different evaluation standards, thereby allowing for a more objective

and direct comparison. In this section, we discuss the specific evaluation metrics employed in

our study to assess the effectiveness and efficiency of the proposed schemes. Furthermore, we

introduce the computation time, a metric used to examine efficiency, which is crucial in the context

of real-time in-vehicle networks. These metrics provide a standardized measure that allows for

consistent comparisons across different schemes.
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4.3.1 Effectiveness

To comprehensively evaluate the effectiveness of IDS schemes, we employ a suite of scientific

metrics that include accuracy, true positive rate (TPR, detection rate, also known as sensitivity or

recall), true negative rate (TNR, or specificity), false negative rate (FNR), false positive rate (FPR),

and the F-1 score.

Accuracy is often used in performance evaluation, which quantifies the proportion of total

predictions that are correct. High accuracy is indicative of a model with remarkable overall

predictive capability. TPR, a critical measure of the system’s proficiency in correctly identifying

malicious instances, should ideally be maximized. Conversely, TNR illustrates the system’s ability

to accurately identify benign or non-threatening instances. A high TNR ensures minimal false

alarms. In contrast, FNR quantifies the fraction of actual undetected threats. A low FNR signifies

the system’s efficacy in threat detection. FPR is the ratio of normal instances wrongly identified as

threats, which we strive to minimize to avoid unnecessary panic and resource allocation. Finally,

the F-1 score is a harmonic mean of precision and recall. This score serves as a robust performance

measure, especially for imbalanced datasets, encapsulating both the system’s precision (low FPR)

and its sensitivity (high TPR). It is a crucial benchmark for comparing the performance of different

IDSs. By using these various metrics, we aim to provide a comprehensive evaluation of the

performance of IDS, highlighting areas of potential enhancement.

Table 4.2: Confusion matrix

Actually
Malicious

Actually
Normal

Detected
Malicious TP FP

Detected
Normal FN TN

To calculate them, we have a confusion matrix, as shown in Table 4.2, and the following terms
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are defined:

• TP (true positive): the number of malicious messages that are correctly detected.

• FP (false positive): the number of normal messages that are incorrectly detected.

• TN (true negative): the number of normal messages that are correctly detected.

• FN (false negative): the number of malicious messages that are incorrectly detected.

Accuracy, TPR, TNR, FNR, FPR, and F1-Score are calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.4)

TPR =
TP

TP + FN
(4.5)

TNR =
TN

FP + TN
(4.6)

FNR =
FN

TP + FN
(4.7)

FPR =
FP

FP + TN
(4.8)
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F1-Score =
TP

TP + 1
2 (𝐹𝑃 + 𝐹𝑁))

(4.9)

An effective IDS should achieve a high detection rate and a low false alarm rate. A low false

positive rate is critical to maintaining system credibility, as error-prone systems will gradually lose

trust and their alarms, whether true or false, will be ignored. This is particularly relevant in the

context of in-vehicle networks [14], where false alarms can also lead to unnecessary panic or waste

resources such as emergency services. Moreover, false alarms can potentially trigger a cascade of

resource-draining responses, both in terms of personnel and system resources.

4.3.2 Computation Time

In the context of our study, we use the terms “detection latency” and “processing delay” inter-

changeably to refer to the computational time. It is the time required to process inputs by an IDS.

This metric holds crucial importance in real-time detection. For IDS based on machine learning,

we discuss the computation time taken for predicting or classifying data instances in a given input

frame utilizing a specific machine learning model. This involves the time from when the model

first gets input to when it outputs the final prediction.

It is noteworthy that this latency or delay is an essential factor in determining the efficiency of

the IDS, particularly in a real-time system where timely anomaly detection can be critical. Longer

detection latencies mean that the system might fail to react to an intrusion in a timely manner,

potentially leading to significant security risks. Therefore, the efficiency of machine learning

models in this context is not only determined by their accuracy but also by how quickly they can

process and classify inputs.
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4.4 Rule-based IDS Comparative Study

There are two main categories in the field of IDSs for CAN: rule-based IDS and machine learning-

based IDS. In this section, to gain a comprehensive understanding of rule-based IDSs, we conduct

a comparative study. We implement and evaluate representative rule-based IDSs.

In this study, the evaluation of these schemes is conducted under the same adversary model,

using the same evaluation metrics, platform, and datasets to provide an in-depth analysis of the

comparative performance and effectiveness of these rule-based IDSs. A key feature of our study is

the use of data acquired from real vehicles, enhancing the practical relevance of our findings.

Generally, rule-baed IDSs construct a standard normal model using statistical methodologies or

leveraging the characteristics of CAN data as “rules”, which serve as simple and straightforward

detection patterns. Various features extracted from in-vehicle network traffic, such as message

frequency, message interval, statistics, entropy, message data section, and sensor data, are utilized

to develop the normal model. Rule-based IDSs possess certain advantages, including lower com-

putational overhead and quick response times. However, they also have limitations. The primary

drawback of rule-based IDSs is their relatively low accuracy, as it proves challenging to detect all

types of attacks by relying on a single rule or even a collection of rules.

4.4.1 Summary of Rule-based IDS

Rule-based IDS schemes are summarized in Table 4.3. A key observation from these schemes

is their general lack of utilization of all CAN message data. Additionally, they tend to target a

single type of attack and apply a rather limited dataset, which can narrow their applicability. In the

following, we extend our discussion on these schemes, exploring their limitations in greater detail.

This section clarifies the methodologies each scheme employs and engages in a deeper discussion

about their specific strengths and limitations. It is important to note that the specific “injection

attack” listed in the table does not include every type of injection attack discussed in Section 4.1.

The focus is on highlighting the action of launching an attack by injecting malicious messages.
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Table 4.3: Summary of rule-based IDS

Detection
Feature References

ID
/Data

Section
Attacks
Detected

Evaluation
Datasets

Message
Frequency

[41]
[65] ID Injection Attack

Simulated Data
Simulated Data

Message
Interval

[101]
[74]
[25] ID Injection Attack

One Vehicle Data
One Vehicle Data

No Evaluation
Message
Entropy

[76]
[69] ID Injection Attack

One Vehicle Data
One Vehicle Data

Message
Sequence [68] ID Injection Attack One Vehicle Data

Accumulated
Sum

[14]
[87] ID

Injection /Drop/Masq-
uerade Attack

Injection Attack
Three Vehicles Data

One Vehicle Data
Hamming
Distance [103] ID + Data Injection Attack One Vehicle Data

Frequency-based IDS: This IDS uses message frequency as the detection feature. CAN

messages of a given ID are often broadcast by a single ECU and in a constant frequency. That is,

the rate of certain ID messages transmitted can keep a relatively constant value. In [41], authors first

generate a baseline from the normal traffic of the bus. Their IDS can monitor the bus to count the

rate of current messages transmitted and compare the count result with the baseline. Any missing or

additional messages out of the threshold can trigger an alarm. In [65], authors measured anomalies

observed in traffic frequency to detect injection attacks. The alarm threshold is calculated based on

the ID transmitted on the bus with its uninterruptible occurrence frequency. In [72], their scheme

monitors the rate of the CAN messages. When the rate is higher than normal, an alarm will be

triggered.

Even though frequency-based IDS schemes have the potential to provide fast response on

embedded CAN controllers with limited resources, they are unable to detect certain types of

attacks, such as the masquerade attack, as it does not change the frequency by withholding valid

messages and sending messages with valid ID and modified data section. In addition, they are not

sensitive to the injection attack and the drop attack with a small number of messages. Furthermore,
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they cannot handle messages which are sent aperiodically to the bus.

Interval-based IDS: This IDS uses message intervals as the detection feature. As CAN messages

with the same ID are usually sent to the bus periodically, time intervals between consecutive

messages with the same IDs should be relatively steady. Interval-based approaches utilize this fact

to build baselines and detect attacks. They differ from frequency-based IDSs as they count the

timing intervals of the messages as opposed to the transmission rate of messages. Song et al. [101]

propose a scheme that can examine the time interval of CAN messages for anomaly detection. The

time interval feature is capable of detecting message injection attacks because of the difference

between the time intervals of messages in normal status and attack status. The scheme proposed

in [25] has the same core design, and both of them count a message as an attack message when

the time interval is below half of the normal interval. Authors of [74] propose simple intrusion

detection systems based on the message interval. To set the threshold, for 𝑛 messages with a given

ID, denote time stamps for that ID, 𝑡0, 𝑡1, · · · , 𝑡𝑛. The time intervals are: △1 = 𝑡1 - 𝑡0, · · · , △𝑛 = 𝑡𝑛

- 𝑡(𝑛−1) . Authors use the maximum observed error from expectation and have 𝑚 = 𝑚𝑎𝑥𝑖 |△𝑖 − ` |,

where ` =
∑

𝑖(△𝑖/n). The threshold of the scheme is set as 𝑚 + (15% * `) for absolute error from

the expectation.

The strength of these detection algorithms is that they are simple to use. However, they are not

able to handle the masquerade attack as well as injection and drop attacks with a small number of

malicious messages. Moreover, they cannot deal with messages which are sent aperiodic to the

bus.

Entropy-based IDS: This IDS uses message entropy as the detection feature. Entropy-based

IDS schemes characterized the normal behavior of a set of normal CAN traffic traces based on the

level of the statistical entropy. The values of entropy calculated from normal messages keep stable

statistical characteristics, while attacks can introduce significant deviations and break the stable

status. Those schemes observed the bus information entropy in accordance with the fixed time

window and calculated entropy for CAN message ID according to Shannon entropy. Assuming

system 𝑍 has a limited set of possible states: 𝑧1, 𝑧2, · · · , 𝑧𝑛, and the information entropy of system
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𝑍 is

𝐸 (𝑍) = −
𝑛∑︁

𝑘=1
𝑝(𝑧𝑖)𝑙𝑜𝑔(𝑝(𝑧𝑖)) (4.10)

where 𝑝(𝑧𝑖) is the probability of system 𝑍 in state 𝑧𝑖. Muter and Asaj [76] introduce the concept

of entropy-based detection for in-vehicle networks for the first time. They focus on groups of

messages with the same ID instead of overall CAN traffic flow, which adds benefit to detecting ID-

specific anomalies. The limitation of their approach is its inability on detecting a small number of

injected CAN messages. In another entropy-based scheme [69], authors evaluate the effectiveness

of entropy-based schemes in [76] with complete real vehicle data, and they found that the direct

use of entropy-based IDS for anomaly detection is only effective in the case of a large number of

malicious CAN messages.

Sequence-based IDS: This IDS uses message sequence as the detection feature. In [68], the

proposed scheme can identify anomalies in the sequence of messages that are transmitted on the

CAN bus based on the ID sequence between messages. The main idea is to build a valid ID

sequence list based on a sequence feature that is based on recurring patterns within the sequence

of message IDs of the normal CAN traffic trace. The authors state that every ID in their test model

is followed only by a subset of all the available IDs, thus there are limited admissible transitions

between all IDs. By using this fact, the valid list order of the ID sequence is built by recording

distinct pairs of IDs of every two consecutive CAN messages from the legit traffic trace. To detect

anomaly behaviors, the scheme monitors the ID sequence of the current traffic, and an alarm can be

triggered when an ID sequence appears but is not in the normal list. Since the scheme only covers

the order of two consecutive IDs (not a sequence chain), one of the limitations is that the proposed

scheme cannot detect the replay attack and the masquerade attack. Another limitation is that only

the ID part is monitored. Any malicious messages with a modified data section cannot be detected.

Accumulated sum-based IDS: This IDS uses accumulated sum as the detection feature. The

accumulated sum [14, 87] is derived from the periodicity feature of CAN messages and can be
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counted as an extension of the interval-based feature. It cannot detect the aperiodic messages as

well.

Hamming distance-based IDS: This IDS uses Hamming distance as the detection feature. The

work of [103] calculates the Hamming distance of data sections between sequences messages with

the same given ID. The Hamming distance between two binary strings of K-bits is calculated as:

𝐻 (𝑥, 𝑦) =
𝑘∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 | (4.11)

In this equation, 𝑥 and 𝑦 are two data sections in two consecutive messages with the same ID.

To build a baseline, they extracted the minimum and maximum values of the Hamming distance

for each distinct ID transmitted on the bus. Anomalies can be identified based on a significant

deviation from the calculated Hamming distance function during the detection process. However,

this scheme cannot detect the replay attack, and it is not sensitive to messages that have no strong

patterns of Hamming distance values.

4.4.2 Experimental Results

In our experiments, we implement and assess selected representative IDS schemes on a Linux-based

system running on Ubuntu 20.04.2 LTS. This system is powered by an AMD Ryzen 3700x CPU,

equipped with 8 cores and 16 threads, with a base clock speed of 3.6 GHz.

The following metrics are used: true positive rate (TPR, or detection rate), false positive rate

(TFR), false positive rate (FPR), false negative rate (FNR), and accuracy as defined in Section 4.3.

For the adversary model, an attacker is able to perform various forms of attacks, including injection

attack, masquerade attack, and drop attack, as discussed in Section 4.1. Moreover, we also consider

hybrid attacks, where the attacker can launch each type of attack randomly.

We utilize data collected from real cars, as described in Section 4.2. Based on thorough analysis,

we carefully select a representative dataset, the Honda Civic dataset. Since our adversary model can

randomly launch different types of attacks, the results are average values of 10 repeated experiment
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results. Experimental results are provided in Table 4.4.

Table 4.4: Experimental results for rule-based IDS

Injection Attack TPR TNR FPR FNR Accuracy
[41]
[65]

98.42%
97.91%

93.27%
91.07%

6.73%
8.93%

1.58%
2.09%

96.43%
95.27%

[101]
[74]
[25]

98.82%
92.55%
97.07%

91.76%
90.85%
93.33%

8.24%
9.15%
6.67%

1.18%
7.45%
2.93%

96.09%
91.89%
95.63%

[76]
[69]

70.34%
67.24%

72.04%
71.40%

27.96%
28.60%

29.66%
32.76%

71.46%
70.13%

[68] 60.16% 72.73% 27.27% 39.84% 68.79%
[14]
[87]

95.02%
95.29%

96.25%
96.31%

3.75%
3.69%

4.98%
4.71%

95.91%
96.02%

[103] 66.67% 74.91% 25.09% 33.33% 72.66%

Drop Attack TPR TNR FPR FNR Accuracy
[41]
[65]

83.33%
0%

87.50%
0%

12.50%
0%

16.67%
0%

86.38%
0%

[101]
[74]
[25]

0%
0%
0%

0%
0%
0%

0%
0%
0%

0%
0%
0%

0%
0%
0%

[76]
[69]

68.72%
64.05%

63.52%
67.67%

36.48%
32.33%

31.28%
35.95%

65.67%
66.18%

[68] 57.55% 69.74% 30.26% 42.45% 62.26%
[14]
[87]

96.77%
96.56%

91.09%
90.50%

8.91%
9.50%

3.23%
3.44%

94.58%
94.22%

[103] 67.88% 69.28% 30.72% 32.12% 68.52%

Masquerade Attack TPR TNR FPR FNR Accuracy
[41]
[65]

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

[101]
[74]
[25]

0%
0%
0%

0%
0%
0%

0%
0%
0%

0%
0%
0%

0%
0%
0%

[76]
[69]

0%
0%

0%
0%

0%
0%

0%
0%

0%
0%

[68] 0% 0% 0% 0% 0%
[14]
[87]

75.26%
76.53%

64.32%
61.41%

35.68%
38.59%

24.74%
23.47%

71.04%
70.69%
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[103] 60.00% 67.94% 32.06% 40.00% 63.06%

Hybrid Attack TPR TNR FPR FNR Accuracy
[41]
[65]

79.28%
68.82%

86.56%
61.56%

13.44%
38.44%

20.72%
31.18%

82.09%
66.02%

[101]
[74]
[25]

75.81%
72.52%
68.46%

60.35%
65.04%
62.87%

39.65%
34.96%
37.13%

24.19%
27.48%
31.54%

69.85%
69.63%
66.31%

[76]
[69]

62.17%
67.80%

56.67%
53.62%

43.33%
46.38%

37.83%
32.20%

60.05%
62.33%

[68] 53.81% 65.80% 34.20% 46.19% 58.44%
[14]
[87]

87.62%
87.90%

93.05%
89.55%

6.95%
10.45%

12.38%
12.10%

89.71%
88.54%

[103] 58.58% 61.96% 38.04% 41.42% 59.88%

Those existing schemes generally do not perform as well as reported in their studies. The

main reasons are as follows: some IDS schemes are not explicitly designed to detect certain types

of attacks. Furthermore, these schemes’ effectiveness can be compromised, as the threshold is

often determined based on their own adversary models. Considering that real attack scenarios can

be more complex, this can lead to IDS not being robust enough. Moreover, there is an issue of

sensitivity. Some IDSs may not be adequately sensitive to a small number of attack messages, which

can allow minor but potentially harmful activities to go unnoticed. This highlights the importance

of designing effective IDS schemes that can effectively detect and counter a wide range of attacks.

In conclusion, while there exists a wide range of rule-based IDS strategies developed by re-

searchers, it is clear that a number of these systems may be under-equipped to handle more com-

plicated attack scenarios. The adversary models considered in their designs typically only involve

a smaller range of attack types, which may weaken their effectiveness in real-world environments

where threats are often more sophisticated and diverse. It is, therefore, essential to consider these

limitations in the ongoing development and evaluation of IDS schemes.

It can also be noticed that, when dealing with real-world attacks, relying on a single rule is often

not enough. This leads us to consider how to incorporate multiple rules or combine these rules
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with other complementary techniques to protect in-vehicle networks efficiently. This combination

of strategies has the potential to greatly improve intrusion detection systems, making them better

able to defend against a wide variety of advanced cyber threats.

4.5 Machine Learning-based IDS Comparative Study

A common challenge for CAN IDS is the lack of standard benchmark datasets, resulting in re-

searchers using various datasets, including simulated data, to train and test their IDSs. Such

datasets for training and testing are often limited. Besides, the evaluation of different IDS schemes

often involves a diverse array of performance metrics, implemented on various platforms, and tested

under different adversary models. As a result, directly comparing different solutions becomes chal-

lenging. It is unclear whether differences in performance are due to the IDS design itself, or simply

a reflection of the specific factors, such as characteristics of the datasets used. It is critical to assess

these schemes using consistent performance metrics, on the same platform, and under the same

adversary model. In this section, we perform a comparison study to investigate various machine

learning-based IDSs for CAN, aiming to provide a comprehensive understanding of these IDSs.

For machine learning-based IDS schemes, similar issues exist with rule-based IDSs. Fundamen-

tal aspects such as the training and testing datasets used, the type of adversary model considered,

and the specific evaluation metrics affect the performance evaluation. In this comparative study, we

aim to better understand the relative strengths and weaknesses of these IDS schemes. To facilitate

a comprehensive understanding and fair comparison of these machine learning-based IDSs, we

implement these systems using the same datasets and evaluation metrics, and deploying the same

adversary models, which can provide a more accurate insight into those schemes.

4.5.1 Summary of Machine Learning-based IDS

A machine learning-based IDS schemes usually consist of two steps: training and detection. In the

training step, a labeled CAN dataset is used for training the machine learning algorithm. This step

48



outputs a trained model that serves as a classifier for detection. In the detection step, the classifier

monitors the real-time CAN traffic and determines whether a message is malicious or not. An

alarm can be triggered if a malicious message is detected.

We summarize the representative machine learning-based IDSs in Table 4.5. Most of these

systems use Identifier (ID) sections of CAN messages for their training and testing. Some studies

opt to use OBD-II Parameter IDs (PIDs) rather than CAN data [111, 78, 125]. OBD-II PIDs, defined

by the SAE standard J1979, are codes used to request specific vehicle data and are primarily used

for diagnostic purposes. These codes are mandated for support by on-road vehicles sold in North

America, mainly for emission inspections. By utilizing PIDs, the datasets in these studies have

explicit semantic meanings related to emission/control systems. Those machine learning-based

IDSs typically focus on identifying injection attacks and are often evaluated using simulated data or

data from a single vehicle, limiting their applicability across a diverse range of vehicles and attack

types.

In the following, we present details of each scheme and discuss strengths and weaknesses.

Table 4.5: Summary of machine learning-based IDS

Type References

ID
/Data

Section
Attacks
Detected

Evaluation
Datasets

HMM [78] PID Injection Attack Three Vehicle Data

SVM [111] PID Injection Attack Simulated Data
Decision

Tree [113]
ID + Data
Entropy Injection Attack One Vehicle Data

ANN [125] PID Injection Attack One Vehicle Data

DNN [49] Data Injection Attack Simulated Data

LSTM (RNN) [112] ID Injection Attack One Vehicle Data

CNN [102] ID Injection Attack One Vehicle Data

HMM-based IDS: In [78], a hidden Markov Model-based technique is employed to build an

IDS that monitors current CAN traffic and detects anomaly behaviors based on the deviation from
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the messages sequence. This scheme is based on the assumption that the movement of a vehicle is a

sequence of states that are dependent on the previous ones. To pre-possess the input data for training,

they build time series observations by converting certain CAN messages into meaningful values,

including engine RPM, engine coolant temperature, and speed. To avoid a data model that can

result in many false positives, authors use gradients for the data model instead of direct observation

in the form of real value. The data model is used to construct an HMM model, including the

transition and emission probabilities based on sequences of observations. For anomaly detection,

they use a sliding window that moves every time when a new observation is available. An anomaly

can be caught when the posterior probability of a given prior input sequence is lower than the value

of the threshold in the determined sliding window. Even though this scheme used three datasets

from three vehicles (Honda Accord, Toyota Corolla, and Chevrolet Cruze) for evaluation, a clear

comparison among different datasets is not provided. Besides, details of datasets, such as each

vehicle model’s year and the length of each dataset, are not provided. The scheme needs further

analysis and evaluation by comparing the performance of different vehicles as well as realistic CAN

attack messages.

SVM-based IDS: In [111], authors propose an IDS by using one-class Support Vector Machines

(SVM) to classify CAN data. Based on analysis of normal CAN data, they measure inter-message

timing over a one-second sliding window and obtain statistical values that can represent normal

data patterns. The essence of this scheme is to compare the statistical values of current CAN traffic

with historical values. A one-class SVM can detect anomalies by using those statistical values.

However, this scheme can lack the ability to catch a small number of malicious messages.

Decision Tree-based IDS: Decision tree (DT)-based approaches can handle binary classification

tasks. DT needs a supervised labeled dataset during the training stage to be able to make decisions.

In [113], a regression DT with Gradient Boosting (GBDT) technique is applied to provide a better

IDS. This decision tree method is trained with labeled CAN messages to classify real-time CAN

messages into two classes: normal and malicious. The entropy of CAN ID and data are used to

construct the decision algorithm. By adding the Gradient Boosting technique, the proposed IDS
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can achieve an optimal decision tree model by comparing multiple trained tree models.

Neural Network-based IDS: In [125], the authors propose an ANN-based IDS that uses ex-

tracted information from raw CAN messages with PIDs. The information includes five parameters

from each feature, torque, Revolutions Per Minute (RPM), and speed, to classify the engine’s power

ECU behavior in diverse CAN traffic conditions. The training process involves feeding the CAN

input data into a bottleneck of the ANN model and learning them via backpropagation. In the

detection process, using root-mean-square error on the final output of ANN, an anomaly score is

produced and used to determine whether a CAN message is normal or malicious. Despite the

promising results in getting higher true-positive detection against false-positive rate, the proposed

scheme only uses CAN messages that can be translated by PIDs. Thus, it cannot protect the whole

CAN bus.

In [49], authors propose a machine learning-based IDS for the CAN bus network. The classifier

is built by a DNN method. To train the DNN, they use extracted information from CAN messages

instead of using CAN messages directly. The information is the probability for every CAN message

in the form of logistic values “1” and “0” that can separate the normal from the malicious messages.

Offline training is performed during the training phase to reduce time consumption, while the

trained classifier makes the binary decision for each incoming new CAN message in the detection

phase. The authors validate the model by using simulated data [9]. It is reported that the detection

rate is 99%. However, training time and testing time increase as more layers are added. And a clear

analysis of detection time is not provided.

In [112], a new IDS is proposed by using a special Recurrent Neural Network (RNN) - Long

Short-Term Memory (LSTM) to detect attacks on the CAN bus. Their approach works on raw CAN

bus data without the need to reduce and extract data from the pre-processing. In [102], authors

utilize Convolutional Neural Network (CNN) to build an IDS which is able to detect sequential

patterns of vehicle traffic to detect the spoofing attack and the DoS attack. This scheme uses CAN

messages directly to build the model without the need for pre-processing. They test their method

in an experimental setting and admit that it is difficult to implement in current vehicles.
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4.5.2 Experimental Results

To evaluate the aforementioned schemes, we implement them on the same platform used in Sec-

tion 4.4.2. We employ Python version 3 for implementation and use TensorFlow framework to

implement various machine learning algorithms.

We also employ the same adversary model for evaluation. Most machine learning-based IDSs

struggle with drop attacks; hence, we consider three types of attacks: injection attack, masquerade

attack, and hybrid attack. For consistency, we use the same dataset as used in Section 4.4.2. Results

of the experiments are shown in Table 4.6. We use 70% of the data for training and 30% of the

data for testing. Due to the stochastic nature of machine learning algorithms, the results can differ

across experiments, and we conduct each experiment 10 times and use the average outcome as the

final result.

Table 4.6: Experimental results for machine learning-based IDS

Injection Attack TPR TNR FPR FNR Accuracy

[78] 79.97% 74.70% 25.30% 20.03% 77.93%

[111] 81.31% 85.62% 14.38% 18.69% 82.97%

[113] 84.19% 71.64% 28.35% 15.82% 79.35%

[125] 96.50% 98.49% 1.51% 3.50% 97.27%

[49] 94.26% 98.64% 1.36% 5.74% 95.95%

[112] 97.04% 99.85% 0.15% 2.96% 98.13%

[102] 86.17% 94.40% 5.60% 13.83% 89.34%

Masquerade Attack TPR TNR FPR NPR Accuracy

[78] 66.33% 71.59% 28.41% 33.67% 68.36%

[111] 72.54% 68.10% 31.90% 27.46% 70.82%

[113] 78.14% 75.86% 24.14% 21.86% 77.26%

[125] 89.74% 74.05% 25.95% 10.26% 83.69%
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[49] 97.27% 79.19% 20.81% 2.73% 90.29%

[112] 0% 0% 0% 0% 0%

[102] 0% 0% 0% 0% 0%

Hybrid Attack TPR TNR FPR FNR Accuracy

[78] 71.15% 75.21% 24.79% 28.85% 72.72%

[111] 83.75% 71.05% 28.95% 16.25% 78.85%

[113] 88.12% 68.36% 31.64% 11.88% 80.50%

[125] 97.37% 81.54% 18.46% 2.63% 91.26%

[49] 97.57% 85.60% 14.40% 2.43% 92.95%

[112] 87.77% 82.28% 17.72% 12.23% 85.65%

[102] 82.74% 85.96% 14.04% 17.26% 83.98%

Based on our experiments, it can be observed that the performance of neural network-based

IDS schemes is generally better than those of traditional machine learning methods. Nevertheless,

these approaches can involve high false-positive rates, which can hinder their effectiveness in a

real-world scenario. In general, these schemes fail to replicate the impressive results presented

in their papers. This is primarily because we consider that a general adversary can mount more

sophisticated attacks than they. Notably, it can be noticed that the methods proposed in [112, 102]

fail to detect the masquerade attack, mainly because their designs solely rely on identifying the ID

of CAN messages. Thus, to achieve higher accuracy and robustness against sophisticated attacks,

the design of an IDS should consider and leverage both the ID and data sections of CAN messages.

In addition, when compared to rule-based approaches, machine learning methods demonstrate

more efficiency in detecting various types of attacks, further validating their potential to enhance

the security of in-vehicle networks.
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CHAPTER 5

A Hybrid Approach Toward Efficient and Accurate

Intrusion Detection for In-Vehicle Networks

5.1 Introduction

Intrusion Detection Systems (IDSs) play a critical role in securing Controller Area Network (CAN).

These systems broadly fall into two categories: rule-based and machine learning-based, each with

its distinct strengths and limitations. Rule-based IDSs are cost-effective and operate by establishing

rules derived from typical characteristics of normal CAN messages. However, these systems

usually struggle with detecting sophisticated attacks. On the other hand, machine learning-based

IDSs leverage advanced techniques like Neural Networks (NNs) to improve detection rates. Despite

their relative effectiveness, they come with the burden of high computational costs and can be limited

in detecting certain types of attacks.

To address these shortcomings, we propose a novel, flexible hybrid IDS framework that combines

both rule-based and machine learning-based approaches. The IDS operates in two stages: a rule-

based detection phase followed by a Deep Neural Network (DNN)-based detection phase. Rule-

based detection in the first stage is used to catch attack messages that violate the established rules

quickly. This first stage can reduce the workload of the second stage and further improve the

efficiency of the hybrid IDS. DNN-based detection in the second stage is used to detect attack

messages that fall out of the scope covered by the rules in the first stage. This design leverages

the strengths of both approaches and compensates for their limitations, enhancing the system’s
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efficiency and effectiveness in detecting various types of attacks, which cannot be achieved by any

individual detection method in this system. For example, rule-based detection cannot detect the

masquerade attack, while machine learning-based detection is not able to identify the drop attack.

Our experiments show that the proposed IDS achieves high accuracy and low latency compared

with previous work.

Moreover, the hybrid IDS framework offers the advantage of adaptability, allowing for the

replacement or alteration of the rule-based or machine learning components based on specific

needs. Our proposed hybrid IDS framework offers an adaptable solution for securing the CAN

network.

Contributions. This study makes the following contributions to the design of IDSs with higher

detection accuracy and minimized computational cost:

• We propose a hybrid IDS framework consisting of two stages. The first stage incorporates

robust and efficient rules to reduce the workload for the subsequently time-intensive second

stage. In the second stage, advanced machine learning techniques are deployed to identify

complex attacks that may bypass the first stage. This unique, hybrid approach allows for the

detection of a broad range of attacks, something which each individual detection method could

not accomplish independently. Furthermore, to avoid the imbalanced classification problem,

our machine learning model is trained on datasets containing roughly equal proportions of

malicious and benign messages.

• We consider a realistic adversary model. Unlike previous studies which often focus on

specific attack scenarios, our model encompasses a broader range of known attacks in the

literature, ensuring a more thorough examination of potential threats.

• Our proposed IDS is extensively evaluated using real traces collected from four different

vehicles. This sets our work apart from previous studies that either rely on simulated data or

data from no more than two vehicles. Given that actual IDs and data of CAN messages can

vary across manufacturers, it is crucial to evaluate the IDS using data sourced from different
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vehicle models.

Organization. This chapter is organized as follows. Section 5.2 presents the methodology of our

design. Section 5.3 details insights into the implementation and evaluation. Section 5.4 provides

further discussion of the proposed IDS. Section 5.5 concludes this chapter.

5.2 Our Design

Our objective is to build an IDS that achieves both accuracy and efficiency for securing the in-vehicle

network. We propose a hybrid IDS consisting of two stages, a rule-based detection component,

and a machine learning-based detection component, as illustrated in Figure 5.1.

The rule-based component is to offer robust and quick responses by catching malicious messages

that clearly violate pre-defined rules. The machine learning component is to provide high accuracy

by further detecting malicious messages which pass the rules in the first stage. This hybrid design

helps to decrease the volume of inputs to the second stage. Moreover, this hybrid IDS can detect

various types of attacks that cannot be detected by each individual detection method. In particular,

we consider a comprehensive adversary model that covers almost all known attack types in the

literature. Each detector in both components might be very efficient in handling certain types of

attacks but totally ineffective for other types of attacks. For example, the valid ID rule can only

detect messages with invalid IDs and has no way to detect the reply attack, the drop attack, and

the masquerade attack. The time interval rule can only detect attacks that increase/decrease traffic

volume but cannot detect the masquerade attack. The DNN-based component can handle most

types of attacks, but cannot detect the drop attack. This proposed IDS with a hybrid design allows

the whole system to achieve faster detection with high accuracy.

This IDS is supposed to be placed on a central gateway or installed on an ECU that can monitor

the whole CAN bus traffic. As shown in Figure 5.1, offline training is conducted before the

detection, and CAN traffic is the input for training. In the offline training process, rules are derived

based on the features analyzed from the input, and the machine learning model is also trained for the
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Figure 5.1: Workflow of the proposed two-stage IDS framework

detection task. When the IDS is applied, each CAN message transmitted on the bus goes through

rule-based detection first. The CAN message that passes the first stage will be further processed

by the second stage - machine learning-based detection. The message that passes both stages is

considered a normal CAN message. Otherwise, the message is considered an abnormal message

or a malicious message.

5.2.1 Stage 1: Rule-based System Design

Rule-based detection utilizes intrinsic patterns in the CAN data for anomaly detection. Rules

are generally simple and straightforward. As a result, rule-based methods usually can offer fast

detection. However, it might be difficult, or even impossible, to define a set of rules that can cover

the normal behaviors of a complex system. Consequently, rule-based IDSs can have low detection

rates and high false positive rates. In our IDS, instead of pursuing a high detection rate, the rule-

based stage aims to provide fast detection and reduce the workload of Stage 2 without decreasing
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the accuracy of the whole system. Therefore, we design Stage 1 that can do fast detection with low

false alarms.

Various rules (such as time interval, CAN ID entropy, timestamp skew, CAN message ID

sequence, etc.) have been proposed and used. Our challenge is to choose a set of rules based on our

criteria, as not all the rules can meet these criteria. For example, the CAN message ID sequence

rule [68] is based on the observation that a particular ID is followed by a specific set of IDs. It

is effective in detecting all zero ID attack, or random ID attack, because those attack messages

with invalid IDs violate the valid ID sequence directly. However, since it is hard to enumerate all

possible sequence pairs, this rule can lead to a high false positive rate. Other rule-based IDSs also

have their own weakness, as shown in Chapter 3 and Chapter 4.

For quick detection with low false positives, we select the following rules in our design:

Valid ID. Each CAN message comes with a valid ID that is specified in the DBC file. A message

with an invalid ID is apparently abnormal. The valid ID list of a specific car model can be easily

generated from a normal CAN trace or from the DBC file if it is accessible. When a message with

an invalid ID is caught, it is thrown out of the system and will not be processed in the next stage.

Time interval. As shown in previous studies, most CAN messages are sent to the network

periodically [14], thus, time intervals can be used as a rule. This rule works very well in detecting

certain suspicious behaviors (such as injection attacks and drop attacks), which break the periodicity

of periodic messages. To implement this rule, time interval values for each CAN message ID are

needed. Those values can be generated from the normal CAN trace directly by calculating the

difference between timestamps of two consecutive CAN messages with the same ID [101, 20].

Since this rule leverages the periodicity of CAN messages, it is exclusive to periodic CAN

messages. We first analyze whether a message is periodic. We use Equation 4.1, 4.2 and 4.3

described in Section 4.2 to determine whether it is periodic.

For periodic messages, since their time interval values are distributed according to a normal

distribution, [𝑇 - k𝜎, 𝑇 + k𝜎] is applied to find abnormal messages. Based on experiments, we

set 𝑘 = 5 as it leads lowest false positives. In real-time detection, 𝑇𝑖 is calculated when a periodic
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message arrives. If 𝑇𝑖 falls in the normal range [𝑇 - 5𝜎, 𝑇 + 5𝜎], the corresponding message is

considered normal and will be moved to the second stage. Otherwise, the message is considered

abnormal as it violates the time interval rule, and an alarm will be raised.

Valid DLC. DLC (data length code) is a part of CAN message that indicates the length of the

data section of the message in bytes. The value range of DLC is from 0 to 8 inclusive. The actual

DLC of CAN messages depends on the message design of a particular vehicle. Specifically, if

CAN messages of a vehicle have different DLC values, the DLC of messages with the same ID is

fixed. So when the DLC of a message does not match the valid value, the message will be caught

and thrown out.

We follow a principle that rules that are simpler and make a quicker decision come first in

order to achieve our goal. For example, “Valid ID” is the first rule we apply and it is the most

straightforward one to quickly identify whether a message has a valid ID or not. In contrast, the

“Time interval” rule is more complicated, needs more calculations, and thus is put at the last in the

sequence. Concurrent execution of rules should work better but usually requires hardware support

which is not considered in our design.

5.2.2 Stage 2: Deep Neural Network-based System Design

Machine learning has achieved remarkable performance on a variety of tasks including intrusion

detection. However, it can be challenging to select a proper machine learning method for IDSs

that can protect CAN. Our objective is to apply a machine learning method that can achieve high

accuracy for intrusion detection. Deep Neural Networks (DNNs) are widely used in the field of

intrusion detection [49, 50, 2, 23, 134]. As DNNs are constructed with multiple layers with multiple

interconnected neurons, DNNs are able to model non-linear relationships and solve complex

tasks. Previous studies have shown that DNNs outperform ANNs and traditional machine learning

methods, such as support vector machine (SVM), random forest, and decision tree, in general, IDS

tasks [121, 23, 134] or in CAN bus IDS tasks [49, 50]. We draw the same conclusion through

our own experiments on comparing DNN with various traditional machine learning algorithms,
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Figure 5.2: The DNN structure

Figure 5.3: A single neuron

including Decision Tree, Random Forest, and SVM. Therefore, we select to use DNN in Stage 2.

A DNN consists of an input layer, multiple hidden layers, and an output layer. Each layer is

composed of multiple neurons that are dots as shown in Figure 5.2. A neuron takes multiple features

𝑥𝑖 as inputs, and each feature is associated with a weight 𝑤𝑖. The neuron calculates the weighted

sum of inputs as the output, as shown in Figure 5.3. Usually, a bias 𝑏 can be added as part of the

calculation.

𝑦 = 𝑓 (
𝑛∑︁
𝑖=1

𝑥𝑖𝑤𝑖 + 𝑏) (5.1)

Raw data can be used for training directly in deep learning [26]. This usually causes longer

training time due to the processing of a large amount of data. Moreover, learning redundant or less

important features can result in an overfitting model. To reduce the computational cost and prevent
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overfitting, we choose to use features selected by feature engineering instead of using raw data.

Based on the domain knowledge, features in consideration include those that can be extracted from

raw data directly (e.g., ID, data field, timestamp, DLC) and the ones which can be derived from raw

data (e.g., the number of occurrences for a certain message, ID sequence, the relative distance of

ID entropy, changes in system ID entropy, the relative distance of data entropy, changes in system

data entropy, occurrences of bit-symbol “1” or “0” in the CAN message data filed, the hamming

distance between successive message data fields, the hamming distance between data fields of the

successive message of the same ID). In addition, based on the comparison study in Chapter 3, we

consider using both ID and data sections of CAN messages.

To select a good subset of features without losing too much information from the original data,

we conduct the following steps. Firstly, we filter out features with low variance values [36], as

a low variance value indicates the corresponding feature contains little knowledge. Secondly, we

remove redundant features. That is, we calculate the correlation coefficient to find features that are

highly correlated, then we only choose one feature as a representative for the next step. Thirdly,

the random forest algorithm and stochastic gradient boosting algorithm are leveraged to calculate

feature importance scores [11] among remaining features. Those algorithms calculate importance

scores based on Gini and entropy. By employing those techniques on four datasets collected from

four different vehicles, we finally select five features with high importance scores for training. It is

noted that selected features can be vehicle model-dependent, because the actual messages IDs and

data of a vehicle may vary from other vehicles from different manufacturers.

• Message ID: Message ID plays a crucial role in identifying malicious messages because each

valid ID indicates a specific meaning by the manufacturer’s design. That is, some messages

with certain IDs should not be transmitted under certain vehicle operations. For example,

CAN messages with diagnostic IDs should not be observed while driving, and CAN messages

with invalid IDs should not be transmitted on the bus at any time. It can also serve as a link

among messages with the same ID and assists DNN in finding hidden patterns.

• Hamming distance: The hamming distance between the data fields from two consecutive
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messages with the same ID keeps a relatively steady value or falls in a small range. Therefore,

abnormal behaviors can be detected by monitoring the variance of hamming distance [103].

We use 𝐷 to represent the data field of a CAN message, 𝐷 =
{
𝑏1, ... 𝑏𝑛}, where n can be up

to 64-bit long and 𝑏𝑖 is the 𝑖th bit. Let 𝐷𝑡 denote the data field of message 𝑡. The hamming

distance between two consecutive messages (𝑡 and 𝑡 + 1) is calculated as Equation 5.2:

𝐻𝑑 (𝐷𝑡 , 𝐷𝑡+1) =
𝑛∑︁
𝑖=1

𝑏𝑖𝑡 ⊕ 𝑏𝑖𝑡+1, (5.2)

where ⊕ is the exclusive or operation.

• Entropy of data field: Entropy values of data fields from normal CAN messages follow

a relatively steady pattern, while entropy values from abnormal messages can break that

pattern. Suppose there are 𝑚 unique byte values in 𝐷 (𝑁-byte long): 𝐵1, · · · , 𝐵𝑚, where

𝑚 ≤ 𝑁 , and 𝑚 = 𝑁 when all the bytes in 𝐷 have distinct values. The entropy of data filed 𝐷

is calculated as Equation 5.3:

𝐸 (𝐷) = −
𝑚∑︁
𝑘=1

𝑝(𝐵𝑘 )𝑙𝑜𝑔𝑝(𝐵𝑘 ), (5.3)

where 𝑝(𝐵𝑘 ) is the probability of 𝐵𝑘 occurrence, and 𝑙𝑜𝑔 is the logarithm.

• Bytes of importance: Some bytes in the data fields contain more information than others.

For example, certain bytes are never changed or may be reserved for future use. We set

each byte as an individual candidate feature and calculate its importance score. And then,

we select the top two bytes that have the highest feature importance scores. To note, the

locations of the top two bytes are not fixed across all the vehicles because of the different

designs of manufacturers. For example, the second and fifth bytes are considered the top two
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for Ford Fusion 2013 dataset, but bytes in the same locations cannot be used as features for

other vehicles.

We use feature vectors for feature embedding into this machine learning-based system. Each

feature vector is a vector containing selected features about each CAN message. We put feature

vectors to make feature space as inputs for the machine learning model. For each CAN message,

selected features are processed to generate a feature vector 𝐹 = { 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6}, where 𝑓1 to 𝑓6

are message ID, hamming distance, entropy of data field, bytes of importance 1 and 2, respectively.

5.3 Implementation and Evaluation

To evaluate the proposed IDS, we implement it on a Windows machine with Intel Core i5-4200U

CPU @ 1.60GHz processor. We use Python version 3 for the implementation and TensorFlow as

the library for machine learning.

The more hidden layers are used in a DNN model, the higher accuracy can be achieved at the

cost of increased processing time [26, 49, 50, 2, 24]. A CAN IDS needs to be trained for each

target vehicle model before detection because the actual CAN IDs and message semantics of a

vehicle model are proprietary to each car manufacturer. Shallow neural networks generally rely on

more carefully fine-tuned model structures and data processing. However, it can be challenging

to fine-tune a specific shallow neural network model for each vehicle model every time. Our

experiments which show that the performance is poorer when the number of hidden layers is less

than three for each vehicle. Too many layers are also not preferred as they increase processing time.

We also conduct experiments to evaluate models with different numbers of hidden layers. Results

show that the computational cost increases as the number of layers increases, but the accuracy

does not continue to increase, and sometimes it even leads to overfitting once the number of layers

reaches a high enough value. For example, the detection rates with three and four hidden layers are

95.23% and 98.46% respectively, on Dataset 2. Detection rates with more layers (six to ten layers)

are almost the same as the one with five layers. Through those experiments and also referring to
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existing work [49], we select this DNN model with five hidden layers as a model that is generic

enough to handle most vehicle types, at least, the four vehicle models used in our experiments.

Specifically, we choose to use a feed-forward neural network model with five hidden layers with

100, 100, 80, 60, and 40 neurons at each layer, respectively. Only one neuron is in the output

layer as the output is either 1 (positive) or 0 (negative) for the classification purpose. By following

the typical hyperparameters and optimization strategies of neural networks for binary classification

tasks [24], the ReLU activation function is used at each hidden layer while the sigmoid activation

function is used at the output layer. The binary cross-entropy function is used as the loss function,

and the Adam optimizer is used as the optimizer in our configuration.

We aim to make the proposed IDS works across different vehicle models, and our experiments

show that it is effective on our four different datasets. However, for certain vehicle models, it may

be necessary to modify the DNN structure, such as the number of layers or nodes, to achieve high

accuracy. As an IDS framework, this IDS allows those future updates.

5.3.1 Experimental Datasets

As presented in Section 4.2, we collect data from the on-board diagnostics II (OBD-II) interface

of real vehicles. The OBD-II port has been a mandatory requirement for all vehicles sold in the

US. While its primary purpose is diagnostic and emission measurements, it also offers information,

such as engine and body control. We collect CAN data by connecting the CAN Analyzer to the

OBD-II port of a vehicle during regular operations.

To ensure a comprehensive evaluation of the proposed IDS framework, we carefully select the

most representative datasets for evaluation. Four datasets are selected. Table 5.1 provides details

of each dataset. The third row depicts the total number of messages in each dataset. The fourth row

lists the number of unique message IDs which are dependent on manufacturers and vehicle models.

The fifth row indicates the number of unique IDs considered periodical according to the periodic

definition in Section 4.2. If the value of 𝑐𝑣 calculated using Equation 4.3 is greater than 20%, the

ID is considered as an aperiodic ID. Otherwise, it is considered a periodic ID. All messages in
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Datasets 1, 2, and 4 are periodic messages, while 9 of 79 IDs in Dataset 3 are aperiodic.

Table 5.1: Experimental datasets

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Vehicle
Model

Honda
Accord
2006

Honda
Civic
2018

Ford
Fusion
2013

Chevrolet
Volt
2013

Number
of

Messages 243,762 1,806,780 2,158,201 3,111,346
Number

of
Unique IDs 13 54 79 106

Number
of

Periodic
Messages All All 70 All

5.3.2 Attack Strategy

We implement attacks mounted by a strong adversary, as depicted in Section 4.1 by using the

following strategy:

• Injection Attacks:

– Random ID Attack (A0): inject 1 to 10 messages with random IDs.

– Zero ID Messages Attack (A1): inject 1 to 10 messages with the ID field set to zero.

– Replay Attack (A2): inject 1 to 10 consecutive previously-seen messages that are ran-

domly selected.

– Spoofing Attack (A3): inject 1 to 10 messages which are generated based on the knowl-

edge of CAN message specification. An example message is shown in Figure 5.4.

• Drop Attack (A4): drop a random number of normal messages in the range of 1 to 10.
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• Masquerade Attack (A5): replace 1 to 10 normal messages with the same number of malicious

messages that have the same ID and altered data content. This attack message has similar

contents to the spoofing attack messages.

The medium adversary is able to execute A0, A1, A2, A3, and A4 while the weak adversary is

only able to execute A0 and A1.

Figure 5.4: Example message for spoofing attack and masquerade attack

For A4 and A5, we need to understand CAN messages to generate corresponding malicious

messages. Since we have no access to DBC files which are proprietary to car manufacturers, we

do reverse engineering. For example, we find that CAN messages with ID 0x0C8 control the

instrument cluster speedometer in Dataset 1. As shown in red in Figure 5.4, for ID 0x0C8, only

the fifth and sixth bytes in the data section are changed under normal operations. By modifying the

fifth and sixth bytes, the attacker is able to generate malicious messages to launch A4 and A5. For

example, a spoofed CAN message can be generated with ID: 0x0C8 and Data: 0x00 0x00 0x00

0x00 0x01 0x02 0x00 0x00.

5.3.2.1 Training Datasets

When preparing the data to train a machine learning model for a classification task, we need to pay

attention to the class imbalance problem. It is a problem in machine learning where the training

dataset for each class label is not balanced, and it can result in the poor predictive performance

of classification predictive models [37, 22]. To be an efficient IDS for in-vehicle networks, the

IDS must accurately classify anomalies no matter whether the proportion of malicious messages

to the total CAN traffic is large or small. Considering that intrusion detection is a real-world

classification task where normal and abnormal message distribution is very likely imbalanced, we

need to minimize the imbalanced problem to achieve better model prediction.
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In order to achieve our goal and build a trained model that can satisfy the needs, we design a

way to train the model with balanced data to avoid the imbalanced classification problem. First, we

use the strong adversary model with randomized attacks to generate training datasets. The strong

adversary is selected rather than others because it can randomly mount all types of attacks. Attacks

(A0-A5) mentioned above are labeled from 0 to 5. Before a message is sent to the bus, a random

number in [0, 14] is selected. If the number is in the range of [0, 5], the corresponding attack will

be launched. Otherwise, a normal message will be sent. Therefore, each type of attack has a 6.67%

chance of being generated for each message parsed. Second, since each message first needs to go

through the rule-based stage, we let the rule-based component detect malicious messages, and only

messages that can pass will be used to train the machine learning component. By this design, the

number of malicious messages and the number of normal messages are comparable in the training

dataset. As a result, the machine learning model can learn from a sufficiently representative number

of examples of each class to classify attacks accurately.

5.3.2.2 Testing Datasets

Considering realistic in-vehicle cyberattacks where the number of attack messages may be small to

avoid being detected, we use a different attack strategy in each test iteration where each attack has

a 4% chance to be launched. For a strong adversary, we randomly choose a number in the range of

[0, 24] to decide whether an attack (A0-A5) needs to be launched or not before sending a message

to the bus. For the medium adversary and the weak adversary testing datasets, A0-A4 and A0-A1

are randomly selected with a 4% chance, respectively, too.

5.3.3 Experimental Results

Effectiveness Evaluation:

To evaluate the effectiveness of the proposed IDS framework, we employ evaluation metrics

that are widely used in IDS evaluation. Three metrics are used: accuracy, true positive rate (TPR,

or detection rate), and false positive rate (FPR). Accuracy is the fraction of all correct predictions.
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TPR is the fraction of detected messages that are truly malicious, and FPR is the fraction of detected

frames that are not really malicious messages. Accuracy should be high as it indicates the overall

detection ability, and TPR should be high as it shows the ability to detect malicious messages. FPR

should be small as it means a low false alarm. Those metrics are calculated based on Equation 4.4,

4.5, and 4.8. By utilizing these metrics, we can provide a comprehensive assessment of our IDS,

examining its ability to identify malicious activities while minimizing false alarms accurately.

It is noted that high detection rate (true positive rate) and low false alarm rate (false positive

rate) are considered major performance criteria for IDSs generally. Especially, low false alarm rate

is critical for in-vehicle networks [14], because the false alarms can cause unnecessary panic or

waste resources, such as emergency services.

Table 5.2: IDS performance - strong adversary

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Accuracy 99.91% 99.81% 99.80% 99.85%
TPR 99.90% 99.75% 99.75% 99.81%
FPR 0.066% 0.071% 0.100% 0.084%
Time

per msg 0.549 ms 0.551 ms 0.546 ms 0.553 ms

Individual Stage Result. To evaluate the effectiveness of the proposed two-stage IDS system,

we first need to understand the effectiveness of each individual stage.

We experimentally evaluate the effectiveness of Stage 1 and Stage 2 separately under the same

strong attack model. For the rule-based system, the average false positive rate is 0.005%, while the

average true positive rate and the average accuracy are 83.25% and 88.83% respectively. The main

reason for the low true positive rate and the accuracy is that masquerade attacks cannot be detected.

For the DNN-based second stage, the average true positive rate is 81.67%, and the average accuracy

is 87.72%. The cause of relatively low performance is that the machine learning-based component

cannot detect the drop attack.

Two Stage Result. To analyze the effectiveness of our IDS, we use hold-out, in particular for
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each dataset, we use 70% to build a training dataset for training and 30% to build a testing dataset for

testing. Considering that a CAN IDS will receive CAN messages in a continuous manner and cannot

access messages randomly from a traffic trace, we require training on the first part of a dataset and

testing on the last part. Table 5.2 shows experimental results for the strong adversary. Each result

is the mean value of 10 repeated experiments results as our adversary model randomly launches

different types of attacks. For all datasets, our IDS achieves both accuracy and detection rate over

99%, and false positive rate lower than 0.1%. It can be seen that there is no clear relationship

between the number of unique IDs and accuracy/detection rate. Accuracy and detection rate are

not related to the number of periodic messages as well. Regarding the false positive rate, Dataset

3 has the highest false positive rate compared with other datasets. It might be because of aperiodic

messages that cause more false positives.

Table 5.3: IDS performance - medium adversary

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Accuracy 99.94% 99.95% 99.95% 99.95%
TPR 99.92% 99.93% 99.93% 99.93%
FPR 0.027% 0.022% 0.024% 0.022%

Table 5.4: IDS performance - weak adversary

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Accuracy 99.99% 99.99% 99.98% 99.98%
TPR 99.99% 99.99% 99.99% 99.97%
FPR 0.014% 0.011% 0.018% 0.011%

Table 5.3 and 5.4 show how our proposed IDS performs under a medium adversary and a weak

adversary respectively. From Table 5.2, 5.3 and 5.4, it can be seen that the performance against a

medium or a weak adversary is slightly better than that against a strong adversary. Nevertheless,
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the results are comparable in accuracy, detection rate, and false positive rate due to the use of a

strong adversary model in training.

Experiment results above show the two-stage IDS performs better than individual stage as

the two-stage helps to detect more types of attack (as mentioned in the purpose of each stage

experiment).

Among existing machine learning-based approaches for CAN IDS, a DNN-based IDS [49]

reports a 1.6% false positive error and 97.8% accuracy while an RNN-based IDS [126] reports a

detection rate of 95%. One rule-based approach [14] reports a similar false positive rate of 0.055%.

Compared with those results, our hybrid IDS provides promising detection rate, accuracy, and false

positive rate. However, it is noted that the aforementioned schemes use different experimental

platforms and adversary models.

Efficiency Evaluation: To provide efficiency analysis, we evaluate the time performance of the

proposed IDS. As in-vehicle networks are time-critical systems that cannot accept long detection

latency, we focus on the time delay during the detection process (we worry less about the training

process as it can be completed offline.). As shown in Section 4.3, we estimate processing delay to

evaluate the efficiency. The processing delay of each message is calculated in milliseconds (ms).

The average processing delay per message is calculated over 10 experiments and shown in Table 5.2.

Our IDS achieves an average processing delay in the range of [0.546, 0.553] ms, for all data sets,

with a mean value of 0.550 and a standard deviation of 0.0026. It suggests that the processing time

is neither related to the number of unique IDs nor affected by the number of aperiodic messages.

Moreover, it is noted that the processing delay per message can be different under various attack

models because the processing time depends on the number of malicious messages that are filtered

out at the first stage. The average processing delay per message is 0.129 ms in Stage 1 and 0.885 ms

in Stage 2. There are not many previous studies on machine learning IDS that report the processing

delay. A processing delay of 2-5 ms is reported [49] while the testing platform information is not

provided.

Performance on Different Attack Rates: To show that the proposed IDS can effectively detect
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attacks regardless of attack rates, we also conduct experiments using test datasets with different

attack rates: one contains a small fraction of malicious messages (1% chance for each type of

attack), the other one contains a large number (8% chance for each type of attack) of malicious

messages. The performance of our IDS under a strong adversary with a low attack rate is shown

in Table 5.5, and the performance of the IDS under a strong adversary with a large attack rate is

shown in Table 5.6. It can be seen that experimental results are similar to the performance shown

in Table 5.2. These results prove that our IDS can effectively detect malicious messages regardless

of whether the attack rate is high or low.

Table 5.5: IDS performance - spares attack traffic

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Accuracy 99.90% 99.89% 99.84% 99.92%
TPR 99.82% 99.75% 99.61% 99.90%
FPR 0.078% 0.062% 0.084% 0.076%

Table 5.6: IDS performance - dense attack traffic

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Accuracy 99.76% 99.87% 99.78% 99.86%
TPR 99.75% 99.86% 99.76% 99.86%
FPR 0.067% 0.066% 0.085% 0.071%

Performance on Different Amount of Training Data: Generally, less training data has low

computation cost, but insufficient training data cannot provide a trained model that meets the

accuracy requirement. On the other hand, too much training data can offer higher accuracy while

it incurs long processing delays and needs large storage resources. To find the appropriate amount

of training data, we conduct experiments with different amounts of training data. We analyze the

different amounts of training data on the impact of performance for each dataset. Figure 5.5, 5.6,

5.7, and 5.8 show the experimental results. The horizon axis is the percentage of CAN messages for
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training. The vertical axis represents the percentage of detection rate (in green) and false positive

rate (in red). Those results indicate:

• The proper size of training data is different for each dataset. And results show a trend that

the increasing of training data can decrease the false positive rate.

• Figure 5.5 indicates that more than 60%-70% data is needed to achieve the desired perfor-

mance for Dataset 1, whereas about 20%-40% data is enough to offer desired results for the

other three datasets. It is noted that it may vary on different vehicle models. Among all

datasets, Dataset 1 and 3 have relatively lower detection rates when less than 50% of data

is used for training. For Dataset 1, due to its small size, the small amount of training data

should be the leading cause for the low detection rate. As for Dataset 3, the low detection rate

may be caused by aperiodic messages. We may need more data for training when aperiodic

messages are involved for acceptable results.

Figure 5.5: Performance over Dataset 1

Model Loss: In the context of machine learning, an epoch is a time period when an entire

training data is passed through a machine learning model. As an important hyperparameter of a

machine learning model, the number of epochs defines the number of passes the entire training

data going through the machine learning algorithm. Usually, multiple epochs are needed to train

a neural network. More epochs help the network to see the previous data and readjust the model
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Figure 5.6: Performance over Dataset 2

Figure 5.7: Performance over Dataset 3

Figure 5.8: Performance over Dataset 4
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parameters. However, too many epochs are not necessary and may bring the over-fitting issue. To

find the proper number of epochs, we analyze the model loss for the machine learning component.

In our experiment, we use the binary cross-entropy loss function and the Adam optimizer function

that is under mini-batch gradient descent. We examine the number of epochs in the range 1 to

150 for each dataset and the results are shown in Figure 5.9. The horizontal axis is the number of

epochs, and the vertical axis is the training error rate. In general, if the overall trend is going down,

the fluctuations within certain limits are normal, which depends on the fact that a heuristic method

is used as an optimization function. As shown in Figure 5.9, all models have converged, and each

one has a reasonable loss. Models of Dataset 1, 2, and 4 have comparable performance while

Dataset 3 has a higher loss at earlier epochs. Even though the difference is not big, it indicates that

Dataset 3 needs more epochs for better performance. A possible reason is that Dataset 3 contains

aperiodic messages. Generally, the training should be stopped when the error rate is minimum. We

need to stop training at an earlier epoch when the value of loss starts to remain at a certain number

consistently. Otherwise, it may generate an over-fitted model. Based on our experimental results,

ten to twenty epochs are appropriate for Dataset 1, 2, and 4, while sixty to eighty epochs are needed

for Dataset 3.

Figure 5.9: Model loss

Overfitting: We apply three approaches to prevent overfitting in this work. 1) hold-out. For

each dataset, we use 70% for training and 30% for testing. In a real car, a CAN IDS will receive
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CAN messages in a continuous manner, and it will not access messages at random from the traffic

trace. Therefore, our IDS is trained on the first part of the trace and tested on the last part. Cross-

validation is not applied because CAN IDSs cannot access messages at random from the traffic

trace. 2) feature selection. When neural networks learn too many features, they can eventually

overfit. Feature selection selects the important features for our model, which helps to prevent

overfitting. 3) early stopping. We train our model for a large number of epochs, and we monitor

the testing loss (using hold-out). If it begins to degrade, we stop the training and save the current

model, which helps to prevent overfitting. By using those approaches, we do not find overfitting

models in experiments on four datasets, but it may happen for CAN data of other vehicles. Since

our hybrid IDS is a scalable framework, more approaches can be applied to prevent overfitting,

such as L1/L2 regularization.

5.4 Discussion

As shown in Section 5.3, the proposed IDS can detect malicious messages effectively and efficiently.

In this section, we list some remaining open questions, challenges, and limitations:

Root cause analysis: When a message is recognized as malicious, our IDS can respond by

raising alarms. However, we do not provide a root cause analysis report for further troubleshooting.

The root cause can be facilitated by a fingerprinting approach [14] that can be complimentary with

our IDS. Our work focuses on intrusion detection, and root cause analysis is beyond the scope of

this research.

Data collection: We collect CAN bus data through the OBD-II port. However, there are some

practical limitations. Firstly, if a vehicle has multiple CAN buses, manufacturers may define some

discretionary pins in the OBD-II port in addition to standard CAN high and CAN low pins. To

collect data on all CAN buses, information about those pins is needed. Secondly, data collected

directly from the OBD-II may be limited or hindered because of different CAN implementations

by different vehicle manufacturers. Those potential issues can be solved by connecting to the CAN
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bus directly, but it requires some levels of destruction for the vehicle.

Various driving conditions: We collect the datasets on the clear driving road with cautious

driving (we only have one driver). Road conditions and driving styles might be very different in

reality. Those may lead to some changes in the characteristics of CAN messages or even cause

false alarms to our IDS. For example, driving on a slippery road or unique driving styles or habits

of different drivers may cause changes in the CAN traffic. In our future work, we may collect data

with multiple driving conditions to see how they impact the result.

Training module updates: During the life cycle of a vehicle, updates on the training model for

detection may be needed. It is a problem for all machine learning-based IDSs. For example, the

replacement or maintenance of some components may require a newly trained model. The aging

of the vehicle is another concern that may require a refined trained model. The trained model can

be generated offline by an authorized dealership. However, the updating process may expose the

system to other threats or attacks.

Adversarial evasion: If an attacker can modify ECU(s) and cause a “modified” CAN trace for

the offline training, the attacker can trick the IDS and lead to a “wrong” model. Then the malicious

behaviors may bypass the detection of IDS. We make an assumption that the CAN trace collected

for offline training is the CAN data without the adversary’s manipulations.

Limitation: The proposed IDS is shown to be effective in detecting various types of in-

vehicle network intrusions. One limitation is that it would be difficult to detect attacks that drop

aperiodic messages. It is still considered an open problem for IDSs, especially timing-based

schemes [7, 71, 76, 77, 101, 14, 102] that leverage the periodicity of CAN messages, to detect

attacks on periodic messages. Despite the fact most CAN messages are periodic [14], and most

intrusions are detectable, a solution is still needed to protect CAN from such attacks. Most

existing studies do not cover this type of attack as they generally focus on the injection attack

[68, 103, 114, 102, 50, 49, 2, 7, 71, 76, 77, 101, 14, 102]. Possible solutions would be leveraging

detection features rather than time, such as the CAN messages sequence, and cyber-physical

features.
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5.5 Conclusion

This chapter proposes a hybrid IDS model to secure the in-vehicle CAN bus and to protect vehicles

from malicious intrusions. The proposed IDS combines traditional rule-based IDS techniques

with emerging machine learning methods to achieve a balance between efficiency and detection

accuracy. Datasets collected from four vehicles of different models and manufacturers have been

used to evaluate the effectiveness and efficiency of the proposed scheme. Our experiments show

that this hybrid IDS can detect more types of attacks compared to each individual detection method

and can also improve efficiency. The promising results demonstrate that the IDS is able to detect

malicious behaviors and can work for different vehicle models. Our study can serve as a proof of

concept that our hybrid IDS model has the potential to enhance in-vehicle security significantly.
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CHAPTER 6

Accelerating In-Vehicle Network Intrusion Detection

System Using Binarized Neural Network

6.1 Introduction

In Chapter 5, a hybrid IDS framework is introduced, which utilizes both rule-based and machine

learning-based approaches to achieve effective and efficient intrusion detection for CAN. While this

system already delivers high accuracy and satisfactory computational efficiency, the challenging

real-time operation of in-vehicle systems requires even better performance. Particularly, our deep

learning component, despite its robust accuracy, can be more efficient. In this chapter, we focus

on improving this component, aiming to enhance its computational efficiency while maintaining

satisfying accuracy significantly.

Machine learning approaches have been deployed to develop IDSs due to their remarkable

capabilities in complex applications [59, 45, 102]. However, they generally suffer from high

computational complexity, usually require considerable computing resources, and often result in

large power consumption. A neural network model can require hundreds of Megabytes (MBs) of

memory [100, 140, 6, 39]. This requirement for memory access is often the bottleneck of system

performance as well as energy efficiency [104]. Therefore, deploying neural networks on resource-

constrained devices in embedded environments can be difficult. Considering the constraints of

ECUs’ memory and the demand for real-time communications of in-vehicle networks, an IDS for

in-vehicle networks should be small in size and have a fast response time during the detection
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process.

To overcome those limitations and protect CAN against vehicle cyberattacks, we propose a new

IDS based on Binarized Neural Network (BNN) that uses binary values for activations and weights

instead of full-precision values. The BNN model can accelerate intrusion detection and reduce

memory requests as well as energy consumption compared with the corresponding full-precision

neural networks.

Our BNN model employs an input generator to convert CAN data into a grid format, enhancing

its capacity to learn temporal sequential patterns, without the need for additional data preprocessing.

Beyond the inherent acceleration of BNNs, our system can utilize Field Programmable Gate Arrays

(FPGAs) for further speed enhancements. FPGAs, with their low power consumption and high

flexibility, are ideal for embedded systems. Yet, their application in complex neural network models

has been limited due to constraints on computing and memory resources. The bitwise nature of

BNNs, however, makes them compatible with FPGA acceleration, offering a potential solution to

these limitations [1, 120, 61, 75, 141, 91, 31, 116, 95].

BNN models are compact and efficient due to binarized weights and activations. However,

accuracy is usually sacrificed to some degree. Improvement strategies can be applied to mitigate

the loss of accuracy [64, 12]. As our goal is to utilize BNNs with higher accuracy while maintaining

relatively low latency and memory cost, we explore various design choices of BNNs, including

increasing network width and depth methods, to investigate if and how those methods can improve

accuracy.

To evaluate the proposed scheme, we use datasets from four real vehicles from different car man-

ufacturers. Our experimental results show that the proposed IDS can achieve satisfying detection

rates as well as low latency. We also test our IDS on FPGAs and other platforms to show the perfor-

mance of accelerated inferences, and we evaluate the memory utilization and power consumption

on different platforms, including CPUs, GPUs, and FPGAs. Moreover, we investigate BNNs with

different design choices to see how they can improve accuracy performance. Our experimental

results demonstrate that wider and deeper models provide better accuracy performance at the cost
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of increased latency and model sizes to varying degrees.

Contributions. This study makes the following contributions:

• To the best of our knowledge, this is the first work applying BNN to IDS for in-vehicle

networks. We adopt the BNN model [44, 8] and convert CAN bit-stream traffic to the

sequential pattern of CAN messages to feed into our BNN model.

• Our BNN-based IDS has lower latency (3 times faster) compared with another full-precision

NN-based IDS. It also requests a smaller memory size as well as lower power consumption.

Small model sizes and low power consumption are important for in-vehicle network environ-

ments as they consist of resource-constrained embedded devices. Moreover, the proposed

BNN-based IDS can be further accelerated by executing on FPGA hardware (128 faster than

on an embedded CPU).

• We evaluate and analyze various BNN models to determine how the width and depth of a

BNN can affect performance. Our experiments show that both deeper and wider models can

offer higher accuracy. Different applications can choose different models according to their

specific needs and available resources.

Organization. This chapter is organized as follows. Section 6.2 presents the design of the proposed

IDS. Section 6.3 delves into the details of the scheme’s implementation and evaluation. Section

6.4 discusses the proposed IDS and related open questions. Finally, Section 6.5 concludes this

chapter.

6.2 Our Design

Our objective is to build an in-vehicle network IDS to protect the CAN bus by detecting suspicious

or malicious activities in the bus. Meanwhile, this IDS aims to have low latency on the detection

process. It is supposed to be placed on a central gateway or installed on an ECU as a node of the

CAN bus that can monitor the CAN traffic.

80



We propose a new IDS using BNN to identify intrusions in order to overcome limitations

on existing machine learning-based IDSs and protect in-vehicle networks against vehicle attacks.

BNNs are types of neural networks using one-bit quantization for weights and activations, and

they can provide shorter inference time and smaller memory requests than corresponding full-

precision neural networks. The actual IDs and data of a vehicle’s CAN messages depend on the

manufacturer’s design, and this information (usually defined in the manufacturer’s proprietary DBC

file) is kept strictly and not published for security reasons. We use raw CAN messages that are

transmitted on the CAN bus and leverage the sequential patterns of messages to detect malicious

intrusions without the need for DBC files.

As illustrated in Figure 6.1, the proposed BNN-based IDS consists of two steps: 1) the training

step and 2) the detection step. In the training step, we use labeled inputs for training. It can be

challenging for the BNN model to directly learn CAN messages. Therefore, we design an input

generator that assembles ten consecutive CAN messages and attaches corresponding labels to build

input frames. If one or more attack messages are in one input frame, the frame label is set as

malicious. Otherwise, the label is set as normal. In this way, BNN is able to learn sequential

patterns during the training process. Note that training can be performed offline as training a

classifier is considered time-consuming. Once the training process is completed, the trained BNN

model is used in the detection process. In the detection step, the input generator only assembles

current traffic messages as inputs without attaching labels. Those inputs are processed by the

trained BNN model, where the topology and parameters are learned from the training step. The

model can be deployed in general-purpose hardware such as CPUs, GPUs, or FPGAs. The output

of the model is a prediction of whether the input is malicious or not. If an input is identified as

malicious, an alarm will be raised.

6.2.1 Input Generator

Neural networks are able to take raw data as inputs without any extra hand-designed features.

Our goal is to process raw CAN traffic data without feature engineering efforts that also save the
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Figure 6.1: Workflow of the proposed BNN-based IDS

corresponding processing time.

As described in Section 4.1, an attacker can launch various attack types by injecting different

types of malicious messages. Figure 6.2 provides two CAN traffic log segments without and with

attacks. Each line shows one message. Both “normal” and “attacks” segments are collected for 7

ms. In normal conditions, the number of messages with ID 064 occurrences is 2. However, when

there is an attack, the number of message occurrences increases to 9 messages. As a result, the

sequential pattern of the CAN traffic is changed, which can be exploited to detect attacks.

Figure 6.2: CAN traffic log without attack (left) and with attack (right)

To enable the BNN model to exploit the sequential pattern of CAN traffic, we design an input
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Figure 6.3: An example input frame generated by the input generator

generator that transforms consecutive CAN messages to grid structure frames, and then the BNN

model learns the sequential pattern of these input frames. Each input frame contains data bits

extracted from 𝑁 consecutive messages and padding bits. In our design, the generator extracts

11 bits from the ID section and 64 bits from the data section, and the bit representation of each

message is as follows:

𝑀 = 𝑏𝑖𝑑0 · · · 𝑏𝑖𝑑10𝑏
𝑑𝑎𝑡𝑎
0 · · · 𝑏𝑑𝑎𝑡𝑎63 (6.1)

We conduct experiments to find the proper size 𝑁 of the input frames and report details in

Section 6.3.4. Based on experiments, we set 𝑁 = 10, i.e., the input generator assembles every ten

sequential CAN messages into an input frame. Figure 6.3 shows an example input frame. In the

last ten consecutive CAN messages, the generator extracts 75 bits from each message (11-bit ID

section and 64-bit data section) for a total of 750 bits from ten messages, plus 34 bits for padding.

Then, the generator builds a 28 × 28 bitwise frame by stacking these 784 bits. By utilizing this input

generator, no hand-designed features are needed, and our IDS can also be more efficient through

batch processing compared to other IDSs [136, 137], because multiple CAN messages in a frame
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are processed at once during detection.

Many CAN IDSs [102, 101, 68] only rely on the ID field of CAN messages for intrusion

detection. Therefore, they are ineffective to detect malicious messages that contain valid ID and

malicious data content, such as spoofed messages. Unlike those schemes, our IDS learns from

input frames that include full information about each message and is able to detect such attacks.

Using the signal data (0 or 1), rather than decoded values, does not introduce extra prepos-

sessing. Considering that thousands of messages are transmitted per second on a CAN bus, such

computational efficiency should be taken into account for an IDS design. Furthermore, neural

networks generally need to normalize data to improve accuracy, because a dominating feature

with a bigger scale compared with other features causes low accuracy. Our model does not need

normalization for input data, which also further improves efficiency by avoiding the computation

cost on normalization, as all inputs consist of only 0 or 1. In addition, the 0 or 1 data helps our

IDS map to FPGA hardware more efficiently because these data make bit manipulation easier for

the hardware.

6.2.2 Binarized Neural Network

Unlike common neural networks which calculate the parameters in floating-point format, BNNs

use binarized weights and activations instead of full-precision ones. By using bit-wise operations,

BNNs can substantially reduce computation costs and improve efficiency. In full-precision neural

networks, the basic operations usually can be expressed as Equation 6.2, where 𝑧 is the output

tensor and 𝜎 represents a non-linear function. 𝑤 and 𝑎 represent the weight tensor and activation

tensor, and their outer product is decoded as ⊗.

𝑧 = 𝜎(𝑤 ⊗ 𝑎) (6.2)

In BNN, during the forward propagation stage, floating-point weights 𝑤 and activations 𝑎 are

replaced by 𝑤𝑏 and 𝑎𝑏 that are all 1-bit long, which can be defined as follows:
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𝑄𝑤 (𝑤) = 𝛼𝑤𝑏, 𝑄𝑎 (𝑎) = 𝛽𝑎𝑏 (6.3)

A BNN can be reformulated in the regular DNN format as follows:

𝑧 = 𝜎(𝑄𝑤 (𝑤) ⊗ 𝑄𝑎 (𝑎)) = 𝜎(𝛼𝛽(𝑤𝑏 ⊙ 𝑎𝑏)), (6.4)

where ⊙ is an inner product for vectors that operate using XNOR-Bitcount [93].

6.2.2.1 Binarization in BNN

The essential idea of BNN is to set weights and activations to +1 or -1 [44, 8]. Two binarization

methods have been introduced: stochastic or deterministic. We use the deterministic method as it

does not require hardware to generate random bits during quantization. Since the output from our

input generator is either 0 or 1 without any normalization process, the first input of BNN and the

rest of the layers can be both formulated as Equation 6.5:

𝑥𝑏 = 𝑆𝑖𝑔𝑛(𝑥) =


1 for 𝑥 ≥ 1

−1 for 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.5)

The problem is that the derivative of the sign function gets almost zero everywhere while in

the backpropagation process. [44] uses Straight-Through Estimator (STE) in a deterministic way,

which is called hard tanh (𝐻𝑇𝑎𝑛ℎ):

𝐻𝑇𝑎𝑛ℎ(𝑥) =


1 for 𝑥 ≥ 1

𝑥 for −1 < 𝑥 < 1

−1 for 𝑥 ≤ −1

(6.6)

By using STE, the 32-bit floating-point weights, denoted as 𝑊32𝑏𝑖𝑡 , are updated with an opti-

mization strategy. During a large portion of training, a positive value of 𝑊32𝑏𝑖𝑡 is evaluated to have

a positive gradient, and that value is increased in every update. If values in 𝑊32𝑏𝑖𝑡 are not bounded,
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they will be accumulated to large numbers. For this reason, BNNs clip the values of𝑊32𝑏𝑖𝑡 between

-1 and +1. This keeps the values of 𝑊32𝑏𝑖𝑡 closer to binarized weight 𝑊1𝑏𝑖𝑡 .

6.2.2.2 BNN Model Design

We design a simple but powerful fully-connected network. As shown in Figure 6.4, this network

takes input frames (each frame consists of ten consecutive CAN messages) from the input generator

and outputs a binary decision indicating whether or not there are any malicious messages among

the ten messages. We set three hidden layers for the network and 1024 nodes for each hidden layer

as a baseline BNN model. In each hidden layer, there are three sub-layers: 1) a binarized dense

layer. It is deeply connected with its preceding layer. All weights and activations are binary values,

except for the first binarized dense layer where only weights are binarized; 2) a batch normalization

layer. It standardizes the inputs to a layer for each mini-batch, which helps prevent overfitting; 3) a

dropout layer with a 15% dropout rate. It is to reduce overfitting and improve the generalization of

deep neural networks.

We adopt training strategies described in [17], including shift-based batch normalizing and

AdaMax. To train our model, and make it more efficient to be mapped to FPGAs without affecting

the network accuracy, additional optimizations are applied:

• Converting the input frames to 0 or 1 through the input generator makes it easier for hardware

to process the bitwise operations. Then 1-bit values are used for all input activations, weights,

and output activations to make the model full binarization, where an unset bit represents -1,

and a set bit represents +1.

• Based on [116], the summation of a binary dot product can be implemented on hardware by a

popcount operation where the set bits are counted by avoiding signed arithmetic accumulation.

In the detection step, almost all parameters in the BNN are binarized during the inference

stage. There are 3.95 million multiply-accumulate operations, but 3.12 million of them are binary

multiply-accumulate, which makes the network work fast if it is deployed on custom BNN hardware.
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Figure 6.4: Baseline BNN structure

6.2.2.3 BNN Inference on FPGAs

While a BNN model is trained on powerful computational devices, mostly on CPUs or GPUs, the

trained model is able to be deployed on general hardware. Previous studies [31, 116, 95] show that

the BNN can work on resource-constrained devices, such as embedded CPUs, ASICs or FPGAs.

FPGAs are considered as one of the most widely used platforms for BNNs. FPGAs offer hardware

customization and can be programmed to deliver performance similar to GPUs or ASICs. The

reconfigurable nature of FPGAs lends itself well to the rapidly evolving AI landscape and marketing

requirements. In this work, we utilize an FPGA inference framework from Xilinx [8], which is

originally designed for computer vision tasks, such as image classification. Because the input

generator transforms the CAN traffic to input frames, we make our BNN-based IDS also work on

this framework while enjoying further acceleration from the FPGA during the inference. Figure 6.5
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illustrates the general workflow of converting a trained IDS into an FPGA accelerator. IDS supplies

frames and a trained BNN to the Finn synthesizer. The synthesizer first determines the resource

allocation by Matrix–Vector–Threshold Unit (MVTU), a computational core for the accelerator

hardware design, to meet the frames per second (FPS) target and applies the optimizations. And

then, it produces a synthesizable network description of a heterogeneous streaming architecture

[116], an FPGA parallel optimizing design. In the last step, with the hardware library and Vivado

HLx design suite, the data stream can be processed on the target FPGA platform.

Although the size of a full-precision neural network may be practically implemented on some

advanced FPGA hardware, a smaller model size is always beneficial for CAN IDSs, given the

constraints of ECU memory, the need for real-time communication of in-vehicle networks and

budget-friendly considerations [35] (advanced FPGAs can be high-cost). Our BNN-based IDS

takes advantage of neural networks and can accelerate CAN intrusion detection with a lower power

consumption, a smaller model size, as well as lower budgets.

Figure 6.5: FPGA inference workflow

6.2.3 Energy Consumption and Memory Cost

Enhancing the computational performance for various tasks in neural networks remains an intricate

challenge. In the last decade, power consumption is one of the dominant constraints on performance.

This challenge has led to many research studies exploring ways to reduce energy usage in neural
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networks.

Due to its unique properties, the BNN has been identified as a potential solution to these energy

efficiency challenges. BNNs primarily offer power-saving benefits due to two main reasons: First,

the binarization of weights and activations in BNNs allows for replacing a significant number

of 32-bit arithmetic operations with more power-efficient bit-wise operations. This replacement

drastically reduces the system resources required for computation, leading to increased power

efficiency. Second, BNNs tackle the issue of energy-intensive data movement within the memory,

which can often exceed the energy costs of computation. As per the findings reported in [133], in

neural networks like GoogLeNet, only 10% of total energy is consumed due to computation, whereas

68% of energy expenditure is due to moving the feature maps. This disproportion underscores the

significant power-saving potential of BNNs.

Compared to full-precision DNNs, BNN-based IDS require less memory space, making it pos-

sible to fit within on-chip memory. This attribute substantially reduces power wastage associated

with memory access. Thus, by adopting BNNs with their efficient operations and reduced memory

requirements, the goal of energy-efficient neural networks becomes more achievable. These ad-

vancements suggest a promising future in overcoming power consumption challenges and pushing

the limits of neural network performance.

6.3 Implementation and Evaluation

6.3.1 Experimental Datasets

Similar to Chapter 5, where we utilize representative datasets, we employ the same datasets to

evaluate the proposed IDS. By using these datasets, we enable consistent, direct comparison of

experimental outcomes across different schemes proposed in this dissertation. Table 6.1 presents

detailed information regarding each dataset used in the evaluation. The third row of the table

displays the total number of messages contained within each dataset. The fourth row provides the

count of unique message IDs, considering variations based on manufacturers and vehicle models.
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Table 6.1: Experimental datasets

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Vehicle
Model

Honda
Accord
2006

Honda
Civic
2018

Ford
Fusion
2013

Chevrolet
Volt
2013

Number
of

Messages 243,762 1,806,780 2,158,201 4,536,342
Number

of
Unique IDs 13 54 79 106

6.3.2 Attack Strategy

Section 4.1 discusses the different types of attacks that potential adversaries might launch based on

their capabilities. Given that the proposed BNN-based IDS is a machine learning-based approach,

the drop attack cannot usually be detected. However, considering this IDS can be incorporated

within the two-stage framework (which has the capacity to address drop attacks, as discussed in

Chapter 5), the BNN can be employed as a component of the second stage. In this work, we

consider that attackers can mount attacks by injecting malicious CAN messages into the bus via an

extra ECU or a compromised ECU.

Considering realistic attacks in the real world and existing studies on attack strategies [71, 73,

72, 14, 102], we implement 100, 200, 200, 300 intrusions on Dataset 1, 2, 3 and 4 respectively

depending on their size. Each intrusion is performed for 3 to 4 seconds. For the all zero ID attack,

we inject a CAN message with 11 zero bits ID every 0.3 ms. The purpose of this attack is to

make the network resource unavailable to intended normal functions. Since all zero ID is the most

dominant CAN ID in the bus, zero ID messages always win the bus in the arbitration phase, and the

DoS effect can be achieved. Consequently, all other normal CAN messages cannot be transmitted.

For the random ID attack, we follow a similar way to the all zero ID attack with different content

of malicious messages. ID and data of those malicious messages are randomized. This type of

attack can result in malfunctions of the vehicle by disturbing certain functions. For both replay
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and spoofing attacks, we inject malicious messages every 0.8 ms. Malicious messages of the

replay attack are valid messages transmitted previously on the bus. And malicious messages of the

spoofing attack are altered messages based on valid messages with valid IDs and modified data.

Understanding the format of CAN messages is needed for generating those malicious messages,

which requires a process of reverse engineering. For instance, in Dataset 1, we find that the

instrument cluster speedometer is controlled by CAN messages with ID 0x0C8. Under normal

operations, only the fifth and sixth bytes in the data section change. By modifying these bytes,

malicious messages can execute a spoofing attack. For example, a spoofed CAN message CAN be

constructed with ID: 0x0C8 and Data: 0x00 0x00 0x00 0x00 0x01 0x02 0x00 0x00. For the hybrid

attack, we insert a malicious message randomly chosen from all four types of attacks every 0.3 ms.

If the attacker’s goal is to intentionally control the vehicle, the attacker should design malicious

messages with specific IDs and data to the bus. Generally, all malicious messages and normal

messages can be listened to by the target victim ECU. In order to ensure that malicious messages,

instead of normal messages, can be received, the attacker needs to send malicious messages at

a higher frequency than normal messages. In a typical message injection attack, the number of

attack messages should be twice the number of normal messages. In practice, the number of attack

messages can be significant (20-100 times) higher than the normal messages [72].

6.3.3 Experimental Setup

We design and conduct experiments on different platforms. To evaluate the effectiveness and

efficiency of the BNN-based IDS, we use a regular desktop CPU to demonstrate the performance

of our IDS in terms of accuracy and inference time on software. We use Python version 3 for

the implementation and Theano/TensorFlow as libraries for machine learning. The BNN training

device is a Linux machine running Ubuntu 20.04.2 LTS with a GPU device. For the hardware-based

acceleration evaluation, we focus on embedded computing which aims to simulate a more realistic

environment. We use two different platforms, including an embedded CPU and an embedded FPGA,

which are low-power devices. Additionally, we use desktop CPU/GPU devices for comparison,
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where we compare IDS detection latency and power usage effectiveness among those devices.

Details of different platforms are listed as follows:

• Embedded FPGA: Xilinx PYNQ family Artix-7 FPGA, which has 13,300 logic slices, each

with four 6-input LUTs and 8 flip-flops

• Embedded CPU: Arm Cortex-A9 processor with dual-core and 650MHz clock

• Desktop CPU: AMD Ryzen 3700x with 8 cores and 16 threads, base clock at 3.6GHz

• Desktop GPU: Nvidia RTX 2070 Super, 8GB DDR6 RAM

6.3.4 Input Generator

Our study introduces an input generator that compiles numerous successive CAN messages into

composite input frames. Each constructed frame contains ‘𝑁’ individual messages and padding

bits. The primary function of this structure is to enable the BNN model to exploit the sequential

patterns in the CAN traffic.

We perform experimentation to demonstrate the input generator’s critical role and determine

the optimal size ‘𝑁’ for the input frame. Our tests show that when IDS is used without an input

generator, feeding CAN messages directly into a BNN model, its performance can be significantly

worse. In fact, without the input generator, its accuracy is only 78.43% against the hybrid attack

on Dataset 1.

To determine the ideal frame size ‘𝑁’, we examine IDS performance for different frame sizes,

including 5, 10, 20, and 50. Results show that when ‘𝑁’ is small, these frames may not adequately

represent sequential patterns, affecting IDS performance. Conversely, larger input frames improve

performance because they contain more messages and thus provide more representations of se-

quential patterns. However, our tests show that this improvement is not linear: performance does

not consistently increase as frame size increases. After a certain point, increasing the frame size

does not yield better performance.
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Considering these experimental results, we design the input generator to generate frames encap-

sulating ten consecutive CAN messages, achieving a balance between providing sufficient sequential

context and maintaining computational efficiency. This approach ensures that the BNN model can

effectively exploit the sequential patterns of CAN traffic for intrusion detection.

6.3.5 Overfitting Prevention

In order to prevent overfitting, we apply the following approaches.

1. hold-out. For each dataset, we use 70% for training and 30% for testing. Considering that

a CAN IDS receives CAN messages in a continuous manner and does not randomly access

messages from the traffic trace, the first part of CAN traffic data is used to train our IDS,

while the last part data is used to test. It is noted that no cross-validation is applied because

CAN IDSs cannot access messages at random from the traffic.

2. regularization. Using regularization during training can mitigate overfitting. Regularization

consists of various methods. We use two methods: batch normalization and dropout layer.

Batch normalization helps to prevent overfitting by reducing the internal covariate shift and

instability in distributions of layer activations. Moreover, it also results in the acceleration

of the model optimization and better overall performance. Dropout layers prevent overfitting

by randomly dropping a predefined ratio of nodes in the network.

3. characteristics of BNNs. Adding noise to activations and weights during training is one of the

methods to prevent overfitting. In BNNs, both the activations and the weights are binarized,

which can be considered a variant of the dropout method [17]. It helps to better generalize

the model and reduce overfitting.

4. early stopping. We train our model for a large number of epochs, and we measure how well

each iteration of the model performs. We stop the training and save the current model when

it starts to degrade, which helps to prevent overfitting.
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By using those approaches, we do not find overfitted models in experiments on four datasets,

but it may happen for CAN data of other vehicles. As this BNN-based IDS is a scalable framework,

more approaches can be applied to prevent overfitting, such as feature selection. If neural networks

learn too many features, they can eventually overfit. Feature selection helps to select important

features to reduce overfitting.

6.3.6 Experimental Results

6.3.6.1 Experiment 1: BNN vs. Full-Precision NN on CPU

This study aims to contrast the inference time between BNNs and full-precision 32-bit Neural

Networks (NNs) that share an identical structural configuration. All of these computational tests

were conducted on a uniform CPU platform to ensure a consistent baseline, guaranteeing that

any observed differences in performance are attributable solely to the respective characteristics

of BNNs and 32-bit NNS, not any variations in computational power or platform specifications.

To effectively assess the robustness of these models under distinct types of attacks, we take into

consideration a broad range of existing research studies alongside some of the most innovative

and cutting-edge work within the realm of CAN IDS [14, 122, 136]. We use the same metrics

in Chapter 5: accuracy, true positive rate (TPR, or detection rate), and false positive rate (FPR).

Accuracy is the fraction of all correct detection results. TPR is the fraction of detected messages

that are truly malicious, and FPR is the fraction of detected messages that are not really malicious.

We utlize Equation 4.4, 4.5, and 4.8 defined in Section 4.3 to calculate them.

A well-performing IDS should exhibit high accuracy, indicating its robust overall detection

capability, and high True Positive Rate (TPR), demonstrating its efficiency in identifying malicious

messages. Conversely, the False Positive Rate (FPR) should remain low, representing a reduced

frequency of false alarms. It’s important to emphasize that a high TPR and low FPR are pivotal

performance metrics for IDSs. This is especially critical in the context of in-vehicle networks [14],

where false positives could induce unnecessary alarm and squander resources, including emergency

services.
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Table 6.2: BNN vs. full-precision NN on CPU

BNN-1 bit NN-32 bits
Inference time

/message 0.04 ms 0.12 ms
FPR 3.75 % 0.08 %

All Zero ID Attack TPR 97.31 % 99.72 %
Accuracy 96.53 % 99.82 %

FPR 3.32 % 0.12 %
Random ID Attack TPR 98.16 % 99.62 %

Accuracy 97.84 % 99.92 %
FPR 8.02 % 0.32 %

Replay Attack TPR 94.32 % 99.25 %
Accuracy 93.11 % 99.59 %

FPR 11.03 % 0.88 %
Spoofing Attack TPR 88.90 % 99.01 %

Accuracy 85.12 % 98.89 %
FPR 18.02 % 1.02 %

Hybrid Attack TPR 80.23 % 98.02 %
Accuracy 79.99 % 98.45 %

By following the common practice, for each dataset, we use 70% for training and 30% for

testing. Based on our experiments, we notice that the results of each dataset are comparable, thus

we report the average of their performance in Table 6.2. It also demonstrates that the applicability

of our IDS is not limited to a specific vehicle model. Results in Table 6.2 are calculated over 10

experiments. It can be seen that BNN inference time is about 3 times faster than regular NN. This

is an improvement for real-time applications that are time-sensitive. Authors of [49] report that

their DNN-based IDS has a processing latency of 2-5 ms per message, which meets the real-time

requirements of CAN. Our scheme achieves a shorter processing time.

BNN has a noticeably higher false positive rate compared to the 32-bit NN. For a true positive

rate, BNN outperforms the all-zero attack and the random ID attack in comparison to other types

of attacks. As for accuracy, BNN can handle the random ID attack better than other attack types

in general, but there is still room to improve when compared with full-precision NN in terms of

any attack type. The overall performance of BNN on the spoofing attack and the hybrid attack is
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not comparable with others, and it might be because those attacks are more complicated than other

types of attacks. The proposed BNN-based IDS runs 3 times faster in detection while trading off

2.1%-18.5% accuracy depending on different attack types compared with the 32-bit NN model.

Even though we focus on neural networks for higher accuracy, we also conduct experiments to

compare the performance of our scheme with some classical machine learning methods, including

decision trees, random forests, and SVM. These classical machine learning methods generally need

more human interaction and additional efforts, such as data preprocessing and feature engineering,

compared with neural networks. It has been shown that neural networks outperform classical

machine learning methods, in both general IDS tasks [121, 134, 23, 50] and CAN bus IDS tasks

[49, 102]. We draw the same conclusion through our experiments.

6.3.6.2 Experiment 2: BNN Implementation on FPGA, CPU, and GPU

In this experiment, we compare the performance of BNN-based IDS with different platforms. The

same BNN model under the hybrid attack is used on four common hardware platforms: desktop

CPU, embedded CPU (eCPU), FPGA, and GPU. We measure the power consumption of the FPGA

hardware by connecting a USB power monitor to measure the total power consumption of the

board and estimate the power consumption of others based on the hardware specifications, which

is accurate enough to use for our purpose [141]. It is noted that the processing delay of the input

generator is not included. From the results, not surprisingly, the GPU device is the fastest inference

device during our test. Inference on the FPGA device is 2.7 times faster than the CPU and 128

times faster than the eCPU, because of its optimization on the bitwise operation and highly efficient

parallel data processing. When we consider the power efficiency (message/sec/watt), FPGAs are

the best hardware solution in our experiment, which is 6.3 times than the GPU, 55.8 times than the

CPU, and 91.2 times than the eCPU. In practical usage, using powerful GPUs or desktop CPUs is

not a feasible solution for ECU setup, therefore, compared with the eCPU platform, which is limited

on computation resources, the FPGA platform becomes a recommended solution as a BNN-based

IDS inference device.
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Table 6.3: BNN - hybrid attack implementation

FPGA CPU eCPU GPU
Power

consumption
(watt) 3.1 65 2.2 215

Throughput
(message/sec) 55666 20950 434 613002

Efficiency
(message/sec/watt) 17957 322 197 2851

6.3.6.3 Experiment 3: BNN Models with Wider/Deeper Structure

To further improve the accuracy performance of the proposed IDS, we explore several BNN model

choices with different width and depth settings to understand if and how more complicated network

structures can provide better detection accuracy. We evaluate those models from the perspective of

effectiveness and efficiency. We also analyze the model size of each model.

Effectiveness Evaluation: Table 6.4 provides the accuracy performance of different model

choices. We evaluate these models on the same CPU platform with the same type of attack (hybrid

attack) using three metrics - FPR, TPR, and accuracy. The baseline model (3 hidden layers, 1024

neurons in each hidden layer) is the model evaluated in Section 6.3.6.1. Model 1 is a deeper model

(5 hidden layers, 1024 neurons in each hidden layer), and Model 2 is a wider model (3 hidden

layers, 2048 neurons in each hidden layer). Model 3, it is a deeper & wider BNN model (5 layers,

2048 neurons in each hidden layer). We examine all four models using binary and 32-bit precision

options to provide comparisons between binary and full-precision models. We also discuss the

model size of these models.

Model 3 provides the most significant accuracy improvement on both binary and 32-bit precision

networks compared to other models. However, the cost for Model 3 is also apparent. For binary

networks, Model 3 improves 5.67% accuracy performance over the baseline model, while the model

size increases from 515 Kb to 2.79 Mb, as seen in Table 6.6.

Increasing width or depth independently can also improve IDS accuracy performance. For
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Table 6.4: Effectiveness evaluation - hybrid attack

baseline
model Model 1 Model 2 Model 3

FPR 18.02% 17.55% 15.20% 12.34%
TPR 80.23% 81.23% 84.33% 85.42%

binary Accuracy 79.99% 81.33% 84.32% 85.66%
FPR 1.02% 0.98% 0.94% 0.93%
TPR 98.02% 98.34% 98.83% 98.88%

32-bit Accuracy 98.45% 98.57% 98.93% 99.12%

binary networks, Model 1 and Model 2 achieve 1.34% and 4.33% accuracy boost respectively,

over the baseline model. As a trade-off, these two models’ size increases to 787 Kb and 1.76 Mb,

respectively.

We also evaluate the effectiveness of each model design choice when the network precision

is 32-bit. Since the baseline model has already reached 98.45% accuracy, increasing the width

or depth of the model cannot significantly improve accuracy performance. On the other hand,

the model size can be expanded multiple times in pace with width and depth adding. Even for

the simplest 32-bit model, the baseline model size becomes 15.13 Mb, 29.4 times larger than the

binary baseline model size, and 5.4 times larger than the size of the binary Model 3 which is the

best performing binary model. This experiment shows that BNN models have an advantage on

the model size reduction and demonstrates how we can improve accuracy performance over the

baseline model. For different applications, different models can be selected based on the resources

they have to meet their needs.

Efficiency Evaluation: We evaluate the efficiency performance of the baseline BNN model,

Model 1 (deeper), Model 2 (wider), and Model 3 (deeper & wider) on the same CPU platform

under the same type of attack.

As shown in Table 6.5, we measure the inference time/ message for four model design choices.

For binary models, the same as the effectiveness evaluation experiment, whether it is 1-bit or 32-bit

precision, Model 3 increases the inference time of the baseline model the most. With the model

complexity increasing, the inference time required for each message increases. This increasing
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Table 6.5: Latency evaluation (inference time/message)

baseline
model Model 1 Model 2 Model 3

binary 0.04 ms 0.08 ms 0.13 ms 0.22 ms
32-bit 0.12 ms 0.24 ms 0.41 ms 0.67 ms

Table 6.6: Model size of different models

Binary
baseline

Binary
Model 1

Binary
Model 2

Binary
Model 3

32-bit
baseline

Size 515 KB 787 KB 1.76 MB 2.79 MB 15.13 MB

inference time needs our attention because real-time embedded systems are usually susceptible to

such delays.

The inference time of each binary model is about three times faster than that of the corresponding

32-bit model. This experiment suggests using BNN can effectively decrease processing delay.

6.4 Discussion

As shown in Section 6.3, the proposed IDS can reduce the detection latency while maintaining

acceptable detection rates, and the accuracy can be further improved. It is reasonable to expect that

the proposed IDS can be available for real-time detection. However, there is a trade-off to consider:

the balance between detection performance and processing delay. Our findings suggest that while

our BNN-based IDS provides rapid detection, the detection rates and accuracy are lower than that

of full-precision models across all types of attacks. Meanwhile, false positive rates remain higher

than those observed in full-precision counterparts.

To enhance performance, a few strategies can be considered. One potential approach is the

adoption of more complex neural network architectures that may better model the complexity and

intricacies of attack patterns. Another strategy can involve the incorporation of features derived

from the semantic interpretation of CAN traffic data. This would enable a deeper understanding of

the underlying data, which can help improve the robustness of the IDS. However, it is important to
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note an inherent limitation affecting all supervised learning models, including neural networks used

in IDSs, such as RNNs, and CNNs [102, 50, 49]. These models may struggle to identify unlearned

types of attacks, as their capacity to detect new threats is inherently bound by the data they’ve been

trained on. This challenge underscores the need for further research to better equip these systems

to detect previously unseen or novel attacks, further enhancing the utility and reliability of IDSs.

On the bright side, given that it strikes between processing speed and detection performance, our

BNN-based IDS exhibits potential for real-time intrusion detection tasks. Its fast detection and the

ability to maintain satisfactory detection performance make it a promising candidate for real-time

applications where immediate threat identification and response are crucial. This introduces a new

frontier for the practical applicability of IDSs in real-world scenarios, expanding their utility in

automotive cybersecurity.

6.5 Conclusion

In this chapter, we propose a BNN-based IDS to secure the in-vehicle CAN bus and protect vehicles

from malicious intrusions. The proposed IDS utilizes BNN to accelerate intrusion detection while

reducing detection latency, memory request, and system power consumption. The IDS, which is

designed to suit CAN data, can process the raw CAN data without additional prepossessing or

hand-designed features. It learns from sequential patterns from CAN traffic rather than individual

CAN message. We evaluate the proposed IDS on datasets collected from four real vehicles of

different models and manufacturers, which also helps validate that our IDS’s applicability is not

limited to a specific vehicle model. Experimental results demonstrate that the IDS is able to detect

malicious behaviors with lower latency (3 times faster) compared to full-precision neural network-

based IDS with sacrificing the accuracy (2.1%-18.5% depending on the types of attacks) on the

same CPU platform. And the model runs 128 times faster on FPGAs than an embedded CPU.

Moreover, the experiments show a BNN model with a wider or deeper structure can achieve better

accuracy, but as a trade-off, it increases detection latency and model size to varying degrees. In
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addition, experimental results present that the BNN model provides a significant advantage in the

model size reduction compared to 32-bit counterparts. Therefore, different applications can select

the proper model according to their needs and resources.

Our study can serve as a proof-of-concept that our BNN-based IDS has the potential to enhance

in-vehicle security significantly, especially considering the embedded environments of in-vehicle

networks.
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CHAPTER 7

Efficient and Effective In-Vehicle Intrusion Detection

System using Binarized Convolutional Neural

Network

7.1 Introduction

As presented in Chapter 6, given the demand for real-time communications of in-vehicle networks,

an IDS for in-vehicle networks should be fast in detection time and small in memory size [138, 139].

That chapter introduces a BNN-based IDS, aimed at enhancing the computational efficiency of

our machine learning-based IDS. However, the overall accuracy of BNN-based IDS needs to be

improved to better meet the demands of securing in-vehicle networks. Firstly, that design does not

take full advantage of the temporal and spatial features of messages that can contribute to a higher

accuracy [98]. Secondly, that design uses a binary neural network based on a shallow multi-layer

perceptron (MLP) architecture, which may not generalize well enough to handle complex CAN

traffic.

This chapter proposes an IDS that consists of two main components: an input generator and

a Binarized Convolutional Neural Network (BCNN) model. The input generator aims to enable

the proposed IDS to utilize temporal and spatial features of CAN traffic for higher detection rates.

We design the input generator based on a processing framework called DeepInsight [98] to convert

CAN messages from a feature vector into a well-organized image form, which can provide temporal
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and spatial features of CAN messages to the BCNN model. The input generator transforms the CAN

traffic data according to their similarity. Moreover, it has the potential to reduce the processing

latency of the proposed IDS, because it can flexibly set an appropriate input image size, thereby

reducing the input dimensionality.

For the second component, we propose to utilize BCNN to process output images from the

first component. Among various machine learning methods used to build CAN IDS, CNN is

powerful and easy to use [102]. CNNs can deliver notable performance by extracting features

from raw inputs through convolutions and pooling, eliminating the need for supplementary feature

engineering techniques. However, like other neural networks, it can be challenging to use CNN

for CAN IDS due to the high latency and considerable memory requests. In order to maintain the

advantages of CNN, we utilize BCNN with binarized activations and weights, which can accelerate

intrusion detection and reduce memory requests compared with the corresponding full-precision

models. Especially, BCNN has a similar structure to CNN, which allows BCNN also has the power

to learn and process high-order statistics and nonlinear correlations of inputs to provide better

performance. Note that applying binarization to full-precision CNN may significantly degrade

IDS detection accuracy without an appropriate design, due to the trade-off between detection

performance and processing latency. In this work, we design an IDS with a BCNN model that can

provide better accuracy than the IDS with a BNN model presented in the previous chapter, and we

explore QuickNet [3] architecture with its different configurations for our proposed IDS to further

improve the accuracy of the original BCNN model. It is noticed that QuickNet-Large can provide

the best accuracy with less model size required than the original BCNN model.

We evaluate the proposed model using datasets from four vehicles across different manufacturers.

Real CAN data collected from actual vehicles is essential for evaluating CAN IDS performance

because simulated CAN datasets are unrealistic and impractical, and real-world factors such as

temperature changes can affect CAN messages [14]. Also, as the actual CAN ID and data depend

on the manufacturer, it is crucial to demonstrate the applicability of our scheme on different car

models. Experimental results show that the proposed IDS achieves a satisfactory detection rate and
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low latency.

Contributions. This study makes the following contributions:

• To the best of our knowledge, this work is the first to utilize BCNN for IDS in in-vehicle

networks. Additionally, we develop an input generator that converts CAN traffic into temporal

sequential patterns and spatially local correlations of CAN messages for the proposed BCNN

model.

• The proposed BCNN-based IDS achieves four times faster processing compared to a full-

precision CNN-based IDS while maintaining satisfactory accuracy. It also requires less

memory, which is crucial for resource-constrained embedded devices in in-vehicle network

environments.

• We investigate a variety of binarized CNN architectures, ranging from AlexNet to QuickNet

with different configurations for our proposed IDS design. This showcases the flexibility

of our IDS and its potential for higher detection rates, which can meet varying resource

constraints and accuracy requirements.

• We conduct extensive evaluations using real CAN traces from four real vehicles, in contrast

to most prior studies that rely on simulated data or data from no more than two vehicles.

Organization. This chapter is organized as follows. Section 7.2 provides the design of the proposed

IDS. Section 7.3 details the insights into the implementation and evaluation metrics of the proposed

scheme. Section 7.4 discusses the proposed IDS. Section 7.5 concludes this chapter.

7.2 Our Design

We aim to build an in-vehicle network IDS to protect CAN bus from attacks by detecting malicious

messages in the bus with low latency as well as high accuracy. It is supposed to be deployed on a

central gateway or installed on an ECU as a node on a protected CAN bus to monitor traffic.
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Figure 7.1: Workflow of the proposed BCNN-based IDS

As shown in Figure 7.1, the proposed BCNN-based IDS scheme consists of two main steps: 1)

the training step and 2) the detection step. In the training step, to enable BCNN to learn temporal

and spatial patterns of CAN messages, we design an input generator that converts consecutive CAN

messages to image inputs and attaches corresponding labels to construct input frames. If one or

more attack messages are in an input frame, its label is set to malicious. Training a classifier is

considered time-consuming, and it can be done offline. In the detection step, the input generator

transforms the current traffic message as input without labels. These inputs are processed by the

trained BCNN model obtained in the previous step. This model can be deployed in ECUs, including

some general-purpose hardware such as CPUs, GPUs, or FPGAs [138]. The output is a prediction

of whether an input is malicious or not. An alarm will be raised if malicious input is detected.

7.2.1 Input Generator for BCNN-based IDS

To save additional processing time, our objective is to process raw CAN traffic data without any

hand-designed features that can introduce extra latency. We propose an input generator to allow

the BCNN model to learn CAN traffic. The generator transforms consecutive CAN messages into

well-organized images, enabling the model to learn and further identify malicious messages in the

traffic.
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7.2.1.1 Limitations of Prior Work

Researchers have proposed different methods to build image inputs for CNN-based IDS to protect

CAN. Traffic data patterns are changed under attacks [124] and can be exploited as detection

features. For example, every 29 consecutive CAN message IDs are assembled directly into image

inputs and enable a CNN model to learn for detection [102]. However, this design does not cover

the data section of CAN messages which cannot detect CAN messages with valid IDs and tampered

data. [138] proposes a design in which both ID and data sections of CAN messages are included.

Although such a design covers the data section, this scheme does not provide sufficient accuracy.

Temporal or spatial location dependencies [19, 98] that may contribute to high accuracy are not

taken into account in either work.

Recurrence plots are used to generate images from the CAN messages to capture the temporal

dependency [19]. A recurrence plot is a graph of a square matrix where each element corresponds

to times at which a state of a dynamical system recurs. The majority of CAN messages are sent

to the bus periodically [14]. Thus, the visual appearance of a CAN messages recurrence plot

can offer temporal dependency on the dynamics of the system. In [19], each recurrence plot is

generated by 128 consecutive CAN IDs without data sections. Figure 7.2, (a) and (b) show example

recurrence plots using one of our datasets under the spoofing attack. The normal state and the

attack state are difficult to distinguish, which means that there is not enough information to train

the model, which also makes intrusion detection challenging. We investigate a new similar method

that generates recurrence plots based on both ID and data sections. Examples generated by the

same CAN messages and attacks are shown in Figure 7.2, (c), and (d). The problem still exists.

We do not use recurrence plots for two main reasons: 1) they cannot provide enough meaningful

information for training the model, making IDS ineffective against some common attack types; 2)

they cannot consider that some vehicles have aperiodic CAN messages [14], which will bring a

large number of false positives.
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Figure 7.2: Recurrence plots of CAN traffic using 1) only ID, without attack (a) and with attack
(b); 2) ID and data, without attack (c) and with attack (d)

7.2.1.2 Our Input Generator

To achieve a high accuracy performance, we leverage temporal sequential patterns and spatially local

correlations of CAN messages. We design an input generator that is based on DeepInsight [98],

which transforms consecutive CAN messages into well-organized images, considering potential

spatially local correlations of data. As consecutive messages also represent temporal sequential

patterns, both temporal and spatial features are involved, and thus the input generator enables the

deep learning model effectively to take advantage of both features of consecutive CAN messages.

Each image input is constructed by placing similar elements together and dissimilar ones apart,

which enables the collective use of neighboring elements. For a standard CAN data format, it

contains an 11-bit ID and 8-byte data, i.e., a message can be represented in 10 bytes in total:

𝑑0, 𝑑1, 𝑑2, ..., 𝑑8, 𝑑9. Therefore, for 𝑚 consecutive CAN messages, they construct a feature vector

𝑉 =
{
𝑑0

0, 𝑑
1
0, 𝑑

2
0, ..., 𝑑

8
𝑚, 𝑑

9
𝑚

}
, which contains the number of elements m times 10. The number

of consecutive CAN messages should be chosen carefully. Too small 𝑚 may not provide enough

information, including the temporal feature, while too large 𝑚 may significantly increase processing

time. To find the appropriate 𝑚, we conduct experiments using datasets collected from four vehicles

and set it to 100. Note that the appropriate value of 𝑚 may vary for CAN data from other vehicle

models.

Before image transformation, values should be normalized because each layer of an image

containing 256 shades is normalized in the range of [0,1]. Based on the experiments we performed
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Figure 7.3: Workflow for converting CAN messages into image pixels

Figure 7.4: Example of converting feature vector to feature matrix

and the fact that each feature can be considered independent in CAN data, we normalize each feature

by its minimum and maximum values. Figure 7.3 illustrates a workflow of our input generator.

There are two main steps: 1) define feature location and 2) generate input pixels.

In the first step, the training data is used to find each feature position based on the similarity

between the features. If the training dataset 𝑇 contains 𝑛 instances, 𝑇 = {𝑉0, 𝑉1, ..., 𝑉𝑛−1}, where 𝑉𝑖

represents a feature vector including 𝑚 consecutive CAN messages. After that, 𝑇 is transposed to

a feature set 𝐷 = {ℎ0, ℎ1, ..., ℎ𝑚−1}, where ℎ𝑖 =
{
𝑑𝑖0, 𝑑

𝑖
1, ..., 𝑑

𝑖
𝑛−1

}
represents a feature including 𝑛

training instances. Then, we apply t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm

[117, 98] on this feature set 𝐷 to define the location of features based on similarity. t-SNE is a
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dimensionality reduction technique that is chosen because it provides better results than other

options based on our analysis of the four CAN datasets we collected. Other similarity measuring

techniques or dimensionality reduction techniques, including kernel principal component analysis

(kPCA) may be considered for other vehicle models [98]. As illustrated in Figure 7.4, 𝑇 is

transformed into a feature matrix 𝐷, which can present spatial correlations compared with feature

vectors. The similarity of features decides the location of each feature in the Cartesian coordinates.

For example, ℎ0, ℎ2, ℎ4, ℎ7 are closer to each other. Then, we find the smallest region containing all

points by applying the convex hull algorithm [15], which reduces redundant regions in the input that

can cause additional unnecessary processing. Next, the frame is rotated to a horizontal position, as

CNN generally prefers an image in a horizontal over a vertical form. The output of the convex hull

algorithm and the rotation result are shown in red and green, respectively.

In the second step, input pixels are generated. Cartesian coordinates are converted to pixels

by averaging certain features according to the image size. A feature is averaged and placed at the

same location when multiple features have the same location in the pixel frame. If the image size

is very small, many features can overlap, resulting in low-quality images leading to low accuracy;

if the image size is very large, the image representation is too large, which could cause significant

unnecessary processing delays. We set the resolution to 20 x 20 to reduce the number of computation

parameters in CNN models based on the reporting result from [127]. Finally, current CAN traffic

can be mapped to pixel locations and produce input frames. Example input frames with one of our

datasets under normal state and spoofing attack are also presented in Figure 7.3.

Our input generator enables our BCNN model to learn the temporal and spatial characteristics

of CAN traffic for high accuracy. Unlike many existing CAN IDSs [102, 14] that only focus on

the ID field of CAN messages for intrusion detection, our IDS can cover complete information

of each message. Otherwise, they cannot effectively detect malicious messages, such as spoofing

messages, constructed with valid IDs and malicious data fields. In addition, this input generator can

also help reduce the dimension of input for the subsequent machine learning model when applying

a sufficiently small resolution that results in acceptable performance, which can further reduce the
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processing delay in detection.

7.2.2 Binarized Convolutional Neural Network

In the continuously evolving landscape of automotive cybersecurity, intrusion detection has become

paramount for maintaining secure communication networks. Applying Machine Learning (ML) al-

gorithms, especially Neural Networks (NNs), has shown remarkable promise in this context. While

BNNs offer some advantages, such as decreased computation time and lower power consumption,

they are frequently hampered by lower accuracy levels than their full-precision counterparts. This

limitation is particularly noticeable when dealing with complex intrusion patterns.

As one of the deep learning-based pattern recognition methods, CNN is able to efficiently and

effectively learn features from input CAN messages than classical neural networks [129, 102]. In

addition, as another advantage of CNNs, the same convolutional kernels are shared, which would

reduce the number of parameters and calculation amount of training once greatly. Thus it can more

quickly identify attack type of traffic data. However, CNNs generally involve high computational

costs and large memory accesses resulting in large power consumption [8, 17]. In view of the

limited ECU memory and the requirement for real-time communication, the CAN IDS requires

fast detection and small model size. We propose using BCNNs for intrusion detection to protect

CAN from cyberattacks. Unlike common CNNs, with binarization, BCNNs use binarized weights

and activations instead of full precisions. Computation costs can be reduced significantly with

improved efficiency by using bit-wise operations.

A BCNN model has a similar structure to a full-precision CNN model, comprising an input

layer, a fully-connected layer, and an output layer, along with varying numbers of convolutional and

pooling layers [29]. The key component is the convolutional layer containing a set of kernels. In the

binarized network, during the forward propagation stage, floating-point weights 𝑤 and activations

𝑎 are replaced by 𝑤𝑏 and 𝑎𝑏 that are the tensor of binary weights and binary activations, with the

corresponding scalars 𝛼 and 𝛽. The definition of the binarization functions 𝑄𝑤 (𝑤) and 𝑄𝑎 (𝑎) are

given as follows:
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𝑄𝑤 (𝑤) = 𝛼𝑤𝑏, 𝑄𝑎 (𝑎) = 𝛽𝑎𝑏 (7.1)

In full-precision convolutional neural networks, the basic operation can be expressed as [93]:

𝑧 = 𝜎(𝑤 ⊗ 𝑎) (7.2)

, where 𝑧 is the output tensor and ⊗ represents the convolution operation.

A BCNN can be reformulated in the regular CNN format as follows, with the binarized weights

and activations:

𝑧 = 𝜎(𝑄𝑤 (𝑤) ⊗ 𝑄𝑎 (𝑎)) = 𝜎(𝛼𝛽(𝑤𝑏 ⊙ 𝑎𝑏)) (7.3)

, where ⊙ is an inner product for vectors that operate using XNOR-Bitcount [93].

The binarization method converting 32-bit to binary values uses the same way in BNN, which

can refer to Section 6.2.2.1.

BCNN Model Configuration: We design a BCNN model that takes input frames from the

input generator and outputs a binary decision indicating whether or not there are any malicious

messages among the messages. Taking a simple and straightforward CNN architecture AlexNet,

we set up the proposed BCNN model built with five binarized convolutional layers and three fully

connected layers [38]. Relu is applied after each convolutional and fully connected layer except

the output layer. To avoid overfitting issues, we use batch normalization layers that standardize

the inputs to a layer for each mini-batch, and use dropout layers with a 15% dropout rate. Both

techniques help reduce overfitting and improve the generalization of the model. We adopt training

strategies described in [17], including shift-based batch normalizing and AdaMax [53]. In the

detection step, because almost multiple-accumulate operations in the network are converted into

binary operations, the BCNN model can process CAN frames at a fast speed while utilizing a small

number of memory resources.
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7.2.3 Accuracy Improved BCNN Model – QuickNet

The proposed baseline BCNN improves latency and memory utilization from full-precision CNNs;

however, as a trade-off, the IDS accuracy performance is degraded because of parameter binariza-

tion. In practice, accuracy performance is critical when applying an IDS for in-vehicle networks.

Given that fact, we need to find a way to improve the accuracy of baseline BCNN while still

maintaining the advantage of speed and size.

We explore some other design options based on the baseline BCNN. Bethge et al. [5] and

Martinez et al. [70] discuss bottlenecks in the binarized network structure, and they identify

two factors that largely impact the accuracy performance of BCNN: the first full-precision layer

and other non-binary operations. Bannink et al. [3] propose a network called QuickNet which

addresses the two performance bottleneck issues and successfully benchmarks the popular CNN-

based binarized model. From their experimental results, QuickNet can outperform other BCNNs

in terms of accuracy and latency in image classification tasks using ImageNet dataset.

Thanks to the input generator that makes it possible to process CAN messages in any CNN model.

To our best knowledge, we are the first team to utilize BCNN to IDS for in-vehicle networks, and

furthermore, we adopt the STOA BCNN design – QuickNet in our design to make it work well

with the proposed IDS.

Addressing the performance bottleneck, QuickNet improves the efficiency of the full-precision

first layer and meanwhile achieves competitive accuracy. In the first layer, there is a small convo-

lution of size 3×3 with 16 filters, then follow by a depthwise separable convolution to increase the

feature size. As a result, the spatial resolution from the input generator of size 20x20 decreases

to 10x10 using striding. For the transition block, as another performance bottleneck, we apply a

transition block in hidden layers, which is made with a 3×3 antialiased max pooling. The max

pooling layer, a strided depthwise convolution layer with a fixed blurring kernel, and a 1×1 full

precision convolution with filters work together to increase the feature size.

To make QuickNet work with the proposed CAN IDS, the following steps are taken in this

work. We firstly modify the fully connected layers, which are used to work for 1000 categories
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image classification task, and now output 0 or 1 for “normal message” or “malicious message”.

Secondly, according to previous CAN IDS research [136], compared to regular images, image

frames generated by CAN messages do not need too large or complex deep learning architectures to

learn their features. We build a QuickNet-based model with only half the transition block than the

original QuickNet, and we find that more redundant layers cannot contribute to accuracy but cause

issues like overfitting. Lastly, we follow a similar strategy from [3] to train the model with some

tune parameters which work better for the proposed IDS. 1000 epochs are trained from scratch on

a GPU, with a batch size of 512. Adam optimizer is used with an initial learning rate of 0.005.

The Binarized weights and activations are processed with the straight-through estimator [17]. SGD

(stochastic gradient descent) is applied for full-precision variables with a momentum of 0.9 and

a learning rate of 0.1. We also explore variants of QuickNet with different sizes of widths and

depths. A half-wide design called QuickNet-Small and a double-deep design called QuickLarge

are designed and evaluated. The experimental section discusses in detail how the width and depth

sizes affect inference time and accuracy performance.

7.3 Implementation and Evaluation

7.3.1 Experimental Datasets

We collect CAN data from the on-board diagnostics II (OBD-II) interface, a standard diagnostic

port, by employing the CANalyst-II device as introduced in Section 4.2. The OBD-II port provides

diagnostics, emission measurements, and other information, such as engine control, body control,

and chassis control information. As we used the representative datasets in Chapter 6, we use the

same datasets to evaluate the proposed IDS. This allows for a comparison of the experimental

outcomes with those obtained by other approaches and helps ensure consistency. Details on each

dataset used in the evaluation are provided in Table 7.1. It is noted that the proposed IDS is tested on

four datasets from different vehicle models and manufacturers to demonstrate the proposed IDS’s

applicability across various vehicle models.
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Table 7.1: Experimental datasets

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Vehicle
Model

Honda
Accord
2006

Honda
Civic
2018

Ford
Fusion
2013

Chevrolet
Volt
2013

Number
of

Messages 243,762 1,806,780 2,158,201 4,536,342
Number

of
Unique IDs 13 54 79 106

7.3.2 Attack Strategy

An attacker launches attacks by injecting malicious CAN messages into the bus. These messages

can change the normal CAN traffic density. To ensure that malicious messages can be received,

the attacker typically sends malicious messages more frequently than normal messages. In a

common attack scenario, the number of malicious messages should be at least double that of

normal messages, though, in practice, this ratio may rise significantly, potentially reaching 20 to

100 times higher [73].

Considering our adversary model, real-world attacks, and existing research on attack strategies

[73, 14, 102], we perform 100, 200, 200, 300 intrusions on Dataset 1, 2, 3, and 4, respectively,

depending on their size. Each intrusion can last three to four seconds, and during each intrusion,

a certain type of attack occurs. For the all zero ID attack, we inject a CAN message with 11-

zero-bit ID every 0.3 ms. For the random ID attack, we follow a similar way to the all zero ID

attack with randomized ID and data messages. For both replay and spoofing attacks, we inject

malicious messages every 0.8 ms, with replay attacks using valid, previously transmitted messages

and spoofing attacks utilizing messages containing valid IDs with altered data. For hybrid attacks,

we randomly choose to inject a malicious message from all four types of attacks every 0.3 ms.
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7.3.3 Experimental Setup

We design and conduct experiments on CPU and GPU to evaluate the effectiveness and efficiency of

our BCNN-based IDS. Python version 3 and Larq Compute Engine [3] built on top of TensorFlow

are used for implementation. Models are trained on a Linux machine running Ubuntu 20.04.2

LTS with a CPU (AMD Ryzen 3700x with 8 cores and 16 threads, base clock at 3.6GHz) and

GPU (Nvidia RTX 2070 Super, 8GB DDR6 RAM). We use the same device to demonstrate the

performance of our IDS in terms of accuracy and inference time in the experiment.

7.3.4 Experimental Results

7.3.4.1 Experiment 1: BCNN-based IDS under Different Attacks

To evaluate the effectiveness and efficiency of our IDS, we use the same metrics as in Chapter 6:

accuracy, true positive rate (TPR, or detection rate), and false positive rate (FPR).

These performance metrics are essential for evaluating IDSs. Accuracy represents the overall

correct detection rate, TPR indicates the proportion of correctly identified malicious messages, and

FPR corresponds to the fraction of non-malicious messages mistakenly flagged as malicious. For

an IDS to perform efficiently, it should exhibit high accuracy and TPR but maintain a low FPR.

Given the critical context of in-vehicle networks [14], it is particularly important to keep FPR low to

prevent unnecessary panic and wastage of essential resources, such as emergency services. Hence,

these metrics are often the principal criteria for assessing IDS performance.

The performance of BCNN-based IDS is evaluated under different types of attacks using four

datasets, as shown in Table 7.1. For each dataset, allocating 70% for training and 30% for testing

with results based on 10 repeated experiments. Based on experimental results, we observe that

the results across each dataset are comparable, so we report the mean in Table 7.2. These results

also demonstrate that the applicability of the proposed IDS has a good potential to be applied to

different vehicles.

The accuracy rates under the random ID attack, the all zero ID attack, the replay attack, and the
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Table 7.2: BCNN-based IDS under different attacks

Accuracy FPR TPR
Random ID Attack 98.46% 2.86% 98.95%
All Zero ID Attack 98.01% 3.68% 98.64%

Replay Attack 96.82% 5.03% 97.51%
Spoofing Attack 94.19% 10.18% 95.74%
Hybrid Attack 89.51% 17.07% 92.16%

spoofing attack are over 94.19%, while the performance under the hybrid attack is not comparable

with others. This may be because those attacks are more complicated than other attack types. In

the following experiment, we focus on detecting the hybrid attack, which we consider to be the

most complicated one.

7.3.4.2 Experiment 2: Effectiveness Evaluation on Input Generator

In this experiment, we assess the effectiveness of the proposed input generator, a novel data

preprocessing module for any CNN-based IDS. The results, as outlined in Table 7.3, are all

obtained under uniform conditions, using the same hardware platform and the same attack model.

Furthermore, we employ an identical BCNN model, which is used after input generation.

Our study is conducted in two stages. Firstly, we examine the IDS performance without the

aid of an input generator. Referring to the design in [139], we aggregate 128 consecutive CAN

messages and reconfigure them into the grid format. This method, henceforth denotes as “without

input generator” (w/o IG), yields an IDS accuracy of 86.64% with a negligible processing delay.

Subsequently, we incorporate our proposed input generator into the system. This module

designates as “with input generator” (w/ IG), and also processes the same number of CAN messages

as the former method. Upon implementation of the IG, the IDS accuracy significantly increases to

89.51%, with a slight processing delay of 0.1ms.

Despite the minor increase in processing delay when the IG is used, the benefits in terms of

improved IDS accuracy are significant. This suggests that the slight delay introduced by the input

116



generator is acceptable, given the marked improvement in detection accuracy. Thus, integrating the

proposed input generator into the IDS serves as a valuable addition to the system, underscoring the

potential of our data preprocessing module in enhancing the overall effectiveness of any CNN-based

IDS.

Table 7.3: Input generator effectiveness

Accuracy Processing Delay
w/o IG 86.64% 0 ms
w/ IG 89.51% 0.1 ms

7.3.4.3 Experiment 3: Effectiveness/Efficiency Evaluation

We benchmark the proposed BCNN-based IDS against two other deep learning-based IDS designs:

32-bit CNN and BNN. These three neural network models represent different approaches within the

proposed scheme. 32-bit CNN, based on AlexNet[55], is a powerful full-precision CNN. BNN[139],

utilizing a multiple-layer perceptron architecture, employs the same binarization approach as BCNN

to minimize model size and latency, but lacks convolutional processes.

They share the same overall scheme design shown in Figure 7.1: a set of raw CAN data gets

processed in the input generator, then framed CAN images are processed in neural networks. CNN-

based IDS and BCNN-based IDS use the input generator proposed in this work, which is specialized

for CNN-based architecture. Three different models are evaluated under the same hybrid attack.

The output of neural networks is a true or false prediction, and we report accuracy in Table 7.4. The

size of the neural network model and inference time per frame (100 consecutive CAN messages

per frame) are also presented for efficiency evaluation. It can be seen that the BCNN model has

a significantly smaller size. Furthermore, F1 score is introduced to measure how well different

classification models can correctly identify positive and negative cases, and a higher score indicates

better performance. F1 score is calculated as defined in Equation 4.9.

The results demonstrate that the 32-bit CNN achieves the highest accuracy among the compared
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models, but its model size is 81.9 times larger than the BNN and 30.5 times larger than the BCNN.

Meanwhile, it has a longer inference time compared to the other models. In contrast, the BNN,

with its simpler architecture, has a smaller size and faster inference time but only reaches 79.9%

detection accuracy under hybrid attacks. This performance is 80.6% of the full-precision CNN-

based IDS. The BCNN outperforms the BNN in accuracy while significantly reducing both model

size and inference time compared to the full-precision CNN, making it a more efficient and effective

solution for intrusion detection.

Table 7.4: Effectiveness/Efficiency of BCNN scheme

Model Design Model Size Accuracy F1 score Inference time
(per frame)

32-bit CNN 228.45 MB 99.29% 99.50% 2.4 ms
BNN [139] 2.79 MB 79.99% 85.82% 0.4 ms

BCNN 7.49 MB 89.51% 92.61% 0.6 ms

7.3.4.4 Experiment 4: Improved BCNN Models

In this experiment, we discuss the accuracy improvement strategies of the proposed IDS that is

based on BCNN, a binary-precision AlexNet model. As presented in Table 7.5, it is called BCNN

baseline. There are three options that are based on the same improved CNN architecture, called

QuickNet [3]. We explore the variant with different width and depth settings to understand if and

how more complicated network structures can provide better detection accuracy. We evaluated

these models considering both their effectiveness in detecting intrusions and their computational

efficiency. The QuickNet-Small is based on QuickNet, and has only half of the width in channels.

On the contrary, the QuickNet-Large is also derived from QuickNet, but it composes of 1.5 times

more hidden layers by repeating the redundant blocks in hidden layers.

Results show that any QuickNet model outperforms the baseline in terms of model size, accuracy,

and inference time. As illustrated in Table 7.4 and Table 7.5, QuickNet-Large based-IDS detection

accuracy is 91.88%, which can achieve 92.54% accuracy performance of the 32-bit CNN based-

118



Table 7.5: Further improved BCNN design

Model Size Accuracy
Inference time

(per frame)
BCNN baseline 7.49 MB 89.51% 0.6 ms
QuickNet Small 4.01 MB 90.32% 0.5 ms

QuickNet 4.36 MB 91.41% 0.5 ms
QuickNet Large 5.58 MB 91.88% 0.5 ms

IDS. Meanwhile, QuickNet-Large based-IDS is 40.9 times smaller in model size and 4.8 times

faster in processing time. Table 7.5 also indicates that the performance of BCNN-based IDS can

be further improved by only replacing neural networks in the proposed IDS scheme. In the future,

when there is a need to adjust, fine-tune, or improve the overall performance of the proposed

IDS scheme, the input generator, and the binarized convolutional neural networks can be modified

independently in this framework to meet different requirements.

7.4 Discussion

In the quest for efficient and accurate IDS, our study explores several variants of BCNN. Our

efforts to improve upon the basic AlexNet model have shown promising results, confirming that

the proposed BCNN-based IDS can further enhance its efficiency and accuracy. The experiments

encompassed various modifications and fine-tunings of the BCNN architecture, underlining its

versatility and the potential for performance improvements through innovative adaptations.

However, while the BCNN-based IDS has demonstrated its capacity to detect various attack

types, including hybrid ones, its performance may not match the accuracy and efficiency of rule-

based IDS systems under predefined rules. For instance, in the scenario of an ”all zero attack,” a

rule-based IDS can offer superior detection rates. This is because the rule-based IDS is explicitly

designed to recognize such predefined patterns, whereas machine learning models learn from a

more general distribution of the data, which might not always prioritize such specific attack patterns.

Nonetheless, our two-stage IDS framework can effectively bridge this gap. In the first stage, we
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deploy a rule-based IDS to swiftly and accurately detect attacks under predefined rules. The second

stage engages the BCNN model, which can handle a broader spectrum of attack types, including

complex or hybrid ones.

This two-stage setup enables us to leverage the strengths of both approaches. The rule-based

IDS excels in identifying known attack patterns with high precision, while the BCNN model adds

robustness against novel or complex attacks that are beyond the scope of predefined rules. The

flexible nature of the two-stage IDS also allows for other machine learning models to be used in

conjunction with the rule-based IDS, adapting to the specific needs of the system or network it

protects.

In conclusion, our research suggests that a hybrid approach, combining rule-based and machine

learning techniques, offers a balanced and flexible solution to intrusion detection. By exploiting the

strengths of both methodologies, we can build a more comprehensive and adaptable IDS, capable

of dealing with a broad range of attack scenarios while maintaining high detection performance.

7.5 Conclusion

This chapter has demonstrated, for the first time, that an extremely lightweight CNN model, BCNN

can be used for CAN IDS. This study will serve as a base for future research into the potential of

BCNN-based IDS schemes to significantly enhance in-vehicle security, especially considering the

embedded environment of in-vehicle networks. The proposesd IDS composes of an input generator

and a Binarized CNN model, and this IDS is designed to suit CAN data. It can process the raw CAN

data without additional prepossessing and hand-designed features. The input generator helps learn

from the temporal and sequential patterns, and spatially local correlation of CAN traffic instead of

an individual CAN message. The BCNN model is able to process features from CAN frames and

detect attack messages. The proposed BCNN-based IDS is faster and more compact than common

32-bit deep learning-based IDSs, and it is capable of detecting various attacks with satisfying

accuracy. Experimental results demonstrate that even in the most complicated attacking scenario -
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the hybrid attack, the QuickNet-Large based IDS which is 40.9 times smaller in model size and 4.8

times faster in processing time can achieve 92.54% accuracy performance of a full-precision CNN

IDS. Furthermore, we also present different BCNN models that can be selected according to the

specific needs of certain applications.
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CHAPTER 8

Conclusion and Future Work

The increasing integration of software and electronic components in modern vehicles, along with

their external communications, has introduced new security vulnerabilities and risks. In-vehicle

networks, responsible for interconnecting various components such as sensors and electrical units,

have become prime targets for attackers with various purposes, including disrupting normal opera-

tions or even gaining control over the attacked vehicle. Controller Area Network (CAN) inherently

lacks sufficient security features, making it vulnerable to various attacks. Given that the security

of vehicles directly impacts the safety of drivers and passengers, securing in-vehicle networks is

critical to ensuring the overall safety of the vehicle.

By analyzing in-vehicle networks and existing Intrusion Detection System (IDS) schemes, it

has been noticed that numerous schemes lack the essential features required to secure in-vehicle

networks. This dissertation proposes novel IDS schemes to secure in-vehicle networks effectively

and efficiently. In this chapter, we summarize the contributions and outline future work.

8.1 Conclusion

This dissertation contributes to the field of in-vehicle network security, particularly in the design of

IDS. This research explores IDS design for efficient and effective intrusion detection in in-vehicle

networks operating in resource-constrained environments with real-time demands. By addressing

the challenges outlined in Section 1.2, this dissertation makes the following main contributions:
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• An Empirical Comparative Study on IDS for CAN

Many IDS schemes have been developed to protect in-vehicle networks, but evaluating and

comparing their effectiveness can be challenging due to varying adversary models, datasets,

and evaluation metrics. To gain a comprehensive understanding of their performance, it

is critical to evaluate these systems using the same criteria. In Chapter 4, we conduct a

comparative study of various IDSs for CAN, ensuring a fair comparison by using the same

adversary models, datasets, and evaluation metrics across all systems. The results of this

study reveal the strengths and weaknesses of each scheme, enhancing our understanding of

CAN IDSs. Insights from this research can guide future work and facilitate the development

of robust and efficient IDS, making a significant contribution to the field of automotive

cybersecurity.

• A Two-stage IDS Framework for Efficient and Accurate Intrusion Detection

Existing IDS schemes are either rule-based or machine learning-based. Rule-based ap-

proaches offer quick detection but may have low detection rates under certain types of attacks.

On the other hand, machine learning-based IDS can achieve higher detection rates but come

with computational expenses and processing delays. Additionally, both approaches have lim-

itations in detecting certain types of attacks. In Chapter 5, we propose a hybrid approach for

efficient and accurate intrusion detection for in-vehicle networks. The hybrid IDS addresses

the limitations of existing approaches by combining the benefits of rule-based and machine

learning-based IDSs. By leveraging machine learning methods, the system achieves high

detection rates, while the computational requirements are kept low by offsetting the detection

with a rule-based component. Furthermore, the proposed IDS is a scalable framework that

supports future updates and allows individual components to be replaced with alternative

rules or machine learning algorithms as needed. The effectiveness and efficiency of the

proposed hybrid IDS are evaluated through experiments conducted on CAN data collected

from four different real vehicles, demonstrating the capability to detect malicious behaviors
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across various vehicles. This study serves as a proof-of-concept, showcasing the potential of

the hybrid IDS model to enhance in-vehicle security significantly.

• Accelerating Intrusion Detection Using Binarized Neural Network

IDSs based on advanced deep learning techniques, such as Convolutional Neural Network

(CNN) and Recurrent Neural Network (RNN), have been proposed to protect the CAN

bus. However, these models often introduce significant latency, require substantial memory

resources, and result in high energy consumption. To address these challenges, in Chapter

6, we explore the utilization of BNN and hardware-based acceleration to accelerate intrusion

detection while reducing memory demands. BNN employs binary values for activations and

weights, offering faster computation, reduced memory cost, and lower energy consumption

compared to full-precision models. Furthermore, leveraging FPGAs allows for additional

acceleration of BNN by minimizing hardware consumption. The proposed scheme, along

with FPGA-based acceleration, offers a promising solution for enhancing intrusion detection

in in-vehicle networks. It effectively addresses latency, memory, and energy consumption

issues associated with deep learning-based IDSs, providing accelerated detection capabilities

while maintaining acceptable detection rates. The results of this study highlight the potential

of using BNN and FPGA techniques to facilitate efficient intrusion detection and enhance

the security of in-vehicle networks.

• Efficient and Effective In-Vehicle Intrusion Detection System Using Binarized Convolu-

tional Neural Network

To protect CAN from potential attacks, IDSs have been proposed. However, IDSs that utilize

advanced deep learning techniques often suffer from performance drawbacks, including long

processing times and large memory requirements. Existing BNN-based IDSs, suggested as

a solution, have exhibited low accuracy in securing CAN. To overcome these limitations, in

Chapter 7, a novel IDS utilizing BCNN is proposed. The proposed IDS effectively captures the

temporal and spatial features of CAN messages, leveraging an input generator that exploits
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the sequential patterns and local correlations within the messages. Experimental results

demonstrate that the proposed IDS significantly reduces memory usage and detection latency

while maintaining high detection rates. Specifically, it operates four times faster and utilizes

only 3.3% of the memory space required by a full-precision CNN-based IDS. Moreover,

it achieves 90.2% of the accuracy of the CNN-based IDS and improves the accuracy of

the state-of-the-art BNN-based IDS design by 11.9%. By significantly reducing memory

requirements and detection latency while maintaining high accuracy, the proposed IDS can

be a promising solution for enhancing the security of in-vehicle networks.

Additionally, we review the literature on rule-based and machine learning-based IDSs for CAN.

As there is no benchmark CAN message datasets for this research area, we collect multiple datasets

from seven different unmodified licensed vehicles to support future research in this field. All

schemes proposed in this research are also thoroughly evaluated using data collected from these

real vehicles.

8.2 Future Work

We plan to implement and evaluate our hybrid IDS framework on ECU devices for real-world

performance evaluation. This flexible framework allows updates and component replacements

based on evolving rules or machine learning algorithms, enabling continuous performance en-

hancement across diverse environments. Therefore, we also plan to investigate new rules and

leverage advancements in machine learning technology to improve performance.

Moreover, we will explore alternative improvement strategies for our BNN-based and BCNN-

based IDSs that can enhance performance while maintaining the low latency benefits. One focus

is understanding the challenges posed by sophisticated attacks and designing an IDS that offers

robust defense against such attacks. In addition, incorporating more complex and varied attack

strategies, including attacks generated by generative adversarial networks, will provide a more

thorough assessment of the effectiveness of our IDSs.
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Our future research also considers using additional CAN data features, such as semantic features,

that require collaboration with manufacturers to improve the performance of our IDSs against

sophisticated attacks. Overall, our goal is to enhance the performance of IDS systems while

ensuring they remain efficient and adaptable to changing threats.
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