
Density Regression and Uncertainty Quantification
with Bayesian Deep Noise Neural Networks:

Supplementary Materials

Daiwei Zhang1, Tianci Liu2 and Jian Kang3∗

1Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
2School of Electrical and Computer Engineering, Purdue University

3Department of Biostatistics, University of Michigan

S1 METHOD DETAILS

S1.1 Details of Theoretical Results
S1.1.1 Details of Theorem 1

We define the variables in the posterior full-conditional distributions in Theorem 1.
Let φN (· | µ, σ2) and ΦN (· | µ, σ2) be the PDF and CDF, respectively, of the normal distribution with

mean µ and variance σ2.
For n ∈ 1, . . . , N , l ∈ 0, . . . , L, and k ∈ 1, . . . ,Kl, let

ωl,k,j =
(
τ−2
l,k + σ−2

l,k b
2
j

)−1

υl,k,j =τ−2
l,k ωl,k,j

ψ
(n)
l,k =γl,k + βlu

(n)
l

ψ̃
(n)
l,k,j =

(
u

(n)
l+1,k − b

′
j

)
b−1
j

λ
(n)
l,k,j =υl,k,jψ

(n)
l,k + (1− υ2

l,k,j)ψ̃
(n)
l,k,j

ζ
(n)
l,k,1 =1

ζ
(n)
l,k,j =ζ

(n)
l,k,j−1ζ̃

(n)
l,k,j , j ∈ 2, . . . , J

ζ̃
(n)
l,k,j =

κ
(n)
l,k,j,j−1

κ
(n)
l,k,j−1,j−1

·
κ̃

(n)
l,k,j−1,j−1

κ̃
(n)
l,k,j,j−1

κ
(n)
l,k,j,j′ =φN

(
u

(n)
l+1,k | cj′bj + b′j , σ

2
l,k

)
κ̃

(n)
l,k,j,j′ =φN

(
cj′ | λ(n)

l,k,j , ω
2
l,k,j

)
c̃
(n)
j,j′ =(cj′ − λl,k,j)ω−1

l,k,j

π̃
(n)
l,k,j =ΦN (c̃j,j | 0, 1)− ΦN (c̃j,j−1 | 0, 1)

π
(n)
l,k,j ∝π̃

(n)
l,k,jζ

(n)
l,k,j

∗Correspondence: jiankang@umich.edu, 1415 Washington Heights, Ann Arbor, MI 48109

1

Moreover, let

µ
(n)
l =

[
βlβ

>
l +

(
Ũ

(n)
l

)−1
]−1 [(

Ũ
(n)
l

)−1

h(v
(n)
l−1) + β>l (v

(n)
l − γl)

]
U

(n)
l =

[
β>l diag[τ−2

l]βl +
(
Ũ

(n)
l

)−1
]−1

, Ũ
(n)
l = diag[σ2

l−1]

and

ηl,k =(ūlū
>
l + B̃−1

l,k)−1vl,kū
>
l

Bl,k =(τ−2
l,k ūlū

>
l + B̃−1

l,k)−1, B̃l,k = diag(ρ2
l,k, ξ

2
l,k)

ūl =(ul,1), ul =
[
u

(n)
l

]N
n=1

.

Furthermore, let

ε2
l,k =vl,k − β>l,kul − γl,k
δ2
l,k =ul+1,k − h(vl,k)

S1.2 Proofs of Theoretical Results
S1.2.1 Proof of Theorem 1

We first derive the posterior full conditional distribution of v(n)
l,k in Equation (9). Let

ω2
n,l,k,j =

(
τ−2
l,k + σ−2

l+1,kb
2
j

)−1

, λn,l,k,j = τ−2
l,k ω

2
n,l,k,j

(
γl,k + βlu

(n)
l

)
+ σ−2

l+1,kbjω
2
n,l,k,j

(
u

(n)
l+1,k − b

′
j

)
.

By Equations (6) and (7), we have

f
(
v

(n)
l,k

∣∣∣ rest
)

=f
(
v

(n)
l,k

∣∣∣ u(n)
l ,βl,k, τl,k, u

(n)
l+1,k, σl,k

)
=Cf

(
u

(n)
l+1,k

∣∣∣ v(n)
l,k , σl,k

)
· f
(
v

(n)
l,k

∣∣∣ u(n)
l ,βl,k, τl,k

)
=CφN

(
u

(n)
l+1,k

∣∣∣ h(v(n)
l,k

)
, σ2

l,k

)
· φN

(
v

(n)
l,k

∣∣∣ βl,ku(n)
l , τ2

l,k

)
=CφN

u(n)
l+1,k

∣∣∣ J∑
j=1

(
bjv

(n)
l,k + b′j

)
· I
{
v

(n)
l,k ∈ [cj−1, cj)

}
, σ2

l,k

 · φN (v(n)
l,k

∣∣∣ βl,ku(n)
l , τ2

l,k

)

=C

J∑
j=1

φN

(
u

(n)
l+1,k

∣∣∣ bjv(n)
l,k + b′j , σ

2
l,k

)
· φN

(
v

(n)
l,k

∣∣∣ β>l,ku(n)
l , τ2

l,k

)
· I
{
v

(n)
l,k ∈ [cj−1, cj)

}

=C

J∑
j=1

CjφN

(
v

(n)
l,k

∣∣∣ λn,l,k,j , ω2
n,l,k,j

)
· I
{
v

(n)
l,k ∈ [cj−1, cj)

}

=

J∑
j=1

πn,l,k,jφT N

(
v

(n)
l,k

∣∣∣ λn,l,k,j , ω2
n,l,k,j , cj−1, cj

)
for some πn,l,k,j ∈ R+ (j = 1, . . . , J) with

∑J
j=1 πn,l,k,j = 1. (The second last equation holds by the same

argument as that of normal-normal priors with known variance.) Moreover, for j ∈ 2, . . . , J , we have

lim
v
(n)
l,k→c

+
j−1

f
(
v

(n)
l,k

∣∣∣ rest
)

lim
v
(n)
l,k→c

−
j−1

f
(
v

(n)
l,k

∣∣∣ rest
) =

lim
v
(n)
l,k→c

+
j−1

∑J
j=1 πn,l,k,jφT N

(
v

(n)
l,k

∣∣∣ λn,l,k,j , ω2
n,l,k,j , cj−1, cj

)
lim

v
(n)
l,k→c

−
j−1

∑J
j=1 πn,l,k,jφT N

(
v

(n)
l,k

∣∣∣ λn,l,k,j , ω2
n,l,k,j , cj−1, cj

)
=

πn,l,k,jφT N

(
cj−1

∣∣∣ λn,l,k,j , ω2
n,l,k,j , cj−1, cj

)
πn,l,k,j−1φT N

(
cj−1

∣∣∣ λn,l,k,j−1, ω2
n,l,k,j−1, cj−1, cj

)

2

and

lim
v
(n)
l,k→c

+
j−1

f
(
v

(n)
l,k

∣∣∣ rest
)

lim
v
(n)
l,k→c

−
j−1

f
(
v

(n)
l,k

∣∣∣ rest
) =

lim
v
(n)
l,k→c

+
j−1

φN

(
u

(n)
l+1,k

∣∣∣ h(v(n)
l,k

)
, σ2

l,k

)
· φN

(
v

(n)
l,k

∣∣∣ βl,ku(n)
l , τ2

l,k

)
lim

v
(n)
l,k→c

−
j−1

φN

(
u

(n)
l+1,k

∣∣∣ h(v(n)
l,k

)
, σ2

l,k

)
· φN

(
v

(n)
l,k

∣∣∣ βl,ku(n)
l , τ2

l,k

)
=

lim
v
(n)
l,k→c

+
j−1

φN

(
u

(n)
l+1,k

∣∣∣ h(v(n)
l,k

)
, σ2

l,k

)
lim

v
(n)
l,k→c

−
j−1

φN

(
u

(n)
l+1,k

∣∣∣ h(v(n)
l,k

)
, σ2

l,k

)
=

φN

(
u

(n)
l+1,k

∣∣∣ bjcj−1 + b′j , σ
2
l,k

)
φN

(
u

(n)
l+1,k

∣∣∣ bj−1cj−1 + b′j−1, σ
2
l,k

) ,
which gives πn,l,k,j/πn,l,k,j−1 = ζ ′n,l,k,jπ

′
n,l,k,j , where

ζ ′n,l,k,j =
φN

(
u

(n)
l+1,k

∣∣∣ bjcj−1 + b′j , σ
2
l,k

)
φN

(
u

(n)
l+1,k

∣∣∣ bj−1cj−1 + b′j−1, σ
2
l,k

) · φN
(
cj−1

∣∣∣ λn,l,k,j−1, ω
2
n,l,k,j−1

)
φN

(
cj−1

∣∣∣ λn,l,k,j , ω2
n,l,k,j

)
π′n,l,k,j =

ΦN ((cj−1 − λn,l,k,j−1)/ωn,l,k,j−1)

ΦN ((cj−1 − λn,l,k,j)/ωn,l,k,j)
.

Define

ζn,l,k,j =

{
1, if j = 1,

ζn,l,k,j−1ζ
′
n,l,k,j , if j ∈ {2, . . . , J}

.

Then

πn,l,k,j =
π′n,l,k,jζn,l,k,j∑J
j=1 π

′
n,l,k,jζn,l,k,j

.

For l ∈ {1, . . . , L}, we have

f(vl | x,Θl) =

∫
RKl−1

f(vl | vl−1,x,Θl)f(vl−1 | x,Θl)dvl−1

=

∫
RKl−1

f(vl | vl−1,x,θl)f(vl−1 | x,Θl−1)dvl−1.

Moreover, by Equation (4),

vl =βl[h(vl−1) + δl−1] + γl + εl

=βlh(vl−1) + βlδl−1 + γl + εl

∼MVN{βlh(vl−1) + γl, βl Cov[δl−1]β>l + Cov[εl]}
=MVN{βlh(vl−1) + γl, βlΣl−1β

>
l + Tl}.

The full conditional distributions of the rest of the model parameters (Equations (10) to (15)) follow the
same argument as that of inverse gamma-normal conjugate priors in Bayesian linear regression (Wikipedia
contributors, 2022a; Bishop and Nasrabadi, 2006, Sec. 2.3.3), as described in Lemmas S1.1 and S1.2.

Lemma S1.1. Suppose X ∈ RK×N and y ∈ R1×N . If β ∈ R1×K satisfies

β ∼ N (µ0,Σ0), y|β,X ∼ N (βX,T),

for some µ0 ∈ R1×K , Σ0 ∈ RK×K , and T ∈ RN×N , then the posterior distribution of β is

β|y,X ∼ N (µN ,ΣN), ΣN = (Σ−1
0 +XT−1X>)−1, µN = ΣN (µ0Σ

−1
0 + yT−1X>).

3

Proof. This result is a restatement of the properties of conditional Gaussian distributions discussed in (Bishop
and Nasrabadi, 2006, Sec. 2.3.3).

Lemma S1.2. Suppose σ2 ∈ R+ and x = [xi]
N
i=1 ∈ RN satisfy

σ2 ∼ IG(a0, b0), xi|σ2 iid∼ N (µ, σ2)

for some a0, b0 ∈ R+ and µ ∈ R. Then the posterior distribution of σ2 is

σ2|x ∼ IG(aN , bN), aN = a0 +
N

2
, bN = b0 +

‖x− µ‖22
2

.

Proof. This result is the widely known inverse gamma-normal conjugate priors for variance parameters with
normally distributed observations and known mean (Wikipedia contributors, 2022b).

Then Equations (10) and (11) are immediate consequences of Lemma S1.1, while Equations (12) to (15)
follow Lemma S1.2 directly.

S1.2.2 Proof of Theorem 2

This formulation of the predictive density follows Equations (1) to (3) directly.

S1.2.3 Proof of Theorem 3

Lemma S1.3. Suppose W ∈ RK is a random vector and t ∈ RK a constant vector. Let β ∈ RK′×K ,
γ ∈ RK′ , and define fβ,γ(s) = βs+ γ. Moreover, let ε ∈ RK be a random vector with Cov[ε] = diag[τ 2] and
ε ⊥W , and define fτ2(s) = s+ ε. Further, let f̃c : R→ R be a Lipschitz function with Lipschitz constant c,
and let fc(s) = [f̃c(s1), . . . , f̃c(sK)] for s = [s1, . . . , sK] ∈ RK . Then

E
[
‖fβ,γ(W)− fβ,γ(t)‖2

]
≤‖β‖22 E

[
‖W − t‖2

]
E
[
‖fτ2(W)− t‖2

]
≤E

[
‖W − t‖2

]
+ sum(τ2)

E
[
‖fc(W)− fc(t)‖2

]
≤c2 E

[
‖W − t‖2

]
Proof. These results follow directly from the definitions of fβ,γ , fτ2 , and fc.

Let S2
l =

∑Kl

k=1 σ
2
l,k andR

2
l =

∑Kl

k=1 τ
2
l,k. Define g0(x|Γ0) = β0x+γ0 and gL(x|ΓL) = βLh(gL−1(x|ΓL−1))+

γL. Moreover, by definition y = vL and vl = βl[h(vl−1) + δl−1] + γl + εl for l > 0. We use induction to show

E
{
‖y − gL(x,ΓL)‖2

∣∣∣ x,ΘL

}
≤

L∑
l=0

[
d2
l S

2
l−1 + T 2

l

][
L∏

l′=l+1

d2
l′

]
C

2(L−l)
h

all L ≥ 0. For L = 0, we have

E
{
‖y − g0(x,Γ0)‖2

∣∣∣ x,Θ0

}
= E

{
‖ε0‖2

∣∣∣ x,Θ0

}
= T 2

0 =

0∑
l=0

[
d2
l S

2
l−1 + T 2

l

][
0∏

l′=l+1

d2
l′

]
C

2(0−l)
h .

4

For L > 0, we have

E
{
‖y − gL(x,ΓL)‖2

∣∣∣ x,ΘL

}
= E

{
‖βL[h(vL−1) + δL−1] + γL + εL − [βLh(gL−1(x|ΓL−1)) + γL]‖2

∣∣∣ x,ΘL

}
≤E

{
‖βL[h(vL−1) + δL−1] + γL − [βLh(gL−1(x|ΓL−1)) + γL]‖2

∣∣∣ x,ΘL

}
+ sum(τ 2

L)

≤d2
L E

{
‖h(vL−1) + δL−1 − h(gL−1(x|ΓL−1))‖2

∣∣∣ x,ΘL

}
+ sum(τ 2

L)

≤d2
L E

{
‖h(vL−1)− h(gL−1(x|ΓL−1))‖2

∣∣∣ x,ΘL

}
+ sum(τ 2

L) + d2
L sum(σ2

L−1)

≤d2
LC

2
h E
{
‖vL−1 − gL−1(x|ΓL−1)‖2

∣∣∣ x,ΘL

}
+ sum(τ 2

L) + d2
L sum(σ2

L−1)

=d2
LC

2
h E
{
‖vL−1 − gL−1(x|ΓL−1)‖2

∣∣∣ x,ΘL

}
+ T 2

L + d2
LS

2
L−1

≤

{
L−1∑
l=0

[
d2
l S

2
l−1 + T 2

l

][
L∏

l′=l+1

d2
l′

]
C

2(L−l)
h

}
+ T 2

L + d2
LS

2
L−1

=

{
L−1∑
l=0

[
d2
l S

2
l−1 + T 2

l

][
L∏

l′=l+1

d2
l′

]
C

2(L−l)
h

}
+

L∑
l=L

[
d2
l S

2
l−1 + T 2

l

][
L∏

l′=l+1

d2
l′

]
C

2(L−l)
h

=

{
L∑
l=0

[
d2
l S

2
l−1 + T 2

l

][
L∏

l′=l+1

d2
l′

]
C

2(L−l)
h

}
,

where the inequalities hold by Lemma S1.3 and the inductive hypothesis.

S1.2.4 Proof of Corollary 4

First, observe that the activation functions in the statement of Corollary 4 are all Lipschitz functions with
Lipschitz function Ch ≤ 1. Then by applying the global bounds to Corollary 4, we have

E
{
‖y − gL(x,ΓL)‖2

∣∣∣ x,ΘL

}
≤

L∑
l=0

(
d2Kσ2 +Kτ2

)
d2(L−l)C

2(L−l)
h

=K
(
d2σ2 + τ2

) L∑
l=0

d2(L−l)C
2(L−l)
h

≤K
(
d2σ2 + τ2

) L∑
l=0

d2(L−l)

≤K(d2 + 1)
(
σ2 + τ2

) L∑
l=0

d2(L−l)

=K(d2 + 1)
(
σ2 + τ2

) L∑
l=0

d2l

≤K(d2 + 1)
(
σ2 + τ2

) L∑
l=0

(d2L + 1)

=KL(d2L + 1)(d2 + 1)
(
σ2 + τ2

)
≤3KL(d2(L+1) + 1)(σ2 + τ2),

which completes the proof.

5

S2 Synthetic data experiments

S2.1 Experiment setup
S2.1.1 Data simulation

We simulated synthetic data with different conditional distribution patterns to evaluate each method’s ability
of learning the density. We sampled one-dimensional input value from U [−1, 1] or 0.9U [−1, 0] + 0.1U [0, 1] For
the output value, we generated it by y = m(x) + η(x), where m(x) is a deterministic median function and
η(x) is the random variable of the noise, such that median[η(x)] = 0 for all x. We fix the median of y to the
piecewise linear function

m(x) = (x+ 1)I[x ≤ −0.5]− xI[−0.5 < x < 0] + xI[x > 0]

and simulated three different types of noise by using uniform distributions or their mixtures:

1. Heteroscedastic noise:

η(x) ∼

{
U [−0.5, 0.5], if x ∈ [−0.85,−0.65] ∪ [−0.35,−0.15] ∪ [0.35, 0.65]

U [−0.1, 0.1], otherwise

2. Skewed noise:

η(x) ∼

{
0.5U [−0.1, 0] + 0.5U [0, 0.8], if x ∈ [−0.5, 0]

0.5U [−0.8, 0] + 0.5U [0, 0.1], otherwise

3. Multimodal noise:

η(x) ∼

{
0.3U [−0.5,−0.4] + 0.4U [−0.4, 0.4] + 0.3U [0.4, 0.5], if x ∈ [−0.5, 0.5]

U [−0.125, 0.125], otherwise

The training sample size varied among 1000, 2000, 4000, and the testing size was 10% of the training size.
We randomly generated 20 datasets for each noise type and sample size.

S2.1.2 Model setup

Model setups were the same as those in the UCI data experiments (Section S3.1.2), except for DMC, which
did not give meaningful predictions and used a virtually constant function with very large predictive variance
to fit all the datasets.

S2.1.3 Evaluation criteria

To evaluate the accuracy of the estimated predictive distribution, we computed its difference from the true
predictive distribution. We used a grid of 100 values of x on [−1, 1]. For every x, we computed the empirical
0.025, 0.075, . . . , 0.925, 0.975 quantiles of the estimated predictive distribution and the true distribution. Then
we computed the average absolute difference between the estimated and true quantiles, which is equivalent
to numerically computing the L1 distance between the inverse CDFs of the estimated and true predictive
distributions, and averaged them across all the grid points of x.

S2.2 Additional results
The estimated predictive density of baseline methods not included in Figure 1 are displayed in Figure S1.

6

Figure S1: Predictive densities estimated by BP (top row) and VI (bottom row) for heteroscedastic (left),
skewed (middle), and multimodal (right) noise.

Figure S2: Comparison of the convergence speed of B-DeepNoise with BNN on synthetic data with
heteroscedastic noise and 400 training samples. Both B-DeepNoise and BNN use 2 hidden layers with 25
nodes per layer and draw 500 posterior samples on each of 5 independent chains. Effective sample size (ESS)
is computed using the last 200 posterior samples and averaged across the chains.

S3 UCI data experiments

S3.1 Experiment setup
S3.1.1 Dataset curation

We downloaded the nine UCI datasets from https://github.com/yaringal/DropoutUncertaintyExps,
including the indices of the random splits. See the repository and (Gal and Ghahramani, 2016) for details.

S3.1.2 Model setup

B-DeepNoise. We assigned IG(0.001, 0.001) as weakly informative priors to the variance parameters. The
network included 4 hidden layers with 50 hidden nodes per layer. The activation function was the hard tanh
function h(x) = min(1,max(−1, x)). The parameters were initialized by stochastic gradient descent, and 500

7

https://github.com/yaringal/DropoutUncertaintyExps

posterior samples were drawn. The input and output were centered at 0 and scaled to 1, where the centers
and scales were computed by using the training samples only.

All the baseline methods had the same architecture, activation, and normalization as B-DeepNoise. For
GPU computation, we used an NVIDIA Quadro P6000.

Dropout Monte Carlo (DMC). We used the implementation by the original authors (Gal and Ghahra-
mani, 2016), including their hyperparameter tuning procedures. See https://github.com/yaringal/
DropoutUncertaintyExps. for details.

Variational Inference (VI) We used the implementation by (Ritter and Karaletsos, 2022). The batch
size was 100, and the model was trained for 2000 epochs with a learning rate of 0.001.

Deep ensemble (DE). We followed the recommendations of the original authors (Lakshminarayanan
et al., 2016) and used 5 independent networks. The predictive MSE was optimized by Adam (Kingma and
Ba, 2014) with a learning rate of 0.1. The model was trained for 40 epochs.

Backpropagation (BP). We used two feed-forward neural networks, where the second network included
a softplus layer on the output layer. The first network outputs the predictive mean, while the second
network outputs the predictive variance. The Gaussian NLL was used as the loss function. The training
hyperparameters were the same as those for DE.

Bayesian Neural Network (BNN). We used a BNN with learnable predictive variance, i.e. the model
outputs two parameters, one for the predictive mean and the other for the predictive variance. The Gaussian
NLL was used as the loss function. We used standard normal distributions as priors for all the weight and
bias parameters except for those connected to the log predictive variance, which used N (0, 0.25I) as priors.
To reduce the computation cost, parameters were initialized by stochastic gradient decent. The posterior
distribution was simulated by Hamiltonian Monte Carlo (Duane et al., 1987). Each HMC iteration involved
10 leapfrog steps. The step size was initialized to 0.01 and dynamically adjusted to achieve an acceptance
rate of 0.75 Andrieu and Thoms (2008).

S3.1.3 Evaluation criteria

In this section, we compare the calibrated prediction intervals (CPI) with the uncalibrated prediction
intervals (UPI). Conceptually, the average width of the 95% calibrated prediction intervals (WCPI-95) is
the miscalibration-adjusted version of the 95% uncalibrated prediction intervals (WUPI-95). WUPI-95 is a
popular metric for evaluating uncertainty quantification (UQ) efficiency. However, a major flaw of WUPI-95
is that when a method is overconfident about the testing data and underestimate the predictive uncertainty,
its WUPI-95 can be very small and does not reflect the actural inaccuracy. Thus if a method has a small
WUPI-95, the cause could be 1) that the method is both well-calibrated and efficient in UQ, or 2) that the
method is miscalibrated in UQ. One has to look up the empirical coverage rates of the UPIs on the testing
data to check the accuracy of UQ and differentiate the two situations. In other words, it is unfair the compare
the widths of the 95% UPIs of two methods if one method empirically covers a much smaller percentage of
the testing samples compared to the other method.

Therefore, in order to use a single metric that systematically measures UQ efficiency and is invariant to
mis-calibration, we propose the WCPI-95. The WCPI-95 of a method is defined to be the WUPI-x, where x
is the smallest positive number such that the x% UPIs cover no less than 95% of the outcomes on the testing
data. Computationally, we iterate through the 1% UPIs, 2% UPIs, ..., 99% UPIs, 100% UPIs until at least
95% of the testing samples are covered (say we are at the x% UPIs at this step), and then we find the average
width of the x%-UPIs, which gives us the WCPI-95. For example, suppose Method A is over-confident in its
predictions, where its 95% UPIs cover less than 95% of the testing samples in average, and its 99% UPIs
actually cover 95% of the testing samples in average. In that case, the WCPI-95 of Method A is equal to its
WUPI-99, which is larger than its WUPI-95 and thus corrects for its over-confidence. On the other hand, if
Method B is under-confident, its WCPI-95 will be less than its WUPI-95. Finally, if method C is perfectly

8

https://github.com/yaringal/DropoutUncertaintyExps
https://github.com/yaringal/DropoutUncertaintyExps

calibrated such that its 95% UPIs cover exactly 95% of the observations on the testing data, then its WCPI-95
is equal to its WUPI-95. Then by comparing the WCPI-95 of Methods A, B, and C, we can evaluate the
UQ efficiency of the three methods fairly without having to worry that any of the methods may “hack” the
theoretical predictive interval width by being consistently over-confident.

S3.2 Additional results
In addition to the RMSE, NLL, and WCPI-95 (Table 2), we also computed the average coverage rate of the
95% prediction intervals on the testing data. The results are reported in Table S1.

Table S1: Additional UCI experiment results on testing data for B-DeepNoise and baseline methods.

Dataset BP VI BNN DMC DE B-DeepNoise

Coverage Rate of 95% Prediction Intervals

Yacht Hydrodynamics 0.92 ±0.06 1.00 ±0.00 1.00 ±0.00 0.81 ±0.08 0.97 ±0.04 0.96 ±0.03
Boston Housing 0.85 ±0.06 0.97 ±0.02 0.94 ±0.00 0.86 ±0.04 0.90 ±0.05 0.92 ±0.04
Energy Efficiency 0.92 ±0.05 1.00 ±0.01 0.99 ±0.00 0.94 ±0.03 0.98 ±0.02 0.96 ±0.05
Concrete Strength 0.86 ±0.05 0.89 ±0.03 0.97 ±0.02 0.88 ±0.02 0.92 ±0.03 0.93 ±0.03
Wine Quality 0.85 ±0.04 0.62 ±0.05 0.91 ±0.06 0.61 ±0.04 0.91 ±0.02 0.92 ±0.03
Kin8nm 0.86 ±0.04 0.55 ±0.02 0.94 ±0.04 1.00 ±0.00 0.95 ±0.01 0.96 ±0.01
Power Plant 0.94 ±0.01 0.87 ±0.01 0.97 ±0.01 0.73 ±0.02 0.95 ±0.01 0.95 ±0.01
Naval Propulsion 0.94 ±0.14 0.95 ±0.02 1.00 ±0.00 1.00 ±0.00 1.00 ±0.96 1.00 ±0.00
Protein Structure 0.93 ±0.01 0.83 ±0.01 0.98 ±0.01 0.57 ±0.02 0.96 ±0.00 0.93 ±0.00

Table S2: Runtime (sec) for UCI data experiments.

Dataset BP VI BNN DMC DE B-DeepNoise

Yacht Hydrodynamics 4 133 772 3482 8 534
Boston Housing 4 180 1090 3523 11 570

Energy Efficiency 5 247 1204 4456 12 625
Concrete Strength 7 331 1407 4551 15 657

Wine Quality 7 580 1046 4599 19 837
Kin8nm 25 3195 2042 7801 77 1266

Power Plant 29 3657 2514 6101 88 2028
Naval Propulsion 33 3586 2875 8876 83 3270
Protein Structure 127 11948 12518 12112 859 5700

S4 ABCD data analysis

S4.1 Experiment setup
S4.1.1 Data overview

The ABCD study aims at identifying the associations between brain development and cognitive behaviors. A
total of 11,800 children aged between 9 and 10 participated in the study. In our experiments, we used Release
1.1, which consisted of minimally preprocessed fMRI data from 21 imaging sites (Hagler Jr et al., 2019). The
images we analyzed was the 2-back task-based contrast map. The 2-back task engages brain regions associated
with cognitive functions and memory regulation processes. The imaging resolution was 2mm, with each image
containing 61× 73× 61 voxels. The outcome variable was general intelligence score (g-score) (Sripada et al.,
2020). The non-imaging features included 2-back task score, general psychopathology factor, age, sex, highest
parental education level, household marital status, household income bracket, and self-identified racial and

9

ethnic memberships. Categorical variables were coded as multiple binary dummy variables. For the imaging
features, we divided the brain into 90 AAL regions and extracted the average imaging value inside each region
as a feature. The 90 imaging features were concatenated with the non-imaging features to form the input
variables. After removing incomplete observations, the dataset contained 1191 subjects.

S4.1.2 Model setup

The settings of B-DeepNoise were the same as that in the UCI data experiments (Section S3.1.2).

S4.2 Additional results
In addition to Figure 3, we also computed the influence of brain regions on the predictive variance, as
visualized in Figure S3. The magnitudes of influence of the top five most influential features on both the
predictive mean and variance are reported in Table S3.

Figure S3: Influence of brain regions on the predictive variance of the g-score.

Table S3: Most influential features on the predictive mean and variance of g-score.

Predictive Mean Predictive Variance

feature influence feature influence

CorrectRate2bk 1.3235 CorrectRate2bk 0.0659
Calcarine.R 0.6269 Calcarine.R 0.0327
Putamen.R 0.6012 Paracentral.Lobule.R 0.0312
Paracentral.Lobule.R 0.5786 Putamen.R 0.0309
Rectus.R 0.4770 Occipital.Inf.R 0.0275

S5 DISCUSSION OF CLASSIFICATION TASKS

S5.1 Theoretical Comparison of Stochastic and Deterministic Models for Clas-
sification

In this section, we demonstrate that for categorical outcomes, stochastic models do not have theoretical
advantage over deterministic models that are sufficiently flexible. Consider a standard classification model,
where the K-class outcome variable is coded as a one-hot vector Y ∈ {0, 1}K and, given input features x, is
modeled as Y ∼ Categorical(softmax(g(x))), where g(x) is a deterministic function, and E[Y] = softmax(g(x))
is the conditional expected value of the outcome, which is a probability vector. If we replace g(x) with a
stochastic function g̃(x, Z), where Z is a random seed with density function f(z), then the outcome variable
follows

Y ∼ Categorical(softmax(g̃(x, Z))), Z ∼ f.

In this case, by the law of total expectation, the conditional expected value of the outcome is

E[Y |x] = E[E[Y |Z, x]] = E[softmax(g̃(x, Z))] =

∫
z

softmax(g̃(x, z))f(z)dz.

10

Define p̃(x) =
∫
z

softmax(g̃(x, z))f(z)dz, which is a deterministic function that maps the input features to
a probability vector. Since a categorical distribution is completely determined by its expected value, the
derivation above implies that if g(x) is flexible enough such that softmax(g(x)) can approximate p̃(x) with
arbitrary precision then the predictive distribution of the deterministic model can approximate the the
predictive distribution of the stochastic model with arbitrary precision.

The last condition holds for DNNs by their universal approximation property. Thus for classification tasks,
any stochastic model can be replaced with a deterministic DNN model with arbitrary small difference in the
predictive distribution. This theoretical result renders the flexible density learning capacity of B-DeepNoise
unhelpful for classification tasks.

S5.2 B-DeepNoise for Categorical Outcomes
Although B-DeepNoise is not theoretically expected to have better uncertainty quantification accuracy than
standard DNNs on classification tasks, (as demonstrated in Section S5.1) B-DeepNoise is still capable of
learning the predictive distributions of categorical outcomes. This ability is achieved by adding a softmax
activation function to the output layer. Then the posterior full-conditional distributions of the model
parameters are the same except for those in the output layer, which we derive in this section.

Let y(n) = [y
(n)
k]Kk=1 ∈ RK be a K-class categorical outcome variable, represented as a one-hot vector:

y
(n)
k =

{
1, if k ∈ {1, . . . ,K} \

{
k̄(n)

}
,

0, if k = k̄(n)
,

where k̄(n) is the true category for y(n). Using B-DeepNoise to model the distribution of the outcome given
input features x(n), we have

softmax−1
{

E
[
y(n)

]}
= ε

(n)
L + γL + βL

[
δ

(n)
L + h

(
· · · ε(n)

1 + γ1 + β1

[
δ

(n)
0 + h

(
ε

(n)
0 + γ0 + β0x

(n)
)]
· · ·
)]
(1)

where

softmax(zk) =


exp(zk)∑K−1

k=1 exp(zk)+1
, if k ∈ {1, . . . ,K − 1}

1∑K−1
k=1 exp(zk)+1

, if k = K
,

which we abbreviate as
softmax(z) =

[exp(z), 1]∑
exp(z) + 1

.

Notice that the Kth element in y(n) by definition has logit equal to 0, so that the scale of z is identifiable.
The task is to sample z(n)|y(n),µ(n), τ2 from the model

z(n) iid∼ N (µ(n), τ2)

π(n) =

[
exp(z(n)), 1

]
∑

exp(z(n)) + 1

y(n) ∼ Categorical(π(n)),

where z(n),µ(n) ∈ RK−1 and τ2 ∈ R. To do this, we update one element of z(n) at a time while fixing the

11

other K − 2 elements. Then the joint log density for element k is

− log f
(
z

(n)
k ,y(n)

∣∣∣z(n)
−k , µ

(n)
k , τ2

)
=− log f

(
z

(n)
k , k(n)

∣∣∣z(n)
−k , µ

(n)
k , τ2

)
=

1

2τ2

(
z

(n)
k − µ(n)

k

)2

+ log
[

exp
(
z

(n)
k

)
+
∑

exp
(
z

(n)
−k

)]
− z(n)

k̄(n) + C0

=
1

2τ2

(
z

(n)
k − µ(n)

k

)2

+ log

 exp
(
z

(n)
k

)
∑

exp
(
z

(n)
−k

)
+ 1

+ 1

− z(n)

k̄(n) + C1

=
1

2τ2

(
z

(n)
k − µ(n)

k

)2

+ log
[

exp
(
z

(n)
k − a(n)

k

)
+ 1
]
− z(n)

k̄(n) + C1

=
1

2τ2

(
z

(n)
k − µ(n)

k

)2

+ log
[

exp
{
s

(n)
k

(
z

(n)
k − a(n)

k

)}
+ 1
]

+ C2

where

a
(n)
k = log

[∑
exp

(
z

(n)
−k

)
+ 1
]

s
(n)
k =

{
−1, if k = k̄(n),

1, otherwise,

Notice that log
[

exp
(
z

(n)
k − a(n)

k

)
+ 1
]
is the softplus function with respect to z(n)

k centered at a(n)
k , which

approaches the ReLU function max(0, ·) when z
(n)
k → ±∞, and is convex around a

(n)
k . Thus we can

approximate it by breaking its domain into three parts:

log{exp[s(z − a)] + 1} = φ[s(z − a)] ≈ ψ[s(z − a)] =


0 if s(z − a) < − 1

2c
c
2 (z − a+ s

2c)
2 if − 1

2c ≤ s(z − a) ≤ 1
2c

s(z − a) if s(z − a) > 1
2c

=


s−1

2 (z − a) if z ∈ (−∞, a− 1
2c)

c
2 (z − a+ s

2c)
2 if z ∈ [a− 1

2c , a+ 1
2c]

s+1
2 (z − a) if z ∈ (a+ 1

2c , ∞)

where c > 0 is a constant for approximating the logistic function with a hard sigmoid function

{exp[s(z − a)]−1 + 1}−1 = φ′[s(z − a)] ≈ ψ′[s(z − a)] = min[max[0.5 + sc(z − a), 0], 1].

For example, the first-order Taylor polynomial of φ′ at 0 sets c = 0.25, while TensorFlow and Theano sets
c = 0.2, and PyTorch sets c = 1/6. (For the middle part, we may be tempted to use the Taylor polynomial of
φ centered at a (i.e. log(2) + 0.5(z − a) + 0.125(z − a)2) or centered at one of the two boundary points, but
that does not guarantee the overall function to be continuous.) Then the density function is broken into

12

three cases:

− log f
(
z

(n)
k ,y(n)

∣∣∣z(n)
−k , µ

(n)
k , τ2

)
=

1

2τ2

(
z

(n)
k − µ(n)

k

)2

+ log
[

exp
{
s

(n)
k

(
z

(n)
k − a(n)

k

)}
+ 1
]

+ C2

≈ 1

2τ2

(
z

(n)
k − µ(n)

k

)2

+ ψ
[
s

(n)
k

(
z

(n)
k − a(n)

k

)]
+ C2

=


1
2τ
−2
(
z

(n)
k − µ(n)

k

)2

+ C2 if s(n)
k

(
z

(n)
k − a(n)

k

)
< − 1

2c

1
2 (τ−2 + c)

{
z −

[
τ−2

τ−2+cµ+ c
τ−2+c

(
a− s

(n)
k

2c

)]}
+ C3 if − 1

2c ≤ s
(n)
k

(
z

(n)
k − a(n)

k

)
≤ 1

2c

1
2τ
−2
[
z

(n)
k −

(
µ

(n)
k − s(n)

k τ2
)]2

+ C4 if s(n)
k

(
z

(n)
k − a(n)

k

)
> 1

2c

=


1
2τ
−2
[
z

(n)
k −

(
µ

(n)
k − s

(n)
k −1

2 τ2
)]2

+ C4 if z(n)
k ∈

(
−∞, a(n)

k − 1
2c

)
1
2 (τ−2 + c)

{
z −

[
τ−2

τ−2+cµ+ c
τ−2+c

(
a− s

(n)
k

2c

)]}
+ C3 if z(n)

k ∈
[
a

(n)
k − 1

2c , a
(n)
k + 1

2c

]
1
2τ
−2
[
z

(n)
k −

(
µ

(n)
k − s

(n)
k +1

2 τ2
)]2

+ C4 if z(n)
k ∈

(
a

(n)
k + 1

2c , ∞
)

In all the cases the density has a quadratic form, and the density overall is continuous, which implies that the
distribution is a three-component mixture of truncated normal distributions with adjacent truncation points.

References

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Statistics and computing, 18(4):343–373.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine learning, volume 4. Springer.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte carlo. Physics letters B,
195(2):216–222.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050–1059. PMLR.

Hagler Jr, D. J., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., Sutherland, M. T., Casey,
B., Barch, D. M., Harms, M. P., et al. (2019). Image processing and analysis methods for the adolescent
brain cognitive development study. Neuroimage, 202:116091.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2016). Simple and scalable predictive uncertainty
estimation using deep ensembles. arXiv preprint arXiv:1612.01474.

Ritter, H. and Karaletsos, T. (2022). Tyxe: Pyro-based bayesian neural nets for pytorch. Proceedings of
Machine Learning and Systems, 4.

Sripada, C., Rutherford, S., Angstadt, M., Thompson, W. K., Luciana, M., Weigard, A., Hyde, L. H., and
Heitzeg, M. (2020). Prediction of neurocognition in youth from resting state fmri. Molecular psychiatry,
25(12):3413–3421.

Wikipedia contributors (2022a). Bayesian linear regression — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Bayesian_linear_regression&oldid=1089211815. [Online].

Wikipedia contributors (2022b). Conjugate prior —Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Conjugate_prior&oldid=1070993689. [Online].

13

https://en.wikipedia.org/w/index.php?title=Bayesian_linear_regression&oldid=1089211815
https://en.wikipedia.org/w/index.php?title=Bayesian_linear_regression&oldid=1089211815
https://en.wikipedia.org/w/index.php?title=Conjugate_prior&oldid=1070993689
https://en.wikipedia.org/w/index.php?title=Conjugate_prior&oldid=1070993689

	METHOD DETAILS
	Details of Theoretical Results
	Details of thm:distributions

	Proofs of Theoretical Results
	Proof of thm:distributions
	Proof of thm:predictive-density
	Proof of thm:variance-bound-general
	Proof of thm:variance-bound-special

	Synthetic data experiments
	Experiment setup
	Data simulation
	Model setup
	Evaluation criteria

	Additional results

	UCI data experiments
	Experiment setup
	Dataset curation
	Model setup
	Evaluation criteria

	Additional results

	ABCD data analysis
	Experiment setup
	Data overview
	Model setup

	Additional results

	DISCUSSION OF CLASSIFICATION TASKS
	Theoretical Comparison of Stochastic and Deterministic Models for Classification
	B-DeepNoise for Categorical Outcomes

