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PREFACE

This dissertation represents the culmination of years of dedicated research in the field of Com-

puter Vision, specifically focusing on Event-Based Vision for robotic perception tasks. It integrates

a series of studies that have been published in various scientific journals, reflecting the progression

and evolution of my research work in this domain. Each chapter of this dissertation corresponds to

a specific publication, either directly adapting or building upon these published works.

Below is an outline of the connections between the dissertation chapters and their corresponding

publications:

• Chapter 2: Detailed exploration of the MEVDT dataset developed and utilized in [45, 44].

• Chapter 3: Adaptation of our work titled ”High-Temporal-Resolution Object Detection and

Tracking Using Images and Events,” published in the Journal of Imaging, 2022 [45].

• Chapter 4: Adaptation of our work titled ”High-temporal-resolution event-based vehicle

detection and tracking,” published in Optical Engineering, 2023 [44].

• Chapter 5: Adaptation of our work titled ”CSTR: A Compact Spatio-Temporal Representa-

tion for Event-Based Vision,” published in IEEE Access, 2023 [46].

• Chapter 6: Builds on the developments and findings from ”CSTR: A Compact Spatio-

Temporal Representation for Event-Based Vision,” published in IEEE Access, 2023 [46].
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ABSTRACT

This dissertation explores the emerging field of event-based vision, a significant innovation in

visual sensing technology that represents a marked departure from traditional frame-based imag-

ing. Inspired by the biological processes of the human retina, event-based sensors operate asyn-

chronously at the pixel level. They are characterized by their ability to capture data with high

temporal resolution and exceptional dynamic range, detecting and recording changes in light in-

tensity independently. This unique capability allows for the continuous and selective monitoring

of a scene, dynamically capturing information only as necessary.

The core focus of this research is to harness the potential of neuromorphic event-based vision

for advancing object detection and tracking methodologies. Despite the promising attributes of

event-based sensors, their integration into conventional Computer Vision (CV) architectures poses

substantial challenges, primarily due to the asynchronous and sparse nature of their output. This

dissertation aims to address these challenges by developing novel methodologies that leverage the

unique strengths of event-based vision while overcoming its inherent limitations.

A key contribution of this work is the introduction of the Multi-Modal Event-Based Vehicle De-

tection and Tracking (MEVDT) dataset. This pivotal resource, comprising synchronized streams

of event data and grayscale images, facilitates the development and evaluation of novel event-

based algorithms, particularly in automotive contexts. Building on this foundation, the dissertation

presents a hybrid approach that integrates state-of-the-art frame-based detectors with novel event-

based methods, achieving high temporal resolution in object detection and tracking. This approach

is further refined with advanced techniques to enhance both detection accuracy and tracking ro-

bustness.

A central element of this research is the Compact Spatio-Temporal Representation (CSTR).

xvi



This novel representation effectively encodes event data into a format that is directly compatible

with modern computer vision architectures, integrating spatial, temporal, and polarity informa-

tion. The CSTR, in conjunction with a specially designed augmentation framework, significantly

improves the performance of various recognition tasks.

The culmination of this dissertation is a comprehensive analysis of the CSTR and other image-

like event representations in the context of event-based and multi-modal object detection. Rigorous

testing on two event-based multi-modal datasets demonstrates the effectiveness of these methods,

offering insights into their comparative performances and the synergies between event-based and

frame-based sensors. Through these comprehensive evaluations, this work underscores the im-

portance of optimal spatio-temporal representations for event-based vision tasks. Ultimately, this

dissertation represents a step towards the practical application of event-based vision, contributing

to the ongoing evolution in the field of CV.
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CHAPTER 1

Introduction

1.1 Research Motivation and Overview

1.1.1 Perception in Robotics and Automation

CV is a critical component in robotics and automation, transforming digital data into actionable

insights about the environment. This transformative ability is essential for autonomous decision-

making, where an accurate and timely understanding of the surroundings dictates the efficacy of the

robotic actions [34, 47]. Recent advancements in CV, particularly through Deep Learning (DL),

have propelled the field towards achieving, and in some cases surpassing, human-level performance

in crucial perception tasks [72, 92, 149, 159]. However, the limitations inherent in traditional

visual input systems, such as limited dynamic range and sensitivity to environmental conditions,

still pose challenges in complex and dynamic settings. These constraints underscore the necessity

for exploring more advanced perception technologies that can handle diverse and unpredictable

environments with greater reliability. The development of such technologies promises to bridge

the gap between current capabilities and the requirements of fully autonomous systems.

1.1.2 Common Sensors in Perception

In domains like Automated Driving (AD) and Advanced Driver Assistance Systems (ADAS), a

diverse array of sensors are employed to inform machine vision. These sensors typically include
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LiDARs, radars, and digital cameras, often based on CMOS technology [6]. LiDARs, valued

for their precision in distance measurements and high-spatial-resolution range information, can be

limited by high costs and susceptibility to certain weather conditions [177]. Radars offer robustness

in adverse weather conditions such as fog but are constrained by their limited resolution [61].

Traditional digital cameras, typically CMOS-based, provide detailed visual information but face

challenges with dynamic range and low-light conditions [109, 116, 139, 73].

The integration of these sensors is crucial for reliable decision-making, as each sensor type

compensates for the shortcomings of others. For instance, fusion techniques, especially between

LiDAR and traditional cameras, have shown promise in enhancing object detection and classifi-

cation in real-time applications for Autonomous Vehicles (AVs) [10]. However, the integration of

these diverse technologies into a unified perception system introduces challenges, including data

fusion and calibration complexities [184]. This integration is often further constrained by factors

such as cost and reliability in various applications.

Traditional cameras, often CMOS-based, are frequently favored in many robotic and automation

systems due to their resemblance to human visual perception, as well as their broad availability

and low cost. However, this reliance also brings to light the inherent limitations of these cameras,

underscoring the need for a multi-sensor approach to achieve comprehensive perception in AD and

ADAS [127, 168].

1.1.3 Advancements in Computer Vision Driven by Deep Learning

In the past decade, CV has undergone a paradigm shift, largely driven by breakthroughs in DL

[88, 92]. This transformative shift in Machine Learning (ML) has enabled models to bypass the

need for manual feature extraction [48], allowing for direct learning from raw sensor data [120].

Particularly, deep Convolutional Neural Networks (CNNs) have revolutionized tasks such as image

classification, significantly outperforming previous benchmarks [186]. This revolution in CV is

partly due to increased computational power and the availability of extensive, labeled datasets,

establishing DL as the predominant method in contemporary CV applications [1, 67, 71].
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However, these advancements in DL are intrinsically linked to the quality of the input data.

The performance of DL models in CV is often constrained by the limitations of the sensors pro-

viding this data. For instance, traditional cameras, with their limited dynamic range and sensi-

tivity to varying lighting conditions, can restrict the effectiveness of DL in complex visual tasks

[30, 69, 118]. This highlights the ongoing need for improvements not only in DL algorithms but

also in sensor technology, to fully harness the potential of advanced CV systems in automated

applications.

1.1.4 Limitations of Contemporary Vision Sensors in Automation

Traditional vision sensors, predominantly CMOS cameras, are integral to AD and ADAS sys-

tems due to their cost-effectiveness and ability to provide dense visual information akin to human

perception. Despite their widespread use, these cameras are limited by factors such as limited

dynamic range, high computational demands, susceptibility to motion blur, and limited update

rates[28]. These limitations can lead to suboptimal performance in critical scenarios, as evidenced

by several real-world incidents in AD systems [125, 164].

In 2016, a Tesla Model S with Autopilot engaged (Tesla’s version of ADAS) collided with a

white 18-wheeler truck, resulting in a fatal crash [164] (incident illustrated in Figure 1.1). The

Autopilot system failed to detect the truck against a bright sky, a situation exacerbated by the

camera’s low dynamic range as visualized in Figure 1.2. This incident underscores the challenges

cameras face in distinguishing objects in overexposed scenes.

In 2018, an Uber AD test vehicle struck a pedestrian crossing a street at night [125] (incident

illustrated in Figure 1.3). Despite the pedestrian reportedly being detected by the vehicle’s LiDAR

[128], the system misclassified it as a false positive, influenced by the limited dynamic range of

the camera used in low-light conditions. This accident highlights the challenges cameras face in

detecting objects in poorly lit low-contrast environments as demonstrated in Figure 1.4.

These incidents illustrate the inherent limitations of relying heavily on traditional cameras in

ADAS and AD applications. While the dense visual output of cameras is crucial for detailed scene
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Figure 1.1: Illustration of the Tesla Autopilot accident’s events1.

Figure 1.2: Visualization of the camera’s output right before the accident2.

information, their limitations in diverse and dynamic environments highlight the need for a more

balanced and robust perception approach. Current multi-modal sensor systems, integrating cam-

eras with LiDARs and radars, attempt to address these challenges but still encounter limitations,

especially in complex and unpredictable scenarios.

This situation underscores the pressing need for exploring alternative sensing technologies that

can offer more robust and adaptive visual perception. Such technologies must not only handle typi-

cal scenarios effectively but also excel in edge cases, ensuring safety and reliability in autonomous

1Image source: YouTube https://www.youtube.com/watch?v=s8AHzY7xr10
2Photoshopped version of the image: transportation truck on the road Stock Photo by mblach – PhotoDune

https://photodune.net/item/transportation-truck-on-the-road/25819561
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Figure 1.3: Illustration of the accident’s events and the aftermath of vehicle used3.

Figure 1.4: Uber automated test vehicle’s camera output moments before the crash4.

applications. This need forms the basis for investigating event-based vision as a promising alterna-

tive, potentially bridging the gap between current capabilities and the high demands of real-time,

efficient perception systems in dynamic environments.

1.1.5 Motivation and Problem Statement

The constraints of conventional camera technologies, along with the limitations of other sensing

modalities, highlight the necessity for a more advanced and adaptive visual perception system.

These systems must be capable of handling edge cases and ensuring safety and reliability in au-

tonomous applications. Despite the strides made in CV, the shortcomings of current sensor tech-

3Image source: https://www.spri.kr/webroot/lib/fileman/Uploads/post images/2018 07/2018 07 03 01.png
4Video source: YouTube https://www.youtube.com/watch?v=q7d90ZFhg28
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nologies hinder their ability to match the efficiency and real-time capabilities of biological visual

systems. This gap in performance and the quest for robust, low-latency perception systems in

dynamic environments motivate the exploration of innovative sensing technologies, such as event-

based vision, which promise to overcome these challenges.

1.2 Introduction to Event-Based Vision

1.2.1 Event-Based Vision: An Overview

Event-based vision is an emerging field in visual sensing technology, characterized by a novel

approach to capturing and processing visual information. Drawing inspiration from the biological

processes of the human eye [141], particularly the retina, event-based vision systems represent a

paradigm shift from traditional frame-based imaging techniques.

At the core of event-based vision are event-based sensors, also known as neuromorphic sensors

and event cameras. Unlike conventional cameras that capture a sequence of frames at regular

intervals, event cameras operate asynchronously at the pixel level. They are designed to detect

and record changes in intensity for individual pixels independently. Each pixel in an event camera

functions autonomously, generating data—referred to as ”events”—only when a change in light

intensity is detected. Each event provides information about the time, location, and polarity of

the brightness change, offering a continuous asynchronous stream of information about the visual

scene.

The fundamental principle behind event-based vision is its focus on capturing the dynamic

aspects of a scene. Traditional cameras record the entire scene at fixed time intervals, regardless of

whether changes have occurred or not. In contrast, event cameras are attuned to changes, making

them highly responsive to motion and temporal variations in a scene.

Event-based vision systems are gaining attention for their potential to provide more efficient and

effective visual processing, especially in environments where speed and responsiveness are crucial.

This approach to vision technology offers unique capabilities, which are being explored for a range
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of applications from robotics and autonomous vehicles to augmented reality and surveillance.

As research in this domain advances, event-based vision is poised to offer new perspectives

in CV, challenging conventional methods and providing innovative solutions to complex visual

processing tasks.

1.2.2 Historical Evolution of Neuromorphic Event-Based Vision

The concept of event-based vision originated from the desire to mimic the human retina’s way of

processing visual information [112, 141]. Early research in the field mainly aimed to demonstrate

biological models without a focus on their practical real-world applications [112, 141]. Later on,

the research focus in this field shifted towards practical perception applications motivated by the

limitations of traditional frame-based cameras, particularly their inability to efficiently handle dy-

namic and fast-changing environments. Pioneering work in neuromorphic engineering, a field that

aims to replicate neural systems’ structure and functionality, laid the groundwork for the develop-

ment of event-based sensors [107].

The first practical and commercially available event-based sensor was the Dynamic Vision Sen-

sor (DVS)-128 [101]. This sensor marked a significant milestone in the field of event-based vision.

The DVS-128, first made available in 2008, provides a resolution of 128×128 pixels and a dynamic

range of 120 dB. This has influenced the development of other sensors that focused on addressing

some of its shortcomings, such as the Asynchronous Time-Based Image Sensor (ATIS) [140], in

2010; and the Dynamic and Active-Pixel Vision Sensor (DAVIS) [21], in 2014.

Over the years, event-based vision technology has seen numerous advancements. Key mile-

stones include the improvement in sensor resolution, the increase in the dynamic range, and the

reduction in latency and power consumption [100, 101, 140, 21, 162]. These developments have

expanded the potential applications of event-based vision, moving it from a theoretical concept to

a practical tool in various fields.

The historical evolution of event-based vision not only highlights the technological progress

in the field but also underscores the growing recognition of its potential to revolutionize how ma-
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(a) abstracted pixel core schematic (b) Principle of operation

Figure 1.5: Abstracted circuitry of a single DVS-128 pixel and illustration of its principle of oper-
ation. Reprinted from [101] © 2008 IEEE.

chines perceive and interact with their environment.

1.2.3 Technical Foundations of Event-Based Sensors

Event-based neuromorphic sensing is grounded in a fundamentally different approach to visual

perception, one that captures the essence of dynamic changes in the environment. The key prin-

ciples of event-based sensing are centered around the unique functionality of event cameras and

their method of data acquisition and processing.

In contrast to traditional cameras that capture entire frames at fixed time intervals, each pixel

in an event camera operates independently and asynchronously. This means that pixels in an event

camera are not synchronized to a global shutter. Instead, they react individually to changes in light

intensity, generating data whenever a change exceeds a predefined threshold. This asynchronous

approach allows for the continuous monitoring of a scene, with the camera capturing information

only when and where it is needed.

1.2.3.1 Functional Components of a DVS Pixel

A single DVS pixel [101] consists of 3 main components: the photoreceptor, the differencing

circuit, and the comparators. These components, along with the general DVS design, are demon-

strated in Figure 1.5(a).
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The photoreceptor is responsible for converting the incident light into an electrical signal Vp.

It features a logarithmic response, automatically controlling the pixel’s gain while responding

quickly to changes in illumination. However, this design leads to a DC mismatch between pix-

els due to transistor threshold variation, which requires calibration for direct output use.

The differencing circuit is connected to the photoreceptor and amplifies changes in the signal

with high precision. It plays a crucial role in removing the DC mismatch by balancing the output

to a reset level after an event is generated, as shown in Figure 1.5(b). The gain of this change

amplification is determined by the well-matched capacitor ratio C1/C2. This precise gain helps

reduce the impact of comparator mismatch.

Finally, the comparators are simple two-transistor components that compare the output Vdiff of

the differencing circuit against a reference level to generate events. They are essential for convert-

ing the analog signal into a digital output (as either ON or OFF events), indicating changes in the

scene’s illumination.

Together, these components allow the DVS pixel to be sensitive to temporal contrast, defined in

[101] as:

TCON =
1

I(t)

dI(t)

d(t)
=

d(ln(I(t)))

dt
, (1.1)

where I is the photocurrent. This sensitivity to temporal contrast, rather than absolute light levels,

enables the DVS to efficiently detect and respond to changes in a scene, making it highly suitable

for dynamic and high-speed applications.

1.2.3.2 Combining DVS with Active Pixel Sensor (APS)

While the DVS excels in dynamic and high-speed scenes, it is limited in applications of a static

nature. Since DVS pixels capture only relative changes in brightness, they lack the capability

to provide information on the static light intensity, a limitation that the ATIS was developed to

address [140]. The ATIS added an APS circuitry to capture static light intensity as well. However,

the ATIS’s dependency on the DVS to trigger light-intensity updates results in asynchronous and

non-uniform exposure times, leading to potential motion artifacts [21].
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Another groundbreaking development is the DAVIS [21]. The DAVIS was also introduced to

address the DVS’s limitation by combining the DVS with an APS at the pixel level, sharing the

same photodiode [21] (as demonstrated in Figure 1.6). Here, the DVS part operates as described

earlier while the APS component functions independently by continuously measuring and inte-

grating the photocurrent over time to produce a voltage signal representing the static light intensity

[21, 141]. This is done using differential double sampling (for the APS readout), essential for

removing significant fixed pattern noise which is a common issue in CMOS-based image sensors

[23].

Differential double sampling is a critical function of the APS readout that is done by taking two

measurements of Vaps. These measurements are referred to as the reset voltage and the signal volt-

age. The reset voltage is sampled immediately after the pixel is reset, serving as a reference point.

The signal voltage is taken at the end of the exposure period, which represents the accumulated

light charge in the pixel due to light exposure. The difference between these two voltage samples

is proportional to the amount of light that has struck the pixel during the exposure time, which is

used to determine the light intensity. Finally, the resulting analog value is converted to a digital

signal which is then used to form an image.

This setup allows the DAVIS to capture conventional images with intensity encoding, compat-

ible with established CV research, in addition to the asynchronous event data. The APS shares

the same photodiode with the DVS circuit, only adding a small readout circuit and minimally

increasing the pixel area [21].

In its initial design, the DAVIS utilized a rolling shutter which led to motion artifacts in dynamic

scenes, similar to those observed with the ATIS [21]. To overcome this challenge, the DAVIS

was later improved by incorporating a global shutter, a feature commonly found in CMOS-based

imaging sensors. This advancement substantially minimizes motion artifacts compared to both

the initial DAVIS and the ATIS designs. Unlike the ATIS, which relies on asynchronous event-

triggering for pixel intensity updates, the DAVIS provides a simultaneous output of asynchronous

events and synchronous frames in both rolling and global shutter modes. This design allows for
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Figure 1.6: Simplified schematic of the DAVIS pixel which combines the DVS and the APS into
one. Reprinted from [141] © 2014 IEEE.

more consistent and uniform exposure times across the sensor array, enhancing the sensor’s ability

to accurately capture both dynamic and static elements of a scene.

Overall, the integration of the DVS and APS in the DAVIS sensor broadens the range of appli-

cations for this imaging technology. The DVS addresses dynamic and high-speed components of

a scene, whereas the APS enables high-accuracy object recognition and the application of estab-

lished CV methods.

1.2.3.3 Address Event Representation

Given that an event-based sensor would include thousands of pixels [21, 101], a feasible wiring

mechanism with a compatible communication protocol is required [141]. The Address-Event Rep-

resentation (AER) is a communication protocol that simplifies the design quite significantly [107].

By combining an array of sensing nodes (such as the DVS pixel) with a common bus, the AER

allows each pixel in the array to operate independently and asynchronously [101, 107]. Each event

is encoded as an address (i.e., an (x, y) coordinate) that uniquely identifies the pixel’s location in

the sensor array. The event-driven nature of AER means that data is only transmitted when changes

are detected, leading to efficient data transmission and reduced power consumption compared to

continuously streaming the entire pixel array’s state. An event that occurs at a given pixel would

be reported as location, time of occurrence, and polarity of the brightness change.

This asynchronous communication method is crucial for capturing the temporal dynamics of a
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scene efficiently. AER’s event-driven approach ensures that only relevant data—those parts of the

scene undergoing change—are transmitted, significantly reducing the volume of data compared to

traditional frame-based systems. This efficiency is particularly beneficial in dynamic environments

with sparse activity, where AER can drastically cut down on unnecessary data transmission.

Furthermore, AER’s design addresses scalability challenges [141]. It enables the integration

of large numbers of pixels in a sensor array without overwhelming the system’s bandwidth. This

scalability is essential for developing high-resolution event-based sensors capable of capturing

detailed visual information.

AER also facilitates the integration of event-based sensors with external processing units, such

as FPGAs or digital processors [141]. This integration is key for building comprehensive vision

systems that combine the unique capabilities of event-based sensing with advanced computational

methods.

In summary, AER plays a pivotal role in the operation of event-based vision systems. Its ef-

ficient, scalable, and asynchronous data transmission protocol makes it an indispensable compo-

nent in applications requiring real-time processing and responsiveness, such as in robotics and

autonomous vehicles

1.2.4 Key characteristics and Advantages

Event-based sensors have many unique properties that differentiate them from other modalities,

including:

• High Temporal Resolution: Each event is captured and timestamped with microsecond pre-

cision (1 µs), leading to potential output rates up to 1 MHz. This high temporal resolution,

enabled by a digital readout process where event timings are self-encoded [141], effectively

eliminates motion blur issues common in traditional cameras due to prolonged exposure

times.

• HDR: Event cameras offer an impressive dynamic range exceeding 120 dB. Their loga-
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Figure 1.7: Comparison between the High Dynamic Range (HDR) output of event cameras (left)
and the limited dynamic range output of frame-based cameras (right) in an HDR scene of a vehicle
exiting a tunnel. The presented sample is obtained from the event-based dataset, DSEC [59],
captured using Prophesee Gen 3.15.

rithmic response to varying light intensities allows them to compress a wide range of light

levels efficiently. Coupled with the independent operation of each pixel, this feature enables

the sensor to capture detailed imagery in scenes with both very bright and very dark areas

[21, 101]. In contrast, traditional cameras have a limited dynamic range of ∼60 dB, strug-

gling in such varied lighting conditions. The superior dynamic range of event cameras is

visually demonstrated in Figure 1.7, highlighting their ability to capture details missed by

conventional CMOS-based cameras.

• Low Latency: Event-based sensors demonstrate minimal output latency, typically in the

range of a few microseconds under most lighting conditions [21]. This low latency results

from fast photoreceptor circuits, efficient processing, independent pixel operation, and op-

timized data transmission protocols. This characteristic is particularly beneficial for time-

sensitive applications such as AVs.

• Low Power Consumption: Depending on the DVS’s activity, the power consumption of

event cameras is typically in the milli-watt range (e.g., 5–14 mW for the DAVIS [21]). This

5As visualized in the video available at: https://www.youtube.com/watch?v=uTa6-ME547Q&t=17s
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efficiency stems from their event-driven nature, where power is consumed only when pixels

detect brightness changes, in contrast to the consistently high power requirements of tradi-

tional frame-based cameras due to their synchronous and often redundant output.

These properties enable event-based cameras to offer robust performance in various challenging

scenarios, including those with HDR, rapid motion, and low-light or night-time conditions. Their

ability to provide detailed, spatially-dependent output, akin to traditional frame-based cameras,

sets them apart from sensors like LiDAR and radar, which typically produce sparser outputs. This

characteristic makes event cameras not only a valuable addition to existing visual sensing arrays

but also viable candidates for primary visual input sensors in various applications.

1.2.5 Applications of Event-Based Vision

Event-based vision has found a diverse array of applications across various domains, leveraging its

unique capabilities to address complex challenges. Some notable uses include:

• Low-Power Monitoring and Surveillance: Event cameras are increasingly used in monitoring

systems due to their low power consumption, making them ideal for prolonged surveillance

tasks [19].

• High-Speed Obstacle Detection and Avoidance: In dynamic environments, event-based sen-

sors excel in detecting and avoiding obstacles at high speeds, crucial for applications like

drone navigation and robotics [51, 52].

• Deblurring Videos: The high temporal resolution of event cameras allows them to effectively

deblur videos, a capability beneficial in enhancing video quality and clarity [132].

• Advanced SLAM: Incorporating event cameras into Simultaneous Localization and Mapping

(SLAM) systems enables more robust and accurate navigation, particularly in high-speed

and high dynamic range scenarios, by utilizing a combination of images, inertial data, and

event data [51, 52].
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These applications demonstrate the transformative potential of event-based vision in various

fields. The novel nature of event cameras has opened up new avenues for research and develop-

ment, expanding the frontiers of what is possible in CV and autonomous systems.

1.2.6 Challenges and Research Opportunities

While event-based vision presents a paradigm shift in visual sensing, it is still evolving, facing

both technical challenges and untapped research potential. Current challenges in the field include:

• Utilization of High-Temporal-Resolution Data: A key challenge is effectively harnessing the

high-temporal-resolution data provided by event-based sensors. This involves developing

algorithms and systems that can interpret and process data at microsecond scales for real-

time applications.

• Integration with Traditional Vision Systems: Bridging the gap between asynchronous event-

based data and traditional frame-based vision systems remains a significant hurdle. This

includes finding effective ways to represent and process event data to leverage advancements

in conventional CV techniques.

• Lack of Standardized Datasets and Labeling Techniques: The absence of large, labeled

datasets for event-based vision hampers the development of DL-based solutions. Establish-

ing standardized datasets and labeling methods is crucial for advancing machine learning

approaches in this domain and for benchmarking the performance of event-based systems,

especially in high-speed scenarios.

Besides these challenges, the field of event-based vision is filled with research opportunities:

• Development of Application-Specific Solutions: There is vast potential for creating tailored

solutions that leverage the unique properties of event-based sensors (e.g., HDR and low

latency) in specific applications, such as AVs, robotics, and augmented reality.
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• Advancement in Sensor Technology and Cost Reduction: As the technology matures, there

is scope for reducing sensor costs and making them more accessible for mainstream appli-

cations, which in turn would generate more data for research and development.

• Exploration of multi-modal Sensory Integration: Integrating event-based vision with other

sensory modalities presents an exciting avenue for creating more robust and efficient per-

ception systems. This integration could lead to breakthroughs in how machines perceive and

interact with their environment.

Addressing these challenges and exploring these research avenues will significantly advance

the field of event-based vision, paving the way for innovative applications and enhancing the ca-

pabilities of autonomous systems.

1.3 Research Objectives and Dissertation Scope

1.3.1 Overall Research Goals and Objectives

This dissertation aims to push the boundaries of event-based vision for object detection and track-

ing. The objectives are to:

1. Develop Robust Event-Based Methodologies: Create innovative approaches for object de-

tection and tracking using event-based data, addressing challenges and leveraging its unique

advantages.

2. Integrate Event-Based and Frame-Based Vision Investigate hybrid methodologies inte-

grating event-based and frame-based vision, utilizing their combined strengths for improved

detection and tracking.

3. Advance Event-Based Vision Research Use specialized datasets to promote research in

event-based vision, particularly focusing on object detection and tracking in automotive and

robotic applications.

16



1.3.2 Chapter-Specific Aims

The dissertation unfolds through several chapters, each with distinct objectives and contributions

to the field of event-based vision. In Chapter 2, the focus is on the introduction and detailing

of the MEVDT dataset. This dataset serves as a pivotal tool for advancing research in multi-

modal event-based object detection and tracking. Chapter 3 explores a hybrid approach for high-

temporal-resolution object detection and tracking. This chapter leverages state-of-the-art frame-

based detectors and introduces novel event-based methods to enhance the overall methodology.

Building upon this, Chapter 4 further refines these methodologies by incorporating advanced event-

based techniques, aiming to improve both the accuracy and robustness of detection and tracking. In

Chapter 5, the dissertation presents the development of the CSTR, a new compact spatio-temporal

representation tailored for event-based vision. This chapter assesses the CSTR’s effectiveness in

integrating sparse event data with conventional CV networks, particularly in the context of object

and action recognition tasks. Finally, Chapter 6 delves into the application of the CSTR and other

event representations in event-based and multi-modal object detection, rigorously testing these

methods on two distinct event-based multi-modal datasets.

1.4 Dissertation Outline

The dissertation comprises the following chapters:

• Chapter 1: Sets the foundation for the dissertation by introducing the field of event-based

vision and its significance.

• Chapter 2: Introduces the MEVDT dataset, emphasizing its importance in event-based ob-

ject detection and tracking.

• Chapter 3: Presents a hybrid approach for high-temporal-resolution object detection and

tracking, leveraging both frame-based detectors and event-based methods.
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• Chapter 4: Expands upon Chapter 3 by incorporating advanced event-based techniques to

enhance detection and tracking accuracy and robustness.

• Chapter 5: Discusses the development of the CSTR, a novel representation for integrating

event data with conventional CV techniques.

• Chapter 6: Explores the application of CSTR and other image-like representations in event-

based and multi-modal object detection, investigating the integration of frame-based and

event-based vision.

• Chapter 7: Provides a consolidated conclusion and general discussion, synthesizing the

findings of this dissertation. It outlines the overall contributions and discusses future research

directions.
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CHAPTER 2

Multi-Modal Event-Based Object Detection and

Tracking Dataset

In this chapter, we introduce the MEVDT dataset: Multi-modal Event-based Vehicle Detection

and Tracking dataset. This dataset provides a synchronized stream of event data and grayscale

images, captured using the novel DAVIS 240c hybrid event-based camera. It features manually

annotated ground truth data, including object class, bounding boxes, and unique object IDs, at

a labeling frequency of 24 Hz. Designed to advance research in event-based vision, MEVDT

addresses the critical need for high-quality, annotated datasets that enable the development and

benchmarking of object detection and tracking algorithms in automotive environments.

2.1 Introduction

Event-based vision represents a paradigm shift in visual sensing technology, where sensors, in-

spired by the biological processes of the human retina, capture dynamic changes in a scene at high

temporal resolution [101, 140, 141]. Unlike traditional frame-based cameras, event-based sensors

asynchronously report per-pixel brightness changes, offering advantages in dynamic range and

temporal resolution [55]. This emerging field necessitates specialized datasets to promote research

and development, particularly in CV tasks of object detection and tracking.

Object tracking stands as a critical task in various robotic applications, including AD and traffic

monitoring [45, 76, 115]. Event-based vision, due to its low latency and high-temporal-resolution
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output, offers promising prospects in these areas. However, the development of methodologies for

these applications has been hampered by a lack of labeled event-based datasets. While there are

numerous datasets for traditional vision applications [60, 88], a notable gap exists in labeled event-

based datasets specifically tailored for object tracking. Existing event-based datasets, while useful

for traditional CV tasks, are particularly lacking in the object tracking application that requires

annotations that include object IDs. This gap limits the exploration and development of event-

based object-tracking methods.

To address this limitation, we have created a new dataset specifically tailored for object detec-

tion and tracking in event-based vision. While our dataset does not encompass highly dynamic sce-

narios, it includes sequences with multiple simultaneous vehicle objects moving at various speeds.

A key feature of our dataset is the provision of object IDs along with bounding box annotations,

a deficiency in existing datasets. This inclusion is crucial for enabling object tracking evaluation,

which forms a significant part of our research.

Our dataset1, though not characterized by diverse scenarios, offers a compact and straightfor-

ward environment with accurate and precise labeling. This simplicity makes it an ideal starting

point for researchers to develop, evaluate, and refine various event-based and hybrid methodolo-

gies. The dataset’s utility is demonstrated across different chapters of this dissertation, highlighting

its versatility for both developing novel solutions and for the application of the training and fine-

tuning of DL-based solutions.

By offering a dataset with detailed annotations and a specific focus on vehicle-type objects, we

aim to stimulate research in event-based vision, particularly in applications demanding high-speed

perception and accurate object tracking. This dataset is intended as a foundational resource for

researchers exploring the innovative and rapidly developing field of event-based vision.

1Dataset is available at http://sar-lab.net/event-based-vehicle-detection-and-tracking-dataset/
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Figure 2.1: Satellite view of a subsection of the University of Michigan-Dearborn campus high-
lighting Scene A and Scene B, where data was collected, along with the position of the LiDAR
sensor.

2.2 Dataset Collection and Labeling Method

2.2.1 Data Collection Setup

This section outlines the data collection setup for our event-based vision dataset, detailing the

sensors, settings, and locations employed.

We use the hybrid sensor DAVIS 240c2 [21], which combines an APS as well as DVS using

the same pixel array. This sensor is selected as it is able to capture both asynchronous events and

synchronous frames which are needed for developing event-based and multi-modal solutions and to

enable accurate data labeling. The spatial resolution of this sensor is 240×180 pixels. The APS of

this sensor captures intensity (i.e., monochrome) frames at a fixed rate of ∼ 24 Frames Per Second

(FPS). Meanwhile, the DVS, can capture events, asynchronously, and at high temporal resolutions

2DAVIS 240c specifications available at https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf
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Scene A Scene B

Figure 2.2: Sample image outputs from the dataset demonstrating the two distinct scenes captured.
Scene A is depicted on the left, and Scene B on the right, showcasing the camera’s perspective and
field of view for each location within the University of Michigan-Dearborn’s campus.

of 1 µs. The fundamental concepts of DAVIS are detailed in Section 1.2.3. Additionally, an

industrial high-speed LiDAR Benewake TF03-100 was employed in a subset of the data collection

process to provide high-temporal-resolution ground truth positional measurements. Specifically,

this LiDAR is used to estimate the distance to the car being tracked with timestamps at very high

rates (up to 1000 Hz). The LiDAR is placed at a range of 60-30 meters away from the vehicle

driving towards it. This is covered in more detail in Chapter 4.

Using DAVIS 240c and the Robot Operating System (ROS) DVS package developed by

Robotics and Perception Group3 [122] to record the data, we collect several hours of spatiotem-

porally synchronized images and events. The data collection is conducted at two different places

within the same location (at the campus of the University of Michigan-Dearborn), referred to as

Scene A and Scene B. Each scene was recorded on a different day with generally clear daylight

conditions. A satellite map view depicting the data collection location including the positions of

each scene is shown in Figure 2.1. Furthermore, we demonstrate each scene using some of the

captured grayscale images in Figure 2.2.

During the data collection process, the event camera was placed on the edge of a building

while pointing downward at the street, representing an infrastructure or traffic surveillance camera

3Available at https://github.com/uzh-rpg/rpg dvs ros
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Figure 2.3: The data collection setup showing the hybrid event camera (DAVIS 240) mounted on a
tripod at the edge of a building overlooking the street and part of the parking lot. A laptop adjacent
to the camera setup is used for data recording and sensor control.

setting, as demonstrated in Figure 2.3. The camera is fixed and kept static throughout (i.e., no

ego-motion is applied to the camera). Accordingly, the events captured would be only due to an

object’s motion or due to noise. Additionally, the standard lens, shipped with the sensor, is tuned

to enable viewing angles and fields of view as shown in Figure 2.1. In this dataset, we focus on

capturing sequences of moving vehicles of different types (e.g., sedans, trucks, etc.), as shown in

Figure 2.4. Some data on pedestrians passing by is also collected (in Scene A) but is not the focus

of this work due to their relatively slow movements and their far proximity to the camera, making

the CV task of object detection challenging and intermittent. We also note that the vehicles that

passed by in the scene did so at varying speeds and accelerations, some reaching a full stop at

several instances, thus making the tasks of object detection and tracking more challenging when

only using the event data (event-based vision modality). Finally, the vehicles parked at the top

in Scene A, are not labeled due to them being static and due to their relative size, including any

vehicles moving behind them. Overall, the top 15–20% of the frame’s height can be ignored for

the desired perception task.
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Samples from the dataset showing labeled vehicles. Each image combines the APS
intensity frame with superimposed events from the DVS collected in the last ∼43 ms. The samples
include various vehicle types such as SUVs (a), trucks (b), vans (c), and pickup trucks (d) captured
in two different scenes (Scene A in the top row, Scene B in the bottom row). The presence of
multiple objects and vehicles at different speeds (e-f) illustrates the dataset’s utility for object
detection and tracking research.

2.2.2 Data Processing and Labeling

Initially, we split the recorded data into short sequences. This is done in order to minimize the

intervals and samples without objects present in the scene. Accordingly, the recordings of each

scene are split into ∼30 short sequences, maintaining intervals with objects present in the scene

while removing intervals that did not contain any.

Labeling was performed on intensity images generated by the APS, using the dLabel Annotation

Tool4. After extracting the frames from each sequence, we carefully label each image by manu-

ally annotating all the vehicle-type objects available in each image using Two-dimensional (2D)

bounding boxes and providing a unique ID. We ensure that each bounding box is labeled at sub-

pixel accuracy. This results in a labeling frequency of ∼ 24 Hz matching the framerate of the

4Available at https://dlabel.org/
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sensor’s APS. Labels are directly transferable to the event-based modality, thanks to temporally

synchronized event data matched with image timestamps. Thus, a label at a given timestamp can

be used for both modalities. This is due to both sensor types using the same lens, meaning that they

are spatially synchronized. A change that occurs at pixel (xi, yi) in one modality would correlate

to a change in pixel (xi, yi) of the other. Note that some of the sequences in Scene A contain some

pedestrians, however they were not labeled due to their relatively low number and low frequency.

Our labeled data provided both the true 2D bounding boxes for all vehicles in the scene present

in any image, as well as their corresponding object IDs, which are required for proper object

tracking evaluation. In Figure 2.4, we demonstrate some samples from our collected data with the

ground truth annotations including objects’ bounding box and unique ID for tracking.

We note the parked vehicles present in Scene A (shown in Figure 2.2) are not labeled. This is

done to focus on moving vehicles. It is advised to crop the image to exclude the top part of Scene

A’s samples while training or fine-tuning DL-based models. When using off-the-shelf pre-trained

object detectors (e.g., YOLOv3 [149]), detections resulting from these objects can be ignored as

done in Chapters 3 and 4.

2.3 Dataset Structure and Statistics

The recordings from each scene are segmented into shorter sequences for more focused analysis.

Scene A is divided into 32 sequences, comprising 9,274 images and 6,828 annotations. Scene B, on

the other hand, is segmented into 31 sequences with a total of 3,485 images and 3,063 annotations.

Consequently, our dataset provides a total of 9,891 vehicle annotations. The discrepancy between

the number of images and annotations arises from certain frames lacking any objects. The sequence

statistics for each scene, including sequence durations, number of images, events, and objects, are

summarized in Table 2.1. On average, each generated sequence is approximately 9 seconds in

length, containing around 200 images and 87,000 events. This translates to an average event rate of

10,000 events per second, underscoring the high temporal resolution characteristic of event-based
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Table 2.1: Sequence statistics for Scenes A and B in the Dataset. The table details total sequences,
duration, number of images, events, objects, and average bounding box area for each scene, pro-
viding an overview of the dataset’s structure.

Subset Total Seqs. Sequence Duration (s) # of Images # of Events # of Objects Average Bounding
Box Area (pixel2)Total Average ± SD Total Average ± SD Total Average ± SD Total Average ± SD

Scene A 32 397.3 12.42 ±9.94 9274 289.81 ±230.8 2269913 70935 ±59337 6828 213 ±147 1960.5
Scene B 31 147.7 4.76 ±3.55 3485 112.42 ±82.4 3195652 103086 ±31950 3063 99 ±84 4093.2

Total 63 545.0 8.65 ±8.39 12759 202.52 ±194.7 5465565 86755 ±50169 9891 157 ±132 3010.0

Table 2.2: Training and testing split statistics for Scene A. This table provides a comprehensive
breakdown of the sequences, durations, images, events, objects, and average bounding box areas
for the training and testing subsets in Scene A, detailing the dataset’s distribution.

Total Seqs. Seq. Duration (s) Total Images Total Events Total Objects Average Bounding
Box Area (pixel2)

Training

Average − 12.2 293.0 74601.0 216.9 1957.4
SD − 9.8 227.4 63449.8 138.1 924.3
Total 26 316.4 7326 1865024 5423.0 48934.1
% 81% 80% 79% 82% 79% 78%

Testing

Average − 13.5 314.8 64099.0 224.5 2081.1
SD − 9.6 224.1 29780.6 166.1 1109.4
Total 6 80.9 1889 384594 1347 12486.5
% 19% 20% 20% 17% 20% 20%

sensors. As a result of our labeling, the dataset provides 85 different unique object trajectories in

total.

Additionally, we provide sequence-based training and test splits. Training and test splits are

critical for the development of any DL-based solutions. We select roughly 80% of the sequences

for training and 20% for testing, for both Scene A and Scene B, while ensuring the sequences are

well balanced. This is done by carefully verifying a proper 80%-20% (4:1) distribution of the total

number of images, events, and objects, in each split. This is demonstrated in Table 2.2 for Scene

A, and in Table 2.3 for Scene B. The 80-20 split, a standard heuristic in machine learning, balances

the need for substantial training data (80%) with adequate testing data (20%), promoting robust

model training and preventing overfitting. This split aims to balance the need for comprehensive

learning with the requirement for reliable model validation and generalization to unseen data.
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Table 2.3: Training and testing split statistics for Scene B. This table offers detailed statistics on
sequences, durations, images, events, objects, and average bounding box areas for both training
and testing splits in Scene B, illustrating the dataset’s balanced division.

Total Seqs. Seq. Duration (s) Total Images Total Events Total Objects Average Bounding
Box Area (pixel2)

Training

Average − 5 109.9 103113.4 96.0 4088.3
SD − 3 76.4 32434.7 77.1 1123.9
Total 25 116 2747 2577836 2400 102208.1
% 81% 79% 79% 81% 78% 81%

Testing

Average − 5 123.0 102969.3 110.5 4113.5
SD − 4 97.5 26843.0 99.9 1011.2
Total 6 31 738 617816 663 24681.1
% 19% 21% 21% 19% 22% 19%

A detailed breakdown of each sequence for Scenes A and B is provided in Appendix A (see

Tables A.1 and A.2). These breakdowns provide detailed information on each sequence, including

the sequence name (identified by the first data timestamp in nanoseconds), duration, number of im-

ages, events, objects, and the average area of bounding boxes, along with their allocation to either

training or testing splits. This detailed information aids in understanding the dataset composition

and its distribution between training and testing.

2.4 Conclusion

In this chapter, we have presented a comprehensive dataset for event-based vision, particularly

focusing on object detection and tracking in static scenes. The dataset, featuring vehicle-type

objects captured using the DAVIS 240c sensor, fills a significant gap in the realm of event-based

vision research. It provides researchers with a tool to explore and develop methodologies in multi-

modal object detection and high-temporal-resolution tracking.

Our dataset’s primary application lies in the field of object tracking, including high-temporal-

resolution tracking, as detailed in Chapters 3 and 4. Here, linear interpolation techniques are em-

ployed to enhance method evaluation across various temporal resolutions. Additionally, as shown
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in Chapter 6, this dataset serves as a valuable resource for training DL-based object detectors utiliz-

ing both event-based and multi-modal approaches. Its design and structured annotations, including

object IDs, enable precise and reliable method evaluation, essential for advancing research in this

novel field.

However, the dataset is not without limitations. The static nature of the scenes and the absence

of ego-motion restrict its application in dynamic scenarios where event-based vision can be more

advantageous, such as in HDR and low-light environments. While some pedestrian data is in-

cluded, it is not the primary focus of this dataset, and their limited number prevents comprehensive

labeling. Future iterations of this dataset could expand to incorporate and label more pedestrian

data, enhancing its utility and applicability.

In summary, this dataset represents a step forward in the development of event-based vision

technologies. Its simplicity and focus make it a practical tool for prototyping and research, par-

ticularly in object detection and tracking applications. By providing a foundational resource, this

dataset paves the way for future advancements in the rapidly evolving field of event-based vision.
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CHAPTER 3

High Temporal Resolution Object Detection and

Tracking using Images and Events

Event-based vision is an emerging field of CV that offers unique properties, such as asynchronous

visual output, high temporal resolutions, and dependence on brightness changes, to generate data.

These properties can enable robust high-temporal-resolution object detection and tracking when

combined with frame-based vision. In this chapter, we present a hybrid, high-temporal-resolution

object detection and tracking approach that combines learned and classical methods using syn-

chronized images and event data. Off-the-shelf frame-based object detectors are used for initial

object detection and classification. Then, event masks, generated per detection, are used to enable

inter-frame tracking at varying temporal resolutions using the event data. Detections are associated

across time using a simple, low-cost association metric. Moreover, we collect and label a traffic

dataset using the hybrid sensor DAVIS 240c. This dataset is utilized for quantitative evaluation

using state-of-the-art detection and tracking metrics. We provide ground truth bounding boxes and

object IDs for each vehicle annotation. Further, we generate high-temporal-resolution ground truth

data to analyze tracking performance at different temporal rates. Our approach shows promising

results, with minimal performance deterioration at higher temporal resolutions test (48–84 Hz)

when compared with the baseline frame-based performance at 24 Hz.
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3.1 Introduction

Object tracking is a common and well-defined task in CV. It entails identifying objects in a scene

and tracking their locations across time. The implementations using conventional cameras have

been vast and well-established for quite some time [38, 41, 182]. Typically, object trackers utilize

an object detection mechanism applied to images, to detect and track present objects across se-

quential frames based on some association metrics. This results in discrete tracking outputs with

rather low temporal resolution, even when the object detection performance is ideal. Such tempo-

ral resolutions might be insufficient for high-speed robotics or for applications that require higher

tracking temporal resolutions.

Most conventional cameras (hereafter referred to as frame-based cameras) capture images at

a relatively low fixed rate of about 30 Hz (or frames per second). Low dynamic range, motion

blur, high power consumption, as well as low update rates, are among the main limitations of

frame-based cameras.

On the other hand, event-based vision, which is an emerging field of CV, proposes a novel

type of bio-inspired sensing modality that offers different physical properties that can be utilized

for common CV tasks, including object detection and tracking. These sensors, commonly known

as event cameras in the literature, capture per-pixel brightness changes at a very high temporal

resolution at the level of microseconds. These brightness changes are referred to as events and

are only generated whenever the brightness change of any given pixel exceeds a set threshold. An

initial version of this sensor, known as the Dynamic Vision Sensor (DVS), was first introduced in

2008 by Lichtsteiner et al. [101].

In general, an event can be defined as:

e = {x, y, t, p}, (3.1)

where x and y denote the 2D-pixel coordinates of the event, whereas t is the timestamp in mi-

croseconds of when the event was captured, and p specifies the polarity of the event, which can be

30



either positive or negative p ∈ {+1,−1}, indicating a brightness increase or decrease, respectively.

Unlike frame-based cameras, event cameras generate data asynchronously only at the pixel(s)

that undergo a brightness change. These brightness changes (events), other than noise, typically

imply motion or highlight changes in the scene. Moreover, event cameras offer numerous advan-

tages compared to standard cameras, including a high dynamic range (HDR) of typically >120

dB vs. ∼60 dB for standard cameras, no motion blur, low latency (microseconds), high temporal

resolution (1 µs per event), and low power consumption [21]. A more in-depth literature survey of

this technology can be found in [55].

When it comes to object tracking, the limitations of frame-based cameras can affect perfor-

mance. Considering their low capture rates, a rapid change in the position or motion of an object

being tracked, for example, might not be detected if it occurs at a higher rate than the camera’s

capture rate. The effects of this might cause undesired outcomes depending on the intended ap-

plication, as tracking ends up yielding a low temporal resolution output with insufficient data for

the inference of other useful characteristics, such as object kinematics (velocity and acceleration

rates), or the ability to generate continuous tracking results without the use of data extrapolation

techniques.

As for the other frame-based limitations, object tracking can suffer intermittent object detection

performance, where objects of interest are not always successfully detected in each frame. This

causes some false-negative readings (missed detections) that may result in erratic and inconsistent

tracking performance, especially if other means of averaging or filtering are not applied. Theo-

retically, the maximum achievable tracking rate should be bounded by the camera’s synchronous

capture rate, generated at discrete times, given an ideal object detection and tracking performance.

Alternatively, a high-framerate input source can be used to yield higher tracking resolutions. How-

ever, frame-based object detection is computationally expensive and can be very significant in this

case, as inference times per frame are usually in the order of several milliseconds, at best using

deep learning-based object detectors [18]. This can effectively limit real-time performance, which

might be needed given the application. Moreover, consecutive frames might have minimal changes
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Figure 3.1: A conceptual diagram of our high-temporal-resolution object detection and tracking
approach using images and event data. The figure shows three sequential grayscale image frames
across time, with events (red and blue dots) overlayed on top, representing their sparse and asyn-
chronous nature. An event mask is extracted whenever an object is detected in a given image,
which is then used for inter-frame detection and tracking using events until a new image is cap-
tured and the process is repeated.

between them, creating redundant data, yet with the same computational expense per frame. This

is in addition to the fact that high-framerate cameras are expensive, require more memory, and

consume more power [142].

Nonetheless, event cameras suffer from limitations as well, one of which is the lack of intensity

information that regular cameras provide, which causes object classification to be challenging.

Although it was shown that intensity images can be reconstructed from events [147], noise and

other issues can cause artifacts in the reconstruction. This is evident in scenes with limited changes

generated by a camera without any ego-motion applied, in which a significant proportion of the

events generated are due to noise. Ego-motion is defined as the 3D motion of a camera relative

to the environment [22]. Ego-motion applied on an event camera acts as a trigger that generates

events at the edges of the objects within the camera’s field of view due to the brightness changes

prominent around edge-like features. Accordingly, to achieve more robust detection and tracking,

a combined approach would be advantageous.

In this chapter, our main contributions can be described as follows:

1. We present and evaluate a novel hybrid approach to utilize some of the advantages of both
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types of sensing modalities (frame-based and event-based vision) to produce higher tracking

temporal resolutions. Frame-based vision is used for detecting and classifying objects in a

scene (learned approach), whereas event-based vision’s asynchronous and high temporal res-

olution is used for inter-frame tracking by using event masks extracted from the event stream

guided by the frame-based detection position (classical approach). Euclidean distance-based

object association is used, as the data generated is assumed to be continuous whenever an

object is moving, to evaluate the feasibility of higher temporal resolution tracking. Our

approach is demonstrated in Figure 3.1.

2. We collect and manually label a multimodal dataset (detailed in Chapter 2) comprising sev-

eral hours of synchronized image and event data using DAVIS 240c [21]. Our labeled dataset

provides both the true 2D bounding boxes for all vehicles in the scene for any image, as well

as their corresponding object IDs, which are used for object tracking evaluation1.

3. To generate matching high-temporal-resolution tracking data for our evaluations, we tem-

porally interpolate our ground truth data multiple times to yield true rates beyond the base

framerate of the APS, which is 24 Hz.

4. We assess our approach’s performance using state-of-the-art object detection and tracking

metrics, at temporal resolutions of 24, 48, 96, 192, and 384 Hz.

3.2 Related Work

3.2.1 Frame-Based Object Tracking

Frame-based multi-object tracking has been well-established in the literature for quite some time.

Most works currently utilize direct methods, specifically tracking-by-detection, using optimized

object detectors, while focusing on the data association aspect of object tracking [2, 135, 178, 180,

188].
1Dataset is available at http://sar-lab.net/event-based-vehicle-detection-and-tracking-dataset/
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Recent state-of-the-art trackers, such as DeepSORT [178] and SOTMOT [188], propose differ-

ent association methods that are performed in an online manner constrained by a trade-off between

accuracy and latency. DeepSORT [178], for instance, incorporates motion information based on a

recursive Kalman filter [83] and appearance information generated by a pre-trained Convolutional

Neural Network (CNN), using Mahalanobis distance, to perform data association on a frame-by-

frame basis. Frame-based detections are generated using a fine-tuned FasterRCNN [152]. Mean-

while, SOTMOT [188] employs a one-shot framework based on a modified DLA [183] backbone

with multiple parallel branches to perform object detection and data association simultaneously.

Global methods, also known as batch methods, exist as well [135, 180]. However, they are

not considered in this chapter due to their limited utility in robotics operating in real-time, as they

function in an offline manner. Thus, they require full knowledge of all present and future data for

object detection and tracking. Further, it is common for global trackers (and some online ones) to

use linear interpolation to cover the gaps in the trajectories of the objects being tracked. On the

other hand, some trackers (such as Deep SORT [178]) incorporate motion information to improve

data association and mitigate missing detections, using predictions generated by a Kalman filter

[83]. Finally, most of these implementations are usually evaluated and compared using common

frame-based multi-object tracking benchmarks, such as MOT20 [39], which contains only image

frames (no event data).

In our work, we use Euclidean distance [36] as the data association metric. Euclidean distance

can be defined as the length of a line connecting any two points. This metric is sufficient for our

work, given the modest complexity of the dataset used and the expected continuous nature of the

object detection resulting from the added use of event data. Furthermore, in our work, the frame-

based-only approach to object tracking is only used as a baseline (at 24 frames per second) to

compare with the tracking results of the higher temporal resolutions (48 Hz and above) that use

both modalities. Thus, it is irrelevant to include other frame-based approaches in our evaluation.

Finally, to constrain the scope of this work, we do not investigate the application of interpolation

techniques to fill any gaps in the generated tracking trajectories.
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3.2.2 Event-Based Object Tracking

In contrast with frame-based object tracking, event-based object tracking is still in its early stages.

In the literature, event-based feature tracking has been the focus of the research community and

significant progress has been made. It entails using event data to extract features of different types

(e.g., corners) and track them through time [182, 165, 58]. As for event-based object detection and

tracking, most works have been application-specific, with few similarities overall [104, 77, 121,

119, 144, 31, 94, 66, 185, 187, 11]. We categorize these works as either event-based or combined

(i.e., using images and events) approaches.

A common approach to event-based object tracking is using clustering methods [77, 121, 66,

11]. Clustering is an intuitive approach for event-based object tracking whenever there is no ego

motion applied to the camera, thus assuming that events are mainly generated around the moving

objects. Therefore, these clusters can track these objects with decent performance. Nevertheless,

clustering is less robust against occlusion and can lead to more object ID switching between the

objects being tracked.

As for the other, non-clustering, event-based tracking methods, Mitrokhin et al. [119] proposed

a motion compensation model that enables the detection of objects in a scene by finding incon-

sistencies in the resulting model and then tracking them using a Kalman filter. They tested their

approach on a dataset collected on a moving platform comprising several sequences of varying

lighting conditions. The objects were labeled at the time instances of the captured RGB frames.

Finally, they evaluated their tracking performance based on a success rate of the percentage of

objects detected with at least 50% overlap.

Chen et al. [31] proposed an asynchronous tracking-by-detection method for object tracking

based on bounding boxes which involved combining events and converting them into frames. Af-

terward, they used the generated frames with their proposed tracking method and directly compared

them with other frame-based approaches. The number of frames generated is dynamic, based on

the sum of events captured due to the motion of the objects in the scene. Objects are detected

using a contour-based detector and then tracked using an Intersection over Union (IoU) measure
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for data association. Finally, they used the same dataset provided in [119] along with Average

Precision (AP) and average robustness (AR) metrics for evaluation.

Ramesh et al. [144, 143] presented an object tracking method using a local sliding window

technique for reliable tracking. Objects are initially detected using a global sliding window to

find Region of Interest (ROI) which is only used during the initialization of an object or when the

tracking fails to enable real-time performance. Finally, overlap success and center location error

metrics were used for quantitative evaluation on a short indoor data sequence [123].

As for the combined approaches using events and frames, the work by Liu et al. [104] proposed

to utilize the event stream to generate ROIs using cluster-based methods which are then classified

by a CNN as either foreground or background. Finally, a particle filter is used to estimate the

target’s location using the extracted ROIs. This work was mainly meant for detecting and tracking

a single object (representing a prey robot); therefore, positional accuracy was used as the evaluation

metric.

Zhang et al. [185] similarly presented a multi-modal approach to achieve single object track-

ing. They evaluated success and precision rates on a large-scale dataset annotated at different

frequencies, for both vision domains, using a motion capture system. Meanwhile, Zhao et al.

[187] proposed an object detection method based on color which then tracks a single object using

a kernel correlation filter applied to the event data and estimates the distance to the object, while

mean Average Precision (mAP) is used to assess the detection performance.

Overall, we noticed that most works in the literature focused on object tracking from a detection

perspective, meaning that they only estimated the overall detection and overlap success rates for

all objects available. None seems to have evaluated data association performance, which is the

common practice in the frame-based domain. This can be attributed to the scarcity of event-based

datasets as well as the limitations of the publicly available ones, as most authors emphasized single

object tracking and thus did not include ground truth object ID data per annotation. Object IDs are

required by the most popular object tracking metrics [38, 39, 111] for evaluating data association

performance. In contrast, we provide a fully labeled traffic dataset with bounding boxes and object
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IDs for objects of vehicle type. Additionally, to the best of our knowledge, none of the works

have explored the use of event data for higher temporal resolution object tracking than the base

framerate of a given frame-based camera. Meanwhile, we achieve this here by generating several

higher-temporal resolution ground truth data for the acquired sequences, at various rates. These

labeled trajectories are then utilized in the evaluation of different approaches for event-based inter-

frame frame tracking, using well-defined object-tracking metrics [38, 39, 111]. Accordingly, we

assess the feasibility of high-temporal-resolution tracking using a hybrid approach.

3.3 Methodology

In this section, we break down the design of our hybrid approach.

3.3.1 Frame-Based Object Detection

Given temporally synchronized streams of images (frames) and event data, we start with the image

stream. A vital first step for tracking objects across time is to detect them when they first appear

and in every subsequent frame. As mentioned before, classification using event data alone is

challenging; therefore, our approach uses image frames to detect and classify objects wherever

they appear in the scene, then tracks them between frames using event data.

To achieve reliable object detection, we utilize two well-known, pre-trained, deep-learning-

based object detectors, namely, YOLOv3 [149] and SSD [108], to perform frame-based object

detection. These models are used to detect objects in every new image frame, as shown in Figure

3.2, initializing the objects to be tracked and feeding into the Euclidean-based object tracker, de-

scribed in Section 3.3.3. The frame-based object detectors can be replaced by other frame-based

detectors as needed based on the desired minimum ac-curacy and maximum latency requirements.

In our work, we use a detection confidence threshold of 50% and a non-maximum suppression

threshold of 50% as well for both object detectors used. This process is repeated whenever we

read a new image frame.
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Figure 3.2: Object detection output on sample images for one of the scenes in our dataset. The
object detector used in this figure is YOLOv3 [149]. In this scene, static objects, such as the parked
vehicles in the top half of the scene, are disregarded.

3.3.2 Event-Based Object Detection

3.3.2.1 Combining Image and Event Streams Using Window Frames

To make use of an asynchronous event stream, an event-representation method is required. In

our work, we accumulate events for a certain interval and incorporate them into a window frame,

along with any available image frames. For our application of high-temporal-resolution tracking,

the desired tracking rate k must be initially set. k defines the tracking rate our system would utilize

to accumulate and parse event data. For example, given that the frames are captured at a rate of 24

Hz, a k value of 48 Hz would indicate that a window frame is collected every 21 ms. The window

frame size refers to the duration of the time that the system will read and accumulate synchronized

images and event data per window frame. As stated earlier, DAVIS 240c has a frame-based capture

rate of 24 Hz; therefore, a new image frame is read around every 42 ms. Thus, using a k value of

48 Hz, every other window frame will contain an image frame (captured by the APS) as well as all

the events generated throughout that time (captured by the DVS). This is demonstrated in Figure

3.3. In this work, we experiment with multiple k values, including 24, 48, 96, 192, and 384 Hz,

which correspond to window frame sizes of around 42, 21, 10, 5, and 3 ms, respectively.

Accordingly, whenever a window frame containing an image is read, frame-based object detec-

tors output a list of 2D bounding boxes with corresponding object classes for each, as described in

Section 3.3.1. Whenever these detections are fed into the object tracker, we generate an event mask
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per object detected. These event masks are used to accurately detect and localize the identified ob-

jects, using the event data, in the subsequent window frames containing events only (assuming that

k is higher than the APS base frame rate). Using the prior example (k = 48 Hz), the first window

frame would contain an image as well as events, whereas the second would only contain events.

Similarly, the third window frame would contain both, while the fourth would contain only events,

and so on, as shown in Figure 3.3.

Furthermore, the window frame can either take discrete time steps or use a moving window

instead. A discrete step would mean that the window frame would move 1/k ms forward for every

new frame, as shown in Figure 3.3. Meanwhile, a moving window would incorporate a longer

duration of event history for every window frame; thus, some events would be included in multiple

consecutive ones. For example, when setting the event-history duration as 50 ms and the tracking

rate as 48 Hz, the window frame would read the last 50 ms of event data at any time instant ti

(instead of just 21 ms in the case of discrete time steps), yet it would still move 21 ms forward

when loading a new window frame. In general, the window frame would include all of the events

available within the time interval {t ∈ R+ | ti − 50 ms ≤ t ≤ ti} at a given time instant ti. In-

corporating a longer temporal history of events can produce higher tracking accuracy, especially at

greater tracking rates or resolutions, where larger numbers of event data are accumulated compared

to when using a discrete-step window frame. The effects of both parameters, as well as temporally

weighting the events, are evaluated later on in this chapter.

3.3.2.2 Event Mask Extraction

As for the event masks, they can be either event-based or edge-based. Event-based masks are

produced by extracting all the accumulated events (available in the most recent window frame) that

are located within the bounding box of each object detected in the image, as shown in Figure 3.4.

Due to the sparse nature of event data, the event-based masks are stored as a sparse matrix of +1

and −1 integers, representing the mask’s positive and negative events, respectively. Additionally,

only the most recent event per pixel is used in the event-based mask’s sparse matrix. Moreover, if
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Figure 3.3: Visualization of a synchronized stream of image frames and event data over time. In
this example, the image frames are captured at around every 42 ms (at a rate of 24 Hz), whereas
the window frame size is set to a temporal resolution of 21 ms (tracking rate of 48 Hz). A window
frame encapsulates any image frames and event data available in that specified time frame. A total
of 8 window frames are demonstrated in this figure as indicated by their number.

a discrete-step window frame is used, the event mask appends the events found in the next window

frame after the object is tracked to improve the tracking robustness in subsequent window frames

containing events only. However, this approach assumes that an object is correctly tracked using

the event data. Otherwise, if a moving window with a significant amount of event history is used,

the event mask is only generated when detecting an object in a given image frame and used without

alteration in the subsequent window frames of event data.

On the other hand, edge-based masks are generated using the image’s bounding box crop, gener-

ated by the frame-based object detector. Given that events are typically generated around the edges

of an object whenever there is motion, an edge-based mask can be useful for event-based tracking.

To generate an event-based mask, the bounding box crop is initially converted to grayscale (if an

RGB image is used), then it is equalized based on its histogram to mitigate low-contrast crops that

are either too dark or bright to be able to generate accurate edges. Afterward, an edge-based mask

is generated using the Canny Edge Detection algorithm (developed by Canny, J. [25]) which is
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Figure 3.4: The figure demonstrates when an event mask is generated by accumulating the events
located within the bounding box, as shown in the top right corner. In this frame, a white SUV is
detected, as highlighted by the yellow bounding box (using the frame-based object detector SSD
[108]), with 99% confidence. The tracking rate used here is 48 Hz, meaning that the window
frame’s size is 21 ms and only the events captured during this interval are displayed.

then thresholded to create a binary version of zeros and ones (representing the object’s contour).

Finally, it is stored in a sparse matrix that represents the event mask of the object. These steps are

demonstrated in Figure 3.5. Note that when an edge-based mask is used, the event polarities are

no longer utilized. Instead, only the presence of an event at a given pixel is considered.

The motivation behind the edge-based approach is that events are mainly generated at the edges

of the objects, as edges represent a sharp intensity change in a given local patch of an image. This

way, an edge map would be more robust with respect to tracking an object moving in any direction,

whereas, for an event-based mask, events are generated in the direction of motion; therefore, if an

object suddenly moves perpendicularly to its prior direction of motion (e.g., vertically instead of

horizontally), tracking might momentarily fail until sufficient events are captured and accumulated

due to the vertical motion. We can notice this effect on the event-based mask in Figure 3.5(b). The

edges around the top and the bottom of the vehicle have almost no events in contrast to the edge-
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(a) Actual image crop (b) Event-based mask (c) Histogram-equalized crop (d) Edge-based mask

Figure 3.5: Visualization of (a) the actual grayscale image crop based on the bounding box of
the detected object; (b) an event-based mask created from the accumulated events in the current
window frame used in event-based tracking; (c) a histogram-equalized version of the crop; and (d)
the generated edge-based mask used for event-based tracking as well.

based mask in Figure 3.5(d). Nevertheless, the edges of the background are also incorporated into

the mask, which might affect the tracking’s accuracy and precision. Additionally, the edge-based

mask can be affected by poor image conditions, specifically when there is over- or underexposure

in the scene.

3.3.2.3 Inter-Frame Object Detection Using Event Data

Once the initial window frame containing an image frame is read, the next window frame is loaded.

Assuming a k value of 48 Hz, the second window frame would contain event data only (as demon-

strated earlier in Figure 3.3). Therefore, the next step would be to perform event-based object

detection and tracking, using the extracted event mask of each object detected in the prior window

frame’s image. Similar to [144], a search region is used to track an object locally using the avail-

able events. Based on the set parameters, the event-based inter-frame object detection and tracking

is performed as follows:

1. Create a search region positioned around the center of each of the objects being currently

tracked (detected in the latest image). The search region is set 20% larger than the frame-

based detection’s height and width. Thus, around a 44% larger bounding box size is used

in our case (represented by the green bounding boxes in Figure 3.6). This value can be set

according to the nature of the objects (expected velocities, etc.). Larger search regions can

be used, however, at higher computational costs. Moreover, we add padding to the search

region when an object is at the edge of the frame and is exiting the scene, to return a more
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accurate object position.

2. Extract all the events (available in the current window frame) located within the search re-

gion.

3. For every possible event mask and search region intersection combination:

(a) Using a sliding window mechanism, create a sparse matrix of the subset of the search

region. These events are encoded either spatially or spatiotemporally.

(b) Perform a cross-correlation between the mask and every search region’s subset, as

demonstrated in Figure 3.7. This process is mainly a two-dimensional sliding-window

matrix multiplication between the event mask and each subset of the search region

(starting at the top left corner of the search region). The sum of all the cells, resulting

from every matrix multiplication combination, is stored in the corresponding entry of

the cost matrix C. The cost matrix C is of size m rows by n columns, which are defined

as:

m = Hsr −Hem, (3.2)

n = Wsr −Wem, (3.3)

where Hsr and Wsr are the search region’s height and width, while Hem and Wem are

the event mask’s height and width, respectively.

4. Based on the highest Ci,j entry value, use the best correlating box as the object’s inter-

frame position. Figure 3.7 shows the best tracking result of this maximum correlation step

highlighted in the cyan bounding box, which is the best fit for event-based tracking for

the current window frame. Similarly, this is demonstrated in Figure 3.6 by the light-blue

bounding boxes. A minimum threshold is typically applied so that the system will only

update each object’s position if the Ci,j value is above a set threshold. This is typically done

to avoid updating the object’s position based on noise, thus limiting the number of false

positives.
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(a) Event-based mask with a discrete-step 

moving window. 

(b) Event-based mask with a temporally-

weighted moving window. 

(c) Edge-based mask with a temporally-

weighted moving window. 

 1 

Figure 3.6: Inter-frame tracking output at 48 Hz in three different modes: (a) event-based mask
with a discrete-step moving window with no temporal weighting; (b) event-based mask with tem-
porally weighted events in a 50 ms moving window frame; (c) edge-based mask with temporally
weighted events in a 50 ms moving window frame. The inter-frame object position is highlighted
by the light-blue bounding box (cyan dot represents its centroid), whereas the yellow bounding
box and dot represent the object’s position and centroid in the latest image frame, respectively.

5. If successfully detected, update the object’s position using the object tracker described in

Section 3.3.3. If a discrete-step window frame is used, update the object’s event mask by

aggregating it with the new event data available within the updated position, assuming the

object is correctly detected and that the new events will line up correctly with the previous

ones. This step typically improves the tracking robustness, particularly when tracking at

very high rates (e.g., >200 Hz), at which fewer events are captured. Otherwise, if a moving

window frame is used, the event mask would only update when a new image frame is read.

6. Finally, load the next window frame and repeat the same process according to whether it

contains an image or just event data.

Note that when creating the search region (step 3a) to find the object’s inter-frame position, we

encode the events either spatially or both spatially and temporally. Spatial encoding refers to incor-

porating the events’ x and y coordinates in the tracking process (which is the base case throughout

the chapter), whereas temporal encoding incorporates their capture time t as well. Temporal encod-
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Figure 3.7: Demonstration of the sparse matrix multiplication between the event mask and a sliding
section of the search region. This process is used to find the highest correlating position of the
object by summing the result of each multiplication, similar to a typical image convolution using a
kernel. Based on the results of the sliding window mechanism, the new object’s location is set by
selecting the highest correlating position as highlighted by the cyan rectangle in this example.

ing is accomplished by weighting the events either equally or temporally. Equal weighting gives

all events the same significance, meaning that all events have the same impact on the estimated po-

sition of the object. Meanwhile, temporal weighting gives more weight to the most recent events

and less weight to the older events. This is visualized in figure 3.8.

To weight the events temporally, we use the following equation for each event:

wei =
pei(tei − twj0)

∆twj

(3.4)

where wei is the given weight of the event ei at a specified pixel position; pei and tei are the

polarity and the timestamp of the event ei, respectively; while twj0 and ∆twj
are the window

frame j’s start time and size (in the same timestamp unit). As described earlier in this section,

the window frame size would be equal to either 1/k ms, if a discrete-step window is used, or a
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Figure 3.8: Demonstration of an image with temporally weighted events (visualized by the trans-
parency effect) overlayed on top. Faded blue and red dots resemble older positive and negative
events, respectively. This scene represents the same time instance as the one shown in Figure 3.4
at a tracking rate of 48 Hz, though with an extended 50 ms of event data history compared to 21
ms.

specified duration (longer than 1/k), if a moving window is used with an extended event history.

The resulting weights we are appended to the search region’s sparse matrix (using the most recent

event available at every pixel coordinate) and then used in finding the best object position estimate.

In contrast, when the events are weighted equally, the weight wei of each event is simply set equal

to their defined polarities pei . Moreover, the polarity pei of any event is set as 1 when using an

edge-based event mask to track the objects.

3.3.3 Euclidean-Based Object Tracker

As for the object tracker, we use a simple centroid-based (detections’ center x and y coordinates)

object tracking algorithm using Euclidean distance [153] as the object association cost across con-

secutive window frames. Euclidean distance is a metric that is used to find the optimal assignments
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to be able to track objects across subsequent frames at any given point with a low computational

cost. Moreover, it is appropriate for our application given the continuous nature of the event data

and the presumed object detection data, as the centroid of any moving object should be the one

closest to its prior center, given that it was successfully detected. The centroid-based tracking

algorithm used is based on the work of Adrian Rosebrock [153].

Even though the inter-frame event-based detection (described in Section 3.3.2) fundamentally

tracks the objects and estimates their new positions, the detection results are fed into the object

tracker to confirm the object assignments. The object tracker uses these detections to either: regis-

ter new objects with a unique ID, update the positions of the current ones being tracked, or possibly

remove the objects that were not successfully matched for n subsequent window frames. Overall,

more sophisticated association metrics can be used; however, this work mainly focuses on pre-

senting a novel method to leverage the event data to enable higher-temporal resolution tracking

and analyze its feasibility. Thus, the object tracker can be replaced by other tracking-by-detection

methods in future studies as desired.

Finally, we summarize our overall object detection and tracking approach in Figure 3.9.

3.4 Experiment Setup

In this section, we describe the dataset that is utilized in the evaluation of our approach, then we

define the object detection and tracking evaluation metrics used. Finally, we overview the different

tracking configurations applied in our experiment.

3.4.1 Dataset Description

For evaluating our hybrid object detection and tracking method, we utilize the MEVDT dataset

previously detailed in Chapter 2. This dataset is captured using the DAVIS 240c sensor [21], a

sensor combines a frame-based APS and an event-based DVS, using the same pixel array with a

resolution of 240× 180 pixels. The APS captures monochrome images at approximately 24 FPS,
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Figure 3.9: Summary flowchart of the overall hybrid object detection and tracking process. The
branch on the right would repeat for every consecutive window frame that only contains events
given prior frame-based object detections until a new image is read. The window frame size is set
before this process starts.

while the DVS captures asynchronous events with a temporal resolution of 1 µs.

We conduct our experiments using data collected from two different scenes, referred to as scenes

A and B, as described in Chapter 2. These scenes were selected for their varying proximity of

objects to the event camera, affecting the size of objects relative to the frame. The setup involved

positioning the static event camera to simulate an infrastructure camera setting, capturing mainly
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moving vehicles. Pedestrian data, although collected, are not included in this study due to their

sparsity and the challenges in detection caused by their slow movements and distance from the

camera.

For quantitative evaluation, we utilize the manually labeled APS-generated intensity images

with 2D bounding boxes and object IDs, essential for tracking performance assessment. The

dataset comprises approximately 30 sequences per scene, with scene A containing 32 sequences

(9274 images, 6828 annotations) and scene B having 31 sequences (3485 images, 3063 annota-

tions), totaling 9891 vehicle annotations.

In our high-temporal-resolution tracking experiments, we require tracking ground truth data at

various temporal resolutions beyond the base framerate of 24 Hz provided by the APS. To achieve

this, we employ a label interpolation method based on a constant acceleration model. Starting with

the annotations at 24 Hz, we linearly interpolate the positions of Bounding Box (BB)s between

consecutive frames, maintaining the same object IDs. This process generates ground truth data

at higher temporal resolutions of 48 Hz, 96 Hz, 192 Hz, and 384 Hz. The interpolation assumes

a linear movement (i.e., a constant acceleration model) between consecutive frames, offering an

approximation of object trajectories at these higher temporal resolutions. This approach is partic-

ularly important for our experiments, as directly labeling events for tracking at such high temporal

resolutions is an extremely challenging task.

For this evaluation, we utilize all sequences from both Scene A and Scene B of the dataset. This

comprehensive usage is possible because our approach does not involve training or fine-tuning

any DL models. Instead, we apply off-the-shelf pre-trained object detectors, supplemented by an

image-processing event-based detection method, to assess the effectiveness of our hybrid object

detection and tracking approach across the entire dataset. This allows us to thoroughly evaluate

our method’s performance under various scenarios and conditions present in the dataset, providing

a robust assessment of its capabilities in real-world applications.
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3.4.2 Evaluation Metrics

Many evaluation metrics are available to assess detection and tracking performance. In our experi-

ment, we used the novel Higher Order Tracking Accuracy (HOTA) metric, developed by Luiten et

al. [111], which is used to evaluate multi-object tracking performance. HOTA is particularly useful

in assessing the performance of object trackers, as it analyzes the accuracy of the detection, asso-

ciation, and localization of the objects individually and combines them within the same metric. To

calculate the final HOTA score, the IoU of localization, detection, and association are calculated.

IoU is simply defined as the ratio of the overlap of two detections over their total covered area.

The two detections used in the IoU calculation are typically the predicted and the true ground truth

detections. As defined by the authors, the foundation of the overall HOTA metric can be described

as follows:

• Localization Accuracy (LocA) is the average of all localization IoUs between all possible

pairs of matching predicted and true detections of the dataset. Localization refers to the

spatial alignment of the predictions compared to the ground truth detections.

• Detection Accuracy (DetA), similar to LocA, measures the alignment between the set of all

predicted and ground truth detections. However, it incorporates a defined IoU threshold α

to identify which predicted and true detections intersect to find the matching pairs, known

as True Positives (TPs). False Positives (FPs) are the predicted detections that do not match,

while False Negatives (FNs) are the ground truth detections that do not match. Accordingly,

DetA is calculated by dividing the total count of TP over the summation of the count of TPs,

FPs, and FNs.

• Association Accuracy (AssA) measures how well a tracker associates detections over time

using all object IDs, i.e., assesses the whole track of each ground truth object ID using

IoUs. For each track, the IoU is calculated by dividing the number of TP matches between

the two tracks, divided by the summation of TP, FN, and FP matches between them as well.

Ultimately, the AssA is calculated by finding the association IoU over all matching predicted
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and ground truth detections.

• The final HOTA value is then generated, using a range of IoU threshold α values to provide

one compact value that incorporates the three different components. This value is used to

assess the overall object-tracking performance for a specified configuration.

Furthermore, we note that HOTA(0), LocA(0), and HOTA-LocA(0) refer to the same metrics

discussed above, though at the lowest α threshold value; thus, localization accuracy does not affect

the results. Additionally, DetRe and DetPr refer to the detection recall and precision performance,

respectively, whereas AssRe and AssPr refer to the association recall and precision. The recall and

precision values can be used to calculate the accuracy values (for both detection and association).

Additional details about these metrics can be found in [111].

In addition to the HOTA metrics, we used a subset of the CLEAR MOT [39, 14] metrics,

including:

• Mostly Tracked (MT), which is the number of ground truth trajectories that are covered by

tracker output for more than 80% of their length;

• Mostly Lost (ML), which is the number of ground truth trajectories that are covered by

tracker output for less than 20% of their length;

• Partially tracked (PT), which is the total number of unique ground truth trajectories minus

the summation of MT and ML;

• ID-Switches (IDSW), which is the number of ID switches or the number of times a tracked

trajectory changed its ground truth one;

• Fragmentations (FRAG), which is the number of times the ground truth trajectory was inter-

rupted or untracked, before resuming later.

According to the authors of these metrics, ID switches are irrelevant when measuring MT, ML, and

PT. Therefore, they mostly focus on detection performance for the overall trajectory of each ground

51



truth object, without considering association accuracy. This can provide some insight into how well

an inter-frame event-based object detection system performs. Finally, we note that CLEAR MOT

[14] additionally provides relative MT, ML, and PT metrics (sometimes referred to as MTR, MLR,

PTR). However, we utilize the absolute variant due to the limited number of unique trajectories in

our evaluation dataset (85 in total).

3.4.3 Experimental Parameters and Configurations

To compare and contrast the results of different detection and tracking settings, we evaluated our

approach using two frame-based object detectors with three different tracking modes (of varying

parameters) for event-based inter-frame object detection and tracking.

The deep-learning, frame-based object detectors used in our evaluation are YOLOv3 [149] and

SSD [108]. Both of these pre-trained models provide real-time performance with great accuracy.

SSD is more accurate but has higher latency when compared to YOLOv3. Both object detectors

are used as is, with the original weights, and without any further fine-tuning or training. Moreover,

as mentioned earlier, we set the confidence and the non-maximal suppression thresholds to 50%.

Lastly, we only used the ‘vehicle’ object class, including its different forms (car, truck, bus, etc.),

while filtering out the other class types in our evaluation.

As for the inter-frame tracking, applied at higher temporal resolutions above the base rate (24

Hz), we used three modes of different inter-frame tracking parameter combinations:

1. Event-based mask with discrete-step moving window frame with no temporal weighting;

2. Event-based mask with 50 ms moving window frame and temporally weighted events;

3. Edge-based mask with 50 ms moving window frame and temporally weighted events.

These settings were based on the design details presented in Section 3.3 and are shown in Figure

3.6(a)–(c).

To summarize, we evaluate these three different modes with both frame-based object detectors

and at the temporal resolutions of 48, 96, 192, and 384 Hz. As for the 24 Hz rate, we only
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Table 3.1: Hybrid object detection and tracking results using HOTA metrics (in %) at different
temporal resolutions, using the frame-based object detector YOLOv3 [149]. The results are shown
for the three different event-based, inter-frame, tracking modes described in Section 3.3. Our
approaches represented by modes 2 and 3 show significant promise regarding the ability to leverage
event data to generate accurate high-temporal-resolution tracking results.

Object
Detector

Tracking
Rate

Tracking
Mode HOTA DetA AssA DetRe DetPr AssRe AssPr LocA RHOTA HOTA(0) LocA(0) HOTA-

LocA(0)

YOLOv3

24 Hz ∗ 56.6 53.0 60.8 54.6 83.6 62.9 87.0 84.2 57.5 68.1 82.0 55.9

48 Hz
1 53.8 51.2 56.8 52.7 83.5 58.8 86.7 84.1 54.6 65.0 81.9 53.2
2 55.4 52.9 58.4 54.5 83.6 60.4 86.9 84.2 56.4 66.9 82.0 54.9
3 54.7 52.3 57.5 53.8 83.7 59.5 86.4 84.3 55.6 66.0 82.1 54.2

96 Hz
1 49.6 47.1 52.4 49.0 81.6 53.8 86.4 83.8 50.6 60.6 80.9 49.1
2 53.6 51.4 56.2 53.5 82.1 57.7 86.9 84.1 54.8 65.3 81.3 53.1
3 52.6 50.5 55.1 52.4 82.2 56.6 86.3 84.2 53.7 64.1 81.4 52.2

192 Hz
1 44.4 41.6 47.6 43.3 80.9 48.9 85.8 83.8 45.4 54.1 80.9 43.7
2 53.2 50.5 56.2 52.9 81.2 57.7 86.7 84.1 54.5 64.8 81.2 52.6
3 52.0 49.4 54.9 51.6 81.4 56.4 86.1 84.2 53.2 63.3 81.4 51.5

384 Hz
1 36.4 33.1 40.2 34.2 80.9 41.1 85.3 83.8 37.0 44.0 81.0 35.6
2 52.5 50.1 55.3 52.6 80.8 56.7 87.0 84.1 53.9 63.8 81.3 51.9
3 51.3 48.9 54.1 51.2 80.9 55.5 86.2 84.2 52.6 62.3 81.5 50.8

* Image-only tracking (excludes event data). Best results per tracking rate and metric are highlighted in bold.

used the frame-based object detectors, given that this rate matches the base capture rate of the

APS, the results of which were used to set a baseline for the other tracking results and to analyze

the feasibility and consistency of incorporating the event data as well to generate high-temporal-

resolution tracking results.

Additionally, we formatted our ground truth data for the different temporal resolutions and

the resulting tracker outputs in the MOTChallenge [38] format, then generated the results using

TrackEval [82].

3.5 Results and Discussion

Based on the detection and tracking settings specified in Section 3.4, we obtained the results pre-

sented in Tables 3.1 and 3.2, using the frame-based object detectors YOLOv3 and SSD, respec-

tively. Moreover, AssA values are plotted against DetA for each temporal resolution (with the

resulting HOTA values) in Figure 3.10.

Starting with the baseline frame-based tracking results, at the base image capture rate of 24 Hz,

we obtained final HOTA scores of 56.6% and 69% for YOLOv3 and SSD, respectively. This was
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Table 3.2: Hybrid object detection and tracking results using HOTA metrics (in %) at different
temporal resolutions, using the frame-based object detector SSD [108]. The results are shown
for the three different event-based, inter-frame, tracking modes described in Section 3.3. Our
approaches represented by Modes 2 and 3 show significant promise regarding the ability to leverage
event data to generate accurate high-temporal-resolution tracking results.

Object
Detector

Tracking
Rate

Tracking
Mode HOTA DetA AssA DetRe DetPr AssRe AssPr LocA RHOTA HOTA(0) LocA(0) HOTA-

LocA(0)

SSD

24 Hz ∗ 69.0 67.4 70.9 69.7 89.2 73.4 90.1 89.1 70.2 77.2 87.9 67.9

48 Hz
1 66.6 64.9 68.5 67.0 88.9 70.1 91.1 88.9 67.8 74.9 87.7 65.6
2 69.0 67.2 71.0 69.4 89.1 72.6 91.3 89.0 70.2 77.3 87.8 67.9
3 67.6 66.1 69.3 68.2 89.0 70.8 90.9 88.9 68.7 75.9 87.8 66.6

96 Hz
1 61.0 59.2 63.0 62.1 86.4 64.8 89.6 88.3 62.5 69.4 86.5 60.0
2 66.4 64.5 68.6 67.8 87.1 70.4 90.3 88.9 68.1 74.9 87.1 65.2
3 64.4 62.9 66.0 66.0 86.9 67.9 89.8 88.7 66.0 72.9 86.9 63.3

192 Hz
1 55.0 52.3 58.0 55.0 84.9 59.5 88.6 87.8 56.4 63.0 85.9 54.1
2 65.7 63.2 68.5 66.9 86.0 70.4 90.1 88.8 67.7 74.1 86.9 64.5
3 63.3 61.3 65.7 64.8 85.8 67.4 89.7 88.7 65.2 71.7 86.8 62.2

384 Hz
1 46.3 42.2 50.8 44.0 84.1 52.0 88.0 87.3 47.3 53.2 85.2 45.4
2 65.0 62.5 67.8 66.4 85.4 69.6 90.2 88.8 67.1 73.2 87.0 63.7
3 62.5 60.4 64.7 64.2 85.2 66.4 89.8 88.7 64.4 70.6 86.9 61.3

* Image-only tracking (excludes event data). Best results per tracking rate and metric are highlighted in bold.

expected given that SSD is a more accurate object detector, as is highlighted by its DetA of 67.4%

compared with 53.0% for YOLOv3. These values were used as the baseline values to compare our

three different event-based inter-frame object tracking approaches at various temporal resolutions.

Applying the approach specified by Mode 1, which used event-based masks without history or

temporal weighting, we noticed that the outcomes of most HOTA metrics significantly deteriorated

with higher temporal resolutions. This is the result of a lower number of events being available to

track with smaller window frame lengths. A tracking rate such as 384 Hz has a temporal interval

of only 2.6 ms.

On the other hand, Mode 2, which also used an event-based mask but with a temporally

weighted event history of 50 ms, consistently yielded the best performance when using either

frame-based object detector. Mode 3, which used an edge-based mask instead, slightly underper-

formed Mode 2 but provided similar consistency.

Overall, the approaches represented by Modes 2 and 3 proved that high-temporal-resolution

tracking is possible by incorporating event data without any significant impact on performance. In

Mode 2’s configuration, the HOTA values deteriorated slightly, declining from 56.6% and 69.0%
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Figure 3.10: Comparison between the results of the different tracking configurations for various
temporal resolutions. AssA is plotted against DetA with the resulting HOTA values marked for
tracker configuration, for temporal resolutions of (a) 24 Hz - (e) 384 Hz. The legend (f) defines
the symbols used according to the object detector used and tracking mode. Results show a linear
correlation between the AssA and DetA, with Mode 2’s approach outperforming the other config-
urations for either object detector.

(when using YOLOv3 and SSD at 24 Hz) to 52.5% and 65.0%. This translates to a relative perfor-

mance deterioration of just 7.24% and 5.8%, for YOLOv3 and SSD, respectively.

Similarly, Table 3.3 shows the results of the selected CLEAR MOT [14] metrics for every

tracking configuration. Consistent with the previous results, Mode 2’s configuration shows very

minimal deterioration in tracking performance. As for the SSD-based configuration, the baseline

tracking of 24 Hz had an MT of 40 and a PT of 45 with no ML objects, which was minimally

affected by the higher temporal resolutions, as shown in the results for the highest rate of 384 Hz
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Table 3.3: Hybrid object detection and tracking results using a subset of CLEAR MOT metrics [14]
for different tracking configurations and temporal resolutions. The selected metrics provide extra
insight into the behavior and the quality of each tracking configuration. Mode 2’s tracking config-
uration consistently outperformed the others in all metrics, deteriorating slightly with increasing
temporal resolutions.

Tracking
Rate

Tracking
Mode

YOLOv3 SSD

MT PT ML IDSW FRAG MT PT ML IDSW FRAG

24 Hz ∗ 27 52 6 18 21 40 45 0 16 33

48 Hz
1 21 58 6 30 76 39 46 0 29 70
2 27 52 6 30 22 40 45 0 29 34
3 25 54 6 30 23 40 45 0 29 35

96 Hz
1 15 62 8 50 550 25 59 1 48 749
2 25 53 7 50 502 37 47 1 48 715
3 23 55 7 50 517 36 48 1 48 727

192 Hz
1 8 66 11 54 635 16 65 4 49 908
2 25 52 8 50 505 37 46 2 48 715
3 23 54 8 50 526 35 48 2 48 738

384 Hz
1 3 69 13 86 695 9 68 8 67 1054
2 25 52 8 75 507 37 46 2 61 721
3 22 55 8 75 532 35 48 2 62 742

* Image-only tracking (excludes event data). Best results per tracking rate and metric are highlighted in bold.

with MT, PT, and ML of 37, 46 and 2, respectively. Additionally, the YOLOv3-based configuration

had MT, PT, and ML baseline tracking results of 27, 52, and 6, respectively, which insignificantly

declined at the tracking resolution of 384 Hz, with only two fewer objects MT that became ML

instead. Similarly, Mode 3’s configuration was a close second at varying tracking resolutions.

Meanwhile, Mode 1’s configuration performed progressively worse with higher temporal results.

We note that there are a total of 85 unique object trajectories in the whole dataset, as shown in Table

B.1. Therefore, MT, PT, and ML always add up to a total of 85. As expected, IDSW got marginally

worse with increasing rates for each of the three modes, whereas FRAG suddenly increased at the

temporal resolution of 96 Hz, then stabilized, except for Mode 1, which continued to worsen at

increasing rates. The total number of ground truth detections for each rate is also provided in Table

B.1 for reference.

In general, the results show that temporal weighting of events is vital when using event-based
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data. Temporal information is a valuable component of asynchronous events which synchronous,

fixed-rate, images lack. Our first approach, represented by Mode 1, confirms this hypothesis, where

the tracking performance was significantly affected by increasing temporal resolutions, regardless

of the frame-based object detector used. As for the third approach, used in Mode 3, edge-based

masks were heavily dependent on the captured image quality. Given the limitations of frame-based

cameras, this constrains the performance of event-based vision in challenging scenes, making the

system less robust given its low dynamic range and capture rates. In our evaluation, event-based

masks proved to be more robust, with lower computational costs.

3.6 Conclusions

In this chapter, we have presented a novel way of using frame-based and event-based vision data

to enable high-temporal-resolution object detection and tracking. We leveraged state-of-the-art

frame-based object detectors to initialize tracking by detecting and classifying objects in a scene

using synchronous image frames, then generated high-temporal-resolution inter-frame tracking

using event data. We developed and compared three different approaches for event-based detection

and tracking and analyzed their performances at several temporal resolutions. Moreover, we used

a simple and low-cost association metric, that is, Euclidean distance, to match object detections

across time.

We evaluated these approaches using our dataset for two traffic scenes, obtained using a static

camera with no ego-motion applied. We collect the data using the DAVIS 240c, which combines

a frame-based and an event-based sensor using the same lens, generating synchronized image

and event data streams. Furthermore, we manually labeled all the vehicles within the scene with

accurate bounding boxes and an object ID for every trajectory, using the images generated by the

frame-based camera. Then, we generated high-temporal-resolution ground truth trajectories, for

object detection and tracking, by temporally interpolating the labeled data, for the tracking rates

of 48, 96, 192, and 384 Hz. Finally, we evaluated the results of our different approaches and
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corresponding configurations using HOTA and a select few CLEAR MOT metrics.

Our results show that out of the three methods presented, event-based masks, combined with

temporal weighting of events and a sufficient temporal history, yielded the most consistent perfor-

mance with minimal deterioration as we progressively increased the tracking rates and the corre-

sponding temporal resolutions when compared with the baseline frame-based performance at 24

Hz. Moreover, edge-based masks with temporal weighting showed promise as well, ranking very

close to the prior approach, whereas our first approach, using event-based masks but without tem-

poral weighting, resulted in the worst performance with the most degradation as we increased the

temporal resolutions.

In conclusion, our work shows that a hybrid approach that leverages both image and event

data to generate higher tracking temporal resolutions is feasible, with very consistent performance.

Our labeled dataset provides a quantitative means of assessing different event-based tracking ap-

proaches, which we hope will encourage the production of other challenging labeled event-based

datasets for object tracking in the future, given that the presented dataset might not provide the most

challenging scenarios that would require more sophisticated detection and tracking approaches.

This can be attributed to the relatively low number of available object occlusions and objects

present in the scene at any given instant, as well as the limited resolution of the event-based

sensor used. Moreover, when considering tracking different object types, we note that classical

approaches might not be ideal for objects of dynamic shapes that change at very rapid rates.

This work opens doors for future research, such as into the use of more advanced association

metrics tailored for both of these sensing modalities, a more dynamic approach that is less depen-

dent on either, or the exploration of a fully event-based approach for the entire object detection and

tracking process.
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CHAPTER 4

Improving High Temporal Resolution Event-Based

Vehicle Detection and Tracking

Event-based vision has been rapidly growing in recent years justified by its unique characteristics

such as its high temporal resolutions (∼ 1 us), HDR (>120dB), and output latency of only a few

microseconds. This chapter further explores a hybrid, multi-modal, approach for object detection

and tracking that leverages state-of-the-art frame-based detectors complemented by hand-crafted

event-based methods to improve the overall tracking performance with minimal computational

overhead. The methods presented include event-based BB refinement that improves the preci-

sion of the resulting BBs, as well as a continuous event-based object detection method, to recover

missed detections and generate inter-frame detections that enable a high-temporal-resolution track-

ing output. The advantages of these methods are quantitatively verified by an ablation study using

the higher order tracking accuracy (HOTA) metric. Results show significant performance gains

resembled by an improvement in the HOTA from 56.6%, using only frames, to 64.1% and 64.9%,

for the event and edge-based mask configurations combined with the two methods proposed, at

the baseline framerate of 24 Hz. Likewise, incorporating these methods with the same configura-

tions has improved HOTA from 52.5% to 63.1%, and from 51.3% to 60.2% at the high-temporal-

resolution tracking rate of 384 Hz. Finally, a validation experiment is conducted to analyze the

real-world single-object tracking performance using high-speed LiDAR. Empirical evidence shows

that our approaches provide significant advantages compared to using frame-based object detectors

at the baseline framerate of 24 Hz and higher tracking rates of up to 500 Hz.
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4.1 Introduction

In the last couple of years, the neuromorphic event-based vision has been gaining attention in the

literature and growing exponentially [12, 55]. Event-based sensors, first introduced in 2008 [101],

propose a novel type of sensing modality with distinct and advantageous characteristics compared

to the typical frame-based cameras. These sensors, commonly referred to as event cameras, capture

brightness changes asynchronously and independently per each pixel of the sensor’s pixel array.

Each of these captured brightness changes is known as an event. Every event consists of 4 different

types of information including a microsecond-resolution timestamp t of when it was detected, an

x and y pixel coordinates at which the event has occurred, and a polarity p indicating the type of

brightness change that was registered (i.e., positive or negative). Accordingly, an event is defined

as e = {t, x, y, p}.

In contrast, conventional frame-based cameras capture images synchronously at a fixed rate

(typically ∼30 FPS), recording the color intensity of each pixel, regardless of whether there were

any changes, in every frame generated at a fixed sampling rate. This causes frame-based cameras

very susceptible to producing redundant data that may resemble a static background in a given

scene, especially when the camera is stationary (e.g. undergoing limited, to no, motion). Mean-

while, event cameras would mostly capture changes in the scene, often resembling motion, at the

instances of their occurrence. Nevertheless, event cameras can be less effective in scenes of limited

to minimal motion, where there would be a lack of visual signal to reliably utilize this modality

on its own. Thus, causing the unimodal event-based implementations to possibly be unreliable

in some scenarios. Overall, we illustrate the difference between the visual data output of the two

modalities (i.e., frame-based and event-based) in Figure 4.1.

The main specifications of a typical event camera include a very high temporal resolution (1

µs per event making it robust to motion blur), low latency in the order of microseconds, and a

high dynamic range (HDR) of over 120 dB (compared to ∼60 dB of conventional frame-based

cameras) while requiring considerably less power [55, 21]. Given these properties, event-based

vision proposes an exciting domain with great promise if explored and applied properly. Current
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Figure 4.1: Comparison between the frame-based and event-based modality output, resembled by
(a) the synchronous images captured by a frame-based camera, and (b) the asynchronous events
captured by an event-based sensor. Notice how the events are mainly generated around the edges
of the moving vehicle, where brightness changes exist), in contrast with the images captured by
the frame-based camera where the static background is redundantly captured across consecutive
frames at a fixed sampling rate.

works have utilized these specifications for different applications such as motion deblurring [80],

high-framerate HDR video synthesis [148], image reconstruction from events [147], and enhanced

object detection [95] to name a few.

While the potential behind this novel visual-sensing technology is evident, we believe that it

can provide optimal benefits when incorporated with frame-based vision, as both modalities can

be complementary to each other when they are correctly utilized. Such an approach can enable a

more robust perception performance for different automated applications.

In this chapter, we explore a combined frame- and event-based approach for vital computer

vision tasks, namely object detection and tracking. Object detection is an essential component

for automated systems to provide awareness of the surroundings at a given instant. Meanwhile,

object tracking enables the system to associate these detections across time, supplying the tempo-

ral element for its interpretation of its surroundings. Both components, although challenging and

processing-intensive, are critical for a complete and reliable system perception performance, as
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they assist in different tasks, such as motion planning and obstacle avoidance, and play an impor-

tant role in various applications in robotics, including traffic monitoring and surveillance systems

[76], and autonomous vehicles [146, 29].

Object detection performance can vary based on the method used. Deep Neural Network

(DNN)-based object detectors have recently dominated the state-of-the-art [149, 108, 151, 102,

152], thanks to the unparalleled advancements in deep learning, in general, [92], and the emergence

of deep CNNs specifically [89, 160]. Nevertheless, the different implementations in the literature

are often constrained by a trade-off between object detection accuracy and latency. YOLOv3 [149],

for instance, offers real-time inference speeds, however, at the cost of lower accuracy and possibly

more inconsistent performance, which could affect the overall object tracking performance due

to the intermittent detections. On the other hand, FasterRCNN [152] offers better object detec-

tion accuracy which the object tracking framework can benefit from, however, at the expense of

considerably higher latency, making it less ideal for real-time detection and tracking systems.

Similarly, the temporal resolutions of frame-based object detection and tracking can be limited

by the framerate of the input source which is typically fixed, such as a camera that typically has a

low output framerate. This sets an upper bound for the resolutions of object tracking, given that

interpolation techniques are excluded which are not beneficial for a real-time online system. Fur-

thermore, even if a higher framerate source is used along with a DNN-based object detector, the

system’s operational latencies would be further impacted, imposing stringent hardware require-

ments to be able to achieve real-time computation performance.

In this chapter, we extend and improve on our prior work [45] presented in Chapter 3, which

explored the feasibility of high-temporal-resolution object detection and tracking using a hybrid

multi-modal approach that incorporates synchronized image and event data, by presenting two ad-

ditional methods that improve the overall object detection and tracking performance using event-

based techniques. First, we improve the precision of BBs proposed by frame-based object detectors

using a combination of event data and classical computer vision methods. Second, we enhance the

robustness and consistency of frame-based object detectors using event-based detection methods.
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Figure 4.2: Block diagram demonstrating the hybrid multi-modal object detection and tracking
framework with the proposed methods, which include BB refinement and continuous object detec-
tion using event-based methods. Visual streams from both modalities are synchronized and passed
through the framework to yield multi-object tracking results.

This method is automatically initiated whenever the frame-based object detector fails to detect

an object in a given frame, thus improving the object detection reliability and the corresponding

tracking performance by leveraging the high-temporal-resolution event data. Third, we numeri-

cally assess the effects of these methods under different frame-based object detection models using

a fully labeled dataset (at multiple tracking rates) along with state-of-the-art Multi-Object Track-

ing (MOT) metrics, including the higher order tracking accuracy (HOTA) metric for evaluating

multi-object tracking. This is followed by a simple computational cost analysis for the presented

event-based methods in comparison with the frame-based components. Finally, we validate our

work with a real-world experiment using a high-speed LiDAR to provide high-temporal-resolution

positional measurements of a vehicle being tracked. The general framework of this work along

with the proposed methods is demonstrated in Figure 4.2.

Overall, the main contributions of this chapter are summarized as follows:

• We present an event-based BB refinement method for static scenes, and an event-based

method for recovering undetected objects in the frame domain, which improves the object

detection and tracking performance compared to the frame-based baseline.
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• We conduct an ablation study that quantitively verifies the benefits of each introduced event-

based method and their optimal combination using the HOTA metric is presented.

• We provide a computational latency analysis for the introduced methods as well as the core

components of the proposed system.

• We perform a real-world validation experiment using a high-speed LiDAR that evaluates

how well the presented framework, including the additional event-based methods, estimates

the vehicle position at different temporal resolutions and tracking rates.

4.2 Related Work

4.2.1 Frame-based Approaches

Frame-based object detection and tracking methods have had significant developments throughout

the last decade. The advancements of DNN-based object detectors have enabled a very robust

object detection performance [149, 108, 151, 102, 152], which is complemented by various data

association techniques to achieve multi-object tracking (MOT) [188, 178]. This approach of object

tracking is commonly referred to as tracking-by-detection.

When it comes to object detection, deep learning-based object detectors are categorized as

either one-stage [149, 108, 151, 102] or two-stage detectors [152]. While two-stage detectors are

often more accurate and robust, one-stage detectors sacrifice some accuracy for inference speeds

making them more appropriate for real-time systems but with degraded performance. One-stage

object detectors include YOLOv3 [149], SSD [108], RRC [151], and RetinaNet [102], whereas

two-stage object detectors mainly include FasterRCNN [152].

As for object tracking, State-of-the-art MOT implementations are designed to operate in either

an online or a global manner. Online methods are more appropriate for real-time robotic systems

compared to global methods [135, 180] which require full knowledge of all the current and future

data (more suitable for other types of applications). The output of these implementations is typ-
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ically evaluated using well-known object tracking metrics such as the CLEAR MOT [14] or the

more recent HOTA [111] metrics on various MOT benchmarks such as MOT20 [39].

Analogous to the literature, we leverage a tracking-by-detection approach to enable multi-modal

object detection and tracking using image frames as well as events. Focusing on the object detec-

tion aspect, our combined approach accomplishes this by the use of pre-trained, one-stage, frame-

based object detectors, specifically YOLOv3 [149] and SSD [108] while employing a simple data

association metric, which is Euclidean distance [36]. The choice of this data association metric is

based on the assumption that the resulting detections, ideally, should be continuous given the high-

temporal-resolution nature of event data. Further, using methods discussed later in this chapter,

frame-based object detections are used as the basis for enabling the detection and tracking of the

objects in the scene in between frames at varying temporal resolutions, using the event data.

4.2.2 Event-based Approaches

On the other hand, event-based object detection and tracking methods, compared to the frame-

based implementations, are in their preliminary stages and have yet to utilize the event data to

its full potential. Unlike the frame-based domain, event-based vision has had varying approaches

when it comes to either object detection or object tracking. For instance, single-modal event-based

object detection is currently in the experimental phase, where learned methods make up the ma-

jority of the state-of-the-art. Learned implementations typically combine and embed events in an

image-link representation which are used with modified frame-based DNN architectures to make

them compatible with event data, in either a temporal [96, 136, 24] or a non-temporal [78] manner.

Recurrent and temporal approaches are typically more suitable for event data, given that events

only provide brightness changes and not absolute brightness, at a given point in time, in contrast

to frames. Thus, the temporal approaches would incorporate meaningful input history, instead of

treating each split, of the input stream, independently, yet at the expense of higher computation.

Although the single-modal event-based approaches are promising, their performance typically lags

behind both the frame-based solutions, under normal conditions, as well as the combined solutions
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that incorporate both modalities [95, 96, 167, 32, 105]. The main reason behind this is due to the

nature of the event data, especially in scenes where there is limited motion. Besides, the lack of

enough labeled datasets, available for training deep learning models, only increases the perfor-

mance gap between both domains. In our work, we present a multi-modal approach that leverages

pre-trained frame-based object detectors to initiate objects in the scene. Afterward, these detections

are used to generate templates for each object, which we refer to as event masks, in order to detect

objects at varying tracking rates using the asynchronous and high temporal resolution event data in

a temporal manner. Moreover, unlike fully learned approaches, a mixed approach of learned and

classical methods can be more computationally efficient when requiring very high tracking rates.

Furthermore, a classical and designed detection method does not require large datasets of labeled

data for implementation, which is still a constraint in the event-based vision domain.

As for event-based object tracking, most works focus mainly on the detection aspect with typ-

ically a single-object tracking approach. One common approach is the use of clustering tech-

niques [77, 121, 11, 66]. Clustering events is a low-cost and intuitive way for simple object

tracking applications enabled by the nature of events that often resemble movement, as they

would mainly be generated around the objects that are in motion. Nevertheless, clustering can be

prone to object collisions and does not apply to object classification. Conversely, non-clustering

methods have explored various single and multi-modal object detection and tracking techniques

[185, 187, 104, 31, 144]. For example, Chen et al. [31] proposed an event-to-frame conversion

algorithm to enable an asynchronous tracking-by-detection approach. Meanwhile, Ramesh et al.

[144] presented an online object tracking framework with a moving event camera using a local slid-

ing window technique, with a global object re-identification using an event-based object detector

whenever the tracker loses the object.

Overall, we notice that few event-based object tracking works focus on real-world objects such

as vehicles, where most use data of shapes in indoor scenes, and approach this problem from a

single object tracking aspect (i.e., without the use of well-defined MOT metrics like in the frame-

based domain). A primary constraint behind this is the limited number of labeled object detection
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and tracking event-based datasets available publicly. Our prior work [45] provided the first fully

labeled event-based dataset conforming to the typical MOT standards [38], including object IDs,

unique to each object’s trajectory, along with 2D BBs provided at multiple temporal resolutions

and tracking rates.

To summarize, our previous work [45] focused on exploiting the high-temporal resolution of

the event data to enable high-temporal-resolution object detection and tracking using a combined

approach that utilizes learned frame-based object detectors and classical event-based methods. Our

proposed framework was evaluated using a labeled vehicle dataset with state-of-the-art MOT met-

rics [111]. However, our work was constrained by the performance of the frame-based detectors

to initiate detections and redetect objects at every new image frame. In this work, we propose

two methods that help boost the detection performance, where we use event-based techniques to

improve the accuracy of the generated BBs and to support object detection when a frame-based

object detector fails to detect an object, previously tracked, in a given image.

4.3 Methodology

In this section, we initially summarize the hybrid framework presented in our prior work [45] in

more detail, then describe some of its limitations and the motivation behind the additional meth-

ods introduced in this chapter. Afterward, we present and break down the proposed event-based

methods to improve object detection and tracking. Finally, we perform an ablation study to assess

the effectiveness of these methods and figure out the optimal combination to use.

4.3.1 High-Temporal-Resolution Object Detection and Tracking Frame-

work

In our prior work [45], we have introduced a hybrid approach, that leverages both frame-based and

event-based vision modalities to enable high-temporal-resolution object detection and tracking (as

demonstrated in Figure 4.2). We break down the framework in the following subsections.
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4.3.1.1 Parsing the multi-modal streams using window frames

To incorporate the data streams of both modalities, the temporally synchronized image and event

streams are divided into a moving window frame containing any available image frames as well

as a predefined interval of event data (e.g., 50 ms). Based on the desired tracking rate of k Hz,

the window frame will move forward 1
k

ms for every step, with an interval size ∆T . For example,

given a tracking rate k of 200 Hz and ∆T set as 50 ms, the window frame will take steps of 5 ms

while containing the latest 50 ms of event data. Note that inter-frame event-based object detection

is executed only if the desired tracking rate k is set higher than the framerate of the images (ideally

≤ k
2

Hz).

4.3.1.2 General multi-modal detection and tracking framework

Following a tracking-by-detection approach, pre-trained frame-based object detectors (i.e.,

YOLOv3 and SSD) are used to detect objects in the image domain (when available in the frame)

and initiate their tracking. Meanwhile, an event-based, inter-frame object detection method is used

to detect previously detected objects in the event domain, in the blind time between consecutive

frames. Accordingly, whenever a window frame containing an image is read, the frame-based de-

tections are used to initiate the object tracker with these objects by associating each with a unique

object ID. At the same time, the resulting two-dimensional BBs of the detected objects, represent-

ing their location relative to the frame, are used to generate templates that are later required for

the event-based object detection process. We refer to these templates as event masks. Note that

the event masks are of the same size as the objects detected in the image frames. Afterward, these

event masks are used to enable inter-frame object detection in the subsequent window frames that

only contain events, until a window frame containing an image is read at which point this process

is repeated. Throughout this process, the detection results of each window frame are fed into the

object tracker, which associates the latest detections by initiating any new objects that entered the

scene, updating the position of previously tracked ones, and removing the objects that have left

the scene. Moreover, we utilize a simple Euclidean distance [36] minimization function to asso-
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ciate recent detections with the objects currently being tracked. This simple association metric

was chosen to give more emphasis on the cooperative multi-modal object detection process and is

motivated by the expected continuous tracking results due to the high temporal resolution of the

event data.

4.3.1.3 Event-based object detection using event masks

Here, we break down the event-based object detection process referred to in our framework. Given

a set of currently tracked objects with corresponding event masks, the event-based object detec-

tion is achieved using a sliding window mechanism of matrix multiplication between each object’s

event mask and the events that are available in the current window frame and located within the

confined search region. The search region is generated around the latest detected position of each

object, albeit with a larger area to cover all possible displaced positions. The results of all the pos-

sible combinations of this sliding window mechanism are stored in a cost matrix. Afterward, the

highest value in the cost matrix, which resembles the best correlating position, is used as the ob-

ject’s inter-frame position, as long as that value meets or exceeds the preset score threshold. Other-

wise, no detection is generated for the corresponding object within that window frame. Therefore,

this results in a missed inter-frame detection which creates gaps in the estimated trajectories of the

tracked objects.

Note that the event-based object detection process is only applied to the objects that were pre-

viously detected in the most recent window frame that contained an image using the selected

frame-based object detector. Thus, if an object was not detected in the latest image in the data

stream, the event-based object detection process is not initiated until the object is detected in a

future image that precedes a window frame of events. Further, we note that the events in each

window frame are temporally weighted, giving the highest weight to the newest events and lower

weights for older events. By giving more significance to the newest events, which typically re-

semble the latest movements of the object, this process was found to improve event-based object

detection precision[20] and is the applied practice throughout this chapter.
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We have also introduced and evaluated two different types of event masks (i.e., event-based and

edge-based) which are demonstrated in Figure 4.3. Event-based masks (shown in Figure 4.3(a)) are

generated by accumulating all of the events located within the 2D BB of the detected objects using

the frame-based detectors. The event-based masks represent the object with the most recent event

in each pixel while retaining their polarity (as +1 for positive events and −1 for negative events).

Thus, resulting in a sparse 2D matrix of integers containing integer values of 0, +1, and −1. Event-

based masks are ideal when there is limited motion in the background of the object, causing the

events generated to be mostly due to the object itself. However, it is vulnerable to events generated

due to noise (global shutter or shadows) and is not ideal when the detected object (in the image)

is not in motion, thus limited events are generated that can be used to generate the mask. On the

other hand, edge-based masks, shown in Figure 4.3(b), rely on the actual image crop representing

the object’s BB. This crop is processed and converted to a binary mask representing the edges of

the object, albeit without the polarity information where absolute values are used instead. Thus,

the edge-based event mask is represented by a sparse 2D matrix of integers containing values of

0’s and +1’s. The edge-based mask mimics the events generated by a moving object which are

typically around its edges. Therefore, possibly making it a more appropriate choice for an object

that is rapidly changing its direction. However, it is susceptible to any edges in the background

and any distortions in the image due to motion blur and poor dynamic range. Overall, despite their

limitations, both types of event masks can be improved by different methods, such as filtering,

or generating learned masks instead of handcrafted ones. However, that is not the focus of this

research but can be addressed in future works. Nevertheless, they are evaluated further in this

work, in addition to the proposed methods described in the following sections.

4.3.1.4 Limitations of the framework

In summary, our prior results have proved the ability to generate high-temporal-resolution object

tracking and detection by utilizing event data in combination with images. By incorporating the

temporal information of the events while using a sufficient history of event data (50 ms), higher
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Figure 4.3: Demonstration of the two different event mask types and how they are generated after
the object is initially detected in the frame, including (a) event-based mask, and (b) edge-based
mask. The frame-based object detector used in this example is SSD.

temporal tracking rates (up to 384 Hz demonstrated) were feasible with very minimal performance

deterioration compared to when tracking at the base framerate (24 Hz) using only image frames.

By using classical computer vision techniques to amplify the tracking rates, minimal overhead is

added, in comparison with the use of learned methods (such as frame-based object detectors) at

higher rates.

While our general framework has shown robust results of higher temporal resolution tracking

from a low sampling-rate input source with the aid of event data, it is limited by the relatively

inconsistent performance of frame-based object detectors that are optimized for real-time perfor-

mance (such as YOLOv3 [149]). This is exemplified in both the poor BB alignment accuracy and

the commonly missed detections of objects in the scene (i.e., false negatives). Poor BB estima-

tion (also known as localization accuracy) reduces the overall detection and tracking performance,

which is evident by the tracking metrics used. Likewise, missed detections cause fragments in

the estimated trajectories of the tracked objects, especially as our presented framework is reliant

on detecting the object in the frame domain in order to initiate the object detection process in the

event domain in subsequent window frames of event data. Therefore, in this work, we present two
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(a) (b)

(c) (d) (e)

Figure 4.4: Overview of the BB refinement process of the object detected using event data. (a)
Events are combined to form a grayscale image, (b) then the image is filtered to remove noise
using an average blur. Finally, the resulting blurred grayscale image is then thresholded to generate
a binary version, (d) where a best-fit bounding rectangle is formed that highlights the object more
precisely. (e) Results are demonstrated, where the frame-based object detection and the refined BB
are highlighted by the yellow and bright orange BB, respectively, while the ground truth label is
shown in green.

additional methods that should improve the performance consistency of object detection (in any

given frame), and the precision of the generated BB that highlights the position of the detected

objects. Our prior approach along with the proposed methods are highlighted in Figure 4.2. Fi-

nally, we quantitatively verify the advantages of these enhancements with the use of state-of-the-art

multi-object detection and tracking metric HOTA [111], presented in the form of an ablation study.

4.3.2 Event-based Bounding Box Refinement

Here, we explore an intuitive event-based method for BB refinement, inspired by the frame-based

BB refinement methods that have been previously proposed in the literature [35]. This method is

broken down into two main stages, which are event extraction and Three-dimensional (3D) matrix

generation, as well as BB filtering and refinement.
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4.3.2.1 Event extraction and 3D matrix generation

Once a new window frame containing an image is loaded, the frame-based object detector gener-

ates predictions, each including object classes and 2D BBs. Similar to the event mask generation

process described earlier, the events available in the mask’s area within the search region available

in the current window frame, are extracted and added to a two-dimensional matrix. Note that the

BB of the mask is a slightly enlarged version of the initial object detection’s BB, thus enabling a

larger initial area to freely enlarge or reduce the BB as needed based on the true size of the ob-

ject. This is because frame-based object detectors might either over- or under-estimate the size of

the detection’s BB. Afterward, a depth channel is added to convert the resulting matrix into three

dimensions (from 2D) to be able to process it like a typical image. This is followed by removing

the polarity information by finding the absolute values of the events present in the matrix (negative

events and positive events are treated alike).

Given that our approach incorporates temporal information, we linearly weight each event (in

the 3D matrix), giving more weight (higher value) to the more recent events at that tracking time

instant, similar to our approach of weighing the window frame’s events temporally discussed ear-

lier. Finally, the values of each entry in the 3D matrix are normalized to values between 0 and 1,

then converted to a range of 0 and 255 representing a grayscale image as shown in Figure 4.4(a).

4.3.2.2 Bounding box filtering and refinement

Subsequently, the second stage is applied, which involves filtering the resulting grayscale image

and generating a refined BB.

The resulting image from the previous stage is initially filtered by blurring it using an averag-

ing filter with a kernel size of 3x3, as shown in Figure 4.4(b). Blurring an image is a standard

method used to smoothen an image and remove noise. In our use case, we adapt this method to the

grayscale image representing the events to assist in removing the ones generated due to noise, such

as shadows or global shutter which is common in hybrid cameras. The resulting blurred image

is then thresholded and converted to binary values (0 or 1 per each matrix’s values) using Otsu’s
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method [131] to differentiate the object itself from the background or any noise. Otsu’s method

was noticed to help find a more optimal global threshold value to binarize an image appropriately

which is shown in Figure 4.4(c). Finally, a best-fit BB is then generated that would precisely cover

the whole object by providing the minimum contour possible to fit the object, as shown in Fig-

ure 4.4(d). The resulting BB is then fed into the object tracker to associate the detected object

with ones previously tracked based on Euclidean distance [36]. Figure 4.4(e) shows the detected

frame-based BB (produced by YOLOv3 [149]) against the refined and the ground truth BBs at a

given time instant. We can observe that event-guided refined BB matches the ground truth more

accurately than the initial frame-based detection. Note that in our prior work, the BBs generated by

the frame-based object detectors are used as is without any refinement or modification, while the

subsequent, inter-frame detections, would retain the same BB size as well, based on the framework

described earlier in this section. Finally, this method is also applied in subsequent window frames

of event data to enable BB refinement at higher temporal resolutions as well when detecting objects

using the generated event masks. Thus, the BB of the detection is continuously and dynamically

refined at each tracking instant.

Undoubtedly, we note that an insufficient number of events can adversely impact the outcome

of this process, possibly leading to a very small, and inaccurate, BB. Therefore, it is important to

set a simple check to initiate this process. Accordingly, we set a minimum threshold for the sum

of the temporally weighted events, within the initial BB, to permit the refinement process. This is

applied throughout our work and is reflected in our results.

Moreover, we have observed that this method can be negatively affected by more recent events

generated due to noise, which are the result of some shadows or shutter noise as discussed earlier.

Newer events, relative to the tracking time instant, are given more weight and thus are not always

filtered out by our method. This leads these events to affect the accuracy of the best-fit BB gener-

ated in the last step. Similarly, we have noticed that more precise models, such as SSD [108], can

be adversely impacted by this process, mainly due to the same type of noise events, besides the

fact that the generated detections have very precise BBs, to begin with, as observed in our work.
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4.3.3 Continuous Event-based Object Detection and Recovery

Efficient object detector models, such as YOLOv3, also suffer from an intermittent object detection

performance. An object that appears in many consecutive frames might be detected in some but

missed in others. This can affect the overall performance of the object detection and tracking given

our framework’s dependency on the frame-based object detector to be able to initial the inter-frame

detection, as evident in our prior work’s results [45]. Meanwhile, more sophisticated models, such

as SSD [108], have more consistent performance, albeit at the expense of more computational

requirements and greater latencies. Accordingly, to minimize the effects of intermittent frame-

based object detection performance, we present a method that recovers missed detections and false

negatives of objects that were previously tracked, using event data.

An event mask is generated whenever an object is detected using the frame-based object de-

tectors. Each event mask is then used in a sliding-window mechanism to find the object’s optimal

inter-frame position within an enlarged area known as the search region. The highest correlating

position is then assumed to be the inter-frame object position, hence the resulting event-based ob-

ject detection. Nonetheless, in our prior work [45], this method was only integrated whenever an

object was successfully detected in a given image to be able to perform event-based object detec-

tion before the subsequent image is read. If an object is missed, then it is no longer tracked till it

is detected again by the frame-based object detector with possibly an incorrect object ID (based

on the association technique). Therefore, in this work, we evaluate a similar application of using

the event masks, but of previously tracked objects, to recover any missed detections at a given im-

age frame. Thus, limiting the gaps in the estimated objects’ trajectories and improving the overall

object detection and tracking performance.

We describe this process as follows. Given a set of previously tracked objects, an undetected

object in the image, within the latest window frame, is marked as “disappeared” after associating

all of the frame’s detections using the object tracker. The missed object’s latest event mask, utilized

in the previous window frame, is similarly used to initiate the event-based object detection process

using the events available in the latest window frame, located within the search region. This
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follows the same process utilized in our prior work for inter-frame event-based object detection.

Nevertheless, due to lower certainty, a significantly higher event-based detection score threshold

is used. This threshold resembles the minimum matrix multiplication summation value that must

be met or surpassed in order to consider the object detected in the event domain. We apply this

validation process to limit the detections that may result from events produced by other objects

or generated by noise, given the lower detection confidence to begin with, and considering that

this method is neither dynamic nor learned, unlike the frame-based object detectors we use in our

framework.

As with the former method, this one has its limitations and drawbacks as well, if not prop-

erly optimized. This method can be negatively affected by several factors, such as false positives

(incorrect detections) or poorly aligned detections generated by frame-based object detectors, as

shown in Figure 4.5(a), which are given higher precedence and are prioritized over the event-based

methods, given their presumed robust and dynamic performance. These false positives, even if in-

termittent or sporadic, would be used for continuous event-based detection, as described earlier, to

recover the missed detections. Based on the event mask generation process, these false detections

can lead to consistent and continuous false detections in subsequent window frames if subjected to

a sufficient number of events generated due to noise or other external factors, as shown in Figure

4.5. Thus, affecting the overall detection and tracking accuracy.

4.3.4 Ablation Study

To verify the feasibility and the benefits of the proposed methods, we conduct an ablation study

to assess the influence of each on the overall object detection and tracking operation and to in-

dicate the right combination of methods to achieve optimal performance. Moreover, we provide

a computational latency analysis of the estimated average latency of each core component of our

framework.
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Figure 4.5: Demonstration of some failure modes when accompanied by continuous event-based
object detection and BB refinement: (a) false object detection generated by the frame-based object
detector SSD, (b) which are then continuously yet incorrectly detected using events in subsequent
window frames; (c) an object is falsely detected and recovered due to events generated by the
shadow of a vehicle leaving the scene.

4.3.4.1 Evaluation parameters and configurations used

Similar to the setup used in our previous work [45], we use two pre-trained frame-based object

detectors which are YOLOv3 [149] and SSD [108]. We select the YOLOv3-320 variant trained on

Microsoft COCO labels [103], with an input image size of 320× 320× 3; and the VGG16-based

SSD-300 variant, trained on PASCAL VOC labels [50], with an input image size of 300×300×3.

The models selected propose a trade-off between latency and accuracy. Moreover, we set both

confidence and non-maximal suppression thresholds are set to 50%. Only predictions related to

the ‘vehicle’ class (and its different forms) are considered, whereas other object classes are simply

ignored and filtered out. Both frame-based object detector models are used along with different

detection and tracking configurations described in this section.

Furthermore, we build on the two best approaches presented earlier [45] with the proposed

methods presented earlier, to verify the validity of our assumptions. The two best approaches

incorporated a moving window frame of image and event data, of the last 50 ms which are tem-
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porally weighted, at any given tracking instant, while only varying by the use of different event

mask types (event-based and edge-based described in Section 4.3) for event-based object detection.

These modes are referred to as modes 2 and 3, for event-based and edge-based masks, respectively.

The combinations relating to each of these modes are referred to as A(1–3) for mode 2, and B(1–

3) for mode 3. Moreover, we provide the results of the single-modal, frame-based approach for

object detection and tracking (without any event-based methods), to provide a baseline reference

to compare with the proposed improvements at the preset rate of 24 Hz.

In this ablation study, the evaluation is conducted using the MEVDT dataset, as detailed in

Chapter 2. This dataset, captured using the DAVIS 240c sensor, comprises 63 sequences with

fully labeled vehicle objects, including BBs and object IDs, across various tracking rates (24, 48,

96, 192, and 384 Hz) as described in Chapter 3. This range of rates allows for the quantitative

assessment of performance across different temporal resolutions. The DAVIS 240c, featuring both

an APS and a DVS using the same pixel array, captures grayscale images at 24 Hz and events with

a 1 mus resolution. The data was collected from a static camera setup, simulating an infrastructure

camera setting, capturing vehicles in motion at varying speeds and accelerations. This dataset is

instrumental in evaluating the performance of our object detection and tracking configurations, as

it provides several scenarios and tracking rates for robust testing.

Finally, the well-defined object detection and tracking metric HOTA [111] is used to evalu-

ate the overall object detection and tracking performance of the different tracking configurations.

Compared to prior metrics in the literature, the HOTA metric provides a good balance between

the overall object detection, association, and localization accuracy in a combined metric. In addi-

tion, HOTA can be decomposed into a series of sub-metrics that describe each. These sub-metrics

include the Detection Accuracy (DetA), which describes how well detections are aligned; the As-

sociation Accuracy (AccA) which measures how well matched-object trajectories are aligned and

associated across time; and the Localization Accuracy (LocA), which refers to how well spatial

alignment is between the predicted and ground truth detection. The main metric HOTA, as well

as the sub-metrics, are calculated over a range of intersection-over-union threshold α values, span-
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Table 4.1: Results of the ablation study on the influence of each proposed feature at different
combinations while using YOLOv3[149] as the frame-based object detector. HOTA[111] metrics
are used to numerically assess the performance of these combinations at the base framerate of 24
Hz and an elevated tracking rate of 384 Hz with significantly higher temporal resolution. At both
tracking rates, results show optimal performance was achieved when combining both proposed
features.

Object
Detector

Tracking
Rate

Tracking
Mode

Proposed features Mask type Metrics (%)

Bounding
Box

Refinement

Continuous
Event-based

Detection

Event-
Based

Edge-
Based

HOTA DetA AssA LocA HOTA(0) LocA(0)
HOTA-
LocA(0)

YOLOv3

24 Hz

∗† - - - - 56.6 53.0 60.8 84.2 68.1 82.0 55.9

A1 ✓ ✓ 59.3 56.1 62.9 87.9 68.1 86.4 58.9
A2 ✓ ✓ 60.1 60.1 60.6 83.1 77.1 78.8 60.8
A3 ✓ ✓ ✓ 64.1 64.5 63.8 86.4 77.4 83.5 64.6

B1 ✓ ✓ 59.3 56.1 62.9 87.9 68.1 86.4 58.9
B2 ✓ ✓ 59.9 58.2 62.1 83.4 75.4 79.6 60.0
B3 ✓ ✓ ✓ 64.9 64.1 65.9 86.8 77.6 84.3 65.4

384 Hz

2† ✓ 52.5 50.1 55.3 84.1 63.8 81.3 51.9

A1 ✓ ✓ 54.6 52.3 57.1 86.9 63.9 84.5 54.0
A2 ✓ ✓ 59.3 56.0 63.1 83.1 75.8 78.6 59.6
A3 ✓ ✓ ✓ 63.1 59.7 66.8 86.1 76.0 83.1 63.2

3† ✓ 51.3 48.9 54.1 84.2 62.3 81.5 50.8

B1 ✓ ✓ 53.1 50.6 55.8 86.6 62.3 84.2 52.5
B2 ✓ ✓ 54.6 51.3 58.4 83.4 68.8 79.2 54.5
B3 ✓ ✓ ✓ 60.2 57.3 63.5 85.9 72.4 83.1 60.2

* Single-modal image-only tracking (excludes event data).† Results from Table 3.1. The top two results per tracking
rate and metric are highlighted in bold.

ning from 0.05 to 0.95 with increments of 0.05. The HOTA metrics are described in further detail

in Ref. [111]. Further, we note that the output was recorded and saved in the MOTChallenge for-

mat [38] where it is used to calculate the final detection and tracking metrics using TrackEval [82],

developed by J. Luiten. For compactness, we report the results of only two tracking rates, 24 and

384 Hz, given that they should provide both ends of the performance spectrum, where intermediate

tracking rates are expected to perform within that range.

4.3.4.2 Ablation study results

The results of the ablation study are presented in Table 4.1 and Table 4.2 for the frame-based object

detectors YOLOv3 [149] and SSD [108], respectively.

In Table 4.1, results show significant performance advantages when both methods are utilized

with either event-mask type. At 24 Hz, we notice that the DetA improves from 53% to 64.5% and
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Table 4.2: Results of the ablation study on the influence of each proposed feature at different
combinations while using SSD [108] as the frame-based object detector. HOTA [111] metrics are
used to numerically assess the performance of these combinations at the base framerate of 24 Hz
and an elevated tracking rate of 384 Hz with significantly higher temporal resolution. At both
tracking rates, results show optimal performance was achieved when combining both proposed
features.

Object
Detector

Tracking
Rate

Tracking
Mode

Proposed features Mask type Metrics (%)

Bounding
Box

Refinement

Continuous
Event-based

Detection

Event-
Based

Edge-
Based

HOTA DetA AssA LocA HOTA(0) LocA(0)
HOTA-
LocA(0)

SSD

24 Hz

∗† - - - - 69.0 67.4 70.9 89.1 77.2 87.9 67.9

A1 ✓ ✓ 67.3 66.6 68.1 88.1 76.8 86.7 66.6
A2 ✓ ✓ 66.8 63.9 70.2 88.0 78.7 85.0 66.9
A3 ✓ ✓ ✓ 69.0 68.6 69.6 87.0 82.5 84.3 69.5

B1 ✓ ✓ 67.3 66.6 68.1 88.1 76.8 86.7 66.6
B2 ✓ ✓ 69.2 67.7 71.0 88.3 79.9 86.0 68.7
B3 ✓ ✓ ✓ 68.5 68.1 69.0 87.4 80.2 85.3 68.4

384 Hz

2† ✓ 65.0 62.5 67.8 88.8 73.2 87.0 63.7

A1 ✓ ✓ 63.0 61.1 65.1 87.3 73.0 85.1 62.1
A2 ✓ ✓ 65.9 62.0 70.2 87.9 77.6 84.6 65.6
A3 ✓ ✓ ✓ 66.4 63.9 69.2 86.5 79.4 83.6 66.4

3† ✓ 62.5 60.4 64.7 88.7 70.6 86.9 61.3

B1 ✓ ✓ 60.4 58.9 62.1 86.9 70.3 84.7 59.6
B2 ✓ ✓ 63.8 60.2 67.7 88.0 74.1 85.4 63.2
B3 ✓ ✓ ✓ 63.3 60.7 66.1 86.3 75.3 83.6 63.0

* Single-modal image-only tracking (excludes event data).† Results from Table 3.2. The top two results per tracking
rate and metric are highlighted in bold.

64.1% for the event-based (A3) and edge-based (B3) masks, respectively. Similarly, the AssA im-

proves from 60.8% to 63.8% and 65.9% under the event mask types as well, with the final HOTA

equal to 64.1% and 64.9%. Further, we observe that the LocA performance of YOLOv3 has sig-

nificantly improved with the introduction of the BB refinement methods, as indicated by A1 and

B1, and the combined methods A3 and B3. Meanwhile, at the higher tracking rate of 384 Hz, the

combination of the two features presents the most performance gain consistent with the results at

24 Hz, showing significant performance gains over our previous work’s results (as indicated by

modes 2 and 3) under all the metrics. This is highlighted by the substantial improvement in the

general HOTA metric values from 52.5% to 63.1% and from 51.3% to 60.2%, when incorporating

both methods under the event-based and edge-based masks, respectively. Thus, showing signif-

icant performance advantages for optimized object detectors and even more limited performance

deterioration at higher temporal resolutions for object tracking. Note that the performance vari-
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ance at 384 Hz can be attributed to the inconsistent frame-based object detection performance of

YOLOv3, which results in frequent detection gaps in the images. As a result, based on our frame-

work’s design, these frame-based detections are required to initiate the inter-frame event-based

detection process. Therefore, such gaps can be substantially amplified at higher tracking rates. For

example, there would be one window frame that contains an image for every 15 window frames

that contain only events, at a tracking rate of 384 Hz with a 24 Hz camera framerate. Accordingly,

a missed detection in a given image can cause a missed detection, and gaps in the object tracking

trajectory, for a total of 16 consecutive window frames. This further emphasizes the importance of

the continuous event-based object detection process introduced in this work.

Conversely, our proposed methods had slightly less performance improvement when using SSD

as the frame-based object detector, as shown in Table 4.2. At 24 Hz, we show that the DetA

marginally improves from 67.4% to 68.6% and 68.1% for the combined features using an event-

based and edge-based mask, respectively, as indicated by modes A3 and B3, whereas the AssA

was already high, to begin with, and did not show any meaningful benefit. This is due to the rel-

ative simplicity of the dataset used (few occlusions and a low number of objects simultaneously

at any time instant), as well as the robust object detection performance of the SSD variant used

in this study. Furthermore, the LocA was a bit adversely impacted by either combination of the

proposed methods. This demonstrates the limitations of the BB refinement method which can

negatively affect the BB precision of a robust object detector such as SSD, as discussed in Sec-

tion 4.3. Nevertheless, the more comprehensive metric, HOTA, showed consistent performance

in A3, and slightly improved performance using the edge-based mask combined with the contin-

uous event-based detection feature. On the other hand, at 384 Hz, the proposed methods showed

respectable improvements to the prior results [45]. Both the DetA and the AssA, as well as the

general HOTA values, showed improvements, with the A3 configuration yielding the best perfor-

mance at the tracking rate of 384 Hz. Overall, for SSD, the proposed methods had mixed effects

initially but were more beneficial at higher tracking rates.

Finally, we provide some qualitative results of our system at the baseline tracking rate of 24 Hz,
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Figure 4.6: Qualitative results of our multi-modal object detection and tracking framework at
the baseline tracking rate of 24 Hz at various instances. The top and bottom rows represent the
same time instant but for different configurations. (a) and (b) demonstrate the output of YOLOv3
with A3 (top) and B3 (bottom) event-based configurations, whereas (c) and (d) compare the A3
configuration for both YOLOv3 (top) and SSD (bottom). This demonstrates the effects of the
proposed methods in combination with our multi-modal framework.

as shown in Figure 4.6, to visually demonstrate the effects of the proposed methods under different

configurations and settings. For example, Figure 4.6(a) shows an instance where the frame-based

object detector used, YOLOv3, missed detecting the vehicle in the scene. Instead, this object,

which was previously tracked, is detected using the event-based method for configurations A3 (top)

and B3 (bottom), whereas (b) shows the BB refinement process which generates a more accurate

BB, relative to the ground truth label, compared to the initial frame-based object detection for the

same configuration. In the same manner, Figure 4.6(c) and (d) show the output of the A3 tracking

configuration for both YOLOv3 (top) and SSD (bottom), showing multiple tracked objects with the

application of the BB refinement process, in addition to the event-based object detection method

that recovered an object in the YOLOv3 configuration (top) but failed in the SSD configuration

(bottom) as demonstrated in Figure 4.6 (d).
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4.3.4.3 Computational latency analysis

To analyze the overall performance and the computational requirements of the system, we pro-

vide a simple computational latency analysis for the different core components of the system on

a relative basis, as demonstrated in Table 4.3. Note that all the tests, in our analysis, were imple-

mented and conducted on a CPU, specifically an Intel i7-7700HQ. Therefore, a GPU was not used

in our testing. Moreover, the event-based methods, at this stage, are not optimized for runtime

performance (i.e., no multi-threading or compiled libraries) given that this work was implemented

using the scripting language, Python. We also note that, due to their classical design, the compu-

tational latency of the presented event-based methods is linearly proportional to the object’s size.

Accordingly, we present the results per one object for the detection and tracking process, where the

average BB size was found to be around 80×45 in these tests. Consequently, this analysis is meant

to highlight the difference in the computational requirements and average latencies of the event-

based and the frame-based components as well in a relative manner. This leaves significant room

for future work in terms of optimizing this framework for better real-time performance, which is

not the focus of this work.

Overall, the results in Table 4.3 show a significant disparity between the latency of the frame-

based object detection components and the event-based components. This can be attributed to the

scale and complexity of the learned components used. As for the difference in the average la-

tency of both frame-based object detectors, we note that YOLOv3’s [149] architecture utilizes the

DarkNet-53 feature encoder as its backbone which has 42 million parameters [37]. Meanwhile,

SSD-300’s architecture uses VGG-19 [160] instead, which has over 143 million parameters, thus,

justifying the 134 ms variance in their average latency, and the difference in their single-modal

object detection and tracking performance (at 24 Hz) as demonstrated in Table 4.1 and Table 4.2.

In contrast, event-based methods presented have shown at least an order of magnitude less la-

tency than their frame-based counterpart. For instance, the initial event mask generation process

takes only 0.66 and 0.26 milliseconds, on average, for the event-based and edge-based masks,

respectively. This is followed by the inter-frame, event-based, object detection process, which
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Table 4.3: Computational latency analysis of the main stages of the proposed multi-modal object
detection and tracking framework on a relative basis, using only a CPU. Event-based methods
demonstrate at least an order of magnitude lower latency than the frame-based object detectors’
inference times. The estimated total latency refers to the worst-case scenario, where a window
frame contains an image of an object that was initially missed, then detected using the event-based
method, based on the specified configuration, while refining the resulting BB. The event-based
methods are estimated per single object with an average BB size of 80× 45 pixels.

Stage Method Average Latency (ms)

Frame-based Object Detection
SSD-300 (VGG16) [108] 359

YOLOv3-320 (DarkNet53) [149] 225

Event Mask Generation
Event-based mask 0.66

Edge-based mask 0.27

Event-based Object Detection
using Event-based mask 23.7

using Edge-based mask 29.0

Additional Methods
Bounding box refinement 0.37

Continuous detection∗ 23.7–29.0

Total Latency

A3 SSD 384

B3 SSD 389

A3 YOLOv3 250

B3 YOLOv3 256
* Equivalent to the event-based object detection’s latency depending on the type of the event mask used.

takes 23.7 ms, on average, when using the event-based mask, and 29 ms when using the edge-

based mask. Therefore, the combined, multi-modal approach presented in this chapter can en-

able high-temporal-resolution object detection and tracking results with minimal overhead using a

low-framerate camera, compared to the single-modal approach that incorporates a high-framerate

camera with DNN-based frame-based object detectors.

As for the computational overhead resulting from the additional methods presented, we notice

that the BB refinement process provides a very low-cost solution that delivers noticeable perfor-

mance improvements with just 0.37 ms of average latency. Meanwhile, the continuous event-based

object detection process has an overhead equal to the main inter-frame object detection process,

given that they utilize the same procedure. However, this method is only used when a previously
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tracked object was not detected in a given image, thus resorting to the asynchronous event domain

in an attempt to recover it. Accordingly, we estimate the worst-case total latency possible for our

multi-modal framework at the baseline camera framerate of 24 Hz. This scenario assumes that

an object was not initially detected by the frame-based object detector selected, followed by the

process of event-based object detection, in addition to the BB refinement process, as represented

by the A3 and B3 tracking modes described earlier in this section. The results show that the base

performance of YOLOv3, in addition to the event-based methods presented, with minimal compu-

tational overhead based on our framework and a total latency of around 250 ms, can compete with

the performance of the single-modal, frame-based, tracking-by-detection approach that uses SSD

with 359 ms latency (>100 ms difference).

In summary, the results presented validate our assumptions, especially under more efficient and

optimized DNN object detectors such as YOLOv3. Our results showed significant overall ob-

ject detection and tracking improvements using classical computer vision techniques that leverage

event data. The best performance was achieved when combining both proposed methods under

either event mask type, especially when using the event-based mask. The outperformance of the

event-based mask further proves the benefit of incorporating the polarity data of events in object

detection and tracking applications.

4.4 Experiment Design

Building on the MEVDT dataset introduced in Chapter 2, we design an experiment to evaluate

vehicle detection and tracking performance using high-temporal-resolution LiDAR measurements.

This experiment aims to validate the effectiveness of our event-based approaches in real-world

vehicle position-tracking scenarios. This section describes the design of this experiment, including

how the data is collected and processed, as well as the metrics used in our evaluation.
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4.4.1 LiDAR-based Tracking Experiment Setup

For this experiment, we employ the industrial high-speed LiDAR Benewake TF03-100, as briefly

mentioned in Chapter 2. This LiDAR is capable of measurements up to 100 meters with a reso-

lution of 1 cm and an update rate of 1000 Hz and has an estimated error of ±10 cm within the

10 m range, and about 1% error beyond 10 m. It was used to capture high-temporal-resolution

ground truth positional measurements of vehicles in 13 out of the 63 recorded dataset sequences.

Specifically, it was set up to track a single vehicle driving towards it at varying speeds, positioned

at a range of 30 to 60 meters. Concurrently, the DAVIS 240 camera, positioned on a high elevation

and pointing downwards, captured both the vehicle’s images and events. This setup allowed for

synchronized data collection from both the LiDAR and the camera, enabling a precise analysis of

vehicle movement. Based on our measurements, the vehicle enters the camera’s field of view (in

Scene B) approximately at the 40-meter mark and exits at around 28 meters from the LiDAR.

4.4.2 Data preprocessing and Synchronization

To make use of the data collected to estimate the performance of our tracking methods, the data

from the different modalities must be preprocessed and synchronized to yield useful data.

4.4.2.1 Ground truth LiDAR data processing

After recording the distance measurements using LiDAR, the gaps due to the sporadic missing

data points of the undetected vehicle are initially filled using linear interpolation. Afterward, the

data points are resampled to convert from a non-uniform to a uniform sampling rate of 1000 Hz,

equivalent to a 1 ms difference between every two consecutive data points. Finally, the resulting

data is smoothened and filtered using a Chebyshev Type II-type low-pass filter with a passband and

a stopband frequency of 10 and 12 Hz, respectively, as well as a passband ripple of 1dB and a stop-

band attenuation of 80 dB. Thus, generating pre-processed ground truth distance measurements

with a sampling rate of 1000 Hz. The resulting synchronized and filtered LiDAR-based ground
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Figure 4.7: Filtered LiDAR ground truth distance data collected with a sampling rate of 1000 Hz
showing 13 trajectories for the single-object tracking validation experiment. The time between 300
and 500 seconds is removed due to no available tracking data.

truth data is demonstrated in Figure 4.7.

4.4.2.2 Converting 2D Object tracking to distance measurements

To convert the 2D BBs of the vehicle detections into estimated distance measurements, we use the

center-right coordinate V(x,y) of the detection’s BB at a given moment, resembling the front of the

vehicle. This coordinate can then be used to estimate the distance from the LiDAR. However, due

to the different types of lens distortion, namely radial and tangential, such conversion is non-linear.

Hence, the removal of lens distortion is critical for accurate positional estimation. This is achieved

by the camera calibration process which generates the camera’s geometry (also known as intrinsic

parameters) as well as the lens distortion models which are used to correct the captured images, as

the event coordinates, as shown in Figure 4.8(a).

Afterward, to enable a linear pixel position-to-distance conversion, the bird’s eye-view perspec-

tive is a common approach to object position estimation, especially in traffic surveillance applica-

87



(a) Lens distortion removal.

(b) Perspective transform.

Figure 4.8: Demonstration of the camera calibration process and bird’s eye perspective transform
which are required for accurate object tracking and positional measurements. (a) the distortion is
removed from the captured image using the DAVIS 240c sensor, (b) then the scene’s perspective
is transformed to provide a bird’s eye view of the region of interest.

tions. However, due to the geometry of the road relative to the camera and its elevation level, a

perspective transform is necessary to yield a linear conversion. Accordingly, the perspective trans-

formation matrix M of size 3×3 is generated using 4 initial points (pixels) on the image, along with

the desired final coordinates for each of them, to produce a bird’s eye view perspective, as shown

in Figure 4.8(b). Moreover, the 4 chosen points are of known real-world distance measurements,

which enable the final conversion from a pixel coordinate, on the x-axis, to a distance-per-pixel

value.

We note that this process is performed initially to yield the required transformation matrices
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where the tracking point V(x,y), which refers to the center-right coordinate of the detected vehicle,

is initially undistorted, then transformed using the following equation:

Z(x,y) =

(
M(0,0)Vx +M(0,1)Vy +M(0,2)

M(2,0)Vx +M(2,1)Vy +M(2,2)

,
M(1,0)Vx +M(1,1)Vy +M(1,2)

M(2,0)Vx +M(2,1)Vy +M(2,2)

)
, (4.1)

where Vx and Vy and the undistorted x and y coordinates of the tracking point V(x,y), M is the

perspective transform matrix generated earlier, and Z(x,y) is the final transformed pixel position.

Note that the center-right coordinate, V(x,y), resembles the front of the vehicle. Accordingly, the

x-coordinate of the resulting point Z(x,y) is converted to the estimated distance to the LiDAR

by normalizing it (subtracting from and dividing by the frame’s width in pixel count) and then

multiplying by the measured distance-per-pixel (∼4.4 cm/pixel). Finally, the resulting point is

offset by the estimated distance between the frame’s side to the LiDAR (28 m). This process is

applied to all the tracking points produced by our methods presented in Section 4.3.

4.4.2.3 Temporal synchronization

The system clocks of the different computers are typically synchronized using an online global

clock, however, only to the order of seconds at best. Moreover, in our data collection procedure,

a convenient network-based time synchronization method was not feasible due to the significant

distance between both the camera and the LiDAR, eliminating the possibility of conveniently con-

necting the data collection computers to enable temporal synchronization. This presents a chal-

lenge for our high-temporal-resolution tracking data when evaluating it according to the ground

truth distance. Therefore, we intuitively achieve temporal synchronization by using the previously

labeled 2D ground truth BBs, generated at a high rate of 384 Hz [45], for the 13 sequences in-

volved, and manually synchronizing them with a resampled version of the filtered LiDAR data

collected at 1000 Hz presented earlier, thus minimizing the temporal difference as much as pos-

sible. Accordingly, we have found the temporal synchronization difference to be 0.719 seconds

between the system clocks of both devices. This value is subsequently used to offset all of the

generated vehicle tracking data and enable a millisecond level of synchronization.
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4.4.3 Experiment Parameters and Metrics

4.4.3.1 Vehicle detection and tracking configurations

Using the optimal configuration, found in our ablation study in Section 4.3, which combines both

improvements proposed, we evaluate the distance estimation results at different uniform rates of

24, 50, 100, 200, and 500 Hz, using the tracking modes A3 and B3 described earlier, in combination

with the frame-based object detectors YOLOv3 [149] and SSD [108]. We match the ground truth

LiDAR data to the different tracking rates by resampling it at the defined uniform rates, while

only keeping the tracking data where the vehicle is in the camera’s field of view till just before

it starts leaving the scene (i.e., the front of the vehicle no longer visible in the frame). Then, the

resulting outliers are manually removed, if any, which are due to the interpolation required in the

resampling process of ground truth data, to yield an identical number of possible tracking points

at each tracking rate for proper and accurate evaluation.

4.4.3.2 Evaluation metrics

The results of this experiment are evaluated using several error metrics, including the median

absolute error, the median relative tracking error, and the root-mean-square error (RMSE). The

metrics are estimated using only the successfully detected points, which are highlighted by the

successful detection rates calculated for each tracking configuration. The median error metrics are

chosen due to their robustness to outliers in comparison to the mean error metrics. Such outliers

can result due to the resampling and temporal synchronization errors, which affect the results but

without validity. Further, we note that this experiment does not account for any additional object

detections besides the vehicle being tracked. These detections are ignored. However, missed

detections (false negatives) would affect the vehicle detection success rates. Finally, we provide

the mean of the temporal synchronization errors at each rate to provide insight into their effects on

tracking performance, if such correlation occurs.
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4.5 Results and Discussion

The results of the validation experiment are presented in Table 4.4. To begin with, we can notice

that our presented event-based methods, in combination with our general framework, are advanta-

geous to the vehicle detection and tracking process as highlighted in the lowest tracking rate. In

terms of successful detection rates, at 24 Hz (equivalent to the image frames sampling rate), the

vehicle detection rate improved significantly from 66.4% to 81.3% when using our event-based

object detection recovery presented earlier, compared to only frame-based detection when using

YOLOv3, further validating our prior assumptions. Similarly, detection results improved, albeit

marginally, by 0.1% when using SSD as the frame-based object detector. This is due to the se-

lected SSD variant being a more accurate and stable object detector. Meanwhile, at higher tracking

rates, the event-based mask approach A3 has increasingly outperformed the edge-based mask ap-

proach B3, ending with a difference of 6.2% for YOLOv3 and 7.1% for SSD at 500 Hz, compared

to a negligible difference at 24 Hz.

As for the main error metrics, we observe that modes A3 and B3 have presented significant

benefits when combined with YOLOv3 at 24 Hz, but with mixed results for SSD at the same rate.

Nevertheless, at higher tracking rates, the error magnitudes improve substantially for either object

detector, where the best multi-modal tracking mode, A3, at 500 Hz resulted in a median absolute

error of 6.4 cm and 4.8 cm, for YOLOv3 and SSD, respectively.

Interestingly, we observe that the error rates get consistently lower as we increase the tracking

rates, with a negligible deterioration in object detection performance, when using either frame-

based object detectors with any event-based object detection mode. This can be partially attributed

to the BB refinement process which improves the accuracy of the point V(x,y) that represents the

front of the vehicle, where if given more tracking points, it would consistently improve on each.

Another reason could be the higher average temporal synchronization error, indicated at the lower

tracking rates, which is primarily due to the resampling and synchronization errors of the ground

truth data collected at 1000 Hz when downsampled to lower tracking rates.

Moreover, in Figure 4.9, we plot the results for 4 selected trajectories (sequences 3, 12, 7, and
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Table 4.4: Vehicle detection and tracking validation experiment results under various detection
configurations and tracking rates. A summary of different error metrics is presented, along with the
successful detection rates and temporal synchronization errors. We demonstrate that our presented
methods successfully leverage event data to enhance vehicle detection and tracking performance
at various tracking rates.

Frame-based
Object Detector

Tracking
Rate (Hz)

Event-based
Detection Mode

Metric

Median
Abs. Error

(cm)

Median
Relative

Error (%)

RMSE
(cm)

Successful
Detection
Rate (%)

Mean Temporal
Synchronization

Error (s)

YOLOv3

24
N/A* 21.2 0.66 31.0 66.3

0.0112A3 11.1 0.33 27.8 81.2
B3 11.4 0.34 22.9 79.6

50 A3 9.2 0.28 17.9 80.8
0.0043

B3 10.4 0.31 19.0 76.2

100 A3 7.2 0.22 15.4 81.1
0.0016

B3 8.9 0.27 17.1 75.4

200 A3 6.7 0.20 14.3 81.0
0.0013

B3 8.4 0.25 16.3 75.2

500 A3 6.4 0.19 13.6 81.1 0.0004
B3 8.1 0.25 15.9 74.9

SSD

24
N/A* 6.6 0.20 59.9 91.2

0.0112A3 7.2 0.22 21.7 91.3
B3 7.2 0.22 21.7 91.3

50 A3 6.2 0.18 14.8 90.5
0.0043

B3 6.4 0.20 14.8 85.9

100 A3 5.2 0.16 11.4 90.3
0.0016

B3 5.5 0.17 12.7 84.3

200 A3 5.0 0.15 11.2 90.5
0.0013

B3 5.2 0.16 11.9 83.7

500 A3 4.8 0.15 10.0 90.4 0.0004
B3 5.0 0.15 11.5 83.3

* Object detection and tracking using image frames only (no event data used). The best result per detector and metric
is highlighted in bold.

11) out of the 13 presented in Figure 4.7. The results of the modes A3 and B3, at the tracking

rates of 24 Hz and 500 Hz, are compared to the ground truth data and the frame-based-only track-

ing results at 24 Hz, using YOLOv3 as the frame-based object detector. The selected trajectories

represent different vehicle acceleration rates, where the vehicle moves with a consistent speed in

trajectories (a) and (b) in Figure 4.9, whereas it comes to a full stop before accelerating again in tra-

jectories (c) and (d). Similarly, the results demonstrate the feasibility of high-temporal-resolution

tracking, as well as the improvement to the frame-based method at 24 Hz. Nonetheless, we notice
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Figure 4.9: Demonstration of the distance estimation tracking results of 4 selected trajectories
at the tracking rates 24 Hz, and 500 Hz, using tracking modes A3 and B3, compared to the
ground truth LiDAR data, as well as the frame-based only approach. All results are presented
using YOLOv3 which underperformed the other frame-based object detector but benefitted the
most from our proposed event-based methods.

some variance in the trajectory of the vehicle in Figure 4.9 (c) and (d) for both proposed methods at

500 Hz, in contrast with the tracking results at 24 Hz. This variance is caused by the low number of

events generated when the vehicle is still after reaching a stop. The lack of motion causes a lower
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number of events to be generated. Therefore, the event-based detection and tracking process is

affected by the events generated due to noise or the lack of events generated altogether, causing the

estimated distance to be unstable, and negatively affecting the correct detection rates. This further

highlights the limitations of event cameras in static scenes and stresses the importance of filter-

ing techniques, which are not considered in this study, to improve the event data’s signal-to-noise

ratio. Likewise, our framework is also affected by a degraded image frame input in conditions

such as continuous low-light or motion blur, which the inter-frame event-based detection process

is dependent on, at least initially. This case, however, is not considered in this work due to the lack

of proper data for evaluation and testing but can be addressed in future works.

In summary, consistent with the results presented in Section 4.3, the tracking configuration

mode A3, which entails an event-based mask along with both improvement methods presented,

consistently provides the best results under the varying tracking rates and either frame-based ob-

ject detectors. Overall, we conclude that this experiment is successful. Results show tracking

results within the ground truth data’s margin of error, at various temporal resolutions and tracking

rates. Thus, reaffirming the capabilities and advantages of incorporating event data with proper

event-based techniques to improve the performance of a frame-based framework by applying low-

cost, classical image processing and computer vision techniques on the asynchronous, and high-

temporal-resolution event data.

4.6 Conclusion

In this work, we have presented an improved, high-temporal-resolution object detection and track-

ing framework using a combination of frame and event-based methods. Building on our prior work

[45], we have introduced two event-based methods that further enhance the robustness and accu-

racy of the detection and tracking framework. These methods are event-based BB refinement and

continuous event-based object detection and recovery. Using a labeled MOT vehicle dataset with

HOTA metrics, an ablation study was conducted, which showed that the two methods combined
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provide significant performance gains outperforming frame-based and prior approaches alike, at

tracking rates from 24 to 384 Hz. The results show that these event-based methods, in combination

with optimized and real-time object detector models such as YOLOv3, can benefit substantially

by incorporating the asynchronous and high-temporal-resolution event data in a multi-modal ap-

proach. More specifically, these methods can reduce the effects of intermittent frame-based object

detection with various infrequent missed detections, and improve the precision of a detection’s BB,

with minimal computational overhead. This was demonstrated by the absolute improvements of

11.5% in the DetA metric, and 7.5% in the overall HOTA metric, compared to the single-modal

frame-based approach at 24 Hz using YOLOv3. Nevertheless, these approaches are still suscep-

tible to false detections (i.e., false positives) produced by the frame-based object detectors, which

are given higher confidence due to the presumed robustness of these models. This is an indirect

result of classical methods that are not quite dynamic and require a decent amount of handcraft-

ing. Instead, some learned event-based methods can be explored to replace some of the proposed

components of our presented framework with a more dynamic approach toward handling noise or

signal degradations resulting from either modality.

Furthermore, a validation experiment was designed and conducted to demonstrate the useful-

ness of our hybrid framework using real-world values. A high-speed LiDAR was used to collect

ground truth distance measurements for vehicle tracking at a 1000 Hz sampling rate. The vehicle

detection and tracking results were generated at various temporal rates, including 24 Hz (equal

to the framerate of the APS) as well as 50, 100, 200, and 500 Hz high-resolution tracking rates.

The tracking results were assessed using different error metrics and overall detection success rates.

Results showed that high-temporal-resolution tracking is feasible with output within the ground

truth data’s margin of error, as well as very high successful detection rates, yielding a true high-

resolution tracking output by utilizing event data appropriately.

Overall, this work demonstrates the effectiveness and capabilities of event-based vision, and

how well it can complement frame-based vision for different computer vision tasks. The properties

of this sensing modality provide great potential that requires proper methods to fully utilize it.
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Future work potential includes replacing some of the presented classical and hand-crafted event-

based components with learned ones to achieve a more dynamic and robust performance under

various challenging scenarios for both modalities, such as non-static scenes with ego-motion for the

event-based methods; and low-light or motion blur for the frame-based methods. Nevertheless, that

would require larger amounts of labeled event and multi-modal datasets, and possibly other event

representations. Furthermore, this work can be tailored to on-vehicle cameras that are essential

in autonomous vehicles and automated driving, with further development and applicable datasets.

These approaches would require the ability to differentiate between foreground and background

events to enable robust object detection and tracking performance.
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CHAPTER 5

CSTR: A Compact Spatio-Temporal Representation

for Event-Based Vision

Event-based vision is a novel perception modality that offers several advantages, such as high dy-

namic range and robustness to motion blur. In order to process events in batches and utilize modern

computer vision deep-learning architectures, an intermediate representation is required. Never-

theless, constructing an effective batch representation is non-trivial. In this chapter, we propose

a novel representation for event-based vision, called the compact spatio-temporal representation

(CSTR). The CSTR encodes an event batch’s spatial, temporal, and polarity information in a 3-

channel image-like format. It achieves this by calculating the mean of the events’ timestamps in

combination with the event count at each spatial position in the frame. This representation shows

robustness to motion-overlapping, high event density, and varying event-batch durations. Due to

its compact 3-channel form, the CSTR is directly compatible with modern computer vision ar-

chitectures, serving as an excellent choice for deploying event-based solutions. In addition, we

complement the CSTR with an augmentation framework that introduces randomized training vari-

ations to the spatial, temporal, and polarity characteristics of event data. Experimentation over

different object and action recognition datasets shows that the CSTR outperforms other represen-

tations of similar complexity under a consistent baseline. Further, the CSTR is made more robust

and significantly benefits from the proposed augmentation framework, considerably addressing the

sparseness in event-based datasets.
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Figure 5.1: Overview of the general framework of this chapter. Sparse and asynchronous events,
representing brightness changes at each pixel, are captured using an event-based sensor. To utilize
this spatio-temporal event data, an intermediate representation is required to leverage modern deep-
learning solutions when processing events in batches. In this work, we propose the Compact
Spatio-Temporal Representation (CSTR) that encodes spatial, temporal, and polarity information
of event data in a 3-channel image-like format. Accordingly, the CSTR is directly compatible with
off-the-shelf pre-trained CV architectures.

5.1 Introduction

Perception plays a crucial role in real-time robotic applications, enabling their operation in dy-

namic and unpredictable environments [13, 20]. These applications often operate under challeng-

ing lighting conditions, including high dynamic range (HDR) or high-speed motion scenes. En-

suring accurate perception and prompt responses under such conditions is vital for their success,

especially in safety- or time-critical applications like AVs [13] and industrial automation [20]. For

instance, in an HDR scene such as when emerging from a tunnel in broad daylight, the failure to

detect objects like vehicles or traffic signs can have severe consequences [129]. To address the

challenges of robust operation in challenging lighting conditions (e.g., HDR or high-speed motion

scenes) and in potentially dynamic and unpredictable environments, many researchers have in-

creasingly turned to event-based vision [29, 55] as a promising alternative visual sensing modality.

Event-based sensors, such as the Dynamic Vision Sensor (DVS) [101] or the Asynchronous

Time-Based Image Sensor (ATIS) [140], operate by capturing per-pixel brightness changes asyn-

chronously and at very high temporal resolutions [101, 140]. This results in a spatially sparse yet

temporally dense output that effectively represents all visual changes in a scene over a specified

time interval. In contrast, traditional cameras capture intensity images at a fixed rate, such as
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24 frames per second [21]. This fixed rate can possibly lead to oversampling of static scenes,

resulting in redundant data; or undersampling of scenes with high-speed motion, resulting in

motion blur [55]. Overall, event-based vision offers several distinct properties that address dy-

namic range, response time, and motion blur issues. These properties include an HDR of >120

dB, microsecond-level temporal resolution, low output latency in the order of microseconds, and

low power consumption averaging a few milliwatts [101, 55]. Consequently, these characteris-

tics make event-based vision particularly well-suited for real-time robotic applications [52, 51].

Such applications require accurate perception and prompt response to visual changes, especially in

challenging scenarios such as HDR scenes [59], low-light conditions [189], or high-speed motion

environments [170]. In comparison, traditional cameras often struggle to perform effectively in

such scenarios [129, 51].

While the properties of event-based vision are very compelling, effectively utilizing event

data in various applications presents a challenge. The generated event stream is asynchronous

and sparse, necessitating its transformation into a compatible format for established algorithmic

methodologies. For instance, most traditional object detectors and classifiers employ a three-

channel input designed for RGB imagery [149, 72]. However, the independence and sparsity of

events make it non-trivial to establish batch relationships, often leading to the creation of hand-

crafted representations tailored to specific applications [191, 91]. This inherent problem hampers

generalization, as traditional frame-based cameras benefit from standardized formats that facilitate

the canonical transfer learning of dataset weights across tasks. In contrast, event-based algorithms,

are highly sensitive to the specific type of open-source data and its representation. This further

exacerbates the data sparsity issue. As a result, the data needs to be closely associated with the

particular task at hand, adversely impacting generalization and posing challenges for training con-

vergence.

Accordingly, most works resort to using image-like representations in order to leverage pre-

trained CV models. One common representation is the Event Frame [78, 62], chosen for its sim-

plicity. This representation keeps track of whether any event has occurred at each pixel within a
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given time period (where the time period is a variable that can be adjusted per task). By doing

so, the batch of events is effectively transformed into a single-channel image (or can be replicated

to form a 3-channel image) that can be utilized with existing algorithms. While convenient, this

approach has some limitations. Notably, it binarizes the behavior for the specified sampling period,

losing temporal and polarity information (brightness changes), and is generally outperformed by

more sophisticated approaches [16, 192, 57, 9]. Alternatively, more advanced representations have

been explored to capture temporal and polarity contexts [16, 192, 57, 9]. These representations

demonstrate better performance, but they come with either the trade-off of notable pre-processing

overhead [16, 192] or are not directly compatible with pre-trained CV architectures that require a

3-channel input [57, 9].

To address these challenges, we propose a novel representation for event data called the Com-

pact Spatio-Temporal Representation (CSTR). The CSTR efficiently encodes the spatial, temporal,

polarity, and event count information of a given event batch while requiring minimal processing

overhead. This is achieved by calculating the mean timestamps of the events per polarity type

(positive or negative) and the normalized event counts at every spatial position in the resulting

representation frame. This results in a 3-channel image-like format that is directly compatible with

existing state-of-the-art networks [149, 72], allowing for seamless integration without the need for

additional modifications. We visualize the general framework of this chapter in Fig. 5.1.

We demonstrate the effectiveness of the CSTR through a comprehensive series of well-

established event-based recognition benchmarks. This benchmarking includes six well-known rep-

resentations that are similarly compatible with off-the-shelf networks over the following datasets:

N-MNIST [130], N-CARS [161], N-Caltech101 [130], CIFAR10-DVS [93], ASL-DVS [15], and

DVS-Gesture [5]. The CSTR is consistently an excellent performer, achieving the highest overall

classification accuracy. Furthermore, the CSTR is stable when applying random augmentations;

these are demonstrated to notably enhance classification accuracy, validating that the CSTR is a

robust approach for encoding event data.

We summarize the contributions of this work as follows:
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• We introduce the compact spatio-temporal representation (CSTR) for event-based vision,

which efficiently encodes the spatio-temporal information of events in a 3-channel image-

like format, directly compatible with modern CV architectures.

• We provide a comprehensive evaluation of the CSTR against foundational event representa-

tions of similar complexity using six event-based recognition datasets.

• We propose an augmentation framework for event data, significantly improving the perfor-

mance of the CSTR and other spatio-temporal representations.

• We demonstrate the effectiveness of the CSTR and the data augmentation framework when

combined with off-the-shelf pre-trained classifiers.

The source code developed for this work is available at: github.com/zelshair/cstr-event-vision

5.2 Related Work

Event-based vision has recently seen significant advancements that leverage its unique characteris-

tics for various applications [55, 189, 170, 51, 9]. There are two general approaches to effectively

utilize the asynchronous and sparse event data. These include event-by-event and batch processing.

In this section, we provide an overview of the relevant methods of each approach, highlighting their

strengths and identifying their limitations. Next, we provide an overview of augmentation methods

explored in the literature for enhancing event data. Finally, we introduce the proposed CSTR along

with a new augmentation in the context of these limitations, noting how they address some of the

remaining challenges.

5.2.1 Event-by-Event Processing

Event-by-event processing methods directly utilize events as they are received [156, 56, 84, 42].

This approach is intuitive and minimizes processing delays. The most prominent methods are
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spiking-neural-networks (SNNs) [42, 53, 133, 181, 117]. An SNN is a bio-inspired version of arti-

ficial neural networks comprising interconnected neurons. SNNs operate by integrating incoming

spikes (events at the input layer) over time. An output spike is generated when the membrane

potential of a neuron surpasses a certain threshold causing it to reset. The generated output spikes

propagate information to other neurons in deeper layers, connected hierarchically. This neuron-

activation threshold enables SNNs to be computationally efficient [181, 117, 137].

Despite the computational efficiency and minimal latency of event-by-event algorithms, they

suffer from some limitations. Processing events individually inherently lacks temporal context,

necessitating tailored solutions to compensate for the lack of event history [156, 56, 84]. Ironi-

cally, this approach can become computationally expensive during periods of high event density.

Scenes with significant motion and texture can generate a substantial amount of events per second,

requiring a proportional number of operations. As event-based sensors continue to improve their

frame resolutions [21, 162], this computational challenge will only intensify. While SNNs some-

what address the latter with their energy-efficient design, they are non-trivial to set up and imple-

ment [42, 53, 133]. Moreover, SNNs require specialized hardware, which limits their widespread

adoption, posing additional barriers to deployment.

5.2.2 Batch Processing

Batch processing methods accumulate, encode, and classify the events generated in a given time

period. These approaches add temporal context with the capability to provide synchronous re-

sponses (i.e., a classification per each batch period). By applying an intermediate encoding method,

they have the key benefit of being able to employ modern computer-vision networks. This is di-

rectly germane to the problem statement of being able to leverage existing state-of-the-art networks

(and corresponding training weights). Hence, we focus this survey on event-batch representations

that are compatible with frame-based networks.
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5.2.2.1 Image-Like Representations

Many opt to represent event batches in a simple image-like format. These representations encode

spatial, temporal, and/or polarity information into traditional one, two, or three-channel images.

Such approaches are popular because they enable rapid prototyping and demonstrate strong per-

formance across various perception tasks [62, 78, 114]. For example, the Event Frame encodes

the event’s spatial information (i.e. the existence of any events per spatial position) [78], while

the Event Count (also known as Event Histograms) [7, 106, 114] indicates the number of events

recorded, instead. More advanced versions of these representations incorporate polarity infor-

mation as well [7, 62, 114]. These representations, however, are inherently limited as they do not

capture the temporal information of the event data. To address this limitation, more comprehensive

representations have been developed to incorporate spatio-temporal information in an image-like

format. One popular representation is Timestamp Images [134], also referred to as Time Surfaces

[91]. Timestamp Images encode the timestamp information of the latest event at each spatial index

[134], often represented using a separate channel per polarity type resulting in a 2-channel repre-

sentation [134]. Recent advancements related to Timestamp Images have explored sophisticated

techniques to enhance robustness against noise [86, 161]. For instance, DiST [86] incorporates

temporal discounting by considering the ρ spatio-temporally neighboring events at each spatial

position. Thus, discounting the timestamps of the latest events using a normalized time range of

the neighboring pixels.

One challenge encountered in temporal representations is motion overwriting. While timestamp

images excel in retaining contour information, the recent timestamps can be overwritten. This

can happen when using long batch periods or in highly textured scenes. Accordingly, various

representations have emerged that incorporate both the temporal and count information of events

in different forms [3, 8, 175, 190]. For instance, a 4-channel representation, known as Event

Image [175, 190], incorporates recent timestamps and event count per polarity. Another work by

Bai et al. [8] proposes a more compact 3D representation that includes the temporal information

of both polarities as well as the event count in separate channels. This forms a spatio-temporal
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image-like representation that encompasses vital information about the event data. The authors

also investigate the advantages of this approach in the context of event-based object recognition.

Overall, the limitation of most spatio-temporal image-like representations can be distilled to

overlapping events. A high number of overlapping events often results when using long batch

periods or when operating in highly textured scenes. This can result in the overwriting of recent

events causing a loss of information. Shortening the batch period can potentially limit this issue

[190], however, this reduces temporal context and increases processing frequency.

As an alternative, image reconstruction from events is an effective approach that results in in-

tensity images that enable the direct use of modern frame-based CV architectures [147]. However,

generating images from events is a very processing-heavy task, making it not very suitable for

real-time systems.

5.2.2.2 Advanced 4D Grid-Like Representations

Advanced grid-like representations have been proposed to overcome the issue of event overlapping,

thus, retaining more information [9, 57]. For example, TORE volumes [9] utilizes a first-in-first-

out buffer at each spatial position to retain the temporal information of the last K events, for

both polarity types, where K > 1. This results in a Four-dimensional (4D) representation with a

resolution of 2×K×H×W , where H and W are the frame’s height and width, respectively. By

doing so, TORE volumes [9] limit the problem of event-overwriting which is often encountered in

image-like representations.

Another notable representation is Event Spike Tensors (EST) [57]. EST employs an end-to-end

learning approach to derive event representations from input data. This is achieved by applying

convolutional operations on a batch of events with a learned kernel comprising a multi-layer per-

ceptron with two hidden layers. Then, the resulting convolutions are discretized, yielding a 4D

grid-like representation with dimensions of 2×B×H×W , where B is the pre-selected number of

temporal bins.

Although these representations demonstrate remarkable performance in a multitude of tasks
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[9, 57], it is important to note that the choice of compatible DL architectures is somewhat limited.

Consequently, an additional quantization step is often required to convert the 4D representation

into a 3D format [57]. An alternative approach involves splitting the 4D grid along the polarity

dimension (first dimension) and employing multiple DL models in parallel to process the resulting

outputs, or modifying the input layers of a DL model to accommodate the higher-dimensional

input. However, both approaches may lead to higher memory and computational requirements due

to the increased dimensionality of the inputs.

5.2.2.3 Voxel Grids

Voxel grids offer a precise means of capturing the spatial and temporal characteristics of events.

A voxel represents a 3D point, traditionally denoting the height, width, and depth coordinates

in a 3D model. Combining these voxels creates a 3D structure known as a voxel grid. Voxel

grids are widely used in 3D CV, especially for representing a LiDAR-generated point cloud [68].

Similarly, it can be also used to handle sparse event data. Voxel grids are applied to event batches by

converting the depth axis to a temporal axis using B temporal bins per event batch. This conversion

is typically achieved through spatio-temporal quantization employing a designed sampling kernel.

The resulting voxel grid has dimensions of B×H×W , allowing it to retain the essential spatio-

temporal relationships within the event batches [148, 191, 192]. Accordingly, researchers have

explored the application of voxel grids in various CV tasks, including optical flow estimation

[191, 192], HDR video reconstruction [148], and object recognition [179].

Despite their advantages, the use of voxel grids poses two primary challenges. Firstly, gen-

erating voxel grids can be computationally demanding, especially when utilizing sophisticated

sampling kernels. Secondly, the adoption of voxel grids may lead to high memory requirements

due to the resulting increased input dimensionality, similar to the challenges with 4D representa-

tions discussed earlier. This issue becomes particularly prominent with high-resolution grids (i.e.,

a large number of bins B) and long batch periods.
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5.2.2.4 Graph-Based Representations

Alternative to voxel-grids, events can be represented as graphs [15, 16, 155]. Here, each sampled

event in an event batch is treated as a vertex vi. These vertices v (also referred to as nodes)

are then connected to each other using edges ε, based on a pre-defined spatio-temporal distance

metric, forming the graph G. This approach similarly captures the temporal relationships within the

event batch and offers compatibility with existing Graph Convolutional Networks (GCNs) [15, 16].

Graph-based solutions provide flexibility in the processing of the event data, allowing for a natural

way to incorporate their spatial and temporal information [15, 16, 155]. Compared to traditional

CNNs, GCNs exhibit significantly lower inference computational complexity [155].

Nevertheless, generating the graphs can be computationally demanding. This is particularly

true when dealing with high-density event streams, resulting in a large number of vertices and

edges [150]. Consequently, it is often necessary to sample a subset of events from the batch to

reduce storage and computational costs [16, 155]. Moreover, unlike CNNs in traditional CV, there

is limited availability of Graph Convolutional Network (GCN) models pre-trained on large-scale

datasets. This hampers the ability to leverage transfer learning. As a result, researchers often

develop their own GCN architectures to accommodate the generated graphs [15, 16, 155].

5.2.3 Augmentation Methods for Event-Based Vision

Data augmentation techniques play a crucial role in enhancing the performance and generaliza-

tion of DL models. Given the limited availability of labeled event-based datasets, augmentation

methods offer an effective approach to expand the training data and improve model robustness. In

this subsection, we provide an overview of the different augmentation methods proposed for event

data.

Li et al. [98] propose several randomized geometric augmentations for training SNNs. These in-

clude common techniques such as horizontal flip, translation, and rotation; as well as other unique

techniques such as cutout, shear, and CutMix. These transformations introduce variations and en-

hance model performance. Gu et al. [65] introduce EventDrop, an augmentation framework for
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randomly dropping events within an event batch. It explores various event-dropping techniques,

including dropping events within a random time period, pixel area, or a random portion of the

sampled events. EventDrop improves robustness and has been evaluated for event-based object

recognition. The authors also explore the use of EventDrop on different combinations of event

representations and pre-trained classification models. EventMix [158] presents an advanced aug-

mentation framework that uses a random 3D mask to mix different event-batch samples and their

labels. This mixing technique enhances the diversity of the training data and has been evaluated

on a set of event-based recognition benchmarks as well. Naeini et al. [124] propose spatial, noise,

and time-series augmentations to improve contact-force estimation. Spatial augmentations include

rotations and resizing. Noise augmentations add sequences of noise to the dataset, which are gen-

erated by recording similar sequences without any movement. Time-series augmentations include

frame-shifting, which shifts all generated batch-representation frames within a given sequence; and

temporal event shifting, where a fraction of events are randomly selected and removed from one

frame and appended to an adjacent frame. For both types of time-series augmentations, the authors

explore a fixed index-shift range of +3 to −3. These augmentation methods, along with others

proposed in the literature, contribute to addressing the dataset scarcity issue in event-based vision.

By applying these techniques, models can better handle variations in event data and improve their

generalization capabilities. However, despite their importance, event data augmentation techniques

are still not thoroughly explored in the literature.

5.2.4 Literature Contribution

In this chapter, we present the CSTR, an alternative image-like representation for event-based

vision. The CSTR offers a comprehensive representation of sparse event data when processed in

batches while requiring minimal memory resources. It provides a choice that eliminates the need

for manual parameter tuning and can be generated in an online manner. It is important to note

that the CSTR is not meant to replace advanced or more sophisticated representations. Rather, it

serves as an excellent representation choice for initial proof-of-concept and facilitates the rapid
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deployment of event-based solutions. This is due to the compact 3-channel image-like format of

the CSTR, which enables the direct utilization of state-of-the-art CV architectures.

To validate the effectiveness of the CSTR, we conduct several experiments on various event-

based recognition benchmarks comparing it to other image-like representations of similar com-

plexity using various pre-trained classification networks. Additionally, we supplement our rep-

resentation with several randomized augmentation methods that impact different components of

events, including spatial, temporal, and polarity. These augmentation techniques further contribute

to improving the performance and the generalization capabilities of event-based vision models.

5.3 Methodology

In this section, we present our proposed event-based representation. First, we provide a detailed

overview of how events are generated. Then, we define the common and foundational image-like

representations that form the basis of our work. These representations fundamentally encode the

spatial and/or temporal components of events within the event batch. By analyzing the charac-

teristics of these representations, we derive a more advanced spatio-temporal representation that

enhances performance. We visualize these representations on the evaluation datasets in Fig. 5.2

(see: next page). Given that our approach aims to improve temporal context, we also introduce a

novel temporal augmentation technique to address the sparseness of training data.

5.3.1 Event Generation Model

In contrast to traditional cameras, event-based sensors capture per-pixel brightness changes, asyn-

chronously [101]. At a given pixel (x, y), an event e is generated whenever the logarithmic change

in brightness intensity exceeds a predefined contrast threshold C. This can be expressed as follows:

|log(I(x, y, t))− log(I(x, y, t−∆t))| ≥ C, (5.1)

108



where I(x, y, t) represents the intensity measurement at spatial position (x, y) at time t, and ∆t

represents the time duration since the last generated event at the same spatial position. The polarity

p of an event is determined by the sign of the brightness change. A brightness increase (on event) is

assigned p = +1, while a brightness decrease (off event) is assigned p = −1. Thus, p ∈ {+1, −1}.

Event-based sensors report each captured event ei as a combination of a microsecond timestamp

ti, a polarity pi, and a two-dimensional spatial coordinate (xi, yi). In general, an event stream ε

composed of n sequential events can be denoted as:

ε → {(t1, x1, y1, p1), (t2, x2, y2, p2), . . . , (tn, xn, yn, pn)}. (5.2)

Events can be grouped into batches either based on a specified batch-sampling period ∆T or

a fixed number of events. In this work, we focus on event batches accumulated using predefined

batch periods to enable a synchronous response.

The event generation process outlined above captures the spatio-temporal dynamics of the

scene. This is done by detecting changes in brightness intensity and encoding them as events

with corresponding timestamps, spatial coordinates, and polarities.

5.3.2 Foundational Event Representations

To represent a batch of events ε captured during a sampling period ∆T , several image-like rep-

resentations can be formed. We identify five foundational approaches identified in the literature:

Binary Event Frame, Polarized Event Frame, Binary Event Count, Polarized Event Count, and

Timestamp Image. While these representations are not typically referred to as Binary or Polarized,

we use these terms to distinguish between them clearly. We detail these approaches next.
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Figure 5.2: Visualizations of the CSTR as well as the foundational event representations investi-
gated in this work using various object and action recognition datasets. To enable visualization,
we normalize the Binary and Polarized Event Count representations. Further, due to the significant
event noise present in the N-Caltech101 [130] samples, we amplify the event count channels by a
factor of 20 to improve visualization. This is shown in the 3rd row, columns 3, 4, 6, and 8.

5.3.2.1 Binary Event Frame

The Binary Event Frame binarizes whether any events are detected at a given spatial location. Each

pixel position in the resulting two-dimensional H×W representation can be encoded as follows:

Fbin(x, y) =


1, if x = xi & y = yi

0, otherwise
, (5.3)
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where xi and yi are the spatial coordinates of each event ei in the batch ε. We encode the presence

of an event as 1 and the absence of any as 0. This representation is visualized in Fig. 5.2, column

one. Note how this approach is very simplistic and has low contrast; this is because it is highly

sensitive to motion-overlapping, where multiple events occur at the same spatial location, as well as

noise captured by the event camera. Accordingly, this representation suffers from frame saturation

which results under almost any batch-sampling duration, as shown in Fig. 5.2.

5.3.2.2 Polarized Event Frame

The Binary Event Frame can be extended to include polarity information. The Polarized Event

Frame incorporates this in a 2×H×W 3D matrix. The event batches are defined by:

F (x, y, p) =


1, if x = xi & y = yi & p = pi

0, otherwise
, (5.4)

where xi and yi are the spatial coordinates and pi is the polarity of each event ei. We similarly

encode detected events by 1 and the absence of events as 0, but for each polarity. This represen-

tation is visualized in Fig. 5.2 (second column), showing a notable contrast improvement. Similar

to the Binary Event Frame, this representation also suffers from frame saturation. Accordingly,

both Event Frame representations are more effective when generating batches based on a constant

number of events (ideally a low number) instead of a fixed sampling duration [62].

5.3.2.3 Binary Event count

Alternative to the Binary Event Frame, the Binary Event Count representation captures the number

of events at each spatial position. We encode this with the following equation:

Cbin(x, y) =
n∑

i=1

[x = xi & y = yi], (5.5)
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where n is the number of events. The Iverson bracket here would be equal to 1 if the expression is

true, which is whenever an event has the same spatial location as the pixel (x, y). This representa-

tion retains more information about the scene at each spatial location. Moreover, as visualized in

Fig. 5.2 (third column), this representation shows high temporal precision, albeit at the cost of less

sharp contour details.

5.3.2.4 Polarized Event Count

Analogous to the Polarized Event Frame, the Binary Event Count can be extended to include

event-polarity context. We similarly represent this with a 2×H ×W matrix as follows:

C(x, y, p) =
n∑

i=1

[x = xi & y = yi & p = pi], (5.6)

where n is the number of events, xi and yi are the spatial coordinates and pi is the polarity of each

event ei. This is visualized in Fig. 5.2 (fourth column), improving the contour details (though still

not as sharp as the Polarized Event Frame). In contrast to the Event Frame representations, the

Binary and Polarized Event Count representations do not suffer from frame saturation. Instead,

they are robust to long batch-sampling durations, as shown in Fig. 5.2. Nevertheless, both Event

Count representations require significant motion overlap and high event-density streams to yield a

meaningful signal.

5.3.2.5 Timestamp Image

An alternative approach to tracking the number of events is to identify the most recent timestamp

instead. This is achieved using the Timestamp Image representation [134], which is a 3D matrix

of size 2×H×W . Assuming that the batch’s events are sorted in chronological order (i.e., from

oldest to newest) we obtain this representation as follows:
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Ts(x, y, p) =


ti−ts
∆T

, if x = xi & y = yi & p = pi

0, otherwise
, (5.7)

where ts is the raw time offset representing the start of the event batch with temporal duration ∆T ,

and ti is the timestamp of the event ei. In (5.7), Ts(x, y, p) represents the normalized timestamp

(in the range of [0, 1]) of the latest event occurring at the pixel location (x, y) and polarity p.

The subtraction of ts removes the time offset from each event’s timestamp. This representation

is visualized in Fig. 5.2 (fifth column), where the normalized recent timestamp further improves

contour details over the naive Event Frame representations. Note, however, that this improved

contrast diminishes under high-density event streams with long batch periods. Additionally, the

Timestamp Image is also susceptible to noise in more recent events.

5.3.2.6 Combining Timestamp Image & Event Count

Given the inherent limitations of the Timestamp Image and the Event Count representations, com-

bining them can enhance their robustness [8]. To achieve this, we concatenate the two-channel

Timestamp Image Ts, defined in (5.7), with the normalized one-channel Binary Event Count. The

normalized Binary Event Count Ĉbin is defined as follows:

Ĉbin(x, y) =
Cbin(x, y)

max(Cbin)
, (5.8)

where max(Cbin) is the maximum event count in the frame. This combination results in a 3 ×

H ×W 3D matrix, as visualized in Fig. 5.2 (sixth column). While the addition of the event-count

information improves the contour details, the contrast of the recent timestamp channels is still

affected by long batch periods with high event density.
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5.3.3 Compact Spatio-Temporal Representation

The combined Timestamp Image and Event Count representation is generally robust but can lose

temporal context with motion-overlapping. A recent timestamp is most useful when the event data

is temporally sparse; however, can lose general temporal context when there are many overlapping

events. This bias can happen frequently when subjected to highly textured scenes or long batch

periods. To address this, we introduce the compact spatio-temporal representation (CSTR).

The CSTR improves the timestamp information by utilizing the mean timestamp instead to

better capture temporal context. Thus, we initially accumulate the normalized timestamp values of

all events at each spatial position as follows:

S(x, y, p) =
n∑

i=1


ti−ts
∆T

if x = xi & y = yi & p = pi

0, otherwise
, (5.9)

where S(x, y, p) represents the sum of the normalized event timestamps at position (x, y, p). Then,

we calculate the mean of events’ timestamps by dividing (5.9) over (5.6) as follows:

T̄s(x, y, p) =


S(x,y,p)
C(x,y,p)

, if C(x, y, p) ̸= 0

0, otherwise
, (5.10)

where T̄s(x, y, p) represents the mean timestamp at position (x, y, p). This is visualized in Fig. 5.2

(seventh column). Nevertheless, mean timestamps on their own can be insufficient to represent the

event data. Incorporating the event count can provide vital event-overlap context. Therefore, we

concatenate the 2-channel mean timestamp T̄s, defined in (5.10), with the normalized Binary Event

Count Ĉbin, defined in (5.8). This yields a 3-channel representation. We visualize the CSTR in Fig

5.2 (last column), showing that it retains strong temporal context and contour sharpness. Hence,

the CSTR approach adds robustness to motion-overlapping while retaining direct compatibility

with existing computer-vision networks.
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5.3.4 Event-based Data Augmentation Framework

Randomized data augmentations can improve the generalization of DL models. Further, they can

complement the spatio-temporal representations in event-based solutions. Accordingly, we pro-

pose a simple framework for randomized event-data augmentations that affect the spatial, tempo-

ral, and polarity information of event data. These augmentations can be combined and applied

when training an event-based DL model with a spatio-temporal representation.

5.3.4.1 Spatial Augmentations

Spatial augmentations are a common solution for introducing variations across the spatial dimen-

sion. In our framework, we explore a combination of rotations, rescalings, crops, and horizontal

flips, each with its own parameters to set. For optimal computational efficiency, we apply spatial

augmentations to the generated image-like event-batch representations.

5.3.4.2 Temporal Augmentations

Rich temporal information is a major component of event data. Temporal augmentations can help

enhance a model’s ability to handle temporal dynamics. This is vital for representations that in-

corporate temporal information (e.g., Timestamp Image [134]). As illustrated in Fig. 5.3, events

are shifted based on a randomized value λ within the range of [−1,+1], which is generated per

event-batch sample ε. This dynamic but consistent temporal shifting allows the model to learn

from different temporal perspectives and improves its robustness to varying temporal dynamics.

The temporal shift for each event ei in the event batch ε can be expressed as:

t′i = ti + θt(λ∆T ), (5.11)

where t′i is the shifted timestamp of event ei, θt is the max temporal shift threshold (θt ∈ (0, 1)),

and ∆T is the batch-sampling period. A balanced value for the max temporal shift threshold θt is

0.5, which indicates that the batch’s events can be only shifted by a max of ∆T
2

in either direction
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Figure 5.3: Illustration of the proposed temporal augmentation method. Spatio-temporal events
within a given batch are uniformly time-shifted by a randomized value λ multiplied by ∆T . Events
that fall outside the original temporal range [0,∆T ] are subsequently removed. The maximum
temporal shift θt that is demonstrated here is ±50% of the batch duration ∆T .

(shown in Fig. 5.3). Then, we filter out any events that fall outside the original batch’s temporal

range of [0,∆T ]. Note that the proposed temporal augmentations are applied to a given event batch

ε before generating an image-like representation.

5.3.4.3 Polarity Augmentations

Polarity augmentations introduce variations across the polarity domain, enabling the model to learn

from varying polarity correlations of events. In our framework, we adopt a simple approach of

inverting all the polarities in an event batch prior to frame transformation. This polarity inversion

typically implies the reversal of the direction of motion and can introduce robustness to variations

in lighting and motion. Hence, for each event ei in an event batch ε, the polarity pi is inverted

to p̄i if the threshold θp is met. The threshold θp is ideally set to 0.5, indicating a 50% chance of

inverting the polarities of a given event batch ε. Similar to the proposed temporal augmentation

method, the polarity augmentations are applied before generating the image-like representation.
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Table 5.1: Statistics of the event-based object and action recognition datasets used in our experi-
ments.

Parameter
Dataset

Object Recognition Action Recognition

N-MNIST [130] N-Cars [161] N-Caltech101† [130] CIFAR10-DVS† [93] ASL-DVS† [15] DVS-Gesture‡ [5]

Number of classes 10 2 101 10 24 11
Dataset Type Static True Static Static True True
Event Camera / Event Sensor ATIS [140] ATIS [140] ATIS [140] DVS-128 [101] DAVIS-240c [21] DVS-128 [101]
Frame Dimension (W×H) 35×35 128×128 240×180 128×128 240×180 128×128
# Total Samples 70000 24029 8709 10000 100800 38962
# Train Samples 60000 (86%) 15422 (64%) 6967 (80%) 8000 (80%) 80640 (80%) 30,978 (80%)
# Test Samples 10000 (14%) 8607 (36%) 1742 (20%) 2000 (20%) 20160 (20%) 7,984 (20%)
Avg ± Std of # samples/class 7000 ± 399.3 12015 ± 321.5 86 ± 119.3 1000 ± 0.0 4200 ± 0.0 3542 ± 1122
Min-Max range of # samples/class 6313-7877 11693-12336 31-800 1000-1000 4200-4200 2503-6676
Average # events/sample 4176 3966 115298 205072 28149 27339
Average event-batch duration 310 ms 100 ms 300 ms 1298 ms 110 ms 481 ms

† Indicates that the dataset does not have an official test split. ‡ Denotes that the dataset’s original sequences were divided into samples of 500 ms
with a 250 ms step size (following [173]).

5.4 Experiment Setup

In this section, we evaluate the proposed event-based representation for object and action recogni-

tion. Our primary comparison is evaluating our proposed event representation, the CSTR, against

the foundational representations defined in the methodology (Section 5.3.2). We do this over a se-

ries of well-known datasets to demonstrate our improvements in recognition tasks. Next, we take

the best-performing spatio-temporal representations and do a second comparison while employing

our proposed augmentation framework. Our experimental setup, including the network structures,

datasets, augmentations, and training parameters are introduced next.

5.4.1 Exp I: Baseline Representation Evaluation

In the baseline experiment, we compare the CSTR against the six foundational event represen-

tations presented in Section 5.3.2. Recall that the Event Frame representations are traditionally

encoded as either 0 or 1, while the foundational Event Count representations are encoded as the

number of events (without scaling). However, the Event Count channel associated with the com-

bined Timestamp Image & Event Count and the CSTR is normalized. This is done by dividing

each event-count value by the maximum number of events in the frame as defined in (5.8). We

apply this because the temporal representations are already scaled to be in the [0, 1] range.
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We add rigor by exploring three-channel configurations for the one- and two-channel represen-

tations. We do this to enable direct compatibility with the classification networks’ input structures

and better leverage their pre-trained weights. In the case of the one-channel Binary Event Frame

and Binary Event Count, we replicate the resulting channel three times. In the case of the Po-

larized Event Count, Timestamp Image, and the CSTR with mean timestamps only, we append

an empty channel of zeros of the same spatial dimensions. Lastly, for the two-channel Polarized

Event Frame, we first convert to an intermediary one-channel representation, where positive and

negative events are denoted by values of +1 and −1 (following the approach proposed in [78]).

We then replicate this three times instead of padding with a channel of zeros. These configurations

are determined through experimentation to yield optimal results for each representation.

5.4.1.1 Event-Based Recognition Datasets

Several event-based object and action recognition datasets are available in the literature. In this

work, we utilize four commonly used event-based datasets to evaluate our proposed methods for

object recognition: N-MNIST [130], N-Cars [161], N-Caltech101 [130], and CIFAR10-DVS [93].

Additionally, we evaluate our methods on two action recognition datasets, namely ASL-DVS [15]

and DVS-Gesture [5]. In Table 5.1, we provide an overview of the main details and statistics of the

selected recognition datasets.

For object recognition, all datasets except N-Cars [161] are effectively event-based versions of

their frame-based counterparts commonly used in conventional CV. These datasets are generated

using an event-based sensor, such as the DVS-128 [101] or the ATIS [140], mounted on a platform

that moves in parallel to a screen displaying image samples of each dataset. The platform is

programmed to move at various velocities and motions to simulate events similar to real-world

sensor data. N-Cars [161], on the other hand, was generated using an event camera mounted

on a moving vehicle driving on real-world roads. The dataset consists of events captured by the

event camera as the vehicle encounters different objects, including cars and pedestrians, in various

driving scenarios.
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For action recognition, ASL-DVS [15] consists of 24 hand shapes resembling different letters

from the American Sign Language. These shapes were recorded in an office environment with

constant illumination using DAVIS240c [21]. For each letter, 4200 samples were collected at a

sampling duration of 100 ms. Meanwhile, DVS-Gesture [5] consists of 1342 event-data sequence

recordings of 11 different gestures. These sequences were captured under three lighting conditions

and performed by 29 individuals. Due to the considerable length of the dataset’s sequences (∼100

seconds on average), we divide each into shorter samples of a fixed batch-sampling period. Ini-

tially, each sequence is split into a subsequence per gesture. Then, the resulting subsequences are

further divided into 500 ms samples with a 250 ms step size, following a similar approach used in

previous works [173, 179, 16]. The resulting number of samples is presented in Table 5.1.

Except for DVS-Gesture [5], we use the provided samples with pre-defined batch periods ∆T

from each dataset, as outlined in Table 5.1. The sampling periods range from 100 ms (N-Cars

[161] and ASL-DVS [15]) to roughly 1300 ms (CIFAR10-DVS [93]). This enables us to analyze

the robustness of different event representations to various batch-sampling periods.

Furthermore, Table 5.1 demonstrates an uneven distribution in the average number of samples

per class across the datasets. N-MNIST [130], N-Cars [161], ASL-DVS [15], and DVS-Gesture [5]

exhibit a substantial number of samples per class facilitating effective training and fine-tuning of

classifiers. In contrast, CIFAR10-DVS [93] and N-Caltech101 [130] have significantly fewer av-

erage numbers of samples per class of 1000 and 81, respectively. While the samples of CIFAR10-

DVS [93] are uniformly distributed among classes, the samples N-Caltech101 [130] are highly

unbalanced, ranging from 31 to 800 samples per class, posing a challenge for object recognition

tasks.

For datasets without an official test split (N-Caltech101 [130], CIFAR10-DVS [93], and ASL-

DVS [15]), we adopt the 80%-20% training-testing dataset-split strategy employed in similar works

[16, 179, 161]. These splits are generated once and utilized consistently throughout the experi-

ments of this work to ensure consistent benchmarking and fair comparisons. In addition, to address

the imbalance in the sample distribution within N-Caltech101 [130], we apply the same split ratios
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to each class’s samples. This approach avoids imbalanced splits and maintains a fair and consistent

benchmarking process across the different methods evaluated in this work.

5.4.1.2 Classification Models

We evaluate each event representation using six popular pre-trained CNN image classifiers. We

do this both for completeness and to represent real-world use. These classifiers include: ResNet18

[72], ResNet50 [72], MobileNetV2 [154], both Small and Large variants of MobileNetV3 [75],

and InceptionV3 [163] (limited to 3-channel representations only). We initialize all networks with

weights pre-trained on ImageNet [40]. Then, we replace the final fully connected layer with a cor-

responding layer that matches the number of output classes in the utilized dataset. For representa-

tions with 1 or 2 channels, we replace the initial input convolutional layers of each CNN classifier

with randomized weights to accommodate the desired number of input channels. Subsequently,

we fine-tune these networks on the evaluation datasets. Throughout our experiments, we observed

that utilizing the frame-based architectures as-is (i.e., for 3-channel representations) yields better

results due to more effective fine-tuning. Consequently, whenever possible, we present either a

replicated or an extended 3-channel version of all tested representations.

5.4.1.3 Training Parameters

For all models trained in this work, we use the cross-entropy loss with the ADAM [87] optimizer

(without weight decay), for up to 50 epochs. We utilize an initial learning rate of 1 × 10−3 for

N-MNIST [130], N-Cars [161], and ASL-DVS [15]; and 3 × 10−4 for the more challenging N-

Caltech101 [130], CIFAR10-DVS [93], and DVS-Gesture [5]. While more advanced learning rate

schedulers can be employed, we avoid them to limit the number of hyper-parameters and simplify

the comparison.

During training, each batch-representation sample is initially generated with a resolution match-

ing the spatial dimensions of the utilized dataset (as shown in Table 5.1). The resulting 3D rep-

resentations are then scaled to 224 × 224 for all classifiers, except for InceptionV3 [163] which
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requires a 3-channel input with the spatial dimensions of 299 × 299. After rescaling, we apply

standardization to the resulting 3D matrices using normalization parameters derived from Ima-

geNet [40] (i.e., mean and standard deviation). Our experiments (using the CSTR with the object

recognition datasets) consistently show an average classification accuracy improvement of approx-

imately 5% when utilizing ImageNet normalization parameters. This improvement is observed

compared to using each dataset’s distribution parameters or when not applying normalization. It

can be attributed to the suitability of ImageNet parameters for generalizing image-like representa-

tions. This is particularly important given the relatively low number of samples of the event-based

datasets used in our experiments, compared to ImageNet [40], making them less optimal for re-

moving input bias through standardization.

Furthermore, we randomly split the training set by 75% for training and 25% for validation.

In addition, to ensure proper convergence and robust generalization, the samples of the validation

split are randomly selected per each class’s number of samples. This ensures a more balanced and

well-representing validation set. For all models trained in the baseline experiment, we use early

stopping to prevent overfitting. Specifically, we monitor the validation loss during training, and if it

does not improve for 10 consecutive epochs, we stop the training early to avoid further overfitting.

Afterward, we choose the model with the lowest validation loss that results during training. We

follow the same procedure when not utilizing early stopping as well. Finally, we use a batch size

of 64 for all the models we train throughout this work.

5.4.2 Exp II: Randomized Event Augmentations

With a baseline established, our next experiment aims to leverage the randomized augmentation

framework introduced in Section 5.3.4. Augmentations are a popular method for addressing data

sparsity as they introduce variance in the spatial, temporal, and/or polarity characteristics. We be-

lieve these effects can also be used to further investigate batch-representation stability and explore

how well the performance of spatio-temporal representations scales with the proposed randomized

event-based augmentation framework.
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In this experiment, we explore different settings for each type of randomized augmentation

(spatial, temporal, and polarity). For spatial augmentations, we apply crops, rotations, and transla-

tions to the generated image-like representations. Initially, we randomly take crops of 90-100% of

the spatial frame size with aspect ratios ranging from 3:4 to 4:3. We also apply translations of up to

10% in the x and y axis (up to 5% for N-Cars [161]) and rotations of up to ±10° (up to ±30° for N-

MNIST [130]). Additionally, random horizontal flips are used with CIFAR10-DVS [93] (applied

prior to the other spatial transformations) with a threshold of 0.5. For both temporal and polarity

augmentations, we utilize a balanced value of 0.5 for both the maximum temporal shift θt and the

polarity inversion thresholds θp. We note that all of the proposed randomized augmentations are

only applied to the training splits (i.e., excluding validation splits).

Furthermore, we explore different combinations of the proposed augmentation methods. Spatial

augmentations can be highly beneficial as spatial dependencies are typically the most informative,

especially when identifying the edges or contours of an object. However, when utilizing event

data, they require careful manual tuning. On the other hand, the proposed temporal and polarity

augmentations have minimal parameters to tune and can naturally complement the training of any

event-based solution. Therefore, we focus on the temporal-polarity augmentation combination

as an alternative that requires no tuning when using their default threshold values. Finally, for a

more comprehensive approach, we explore a combination that incorporates all three event-based

augmentation methods.

We perform this experiment only on the spatio-temporal representations presented in this work.

This includes the proposed 3-channel variants of the CSTR and the Timestamp Image. These repre-

sentations are selected because the proposed framework primarily affects the temporal and polarity

information of event data, making them optimal for spatio-temporal representations. Additionally,

we only utilize the three best classifiers found during the baseline experiment: ResNet18 [72],

ResNet50 [72], and InceptionV3 [163]. The ASL-DVS [15] dataset is excluded from this experi-

ment as its performance is already effectively saturated without the use of augmentations. Finally,

we provide sufficient training time to ensure reaching an optimal global minimum, by training each
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Table 5.2: Average test classification accuracy results for the foundational event representations
and the CSTR across different recognition datasets. Each result is the average of up to 6 classifi-
cation models as specified in Section 5.4.1.2.

Event Representation Representation Components Dataset AVG.
Timestamp Polarity Count # Channels N-MNIST N-Cars N-Caltech101 CIFAR10-DVS ASL-DVS DVS-Gesture

Binary Event Frame × × × 1 95.1% 91.7% 68.5% 50.6% 99.6% 83.2% 81.4%
3∗ 95.2% 92.6% 73.5% 52.8% 99.7% 84.2% 83.0%

Polarized Event Frame × ✓ × 2 96.1% 88.4% 69.8% 62.0% 99.7% 90.6% 84.4%
3∗ 98.9% 93.2% 81.5% 60.7% 99.7% 90.6% 87.4%

Binary Event Count × × ✓
1 98.6% 91.6% 75.2% 69.2% 45.8% 87.6% 78.0%
3∗ 98.5% 91.1% 81.1% 73.7% 78.3% 89.1% 85.3%

Polarized Event Count × ✓ ✓
2 98.9% 91.8% 73.0% 69.9% 41.0% 91.8% 77.7%
3∗ 98.5% 92.8% 81.6% 71.8% 52.0% 90.9% 81.3%

Timestamp Image ✓ ✓ × 2 99.0% 85.5% 74.1% 67.7% 99.5% 91.4% 86.2%
3∗ 99.0% 92.3% 81.3% 68.8% 99.7% 93.2% 89.0%

Timestamp Image & Count ✓ ✓ ✓ 3 98.9% 92.2% 82.5% 72.6% 99.7% 92.9% 89.8%

CSTR (mean T̄s only) ✓ ✓ × 2 98.9% 92.4% 76.9% 63.5% 99.6% 92.8% 87.4%
3∗ 99.0% 92.4% 83.9% 67.4% 99.6% 93.6% 89.3%

CSTR (mean T̄s & Count) ✓ ✓ ✓ 3 99.1% 93.6% 82.9% 71.6% 99.7% 93.6% 90.1%
* denotes that the 1 and 2-channel representations are additionally transformed into 3 channels as specified in Section 5.4.1.
The best and second-best results are highlighted in bold and underlined, respectively.

model for 50 epochs without early stopping. We use an initial learning rate of 1 × 10−4 instead

while keeping all the other evaluation parameters identical to the initial experiment.

5.5 Evaluation Results

In this section, we present our experimental results. We first do a baseline evaluation of the CSTR

and six foundational representations across popular event-based recognition datasets. We then

identify the best performers and re-evaluate them when using the proposed augmentation frame-

work. These experiments help show that the proposed CSTR is a robust means of representing

event batches, including ones with long temporal durations and high event density. Finally, we

present a comparison with other works in the literature.

5.5.1 Exp I: Baseline Evaluation Results

We present the baseline evaluation results in Table 5.2. This table shows the average performance

of the representations with all six classification networks detailed in the Experimentation Setup

(Section 5.4.1.2). We provide a full breakdown of each network’s performance in Table C.1 of
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Appendix C. We note a few basic observations. First, including polarity improves generalization.

We see this mainly in the Event Frame representations, as well as the Event Count representations

but to a lesser extent. This aligns with the methodology expectations. Second, there is a benefit to

maintaining the classification networks’ native input structure. In all cases, transforming a one or

two-channel representation into three channels (by either padding or replicating data) consistently

improves classification accuracy. This reinforces the value of transfer-learning frame-based net-

works for event-based applications. Lastly, our representation, the CSTR, has the highest average

classification accuracy and is the best overall in four of the six datasets.

The strength of the CSTR is in addressing motion-overlapping. We can see that of the foun-

dational event representations, the simple Binary Event Count is rather robust. This implies that

the number of events per batch is strongly correlated with the classification task, where adding

polarity helps better describe the type of motion. Intuitively, this implies that better describing

the event’s temporal distribution should improve performance. While the Timestamp Image does

this via recent timestamps, this approach can be biased for longer temporal periods. The CSTR

addresses this by representing the aggregate behavior with the mean timestamp and generalizes

very well across datasets, including those with long temporal durations and high event density.

We note the results get particularly interesting with the CIFAR10-DVS [93] dataset. In general,

all classification networks for all representations notably overfit. This overfitting concern is verified

by the simple Binary Event Count having the highest dataset classification accuracy, remaining in

line with its accuracy on other datasets. We believe this overfitting is partially due to the dataset

being generated by repeated back-and-forth motions (frequent direction change), causing very

significant motion overlap [93]. Furthermore, the CIFAR10-DVS [93] data collection methodology

uses up-scaled 32×32 RGB images that appear rather blurry [93]. This blurriness reduces the

edge features the events depend on and inherently increases sensitivity to sensor noise. With

this said the CSTR still does relatively well, but incrementally worse than the Timestamp Image

representations. We hypothesize here that the timestamp recency better correlates with back-and-

forth motions versus the timestamp mean.
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Lastly, we observe that the optimal classification network can vary across representations and

datasets. Intuitively, classification network accuracy should correlate with ImageNet accuracy;

however, the expanded results given in Appendix C (Table C.1) show that this is not always the

case. We conjecture that this can be a function of dataset density and intra-class variance. When

the variance is particularly high, such as in the CIFAR10-DVS [93] dataset, the smaller networks

tend to generalize better. This is likely a result of overfitting, where the smaller parameter spaces

inherently regularize themselves. However, we also note the large InceptionV3 [163] network is

still the top performer for some representations. This implies picking the optimal network may

ultimately require experimentation. We recommend that the developer assess various networks

and select the one that best fits their accuracy and run-time requirements.

5.5.2 Exp II: Randomized Augmentations Results

We present the results of the augmentation-framework evaluation in Table 5.3. We also provide a

detailed breakdown of each network’s performance in Table C.2 of Appendix C. Starting with the

baseline results, we observe that the CSTR consistently outperforms other representations when

considering the top-3 classifiers (ResNet18, ResNet50, InceptionV3) on most datasets. This em-

phasizes the robustness of the CSTR in capturing spatio-temporal information across varying batch

periods. The slight underperformance of the CSTR on the N-Cars dataset compared to the Times-

tamp Image representation can be attributed to the dataset’s low event density and short batch peri-

ods. This causes larger classification networks to underfit with more complex representations. We

observe this with DVS-Gesture as well. Nevertheless, the introduction of the proposed augmen-

tations highlights the limitations of the Timestamp Image. Specifically, the CSTR demonstrates

superior results on N-Cars when utilizing either the temporal-polarity augmentation combination

or combining all three augmentation methods. This highlights the CSTR’s ability to encode spatio-

temporal information optimally when provided with sufficient training variations.

Overall, the augmentation framework shows significant performance improvements across all

benchmarks. When using a single augmentation method, the proposed temporal augmentation
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Table 5.3: The effects of the proposed event-based augmentation framework on the average
test classification performance of the different spatio-temporal representations explored in this
work. Each result represents the average classification accuracy of the top three classifiers only
(ResNet18, ResNet50, and InceptionV3) due to the complexity of training with augmentations.
The first row represents the baseline results obtained without any augmentation, serving as a ref-
erence point for each representation. The subsequent rows demonstrate the performance improve-
ments achieved when using the respective augmentation configurations.

Representation Augmentation Type Dataset AVG.
Spatial Temporal Polarity N-MNIST N-Cars N-Caltech101 CIFAR10-DVS DVS-Gesture

Timestamp Image∗

Baseline 99.1% 93.4%† 82.0% 72.1% 93.7%† 88.1%

✓ 99.3% (+0.2%) 94.5% (+1.1%) 84.4% (+2.4%) 77.5% (+5.4%) 94.1% (+0.4%) 90.0% (+1.9%)
✓ 99.2% (+0.1%) 95.7% (+2.3%) 87.1% (+5.1%) 76.1% (+4.0%) 94.3% (+0.6%) 90.5% (+2.4%)

✓ 99.1% (+0.0%) 95.6% (+2.2%) 86.2% (+4.2%) 71.8% (−0.3%) 93.8% (+0.1%) 89.3% (+1.2%)
✓ ✓ 99.2% (+0.1%) 95.8% (+2.4%) 86.9% (+4.9%) 76.3% (+4.2%) 93.9% (+0.2%) 90.4% (+2.3%)

✓ ✓ ✓ 99.2% (+0.1%) 96.3% (+2.9%) 85.2% (+3.2%) 78.0% (+5.9%) 94.9% (+1.2%) 90.7% (+2.6%)

Timestamp Image & Count

Baseline 99.1% 93.3% 84.5% 75.5% 93.0% 89.1%

✓ 99.4% (+0.3%) 95.7% (+2.4%) 84.4% (−0.2%) 80.4% (+4.9%) 94.6% (+1.6%) 90.9% (+1.8%)
✓ 99.2% (+0.1%) 95.4% (+2.1%) 87.1% (+2.6%) 77.2% (+1.7%) 94.6% (+1.6%) 90.7% (+1.6%)

✓ 99.2% (+0.1%) 96.3% (+3.0%) 86.4% (+1.9%) 73.5% (−2.0%) 93.3% (+0.3%) 89.8% (+0.7%)
✓ ✓ 99.3% (+0.2%) 95.7% (+2.4%) 87.3% (+2.8%) 78.1% (+2.6%) 94.4% (+1.4%) 91.0% (+1.9%)

✓ ✓ ✓ 99.3% (+0.2%) 96.3% (+3.0%) 87.1% (+2.6%) 80.2% (+4.7%) 94.4% (+1.4%) 91.5% (+2.4%)

CSTR (mean T̄s only)∗

Baseline 99.2%† 92.7% 84.6% 71.5% 93.5% 88.3%

✓ 99.4% (+0.2%) 96.1% (+3.4%) 85.7% (+1.1%) 75.6% (+4.1%) 95.5% (+2.0%) 90.4% (+2.1%)
✓ 99.3% (+0.1%) 93.3% (+0.6%) 87.8% (+3.2%) 75.5% (+4.0%) 93.4% (−0.1%) 89.8% (+1.5%)

✓ 99.4% (+0.2%) 96.2% (+3.5%) 87.5% (+2.9%) 70.8% (−0.7%) 94.8% (+1.3%) 89.7% (+1.4%)
✓ ✓ 99.2% (+0.0%) 96.9% (+4.2%) 88.3% (+3.7%) 74.8% (+3.3%) 93.7% (+0.2%) 90.6% (+2.3%)

✓ ✓ ✓ 99.3% (+0.1%) 96.6% (+3.9%) 86.4% (+1.8%) 78.2% (+6.7%) 95.0% (+1.5%) 91.1% (+2.8%)

CSTR (mean T̄s & Count)

Baseline 99.2%† 93.0% 84.9%† 75.8%† 93.4% 89.2%†

✓ 99.4% (+0.2%) 96.3% (+3.3%) 85.0% (+0.1%) 79.3% (+3.5%) 95.7%(+2.3%) 91.1% (+1.9%)
✓ 99.4% (+0.2%) 95.4% (+2.4%) 87.9% (+3.0%) 78.4% (+2.6%) 94.9% (+1.5%) 91.2% (+2.0%)

✓ 99.3% (+0.1%) 96.1% (+3.1%) 87.0% (+2.1%) 72.2% (−3.6%) 95.1% (+1.7%) 89.9% (+0.7%)
✓ ✓ 99.4% (+0.2%) 96.6% (+3.6%) 88.4% (+3.5%) 77.9% (+2.1%) 94.4% (+1.0%) 91.3% (+2.1%)

✓ ✓ ✓ 99.3% (+0.1%) 97.0% (+4.0%) 86.1% (+1.2%) 79.8% (+4.0%) 95.7% (+2.3%) 91.6% (+2.4%)

* Indicates that only the augmented three-channel representation versions are considered. † Indicates the best-performing baseline representation.
The best and second-best results when incorporating augmentations are highlighted in bold and underlined, respectively.

method can match and even exceed the performance of hand-crafted spatial augmentations. This is

evident in the highest average performance achieved by a single augmentation method (i.e., 91.2%

when using the CSTR). We find that the CSTR benefits the most from the temporal augmentations

due to its effectiveness at encoding temporal information. On the other hand, spatial augmenta-

tions, while generally reliable, have limitations on datasets with challenging spatial characteristics

like N-Caltech101 [130]. Furthermore, spatial augmentations require manual tuning for optimal

results. In contrast, the proposed temporal and polarity augmentations serve as a promising alter-

native, requiring minimal tuning and consistently outperforming spatial augmentations on average

across all evaluated representations. This makes them particularly advantageous for optimizing

DL models in event-based applications.

126



Interestingly, we find that combining all augmentation methods (spatial, temporal, and polar-

ity) does not consistently yield the best performance. The significant variations introduced by this

combination can lead to underfitting, considering the utilized regularization approach. Therefore,

we suggest exploring an alternative approach of randomly selecting one of the augmentation meth-

ods per event-batch sample during training. Additionally, we observe that spatial augmentations

underperform polarity and temporal augmentations on the N-Caltech101 [130] dataset. This can

be attributed to the dataset’s imbalance, where typical spatial augmentations are insufficient to

improve generalization.

In conclusion, our findings demonstrate the strength of the CSTR and its ability to leverage

the proposed augmentation framework. The temporal augmentations prove to be the most ad-

vantageous on average for the CSTR, showcasing the CSTR’s effectiveness in capturing temporal

information. Moreover, combining multiple augmentation methods can enhance generalization

performance. However, further exploration and optimization of the augmentation methods are

necessary to maximize performance and address limitations.

5.5.3 Comparison with the state-of-the-art

In this section, we compare the performance of the CSTR with other approaches that utilize the

same recognition datasets. Although each approach utilizes different methods and training config-

urations, our aim here is to highlight the efficacy of the CSTR when combined with off-the-shelf

pre-trained classification networks. Furthermore, we emphasize how the performance can be fur-

ther improved by leveraging the proposed augmentation framework for event data.

We present the performance comparison in Table 5.4. While most works report results for

an 80-20% split, we provide the results of our framework on a 90-10% split for CIFAR10-DVS

[93] as well to establish a fair comparison with those that utilize such a split. For our results

on DVS-Gesture [5], we adopt a simple moving-majority filter to handle the long-term temporal

dependencies, as applied in [9, 173]. This filter outputs the most frequent gesture classification

out of the last 5 (i.e., 1250 ms moving window). If there is more than one gesture with the same
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Table 5.4: Comparison with the self-reported state-of-the-art works. Our proposed representation,
the CSTR, yields very competitive results when compared with state-of-the-art event-based object
and action recognition on the utilized datasets.

Event Representation Classifier Architecture Data Augmentation Dataset

N-MNIST N-Cars N-Caltech101 CIFAR10-DVS ASL-DVS DVS-Gesture

HATS [161] SVM × 99.1% 90.2% 64.2% 52.4% - -
Event-by-event [53] SNN × 99.6% - - 69.0% - 96.5%
Graphs [16] Residual-GCN ✓(spatial) 99.0% 91.4% 65.7% 54.0% 90.10% 97.2%
Graphs [155] GCN × - 94.5% 66.8% - - -
Voxel-grid [179] GCN × 99.5% 93.2% 77.8% 69.0% 98.90% 97.5%
Event Clouds [173] PointNet++ × - - - - - 95.3%
EST [57] CNN (ResNet34) × - 92.5% 81.7% - - -
Timestamp Image & Count [8] CNN (ResNet34) × 99.6% 97.3% 89.2% 76.3% - -
TORE Volumes [9] CNN (2×GoogLeNet) × 99.4% 97.7% 83.4% - 99.95% 96.2%

EST [57] CNN (ResNet34) EventDrop [65] - 95.5% 85.2% - - -
Polarized Event Count [158] CNN (ResNet18) EventMix [158] - - 84.7%† 84.4%† - 89.5%
Polarized Event Count [158] CNN (ResNet34) EventMix [158] - 96.6% 89.2%† 85.6%† - 91.8%

CSTR (ours)

CNN (ResNet18)
× 99.1% 93.0% 81.6% 77.8% | 80.6%† 99.88% 95.5%
TP 99.3% 96.6% 86.7% 77.9% | 81.8%† 99.98% 95.5%

STP 99.3% 96.9% 84.0% 78.8% | 80.9%† 99.44% 96.9%

CNN (ResNet50)
× 99.2% 92.5% 85.4% 70.6% | 70.4%† 99.94% 97.0%
TP 99.4% 96.2% 88.6% 75.4% | 77.4%† 99.89% 97.5%

STP 99.5% 96.9% 86.2% 78.7% | 80.9%† 99.84% 96.9%

CNN (InceptionV3)
× 99.2% 93.5% 87.7% 79.0% | 77.2%† 99.89% 95.9%
TP 99.4% 96.9% 89.8% 80.4% | 83.1%† 99.93% 96.3%

STP 99.3% 97.2% 88.2% 81.8% | 83.7%† 99.74% 97.5%
† symbol denotes that the referenced result was based on a 90%-10% split, compared to the typical 80%-20% split (for datasets without an official
split). The best and second-best results are highlighted in bold and underlined, respectively.

number of classifications (or none), the filter simply returns the classification result for the current

event batch. It is worth noting that all the referenced works also utilize a 500 ms sampling period

for splitting the event sequences of the DVS-Gesture [5] dataset.

Overall, the results show that the CSTR performs excellently across the employed benchmark

datasets. In terms of the baseline performance (excluding augmentations), the CSTR notably

achieves state-of-the-art results on CIFAR10-DVS [93] and consistently ranks as the second-best

on ASL-DVS [15]. This demonstrates the robustness and versatility of the CSTR which requires

minimal configuration and enables a direct and effective deployment for event-based solutions.

To demonstrate the impact of the proposed augmentation framework, we compare the results

with other works that incorporate different augmentation techniques for event data. One such work

utilizes EventMix [158] augmentations in combination with the Polarized Event Count representa-

tion. This work splits the provided batch samples of the N-Caltech101 and CIFAR10-DVS datasets

into 10 slices of equal temporal duration. This effectively yields 10 times the original number of

samples of each dataset. In contrast, we utilize the provided batch samples of each dataset as-is.
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Despite this, the CSTR with the randomized Temporal-Polarity augmentations proves to be highly

competitive, even without splitting the datasets’ samples. Accordingly, the CSTR demonstrates

significant robustness to varying batch periods. Furthermore, we show that the CSTR, in combi-

nation with the proposed temporal and polarity augmentations, can achieve stronger results on N-

Caltech101 [130] even with less training data. Lastly, the addition of the augmentation framework

significantly improves the performance of the CSTR, surpassing more advanced representations

such as EST [57] with the EventDrop [65] augmentation framework.

Our findings highlight the strength of the CSTR representation when combined with off-the-

shelf pre-trained classifiers. They showcase the effectiveness of the CSTR in capturing temporal

information and leveraging the robustness of pre-trained networks without any modification to the

input layers. Thus, the CSTR retains a compact input dimensionality and effectively leverages

transfer learning. Furthermore, the proposed augmentation framework offers a promising alter-

native for enhancing generalization performance without the need for significant manual tuning.

Finally, we note that the results presented utilize a simple training framework. Therefore, various

training optimization and batch-sampling techniques can be explored to further improve robust-

ness.

5.6 Conclusion

In this chapter, we introduce the compact spatio-temporal representation (CSTR) for event-based

vision. When dealing with asynchronous event data, it is common to accumulate events in batches

to generate a synchronous response. In order to do so, an intermediate representation is needed,

especially when utilizing modern CV architectures. Thus, encoding the data into a representa-

tion compatible with existing classification networks is crucial for leveraging transfer learning and

avoiding the complexity of designing custom deep-learning architectures. Foundational event rep-

resentations typically encode either the number of events or the most recent event’s timestamp per

spatial location (based on polarity). These approaches are convenient and relatively robust but can
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be sensitive to motion-overlapping (common in long sampling duration) and possibly deficient for

high event-density streams.

The CSTR improves upon the foundational event representations by better describing the tem-

poral behavior of the asynchronous event data while retaining similar computational complexity.

This is done by calculating the average of the normalized timestamps per each event polarity, com-

bined with the polarity-agnostic number of events at each spatial index of the frame. Besides, the

CSTR imposes minimal processing overhead given that each event is only processed once and that

each spatial position is updated independently (i.e., without the need to maintain any spatial depen-

dencies), as indicated in the methodology. Accordingly, the CSTR generates a compact image-like

representation that is more robust to high-motion scenes and long temporal durations. We validate

this hypothesis through rigorous benchmarking against similar representations.

Combining the CSTR with off-the-shelf pre-trained classifiers demonstrates its ability to effec-

tively leverage the power of transfer learning without modifying the input layers, thereby retaining

its compact input dimensionality. We also propose a simple yet effective augmentation frame-

work for event data, significantly improving the performance and generalization capabilities of

the CSTR. This framework highlights the potential of augmentations in event-based recognition

without the need for extensive manual tuning.

Experimental validation confirms that the CSTR outperforms foundational event representa-

tions in popular event-based applications. Benchmarking the CSTR against six foundational repre-

sentations and six common recognition datasets (using six popular classification networks) consis-

tently shows its superior performance. Additionally, incorporating random augmentations during

training, including our proposed temporal augmentation, further enhances results on all represen-

tations, with the CSTR generally benefiting the most from the proposed augmentation framework.

This overall improvement validates the CSTR’s ability to robustly encode temporal information.

The CSTR achieves our goal of providing a robust event-batch representation that is directly

compatible with existing CV architectures, maintaining similar inference complexity. As a result,

the CSTR is an excellent choice for developing event-based solutions. The combination of the
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CSTR with the proposed augmentation framework further enhances its performance and general-

ization capabilities, requiring minimal tuning and enabling direct deployment.

While the CSTR excels as a versatile representation, it does not directly address certain promi-

nent challenges in event-based vision, such as sensor noise [86]. To mitigate these issues effec-

tively, additional techniques may be necessary.

Future work involves exploring the use of the CSTR in other perception tasks, such as object

detection, and investigating additional optimization techniques to enhance robustness. Addition-

ally, evaluating the suitability of the CSTR for real-time applications, where latency is a primary

concern, would be an interesting avenue to explore.
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CHAPTER 6

Exploring Image-like Representations for

Event-Based Object Detection

This chapter investigates the application of event-based vision for object detection, focusing on

the integration and efficacy of image-like representations, such as the Compact Spatio-Temporal

Representation (CSTR), alongside traditional frame-based methodologies. Building on the premise

that frame-based object detection methods excel in texture-rich and static environments, this study

acknowledges their limitations in dynamic lighting and high-motion scenarios. To address these

challenges, it explores the utility of event-based sensors, which are known for their high dynamic

range capabilities and immunity to motion blur. Utilizing pre-trained single-stage object detectors

and a novel data augmentation framework, this chapter evaluates the CSTR against other image-

like event representations and conventional frame-based approaches. The research further extends

to multi-modal object detection, aiming to leverage the complementary strengths of event-based

and frame-based data to achieve enhanced detection robustness.

6.1 Introduction

Object detection is a fundamental task in the field of CV with significant importance and wide-

ranging applications [81, 166]. It is defined as the process of identifying and localizing objects

within a scene and classifying them into various categories. Its importance lies in its ability to

provide detailed scene understanding, which is crucial for various practical and real-world ap-
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plications. Object detection algorithms are integral to numerous applications, including but not

limited to, security and surveillance systems [113, 145, 174], medical imaging [4, 176], image re-

trieval [33, 97], ADAS [85, 138], and AVs [54, 110, 171]. In the domain of autonomous systems,

object detection is particularly vital; it underpins the perception capabilities of autonomous vehi-

cles, enabling them to navigate safely by accurately identifying and responding to other vehicles,

pedestrians, and obstacles in their environment. This capability is not only essential for ensuring

the safety and reliability of such systems but also for advancing their intelligence and operational

efficiency.

Recently, object detection methodologies have evolved significantly. Initially dominated by

CNN-based two-stage detectors like Faster-RCNN [152], these methodologies were followed by

more efficient one-stage detectors such as YOLOv3 [149] and SSD [108]. In our work, we specif-

ically focus on leveraging one-stage detectors due to their balance between accuracy and compu-

tational efficiency, which is crucial for real-time applications in event-based vision.

While traditional object detection techniques predominantly utilize frame-based vision systems

for their rich texture output, these systems exhibit notable limitations in dynamic lighting condi-

tions, including low-light and high dynamic range (HDR) scenarios, as well as in the presence of

substantial motion and adverse weather conditions [70, 73, 109, 116, 126]. Alternative sensing

modalities such as LiDAR and radar bolster the perception stack [10, 99, 184] by offering depth

estimation at varying spatial resolutions enabling their ability to detect objects, yet they fall short

in object classification due to inherent sparsity of their output data, particularly at extended ranges

[90].

Event-based sensors present a novel paradigm by asynchronously capturing pixel intensity

changes [21, 101, 140]. They excel over traditional frame-based systems by offering HDR out-

put and being inherently immune to motion blur [55], suggesting their potential integration into a

robust perception framework. However, the asynchronous and sparse nature of the data generated

by event-based sensors poses a challenge for integration with established CV architectures, which

are accustomed to synchronous, dense inputs. This challenge is compounded by the scarcity of
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labeled datasets that can facilitate broad adoption and utilization of event-based vision.

Building upon the foundations laid in Chapter 5, this chapter explores the application of the

Compact Spatio-Temporal Representation (CSTR) within the domain of object detection. We

assess the CSTR’s performance in translating the asynchronous event data stream into a format

compatible with conventional CV algorithms, comparing it against other image-like event repre-

sentations. Moreover, we compare its efficacy with that of traditional frame-based methods under

varied environmental conditions presented in the evaluation datasets. Our exploration also extends

to the field of multi-modal object detection, where we aim to utilize the complementary strengths

of event-based and frame-based data, aiming to overcome their respective limitations and enhance

overall detection robustness.

In this chapter, we aim to make the following contributions:

• A comprehensive evaluation of the CSTR in the context of object detection, highlighting

its advantages and limitations compared to other image-like event representations and tradi-

tional frame-based approaches.

• An in-depth investigation into the integration of the CSTR and other image-like representa-

tions within a multi-modal detection framework using different fusion methods, highlighting

potential synergies between event-based and frame-based sensors.

• The development and assessment of a novel data augmentation framework, specifically tai-

lored to event-based and multi-modal data to enhance object detection performance.

6.2 Related Work

6.2.1 Evolution of Object Detection Architectures

Object detection has evolved significantly with the advent of CNN-based DL models. Initially,

two-stage detectors such as Faster-RCNN [152], achieved state-of-the-art performance by gener-

ating region proposals which are then classified [64, 63, 152]. These were followed by one-stage
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detectors, such as YOLOv3 [149] and SSD [108], which streamlined the process at the cost of

some accuracy for increased speed [149, 108, 102, 151]. One-stage detectors rely on a pre-defined

set of anchors (indicating possible object positions) to perform end-to-end learning. In general,

both architectures rely on deep CNN-based encoders, often pre-trained on extensive datasets like

ImageNet [40], to extract high-level features that guide the detection process [160, 72].

More recent developments have seen the introduction of Transformer-based models, such as

DETR [27], proposing an approach to object detection. These models replace conventional CNN

architectures with self-attention mechanisms [169, 43], allowing for end-to-end processing of im-

ages and eliminating the reliance on hand-crafted components such as Non-Maximum Suppres-

sion (NMS) or anchor generation [27]. However, the extensive training data requirements and

slower processing speeds of Transformer-based models present challenges for event-based vision

applications, where data is often limited and real-time processing is essential.

In light of these considerations, our research opts for one-stage detectors pre-trained on frame-

based data. This choice is driven by the need to balance accuracy with computational efficiency,

crucial for real-time applications in event-based vision. Furthermore, our approach enables us to

leverage cross-modal transfer learning from pre-trained frame-based models, as demonstrated in

Chapter 5, enhancing model convergence and effectiveness in event-based detection tasks.

6.2.2 Advancements in Event-Based Object Detection

Event-based object detection is an emerging field that leverages the unique properties of event-

based sensors. These sensors are inherently immune to motion blur and excel in low-light sce-

narios, presenting novel opportunities for object detection [101]. Early works in this space have

focused on reconstructing intensity images from events to provide compatibility with established

CV methodologies [147]. However, this method often entails significant computational demands

and risks generating unrealistic reconstructions.

A shift towards directly processing event streams, foregoing the need for frame reconstruc-

tion, has gained momentum. This approach utilizes spatial and spatio-temporal encoding methods
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allowing for the application of established CV tasks to event data [29]. Despite the scarcity of

labeled event-based datasets, recent studies have shown promising results by adapting established

CV models to event data. For instance, adaptations of architectures like YOLOv3 [149] have shown

real-time performance capabilities and comparable results to traditional frame-based approaches

[105, 95]. Our research extends these efforts by examining the influence of various image-like

event representations on the task of object detection. We aim to evaluate their proficiency in har-

nessing the unique properties of event data for enhanced object detection performance.

6.2.3 Fusion Methods for Event-Based Multi-Modal Object Detection

The fusion of frame-based and event-based data is increasingly recognized as a promising method

for enhancing object detection, particularly in challenging environmental conditions. Literature in

this domain has introduced a variety of fusion techniques, generally leading to improved accuracy

but often at the expense of increased computational demands and slower inference times.

Chen’s work [32] on applying pseudo-labels for transfer learning and exploring simple fusion

techniques using parallel object detectors is noteworthy. Similarly, Li et al. [95] proposed a joint

framework combining frames and event data using convolutional spiking neural networks and

YOLOv3 architecture, achieving significant improvements in nighttime object detection perfor-

mance.

Advanced fusion methods at the feature level, as explored by Cao et al. [26] and Liu et al. [105],

further demonstrate the potential of integrating features from both modalities to enhance detection

capabilities. These works suggest that while multi-modal fusion often leads to better accuracy, it

can impact inference speeds due to the added computational load.

Aligned with these advancements, our study evaluates two distinct fusion approaches—early

and late fusion—across various image-like event representations. Early fusion integrates modali-

ties at the input level, while late fusion combines decisions from separate models for each modality.

This investigation aims to understand the impact of these fusion methods on object detection per-

formance, providing insights into the potential and limitations of combining different modalities
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Figure 6.1: Demonstration of the event-based object detection framework utilized in this work.
The asynchronous event stream is converted to a dense image-like representation using different
encoding methods. The resulting 3-channel output is fed into the object detection model to identify
and localize objects in the scene. The presented object detection model is based on the SSD
architecture [108].

for enhanced detection capabilities.

6.3 Methodology

6.3.1 Event-Based Object Detection

Building on the foundations set in Chapter 5, this section explores the application of the Compact

Spatio-Temporal Representation (CSTR) for the task of object detection in event-based vision. Our

approach leverages the robust spatio-temporal encoding of the CSTR to enhance object detection

algorithms’ capability to interpret dynamic scenes captured by event-based sensors.

The CSTR, detailed in Section 5.3.3 of Chapter 5, effectively captures the spatial, temporal,

and polarity information in a 3-channel image-like format. This representation’s compatibility

with standard computer vision architectures facilitates its integration into existing object detection

frameworks as well. Accordingly, we compare the performance of the CSTR vs foundational

image-like representations, defined in Section 5.3.2 of Chapter 5, for the task of object detection.

The event-based object detection framework is presented in Figure 6.1. This comparison aims to

demonstrate the efficacy of CSTR in capturing relevant features for object detection in comparison

to other image-like event representations.
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6.3.1.1 Integrating the CSTR for Object Detection

Incorporating image-like representations, such as the CSTR and others discussed in Chapter 5,

into object detection tasks necessitates specific adaptations. The first step involves transforming

the sampled event batches into their respective image-like formats. For instance, in the case of the

CSTR, this transformation results in a 3-channel representation akin to a conventional RGB image.

These transformed batches (or event-representation frames) are then used as inputs to the object

detection models.

Object detection differs from the action recognition or classification tasks discussed previously,

as it requires not only identifying objects within a frame but also accurately localizing them. More-

over, object detection tasks frequently involve scenes with multiple objects, necessitating simulta-

neous detection and classification of each distinct item. The spatial accuracy and contour sharp-

ness, particularly emphasized in the CSTR, play a pivotal role in this task. This necessity holds

true for other image-like representations as well, where the clarity and precision of the representa-

tion significantly influence the model’s ability to detect and classify objects effectively. Therefore,

the quality of the transformed event batches, in terms of spatial accuracy and temporal information

retention, is critical in the context of object detection.

6.3.1.2 Object Detection Models

For our object detection experiments, we utilize one-stage object detectors, specifically the Single

Shot MultiBox Detector (SSD) model [108]. SSD is chosen for its well-established balance be-

tween latency and accuracy, making it suitable for real-time object detection tasks. This model’s

architecture allows for effective processing of the 3-channel inputs generated by representations

like the CSTR, without requiring any modifications to its architecture. The SSD’s ability to ef-

ficiently handle these transformed event-based inputs is a key factor in its selection, as it aligns

with the need for prompt and precise object detection in dynamic scenes captured by event-based

sensors. Nevertheless, other object detectors can be used as needed..
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Figure 6.2: Diagram of the multi-modal framework showcasing the fusion methods applied in this
work. Early fusion merges the modalities’ representations at the input stage, while late fusion
employs parallel detection streams, integrating their outputs through Non-Maximum Suppression.

6.3.1.3 Training and Fine-Tuning

Given the unique nature of event-based data, the pre-trained weights of these models, typically

trained on standard RGB datasets [88], are fine-tuned on datasets transformed using CSTR and

other image-like event representations. This process allows the models to adapt to the spatio-

temporal dynamics inherent in event-based vision, potentially improving their detection capabili-

ties in challenging environments.

6.3.2 Multi-Modal Object Detection

In this section, we explore multi-modal object detection by integrating event-based and frame-

based sensor data. This multi-modal approach aims to leverage the complementary strengths of

both modalities to enhance detection performance, especially in environments where either modal-

ity alone may face limitations. We focus on two primary fusion techniques: early fusion and late

fusion, to examine how combining these modalities impacts object detection performance.
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6.3.2.1 Early Fusion

Early fusion involves the combination of data from the different modalities at the input stage. In

this fusion method, data transformed from each sensor type is merged before being input into

the detection model. For example, we concatenate the CSTR-transformed event data with corre-

sponding frame-based images, creating a unified multi-channel input. This early-stage integration

enables the detection model to learn and extract features from both modalities simultaneously.

In practical terms, considering a standard 3-channel frame-based image and a 3-channel event-

representation frame (such as the CSTR), we combine these along their channel dimension. This

results in a composite input with a resolution of 6 ×W × H , as shown in Figure 6.2, effectively

doubling the information that the object detection model receives. However, as these models are

typically designed for a 3-channel input, adapting them to accept a 6-channel input necessitates

modifications to the initial input convolutional layer. To support the 6-channel composite input, we

make the necessary adjustments to the model’s first layer, as detailed in Section 4. This approach

aims to harness a richer set of features for the model, potentially leading to enhanced robustness

and accuracy in object detection across various environmental conditions.

6.3.2.2 Late Fusion

Late fusion, also known as decision-level fusion, involves processing each modality through sep-

arate models and merging their decisions at the final stage. This technique can be advantageous

when each sensor type offers unique and complementary information. For instance, frame-based

cameras provide rich texture information, while event-based sensors excel in capturing HDR and

motion scenes.

In our setup, as illustrated in Figure 6.2, we deploy two separate instances of the object detection

model — one for the frame-based modality and another for the event-based modality. Each model

is trained using its modality-specific data but with the same set of labels, aiming to minimize a

combined loss that sums the individual regression and classification losses from each model.

During both validation and testing, the models’ outputs -consisting of BBs, confidence scores,
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Table 6.1: Comparison of model parameters for different fusion methods based on PyTorch’s im-
plementation of SSD300-VGG161 [108]. The base model is trained on the COCO dataset contain-
ing 91 different object classes [103].

Model Configuration Number of Parameters

Base Model 35,641,826
Early Fusion 35,643,554 (+1,728)
Late Fusion 71,283,652 (+35,641,826)

and classification labels- are fused using NMS. NMS is a standard post-processing step in ob-

ject detection frameworks that refines the detection results by discarding redundant BB based on

overlap metrics and confidence scores [74, 108, 152]. Specifically, it operates by selecting the BB

with the highest confidence score while removing any overlapping BBs that have an intersection-

over-union higher than a predefined threshold. Throughout this chapter, we adopt a standard NMS

threshold of 50%, aiming to achieve an optimal balance between precision and recall.

This training approach, which simultaneously tunes detectors for both modalities, allows for the

exploration of potential cross-modal learning dynamics. Although more advanced post-processing

techniques exist, our focus remains on evaluating the influence of different event-based image

representations on the efficacy of multi-modal object detection methods.

In general, the choice between early and late fusion methods involves considering the computa-

tional overhead and the impact on trainable parameters. Early fusion is characterized by minimal

overhead, with the primary increase in trainable parameters occurring in the first convolutional

layer due to the expanded multi-channel input. All subsequent layers remain unaffected, preserv-

ing the original model complexity. This expansion is quantified in Table 6.1. In contrast, late

fusion carries the highest overhead as it necessitates training two separate models for the different

modalities, as also detailed in Table 6.1. This effectively doubles the number of trainable param-

eters, increasing both the computational resource requirements and the complexity of the training

process. Therefore, the selection between early and late fusion should be informed by the specific

requirements of the task and available computational resources.

1Available at https://pytorch.org/vision/main/models/generated/torchvision.models.detection.ssd300 vgg16
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6.3.3 Augmentation Methods

Building on the event-based data augmentation framework introduced in Chapter 5, we adapt and

extend these techniques for object detection tasks in this chapter. While spatial and polarity inver-

sion augmentations are adopted as in Chapter 5, we introduce the random event-drop augmentation

and modify the temporal-shift augmentation. These modifications are specifically tailored to the

object detection task, where BB localization is crucial, and thus, preserving the most recent events

is essential for accurate predictions. Overall, these augmentations are crucial for improving model

robustness and generalization by introducing variability in the training data.

6.3.3.1 Spatial Augmentations

Spatial augmentations play a crucial role in enhancing the performance of our object detection

models. These transformations, including translation, rotation, scaling, and flipping, are designed

to make the model invariant to various spatial variations. Such invariance is particularly vital in

event-based vision, where spatial characteristics of the data can fluctuate significantly, potentially

impacting the model’s accuracy and reliability.

In our work, we apply these spatial augmentations uniformly across both modalities — the

generated image-like event-representation frames and the conventional frame-based images. This

consistent application across different data types is critical when utilizing a multi-modal approach,

ensuring that all inputs to the model undergo similar preprocessing. This not only maintains con-

sistency in how the data is treated but also contributes to the model’s ability to adapt and perform

reliably across a range of spatial scenarios.

6.3.3.2 Polarity Inversion

Polarity inversion uniformly inverts the polarity of events in a given batch, effectively simulating

reverse lighting conditions or motion directions. The polarities of the events in a given batch are

inverted when the threshold θp is met (typically set as 0.5). This augmentation helps the model

become robust to changes in event polarity, which can occur due to various environmental factors.
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6.3.3.3 Random Event Drop

Random event drop augmentation removes a randomly selected subset of events from a given

batch. The percentage of events dropped dynamically varies between 0 and a predefined maximum

threshold θd, mimicking environments with sparse visual cues.

6.3.3.4 Temporal-Drop Augmentation

The temporal-drop augmentation, a modification of the temporal-shift method introduced in Chap-

ter 5, shifts and drops events within a batch to simulate different temporal history dynamics. Cru-

cially, this method only shifts events backward in time, retaining the most recent events which are

vital for accurately localizing objects at their latest positions. Thus, the batch-sampling period ∆T

is effectively reduced as follows:

∆T ′ = ∆T + θt(λ∆T ), (6.1)

where λ denotes the proportion of the temporal shift that is randomly specified during training (in

the range of [−1, 0]) and θt is the max temporal shift threshold (θt ∈ (0, 1)). Similarly, each event’s

timestamp is modified as shown in Equation 5.11, Chapter 5. Then, the events with a negative

timestamp (i.e., /∈ [0,∆T ′]) are removed. This technique, visualized in Figure 6.3, is crucial for

learning features invariant to dynamic temporal durations and sampling times without affecting the

labels’ BB integrity. Further, it is applied before the transformation of events into their respective

image-like representations.

Furthermore, in this chapter, we optimize the application of these augmentation methods. In-

stead of a fixed application, each method is randomly selected per sample based on predefined

probabilities, enhancing the variability during training. For instance, spatial augmentations can

have a higher likelihood of being applied (e.g., 70% of the time) compared to other augmentation

methods (e.g., set as 50%). Additionally, each sample in a training batch is augmented with a

different set of augmentations, each with varying randomized magnitudes, rather than applying the
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Figure 6.3: Illustration of the Temporal-Drop augmentation method, demonstrating how events are
temporally shifted and then dropped, effectively simulating different temporal history dynamics.
The green rectangles at normalized time t = ∆T represent the true objects’ bounding boxes an-
notated at the end of the sample time. The maximum temporal shift θt demonstrated here is set as
0.5.

same settings to the entire training batch of inputs. This randomization ensures that each sample

within a training batch is augmented differently, increasing the diversity of the training data and

aiding in the model’s ability to generalize to a wider range of scenarios.

Overall, these augmentation methods provide a comprehensive approach to introduce variabil-

ity and robustness in our event-based and multi-modal object detection frameworks, significantly

contributing to the effectiveness of the models in diverse and challenging environments.

6.4 Experiment Settings

This section details the datasets used, the object detectors employed, the hyperparameters selected,

and the evaluation metrics utilized for the experiments.

6.4.1 Datasets Utilized

In our experiments, we employ two primary multi-modal object detection datasets: MEVDT and

PKU-DDD17-CAR [95]. Both manually labeled datasets are detailed in Table 6.2 and provide

unique environments and challenges for object detection in the automotive domain.
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Table 6.2: Key statistics and characteristics of the multi-modal event-based object detection
datasets used in our experiments. The presented datasets are captured in real-world scenarios
and are manually labeled.

Parameter Dataset

MEVDT PKU-DDD17-CAR [95]

Number of classes 1 1
Dataset Type Static (Traffic Sequences) Dynamic (in-vehicle camera)
Modalities Events & Grayscale Images Events & Grayscale Images
Event Camera DAVIS 240 [21] DAVIS 346
Frame Dimension (W×H) 240×180 346×260
Labeling Frequency (Hz) 24 ∼1
Total Sequences 63 14
Total Labeled Samples 12759 3154
# Training Samples 10132 (79%) 2241 (71%)
# Testing Samples 2627 (21%) 913 (29%)
Total Objects 9891 5760
Total Duration (s) ∗ 545.0 63.0
Average # events/sample † 428.4 4796.6
Batch sampling duration (ms) 43, 100, 200, 500 ‡ 20

† Calculated using the longest sample size possible without overlap between adjacent samples.
‡ Samples are manually extracted from extended sequences of event data based on the specified sampling durations.
* Total duration refers to the cumulative length of all event sequences, representing the total time covered by the event
data in each dataset.

MEVDT, introduced in Chapter 2, is a multi-modal dataset focusing on vehicle detection and

tracking. It comprises 63 sequences recorded using a DAVIS-240c camera [21], providing syn-

chronized image and event data. The dataset is split into training (51 sequences) and testing (12

sequences) splits, ensuring balanced representation across different parameters. The dataset, man-

ually annotated at 24 Hz, includes static vehicles (i.e., parked vehicles) that are not labeled. Our

models are trained to disregard these stationary objects, instead of cropping the images during

training, to minimize the distortions resulting from resizing the frames.

PKU-DDD17-CAR [95] is derived from the larger DDD17 dataset [17], which contains exten-

sive driving data recorded across European roads using a DAVIS-346B camera. This subset con-

sists of 14 sequences (7 for training, 7 for testing), and provides 3154 manually labeled samples

of synchronized grayscale images and events. These labels were added to the originally unlabeled
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DDD17 [17] dataset for object detection applications. The sequences are categorized based on

lighting conditions, identified as either day-time or low-light conditions. Within these, 5 of the 14

sequences (comprising 2 in the training set and 3 in the testing set) are classified under low-light

conditions, generally indicative of evening or early night hours. The remaining sequences are cat-

egorized as daytime. The overall distribution of the total samples across the training and testing

sets is approximately 78% for daytime and 22% for low-light conditions.

Comparing these datasets, MEVDT offers a higher total dataset duration and more labeled

samples but features fewer events per sample due to the static camera setup. In contrast, PKU-

DDD17-CAR [95], recorded from a moving vehicle, presents a higher event density per sample.

The distinct characteristics of these datasets provide a comprehensive testing ground for our object

detection methods, particularly when exploring the effects of different batch-sampling durations

on performance. In the case of MEVDT, we extract samples by selecting the last ∆T events prior

to each label timestamp ts, with ∆T varying between 43 ms and 500 ms. Accordingly, each sample

contains events within the interval [ts−∆T, ts]. We adapt to longer sampling durations by exclud-

ing samples with insufficient temporal history (where the sample’s duration is < ∆T ), resulting

in fewer samples for longer durations. However, this method of varying ∆T could not be applied

to the PKU-DDD17-CAR dataset, as its samples are pre-extracted with a fixed sampling period of

approximately 20 ms. This limitation arises because PKU-DDD17-CAR does not include longer

sequences of event data, restricting our ability to experiment with different sampling durations for

this dataset.

Table 6.2 provides an overview of the datasets’ key statistics, highlighting the differences in data

types, sensor specifications, sample dimensions, and annotation methods, among other parameters.

These variations in dataset characteristics are valuable in testing the robustness and adaptability of

our object detection methodologies under varying conditions.
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6.4.2 Representations

As in Chapter 5, we adopt the image-like event representations detailed in Section 5.3, including

the CSTR developed in that chapter. These representations can be categorized as spatial (Event

Frame and Event Count variants) or spatio-temporal (Timestamp Image and CSTR variants). The

objective of this chapter is to assess the impact of these different representations on object detec-

tion, a critical task in CV. This evaluation extends to both multi-modal scenarios and baseline

image-only setups.

Given our earlier findings (Chapter 5), we restrict our experiments to 3-channel formats of each

image-like event representation. This decision aligns with our goal to maintain compatibility with

standard CV architectures and provide an optimal use of pre-trained weights. For the grayscale

images captured by the APS, we utilize a 3-channel RGB format, where the intensity information

is duplicated across all three channels, ensuring uniformity in input data format.

6.4.3 Object Detectors

In our experiments, we employ the SSD [108] with a VGG16 encoder [160] as our base object

detection model. This choice is motivated by SSD’s ability to balance accuracy and processing

latency, making it well-suited for real-time detection tasks. We base our model on Torchvision’s

implementation of SSD300 with a VGG16 encoder2, pre-trained on the COCO dataset [103]. This

pre-training is essential to ensure better model convergence and generalization, particularly advan-

tageous for the event-based modality where the availability of extensive labeled training data is

limited.

Given that the COCO dataset encompasses 91 object classes [103], we modify the SSD’s classi-

fication head to be compatible with the number of classes in our datasets, while keeping the regres-

sion head unchanged to preserve as much of the pre-trained weights as possible. This approach

maintains a strong foundation for the model, leveraging the generalization capabilities provided by

the COCO dataset.
2https://pytorch.org/vision/main/models/generated/torchvision.models.detection.ssd300 vgg16
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For the multi-modal experimental setups, both early and late fusion methods require further

adaptations to the modified base model to accommodate the different data formats and fusion

strategies.

In the early fusion experiments, we adapt the first convolutional layer of the SSD [108] to

process 6-channel inputs instead of the standard 3-channel inputs. To retain the benefits of the

pre-trained weights, we replicate them across the additional channels in the first layer, ensuring a

seamless transition to the expanded input format. This modification is crucial to accommodate the

concatenated event and frame-based input data without compromising the initial training advan-

tages.

In late fusion, our setup employs two instances of the modified SSD model, each responsible for

one modality. These models are trained simultaneously, optimizing a combined loss function that

aggregates the individual losses from each model through simple addition. This dual-model ap-

proach allows us to explore the potential of late fusion in enhancing object detection performance,

especially in scenarios where each sensor modality offers distinct advantages.

In all cases, the event-representation frames and grayscale images are uniformly resized to a

resolution of 300 × 300, to accommodate the requirements of the object detection model. This

step ensures that the input data is consistent in dimensions across different representations and

modalities.

6.4.4 Training Hyperparameters

For our experiments, we carefully select specific hyperparameters to ensure consistency, replica-

bility, and optimal model performance. These settings are detailed as follows:

• Batch Size: A fixed batch size of 32 is maintained throughout the training process.

• Optimizer: The ADAM optimizer [87] is chosen, with key parameters set as:

– Learning Rate: An initial learning rate of 1× 10−4 is used.

– Weight Decay: A weight decay parameter is set at 1× 10−5.
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• Normalization: ImageNet [88] normalization parameters (mean and standard deviation) are

applied, consistent with the approach in Chapter 5.

• Training Duration: Models are trained for up to 50 epochs. Early stopping is employed,

triggered after 10 consecutive epochs without improvement in validation performance.

• Model Selection: The best model is determined based on the highest mAP on the validation

set during the training phase.

• Dataset Splits: We utilize the official training and testing splits as provided with each dataset

(refer to Chapter 2 and Ref. [95]).

• Validation Set Selection:

– For MEVDT, we employ a sequence-based split to minimize data leakage and improve

generalization performance. The sequences are sorted by sample count and then as-

signed to the training set until reaching approximately 80% of the total samples. The

remaining sequences, containing around 20% of the samples, are assigned to the vali-

dation set. This approach is followed for all sampling period configurations used in our

experiments.

– For PKU-DDD17-CAR [95], the validation set is selected by randomly allocating 80%

of the samples to the training set and 20% to the validation set, considering the high

variance of sequence sizes and the sequentially inconsistent nature of the dataset’s

samples. Additionally, in the final evaluation, we assess performance across all test

sequences and provide separate results for both day-time and low-light conditions us-

ing the same evaluation metrics. This approach allows for a comprehensive evaluation

of the model’s performance under varying lighting conditions, alongside the overall

performance.

• Data Shuffling: Shuffling of the training set is done after each epoch to prevent the model

from learning false sequential patterns.
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• Augmentations: Augmentations are a critical component of our training process, with con-

figurations varied for each training instance:

– Spatial Augmentation: Selected with a 70% probability, including randomized crops

(70%–100% of the original size) with aspect ratios between 3/4 to 4/3. When spa-

tial augmentations are applied, horizontal flips are included with a 50% probability.

Rotations are excluded to avoid adverse effects on performance.

– Temporal-Drop Augmentation: Implemented with a 50% probability, with a maximum

temporal shift threshold (θt) set at 0.5, affecting up to 50% of the temporal range.

– Polarity-Inversion Augmentation: Applied with a 50% probability, where the polarity

inversion threshold (θp) is set to 0.5.

– Event Drop Augmentation: Implemented with a 50% probability, with a maximum

event drop percentage set to 30% (θd set at 0.3).

These hyperparameters are chosen to optimize the models’ performance and generalizability

across different datasets and object detection scenarios presented in our experiments.

6.4.5 Evaluation Metrics

Mean Average Precision (mAP) is a widely adopted benchmark metric for object detection models

[103, 49]. Contrary to image classification tasks that assign a single label to an image, object de-

tection challenges involve recognizing, categorizing, and precisely locating multiple objects within

an image, each defined by a unique BB. Due to the multitude of potential True Negative (TN) clas-

sifications, conventional metrics like accuracy are unsuitable for object detection.

IoU, also known as the Jaccard Index [79], measures the accuracy of object localization. It

quantifies the overlap between predicted and ground truth BBs, as depicted in Figure 6.4. The IoU

is calculated by finding the ratio of the intersection area to the union area, yielding a value between

0.0 (no overlap) and 1.0 (perfect overlap).
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Figure 6.4: Visualization of the Intersection over Union (IoU) metric. IoU is calculated by finding
the ratio of the intersection between the predicted and ground truth BBs to their union.

Predictions are classified as True Positive (TP), False Positive (FP), or False Negative (FN)

based on a specified IoU threshold, α. A prediction qualifies as a TP if IoU is ≥ α, or as an FP

if IoU is < α. A true object without a matching BB exceeding the IoU threshold α is marked

as a FN, while any prediction without a corresponding true object is a FP. With these prediction

classifications, we are able to calculate the precision and recall using the following equations:

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

The precision metric assesses the model’s ability to correctly classify true samples as positive,

focusing on the accuracy of positive classifications. On the other hand, recall measures the model’s

capacity to detect all true samples while ignoring instances of FP classifications.

In the context of object detection, the predictions for each object category are sorted by confi-

dence values in descending order across all images within the evaluation set. This sorting process

results in the accumulation of TPs and FPs, enabling the computation of precision and recall at
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each point along this sorted list. Subsequently, the precision and recall values obtained for each

class contribute to the construction of the precision-recall curve. This curve serves as the basis for

calculating the AP for each individual class by measuring the area under the curve. The mAP is

derived by averaging these AP values across all classes.

The mAP was originally computed using an IoU threshold of α = 0.5 in the PASCAL VOC

challenge [49], denoted as mAP50. The COCO dataset extends this evaluation by considering mAP

across multiple IoU thresholds, ranging from 0.5 to 0.95 in 0.05 increments [103]. The resulting

range of mAP results is averaged to produce the mAP[0.5:0.95], which is referred to as mAP in

this work. Additionally, the COCO approach utilizes a 101-point interpolation method, unlike

PASCAL VOC’s 11-point method, providing a more refined evaluation of mAP. In this work, we

employ the mAP, mAP50, and mAP75 metrics based on the COCO API3 [103] for all evaluations

and mAP metric computations. For readers seeking a deeper understanding of the mAP metric, a

comprehensive explanation is available at [157].

6.5 Experiment Results

Following the experimental setup detailed earlier, this section presents both quantitative and qual-

itative analyses of the conducted experiments. Our focus here is to present a comprehensive eval-

uation of the performance of our proposed methods under various settings and conditions.

6.5.1 Event-based Object Detection

In this section, we present the results of our event-based object detection experiments. These

findings are critical for understanding the effectiveness of various event representations in object

detection. For each dataset, we demonstrate the test set results with and without the implementation

of the augmentation framework.

Consistent with our findings in Chapter 5, representations that solely encode spatial informa-

3Available at https://github.com/cocodataset/cocoapi/tree/master
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Table 6.3: Evaluation results of different event representations on MEVDT’s test set across multi-
ple batch-sampling durations. The best result per column is in highlighted bold.

Representation mAP mAP75 (%) mAP50 (%)

43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg.

Binary Event Frame 74.8 77.3 74.3 72.7 74.8 88.6 91.2 88.8 81.6 87.5 93.6 96.3 95.9 95.0 95.2
Polarized Event Frame 77.7 78.3 79.7 80.1 79.0 90.8 92.8 92.1 93.7 92.4 94.6 96.4 96.5 96.7 96.0
Binary Event Count 75.9 76.8 75.5 73.6 75.4 89.5 92.1 86.4 81.3 87.3 93.2 96.0 95.6 95.9 95.2
Polarized Event Count 77.3 78.6 78.0 76.1 77.5 90.1 91.9 92.0 86.1 90.0 94.7 96.4 96.4 96.7 96.0
Timestamp Image 75.2 79.0 81.9 80.8 79.2 88.3 92.6 94.3 94.5 92.4 94.7 96.5 97.1 97.5 96.4
Timestamp Image & Count 77.6 79.9 80.5 80.6 79.7 91.1 92.2 93.0 93.2 92.4 94.6 96.0 97.0 97.0 96.1
CSTR (mean T̄s only) 78.7 79.2 81.3 81.5 80.2 90.9 91.7 94.3 94.5 92.8 95.4 96.2 97.3 97.7 96.6
CSTR (mean T̄s & Count) 78.9 79.3 79.8 80.5 79.6 92.0 92.2 93.1 94.5 93.0 95.7 95.9 96.3 97.5 96.3

Table 6.4: Evaluation results of different event representations in addition to the proposed aug-
mentation framework on MEVDT’s test set across multiple batch-sampling durations.

Representation mAP mAP75 (%) mAP50 (%)

43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg.

Binary Event Frame 80.1 81.6 78.8 76.2 79.2 90.6 92.2 89.9 86.1 89.7 95.4 97.0 97.3 97.1 96.7
Polarized Event Frame 81.7 82.7 82.7 82.7 82.5 92.0 92.5 93.8 94.8 93.3 96.0 97.9 98.4 98.7 97.8
Binary Event Count 78.5 79.6 77.7 75.6 77.8 89.5 92.4 90.8 82.4 88.8 94.5 97.2 97.7 96.3 96.4
Polarized Event Count 81.0 82.4 79.3 77.1 79.9 90.7 92.8 90.6 86.3 90.1 96.2 97.7 97.3 97.3 97.1
Timestamp Image 81.8 81.4 83.8 83.2 82.6 91.5 92.6 93.7 94.7 93.1 96.2 97.4 98.4 97.5 97.4
Timestamp Image & Count 79.6 83.7 83.7 84.6 82.9 91.7 93.4 93.5 93.9 93.1 95.9 97.4 98.2 98.7 97.5
CSTR (mean T̄s only) 79.1 82.2 84.1 84.2 82.4 90.7 92.7 93.6 93.4 92.6 95.7 97.3 98.3 98.7 97.5
CSTR (mean T̄s & Count) 80.4 82.7 84.9 84.9 83.2 91.6 92.5 93.5 94.5 93.0 96.5 96.5 98.1 98.8 97.5

The best result per sampling duration and metric is in highlighted bold.

tion, such as Event Frame representations, tend to underperform with extended sampling durations,

as shown in Table 6.3. For example, the Binary Event Frame representation consistently shows re-

duced effectiveness under prolonged durations, particularly with precision-sensitive metrics like

mAP and mAP75. This trend is also noticeable in the Binary Event Count representation, under-

scoring the significance of incorporating event polarity to minimize signal saturation. Conversely,

the Polarized Event Count and Event Frame representations, while not deteriorating significantly,

do not exhibit robustness or marked improvement with longer batch-sampling durations. In con-

trast, spatio-temporal representations, primarily the Timestamp Image and CSTR variants, signif-

icantly benefit from extended durations. This observation highlights their resilience to varying

batch periods and their superior capability in encoding the rich temporal information of event data,

compared to other image-like representations. The CSTR, in particular, demonstrates robust per-

formance across all metrics, with both of its variants achieving the best average performance in

nearly all metrics.

Interestingly, including the event count channel in both the Timestamp Image and the CSTR
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did not consistently result in better performance. This contrasts with our earlier results in Chapter

5, where these representations significantly benefited from the added context provided by the event

count. We hypothesize that this discrepancy arises from the differing nature of the tasks, specifi-

cally between image classification and object detection. Object detection necessitates a clear signal

for BB regression and classification, whereas image classification involves categorizing the input

as a whole. Consequently, DL-based classification networks can extract useful global context from

this additional information, while object detectors might require more nuanced low-level input

feature extraction methods.

When integrating the augmentation framework, as demonstrated in Table 6.4, spatio-temporal

representations consistently outperform others, even with the inclusion of randomized augmenta-

tions. They also consistently benefit from longer batch-sampling periods across all metrics. The

CSTR, in particular, exhibits exceptional performance, yielding the best average results under the

mAP metric. Interstingly, the Polarized Event Frame representation demonstrates strong perfor-

mance under the mAP75 and mAP50 metrics, surpassing the spatio-temporal representations. This

can be attributed to the static nature of this dataset, which reduces representation saturation and

enables object detectors to more effectively identify objects, particularly with the addition of ran-

domized augmentations.

The results from the PKU-DDD17-CAR dataset, as depicted in Table 6.5, present a contrasting

narrative. In this evaluation, the Polarized Event Count method surpasses other event represen-

tation techniques across all metrics. This variance underscores the critical role of having ample

data for training and fine-tuning event-based models. Although this dataset offers a broader range

of conditions compared to MEVDT, it is limited by a significantly smaller number of samples.

Consequently, event-based models encounter a scarcity of data points necessary for learning the

intricate spatio-temporal patterns inherent in such representations. In contrast, a spatial represen-

tation with reduced complexity, like the Polarized Event Count, can more effectively capitalize on

the limited available samples. This situation highlights the challenges posed by dataset limitations

in event-based modalities and underlines the need for incorporating randomized data augmentation
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Table 6.5: Evaluation results of different event representations on PKU-DDD17-CAR’s test set
under day-time and low-light conditions. The best result per column is in highlighted bold.

Representation All Sequences Day-Time Sequences Low-Light Sequences

mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Binary Event Frame 21.2 19.2 43.3 20.1 18.6 39.8 26.2 21.1 58.9
Polarized Event Frame 21.0 17.1 43.9 19.6 16.9 40.7 27.2 17.8 58.4
Binary Event Count 21.0 17.9 43.0 20.2 17.8 40.1 25.3 19.3 56.7
Polarized Event Count 22.7 20.8 46.9 21.7 20.5 43.7 27.6 22.3 61.5
Timestamp Image 21.7 19.3 44.3 20.6 19.2 41.3 27.0 20.8 58.5
Timestamp Image & Count 21.6 18.2 46.3 20.7 18.2 43.1 25.8 18.1 60.9
CSTR (mean T̄s only) 21.4 18.1 44.5 19.8 17.0 41.9 25.9 17.4 57.6
CSTR (mean T̄s & Count) 22.0 17.9 45.7 20.8 17.8 42.5 27.2 18.3 60.7

Table 6.6: Evaluation results of different event representations in addition to the proposed aug-
mentation framework on PKU-DDD17-CAR’s test set under day-time and low-light conditions.

Representation All Sequences Day-Time Sequences Low-Light Sequences

mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Binary Event Frame 24.2 21.5 49.4 23.6 22.8 46.5 28.5 19.8 63.0
Polarized Event Frame 26.1 22.1 53.1 24.9 21.6 50.0 32.0 25.4 67.7
Binary Event Count 23.9 19.6 50.4 23.3 20.0 48.1 27.9 20.0 61.7
Polarized Event Count 26.1 23.8 52.4 25.4 24.3 49.7 30.4 24.0 65.0
Timestamp Image 23.1 20.3 49.4 22.3 20.9 46.7 27.9 20.0 62.2
Timestamp Image & Count 24.7 22.7 51.1 23.7 22.7 48.3 30.5 24.6 65.1
CSTR (mean T̄s only) 23.7 20.4 48.7 22.9 21.1 46.1 28.5 19.6 61.2
CSTR (mean T̄s & Count) 24.2 21.9 49.9 23.3 21.8 46.9 29.2 24.3 63.8

The best result per column is in highlighted bold.

techniques to enhance the diversity of training data. Furthermore, we can infer that a brief sam-

pling duration (20 ms in this case) yields inadequate information for the object detection model to

effectively utilize spatio-temporal representations. Additionally, careful examination of the dataset

labels reveals significant labeling issues, including numerous instances of poor BB alignment and

frequent occurrences of unlabeled objects. These labeling inaccuracies, coupled with the dataset’s

limited size, significantly impede the generalization capabilities of the detection models.

Similar trends are observed when implementing augmentations, as illustrated in Table 6.6. The

integration of our proposed augmentation framework significantly enhances the performance of

event-based models on the PKU-DDD17-CAR dataset. Notably, the Polarized Event Count con-

tinues to excel, surpassing other methods under the mAP and mAP75 metrics. Intriguingly, spatial

representations, encompassing both event frame and event count, demonstrate superior perfor-

mance on average compared to their spatio-temporal counterparts. This observation further under-

scores the previously discussed limitations inherent to this dataset.
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A particularly noteworthy finding with this dataset is the enhanced performance of all trained

event-based models in low-light conditions. Although this outcome may be influenced by various

factors, including the dataset’s imbalance, it notably underscores the efficacy of event cameras in

low-light scenarios. To fully harness and validate this potential in object detection applications,

the development and utilization of more comprehensive and diverse datasets are crucial.

We visualize some results of our event-based approach in Figure 6.5. Here, we present the

outputs of both the event-based and the frame-based baseline models using selected samples from

each dataset. These results are derived from the fine-tuned SSD model, employing the CSTR for

the event-based modality and intensity images for the frame-based model. Notably, in the PKU-

DDD17-CAR samples shown in (a), there are evident labeling issues, including poor alignment and

unlabeled objects. Meanwhile, the MEVDT dataset samples, particularly in Scene A’s sequences,

demonstrate the models’ fine-tuning to disregard parked vehicles at the top section where no events

are generated. When there is movement, the event-based approach, especially with spatio-temporal

image-like representations, shows its potential in object detection by generating precise BBs, as

evidenced in comparison to the ground truth labels.

6.5.2 Multi-Modal Object Detection

In this section, we compare the results of the multi-modal fusion methods described in Section

6.3. Additionally, we compare these results with a baseline frame-based SSD model, fine-tuned

using each dataset’s respective images. We also explore the impact of our proposed augmentation

framework on these fusion methods in a multi-modal context. It is important to note that when

applying augmentations, only spatial augmentations are applied to the frame-based modality, using

the same randomly generated parameters as those applied to the event-representation frames.

6.5.2.1 Early Fusion

Our initial evaluation focuses on early fusion methods. Using the MEVDT dataset, as shown in

Table 6.7, we observe that the baseline frame-based approach generally surpasses the early fusion-
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Figure 6.5: Visualization of selected object detection results obtained by fine-tuning a pre-trained
SSD model [108], in combination with our proposed augmentation framework, for both event-
based and frame-based modalities. The results are showcased using the datasets featured in this
chapter, specifically, (a) PKU-DDD17-CAR [95], and (b) MEVDT (presented in Chapter 2) sam-
pled at 500 ms. The event-based approach employs the CSTR as the chosen event representation,
while the frame-based approach uses intensity images. Ground truth and predicted objects are de-
picted in green and red, respectively.

based multi-modal approach. This discrepancy can be attributed to several factors, including the

nature of the dataset. Since the camera in this dataset is stationary, most events captured are

directly related to the movement of objects (i.e., vehicles) within the scene. Given the varying

speeds of the vehicles, specifically the instances where they come to a complete stop, the event-

based sensor can provide an unreliable signal in these scenarios. Consequently, this dataset may

not offer adequate data for the model to learn to identify these patterns and prioritize modalities,

even at longer sampling durations. The fusion occurring at the input level, combined with the

lack of intricate fine-tuning methods, may prevent the initial convolutional layer from learning

these patterns effectively. As a result, the early-fusion models may converge to a less optimal

global minimum compared to the frame-based models, which find better convergence points more

readily.

Table 6.8 presents the results of incorporating our augmentation framework. Interestingly, the

proposed augmentations significantly enhance the performance of basic spatial event representa-
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Table 6.7: Evaluation results of the early-fusion multi-modal approach on MEVDT’s test set. The
results are demonstrated using different event representations across multiple batch-sampling du-
rations.

Representation mAP mAP75 (%) mAP50 (%)

43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg.

Binary Event Frame 84.3 84.7 85.8 83.8 84.6 96.0 95.9 96.7 95.8 96.1 98.9 98.9 98.9 98.9 98.9
Polarized Event Frame 84.1 84.2 83.0 83.1 83.6 96.5 95.7 95.5 96.3 96.0 98.5 98.7 97.8 98.3 98.3
Binary Event Count 84.9 82.6 80.8 78.2 81.6 95.9 95.7 93.5 87.8 93.3 99.0 98.9 97.9 97.0 98.2
Polarized Event Count 84.9 83.7 85.5 82.0 84.0 95.6 95.6 95.9 93.3 95.1 98.7 98.7 97.9 97.0 98.1
Timestamp Image 85.9 87.2 84.1 86.8 86.0 95.7 96.8 95.8 96.9 96.3 98.7 98.9 98.8 98.9 98.8
Timestamp Image & Count 84.6 85.7 85.9 86.6 85.7 96.8 96.9 96.9 97.0 96.9 98.9 98.9 98.9 99.0 98.9
CSTR (mean T̄s only) 84.7 86.6 84.2 87.7 85.8 96.4 97.0 96.8 97.0 96.8 98.4 98.9 98.8 99.0 98.8
CSTR (mean T̄s & Count) 86.0 86.3 84.5 86.5 85.8 95.8 96.6 96.9 97.0 96.6 98.9 99.0 98.9 99.0 98.9

Baseline (images only) 88.2 88.5 86.6 88.4 87.9 97.9 96.8 97.9 97.8 97.6 98.9 98.9 99.0 98.8 98.9
The best result per sampling duration and metric is in highlighted bold.

Table 6.8: Evaluation results of the early-fusion multi-modal method in addition to the proposed
augmentation framework on MEVDT’s test set. The results are demonstrated using different event
representations across multiple batch-sampling durations.

Representation mAP mAP75 (%) mAP50 (%)

43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg.

Binary Event Frame 87.8 87.8 88.5 89.5 88.4 95.8 95.8 96.9 97.0 96.4 98.9 98.8 99.0 99.0 98.9
Polarized Event Frame 89.1 88.3 88.1 86.2 87.9 96.9 96.9 95.9 96.9 96.7 98.9 98.9 98.9 98.9 98.9
Binary Event Count 86.1 84.1 87.0 86.9 86.0 96.9 95.8 95.9 95.9 96.1 98.9 98.7 98.8 99.0 98.8
Polarized Event Count 88.1 87.4 87.5 88.2 87.8 96.7 96.9 95.9 96.7 96.6 98.7 98.9 98.8 98.9 98.8
Timestamp Image 88.2 87.3 87.9 88.0 87.9 96.7 96.6 96.8 96.9 96.7 98.7 98.6 98.8 98.9 98.7
Timestamp Image & Count 88.0 87.1 86.2 87.1 87.1 96.8 96.7 96.0 97.0 96.6 98.8 98.7 98.9 98.9 98.8
CSTR (mean T̄s only) 87.9 86.4 88.4 89.4 88.0 96.7 96.7 95.9 96.9 96.5 98.7 98.7 98.8 98.8 98.8
CSTR (mean T̄s & Count) 88.9 87.4 87.0 87.1 87.6 96.9 96.9 95.7 97.9 96.9 98.9 98.9 98.7 99.0 98.9

Baseline (images only) 89.3 88.2 89.7 86.4 88.4 96.4 96.7 96.7 97.9 96.9 98.4 98.7 98.7 98.9 98.7

The best result per sampling duration and metric is in highlighted bold.

tions, more so than the spatio-temporal ones. This leads to comparable average performance across

all event representation choices, particularly under the mAP75 and mAP50 metrics. In this dataset,

the Binary Event Frame shows potential in complementing the intensity images of the frame-based

modality. Although these multi-modal solutions underperform compared to the frame-based base-

line, this can be partially attributed to the detection model’s limitations in effectively leveraging

larger inputs, necessitating more advanced fusion methods and capable detection models. Addi-

tionally, the nature of the dataset suggests that intensity images alone may suffice. The spatial

augmentations slightly adversely affect the baseline frame-based model, reflecting the optimal use

of pre-trained weights in leveraging transfer learning for object detection models on this dataset.

The MEVDT dataset’s relatively simple scenes for frame-based object detection indicate that per-

formance might have reached its peak.
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Table 6.9: Evaluation results of the proposed early-fusion multi-modal method on PKU-DDD17-
CAR’s test set. The results are also demonstrated under daytime and low-light conditions.

Representation All Sequences Day-Time Sequences Low-Light Sequences

mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Binary Event Frame 41.8 37.7 84.5 42.5 38.7 85.1 40.0 34.0 83.1
Polarized Event Frame 40.3 34.6 82.2 41.0 35.8 82.6 38.2 29.6 80.9
Binary Event Count 43.1 40.3 84.9 43.8 42.1 85.3 41.4 33.3 84.3
Polarized Event Count 42.9 37.2 85.2 43.9 38.7 86.5 40.0 30.8 83.3
Timestamp Image 45.2 41.9 87.3 45.9 43.4 88.0 43.1 37.5 85.0
Timestamp Image & Count 44.6 42.2 87.3 45.3 43.7 88.2 42.5 38.7 83.0
CSTR (mean T̄s only) 44.5 39.5 87.4 45.5 41.6 88.3 41.5 32.2 84.4
CSTR (mean T̄s & Count) 44.4 37.7 87.9 45.2 39.5 88.4 42.1 32.5 85.7

Baseline (images only) 44.5 41.0 87.1 44.9 41.7 87.5 43.5 39.1 86.1
The best result per column is highlighted in bold.

Table 6.10: Evaluation results of the early-fusion multi-modal method in addition to the proposed
augmentation framework on PKU-DDD17-CAR’s test set. The results are also demonstrated under
daytime and low-light conditions.

Representation All Sequences Day-Time Sequences Low-Light Sequences

mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Binary Event Frame 43.8 37.5 88.6 43.9 37.5 89.0 44.3 38.3 88.9
Polarized Event Frame 41.8 35.4 86.3 42.6 36.4 87.0 39.8 32.6 85.0
Binary Event Count 45.0 40.2 88.5 46.3 42.0 90.0 41.2 35.3 84.1
Polarized Event Count 46.3 41.5 89.6 46.8 42.8 90.6 44.3 37.8 86.5
Timestamp Image 45.5 41.0 89.0 46.4 42.4 90.2 42.9 37.2 86.2
Timestamp Image & Count 45.4 39.8 89.5 46.4 41.5 90.6 42.8 34.6 86.6
CSTR (mean T̄s only) 47.2 44.1 90.6 48.2 46.0 92.0 44.6 38.4 86.5
CSTR (mean T̄s & Count) 46.5 42.8 89.8 47.9 44.6 91.4 41.6 37.0 84.1

Baseline (images only) 47.3 44.8 90.2 47.5 46.6 90.2 47.9 40.3 91.1
The best result per column is highlighted in bold.

The early-fusion results for the PKU-DDD17-CAR dataset, detailed in Table 6.9, present a

different scenario. Despite the shorter event sampling duration (20 ms), providing less temporal

context, the event-based signal is denser and spatially richer due to the camera being mounted on

a moving vehicle. As a result, any ego-motion generates events around the edges of all objects

in the scene, including the background, offering better texture information for object detection.

Consequently, several models exhibit similar or superior generalization performance under certain

metrics, as shown in Table 6.9. These include all spatio-temporal representations when evaluating

combined test sequences and day-time sequences. However, surprisingly, the multi-modal ap-

proach underperforms compared to the frame-based baseline in low-light sequences. We attribute

this to various factors, including data imbalance between both categories and the frame-based so-

lution’s more effective use of pre-trained weights for optimal convergence, unlike the multi-modal
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approach.

Table 6.10 shows the results of applying the multi-modal augmentation framework using the

early-fusion approach on the same dataset. Fewer multi-modal models outperform the frame-based

baseline here. Notably, the CSTR, including only the mean timestamps, surpasses the baseline un-

der the mAP50 metric overall, particularly in day-time sequences where both CSTR variants exceed

the baseline under the mAP metric. This underscores the event data’s potential in aiding object de-

tection models to regress more accurate BBs with suitable event representations. Nonetheless,

the multi-modal methods lag behind the baseline in low-light sequences, likely due to the lim-

ited number of low-light samples in the dataset, providing insufficient data for the models to learn

effectively. The rich texture details in intensity images often suffice for localizing objects with

low precision, potentially outweighing the benefits of event data, which might negatively influence

a model under such conditions. However, the limitations of this dataset, as previously discussed,

may constrain the full evaluation of this approach, emphasizing the need for diverse and large-scale

multi-modal event-based datasets.

In summary, the early-fusion approach demonstrates the feasibility of leveraging the spatial

similarities of frame-based and event-based modalities. A CNN employing 3D convolutional fil-

ters can extract more optimized low-level features from the channel-wise concatenation of these

modalities. However, additional fine-tuning techniques are necessary to achieve better convergence

when fusing both modalities. Lastly, the proposed augmentation framework has proven essential

in enhancing the generalization capabilities of all object detection models utilizing the early fusion

approach.

6.5.2.2 Late Fusion

The late fusion multi-modal object detection experiment results for MEVDT are presented in Ta-

bles 6.11 and 6.12. Despite the increased complexity of the overall model, our findings indicate

that the late-fusion technique, as implemented in this work, generally underperforms compared

to the early-fusion methods with this dataset. Further, these models consistently fall short of the
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Table 6.11: Evaluation results of the late-fusion multi-modal method on MEVDT’s test set. The
results are demonstrated using different event representations across multiple batch-sampling du-
rations.

Representation mAP mAP75 (%) mAP50 (%)

43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg.

Binary Event Frame 79.7 81.4 79.3 80.7 80.3 95.5 96.2 94.9 89.7 94.1 97.7 98.4 98.3 98.8 98.3
Polarized Event Frame 81.8 82.5 83.8 81.8 82.5 96.1 96.7 96.6 95.4 96.2 98.1 98.8 98.7 98.7 98.6
Binary Event Count 80.9 80.6 79.7 79.8 80.2 95.7 95.5 93.8 89.4 93.6 98.0 97.9 97.8 98.4 98.0
Polarized Event Count 81.2 82.0 83.2 80.4 81.7 95.8 96.3 94.8 91.7 94.7 98.1 98.3 98.4 98.5 98.3
Timestamp Image 81.6 84.2 84.7 84.6 83.8 96.2 96.2 97.4 96.9 96.7 98.0 98.2 98.5 98.9 98.4
Timestamp Image & Count 82.7 81.3 84.3 85.2 83.4 95.8 96.3 96.2 96.8 96.3 97.9 98.2 98.2 98.8 98.3
CSTR (mean T̄s only) 83.9 83.1 81.9 85.1 83.5 96.2 95.9 96.6 96.8 96.4 98.3 97.9 98.6 98.9 98.4
CSTR (mean T̄s & Count) 82.6 82.6 83.6 84.7 83.4 96.3 97.2 96.2 96.8 96.6 98.3 98.2 98.2 98.9 98.4

Baseline (images-only) 88.2 88.5 86.6 88.4 87.9 97.9 96.8 97.9 97.8 97.6 98.9 98.9 99.0 98.8 98.9
The best result per sampling duration and metric is in highlighted bold.

Table 6.12: Evaluation results of our late-fusion multi-modal approach in addition to the aug-
mentation framework on MEVDT’s test set. The results are demonstrated using different event
representations across multiple batch-sampling durations.

Representation mAP mAP75 (%) mAP50 (%)

43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg. 43 ms 100 ms 200 ms 500 ms avg.

Binary Event Frame 84.7 83.7 83.8 82.2 83.6 96.3 95.6 95.7 89.4 94.3 98.2 98.5 98.6 98.1 98.4
Polarized Event Frame 84.6 85.1 84.1 86.6 85.1 96.4 96.7 96.5 97.7 96.8 98.3 98.7 98.7 98.7 98.6
Binary Event Count 85.4 86.5 84.2 81.8 84.5 95.5 97.0 95.5 89.9 94.5 98.4 98.5 98.7 98.3 98.5
Polarized Event Count 85.6 86.3 84.0 82.8 84.7 96.5 95.5 96.1 88.4 94.1 98.6 98.3 98.5 98.4 98.5
Timestamp Image 84.8 85.9 85.2 87.5 85.8 96.3 96.6 96.8 97.6 96.8 98.2 98.5 98.7 98.6 98.5
Timestamp Image & Count 85.9 87.5 85.5 88.2 86.8 97.2 96.3 96.7 97.7 97.0 98.3 98.0 98.7 98.8 98.5
CSTR (mean T̄s only) 84.4 85.4 85.2 86.2 85.3 96.3 95.8 96.7 96.4 96.3 98.2 98.7 98.7 98.8 98.6
CSTR (mean T̄s & Count) 87.4 85.0 85.8 87.7 86.5 96.3 96.4 96.7 97.5 96.7 98.2 98.2 98.8 98.7 98.4

Baseline (images only) 89.3 88.2 89.7 86.4 88.4 96.4 96.7 96.7 97.9 96.9 98.4 98.7 98.7 98.9 98.7
The best result per sampling duration and metric is in highlighted bold.

performance achieved by the single-modal frame-based baseline models. The integration of our

augmentation framework during training, as shown in Table 6.12, does enhance the performance

of the late-fusion-based models. However, there remains a notable performance disparity with the

frame-based baseline, particularly under the mAP metric.

The PKU-DDD17-CAR dataset yields similar trends. As evidenced in Table 6.13, the late fu-

sion technique employed rarely surpasses the single-modal baseline. Additionally, the utilization

of different event representations yields comparable performances. This outcome can be attributed

to the dataset’s short sampling duration and limited size. Incorporating our augmentation frame-

work, as demonstrated in Table 6.14, yields intriguing results. Our straightforward late-fusion

approach combining the Binary Event Frame and intensity images emerges as the top-performing

model on this dataset across the mAP and mAP75 metrics, even when compared to the early-fusion
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Table 6.13: Evaluation results of the late-fusion multi-modal approach on PKU-DDD17-CAR’s
test set. The results are also demonstrated under daytime and low-light conditions.

Representation All Sequences Day-Time Sequences Low-Light Sequences

mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Binary Event Frame 43.2 40.3 84.0 43.6 42.1 84.0 41.7 32.8 84.4
Polarized Event Frame 43.2 38.9 84.7 44.0 40.7 84.9 40.5 32.8 85.5
Binary Event Count 43.3 41.0 84.2 43.8 42.7 84.1 42.0 35.0 85.8
Polarized Event Count 43.6 41.2 84.4 44.3 43.0 84.9 41.2 34.1 83.9
Timestamp Image 43.4 40.4 84.1 44.4 43.2 84.7 42.7 39.0 85.7
Timestamp Image & Count 43.6 41.3 84.3 44.2 43.0 84.4 41.6 33.9 85.1
CSTR (mean T̄s only) 43.8 41.8 85.1 44.8 44.3 85.4 40.5 32.0 85.3
CSTR (mean T̄s & Count) 43.6 41.0 84.3 44.8 43.9 85.2 39.9 31.1 82.2

Baseline (images only) 44.5 41.0 87.1 44.9 41.7 87.5 43.5 39.1 86.1
The best result per column is highlighted in bold.

Table 6.14: Evaluation results of the late-fusion multi-modal approach in addition to the proposed
augmentation framework on PKU-DDD17-CAR’s test set. The results are also demonstrated under
daytime and low-light conditions.

Representation All Sequences Day-Time Sequences Low-Light Sequences

mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Binary Event Frame 47.4 47.3 87.2 48.6 49.5 87.6 45.0 42.0 87.3
Polarized Event Frame 45.8 44.3 86.4 46.9 47.4 86.5 43.7 37.1 87.2
Binary Event Count 45.1 43.2 86.2 46.3 46.2 86.5 42.7 35.7 87.4
Polarized Event Count 45.4 43.4 86.7 46.1 45.7 86.8 44.4 36.9 87.1
Timestamp Image 46.9 46.1 87.1 47.7 47.7 87.4 45.2 41.9 87.4
Timestamp Image & Count 45.2 42.6 85.8 45.6 44.0 85.9 44.6 39.7 86.4
CSTR (mean T̄s only) 45.5 44.2 84.5 46.5 46.8 84.5 43.4 38.2 85.7
CSTR (mean T̄s & Count) 45.2 41.1 86.3 45.7 43.3 86.0 44.7 35.6 88.6

Baseline (images only) 47.3 44.8 90.2 47.5 46.6 90.2 47.9 40.3 91.1
The best result per column is highlighted in bold.

approaches. While inherent limitations of this approach persist, the application of randomized

augmentations has enabled each modality to achieve slightly improved convergence; leading the

Binary Event Frame-based late fusion model to exhibit potential, despite the dataset’s constraints.

This underscores the necessity of large-scale datasets for a thorough evaluation and testing of

event-based object detection solutions.

Overall, our experiments indicate that late fusion typically falls short of the performance

achieved by single-modal frame-based and early-fusion multi-modal approaches. Although the

models utilize the same optimizer and post-processing methods, their learning is indirect and im-

plicit, lacking explicit inter-modality interactions. This can lead each modality’s model to inad-

vertently converge to suboptimal solutions compared to when trained individually. A potentially

more effective strategy might involve independently training each modality’s model and subse-
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quently integrating them through our late-fusion technique, followed by additional fine-tuning.

While this approach adds complexity to the training process, it holds promise for yielding im-

proved results. Moreover, the exploration of more intuitive post-processing techniques could fur-

ther enhance model performance. In most scenarios, intensity images offer a more dependable

signal. Therefore, dynamically adjusting the weighting between modalities, either on a local or

global scale, could be pivotal for achieving superior multi-modal performance. This is particularly

relevant under challenging lighting conditions, such as HDR or low-light environments, where the

distinct advantages of each modality can be leveraged more effectively.

6.5.3 Augmentation Framework Ablation Study

In this section, we conduct an ablation study to examine the impact of various components of our

augmentation framework. We focus on spatio-temporal representations for this study, considering

their superior capabilities in encoding batches of event data compared to spatial representations.

Additionally, we utilize the 500 ms sampling duration variant of the MEVDT dataset, along with

the PKU-DDD17-CAR [95] dataset, to provide a comprehensive analysis. The results of this study

are summarized in Table 6.15, showcasing the average performance per augmentation combina-

tion, dataset, and metric for both single-modal event-based and multi-modal fusion approaches. A

detailed breakdown of the results for each representation across different modality configurations

is available in Appendix D.

The augmentation framework proposed in this study significantly enhances performance com-

pared to the baseline, as reflected in the test evaluation metrics. Spatial augmentations emerge

as particularly crucial in object detection, outperforming any single augmentation method. This

finding contrasts with our earlier results in Chapter 5 for the classification task, highlighting the im-

portance of precise BB estimation in object detection. Spatial augmentations compel the model to

learn translation-invariant features, which are essential for robust object detection. Other augmen-

tation methods, like temporal augmentations, offer additional fine-tuning opportunities, reducing

the model’s reliance on irrelevant patterns. Temporal augmentations demonstrate superior perfor-
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Table 6.15: Results of the augmentation ablation study using different modality configurations and
augmentation-framework combinations. The average result of all four spatio-temporal representa-
tions is presented using each dataset’s test set for each configuration and metric.

Fusion Method Augmentation Type MEVDT (∆T = 500 ms) PKU-DDD17-CAR

Spatial Temporal Polarity Drop mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Events Only

Baseline 80.8 94.2 97.4 21.7 18.4 45.2

✓ 81.8 94.1 97.6 22.2 18.6 46.0
✓ 81.4 93.1 97.1 21.6 18.6 45.2

✓ 82.9 94.8 98.0 22.0 18.9 45.5
✓ ✓ 81.9 93.9 97.8 21.7 18.6 45.1
✓ ✓ ✓ 81.5 94.6 98.2 22.1 18.8 45.6

✓ 84.0 93.8 97.3 24.0 21.1 49.4
✓ ✓ ✓ 84.8 94.9 98.7 23.7 20.7 49.3
✓ ✓ ✓ ✓ 84.2 94.1 98.4 23.9 21.3 49.8

Early Fusion

Baseline 86.9 96.9 99.0 44.7 40.3 87.5

✓ 86.5 96.9 98.9 44.2 39.4 87.6
✓ 85.4 96.9 98.9 44.1 39.5 87.4

✓ 86.2 96.9 98.9 44.7 40.4 87.6
✓ ✓ 86.8 97.0 98.9 44.3 39.4 87.5
✓ ✓ ✓ 86.7 97.2 98.9 45.0 41.1 87.3

✓ 87.5 96.9 98.9 47.6 44.4 91.2
✓ ✓ ✓ 86.7 96.9 98.9 46.3 41.1 90.4
✓ ✓ ✓ ✓ 87.9 97.2 98.9 46.2 41.9 89.8

Late Fusion

Baseline 84.9 96.8 98.9 43.6 41.1 84.4

✓ 84.6 97.1 98.7 43.9 41.5 83.6
✓ 84.4 96.4 98.7 43.7 40.8 84.7

✓ 83.9 97.2 98.8 43.8 41.4 83.6
✓ ✓ 83.8 97.1 98.7 43.8 42.0 84.1
✓ ✓ ✓ 83.3 97.2 98.7 44.2 42.4 83.3

✓ 86.5 97.2 98.7 46.1 45.6 85.7
✓ ✓ ✓ 86.9 96.6 98.7 46.0 44.3 86.3
✓ ✓ ✓ ✓ 87.4 97.3 98.7 45.7 43.5 85.9

The best results per metric and dataset are highlighted in bold for each fusion method.

mance compared to other event data-specific augmentations, such as polarity inversion and random

event drop. Combining all four augmentation methods, as specified in Section 6.4.4, generally

yields the best results using the MEVDT dataset for both fusion methods, and the PKU-DDD17-

CAR dataset when employing a single-modal (event data only) approach.

Spatial augmentations are pivotal, providing essential variations that enhance the generalization

capabilities of object detection models. While the other proposed augmentation methods are not

indispensable, they contribute additional variations beneficial for improving the generalization of

event-based models, particularly in single-modal scenarios. However, further experimentation with

larger-scale multi-modal datasets and diverse augmentation settings is necessary to validate these

findings and determine the optimal augmentation combination. Additionally, exploring larger ca-
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pacity models, such as alternative one-stage models [102, 172], two-stage [152], and transformer-

based architectures [27], will offer deeper insights into the interplay between model capacity and

the efficacy of the proposed augmentation framework.

6.6 Conclusion

In this chapter, we present a comprehensive experimental study on the utilization of image-like

event representations for object detection. Building upon the foundation set in Chapter 5, we

evaluate the effectiveness of the Compact Spatio-Temporal Representation (CSTR) in compari-

son with other image-like representations for event-based and multi-modal object detection tasks.

Additionally, we explore two multi-modal fusion techniques, early and late fusion, to examine

the potential integration of frame-based and event-based vision, aiming to harness their combined

strengths. Moreover, we propose a multi-modal augmentation framework specifically tailored for

event-based and frame-based modalities. The methods proposed in this chapter are rigorously

tested on two distinct event-based multi-modal datasets, offering a comprehensive analysis of their

performance.

Our investigation underscores the importance of selecting optimal spatio-temporal representa-

tions, such as the CSTR, for enhancing event-based vision tasks. These representations are cru-

cial for enabling direct compatibility with advanced computer vision architectures and effectively

leveraging their pre-trained weights. However, it is noteworthy that in our experimental setup, tra-

ditional frame-based methods generally outperform event-based and multi-modal solutions. This

limitation is largely attributed to the datasets used, which do not present sufficiently challenging

scenarios to fully harness the unique capabilities of event-based sensors.

Looking forward, we identify several avenues for future research on event-based object detec-

tion:

• Investigating the application of the presented methodologies on more sophisticated and di-

verse object detection networks, such as RetinaNet [102].
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• Developing and leveraging specialized datasets that encompass a wide range of challeng-

ing visual environments with long sequence durations, thereby enabling the effective use of

temporally-aware and memory-based solutions.

• Examining feature-level fusion techniques for potentially more optimal integration of frame-

based and event-based modalities.

• Exploring varied fine-tuning strategies for object detection models, especially for architec-

tures like SSD, to optimize their adaptation to event-based data.

• Extending the testing to larger multi-modal datasets as they become available.

• Implementing advanced methods for dynamically weighting modalities based on specific

scene conditions, both globally and locally, within the scene.

In conclusion, this chapter not only presents a detailed study in the field of event-based object

detection but also sets the stage for further exploration. The insights gained here set the path for

future research efforts aimed at fully capitalizing on the unique advantages of event-based and

multi-modal vision systems in varied and complex real-world contexts.
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CHAPTER 7

Conclusions

Event-based vision, a novel and emerging field in visual sensing technology, represents a signif-

icant paradigm shift from traditional frame-based imaging techniques. Characterized by asyn-

chronous data capturing, high temporal resolution, and exceptional HDR capabilities, event-based

sensors offer a promising alternative to conventional systems. These sensors, inspired by the hu-

man eye’s retina, operate asynchronously at the pixel level, detecting and recording changes in

intensity independently. This unique approach allows for the continuous monitoring of a scene,

capturing information only when and where it is needed.

The inherent advantages of event-based vision, such as its high temporal resolution and HDR,

position it as a robust solution for dynamic and challenging environments. These sensors excel in

scenarios where speed and responsiveness are crucial, effectively eliminating motion blur issues

common in traditional cameras and providing detailed imagery in scenes with both bright and

dark areas. Moreover, their low latency and power consumption make them highly suitable for

time-sensitive applications like AVs and ADAS.

Despite these strengths, integrating event-based sensors into established CV architectures

presents significant challenges. The asynchronous and sparse nature of their output differs sub-

stantially from the synchronous, dense inputs of traditional systems. This dissertation has aimed to

address these challenges, developing methodologies that leverage the unique strengths of event-

based vision while overcoming its inherent limitations. The research presented here not only

addresses various technical challenges but also demonstrates the practical applicability of event-
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based vision in robotic perception tasks, contributing valuable insights and laying a foundation for

ongoing research in the field.

7.1 Dissertation Summary

This dissertation presents a journey through the evolving field of event-based vision, focusing

on leveraging this novel modality in various robotic perception tasks. Each chapter contributes

uniquely to this domain, showcasing diverse methodologies and significant advancements. The

contributions of this work are as follows:

1. Multi-Modal Event-Based Vehicle Detection and Tracking Dataset (Chapter 2): Introduction

of the MEVDT dataset, a pivotal resource supporting research in event-based object detec-

tion and tracking. This dataset, with its synchronized streams of event data and grayscale

images, provides a unique platform for developing and benchmarking novel algorithms in

automotive environments.

2. Hybrid Approach for High-Temporal-Resolution Object Detection and Tracking (Chapter

3): Development of a hybrid methodology combining frame-based object detectors with

novel event-based methods for improved detection and tracking. This approach showcases

the potential of integrating asynchronous event data with conventional frame-based methods

for enhanced temporal resolution and accuracy.

3. Advanced Techniques in Event-Based Vehicle Detection and Tracking (Chapter 4): Intro-

duction of advanced event-based techniques to refine detection accuracy and tracking ro-

bustness. These methods demonstrate significant improvements in tracking performance,

particularly when utilizing small-scale real-time object detectors.

4. Development of the Compact Spatio-Temporal Representation (CSTR) (Chapter 5): Cre-

ation of the CSTR, a novel representation for encoding event data compatible with modern
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CV architectures. The CSTR’s ability to efficiently encapsulate spatial, temporal, and polar-

ity information enhances its efficacy in various recognition tasks, bridging the gap between

event-based data and traditional CV methods.

5. Evaluation of Image-Like Event Representations for Object Detection (Chapter 6): Com-

prehensive examination of the application of the CSTR and other image-like event repre-

sentations in object detection. This chapter not only assesses the comparative performance

of these representations but also explores their integration in multi-modal object detection,

providing insights into the synergies between different sensing modalities.

7.2 Future Work

The collective contributions of this dissertation have led to the advancement of the field of event-

based vision and its application in CV, particularly in robotic perception tasks. The methodologies

developed and findings obtained have not only addressed some of the current challenges but also

opened new avenues for exploration and application.

Future research should focus on bridging the gaps between these methodologies and exploring

new applications of event-based vision. There is a promising avenue in applying these findings

in real-world scenarios, where the unique advantages of event-based sensors—such as their high

dynamic range and immunity to motion blur—can be fully leveraged. Potential applications could

include autonomous navigation in diverse and challenging environments, advanced surveillance

systems, and enhanced human-robot interaction. The integration of event-based vision into the

robotic perception stack offers the possibility of more robust, efficient, and adaptive systems.

Building upon these broader perspectives, specific future research directions emerging from

each chapter of this dissertation include:

• Expansion and Diversification of Event-Based Datasets (Chapter 2): Enhancing the MEVDT

dataset to include dynamic scenes and more pedestrian data. This expansion will enable the
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dataset to better represent real-world scenarios, thus broadening its applicability and utility

in event-based vision research.

• Advanced Association Metrics and Fully Event-Based Approaches (Chapter 3): Exploring

sophisticated metrics and fully event-based methodologies for object detection and tracking.

This direction could offer more dynamic and robust solutions, especially for objects with

rapidly changing shapes.

• Integration of Learned Event-Based Methods (Chapter 4): Replacing some classical and

hand-crafted components of the presented framework with learned event-based methods to

achieve more dynamic performance under challenging scenarios. This approach requires

larger and more sophisticated labeled event-based datasets.

• Robustness Enhancement and Noise Mitigation for CSTR (Chapter 5): Optimizing the

CSTR for real-time applications and enhancing its robustness against sensor noise. Eval-

uating the CSTR’s suitability for real-time applications where latency is a concern would

also be a valuable direction.

• Sophisticated Object Detection Networks and Specialized Datasets (Chapter 6): Applying

methodologies on advanced object detection networks and developing specialized datasets

for temporally-aware solutions. This direction involves creating datasets that cover a wide

range of challenging visual environments and long sequence durations.

• Dynamic Weighting of Modalities and Larger Multi-Modal Datasets: Implementing dynamic

weighting strategies for modalities and extending testing to larger datasets. This approach

aims to enhance the performance and applicability of event-based vision systems in complex

real-world contexts.

These specific directions aim to build upon the solid foundation established in this dissertation,

exploring new frontiers in event-based vision. They promise to address current limitations and
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open up exciting possibilities for the operationalization of event-based vision in a wide range of

applications.
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APPENDIX A

Supplementary Tables for Chapter 2

This appendix provides detailed supplementary tables that expand upon the dataset structure and

statistics discussed in Chapter 2. These tables offer an in-depth view of the dataset’s composition,

with a focus on the individual sequences within Scenes A and B.

Table A.1 presents a comprehensive breakdown for each sequence in Scene A. This includes

detailed information on sequence duration, the number of images, events, objects, and the average

area of bounding boxes. It also specifies the allocation of each sequence to either the training or

testing splits. This level of detail is crucial for understanding the structure and distribution of the

dataset, particularly how it is divided for machine learning purposes.

Similarly, Table A.2 provides an analogous breakdown for Scene B. It gives an exhaustive

overview of each sequence, covering all relevant parameters and classifications. This table is

integral for a complete understanding of Scene B’s dataset structure, ensuring transparency and

clarity in how the data is processed and utilized in the research.

These supplementary tables are essential for readers seeking a granular understanding of the

dataset and its composition. They also serve as a valuable resource for replicating the research or

for further exploration into event-based vision systems.
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Table A.1: Detailed sequence statistics for Scene A. The table includes information on each se-
quence’s duration, number of images, events, objects, average bounding box area, and its allocation
to training or testing splits, offering an in-depth view of the dataset’s composition in Scene A.

Seq. # Seq. Name Duration (s) # of
Images

# of
Events

# of
Objects

Avg. Bounding
Box Area (pixel2) Train | Test

1 1581956305832790936 9.5 222 76924 240 1852.4 Train
2 1581956366514475936 21.2 494 48556 122 1562.3 Train
3 1581956422501835936 10.4 243 70138 241 1490.3 Test
4 1581956475991297936 23.3 542 61664 135 1754.2 Test
5 1581956525690846936 17.4 404 79738 382 1476.3 Train
6 1581956568112038936 5.3 124 34207 117 1394.1 Test
7 1581956586329463936 12.1 283 114163 186 2997.0 Train
8 1581956636804222936 4.9 115 29212 102 1522.7 Train
9 1581956672808401936 5.4 127 60633 118 1665.5 Train
10 1581957068983574936 21.0 488 154064 420 3373.5 Train
11 1581957114204134936 7.0 163 34310 160 1609.8 Train
12 1581957156969863936 8.3 195 62531 192 4538.2 Test
13 1581957173378467936 2.5 59 20295 58 1315.7 Train
14 1581957190648414936 45.6 1061 107768 224 1796.1 Train
15 1581957249133671936 6.7 158 51306 150 1730.8 Train
16 1581957506675527936 18.1 421 77074 502 1373.6 Train
17 1581957567314145936 4.1 96 34093 81 1710.7 Train
18 1581957616841425936 10.3 241 41452 208 1386.9 Train
19 1581957903798179936 6.2 145 31237 130 1658.5 Train
20 1581957963058646936 5.2 124 48102 122 2071.8 Train
21 1581958023266591936 4.6 109 20877 97 1476.4 Train
22 1581958094284404936 5.1 119 14818 113 1587.9 Train
23 1581958106816959936 14.9 348 140138 399 1396.0 Train
24 1581958201263329936 25.4 592 91349 239 1737.3 Train
25 1581958201392531936 2.8 65 23145 64 1608.6 Train
26 1581958289206551936 14.9 346 71577 282 1816.2 Train
27 1581958320817876936 5.4 126 76807 113 5773.9 Train
28 1581958380465948936 29.7 694 122720 578 1487.0 Test
29 1581958511820908936 9.7 226 78420 198 1541.7 Train
30 1581958540632865936 3.9 91 33334 84 1822.8 Test
31 1581958551959539936 29.0 676 330350 605 2782.1 Train
32 1581958587877583936 7.6 177 28911 166 1426.3 Train
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Table A.2: Detailed sequence statistics for Scene B. This table presents comprehensive data for
each sequence in Scene B, including duration, image count, event count, object count, average
bounding box area, and their distribution in training and testing, providing a thorough insight into
Scene B’s dataset structure.

Seq. # Seq. Name Duration (s) # of
Images

# of
Events

# of
Objects

Avg. Bounding
Box Area (pixel2) Train | Test

1 1603470885671858364 14.1 329 130227 321 5706.2 Test
2 1603470907722265364 4.9 116 109775 107 4216.0 Train
3 1603470947042618364 8.3 195 106234 188 2468.5 Train
4 1603471304371177364 5.8 137 123331 90 3988.2 Train
5 1603471325344903364 2.1 49 87050 44 3017.5 Train
6 1603471347223041364 2.7 65 106671 55 3995.4 Train
7 1603471362511897364 2.4 58 91918 47 3043.1 Train
8 1603471387318604364 2.5 61 108368 52 3971.9 Train
9 1603471400411033364 2.1 51 64688 34 2924.9 Test
10 1603471419705138364 6.0 142 91522 127 5007.8 Train
11 1603471437405757364 1.7 41 55782 27 3028.5 Train
12 1603471457905745364 6.8 159 92745 142 4610.4 Train
13 1603471475606364364 2.4 56 67010 40 3087.3 Train
14 1603471489904674364 2.9 68 151037 52 4502.9 Train
15 1603471504116850364 6.9 163 94593 152 5330.4 Train
16 1603471523712426364 2.3 56 67044 45 2963.8 Test
17 1603471544513884364 17.6 410 104188 400 5260.7 Train
18 1603471574445588364 2.3 56 64461 43 3054.5 Train
19 1603471594816373364 6.8 159 105311 150 5210.7 Train
20 1603471817884627727 2.8 67 83430 53 4643.3 Train
21 1603471844801627727 3.8 91 116064 76 4082.0 Test
22 1603471863492792727 4.1 96 216927 76 7410.9 Train
23 1603471880891941727 3.6 86 103624 64 3000.1 Train
24 1603471908885621727 6.4 151 112285 142 5159.1 Train
25 1603471928136659727 2.5 61 72175 49 3057.4 Train
26 1603471965045249727 6.8 161 119105 151 5128.6 Train
27 1603471985975909727 3.1 73 87510 47 3042.6 Train
28 1603472011687027727 2.7 65 113585 51 3972.8 Test
29 1603472029387646727 2.8 68 74378 57 3059.0 Train
30 1603472052643934727 6.2 146 126208 136 5031.5 Test
31 1603472118493683727 2.0 49 148406 45 3913.5 Train
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APPENDIX B

Supplementary Tables for Chapter 3

In this appendix, we provide a supplementary table that complements the results and discussions

presented in Chapter 3. This table offers a detailed view of the data and findings related to our

high-temporal-resolution object detection and tracking research.

Table B.1 contains a comprehensive breakdown of the total number of object IDs and detections

for both the ground truth data and the prediction results from various tracking configurations used

in our evaluation. This level of granularity is vital for a thorough understanding of how the tracking

rate and mode impact the number of detections and the behavior of the system under different

temporal resolutions.

The table includes information for both the frame-based object detectors, SSD [108] and

YOLOv3 [149], across various tracking rates and modes. It details the total number of unique

object ID trajectories (85 in our dataset) and shows how the number of ground truth detections

scales with the temporal resolution. In both cases, the number of IDs and detections resulting from

each tracking configuration must be as close as possible to the ground truth statistics at each track-

ing rate. This data is crucial for evaluating the performance of our proposed methods, especially

in terms of object tracking consistency and detection accuracy at different temporal resolutions.

These supplementary details are needed for readers interested in the technical nuances of our

tracking approaches and for those seeking to replicate or build upon our research. They provide

additional details to conclusions drawn in Chapter 3, highlighting the effectiveness of different

tracking modes and their impact on object detection and tracking performance.

175



Table B.1: The total number of IDs and detections for both the ground truth data and the predicted
results for the different tracking configurations used in our evaluation. Our dataset has a total
number of unique object ID trajectories of 85. The number of ground truth detections increases as
the temporal resolution of the data increases.

Tracking Rate Tracking Mode Ground Truth SSD YOLOv3

IDs Dets IDs Dets IDs Dets

24 Hz ∗ 85 9891 110 7723 105 6462

48 Hz
1

85 19,777
125 14,908 117 12,480

2 125 15,405 117 12,899
3 125 15,155 117 12,710

96 Hz
1

85 39,549
147 28,427 139 23,748

2 147 30,773 139 25,773
3 147 30,022 139 25,207

192 Hz
1

85 79,093
149 51,226 142 42,332

2 147 61,498 139 51,521
3 147 59,720 139 50,179

384 Hz
1

85 158,181
171 82,708 172 66,862

2 165 122,972 165 103,023
3 165 119,131 165 100,131

* Image-only tracking (excludes event data).
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APPENDIX C

Supplementary Tables for Chapter 5

This appendix complements the findings presented in Chapter 5, particularly the results of the two

key experiments conducted as part of our research. These supplementary tables provide a thorough

breakdown of the performance metrics and insights that could not be fully captured within the main

body of the chapter due to space constraints.

Table C.1 offers an extensive analysis of the baseline evaluation results, as referenced in Table

5.2 in Chapter 5. It details the performance of each of the six pre-trained classification networks

(specified in Section 5.4.1.2) across different event-based recognition datasets. This table allows

for an in-depth comparison of various network configurations and their effectiveness with different

types of image-like event representations. The granularity of this data is instrumental in under-

standing the nuanced performance differences among these configurations and how they relate to

the foundational principles of our research.

Similarly, Table C.2 presents an expanded view of the results from our augmentation-framework

evaluation shown in Table 5.3. This table breaks down the performance of the top three classifica-

tion networks across different spatio-temporal representations, augmentation types, and datasets.

The detailed results enable a deeper understanding of how various augmentations influence classifi-

cation accuracy and the robustness of different spatio-temporal representations. This is particularly

relevant for assessing the effectiveness of our proposed event-based augmentation framework and

its impact on the Compact Spatio-Temporal Representation (CSTR) and other representations.

These tables are vital for readers seeking a comprehensive understanding of the experimental
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Table C.1: A full breakdown of the test classification accuracy results that are presented in Table 5.2
for the event-based recognition datasets. The results of each evaluated representation configuration
are demonstrated for 6 different pre-trained classification networks that are fine-tuned on each
dataset.

Representation Pre-trained
Classifier

Dataset (# of channels)

N-MNIST N-Cars N-Caltech101 CIFAR10-DVS ASL-DVS DVS-Gesture

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

Binary Event Frame

ResNet18 95.5% 95.0% 95.0% 92.6% 91.7% 93.0% 71.9% 64.8% 74.8% 61.4% 60.2% 61.3% 99.7% 99.3% 99.7% 87.3% 84.1% 85.4%
ResNet50 95.1% 95.0% 95.3% 90.3% 90.5% 90.0% 69.1% 67.9% 74.7% 53.4% 49.6% 52.7% 99.5% 99.7% 99.9% 81.6% 82.9% 81.5%
MobileNetV2 95.0% 94.6% 95.6% 92.1% 94.3% 94.4% 67.3% 68.3% 72.6% 48.2% 29.5% 48.6% 99.4% 99.6% 99.5% 82.5% 86.3% 84.3%
MobileNetV3-L 95.0% 95.2% 95.3% 93.1% 88.5% 90.4% 69.7% 66.7% 71.1% 43.6% 51.1% 49.2% 99.6% 98.6% 99.7% 86.0% 84.7% 84.6%
MobileNetV3-S 94.9% 95.2% 95.1% 90.2% 90.6% 93.1% 64.5% 64.0% 71.2% 46.7% 28.9% 45.9% 99.5% 95.6% 99.7% 78.7% 81.9% 83.5%
InceptionV3 - - 94.7% - - 94.5% - - 76.8% - - 59.1% - - 99.8% - - 85.8%

Polarized Event Frame

ResNet18 98.8% 96.7% 99.2% 93.2% 89.6% 94.0% 80.8% 72.6% 78.4% 67.8% 72.4% 68.3% 99.7% 99.9% 99.9% 90.4% 91.6% 91.8%
ResNet50 98.8% 96.3% 99.0% 88.8% 90.9% 89.2% 77.1% 72.6% 84.5% 60.4% 64.4% 58.8% 99.8% 99.9% 99.9% 90.0% 90.9% 90.1%
MobileNetV2 99.1% 95.9% 99.0% 92.6% 93.0% 94.0% 76.0% 69.0% 80.0% 45.7% 57.0% 55.4% 99.7% 99.8% 99.5% 88.5% 91.0% 88.5%
MobileNetV3-L 98.6% 96.3% 98.2% 95.0% 76.1% 92.7% 74.2% 67.6% 80.7% 58.7% 59.1% 57.3% 99.2% 99.6% 99.6% 89.3% 88.7% 91.4%
MobileNetV3-S 98.8% 95.2% 99.0% 90.3% 92.6% 94.5% 71.8% 67.4% 79.8% 53.2% 57.0% 57.8% 99.7% 99.4% 99.4% 88.3% 90.8% 90.5%
InceptionV3 - - 99.1% - - 95.1% - - 85.4% - - 67.0% - - 99.8% - - 91.3%

Binary Event Count

ResNet18 98.4% 98.5% 98.5% 89.3% 93.0% 91.3% 79.4% 76.9% 81.1% 79.4% 78.3% 78.7% 90.4% 53.0% 59.2% 84.7% 89.0% 86.3%
ResNet50 98.8% 98.8% 98.7% 92.6% 91.3% 92.2% 78.0% 72.6% 80.8% 72.8% 70.0% 75.1% 85.3% 52.6% 61.8% 88.8% 85.0% 91.2%
MobileNetV2 98.8% 98.7% 98.5% 93.0% 93.0% 93.3% 74.2% 74.8% 81.4% 65.4% 66.2% 67.1% 5.5% 35.4% 90.8% 91.1% 89.7% 90.2%
MobileNetV3-L 98.3% 98.5% 98.3% 90.9% 90.9% 90.4% 76.4% 69.7% 80.1% 64.0% 70.6% 70.3% 39.5% 9.5% 76.3% 88.6% 88.3% 90.9%
MobileNetV3-S 98.6% 98.7% 98.1% 92.0% 93.8% 87.8% 67.9% 71.9% 78.4% 64.6% 67.2% 71.6% 8.3% 9.0% 86.2% 85.0% 83.7% 84.1%
InceptionV3 - - 99.1% - - 91.6% - - 84.9% - - 79.5% - - 95.7% - - 91.9%

Polarized Event Count

ResNet18 - 99.1% 98.9% - 92.5% 92.9% - 75.7% 82.0% - 77.5% 79.3% - 17.1% 8.6% - 92.1% 91.4%
ResNet50 - 98.9% 97.6% - 91.2% 92.8% - 73.0% 82.2% - 73.4% 72.7% - 28.9% 55.4% - 92.8% 90.5%
MobileNetV2 - 98.9% 98.9% - 92.4% 94.1% - 73.8% 80.7% - 64.1% 66.6% - 41.8% 72.5% - 90.6% 92.2%
MobileNetV3-L - 98.9% 98.7% - 90.4% 92.6% - 72.4% 79.5% - 66.4% 65.2% - 67.7% 54.8% - 92.1% 93.0%
MobileNetV3-S - 98.7% 98.0% - 92.4% 92.2% - 70.4% 79.6% - 68.2% 73.0% - 49.7% 63.6% - 91.2% 91.6%
InceptionV3 - - 99.1% - - 92.4% - - 85.9% - - 74.0% - - 56.9% - - 86.9%

Timestamp Image

ResNet18 - 99.0% 99.0% - 86.9% 91.8% - 73.1% 82.3% - 74.7% 76.4% - 99.8% 99.5% - 91.6% 92.9%
ResNet50 - 99.1% 99.1% - 92.1% 94.8% - 76.8% 80.4% - 67.8% 67.6% - 99.9% 99.9% - 89.9% 93.5%
MobileNetV2 - 98.9% 99.1% - 83.2% 95.3% - 75.1% 82.0% - 63.5% 65.1% - 99.7% 99.9% - 92.3% 92.5%
MobileNetV3-L - 99.0% 98.6% - 90.9% 85.5% - 73.0% 80.5% - 67.4% 62.3% - 99.4% 99.8% - 92.8% 92.8%
MobileNetV3-S - 98.9% 98.7% - 74.5% 92.5% - 72.7% 79.7% - 65.4% 69.1% - 98.5% 99.3% - 90.4% 92.9%
InceptionV3 - - 99.3% - - 93.6% - - 83.2% - - 72.3% - - 99.8% - - 94.7%

Timestamp Image & Count

ResNet18 - - 99.0% - - 92.2% - - 84.4% - - 78.7% - - 99.8% - - 93.6%
ResNet50 - - 99.1% - - 92.6% - - 82.7% - - 71.6% - - 99.9% - - 91.2%
MobileNetV2 - - 98.7% - - 93.1% - - 82.0% - - 66.8% - - 99.6% - - 91.7%
MobileNetV3-L - - 98.7% - - 89.8% - - 82.1% - - 70.1% - - 99.7% - - 92.4%
MobileNetV3-S - - 98.7% - - 90.3% - - 77.4% - - 72.3% - - 99.7% - - 94.0%
InceptionV3 - - 99.1% - - 95.1% - - 86.5% - - 76.2% - - 99.4% - - 94.3%

CSTR (mean T̄s only)

ResNet18 - 99.3% 99.2% - 93.1% 92.7% - 80.8% 84.9% - 74.2% 74.2% - 99.9% 99.8% - 93.9% 92.6%
ResNet50 - 99.2% 99.1% - 92.4% 93.7% - 79.6% 84.0% - 63.8% 67.3% - 99.8% 99.8% - 92.5% 93.4%
MobileNetV2 - 99.1% 99.3% - 93.6% 92.5% - 77.9% 85.0% - 59.5% 61.7% - 99.8% 99.9% - 94.2% 94.5%
MobileNetV3-L - 99.0% 98.5% - 90.8% 92.9% - 73.8% 83.0% - 63.6% 63.2% - 99.0% 98.8% - 91.8% 93.0%
MobileNetV3-S - 98.0% 98.9% - 92.0% 90.7% - 72.5% 81.6% - 56.7% 64.6% - 99.6% 99.4% - 91.8% 93.5%
InceptionV3 - - 99.2% - - 91.7% - - 85.0% - - 73.1% - - 99.8% - - 94.5%

CSTR (mean T̄s & Count)

ResNet18 - - 99.1% - - 93.0% - - 81.6% - - 77.8% - - 99.9% - - 92.8%
ResNet50 - - 99.2% - - 92.5% - - 85.4% - - 70.6% - - 99.9% - - 94.2%
MobileNetV2 - - 99.2% - - 95.6% - - 83.0% - - 65.2% - - 99.8% - - 94.6%
MobileNetV3-L - - 98.9% - - 93.6% - - 82.2% - - 65.9% - - 99.1% - - 93.5%
MobileNetV3-S - - 98.8% - - 93.6% - - 77.9% - - 71.0% - - 99.7% - - 93.1%
InceptionV3 - - 99.2% - - 93.5% - - 87.7% - - 79.0% - - 99.9% - - 93.3%

The best values per dataset and number of input channels are highlighted in bold.

outcomes and for those interested in replicating or extending this research. They offer a complete

picture of our findings, highlighting the strengths and limitations of different event representations

explored in our work.
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Table C.2: A full breakdown of the test classification accuracy results that are presented in Ta-
ble 5.3 for the event-based recognition datasets. The results of each evaluated spatio-temporal
representation, in combination with the augmentation framework, are demonstrated for the top-3
pre-trained classification networks fine-tuned on each dataset.

Representation Augmentation Type Classifier Dataset

Spatial Temporal Polarity N-MNIST N-Cars N-Caltech101 CIFAR10-DVS DVS-Gesture

Timestamp Image

Baseline
ResNet18 99.0% 91.8% 82.3% 76.4% 92.9%
ResNet50 99.1% 94.8% 80.4% 67.6% 93.5%

InceptionV3 99.3% 93.6% 83.2% 72.3% 94.7%

✓
ResNet18 99.4% 94.6% 81.6% 76.4% 94.2%
ResNet50 99.3% 93.9% 85.8% 76.6% 94.2%

InceptionV3 99.3% 95.1% 85.8% 79.5% 93.9%

✓
ResNet18 99.1% 96.1% 85.3% 74.9% 93.3%
ResNet50 99.3% 93.7% 88.2% 73.0% 95.3%

InceptionV3 99.2% 97.2% 87.7% 80.4% 94.4%

✓
ResNet18 99.2% 96.0% 83.7% 71.9% 92.9%
ResNet50 99.0% 95.5% 85.9% 68.5% 94.5%

InceptionV3 99.2% 95.1% 89.0% 75.2% 94.1%

✓ ✓
ResNet18 99.2% 93.9% 83.6% 75.3% 93.0%
ResNet50 99.2% 96.2% 88.9% 74.8% 94.0%

InceptionV3 99.1% 97.4% 88.1% 78.8% 94.6%

✓ ✓ ✓
ResNet18 99.3% 95.9% 82.6% 78.0% 94.5%
ResNet50 99.1% 96.3% 86.5% 76.5% 95.0%

InceptionV3 99.2% 96.8% 86.5% 79.7% 95.2%

Timestamp Image & Count

Baseline
ResNet18 99.0% 92.2% 84.4% 78.7% 93.6%
ResNet50 99.1% 92.6% 82.7% 71.6% 91.2%

InceptionV3 99.1% 95.1% 86.5% 76.2% 94.3%

✓
ResNet18 99.4% 96.3% 82.2% 80.0% 94.4%
ResNet50 99.4% 94.7% 84.9% 78.5% 94.3%

InceptionV3 99.4% 96.2% 86.1% 82.6% 95.1%

✓
ResNet18 99.0% 95.5% 84.8% 76.4% 94.6%
ResNet50 99.2% 95.5% 87.4% 74.6% 94.6%

InceptionV3 99.4% 95.1% 89.3% 80.7% 94.6%

✓
ResNet18 99.4% 96.1% 84.2% 74.0% 91.4%
ResNet50 99.0% 95.6% 86.4% 69.7% 93.6%

InceptionV3 99.3% 97.1% 88.8% 76.9% 94.9%

✓ ✓
ResNet18 99.2% 95.9% 86.2% 76.9% 94.2%
ResNet50 99.2% 94.2% 86.3% 76.6% 94.0%

InceptionV3 99.4% 96.9% 89.2% 81.0% 95.0%

✓ ✓ ✓
ResNet18 99.3% 96.9% 84.3% 79.4% 94.0%
ResNet50 99.2% 95.1% 87.5% 78.6% 95.2%

InceptionV3 99.4% 97.1% 87.7% 82.8% 94.1%

The best values per dataset are highlighted in bold.
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Table C.2: A full breakdown of the test classification accuracy results that are presented in Ta-
ble 5.3 for the event-based recognition datasets. The results of each evaluated spatio-temporal
representation, in combination with the augmentation framework, are demonstrated for the top-3
pre-trained classification networks fine-tuned on each dataset. (Continued)

Representation Augmentation Type Classifier Dataset

Spatial Temporal Polarity N-MNIST N-Cars N-Caltech101 CIFAR10-DVS DVS-Gesture

CSTR (mean T̄s only)

Baseline
ResNet18 99.2% 92.7% 84.9% 74.2% 92.6%
ResNet50 99.1% 93.7% 84.0% 67.3% 93.4%

InceptionV3 99.2% 91.7% 85.0% 73.1% 94.5%

✓
ResNet18 99.4% 95.7% 83.8% 75.2% 94.5%
ResNet50 99.3% 95.5% 85.3% 73.6% 96.1%

InceptionV3 99.5% 97.1% 88.0% 78.2% 95.5%

✓
ResNet18 99.3% 95.1% 85.8% 75.9% 92.3%
ResNet50 99.4% 96.1% 88.8% 73.8% 94.0%

InceptionV3 99.3% 88.6% 88.1% 76.7% 93.9%

✓
ResNet18 99.4% 96.3% 86.5% 70.4% 94.5%
ResNet50 99.5% 96.3% 87.9% 66.7% 95.8%

InceptionV3 99.2% 96.1% 89.0% 75.5% 94.1%

✓ ✓
ResNet18 99.3% 97.3% 85.8% 75.4% 93.8%
ResNet50 99.2% 96.2% 89.0% 73.5% 92.6%

InceptionV3 99.1% 97.1% 90.1% 75.5% 94.8%

✓ ✓ ✓
ResNet18 99.3% 96.4% 84.9% 77.4% 93.5%
ResNet50 99.4% 96.4% 86.3% 77.5% 96.0%

InceptionV3 99.2% 97.0% 88.1% 79.9% 95.6%

CSTR (mean T̄s & Count)

Baseline
ResNet18 99.1% 93.0% 81.6% 77.8% 92.8%
ResNet50 99.2% 92.5% 85.4% 70.6% 94.2%

InceptionV3 99.2% 93.5% 87.7% 79.0% 93.3%

✓
ResNet18 99.4% 95.9% 81.5% 78.6% 94.5%
ResNet50 99.4% 96.0% 86.6% 78.0% 96.1%

InceptionV3 99.5% 96.9% 86.8% 81.3% 96.5%

✓
ResNet18 99.3% 94.4% 85.6% 78.2% 94.5%
ResNet50 99.4% 96.2% 88.4% 76.6% 94.8%

InceptionV3 99.4% 95.5% 89.8% 80.4% 95.3%

✓
ResNet18 99.1% 96.4% 86.1% 73.1% 95.3%
ResNet50 99.4% 94.8% 86.7% 66.8% 95.5%

InceptionV3 99.3% 97.1% 88.4% 76.9% 94.4%

✓ ✓
ResNet18 99.3% 96.6% 86.7% 77.9% 93.4%
ResNet50 99.4% 96.2% 88.6% 75.4% 95.4%

InceptionV3 99.4% 96.9% 89.8% 80.4% 94.5%

✓ ✓ ✓
ResNet18 99.3% 96.9% 84.0% 78.8% 95.1%
ResNet50 99.5% 96.9% 86.2% 78.7% 95.7%

InceptionV3 99.3% 97.2% 88.2% 81.8% 96.3%
The best values per dataset are highlighted in bold.
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APPENDIX D

Supplementary Tables for Chapter 6

This appendix provides a detailed extension of the ablation study presented in Chapter 6, specifi-

cally elaborating on the results in Table 6.15. The main aim of this study is to investigate the effects

of different augmentation components on spatio-temporal representations, particularly for single-

modal event-based and multimodal fusion approaches. The study primarily utilizes the 500 ms

sampling duration variant of the MEVDT dataset and the PKU-DDD17-CAR dataset as described

in Chapter 6, offering a varying basis for assessing the performance of single-modal event-based

and multimodal fusion methods under varied randomized augmentation conditions.

The tables included here offer an in-depth view of the results, dissecting the impact of each

augmentation configuration across various spatio-temporal representations. This level of detail is

crucial for thoroughly understanding how different augmentations, both individually and in com-

bination, influence the performance metrics of the object detection models.

• Table D.1 demonstrates the effects of various augmentation configurations using the event-

based vision modality. It presents the results for each spatio-temporal representation, high-

lighting the interaction between augmentation types and model performance across the

datasets.

• Table D.2 breaks down the augmentation-framework ablation study when employing a multi-

modal early-fusion approach. It details the impact of augmentations for each event represen-

tation, enabling a detailed comparison across different modalities and datasets.
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• Table D.3 focuses on the late-fusion approach in the multi-modal setting. It provides an

exhaustive analysis of the augmentation effects, ensuring a comprehensive understanding of

the augmentation framework’s influence on various spatio-temporal representations.

These results are vital for grasping the complex dynamics of augmentation frameworks in event-

based object detection. They validate the critical role of spatial augmentations in object detection

tasks and highlight the supporting roles of randomized temporal, polarity, and event drop augmen-

tations. Together, these insights contribute to the broader goal of enhancing event-based models

for improved accuracy and generalization.
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Table D.1: Results of the augmentation-framework ablation study using the event-based vision
modality, detailing the results presented in Table 6.15 for each event representation. The effects
of each augmentation configuration are demonstrated for each spatio-temporal representation ex-
plored in this work.

Representation Augmentation Type MEVDT (∆T = 500 ms) PKU-DDD17-CAR

Spatial Temporal Polarity Drop mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Timestamp Image

Baseline 80.8 94.5 97.5 21.7 19.3 44.3

✓ 82.5 94.8 97.7 21.7 17.9 45.2
✓ 82.3 93.8 97.7 21.3 17.8 45.1

✓ 83.2 94.6 97.5 21.8 18.3 45.0
✓ ✓ 82.1 93.8 97.7 21.6 18.2 44.5
✓ ✓ ✓ 81.5 94.7 98.4 21.5 18.5 43.9

✓ 84.8 94.6 97.7 24.4 22.7 49.0
✓ ✓ ✓ 84.7 94.9 98.8 23.2 19.7 48.8
✓ ✓ ✓ ✓ 83.2 94.7 97.5 23.1 20.3 49.4

Timestamp Image & Count

Baseline 80.6 93.2 97.0 21.6 18.2 46.3

✓ 81.6 94.8 97.6 22.0 17.7 46.4
✓ 81.5 93.8 96.8 22.4 20.5 45.9

✓ 82.9 95.3 98.6 22.1 18.8 46.0
✓ ✓ 82.5 94.7 97.8 21.8 18.8 45.7
✓ ✓ ✓ 81.6 95.7 98.6 22.5 19.1 46.9

✓ 84.1 93.8 96.9 24.3 21.7 49.7
✓ ✓ ✓ 85.1 95.8 98.7 23.8 20.9 48.7
✓ ✓ ✓ ✓ 84.6 93.9 98.7 24.7 22.7 51.1

CSTR (mean Ts only)

Baseline 81.5 94.5 97.7 21.4 18.1 44.5

✓ 81.8 92.5 97.5 21.4 17.8 44.5
✓ 79.4 91.4 96.3 20.9 17.5 44.1

✓ 82.1 94.6 97.8 22.3 20.4 44.8
✓ ✓ 81.6 93.6 98.4 21.3 18.0 44.5
✓ ✓ ✓ 81.1 93.6 97.6 21.2 17.5 44.6

✓ 83.1 93.1 97.5 23.2 18.8 48.5
✓ ✓ ✓ 84.3 94.5 98.7 23.6 20.3 49.0
✓ ✓ ✓ ✓ 84.2 93.4 98.7 23.7 20.4 48.7

CSTR (mean Ts & Count)

Baseline 80.5 94.5 97.5 22.0 17.9 45.7

✓ 81.3 94.2 97.6 23.8 21.3 47.9
✓ 82.2 93.5 97.5 21.8 18.7 45.8

✓ 83.4 94.5 98.2 21.9 18.1 46.3
✓ ✓ 81.3 93.5 97.3 22.0 19.2 45.6
✓ ✓ ✓ 81.7 94.5 98.4 23.2 20.1 47.2

✓ 84.1 93.5 96.9 24.1 21.1 50.4
✓ ✓ ✓ 84.9 94.3 98.6 24.4 22.0 50.6
✓ ✓ ✓ ✓ 84.9 94.5 98.8 24.2 21.9 49.9

Average

Baseline 80.8 94.2 97.4 21.7 18.4 45.2

✓ 81.8 94.1 97.6 22.2 18.6 46.0
✓ 81.4 93.1 97.1 21.6 18.6 45.2

✓ 82.9 94.8 98.0 22.0 18.9 45.5
✓ ✓ 81.9 93.9 97.8 21.7 18.6 45.1
✓ ✓ ✓ 81.5 94.6 98.2 22.1 18.8 45.6

✓ 84.0 93.8 97.3 24.0 21.1 49.4
✓ ✓ ✓ 84.8 94.9 98.7 23.7 20.7 49.3
✓ ✓ ✓ ✓ 84.2 94.1 98.4 23.9 21.3 49.8

The best results per dataset and metric are highlighted in bold.
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Table D.2: Results of the augmentation-framework ablation study using the multi-modal early-
fusion approach, detailing the results presented in Table 6.15 for each event representation. The
effects of each augmentation configuration are demonstrated for each spatio-temporal representa-
tion explored in this work.

Representation Augmentation Type MEVDT (∆T = 500 ms) PKU-DDD17-CAR

Spatial Temporal Polarity Drop mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Timestamp Image

Baseline 86.8 96.9 98.9 45.2 41.9 87.3

✓ 85.9 97.0 98.9 43.7 37.9 87.1
✓ 84.7 96.8 98.9 44.6 40.3 87.8

✓ 87.2 96.9 98.9 44.6 40.5 87.6
✓ ✓ 87.2 97.0 98.9 43.4 37.5 88.1
✓ ✓ ✓ 87.2 97.8 98.9 44.4 38.0 87.9

✓ 87.5 97.0 99.0 47.3 44.2 91.1
✓ ✓ ✓ 86.4 96.8 98.8 47.1 41.7 91.2
✓ ✓ ✓ ✓ 88.0 96.9 98.9 45.5 41.0 89.0

Timestamp Image & Count

Baseline 86.6 97.0 99.0 44.6 42.2 87.3

✓ 85.9 97.0 99.0 42.8 36.4 87.3
✓ 85.7 97.0 99.0 42.7 36.4 86.4

✓ 87.0 97.0 98.9 44.1 37.9 88.1
✓ ✓ 86.7 96.9 98.9 44.2 39.7 87.2
✓ ✓ ✓ 86.2 97.0 98.9 44.7 40.7 87.2

✓ 88.8 96.9 99.0 48.2 46.1 91.2
✓ ✓ ✓ 86.4 96.9 99.0 47.5 44.0 91.1
✓ ✓ ✓ ✓ 87.1 97.0 98.9 45.4 39.8 89.5

CSTR (mean Ts only)

Baseline 87.7 97.0 99.0 44.5 39.5 87.4

✓ 86.8 96.9 98.9 45.2 42.0 88.5
✓ 86.0 97.0 99.0 44.6 41.1 87.5

✓ 86.9 96.9 98.9 45.6 42.7 87.9
✓ ✓ 87.1 97.0 98.9 44.6 39.2 87.9
✓ ✓ ✓ 85.9 96.9 98.9 45.9 44.7 85.7

✓ 86.3 96.9 98.9 48.4 45.7 91.9
✓ ✓ ✓ 87.1 96.8 98.8 47.5 44.0 90.2
✓ ✓ ✓ ✓ 89.4 96.9 98.8 47.2 44.1 90.6

CSTR (mean Ts & Count)

Baseline 86.5 97.0 99.0 44.4 37.7 87.9

✓ 87.2 96.9 98.9 44.8 41.3 87.3
✓ 85.0 96.9 98.9 44.8 40.2 87.9

✓ 83.8 96.9 98.9 44.5 40.4 86.8
✓ ✓ 86.0 96.9 98.9 45.1 41.3 86.9
✓ ✓ ✓ 87.4 97.0 99.0 45.0 41.0 88.3

✓ 87.3 97.0 99.0 46.7 41.7 90.6
✓ ✓ ✓ 87.0 97.0 99.0 43.3 34.8 88.9
✓ ✓ ✓ ✓ 87.1 97.9 99.0 46.5 42.8 89.8

Average

Baseline 86.9 96.9 99.0 44.7 40.3 87.5

✓ 86.5 96.9 98.9 44.2 39.4 87.6
✓ 85.4 96.9 98.9 44.1 39.5 87.4

✓ 86.2 96.9 98.9 44.7 40.4 87.6
✓ ✓ 86.8 97.0 98.9 44.3 39.4 87.5
✓ ✓ ✓ 86.7 97.2 98.9 45.0 41.1 87.3

✓ 87.5 96.9 98.9 47.6 44.4 91.2
✓ ✓ ✓ 86.7 96.9 98.9 46.3 41.1 90.4
✓ ✓ ✓ ✓ 87.9 97.2 98.9 46.2 41.9 89.8

The best results per dataset and metric are highlighted in bold.
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Table D.3: Results of the augmentation-framework ablation study using the multi-modal late-
fusion approach, detailing the results presented in Table 6.15 for each event representation. The
effects of each augmentation configuration are demonstrated for each spatio-temporal representa-
tion explored in this work.

Representation Augmentation Type MEVDT (∆T = 500 ms) PKU-DDD17-CAR

Spatial Temporal Polarity Drop mAP (%) mAP75 (%) mAP50 (%) mAP (%) mAP75 (%) mAP50 (%)

Timestamp Image

Baseline 84.6 96.9 98.9 43.4 40.4 84.1

✓ 83.4 96.5 98.5 43.2 40.0 82.9
✓ 84.8 96.6 98.8 44.3 42.4 84.6

✓ 82.1 96.5 98.6 45.0 43.4 84.1
✓ ✓ 84.2 96.6 98.7 44.2 41.9 84.8
✓ ✓ ✓ 81.9 97.5 98.7 43.8 42.4 82.3

✓ 87.6 97.7 98.7 44.8 43.3 83.9
✓ ✓ ✓ 86.9 96.8 98.7 45.0 41.5 85.9
✓ ✓ ✓ ✓ 87.5 97.6 98.6 46.9 46.1 87.1

Timestamp Image & Count

Baseline 85.2 96.8 98.8 43.6 41.3 84.3

✓ 86.1 97.8 98.9 43.8 41.5 83.9
✓ 85.2 96.7 98.8 43.2 39.4 85.3

✓ 83.4 96.9 98.9 43.4 39.8 83.9
✓ ✓ 83.6 97.8 98.8 44.1 42.6 84.4
✓ ✓ ✓ 84.3 97.6 98.7 44.4 42.4 84.0

✓ 87.3 97.8 98.8 45.1 44.6 84.2
✓ ✓ ✓ 86.9 96.7 98.6 48.4 49.4 88.0
✓ ✓ ✓ ✓ 88.2 97.7 98.8 45.2 42.6 85.8

CSTR (mean Ts only)

Baseline 85.1 96.8 98.9 43.8 41.8 85.1

✓ 83.7 96.5 98.7 44.3 41.2 84.4
✓ 83.7 96.4 98.7 42.7 39.4 83.0

✓ 84.3 97.8 98.9 43.0 41.5 82.9
✓ ✓ 84.9 97.5 98.8 43.4 42.5 83.6
✓ ✓ ✓ 83.6 96.9 98.8 44.5 41.8 84.0

✓ 85.7 96.7 98.9 47.3 47.5 87.7
✓ ✓ ✓ 86.9 96.4 98.7 45.8 44.0 85.9
✓ ✓ ✓ ✓ 86.2 96.4 98.8 45.5 44.2 84.5

CSTR (mean Ts & Count)

Baseline 84.7 96.8 98.9 43.6 41.0 84.3

✓ 85.3 97.6 98.8 44.4 43.4 83.3
✓ 83.7 96.1 98.7 44.7 42.1 85.8

✓ 85.7 97.7 98.8 43.6 40.7 83.6
✓ ✓ 82.3 96.5 98.7 43.6 41.0 83.4
✓ ✓ ✓ 83.4 96.6 98.6 44.1 42.9 82.9

✓ 85.5 96.6 98.5 47.2 46.9 87.1
✓ ✓ ✓ 87.1 96.5 98.7 44.6 42.4 85.4
✓ ✓ ✓ ✓ 87.7 97.5 98.7 45.2 41.1 86.3

Average

Baseline 84.9 96.8 98.9 43.6 41.1 84.4

✓ 84.6 97.1 98.7 43.9 41.5 83.6
✓ 84.4 96.4 98.7 43.7 40.8 84.7

✓ 83.9 97.2 98.8 43.8 41.4 83.6
✓ ✓ 83.8 97.1 98.7 43.8 42.0 84.1
✓ ✓ ✓ 83.3 97.2 98.7 44.2 42.4 83.3

✓ 86.5 97.2 98.7 46.1 45.6 85.7
✓ ✓ ✓ 86.9 96.6 98.7 46.0 44.3 86.3
✓ ✓ ✓ ✓ 87.4 97.3 98.7 45.7 43.5 85.9

The best results per dataset and metric are highlighted in bold.
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