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ABSTRACT

Data center applications consume the majority of today’s compute cycles. As current computer
systems—computer architecture, compilers, and operating systems—are inefficient for data center
applications, this dissertation focuses on redesigning the computer system to enable efficient data

center processing.
The challenges of efficient data center processing are twofold. First, data center applications

operate on a large volume of data with complex software functionality to meet the demand of
billions of users. Second, processors can no longer provide steady performance scaling to support
this rapid growth. This dissertation addresses these challenges by proposing a feedback loop in
computer systems design.

The feedback loop proposed in this dissertation consists of characterization methodologies to
find reasons behind the inefficiency and optimization techniques to overcome the inefficiency. This
dissertation leverages this feedback loop with profile-guided optimizations that collect data center
applications’ profiles using characterization methodologies and insert hints utilizing optimization
techniques.

While designing this feedback loop, I make two key contributions: (1) I propose systems inter-
faces using which software can reason about hardware inefficiencies; and (2) I design architectural
abstractions using which software can suggest how to avoid hardware inefficiencies. Empowering
software to understand and avoid inefficiencies across all major micro-architectural structures, I

make the key contribution of moving the burden of latency-hiding optimizations from hardware to

software.

I help software diagnose hardware problems by designing systems interfaces to characterize
hardware inefficiencies faced by data center applications. Drawing insights from diagnosis, my
techniques guide software optimizations to avoid hardware inefficiencies. As Moore’s Law dwin-
dles, the demand for performance remains ever-present. To satisfy this trending need, data-driven
optimizations of existing systems are essential. Systems observability is thus more valuable than
ever, but more practically, it is more accessible than ever. Techniques I propose are definitive
examples of how systems can proactively use observability to facilitate better communication be-
tween hardware and software. Embodying this vision, my systems techniques made proprietary
workloads 2× faster. Consequently, I helped companies like ARM adopt my systems interfaces to
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diagnose hardware inefficiencies for their data center processors (e.g., ARM Neoverse N1 SDP)
that power Amazon Web Service machines, along with Alibaba, and Microsoft data centers.

Hardware optimizations are no longer sufficient for data center applications that process large
volumes of data with rapidly growing complex software. Consequently, I design architectural ab-
stractions that move optimizations from hardware to software. Empowering software to avoid in-
efficiencies across all major micro-architectural structures including instruction cache, data cache,
and branch predictor, I redefine the way we design processors. I evaluate all of my techniques for
widely-deployed data center applications (e.g., Facebook HHVM, Twitter Finagle, Apache Cas-
sandra, PostgreSQL, MySQL, etc.), and show that they provide significant speedups (more than
2×) for these applications. As a result, Intel’s data center processors have adopted a couple of my
techniques.

Looking forward, I will build open-source systems and benchmarking methodologies to make
hardware/software co-design available to a wider audience. I will also use insights from leading
these efforts to solve a wide range of efficiency problems across the systems stack.
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CHAPTER 1

Introduction

My thesis reexamines the boundary between hardware and software to enable efficient data center
processing. I begin this chapter with an overview of the problem: processor inefficiency for data
center applications (§1.1). Subsequently, I present an overview of my vision: hardware/software
co-design to make processors efficient for data center applications (§1.2). Next, I highlight my
key contribution, moving the burden of latency-hiding optimizations from hardware to software.
(§1.3). Finally, I conclude with an outline for the rest of this dissertation (§1.4).

1.1 Problem Overview

Data center applications serve billions of people around the world and power nearly every device
connected to the Internet. Consequently, millions of processor cores over hundreds of data centers
run these applications, incurring large operating costs and carbon emissions. As data center appli-
cations are extremely inefficient, the goal of this dissertation’s research is to enable efficient data
center processing. Let me first motivate why we need to enable efficient data center processing
with the example of Google Web Search.
Google Web Search: A Motivating Example.

The typical latency of a Google web search is around hundreds of milliseconds [59]. To serve
a single search query, Google have to use 8 processor cores [39]. Moreover, during those millisec-
onds, the efficiency for these cores are only around 32% [41].

Now, consider serving billions of users all over the planet. Serving so many users means com-
panies like Google and Meta deploy millions of processor cores in their data centers [124]. De-
ploying so many processors over hundreds of data centers incur millions of dollars in operating
expenses [344]. More importantly, these processors are responsible for major energy cost [22].
For example, even a single percent of efficiency improvement for these data center applications
have the same impact as reducing the whole energy usage of a small country like Barbados [248].

In summary, if we can improve the processor efficiency of data center applications to reduce
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end-to-end latency, we can save millions of dollars [181, 179], provide better user experience [59],
and meaningfully reduce the global energy needs [344]. To do that, let us now understand why
processor efficiency is so low for these web services.
Reasons behind Low Processor Efficiency for Data Center Applications.

At its core, a processor takes program instructions, performs the corresponding operations,
and stores the data outcome of the operation. Ideally, the processor should complete such a full
pipelined operation on each cycle. However, for Google web-search, processors were performing
useful operations only on 32% of the time, wasting 68% of the remaining time and energy [39,
41, 40]. To understand this low efficiency, we will have to look at how processors access these
instructions and data. Processors access both instructions and data from memory, and there is a
significant (≈ 100×) speed gap between processors and memory [157].

Processor Memory

Instruction

Data

Instruction 
Cache

Branch
Predictor

Data
Cache

100x speed gap

Figure 1.1: Current computer systems hide the speed gap between processor and memory using
hardware structures such as instruction cache, branch predictor, and data caches.

To hide this speed gap, as shown in Fig. 1.1, current computer systems primarily rely on hard-
ware structures. Hardware structures such as instruction cache and branch predictor on the in-
struction side, and data caches on the data side. On the instruction side, instruction cache contains
frequently and recently executed instructions and branch predictor contains prior directions of con-
trol flow or branch instructions to predict next instructions to execute.

On the data side, processors use different data caches that again contain frequently and recently
executed data items. In particular, there is a hierarchy of caches such as L1, L2, and L3 cache. L1 is
smallest and fastest while L3 is the largest but slowest. Unfortunately, these structures—instruction
cache, branch predictor, and data caches—are no longer sufficient for data center applications. Let
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me explain this insufficiency with the example of instruction cache, as shown in Fig. 1.2.

The Large Footprint Problem

Applications Hot code size1

9MB

34MB

24MB

21MB

[1] Lightning BOLT: Powerful, Fast, and Scalable Binary Optimization, CC 2021
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Figure 1.2: The large footprint problem of data center applications

In state-of-the-art processors, instruction cache sizes are around hundreds of KiloBytes (KBs).
However, if we look at data center applications, say popular Meta applications, we see that their
hot or frequently executed code sizes are around tens of MegaBytes [279]. Therefore, there is
a significant (≈ 150×) gap between application footprints and instruction cache sizes. Further-
more, as hardware performance scaling comes to an end, we can no longer increase the instruction
cache sizes exponentially [338]. For example, instruction caches in various generations of Intel
processors had the same size of 32 KBs for the last 10 years [407].

Now, let’s see the implications of this large footprint problem at processor efficiency, as I show
in Fig. 1.3. For example, hypothetically, if we had an instruction cache of 10s of megabytes, the
processor efficiency for the Google Web Search would get a boost of 24% [39]. Similarly, if we
had a branch predictor of several megabytes, the processor efficiency for the Google Web Search
would get a boost of 15% [41]. Finally, if we had a data cache of tens of gigabytes, the processor
efficiency for the Google Web Search would get a boost of 21% [40]. Unfortunately, hardware
technology can no longer provide such an exponential increase [337].

1.2 Solution Overview

As hardware-only solutions are no longer sufficient for data center applications, my key vision is
to redesign computer systems so that hardware and software can work together to make pro-
cessors efficient. However, it is really challenging to realize this vision. In many cases, software
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Figure 1.3: Implications of data center applications’ large footprint problem at processor efficiency

does not have the capability to diagnose hardware problems. Moreover, in most cases, software
does not have the capability to solve hardware problems.

My Vision: Hardware and Software Work Together
to Make Processors Efficient

Hardware Software

Instruction 
Cache

Branch
Predictor

Data
Cache

Instruction 
Prefetching

Branch
Formula

Data
Prefetching

Figure 1.4: Research vision

I address these challenges using three concrete steps. First, I propose characterization method-
ologies to help software diagnose hardware inefficiencies. In particular, these methodologies ex-
tracts meaningful insights by carefully analyzing hardware performance counter events. Second, I
design optimization techniques to help software avoid hardware inefficiencies. Specifically, these
techniques draw insights from computer architecture, operating systems, and compilers. Finally, I
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evaluate my proposed techniques on real-world data center applications used by companies such
as Meta, Twitter, and Netflix to validate their effectiveness.
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Figure 1.5: Research contributions

1.3 Summary of Contributions

My dissertation’s key contribution is moving the burden of latency-hiding optimizations from
hardware to software. My contribution has two primary components: (1) I design systems in-
terfaces using which software can reason about hardware inefficiencies, and (2) I propose archi-
tectural abstractions using which software can suggest how to avoid hardware inefficiencies. By
empowering software to understand and avoid inefficiencies across all major micro-architectural
structures, including data cache, instruction cache, and branch predictor (as depicted in Fig. 1.5), I
redefine the way we design processors. Consequently, my work presented in this dissertation has
been recognized with several Best Paper Awards and Distinctions.
Systems Interfaces to Help Software Diagnose Hardware Problems.

The first contribution of this dissertation is the design of several systems interfaces [203, 196,
270, 361, 157] that enable software to diagnose hardware problems. I demonstrate this contribution
with the example of DMon [196].

Performance inefficiency of data center applications can only be observed in production [407].
Therefore, the key challenge of observing hardware inefficiencies and their root causes is to per-
form the observation with a low-enough overhead that is suitable for production use. DMon ad-
dresses this challenge by gathering run-time information selectively and incrementally. DMon
continuously monitors production executions only for symptoms of hardware inefficiencies (e.g.,
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frequent memory stalls and increased cache misses). When DMon observes these high-level in-
dicators of hardware inefficiencies, it automatically transitions to incrementally monitoring more
precise information about the exact cause of the hardware inefficiency. To perform the transition,
DMon proposes a hierarchical abstraction of hardware events to create an accurate understanding
of the underlying inefficiency with only 1.4% overhead. Using insights from the understanding,
DMon guides optimizations to eliminate inefficiencies. As a result, DMon speeds up PostgreSQL,
a popular database systems, by 17%.
Architectural Abstractions to Help Software Avoid Hardware Problems.

The second contribution of this dissertation is the design of several architectural abstrac-
tions [198, 201, 194, 333, 200] that enable software to solve hardware problems. I demonstrate
this contribution with the example of Whisper [200].

Whisper investigates branch (i.e., control flow) instructions’ behavior in data center applications
to show that large code footprints of these applications trigger frequent branch mispredictions and
subsequent instruction fetch bottlenecks, wasting 21% of all CPU cycles. Specifically, Whisper’s
investigation reveals that hardware techniques cannot avoid mispredictions even with an infeasi-
ble amount (tens of megabytes) of on-chip storage, also explaining why research into improving
branch prediction accuracy has been at an impasse for over a decade.

Whisper solves the capacity problem by moving the prediction of hard-to-predict branches from
hardware to software. Whisper leverages data center applications’ production profiles to identify
hard-to-predict branches. To predict these branches accurately, Whisper finds correlations between
their directions and many prior branch directions. Whisper efficiently encodes these correlations
in software using Boolean formulas and improves the overall efficacy of branch prediction. Con-
sequently, Whisper received the MICRO’22 Best Paper Award.

1.4 Outline and Previously Published Work

The rest of this dissertation proceeds as follows: Chapters 2 and 3 describe how to enable software
to accurately and efficiently diagnose hardware problems, with the example of data cache. Chap-
ters 4, 5, 6, and 7 demonstrate how to empower software to effectively solve hardware problems,
with examples of instruction cache and branch predictor. Chapter 8 concludes by describing a
roadmap of future work to realize the vision of ubiquitous hardware/software co-design.

Chapter 2 revises material from [196]. Chapter 3 incorporates content from [203]. Chapter 4
builds upon the work presented in [198]. Chapter 5 revises content from [201]. Chapter 6 incorpo-
rates material from [194]. Chapter 7 includes material from [200].
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CHAPTER 2

DMon: Efficient Detection and Correction of Data
Locality Problems Using Selective Profiling

Poor data locality hurts an application’s performance. While compiler-based techniques have been
proposed to improve data locality, they depend on heuristics, which can sometimes hurt perfor-
mance. Therefore, developers typically find data locality issues via dynamic profiling and repair
them manually. Alas, existing profiling techniques incur high overhead when used to identify data
locality problems and cannot be deployed in production, where programs may exhibit previously-
unseen performance problems.

We1 present selective profiling, a technique that locates data locality problems with low-enough
overhead that is suitable for production use. To achieve low overhead, selective profiling gathers
runtime execution information selectively and incrementally. Using selective profiling, we build
DMon, a system that can automatically locate data locality problems in production, identify access
patterns that hurt locality, and repair such patterns using targeted optimizations.

Thanks to selective profiling, DMon’s profiling overhead is 1.36% on average, making it fea-
sible for production use. DMon’s targeted optimizations provide 16.83% speedup on average (up
to 53.14%), compared to a baseline that uses the highest level of compiler optimization. DMon
speeds up PostgreSQL, one of the most popular database systems, by 6.64% on average (up to
17.48%).

2.1 Introduction

Poor data locality is the root cause of many performance problems [180, 112, 39]. Rapidly in-
creasing data footprints of modern applications due to heavily data-driven use cases (e.g., analyt-
ics [404], machine learning [20], etc.) make matters worse, precipitating data locality problems

1Some of the work in this chapter was performed in collaboration with Ian Neal, Gilles Pokam, Barzan Mozafari,
and Baris Kasikci [196]. Therefore, I use the “we” pronoun in this chapter to acknowledge their involvement in this
work.

7



further [39]. Recent work shows that up to 64% of all CPU cycles are lost due to poor data locality
for widely used data center applications [344].

Although many compiler optimizations aim to eliminate data locality problems statically [261,
260, 27, 73, 72], such optimizations rely on compile-time heuristics, which may not accurately
identify and repair problems that manifest dynamically at run time. In fact, as we (§2.6.2) and oth-
ers [69, 58, 26, 87] demonstrate, compiler-based techniques can sometimes even hurt performance
when the assumptions made by those heuristics do not hold in practice.

To overcome the limitations of static optimizations, the systems community has invested sub-
stantial effort in developing dynamic profiling tools [370, 379, 127, 220, 88]. Dynamic profilers
are capable of gathering detailed and more accurate execution information, which a developer can
use to identify and resolve data locality problems.

Traditionally, existing dynamic profiling tools have been used offline, namely during testing and
development, where test cases are designed to adequately represent real-world program behavior.
However, due to the proliferation of cloud computing and mobile devices, programs exhibit vast
variations in terms of how they execute and consume data in production [180, 303]. Consequently,
it has become increasingly difficult for offline profiling to be representative of how programs be-
have in production settings.

Unfortunately, existing dynamic profilers incur considerable overheads when used to detect data
locality issues, and therefore they are not suitable for production environments [285, 220, 233, 235,
234, 281, 54].

In this paper, we present selective profiling, a data locality profiling technique that not only
accurately detects data locality problems, but also incurs low overhead, making it suitable for pro-
duction deployment. Using selective profiling, we design DMon, a system that can automatically
detect and eliminate data locality problems in production systems.

Selective profiling is a lightweight technique to continuously monitor production executions
for symptoms of poor data locality (e.g., frequent memory stalls, increased cache misses, etc.). As
these high-level indicators of data locality problems are identified, selective profiling automatically
transitions to incrementally monitoring more precise information about the source location and
exact cause of the data locality problem—this is done by traversing a hierarchical abstraction we
introduce, called the data locality tree (§2.3), which allows DMon to monitor hardware events in
a selective way to create an accurate profile at low run-time overhead.

After gathering the profile, DMon performs an offline analysis to identify common patterns of
memory accesses. DMon then matches these patterns to a set of existing data locality optimiza-
tions (§2.4.1), which it primarily applies automatically, in a targeted manner (unlike static tech-
niques). For cases where DMon cannot automatically apply an optimization, it provides detailed
information about the locality problem to the developer, who can fix the problem manually; in our
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evaluation, this case occurs only once and the developer can apply DMon-suggested optimization
with minimal effort (¡10 LOC). We provide four optimization passes (§2.4.2) which DMon can use
to automatically fix data locality problems and are sufficient for DMon to fix major data locality
problems we identify across the systems we test in our evaluation (§2.6).

Selective profiling incurs 1.36% monitoring overhead on average, making it an ideal profiling
technique for detecting data locality issues in production. The run-time overhead of selective
profiling is significantly (i.e., 9×) lower than that of the state-of-the-art data locality profiler [65,
256]. Overall, targeted optimizations performed by DMon for 13 applications deliver on average
16.83% (up to 53.14%) speedup. To show the effectiveness of DMon for large real-world systems,
we applied DMon to PostgreSQL [348], a popular open-source database system, where DMon-
guided optimizations provided on average 6.64% and up to 17.48% speedup across all 22 TPC-
H [85] queries. Furthermore, the optimizations enabled by DMon provides 20% more speedup, on
average, than optimizations provided by the same state-of-the-art profiler.

Overall, we make the following contributions:
• Selective profiling, a data locality profiling technique that automatically and incrementally mon-

itors fine-grained execution information to accurately detect data locality problems with low
overhead.

• DMon, a system that implements selective profiling to detect data locality problems in production
systems. DMon automatically selects specific optimizations based on memory access patterns,
and applies these well-known optimization techniques automatically in most cases.

• By evaluating DMon in the context of widely-used applications, we show that selective profiling
can detect data locality issues in production with low overhead (1.36% on average). Moreover,
we show that selective profile-guided targeted data locality optimizations provide significant
performance speedup (16.83% on average, up to 53.14%).
We explain the key design challenge for accurately and efficiently detecting data locality prob-

lems in §2.2. We describe selective profiling in §2.3, DMon’s design in §2.4, and DMon’s im-
plementation in §2.5. We evaluate DMon in §2.6, compare DMon to related work in §2.7, and
conclude in §2.8.

2.2 Challenges

It is challenging to accurately pinpoint data locality problems, while incurring low run-time per-
formance overhead.

Compiler-based static data locality optimizations [261, 260, 293, 55, 347] are appealing be-
cause they incur no run-time overhead. However, static techniques apply optimizations based on
compile-time heuristics, which may not accurately identify program locations that suffer from poor
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locality at run time. In fact, compiler-based techniques can sometimes even hurt performance when
the assumptions made by those heuristics do not hold in practice [69, 58, 26, 87].

To demonstrate how compile-time heuristics can hurt performance, we use a compiler-based
data prefetching technique [261] to improve data locality in two matrix decomposition bench-
marks [389], lu cb and lu ncb from the PARSEC suite [50]. This optimization combines loop
splitting and explicit data prefetching to increase data locality. Using the benchmarks’ standard
inputs, we determine that 50% of all the cache misses in lu cb and lu ncb stem from a single
function, which we optimized using compiler-guided data prefetching [261]. The optimization
provides a 19.4% speedup for lu ncb, but yields a 19.85% slowdown for lu cb. This occurs be-
cause, for lu ncb, prefetching reduces all cache misses; however, for lu cb, there was a dramatic
increase in L2 cache misses despite a reduction in L1 and L3 cache misses.

Dynamic profilers can accurately pinpoint data locality problems [285, 220, 233, 235, 234, 281,
54], however, they impose considerable overhead (i.e., ¿10% on average), as they track too much
information: memory accesses, timestamps, cache events, etc. Consequently, existing data locality
profilers are not deployed in production.

A potential remedy to the high overhead of existing profilers is statistical sampling, which can
collect information with reasonable overhead [42]. For instance, the state-of-the-art Intel VTune
profiler [304] samples information such as hardware and software performance counters, times-
tamps, program locations, and accessed memory addresses to gather the necessary information for
detecting data locality issues.

Alas, even sampling is not enough to reduce the overhead incurred by popularly available pro-
filers (e.g., Intel VTune) to detect data locality problems to levels acceptable for production use. To
assess the impact of sampling, we use the state-of-the-art profiler VTune to detect the data locality
issues in our evaluation targets. Despite sampling-based data collection, VTune still incurs 26%
overhead on average (and up to 60%), which is unacceptable for production settings.

We argue that not only the monitored execution information must be deliberately chosen to only
pertain to data locality problems, but monitoring must occur incrementally, only when there are
increasingly clear signs of poor data locality. Next, we explain how selective profiling achieves
this.

2.3 Selective Profiling

Selective profiling is a monitoring technique that incrementally monitors more detailed, yet more
targeted, run-time information to identify data locality problems. Next, we discuss the three
key components of selective profiling: (1) Targeted Monitoring, (2) Incremental Monitoring, and
(3) Sampling.
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Figure 2.1: The locality tree abstraction. Performance events that pertain to each tree node are
in italic. There are no dedicated events to determine if a program is back-end bound. Instead,
selective profiling subtracts from total stalls the sum of the stalls that cause other bottlenecks at
layer 1 to determine if an execution is back-end bound.

2.3.1 Targeted Monitoring

Unlike existing offline profilers [371, 379, 220, 370, 395] that monitor many hardware events
and information such as program locations, selective profiling needs to carefully choose which
information to monitor in order to accurately and efficiently detect data locality problems. A
straw-man approach is to only monitor events such as data cache misses, which are directly related
to data locality problems. However, simply monitoring data cache misses in isolation can be
misleading. For instance, a seemingly large number of data cache misses may have no impact
on the performance of an application that spends a lot of time fetching instructions to execute (a
common theme in modern Web services [180, 41]).

Selective profiling monitors a select group of hardware events that allow it to determine if the
execution of a program is bounded by a subset of those events that we call the data locality tree. As
shown in Fig. 2.1, the data locality tree is a hierarchical abstraction of data locality-related perfor-
mance events from Intel’s Top-Down methodology [395]. The Top-Down methodology provides a
breakdown of performance events in Intel CPUs, which a developer can use as a guideline to nav-
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igate their manual profiling efforts. However, unlike Top-Down, selective profiling automatically
transitions from one layer to another, incrementally monitoring more events at each layer of the
tree, as increasing evidence of data locality issues is observed at run time.

At layer 1, selective profiling determines whether the execution is back-end bound—i.e., spends
a large portion of the time either in CPU execution (CPU bound) or accessing memory (memory
bound). At layer 1, a program can also be front-end bound (i.e., fetching instructions), incur-
ring mis-speculations, or retiring instructions. For executions that are back-end bound, selective
profiling determines whether they are processor-core bound or memory bound in layer 2.

If an execution is memory bound in layer 2, selective profiling monitors events that provide a
breakdown of the execution into 4 categories in layer 3. Of those 4 categories, only 3 are related
to data locality problems: L2 bound and L3 bound represent the time spent accessing the L2 and
the L3 cache, respectively; “DRAM bound” represents the time spent accessing the DRAM. If a
program is L1 bound, the data or instructions that the program uses are already as close to the
processor as possible and it is hard to improve data locality further. In such cases, the program
may have other performance problems, such as false sharing [360] or lock contention [313].

Selective profiling also tracks information to map performance problems back to code. In layer
4, selective profiling records program location information along with hardware events. For exam-
ple, if a program is L2 bound, selective profiling records L1 cache misses and the location of the
instruction causing the miss. By locating and reducing L1 cache misses, the execution time will
potentially not be L2 bound, and the locality problem will likely be fixed. Similarly, if a program
is L3 or DRAM bound, selective profiling records L2 and L3 cache misses and associated program
locations, respectively.

2.3.2 Incremental Monitoring

Unfortunately, merely restricting the scope of monitored performance events to the data locality
tree is not sufficient for low overhead monitoring of data locality issues. Thus, selective profil-
ing instead adopts an incremental monitoring approach. This approach increases the amount of
information gathered at run time to efficiently identify program locations that may have a locality
problem.

Fig. 2.2 shows the details of incremental monitoring. By default, selective profiling monitors
the hardware events that provide the layer 1 breakdown. Selective profiling only transitions to
monitoring layer 2 events if the execution is back-end bound for at least 10% of a time-slice
p (100ms by default). We use 10% as the default threshold, which we empirically determine
to be a reasonable threshold (§2.6.4). We also choose 100ms as a reasonable time-slice for our
programs, since the shortest execution across our benchmarks was 1 second and the longest was
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Figure 2.2: Incremental monitoring

2867 seconds. Nonetheless, the percentage and monitoring periods are both configurable. We
explore the sensitivity of our results to all these parameters in §2.6.4.

If selective profiling determines that the execution is also memory bound for at least 10% of
the same interval p, it starts monitoring layer 3 events. If selective profiling determines that the
execution is L2, L3, or DRAM bound for at least 10% of the same interval p, it transitions to layer
4. Selective profiling then gathers L1, L2, and L3 cache miss events and program locations where
the misses occur.

Incremental monitoring is key to ensuring selective profiling’s low performance overhead. Suc-
cessive layers are more costly to monitor as they must count more events—for example, layer 2
requires counting 3× more hardware performance events than layer 1. However, unless selective
profiling determines that an execution is back-end bound, it only needs to monitor events at layer 1.
As shown in §2.6.1, only monitoring layer 1 events incurs a negligible overhead (0.7% on average).

Programs can go through phases of different locality issues (e.g., L2 cache misses in one phase
and L3 cache misses in another phase). Selective profiling can pinpoint the root cause of the
locality problem for each phase, provided the duration of a given phase is at least 4p (where p is
the duration of selective profiling’s time-slice, per layer). If this time-slice is too long, selective
profiling may miss some short-running phases. The time slice is configurable. We empirically
determine that a time slice of 100ms is effective in practice (§2.6.4).
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2.3.3 Sampling

In addition to targeted and incremental monitoring, selective profiling also employs sampling at
layer 4 for recording L1, L2, and L3 cache misses to further reduce the overhead. Although
sampling can reduce run-time overhead, it can also reduce the coverage of data locality issues that
selective profiling detects if the sampling period is too high. We define coverage as the ratio of
the number of locality issues detected with a given sampling rate to the number of locality issues
detected with the highest possible sampling rate.

By default, selective profiling uses a conservative sampling period of 1000 (1 sample per 1000
events), which we have empirically found to yield high coverage (97%, discussed in §2.6.4) in
detecting locality problems across the 13 benchmarks we evaluated. The developer, however, can
use a lower sampling period (up to 1 sample per 100 events, as allowed per Linux’s perf interface).
We analyze the coverage versus overhead trade-off of different sampling periods in §2.6.4.

Selective profiling does not apply sampling in layers 1–3 since sampling reduces coverage.
Moreover, in layers 1–3, selective profiling’s incremental monitoring reduces the overhead to a
negligible amount in all tested applications (on average 1.36%). Therefore, selective profiling does
not need to apply sampling at those layers. However, if the overhead of the first three layers is
high, selective profiling can optionally enable sampling at those layers as well.

Now, we describe how data locality information collected via selective profiling can be used to
guide automated and manual profile-guided optimizations using DMon.

2.4 DMon

Selective profiling detects program locations with poor data locality in production. DMon analyzes
these locations offline to identify the data access patterns causing data locality issues. Based on the
recognized access patterns, DMon applies existing compiler optimizations only to these program
locations in a targeted manner to improve data locality. We offer four such optimizations which
we describe in §2.4.2. These optimizations can be automatically applied in most cases for C/C++
applications; for applications written in other programming languages, selective profiling results
can still enable manual optimizations (§2.6.3).

Fig. 2.3 shows how DMon employs selective profiling to identify and eliminate data locality
issues. In step 1 , DMon monitors programs in production to determine whether they suffer from
poor locality using selective profiling.

Steps 2 – 3 happen offline, during recompilation. In step 2 , DMon determines the memory
access patterns that are causing poor data locality (§2.4.1). In step 3 , based on the identified
access patterns, either profile-guided automatic optimizations or manual optimizations can be per-
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Figure 2.3: How DMon leverages selective profiling to detect and repair data locality problems.

formed to improve data locality (§2.4.2). The optimized program is then rebuilt and redeployed in
production.

2.4.1 Static Memory Access Pattern Analysis

Once selective profiling identifies memory access instructions that suffer from poor locality in
production, DMon analyzes the corresponding program locations offline to determine the cause of
the problems. DMon only analyzes memory access instructions that incur more than 10% of the
total cache miss events sampled in layer 4 of selective profiling.

To determine the patterns of data locality issues, we initially analyze the results of selective
profiling manually for the benchmarks from the popular PARSEC [50] benchmark suite. Based
on our manual analysis of program statements causing data locality issues, we identify four key
memory access patterns that can lead to poor data locality. Table 2.1 shows one example of each of
these memory access patterns that cause poor data locality. Perhaps unsurprisingly, all the accesses
that contribute significantly to poor data locality are in loops that execute many times and access
a relatively large amount of data compared to other memory access operations in the application.
These four memory access patterns also cause data locality problems in a diverse set of real-world
applications (as we show in §2.6.3).

For lu ncb, most cache misses that hurt program performance happen while accessing arrays
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Table 2.1: Four common memory access patterns that cause data locality problems in many appli-
cations. Here, we show their examples from the PARSEC [50] benchmark suite.

Benchmark Code snippet Access pattern

lu_ncb a[i] += alpha*b[i];
Direct 

Addressing

radix
this_key = key_from[i] & bb;
this_key = this_key >> shiftnum;
tmp = rank_ff_mynum[this_key];

Indirect 
Addressing

radiosity

while(int_list)
{

if(int_list->dst==inter->dst)return(1);
int_list = int_list->next ;

}

Unbalanced 
Access

dedup if(LstElmnt->seq.l2num > H->Elmnts[Child]-
>seq.l2num){

Pointer Chasing

in a loop. Since the loop induction variable (i) is directly used to index those arrays, we call this
pattern direct addressing. For radix, the loop induction variable (i) is used to index an auxiliary
array to load an intermediate value (this key). The loaded intermediate value is used as index
while accessing another array, and the last access suffers from poor data locality. We categorize
this pattern as indirect addressing.

For radiosity, most cache misses occur in a while loop, where two member variables (dst
and next) of a structure (int list) are accessed repeatedly. We determine that this structure
also contains four other member variables not accessed in this loop. Since only accessing a sub-
set of all member variables causes cache misses, we call this access pattern as unbalanced ac-

cess. Finally, for dedup, locality suffers while accessing a chain of structure pointers (pointers
H, Elmnts[Child], and seq, and finally a member variable l2num) in a loop. We denote this
pattern as pointer chasing.

Based on findings of these manual observations, we design the static memory access pattern
analysis component of DMon, as shown in Fig. 2.4. Although DMon’s pattern detection is inspired
by the manual analysis of locality issues in PARSEC, we show in our evaluation that the patterns
DMon identifies generalize to a broad set of systems (§2.6.2 and §2.6.3). In particular, the four
patterns of poor locality constitute the root causes of all the data locality problems we discover in
nine other benchmarks that we had not studied previously.

As shown in Fig. 2.4, DMon determines the addressing mode of the memory instruction (i.e.,
direct or indirect addressing). If the access is made to a structure instance, DMon also determines
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Figure 2.4: Static memory access pattern analysis in DMon and their corresponding optimizations.
Shaded optimizations are mutually exclusive.

the type of the access (i.e., unbalanced access and pointer chasing). We discuss each analysis next.
Addressing mode. DMon’s static analysis checks if the instruction uses direct or indirect ad-
dressing. Here, direct addressing occurs if the computation of the accessed location does not
involve another memory address (e.g.,for(i=...) a[i]). Conversely, indirect memory address-
ing occurs if the computation of the accessed location involves computing another memory address
(e.g.,for(i=...) a[b[i]]).
Structure access pattern. In addition to determining the addressing mode, DMon’s static analysis
checks to see if the instruction accesses a member of a structure. DMon does this by mapping the
instruction to the compiler intermediate representation and checking if it accesses a structure field.
DMon searches for two patterns when a structure member is accessed, namely unbalanced access

and pointer chasing.
DMon concludes that there is an unbalanced access pattern, when accesses to only a subset of

member variables incur a large fraction of cache misses. Pointer chasing occurs when the accessed
memory location belongs to a hierarchy of nested structures (e.g., A->B->C).

17



for(i=0;i<128;i++)
ACCESS a[i];

for(i=0;i<16;i+=8)
prefetch(&a[i]);

for(i=0;i<112;i+=8){
prefetch(&a[i+16]);
ACCESS a[i], …, a[i+7];

}
for(i=112;i<128;i++)

ACCESS a[i];
Original Loop Prefetched Loop

Figure 2.5: Software prefetching for direct memory access, adapted from [261]. The induction
variable is of type int. The prefetch instruction prefetches one cache line (64 bytes).

2.4.2 Optimizations Implemented in DMon

To show the usefulness of selective profiling, we implement four profile-guided data locality op-
timization passes using LLVM [215] for C/C++ programs. Our passes optimize the four patterns
of poor data locality that DMon identifies. For applications written in other languages, selective
profiling results can be used to apply manual optimizations (§2.6.3).

As shown in Fig. 2.4, DMon recommends applying a specific optimization technique based on
the addressing mode and the structure access patterns of the memory access instruction. While
these optimizations are well-known and usually applied statically, selective profiling information
enables the targeted application of these optimizations to where they are absolutely needed in a
program. As we show in §2.6.2, DMon-enabled targeted profile-guided optimizations outperform
purely static optimizations by 10% on average.
Direct prefetching. The first optimization we implement uses direct prefetching [261] to fix lo-
cality problems that stem from memory accesses that use direct addressing. Direct prefetching
fetches the cache lines that a program will access in the near future into the cache to improve data
locality.

At a high level, direct prefetching works by splitting each loop suffering from poor data locality
into three loops, as shown in Fig. 2.5. The first loop is responsible for prefetching the initial
cache line that contains the data accessed by the loop. The second loop starts prefetching the next
cache line(s). It also simultaneously performs the original computation that was carried out in the
original loop, starting with the first prefetched cache line. The third and last loop completes the
computation using the last prefetched cache line.

Direct prefetching can be applied based on compile-time heuristics only. However, this can
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for(i=0;i<A_SIZE;i++)
b[a[i]]++;

for(i=0;i<A_SIZE;i++){
prefetch(&a[i+16*2]);
if(i+16<A_SIZE)

prefetch(&b[a[i+16]]);
b[a[i]]++;

}

Original Loop Prefetched Loop

1

2

Figure 2.6: Software prefetching for indirect memory access, adapted from [27].

cause significant performance degradation [89], as we also show in our evaluation (§2.6.2). This
happens because these heuristics might (1) bloat the code footprint by adding unnecessary prefetch-
ing instructions (e.g., for lines that would anyways be prefetched by the hardware prefetcher), and
(2) cause cache pollution by prefetching data that is not frequently-accessed.

Direct prefetching can also be applied in hardware with popular hardware prefetchers including
next-line and stride prefetchers that most modern processors supposedly employ [364, 141]. How-
ever, DMon finds that many directly addressed memory accesses suffer from poor data locality,
because the underlying hardware prefetchers can not prefetch the cache lines in a timely manner.
This is because prefetchers work in a reactive manner, i.e., it takes several iterations for the hard-
ware prefetcher to detect the pattern and start prefetching, but if prefetching is done with explicit
instructions, the performance benefits are immediate.

Instead of applying direct prefetching based on compile-time heuristics, our pass only applies it
to program locations where DMon identifies that direct addressing access pattern is causing poor
data locality.
Indirect prefetching. Our second optimization uses indirect prefetching [27], which is similar
to direct prefetching in that it brings data that will soon be used into the cache. Unlike direct
prefetching, indirect prefetching also has to prefetch one additional cache line per each level of
indirection.

Fig. 2.6 shows an example of indirect prefetching. Here, the original loop increments elements
in an array, b. However, the index of the array b is computed using another array, a. The loop on
the right side prefetches the cache line containing the elements of b that will be accessed in the
near future (prefetch 2 ). Prefetching the elements of b requires accessing the elements of a. Thus,
to prefetch the elements of b, we need to (1) have an array boundary check, and (2) also prefetch
the cache line containing the elements of a (prefetch 1 ).
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struct S{
A a;
B b;
C c;

};

a b

Cache Line 1

Structure
Splitting

Cache Line 1

struct S’{
A a;
C c;
S2* p;

};

Cache Line 2

Frequently-accessed

a c p

Cache Line 2

struct S2 {
B b;

};

Infrequently-accessed

c b

Figure 2.7: Structure splitting, example adapted from [72].

Structure splitting. The third optimization, structure splitting, moves infrequently-accessed mem-
bers of a structure with a pointer to a new structure that only contains those members. Structure
splitting is beneficial only when the total size of infrequently-accessed member(s) is larger than
the pointer size. Thus, the size of the original structure is reduced, fitting into fewer cache lines.
During memory access pattern analysis, if DMon detects that an unbalanced access pattern (i.e., a
subset of structure members are accessed more frequently than others) to members of a structure
is causing poor locality, structure splitting is an appropriate optimization.

Fig. 2.7 shows an example of structure splitting. Here, before structure splitting, the structure S
has three members (a, b, c) of types A, B, C, respectively. In the original program, an instance of
S spans two cache lines. Both cache lines need to be accessed each time the program accesses an
instance of S. For example, if neither of these cache lines is present in the L1 cache, the program
will incur two L1 cache misses.

After structure splitting, the new structure S’ fits in a single cache line (Cache Line 1) because
the infrequently-accessed member b is moved into a new structure S2, residing in its own cache
line (Cache Line 2). Consequently, when the program accesses an instance of S, it will usually
only need to access the cache line (Cache Line 1) containing the frequently-accessed members (a,
c), which would incur a single L1 cache miss (rather than two).

Structure splitting has been previously explored [72] in type-safe languages (e.g., Java). How-
ever, implementing structure splitting in a type-unsafe language (we target C/C++) is more chal-
lenging. This is because structure splitting needs to ensure that the program continues operating
correctly when the layout of the structure is modified. More specifically, all the instructions that
used to refer to the old layout need to be updated to refer to the new layout.

In our optimization pass, we addresses this challenge using a complete, interprocedural,
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struct S{
A a;
B b;
S2* p; 

};

a b p

Cache Line 1

Structure
Merging

Cache Line 1

struct S’{
A a;
B b;
C c;
S2’* p;

};

struct S2{
C c;
D d;
E e;

};

Cache Line 2

Frequently-accessed

a b c pc d e d e

Cache Line 2

struct S2’{
D d;
E e;

};

Infrequently-accessed

Figure 2.8: Structure merging example.

inclusion-based pointer analysis [30] that can determine all instructions that could possibly ac-
cess the split structures. As shown in §2.6.2, this optimization can automatically be applied in all
but one of the benchmarks.
Structure merging. The final optimization, structure merging, is the inverse of structure splitting
as it replaces a frequently-accessed pointer member of a structure with the data that the pointer ref-
erences. The key idea is to eliminate the pointer chasing pattern that DMon identifies by removing
a level of indirection for frequently-accessed elements.

Fig. 2.8 shows an example of structure merging. Before merging, the structure S has three
members (a, b, p) of types A, B, S2*, respectively. The instance of S resides in the first cache
line, and the pointer p points to an instance of structure S2 that resides in the second cache line.
The size of a, b, and c is such that they can all fit in one cache line. If c is accessed as frequently as
a and b, then data locality can be improved by merging these two structures into one. This structure
merge will also bypass one memory access (S’->C instead of S->S2->C). Structure merging only
combines member variables across different structure types and hence does not perform exhaustive
data structure conversions (e.g., transforming a linked list into an array) [73, 72].

DMon employs structure merging conservatively so that it will only be applied if soundness can
be guaranteed. In other words, DMon applies this optimization only if all updates via the structure
pointer can be safely redirected (e.g., in Fig. 2.8, all changes to S->S2->C could be replaced by
S’->C). To ensure this, structure merging also uses the same pointer analysis [30] that structure
splitting uses.
Other optimizations.. DMon can be easily extended to accommodate additional optimizations
if needed to fix different patterns of memory accesses which cause data locality problems. For
example, DMon can work as a framework to apply optimizations like loop reordering, blocking,
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tiling, and strip mining in a profile-guided manner. However, many of these optimizations require
expensive memory access trace collection which can not be deployed in production due to high
overheads [242]. In the future, we intend to explore how these optimizations can be applied based
on more efficient profiling.

2.5 Implementation

DMon’s selective profiling prototype is implemented for Intel processors. In particular, selective
profiling relies on the Linux perf [370] interface for profiling hardware events in layers 1–4 (§2.3).
We initially build the benchmarks using debug information and the highest level of compiler op-
timization (-O3), and then use the strip utility [375] to remove the debug information. During
in-production monitoring, selective profiling records the program counter for each sampled cache
miss event in layer 4. To efficiently deal with multi-threaded applications, selective profiling main-
tains a per-thread buffer (2MB per thread) to record the program counters. When the buffer gets
full, the previous samples get overwritten. Offline, DMon uses the program counter, the stripped
debug information, and the program binary to find the source code location where a cache miss
occurred in production.

We implement DMon’s optimizations in the LLVM [215] compiler framework. We use
clang [372] to generate the LLVM intermediate representation (IR) that the optimization passes
of DMon can operate on. The optimizations rely on the program’s debug information to map the
source code location to LLVM IR, because a 1-to-1 mapping between machine code and LLVM
IR does not exist.

Similar to other state-of-the-art profile-guided optimization techniques [65, 256], DMon’s use
of debug information for mapping machine code to LLVM and locating code locations to optimize
can introduce inaccuracies. This happens due to optimizations such as inlining. Although it is
possible to improve the accuracy of such mapping using more invasive instrumentation and trac-
ing [40], this would be prohibitively costly for production usage [180]. In our evaluation (§2.6),
we show that the accuracy provided by debug information can lead to substantial speedup.

The optimizations for structure splitting and structure merging use a whole-program pointer
analysis [67].

2.6 Evaluation

In this section, we first evaluate the efficiency of selective profiling by measuring its run-time mon-
itoring overhead. Then, we evaluate the effectiveness of DMon by showing the extent to which fix-
ing the locality problems detected by DMon improves performance of popular benchmarks. Next,
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we evaluate selective profiling’s generality by applying it to widely-used real-world applications.
Finally, we perform sensitivity studies to evaluate how DMon’s overhead and detection results vary
in response to changes of the different system parameters of DMon.
Software. All experiments are conducted in Ubuntu 18.04 (kernel version 4.15.0-46-generic). The
static compiler analyses are implemented in LLVM (7.0.0) on bitcode emitted by clang. Therefore,
we use clang 7 as the baseline compiler.
Hardware. We use a 20-core 2.2 GHz Intel Xeon NUMA (with 2 sockets) machine, with 64 KB of
L1-cache (32 KB instruction and 32 KB data), 1024 KB of L2-cache, 14 MB of L3-cache (shared
across the same NUMA node), and 96 GB of RAM. Like most Intel processors, each core in the
machine uses two hardware prefetchers (next-line and sequential load history driven prefetchers)
in the L1 data cache and two hardware prefetchers (adjacent cache line and streaming prefetchers)
in the L2 cache [364, 141]. We configure multi-threaded applications and benchmarks to run with
8 threads.
Benchmarks. We use a combination of benchmarks and real-world programs that have been
widely used in prior performance profiling and optimization work. In particular, we use all 12
benchmarks from the PARSEC [50] suite, all 11 benchmarks from the SPLASH-2X [388] suite,
and all 3 benchmarks written in C from the NPB [43] suite, as well as HashJoin, RandomAccess,
kcstashtest, and DIS, which are programs with poor data locality from other popular bench-
mark suites [240, 44, 264, 77]. We also study one of the most popular and heavily-optimized
open-source databases, PostgreSQL [292], running the TPC-H analytical workload [85]. Finally,
we study real-world applications from the Renaissance benchmark suite [295].
Metrics. In all our plots, we report speedup numbers as the ratio between the execution time of
the original application compiled with the highest level of optimization (-O3) and its run time after
applying DMon-guided optimizations. Negative speedup denotes slow-down. Similarly, we report
selective profiling overhead as the percentage increase in benchmark execution time while enabling
selective profiling. We report performance data as the average of 25 runs in all experiments.

2.6.1 Selective Profiling Efficiency

We evaluate the selective profiling efficiency by studying the overhead selective profiling incurs
during dynamic detection of locality problems. Fig. 2.9 shows this overhead. We present results
for all the benchmarks we evaluated, including the ones for which selective profiling did not find
locality optimization opportunities. For each benchmark, we present the overhead of each layer
of monitoring (1–4) that selective profiling employs. Since, selective profiling monitors only one
layer at a time, the effective overhead for a given program is less than the maximum overhead
across four layers.
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Figure 2.9: Monitoring overhead of selective profiling (All σ < 0.02µ).

Across all layers and benchmarks, selective profiling incurs up to 4.92% overhead, and on
average only 1.36% overhead. On average, selective profiling incurs an overhead of 0.7% in layer
1, an overhead of 1.5% in layer 2, an overhead of 2.5% in layer 3, and an overhead of 2% in layer
4. For benchmarks that do not have locality problems, layers 2–4 are never triggered.

In only 3 out of all 28 benchmarks, selective profiling incurs more than 3% overhead: IS (4.6%),
kcstashtest (4.2%), and HashJoin (4.9%). However, as we detail in §2.6.2, optimizations
suggested by DMon also provide greater speedups for these benchmarks than for others (IS 30.3%,
kcstashtest 32.4%, and HashJoin 53.1%—compared to 16.83% average speedup enabled by
DMon). These benchmarks suffer the most from poor locality, and consequently, selective profiling
incurs more overhead to pinpoint the root cause of those problems.

2.6.2 Effectiveness

We evaluate the effectiveness of DMon by studying (1) data locality problems detected by DMon,
(2) speedups provided by DMon-guided optimizations, (3) comparison of the speedups provided
by DMon-guided optimizations to the speedups provided by Google’s AutoFDO [65]—the state-
of-the-art profile-guided locality optimization approach, (4) whether DMon-guided optimizations
generalize across different program inputs, and (5) the overhead on compilation times due to
DMon-guided optimizations.
Locality issues detected by DMon. Table 2.2 summarizes the data locality problems that DMon
detects. For brevity, Table 2.2 omits benchmarks where less than 10% of the execution time is
bounded by locality problems, as these benchmarks could not benefit from eliminating locality
improvements. We also omit these benchmarks in our average performance numbers.

Additionally, Table 2.2 shows the most prominent level of the memory hierarchy for the locality
issues detected by selective profiling. Note that, in many cases, DRAM accesses constitute the
locality bottlenecks. This is expected, since the highest-latency memory access instructions are
served from DRAM. Finally, Table 2.2 also reports the program locations (as “file”: “line number”)
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Table 2.2: DMon’s detection results of locality problems.

Benchmark
Execution 

time 
(seconds)

Memory 
hierarchy 
bottleneck

Program location Optimization Automated 
fix?

canneal 71.8 L3, DRAM netlist_elem.cpp: 80 Direct Prefetching Yes
dedup 5.1 DRAM binheap.c: 93 Structure Merging Yes

fmm 18.8 DRAM interactions.C: 169
Structure Splitting No
Direct Prefetching Yes

ocean_cp 36.2 L2, L3, DRAM multi.C: 273 Direct Prefetching Yes
radiosity 95.8 L2, L3 rad_tools.C: 399 Structure Splitting Yes
fft 1.2 DRAM fft.C: 765 Direct Prefetching Yes
lu_ncb 47.8 L3, DRAM lu.C: 466 Direct Prefetching Yes
radix 6.1 L2, L3, DRAM radix.C: 624 Indirect Prefetching Yes
IS 1 L3, DRAM is.c: 392 Indirect Prefetching Yes
RandomAccess 607.1 DRAM randacc.c: 125 Indirect Prefetching Yes
HashJoin 2867.3 L3, DRAM npj2epb.c: 300 Indirect Prefetching Yes
kcstashtest 3.20 L2, L3, DRAM kcstashdb.h: 146 Direct Prefetching Yes
DIS 165.3 L2, L3, DRAM transitive.c: 107 Direct Prefetching Yes

Table 2.3: Speedup comparison
between DMon and compile-
time optimizations.

Benchmark
Speedup provided 

by compile-time 
optimizations (%)

Speedup 
provided by 

DMon (%)

canneal -7.90 1.07

dedup -18.90 3.65

fmm 2.83 2.68

ocean_cp -1.06 2.90

radiosity -7.14 11.21

fft 1.11 4.57

lu_ncb 3.49 19.40

radix 0.96 1.85

IS 30.52 30.29

RandomAccess 38.83 47.67

HashJoin 9.74 53.14

kcstashtest 37.41 32.39

DIS -0.28 7.93

that suffer the most from poor locality, along with the optimizations DMon recommends in each
case.

As shown, DMon successfully identifies locality problems and suggests appropriate optimiza-
tions in each case. In all cases but one (fmm), DMon applies optimizations automatically. For
fmm, while the direct prefetching is applied automatically, structure splitting cannot be applied
automatically. This is because, due to excessive type casts, the compile-time optimization cannot
exactly determine which program statements may access the modified structure, and therefore can-
not automatically update such statements. Nonetheless, since DMon points the developer to the
exact source of the locality issue in fmm, the fix can easily be applied manually with an 8 LOC
update. Moreover, structure splitting and merging can be applied automatically for other appli-
cations (dedup and radiosity) where the automatic transformation can identify and update all
statements pointing to the split and merged structures.
Speedup. Table 2.3 compares the speedup provided by the DMon-guided optimizations. Opti-
mizations guided by DMon provide up to 53.14% and on average 16.83% (8% median) speedup.
To study the impact of the targeted optimizations guided by selective profiling results, we also
report the speedup achieved by the same optimizations if they are applied indiscriminately (i.e., in
a non-targeted way), through purely-static compiler passes [261, 27].

As shown in Table 2.3, DMon-guided optimizations outperform compile-time optimizations in
10/13 benchmarks. Crucially, static optimizations hurt performance in 5/13 cases due to being
applied too broadly (with no runtime information), and therefore causing outcomes such as cache
pollution and code bloat. DMon-guided optimizations always improve the performance. In 3/13
benchmarks where static optimizations outperform DMon-guided optimizations, the margin is ≤
5% which can be reduced by reducing the incremental monitoring threshold (default, 10%) of
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Figure 2.10: Speedup comparison to AutoFDO (All σ < 0.09µ)
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Figure 2.11: Overhead comparison to AutoFDO (All σ < 0.07µ)

selective profiling.
Comparison against Google AutoFDO. We compare the speedup provided by DMon-guided
optimizations to that of Google’s AutoFDO [65], the state-of-the-art profile guided optimization
technique. AutoFDO has limited data locality optimization capabilities [256]; our comparison is
thus limited to five benchmarks for which AutoFDO can optimize locality.

We compare the speedup provided by DMon-guided optimizations to the speedup provided
by AutoFDO in Fig. 2.10. As shown, DMon-guided optimizations provide better speedup than
AutoFDO for all five benchmarks. This is because AutoFDO could only identify data locality
problems that can be solved by performing direct prefetching optimizations. By contrast, DMon
can identify other data locality issues that can be addressed by additional locality optimizations
(i.e., indirect prefetching, structure splitting, and structure merging).

For example, AutoFDO’s direct prefetching slows down the execution of IS by 15%, while
DMon-guided indirect prefetching provides a 30% speedup. Even for cases where both DMon and
AutoFDO suggest direct prefetching (e.g., ocean cp), DMon-guided optimizations outperform
AutoFDO, because, unlike AutoFDO, DMon provides hints as to where (e.g., L1, L2, or L3) the
cache line should be prefetched.
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Figure 2.12: DMon-generated optimization after observing input #4 generalizes to unseen inputs
(All σ < 0.01µ).

We compare selective profiling overhead against AutoFDO’s profiling overheads in Fig. 2.11.
For the 5 benchmarks in this study, selective profiling incurs 3.3% mean overhead, whereas Aut-
oFDO incurs 978% mean overhead, making the latter unsuitable for production use.
Generalization across program inputs. Profile-guided optimizations perform best when the ap-
plication is optimized with a profile that is representative of the application’s common behav-
ior [288, 365, 65]. DMon-guided fixes also generalize if the program shows similar data locality
behavior across different inputs. Therefore, we evaluate DMon’s generality across different pro-
gram inputs for 9 benchmarks. These program inputs vary widely both in terms of input size (from
megabytes to gigabytes) as well as execution times needed to process the input (from seconds to
minutes).

We report a detailed case study using the radiosity benchmark to determine how well the lo-
cality optimizations suggested by DMon generalize to different inputs. We choose this benchmark
because the fix suggested by DMon is structure splitting—an optimization that modifies the data
layout, and hence has the potential to be affected by changing program inputs. Fig. 2.12 shows the
speedup provided by DMon-guided optimizations for radiosity for various input sizes.

Here, for brevity, we refer to different input sizes using “#1” through “#6”. DMon only ob-
serves the execution for the randomly selected input #4. After observing input #4, DMon-guided
optimizations are applied. Then, all inputs are rerun with the newly-optimized program, with the
results of this run reported in Fig. 2.12. As shown, the optimization suggested by DMon gener-
alizes well to other inputs, providing considerable speedups in each case. Longer executions that
use larger inputs benefit more from optimizations.

Fig. 2.13 shows how DMon-guided optimizations improve data locality for unobserved inputs
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Figure 2.13: Input generalization (All σ < 0.04µ)

of several other benchmarks. Here, we include all benchmarks with at least 3 inputs. Across all
evaluation targets, we find that data locality behavior follows a similar trend for different inputs.
Hence, DMon’s fixes generalize to different inputs for these benchmarks.
Recompilation overhead. We evaluate the offline recompilation overhead while applying DMon-
guided optimizations, though this does not impact the production overhead. We perform this exper-
iment, because automated structure splitting and merging require pointer analysis, which is known
to be expensive [214]. However, the specific pointer analysis we employ is flow- and context-
insensitive and scales well [135].

Fig. 2.14 shows the offline compilation overhead incurred by our DMon-guided optimizations
on top of the baseline compilation overhead (clang). On average, DMon-guided optimizations
incur 72% more overhead. However, the optimization takes on average less than 7 seconds and
is no longer than 26 seconds. Even for large applications (e.g., PostgreSQL [348] code base has
over 1M LOC), the analysis takes 307 seconds. For an offline process, we believe these durations
are reasonable and on par with standard compiler transformations that use whole-program pointer
analysis. Moreover, this is a one-time compile-time overhead and will be amortized for long-
running applications (e.g., data-center applications that are compiled once but run on thousands of
servers for days). Finally, structure splitting and merging can be applied manually if the cost of
pointer analysis is deemed prohibitive.
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Figure 2.14: Overhead of DMon-guided optimizations compared to baseline compilation time
(σ < 0.1µ, log-scaled y).

2.6.3 Real-World Case Studies

We evaluate the applicability of selective profiling and DMon to large systems by studying (1)
speedups provided by DMon-guided optimizations on PostgreSQL [292]—one of the most popular
database systems, and (2) speedups achieved after manual repair of data locality problems detected
by selective profiling for just-in-time (JIT) compiled real-world applications from the Renaissance
benchmark suite [295].
PostgreSQL case study. We evaluate DMon’s ability to improve the locality (and thereby perfor-
mance) of PostgreSQL v11.2 [292], one of the most popular open-source database management
systems. For this study, we run the popular TPC-H [85] queries on a 1GB database stored in
PostgreSQL. We intentionally select the database size to fit in memory to ensure a memory-bound
workload (instead of disk-bound one), as the vast majority of real-world databases fit in mem-
ory [291, 253].

To evaluate DMon, we profile PostgreSQL with DMon while serving all 22 TPC-
H queries. For these queries, selective profiling incurs 1.2% average and 2.7% max-
imum overhead. For PostgreSQL, DMon identifies a locality problem in a function
(ExecParallelHashNextTuple) that accesses the members area and parallel state of
structure hashtable [131]. DMon identifies that this memory access is the primary reason for
poor data locality in 6 out of 22 TPC-H queries. Moreover, this memory access causes L2 and L3
cache misses for all 22 TPC-H queries. The cause of the locality problem in this case is pointer
chasing. Structure merging automatically repairs this problem and speeds up all 22 TPC-H queries,
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(All σ < 4.53% of µ).

as shown in Fig. 2.15. The L3 cache misses in PostgreSQL are reduced by up to 22.11% (3.05%
on average) and the latency of the 22 TPC-H queries are improved by up to 17.48% (6.64% on
average). We also test optimized PostgreSQL based on DMon-profile on larger databases (10
and 100GB), where DMon improves the latency of the 22 TPC-H queries by 4.68% on average.
For larger databases (10 and 100GB), the overall performance gain due to DMon’s optimizations
are comparatively less than (2% on average) that of smaller databases (1GB). That is because the
performance of PostgreSQL for larger databases are primarily bottlenecked by storage I/O costs.

These results are particularly encouraging, considering that PostgreSQL is one of the most
heavily-optimized codebases, having been improved by developers over the past 20 years. Most
database developers hand-tune their code using the TPC benchmarks as regression tests (i.e., their
performance is best on TPC). This fact makes it even more promising that DMon-guided opti-
mizations are able to improve the performance of these benchmark queries on a mature database
system. We reported this data locality issue to the developers of PostgreSQL (for the version
11.2), which they have fixed since then.
Renaissance case study. A key advantage of just-in-time (JIT) compilation over ahead-of-time
compilation (e.g., Java vs. C++) is that JIT can apply dynamic optimizations—including limited
data locality optimizations—using tiered compilation [245]. We compare selective profile-guided
data locality optimizations to tiered compilation from OpenJDK [374] on real-world applications
from the Renaissance suite [295]. For these applications, selective profiling incurs 2.2% average
and 2.6% maximum overhead.

We use selective profiling to detect data locality issues in three Renaissance applications (jdk-
concurrent fj-kmeans, apache-spark page-rank, and Scala stm-bench7). We omit other Re-
naissance benchmarks for which selective profiling does not find any data locality problems. Most
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Figure 2.16: Speedup provided by selective profile-guided optimizations for just-in-time (JIT)
compiled applications against tiered compilation (All σ < 7.68% of µ).

of the data locality issues found here corresponds to Java/Scala source code (we map binary in-
struction information back to Java code using perf-map-agent [170]) of Renaissance applications.
Since currently DMon’s optimizations only support C/C++ applications, we manually apply data
locality optimizations to these applications. In all cases, we modify ¡10 LOC.

As shown in Fig. 2.16, selective profile-guided optimizations provide on average 26% and up to
47% more speedup than tiered compilation. This demonstrates that selective profiling is effective
even for JIT-compiled applications.

Apart from these real-world case studies, we have also tested DMon on Memcached [117] and
RocksDB [106] with YCSB benchmarks [80]. For these two applications, the individual pieces
that make up the locality issues are relatively minor. Compiler-based data locality optimizations
typically add extra instructions and logic in the code, which only helps when there are many cache
misses causing slowdowns. For program statements responsible for a relatively small percentage
of all cache misses (less than 5%), applying these optimizations do not provide any speedup, as
the extra code and logic outweighs the benefits.

2.6.4 Sensitivity Analysis

We evaluate the impact of selective profiling’s different parameters on effectiveness (coverage) and
efficiency.
In-Production Monitoring Time-Slice. The granularity of the monitoring time-slice is a key de-
sign decision for selective profiling’s incremental monitoring scheme (§2.3). Small time-slices
allow selective profiling to identify locality problems for shorter-running applications, but also
trigger frequent transitions during incremental monitoring and result in higher monitoring over-
head. On the other hand, larger time-slices lower overhead but may fail to detect locality problems
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Figure 2.17: Effect of granularity of in-production time-slice on detection coverage and overhead
(All σ < 3.03% of µ).

for shorter-running programs.
Fig. 2.17 shows the impact of the time-slice granularity on selective profiling’s detection cover-

age (left y-axis) and overhead (right y-axis) for the benchmark, (lu ncb). We vary the time-slice
granularity from 10ms to 500ms (with 10ms increments) and measure selective profiling’s cover-
age in detecting data locality issues and the associated performance overhead.

As shown in Fig. 2.17, selective profiling has lower coverage and higher overhead for smaller
time-slices. As the time-slice granularity increases, selective profiling achieves greater coverage
with lower overhead. Selective profiling’s coverage is lower for smaller time-slices because selec-
tive profiling cannot monitor sufficient performance events in a small time slice. Beyond 100ms,
both the coverage (99.07% on average with standard deviation of 3%) and the overhead (2.04%
on average with standard deviation of 0.6%) lines flatten. Ergo, we set selective profiling’s default
time-slice as 100ms.
Incremental Monitoring Threshold. We vary the threshold of incremental monitoring (§2.3)
from 1% to 50% and measure the coverage of data locality issues selective profiling detects for
all 13 benchmarks in Table 2.2. 100% coverage is achieved when there is no incremental moni-
toring (i.e., DMon continuously monitors events at the all levels of the locality tree). As shown
in Fig. 2.18, selective profiling achieves greater than 80% coverage if the incremental monitor-
ing scheme uses a threshold of ¡29%. Nevertheless, we set the default-threshold as 10%, as this
threshold achieves 100% coverage.
In-Production Sampling Period. As described in §2.3, sampling period is a key design decision
for selective profiling. Fig. 2.19 shows the impact of the sampling period on the coverage of locality
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Figure 2.18: Effect of incremental monitoring threshold on the coverage of locality problems
selective profiling detects across all benchmarks.
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Figure 2.19: Effect of sampling period on the coverage of locality problems selective profiling
detects and the average overhead across all benchmarks (σ < 0.01µ).

issues selective profiling detects and its runtime overhead. We compute coverage with respect to
the baseline coverage of 100%, achievable via the lowest possible sampling period offered by
Linux perf (sampling every 100th event). A sampling period k on the x-axis means selective
profiling will record one out of each k events. The left y-axis represents the runtime overhead and
the right y-axis represents the coverage of locality issues selective profiling detects.

The overhead and coverage reported in Fig. 2.19 are arithmetic averages over all benchmarks. A
smaller sampling period increases the overhead of selective profiling, but also increases coverage.
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In our experiments, we chose a sampling period of 1000, which yields a high coverage of 97%
with 2.6% overhead on average in layer 4 of selective profiling.

2.7 Related Work

DMon finds data locality problems with low overhead using selective profiling, identifies the root
cause behind the problem, and guides optimizations to eliminate the problem. Existing profilers are
not able to determine the root causes of data locality problems without incurring a high overhead.
Profilers. General-purpose profilers [370, 379, 220] report program hotspots without identifying
the root cause behind performance problem. Consequently, recent studies propose specialized pro-
filers to locate root cause for specific performance issues. Parallel profilers [119, 140, 169, 172]
focus on critical path profiling to estimate potential performance gain [399, 88]. Synchronization
profilers [29, 90, 402, 409] identify lock contention. Similarly, we design selective profiling as a
specialized profiling technique for data locality. Selective profiling uses the APIs of a state-of-the-
art profiler, Linux perf, and targets a subset of the events explored as part of the Top-Down [395].
Our main contributions over perf and Top-Down are: (1) full automation in profiling, (2) low-
enough overhead for production deployment, (3) ability to automatically identify targeted opti-
mizations based on the underlying performance problem.
Profile-guided data locality optimizations. Profile-guided approaches collect execution traces
to identify where optimizations can be applied [70, 285, 232, 233, 183, 258, 199, 202]. State-
of-the-art techniques [65, 274, 278, 126, 279] primarily address instruction locality. While prior
work [311, 192, 204] also optimizes data locality, these solutions incur >10% profiling overhead.
Selective profiling, however, incurs only 1.36% overhead on average (§2.6.1).
Static locality optimizations. Static approaches use complex analysis techniques to find oppor-
tunities to apply locality-improving transformations [63, 251, 335, 178, 97, 393, 55, 223, 66].
Alas, these techniques use compile-time heuristics to apply transformations, which can lead to
sub-optimal speedups or even reductions in performance. To avoid these issues, we use applica-
tion profiles collected by selective profiling to apply optimizations in a targeted manner, leading
to better speedups and avoiding transformations which hurt performance.
Dynamic locality optimizations. There are several proposals for monitoring program execution
and modifying program binaries to improve locality on the fly [366, 342, 102, 262]. These tech-
niques require non-existent hardware support and incur high overhead (up to 6× [366]). Just-in-
time (JIT) compilation techniques [70, 145] provide limited data locality optimizations. On the
other hand, DMon works with existing hardware, incurs negligible overhead, and guides optimiza-
tions that provide better speedup (16.83% on average).
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2.8 Conclusion

Poor data locality is a major performance problem that hurt applications in production. Unfortu-
nately, existing data locality profilers are not efficient enough to be deployed in production. This
is limiting, since production profiles are difficult to replicate offline. We address this problem
by selective profiling, a technique capable of discovering data locality problems with negligible
overhead (on average 1.36%) in production. We also design DMon, which guides automatic and
manual data locality optimizations based on profiles generated using selective profiling. For an ex-
tensive set of real-world applications and widely-used benchmarks, DMon provides up to 53.14%
and on average 16.83% speedup for the cases where DMon applies targeted optimizations after
detecting significant data locality problems.
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CHAPTER 3

Huron: Hybrid False Sharing Detection and Repair

Writing efficient multithreaded code that can leverage the full parallelism of underlying hardware
is difficult. A key impediment is insidious cache contention issues, such as false sharing. False
sharing occurs when multiple threads from different cores access disjoint portions of the same
cache line, causing it to go back and forth between the caches of different cores and leading to
substantial slowdown.

Alas, existing techniques for detecting and repairing false sharing have limitations. On the one
hand, in-house (i.e., offline) techniques are limited to situations where falsely-shared data can be
determined statically, and are otherwise inaccurate. On the other hand, in-production (i.e., run-
time) techniques incur considerable overhead, as they constantly monitor a program to detect false
sharing. In-production repair techniques are also limited by the types of modifications they can
perform on the fly, and are therefore less effective.

We1 present Huron, a hybrid in-house/in-production false sharing detection and repair system.
Huron detects and repairs as much false sharing as it can in-house, and relies on its lightweight in-
production mechanism for remaining cases. The key idea behind Huron’s in-house false sharing re-
pair is to group together data that is accessed by the same set of threads, to shift falsely-shared data
to different cache lines. Huron’s in-house repair technique can generalize to previously-unobserved
inputs. Our evaluation shows that Huron can detect more false sharing bugs than all state-of-the-art
techniques, and with a lower overhead. Huron improves runtime performance by 3.82× on average
(up to 11×), which is 2.11-2.27× better than the state of the art.

3.1 Introduction

Over the past decade, pervasiveness of parallel hardware has boosted opportunities for improving
performance via concurrent software. Today, almost every computing platform—data centers,

1Some of the work in this chapter was performed in collaboration with Yifan Zhao, Gilles Pokam, Barzan Mozafari,
and Baris Kasikci [203]. Therefore, I use the “we” pronoun in this chapter to acknowledge their involvement in this
work.
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personal computers, mobile phones—relies heavily on multithreading to best utilize the underlying
hardware parallelism [20, 92, 74, 222, 36].

Alas, writing efficient, highly-multithreaded code is a challenge—subtle mistakes can drasti-
cally slow down performance. One prominent cause of this is cache contention, and true and false
sharing are two of the most common reasons of cache contention [104]. True sharing occurs when
multiple threads on different cores access overlapping bytes on the same cache line (e.g., multiple
threads accessing a shared lock object). False sharing, on the other hand, occurs when multiple
threads access disjoint bytes on the same cache line [408]. In both cases, to maintain cache co-
herency [336], concurrent accesses will cause the cache line to go back and forth between the
caches of different processor cores, thereby hurting performance.

In many cases, true sharing is intentional, i.e., it may not be possible to prevent threads from
sharing data on the same cache line. For example, developers intentionally share data among
threads in order to implement a necessary functionality, such as a lock in a threading library or
reference counters in a language runtime (e.g., Java’s Virtual Machine). Even when unintentional,
developers can use existing tools (e.g., profilers [146, 91, 231, 403]) to detect and fix true sharing.

False sharing, on the other hand, is more insidious. Developers may not be aware that threads
accessing different variables at the source code level will end up on the same cache line at run-
time. Therefore, false sharing is almost invariably unintentional: it is challenging for developers
to determine the presence of false sharing while programming.

Due to the challenging nature of false sharing—and its devastating impact on performance
(e.g., over 10× slowdown [52, 213])—there has been a lot of recent interest in automatically
detecting and repairing it. Existing techniques for false sharing detection rely on static analy-
sis [159, 75, 143], runtime monitoring [228, 408], compiler instrumentation [230], or hardware
performance counters [104, 239]. In contrast, false sharing repair techniques rely on operating
system support [228, 93], managed language runtime support [104], or custom in-memory data
structures [239].

Alas, existing false sharing detection and repair techniques have limitations. In-house ap-
proaches [159, 75] use static analysis and compiler transformations to detect and repair false shar-
ing, respectively. These techniques are therefore limited to eliminating false sharing for programs
where the size and location of data elements can be determined statically. As a result, more recent
false sharing detection and repair techniques work only in production. In-production approaches
overcome the challenges of in-house techniques, but at the expense of suboptimal speedups [239],
large runtime and memory overheads [228, 93, 230], narrow applicability [104, 93], and even
memory inconsistency [228] (see §3.6 for details).

In this paper, we show that the common perception that in-house mechanisms are limited in
terms of the types of programs for which they can detect and repair false sharing [228] is not
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necessarily correct. We show that it is possible to determine the effect of different program inputs
on a false sharing bug, even after observing the bug for a single input.

Relying on the above observation, we present Huron, a hybrid in-house/in-production false
sharing detection and repair system. For all false sharing bugs that can be detected in-house,
Huron’s novel algorithm generates a repair that can, in many cases, generalize to different program
inputs. For false sharing instances that cannot be detected in-house, we leverage an existing in-
production false sharing detection and repair mechanism [93], which we improved to only detect
previously-unobserved false sharing instances with greater efficiency (i.e., by caching the already-
detected ones). Our insight is that, in many cases, developers will have in-house test cases that
exercise the most performance-critical paths of their programs, which will allow our in-house false
sharing detection and repair to be effective.

Performing false sharing detection and repair in house allows us to devise a novel repair mech-
anism that works by transforming the memory layout, which would have been otherwise too ex-
pensive to use in production. The key insight behind our in-house false sharing repair is to group

together data that is accessed by the same set of threads, and thereby shift falsely-shared data to

different cache lines (i.e., eliminate false sharing).

Despite repairing most false sharing in-house, we empirically show that, in many cases, Huron’s
repairs generalize to different inputs (e.g., configuration parameters, thread counts, etc.), because
the relation between a program’s input and false sharing can usually be determined accurately
using Huron’s conservative static analysis. Huron can then use this relation to generate a fix that
generalizes to any input.

In addition to eliminating false sharing, Huron’s memory grouping improves spatial locality.
In summary, we make the following contributions:

• We present Huron, a hybrid in-house/in-production false sharing detection and repair technique.
Huron’s in-house technique uses a novel approach to eliminate false sharing by grouping together
memory that is accessed by the same set of threads.

• We show that Huron can generate false sharing fixes that generalize to different program inputs.
• We show that Huron eliminates false sharing using benchmarks and real programs, delivering up

to 11× (3.82× on average) speedup. Compared to the state of the art [228, 93], Huron delivers
up to 8× (2.11-2.27× average) larger speedup, on average 33.33% higher accuracy, and up to
197-377× (on average 27-59×) lower memory overhead.

3.2 Background and Challenges

In this section, we first discuss the key challenges faced by false sharing detection and repair
techniques. We then briefly describe how Huron addresses each of these challenges.
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3.2.1 Effectiveness

The effectiveness of a false sharing repair2 mechanism is the extent to which it can improve a
program’s performance.

In-production false sharing repair mechanisms modify the executable on the fly [228, 104, 93,
239], meaning they are limited in the extent of modifications they can perform and are less effective
than in-house repair, as we show in §3.5.4. These techniques reduce false sharing by either splitting
the falsely-shared data between different pages [228, 93] or by using special runtime support [239].

False sharing can be repaired more effectively if one can surgically modify a program’s code
and data at a fine granularity. A common and effective repair technique is to simply pad a cache
line with dummy data in order to move the falsely-shared data to separate cache lines [354]. In fact,
some in-production repair approches also use this technique [104]. However, these techniques are
only applicable to managed languages (e.g., Java), where programs pause at well-defined points
(e.g., garbage collection), thereby allowing for the code and memory layout to be restructured
efficiently.

Even when existing approaches are able to repair false sharing, we show in §3.5.4 that, in many
cases, they are much less effective than Huron (up to 11×). In particular, by performing most of
the false sharing repair in house, Huron achieves more speedup. Finally, since Huron does not rely
on dummy padding, it can even outperform manual false sharing repair in many cases (7 out of 9,
as we show in §3.5.4).

3.2.2 Efficiency

A false sharing detection and repair mechanism is considered efficient if its runtime performance
overhead is low.

In-production techniques monitor the program for false sharing instances to fix them on the fly,
thus, incurring considerable runtime overhead (e.g., up to 11× [228]).

The efficiency of in-production false sharing detection techniques is further hindered by the fact
that different program inputs may require detecting different instances of the same false sharing
bug and generating a new repair strategy, both of which are costly. Execution #1 in Fig. 3.1 has
a false sharing bug where threads t1 and t2 each access 60 bytes of data, and therefore share the
last 4 bytes of cache line #1. Execution #2 shows that this false sharing instance can be repaired
by padding each cache line with 4 bytes of data, which will force t1 and t2 to access their data on
separate cache lines. On the other hand, in Execution #3, which is the result of a different input,
each of the two threads accesses 30 bytes of disjoint data residing on a single cache line of 64
bytes. However, the 4-byte padding is not enough to shift the last 30 bytes to a separate cache line.

2Since detection is a binary prediction, the effectiveness of a detection mechanism is the same thing as its accuracy.
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Therefore, fixing the false sharing in this instance will require a 34-byte padding (or an additional
30 bytes), as shown in Execution #4.

To alleviate the overhead of in-production false sharing detection and repair, Huron performs as
much of its detection and repair in house as possible, e.g., by using test cases, etc. Consequently,
Huron’s in-production detection and repair is triggered less frequently than previous techniques
and incurs less overhead (see §3.5.9). Furthermore, in many cases, Huron can generate an input-
independent repair strategy that generalizes to multiple inputs (3.3.4).
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Figure 3.1: Input-dependent false sharing repair

3.2.3 Accuracy

The accuracy of a detection technique is the extent to which it can detect correct instances of false
sharing (true positives) without flagging incorrect instances (false positives).

In theory, it is possible to build an in-production false sharing detector that does not suffer
from false positives. However, since this is costly, all state-of-the-art false sharing detection strate-
gies resort to sampling hardware events [93, 104] that are indicative of false sharing (e.g., Intel
HITM [83]) or use approximate algorithms [228].

By combining in-house and in-production false sharing detection, Huron achieves the best of
both worlds. As shown in §3.5, Huron is not only more accurate than state-of-the-art detection
approaches, but it is also more efficient.
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3.3 Design

In this section, we describe the design of Huron, our hybrid in-house/in-production false sharing
detection and repair system. Huron first detects and repairs false sharing in house using developer
test cases. For false sharing instances that may not be detected or fixed in house (e.g., due to thread
nondeterminism or change of input), Huron uses its optimized version of an existing in-production
technique [93].

Fig. 3.2 shows various components in Huron’s design. Steps 1 – 4 occur in-house. In step
1 (§3.3.1), the source code of the target program is fed into an instrumentation pass, responsible

for instrumenting the program with false sharing detection code. In step 2 (§3.3.2), Huron’s
in-house detection component detects false sharing using the instrumentation from the previous
step. In step 3 , Huron saves metadata (e.g., program counter etc.) regarding the detected false
sharing instances in a cache that is used to speed up in-production detection and repair. In step 4

(§3.3.3), the detected false sharing instances are used to perform memory layout transformations.
The repair mechanism in this step groups together data that is accessed by the same set of threads,
while separating falsely-shared data into different cache lines. Another key sub-step of the memory
layout transformation is a special compiler pass (§3.3.4) that produces a generic false sharing repair
strategy that works for multiple program inputs.

Steps 5 – 8 (§3.3.5) occur in production. In step 5 , the program is deployed, while Huron
performs its in-production false sharing detection. Moreover, Huron uses a cache of already-
detected (in-house) false sharing instances – in step 6 – to reduce overhead. When Huron detects
a new false sharing instance in production, it fixes it by separating falsely-shared data into different
pages using an existing tool [93] in step 7 . Finally, in step 8 , Huron saves the false sharing
instances it detected in production, so that they can be repaired more effectively using the memory
layout transformations the next time the program is built and deployed.

3.3.1 Instrumentation Pass

Huron uses a compiler pass to instrument memory access and allocation instructions. Similar
to all prior work, Huron’s detection is geared towards detecting false sharing of global data and
dynamically-allocated data. Huron does not monitor stack data for false sharing. While it is
possible–although considered poor practice–for threads to share data through the stack, we have
not observed this in practice.

Huron instruments all heap and global memory accesses, which is necessary for accurate de-
tection. These include load and store instructions (including atomic load/store) as well as atomic
exchange instructions. At runtime, the instrumentation logs the target size and the memory address
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Figure 3.2: High-level design of Huron

of the load/store as well as the program counter of the instruction.
Huron also instruments all memory allocation instructions in order to collect the information

necessary for generating false sharing fixes that generalize beyond the inputs observed in house. In
particular, Huron’s instrumentation inserts external function calls that log the program counter of
the memory allocation instructions, as well as the start and end addresses of the allocated memory.

3.3.2 In-House False Sharing Detection

To ensure accurate detection, for each thread, Huron tracks how many bytes of data are accessed
on which cache lines. If multiple threads access disjoint data on the same cache line at any point,
Huron flags this as a false sharing instance.

The listing in Fig. 3.3 shows a simplified example–adapted from histogram [300]–that suf-
fers from false sharing when multiple threads spawned from main (thread creation code omitted
for brevity) concurrently execute calc hist, which increments thread-specific counters for pixel
values, red and blue (green omitted for brevity). Since pixel values vary from 0 to 255, there are
256 counters (of type int) for each color. Each thread executing the function iterates over a portion
of the image pixels (specified by pointers begin and end) to retrieve and increment each counter.
Fig. 3.4 shows the memory layout of an object of type global t for a two-thread execution, i.e.,
N THREAD = 2. The inputs array is aligned at the beginning of a cache line and spans 24 bytes.
Following inputs are the four subarrays red[0], red[1], blue[0], blue[1]. The subarrays
red[0] and blue[0] are accessed by thread 1 and the subarrays red[1] and blue[1] are ac-
cessed by thread 2. The dashed boxes denote the cache lines where subarrays both reside and cause
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1 struct global_t {
2 char *inputs[N_THREAD+1];
3 int red[N_THREAD][256];
4 int blue[N_THREAD][256];
5 };
6 global_t *global;
7 main(...) {
8 global = malloc(sizeof(global_t));
9 for(int i=0;i<N_THREAD;i++) {

10 for(int j=0;j<256;j++) {
11 global->red[i][j]=0;//Location 1
12 global->blue[i][j]=0;//Location 2
13 }
14 }
15 }
16 void calc_hist(int tid) {
17 char *begin=global->inputs[tid];
18 char *end=global->inputs[tid+1];
19 for (char *p=begin; p<end; p+=2) {
20 global->red[tid][*p]++;//Location 3
21 global->blue[tid][*(p+1)]++;//Location 4
22 }
23 }

Figure 3.3: Listing with false sharing that occurs when multiple threads execute the lines 20 and
21 in calc hist.
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false sharing when thread 1 and thread 2 access the lines from different cores.
To detect false sharing in house, Huron relies on testing workloads (e.g., unit tests, integration

test, stress tests). The rationale behind this design decision is that most of the time, developers
already have test cases that cover the most performance-critical paths of their programs, which
would allow Huron to detect and repair most false sharing bugs in-house. Those that are missed in
house are detected and repaired by Huron in production (see §3.3.5).

During in-house false sharing detection, Huron records and computes certain information to
account for dynamic program behaviors that vary across different runs in production. For in-
stance, falsely-shared data will likely reside in different memory locations each time the program
is run (e.g., due to dynamic memory allocation [76] and ASLR [323]). Therefore, Huron needs
to uniquely identify the location of false sharing during the detection phase to be able to repair
it during any in-production run. Furthermore, Huron needs to uniquely identify the instructions
involved in false sharing in order to modify their access offsets during repair. Finally, since Huron
repairs false sharing by grouping together memory locations that are accessed by the same set of
threads, it needs to track which threads access which part of the memory. To achieve these goals,
Huron tracks and computes the following information:
1. A unique identifier of each program location accessing memory. This is a 3-tuple (file

name, line number, execution count), which uniquely identifies the location even if
it is inside multiple loops. For brevity, in Fig. 3.5, step 1, we show the unique program locations
as 1, 2, 3, 4 which correspond to lines 11, 12, 20, and 21 in Fig. 3.3.

2. A unique identifier of each memory region, defined as a combination of a memory alloca-
tion site and an access offset range. The allocation site is a 3-tuple (file name, line

number, execution count) that uniquely identifies the allocation operation. In the ex-
ample of Fig. 3.3, this would be (histogram.c, line 8, 0). Huron converts the memory
addresses accessed by each instruction into a range of offsets with respect to the allocation site.
These offsets are calculated by subtracting the base address returned by the memory allocator
from the accessed memory address. In Fig. 3.5, step 1 , we omit the allocation site tuple and
only show the memory offset ranges for brevity.

3. A thread ID, as shown in the last column of step 1 , Fig. 3.5, where thread 0 is the main thread,
and threads 1 and 2 are the worker threads executing calc hist from Fig. 3.3.
These three pieces of information are used to produce the thread access bitmap (i.e., the set of

thread accesses) of each memory region (step 2 , Fig. 3.3). Using this bitmap, Huron identifies
and repairs false sharing (see §3.3.3).
Effect of Detection Window Granularity. Huron considers the entire execution of a program as
a single time window when detecting false sharing instances. It is therefore possible for Huron
to miss certain instances of false sharing (i.e., incur false negatives). To see why, consider two
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disjoint time windows w1 and w2, where the entire execution runs for w1 + w2. Also consider two
threads t1 and t2 accessing a 64 byte cache line l. Let’s assume that in time window w1, t1 accesses
the first 32 bytes of l, and t2 accesses the last 32 bytes. Therefore in w1, t1 and t2 are involved in
false sharing. Now let’s assume that in time window w2, t1 accesses the last 32 bytes of l, and t2

accesses the first 32 bytes. Similarly, in w2, t1 and t2 are involved in false sharing. However, if we
consider the entire execution window w1+w2, since both t1 and t2 access the first and last 32 bytes
of l, they are truly sharing the cache line, hence there is no false sharing. Although it might seem
useful to consider a fine-grained time window based on this example, this approach also suffers
from false negatives, because it may not be possible to observe accesses involved in false sharing
using a short window. Huron allows a developer to specify a detection time window. In §3.5.11,
we show that using the entire exection as a single time window for false sharing detection is more
effective.

3.3.3 Memory Layout Transformation Pass

We now describe how Huron repairs false sharing, assuming that program inputs and thread counts
do not alter the false sharing behavior. We describe how Huron accounts for different inputs and
thread counts in the next section.

Algorithm 1 describes a simplified version of Huron’s memory layout transformation technique.
The function TRANSFORM-LAYOUT takes a list of memory bytes M as input. Each byte m ∈ M

has an attribute m.bitmap denoting the IDs of threads which accessed this memory byte during
in-house false sharing detection. The algorithm populates Q, which maps a thread ID bitmap (i.e.,
a set of thread accesses) to a list of all the memory bytes accessed by the threads described via the
bitmap (Line 1-5). For each memory byte m accessed by the same set of threads b, the algorithm
sequentially assigns an offset (1 byte) in memory. The hashmap T keeps track of each new offset.
After all memory bytes m with the thread access bitmap b are assigned an offset, the algorithm
computes the new offset i to be the next multiple of cache line size CLSIZE (Line 13). This
ensures that the next byte with a different thread access bitmap will be placed in a different cache
line. Since false sharing occurs among memory accesses with different corresponding bitmaps, the
algorithm eliminates any potential false sharing.

For example, step 2 in Fig. 3.5 shows how the threads from the example in Fig. 3.3 access
various memory regions. The thread access bitmap in step 2 shows where false sharing occurs
with dashed boxes. Since memory regions [24-1048) and [1048-2072) share a cache line between
offsets [1024-1098), and are accessed by different threads (i.e, with different thread bitmaps, where
011 ̸= 101), Huron detects false sharing. Huron then groups together memory regions with the
same thread access bitmap as shown in step 3 . Finally, Huron restructures the memory layout by
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Figure 3.5: In-house false sharing repair via memory layout transformations for the example in
Fig. 3.3. Memory region [x− y) denotes bytes starting from x (inclusive) up to byte y (exclusive).
For simplicity, we have omitted access to memory region [0 − 24), i.e., variable inputs. Cache
line size is 64 bytes.
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Algorithm 1 False sharing repair via memory layout transformation
TRANSFORM-LAYOUT(M )

1: Q← Hashtable()
2: for each m ∈M do
3: if Q[m.bitmap] = NIL then
4: Q[m.bitmap]← List()
5: Q[m.bitmap].insert(m)
6: i← 0
7: T ← Hashtable()
8: for each b ∈ Q.keys do
9: for each m ∈ Q[b] do

10: T [m]← i
11: i← i+ 1

12: if i%CLSIZE ̸= 0 then
13: i← i+ (CLSIZE −(i%CLSIZE))

14: return T

placing memory regions in consecutive cache lines, as shown in step 4 .
It is still possible for false sharing to occur between the end of a group of memory regions and

the start of the next group. For instance, in Fig. 3.5, step 4 , since the transformed groups share
a cache line, Huron inserts 40 bytes of padding between the ranges [24-2072) and [2112-4160).
As opposed to manual techniques that introduce dummy padding, Huron uses existing data in the
program (e.g., from the heap or the stack), thereby outperforming manual false sharing repair in
most cases, as we show in §3.5.3.

Then, memory layout transformation updates instructions to access memory in the new layout.
Huron uses two techniques for this in step 5 : (1) loop unrolling: For some program locations,
Huron needs to insert different memory access offsets for instructions for different iterations of a
loop. For instance, the offsets that Huron needs to insert for program location 1 in Fig. 3.3 are
0 (iteration, i=0) and 1064 (iteration, i=1). (2) function cloning: For some program locations,
Huron needs to add different offsets for different threads (example, location 3 and 4 in Fig. 3.5).
Hence, Huron clones the function containing the program location and adds different offsets for
each clone. For instance, calc hist function contains the program location 3 where the offsets
are 0 (Thread 1) and 1064 (Thread 2). As we explain in §3.3.4, Huron can adjust the offsets to
account for thread counts in different executions.

Huron has to ensure correct and unmodified memory access semantics for the program after
memory layout transformations. For this, Huron uses a complete, interprocedural, inclusion-based
pointer analysis [30] to determine all the instructions that can access the modified layout. Huron
instruments these instructions to (1) check whether they are accessing the new layout at runtime,

47



and if so, (2) adjust the memory access offsets of the instructions accordingly. Alas, this analysis
can have false positives, i.e., instructions that Huron incorrectly considers as accessing the new
layout. A large number of false positives will result in a large number of runtime checks, which
might nullify Huron’s performance improvements. To alleviate this, Huron only fixes false sharing
if an instruction that needs to be modified took less than 1% of the total execution time during
detection.

3.3.4 Input-Independent False Sharing Repair

In many cases, Huron can generalize its false sharing repair strategy to different program inputs
after having detected false sharing for a single input. For such repairs, Huron does not need to rely
on in-production false sharing detection and repair. Huron performs a static range analysis pass
during layout transformation to compute the maximal range of memory that a given instruction
can access, regardless of the program input. Consequently, Huron generates a memory layout
transformation that will work for different inputs.

Algorithm 2 describes Huron’s static range analysis, which leverages the type system to deter-
mine whether an operand of a memory access instruction (e.g., store, load, atomic store, etc.) is an
array type, and hence has fixed size. If that is the case, Huron determines the maximum memory
range that the instruction can access based on its size.

FINDMAXRANGE takes in as input an operand Ptr of a memory access instruction. The al-
gorithm computes and returns the maximum range that the instruction can access by iterating over
all aliases, a, of Ptr (Line 4). If the alias, a, is a function argument (Line 5), then all calls to
this function, f invoked with argument x, are analyzed to determine the maximum range of Ptr
(Line 9). All the ranges computed in each function are appended to the list ranges (Line 10).
The algorithm then returns the widest possible range (Line 11). If a is found to be allocated via
a malloc call (Line 12), then the algorithm returns [S, S+R] as the maximum range. Finally,
if a is found to be derived using pointer arithmetic (Line 14), then S is recalculated based on a’s
base pointer, base. If base is of array type, then R is multiplied by the number of elements in the
array. If Ptr is found to be none of function argument, malloc call, or pointer arithmetic, then
the algorithm will return an empty range (i.e., the fix can not be input-independent).

To understand how Huron’s input range identification pass works, consider the statement
global->red[tid][*p]++; on line 20 in Fig. 3.3, which increments a counter of how many
pixels of an input image have matching red values. Since it is possible for an input to not
contain all the 256 red levels, it is possible that during in-house false sharing detection, only
red[0][30]-red[0][56] and red[0][95]-red[0][197] are accessed (assuming tid =

0).
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Algorithm 2 Maximal memory range detection for input-independent repair
FINDMAXRANGE(Ptr)

1: R← size of element type of Ptr ▷ size of the range
2: S ← 0 ▷ starting offset of the range
3: while True do
4: a← next alias of Ptr
5: if a is a function argument then
6: ranges← []
7: f ← function of a
8: for each call to function f invoked with argument x do
9: for each range (l, r) in FINDMAXRANGE(x)) do

10: append (l + S, r + S +R) to ranges

11: return [FINDMIN(ranges), FINDMAX(ranges)]
12: if a is a call to malloc then
13: return [(S, S +R)]

14: if a is derived from pointer arithmetic then
15: base← base pointer of a
16: baseT ← type of base
17: if baseT is an array type then
18: n← number of elements in baseT
19: R← R× n

20: Ptr ← base
21: else
22: return []
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Without input-independent false sharing repair, Huron would only perform memory lay-
out transformations in this range and fail to repair false sharing for the rest of the ar-
ray. However, with input-independent analysis, Huron discovers the user code can access
red[0][0]-red[0][255], and generates a fix for the entire range.

If Huron statically determines a linear relationship between thread counts and the offsets in the
transformed layout, it will parametrize the offset to be a function of the thread count. This allows
Huron’s fixes to generalize to different thread counts. For instance, the sub-array blue[0][256]

(of Fig 3.3) has a parametrized offset function (-(N THREAD-1)*1024), allowing the offset to
be changed from (−1024) to (−2048) when N THREAD changes from 2 to 3.

Huron can generate input-independent false sharing repair for many programs, as we show in
§3.5.5. However, this is not always possible. For example, the type information may be lost due to
excessive pointer casts, or certain ranges may not be determined statically. In such cases, it relies
on in-production false sharing detection and repair.

3.3.5 In-Production False Sharing Detection and Repair

In production, Huron deploys the program that was repaired in house and leverages a modified
version of an existing in-production false sharing detection and repair tool, namely TMI [93]. In a
nutshell, TMI works by monitoring hardware performance counters (i.e, HITM), which was shown
in prior work [239, 93] to be indicative of false sharing.

A surge in HITM counts triggers TMI’s false sharing detection. Huron’s metadata cache of
previously-detected false sharing instances (containing program locations, memory offsets, type
of false sharing etc.) speeds detection up. We show in §3.5.9 that Huron’s modified in-production
false sharing detection technique is on average 2.1× faster than TMI.

If Huron discovers a false sharing bug in production, it uses TMI to create a temporary fix
by converting threads to processes. However, as we demonstrate in our evaluation (§3.5), such
a repair mechanism may not be effective or efficient. More specifically, TMI mistakenly treats
true sharing as false sharing for a number of benchmarks and moves truly-shared data to different
pages to ”repair” this mistakenly-detected (i.e., false positive) false sharing instance. Even though
TMI employs a memory-page-merging technique that ensures such false positives do not impact
correctness (§2.2 of [93]), TMI’s ”repair” degrades performance due to the expensive nature of the
merging technique. To overcome these challenges, Huron keeps a record of the detected false shar-
ing instance for in-house repair, which it will attempt next time the program is built and deployed
in production.
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3.4 Implementation

We implemented Huron in 5,682 lines of C++ code. Huron uses LLVM [215] for instrumentation,
analysis, and memory layout transformations. The static range analysis pass (§3.3.4) leverages the
language type system. To infer the type of an object pointed to by a pointer, the pass traces the
pointer back to the instruction where the memory for the object was allocated. Huron does this by
recursively iterating over the use-def chain that leads up to the allocation site. We also integrated
an existing Andersen-style alias analysis [67] into Huron for its input-independent repair pass.

Huron’s in-house runtime tracks thread creations, memory allocations, and loads/stores using
the instrumentation code as well as a shim library that intercepts and logs memory allocation and
thread creation operations (i.e., via LD PRELOAD). Huron is open-sourced [103].

3.5 Evaluation

In this section, we answer several key questions:
• Accuracy: How accurately can Huron detect false sharing compared to the state of the art

(§3.5.2)?
• Effectiveness: Can Huron repair more false sharing bugs than state-of-the-art tools? (§3.5.3)?

How does the speedup provided by Huron compare to manual and state-of-the-art false sharing
repair tools’ speedup (§3.5.4)? How effective is Huron’s input-independent false sharing repair
(§3.5.5)? How the quality of in-house test cases affects Huron’s effectiveness (§3.5.6)?

• Efficiency: What is the overhead of Huron’s repair mechanism compared to the state of the
art (§3.5.7)? How much overhead does Huron’s in-house detection incur (§3.5.8)? How bene-
ficial is Huron’s false sharing cache in speeding up in-production detection (§3.5.9)? To what
extent Huron’s in-house component improves the efficiency of Huron’s in-production compo-
nent (§3.5.10)? How the false sharing detection time window granularity affects Huron’s repair
speedup (§3.5.11)?

3.5.1 Experimental Setup

Software. All experiments are conducted in Ubuntu 16.04, with Linux kernel version 4.4.0-127-
generic using LLVM’s front-end compiler clang 7 [215].
Hardware. We use a 32-core Intel E5-2683 machine with 128 GB of RAM.
Baselines. We compare Huron to the following state-of-the-art techniques:
1. Sheriff [228] is an in-production framework consisting of two tools: Sheriff-Detect and Sheriff-

Protect. Sheriff-Detect tracks updates to a cache line by multiple threads to detect false shar-
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ing. Sheriff-Protect repairs false sharing by transforming threads into processes since, unlike
threads, processes do not share the same address space.

2. TMI [93] is another in-production detection and repair mechanism. TMI monitors the surge
in hardware events (i.e., Intel HITM) to trigger its false sharing detection algorithm. TMI also
uses thread-to-process transformation to eliminate false sharing.

3. Manual is a baseline where a human programmer repairs false sharing using dummy data
padding to separate falsely-shared data onto different cache lines. Although laborious, manual
repair can provide significant speedups. In fact, state-of-the-art tools—i.e., Sheriff and TMI—
consider the speedups provided by manual repair an upper bound (which we show in §3.5.4 not
to be the case).

We do not include in-house false sharing detection and repair baselines in our evaluation, since
these techniques [159, 75, 358] are targeted at specific applications and do not work well for the
range of benchmarks we look at. For example, Jeremiassen et. al. [159] use an analysis that does
not support complex access patterns, like accessing an array using values from another array as
indices, just like histogram does.
Benchmarks. We use well-known benchmarks from the popular Phoenix [300] and PARSEC [50]
suites, which have been used by many previous techniques for false sharing detection and re-
pair [230, 228, 408, 269, 239, 229, 93]. We omit Parsec and Phoenix benchmarks that do not
suffer from false sharing. We verified that these benchmarks do not contain false sharing by run-
ning all their available workloads with Huron’s detector. We also evaluate Huron on three other
benchmarks, boost spinlock (from C++ boost [252] library), ref count (adapted from Java’s
reference counting implementation [96]), and histogramFS (a modified version of histogram
from the Phoenix [300] suite), which were all previously used by TMI [93]. We note that boost -

spinlock and ref count are from real world applications.
Aside from these benchmarks, we create and use two additional microbenchmarks,

lockless writer and locked writer, that highlight the pros and cons of each false shar-
ing repair technique. Both microbenchmarks incur false sharing due to multiple writer threads
writing to the same cache line. As the name implies, lockless writer does not rely on any
synchronization instructions, while locked writer uses locks for synchronization between the
write operations.

We also use five microbenchmarks with true sharing (i.e., multiple threads accessing over-
lapping data on the same cache line) when evaluating Huron’s accuracy. In particular, state-of-
the-art techniques suffer from accuracy issues and can incorrectly detect true sharing instances
as false sharing bugs. The single reader single writer, multiple readers single

writer, multiple readers multiple writers all read and write truly shared data to/from
single/multiple threads. The atomic writers concurrently writes data from multiple threads us-
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ing C++ atomic primitives [386] and non-atomic writers simply performs concurrent writes.
Metrics. Speedups in all the figures are relative to the execution time of the original benchmark.

We report all performance data as an average of 25 runs.

3.5.2 Accuracy of False Sharing Detection

Table 3.1 shows detection results for Huron, TMI and Sheriff. Here, TP stands for true positive, i.e.,
correctly flagged real false sharing bugs; FP stands for false positive, i.e., a true sharing instance
incorrectly flagged as a false sharing bug; FN stands for false negative, i.e., a real false sharing bug
that a detector missed; and finally TN stands for true negative, a correct report of non-existence of
false sharing.

Table 3.1 also reports the accuracy of each technique as (TP +TN)/(TP +TN +FP +FN).
We acknowledge that each technique can incur additional false negatives if the programs were run
with different inputs (e.g., besides all the existing test cases and workloads we used). Since such
false negatives would impact all the techniques in the same way, we report accuracy numbers based
on the executions we observe. In the observed executions, Huron’s accuracy is 100%, whereas the
accuracy of TMI and Sheriff is 66.67%.

Out of 21 benchmarks, Sheriff and TMI mistakenly detect true sharing as false sharing (i.e., FP)
in 4 and 5 benchmarks, respectively. Huron’s in-house detection does not incur false positives be-
cause of its fine-grained (i.e., cache-level) full memory tracing, as opposed to coarse-grained (e.g.,
page-level) and sampling-based detection employed by Sheriff or TMI. Huron’s in-production false
sharing detection can temporarily incur a false positive since it relies on TMI. However, Huron
eliminates this false positive for subsequent builds of the program during its in-house detection
and repair.

Out of 21 benchmarks, Sheriff and TMI fail to detect false sharing (i.e., FN) in 3 and 2 bench-
marks, respectively. Sheriff suffers from false negatives due to reader-writer false sharing, as its
detection mechanism compares only writes by different threads within a cache line. TMI’s false
negatives are due to inaccurate hardware events and sampling.

The detection inaccuracy of Sheriff and TMI has a substantial negative impact on the speedup
they provide. We compute speedups for all the cases where Huron correctly detects and fixes
a false sharing bug (i.e., TP) and Sheriff and TMI miss (i.e., histogram, boost spinlock,

locked writer for Sheriff and reverse index, word count for TMI). For these bench-
marks, Huron provides up to 5.3× and on average 3.6× greater speedup than Sheriff, and up
to 4.3× and on average 2.6× greater speedup than TMI.
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Table 3.1: False sharing detection in existing benchmarks.

Benchmark Sheriff 
Verdict

TMI 
Verdict

Huron 
Verdict

histogram FN TP TP
histogramFS TP TP TP
linear_regression TP TP TP
reverse_index TP FN TP
string_match TP TP TP
lu_ncb TP TP TP
word_count TP FN TP
boost_spinlock FN TP TP
lockless_writer TP TP TP
locked_writer FN TP TP
ref_count TP TP TP
Volrend TN TN TN
radix TN TN TN
ocean TN TN TN
fft TN TN TN
canneal FP TN TN
Single reader   
single writer TN FP TN

Multiple readers 
single writer TN FP TN

Multiple readers 
multiple writers FP FP TN

Atomic writers FP FP TN
Non-atomic 
writers FP FP TN

Accuracy 66.67% 66.67% 100.00%
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3.5.3 Ability to Repair False Sharing Bugs

As shown in Table 3.1, Huron successfully detects and eliminates false sharing in all 11 bench-
marks (cells marked True Positive–TP–in Table 3.1). On the other hand, not only Sheriff detects
fewer false sharing instances (i.e., 8), it is also only able to repair 5 of them. Sheriff’s repair fails
for 3 out of 8 cases (boost spinlock, locked writer, ref count) because, to preserve cor-
rectness, it is unable to repair false sharing due to synchronization primitives. Similarly, TMI only
detects 9 false sharing bugs, out of which it repairs 7. The detection fails in 2 out of the 9 cases
(i.e., lockless writer, locked writer), because TMI causes the program to hang.

3.5.4 Effectiveness Comparison to State of the Art

We compare Huron’s effectiveness (i.e., the speedup it provides) to the state
of the art only for the benchmarks where TMI and Sheriff are able to detect
and repair false sharing bugs. These are: linear regression, histogram,
histogramFS, string match, lu ncb, boost spinlock, lockless writer,
locked writer, and ref count.

Fig. 3.6 compares the speedup that Huron and Sheriff provide. Huron’s speedup outperforms
Sheriff’s by up to 7.96× and on average 2.72×. Huron performs better than Sheriff for benchmarks
with frequent synchronization, where Sheriff’s repair mechanism incurs high overhead.
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Figure 3.6: Speedup comparison to Sheriff [228]. All standard deviations are less than 1.62%.

Fig. 3.7 compares the speedup that Huron and TMI provide. Huron outperforms TMI by up to
5.7× and on average 2.1×. Similar to Sheriff, TMI’s repair is also not as efficient as Huron’s for
benchmarks with heavy synchronization.Huron is more effective than Sheriff and TMI largely due
to its novel in-house repair technique.

Finally, we compare Huron with manual false sharing repair. Interestingly, as shown in Fig. 3.8,
Huron outperforms manual repair in 7 out of 9 benchmarks–albeit with a small margin of up to
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Figure 3.7: Speedup comparison to TMI [93]. All standard deviations are less than 3.2%.

8%. This is because, as explained in §3.3.3, when Huron needs to insert padding, it uses existing
program data rather than dummy padding that manual repair uses.
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Figure 3.8: Speedup comparison to manual repair. All standard deviations are less than 0.71%.

In summary, compared to the state of the art [228, 93], Huron provides up to 8× (2.11-2.27×
average) more speedup.

3.5.5 Effectiveness of Huron’s Input-Independent Repair

In this section, we investigate the effectiveness of Huron in generating input-independent repairs
based on false sharing bugs detected in house. To illustrate this, we do a detailed analysis of
histogram, which we have discussed previously in detail as part of the example in Fig. 3.3. The
histogram benchmark experiences false sharing that is input-dependent. Specifically, the arrays
red and blue (and green in the actual program) are involved in input-dependent false sharing.

Fig. 3.9 shows the speedup provided by Huron for histogram’s various input images, namely
“small”, “medium”, and “large.”. In house, Huron detects false sharing using the “small” input
image and generates an input-independent repair that works for the other images in production.
For “small”, “medium”, and “large” input images, the speedup varies between 1.16 − 1.21×.

56



	1
	2
	3
	4
	5
	6

small medium large false 	0
	500
	1000
	1500
	2000

Sp
ee
du

p

In
pu

t	i
m
ag

e
si
ze
	(i
n	
M
B)

1.16 1.16 1.21

4.79

100
399

1342 1431

Figure 3.9: Huron’ speedup for different input images of histogram. Huron generates an input-
independent repair for the “small” input. All standard deviations are less than 3.47%.

However, the speedup is 4.79× for the “false” input image. The “false” image (generated from a
script provided by the authors of TMI [93]) is actually used as input for histogramFS. The pixel
values of the image trigger a lot of false sharing and therefore Huron delivers considerable speedup
for this benchmark.

3.5.6 Impact of Test Cases on Effectiveness

In this section, we evaluate the impact of test cases on Huron’s effectiveness. For this, we initially
only rely on Huron’s in-production false sharing repair component to simulate a worst case sce-
nario, where Huron does not have access to any test cases in house. Using these results, Huron then
repairs all the false sharing instances in house. Fig. 3.10 shows the results. For all the benchmarks,
Huron’s in-production detection and repair provides speedup that is about the same as TMI’s. This
is expected since Huron relies on TMI, with the added facility to log metadata that Huron uses to
subsequently repair false sharing instances in house. Huron’s in-house repair that uses the feedback
it receives from its in production component provides greater speedup than TMI.

3.5.7 False Sharing Repair Overhead

We now first evaluate the memory overhead of false sharing repair for Huron, TMI, and Sheriff.
We then study the effect of these tools’ memory usage on the speedup they provide.

We compare the memory overhead of Huron to the memory overhead of Sheriff and TMI in
Fig. 3.11 and Fig. 3.12, respectively. The overheads in both plots are relative to the memory usage
of the unmodified binaries. Huron uses up to 377× and on average 59× less memory than Sheriff.
We also observe that on average, Huron’s memory overhead is less than 8%. Only for lockless -

writer, Huron incurs a high (60%) memory overhead. This happens because there is not enough
data that is being accessed by the same set of threads in this program. Consequently, Huron has
to rely on padding to eliminate false sharing, which incurs overhead. Sheriff, on the other hand,
uses significantly more memory than the original benchmark, as it transforms each thread into a
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Figure 3.10: Huron’s in-house repair that uses the feedback received from its in production com-
ponent provides greater speedup than TMI.

process (which creates multiple copies of many pages). TMI has a lower memory overhead than
Sheriff, thanks to its various optimizations (e.g., thread private memory). However, TMI also uses
a few auxiliary buffers to accelerate the detection and elimination of false sharing. Nevertheless,
Huron’s memory overhead is on average 27× (and up to 197×) lower than TMI. Although Huron’s
in-production repair leverages TMI, Huron avoids much of TMI’s overhead by fixing most false
sharing instances in house.
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Figure 3.11: Memory overhead comparison to Sheriff. The y-axis is log scale.

The high memory overhead of TMI and Sheriff also has a significant impact on the speedup
that they can provide. Specifically, if the underlying system’s memory is constrained, a program
with a large memory footprint will not enjoy the same speedups that Huron can provide.
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Figure 3.12: Memory overhead comparison to TMI. The y-axis is log scale.

To evaluate the effect of memory pressure, we vary the per-process memory limit from 50 to
25 megabytes and measure the normalized speedup relative to the original benchmark for Sheriff,
TMI, and Huron. As shown in Fig. 3.13, Huron provides up to 41% and on average 15% more
speedup than Sheriff. Similarly, Huron provides up to 214% and on average 49% more speedup
than TMI, as shown in Fig. 3.14.
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Figure 3.13: Huron achieves up to 41% (15% on average) higher speedup than Sheriff when we
limit the memory for the lu ncb benchmark. All standard deviations are less than 0.59%.

	0
	1
	2
	3

Unlimited 50 45 40 35 30 25

Sp
ee

du
p

Memory	limit	for	the	program	(Megabytes)

TMI 		Huron

1.
25 1.
40

1.
04 1.
22

1.
06 1.
29

1.
06 1.
28

1.
11 1.
29

0.
76 1.

05

0.
68

2.
14

Figure 3.14: Huron achieves up to 214% (49% average) higher speedup than TMI when we limit
the memory for the lu ncb benchmark. All standard deviations are less than 4.16%.

3.5.8 Overhead of Huron’s In-House Detection

The key advantage of in-house detection is that it is an offline process, and hence does not affect
the program execution time in production. However, we still measure the overhead of Huron’s
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in-house detection as the time added to the execution of the user program, i.e., the execution
time of the instrumented binary minus that of the unmodified one. In this experiment, we use
the same inputs as in §3.5.2. As shown in Fig. 3.15, this overhead is on average less than two
minutes (115 seconds) and is no more than 257 seconds. These numbers are quite reasonable for
an offline process and on par with the offline overhead of state-of-the-art memory performance
profilers [257, 82, 81, 271, 237].

3.5.9 Effect of False Sharing Cache on In-Production Overhead

In this section, we evaluate how the cache of false sharing bugs detected in house reduces the over-
head of Huron’s in-production false sharing detection. Without Huron’s cache, the TMI detector
(which Huron relies on) does a lot of extra work to determine (1) the program counter of where
false sharing occurs, (2) whether there is a read-write or write-write sharing, (3) whether there is
true or false sharing.

As shown in Fig. 3.16, Huron’s cache speeds up in-production detection up to 27.1× and on
average by 11.3×. Note that for 3 out of 9 benchmarks (linear regression, string match,
and lu ncb) evaluated in § 3.5.4, speedups are not shown, because TMI removes false sharing
from these programs using its allocator even before false sharing instances occur in production
(i.e., the cache is never used).

Finally, we measure the impact of caching on memory. In particular, we determine that Huron’s
cache takes 512KB in the worst case and 91.21KB on average. Considering that the memory over-
head of Huron is considerably lower than state-of-the-art tools (on average 27-59×), we consider
the modest cache overhead to be acceptable.

3.5.10 Contributions of In-House and In-Production Repair Techniques

We now quantify the extent to which Huron’s in-house and in-production repair techniques con-
tribute to the overall efficiency of Huron. For this, we use a benchmark with 10 false sharing
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instances. We then vary the number of false sharing instances repaired in house from 1 to 10.
Since Huron’s in-production repair converts threads into processes, it eliminates all the remaining
false sharing bugs at once.

Fig. 3.18 shows our results. The in-house speedups are due to Huron’s in-house repair only,
and the hybrid speedups are due to Huron’s hybrid in-house/in-production repair. Both in-house
and hybrid speedups increase with an increase in the number of false sharing instances repaired
in house. The contribution of the in-production component is the difference between the hybrid

and the in-house speedup values. In-house repair contributes more to the overall speedup than
in-production repair. For instance, when five of the false sharing bugs are fixed in house with the
other five repaired in production, the in-house component provides 39.3% of the speedup, whereas
the in-production component provides 6.8% of the speedup. This trend is stable across data points.
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Figure 3.18: Huron’s provides greater performance speedup as more false sharing instances are
repaired in house. All standard deviations are less than 3.62%.

3.5.11 Effect of Detection Time Window Granularity on Repair Speedup

As discussed in §3.3.2, Huron’s false sharing detection time window granularity can impact how
many false sharing bugs it detects and fixes, and thus the speedup it provides. In this section, we
evaluate the effect of the detection time window granularity on the speedup provided by Huron’s
repair.

Fig. 3.17 shows the speedup provided by Huron for the lockless writer benchmark under
different window granularities. The probability of missing the detection of a false sharing bug
due to a large time window increases with the number of falsely-shared cache lines. We choose
lockless writer, which we know (via manual inspection of the small code base) suffers from
false sharing in exactly 1024 cache lines, the largest number across all benchmarks.

The speedup provided by Huron increases with a larger window size. This is because a small
window limits Huron’s ability to detect out-of-window memory accesses that are involved in false
sharing with in-window memory accesses. Therefore, Huron misses many false sharing instances
for smaller window sizes and the speedup after repair is sub-optimal. As the window size increases,
so does the number of detected false sharing instances and the ensuing speedup.

61



3.6 Related Work

There is a substantial amount of related work that has studied the detection and elimination of false
sharing. In many cases, existing work attempts to detect and repair false sharing through dynamic
analysis [408, 104]. Some approaches also rely on heuristics to make detection and repair more
scalable and efficient [246, 71, 79, 125]. Approaches based on static analysis can also detect and
eliminate false sharing by reorganizing a program’s code [32, 191, 46]. Alas, static false sharing
repair [177, 75, 159] was shown to be mostly effective in well-defined use cases [228]. Huron
combines the best of both worlds to achieve good accuracy, effectiveness, and efficiency.

Simulators and profilers can be used to detect false sharing. For instance, [312] employs full
system simulation using Simics [241] to identify cache miss causes. Other tools [225, 132] detect
false sharing by instrumenting memory accesses using Intel Pin [237] or Valgrind [271]. Preda-
tor [230] uses LLVM [216] instrumentation to record memory accesses by different threads to
detect false sharing. These tools are helpful for detection; however, they provide few hints as to
how to best repair. These techniques can also incur high runtime overhead and suffer from false
positives [228]. Huron’s hybrid approach does not suffer from these problems.

In order to reduce the runtime overhead, many techniques [130, 247, 158, 269, 104, 239, 146,
244, 93, 64, 285, 229] rely on performance counter values that are correlated with false sharing
(i.e, Intel HITM [83]). Once the counter events surge beyond a certain threshold, these techniques
trigger a more rigorous detection algorithm [104, 239, 93]. Huron uses a similar approach for its
in-production false sharing detection. However, because Huron can detect and repair many false
sharing instances in house, it does not trigger in-production false sharing detection frequently, and
thus incurs low overhead.

Another technique uses machine learning on hardware event counts [158] to detect false sharing.
We plan to improve Huron by leveraging a machine learning-based approach to speed up its in-
house false sharing detection.

A common false sharing elimination approach in prior work is to transform program threads to
processes so that they no longer share the same address space. While Grace [49] first proposed
this idea to avoid concurrency bugs, Sheriff [228] adopted this technique to repair false sharing.
This approach incurs high memory overheads and can be inefficient because the pages shared
across processes need to be merged frequently. TMI [93] partially addresses these challenges by
introducing a data structure called page twinning store buffer (PTSB). PTSB has smaller memory
footprint, and it allows pages to be merged more efficiently. Despite these benefits, the speedup
provided by PTSB (and thus TMI) cannot fully attain the performance benefits provided by manual
repair or Huron (see §3.5.4). Finally, unlike Sheriff and TMI, Huron does not suffer from false
positives.
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Many other studies [394, 173, 176, 175, 174, 178, 307, 171, 331, 123, 406, 272, 98] have
investigated data layout optimizations to improve performance. The main goal of these tools is
to improve the memory layout to maximize spatial locality, while Huron utilizes memory layout
transformations to eliminate false sharing.

3.7 Conclusion

Detecting and fixing all false sharing is difficult. Even if false sharing instances are identified
during development, repairing them manually can be a daunting task. In this paper, we described
Huron, a hybrid in-house/in-production mechanism that detects and repairs false sharing automat-
ically. Huron’s repair mechanism groups together data accessed by the same set of threads to shift
falsely-shared data to different cache lines. Huron detects and repairs all false sharing bugs with
100% accuracy in the 21 benchmarks that we evaluated. Huron achieves speedups of up to 11×
and on average 3.82×. Overall, Huron is 33.33% more accurate than state-of-the-art detection and
repair tools and it provides up to 8× and on average 2.11-2.27× greater speedup.
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CHAPTER 4

I-SPY: Context-Driven Conditional Instruction
Prefetching with Coalescing

Modern data center applications have rapidly expanding instruction footprints that lead to frequent
instruction cache misses, increasing cost and degrading data center performance and energy ef-
ficiency. Mitigating instruction cache misses is challenging since existing techniques (1) require
significant hardware modifications, (2) expect impractical on-chip storage, or (3) prefetch instruc-
tions based on inaccurate understanding of program miss behavior.

To overcome these limitations, we1 first investigate the challenges of effective instruction
prefetching. We then use insights derived from our investigation to develop I-SPY, a novel profile-
driven prefetching technique. I-SPY uses dynamic miss profiles to drive an offline analysis of
I-cache miss behavior, which it uses to inform prefetching decisions. Two key techniques under-
lie I-SPY’s design: (1) conditional prefetching, which only prefetches instructions if the program
context is known to lead to misses, and (2) prefetch coalescing, which merges multiple prefetches
of non-contiguous cache lines into a single prefetch instruction. I-SPY exposes these techniques
via a family of light-weight hardware code prefetch instructions.

We study I-SPY in the context of nine data center applications and show that it provides an
average of 15.5% (up to 45.9%) speedup and 95.9% (and up to 98.4%) reduction in instruction
cache misses, outperforming the state-of-the-art prefetching technique by 22.5%. We show that
I-SPY achieves performance improvements that are on average 90.5% of the performance of an
ideal cache with no misses.

1Some of the work in this chapter was performed in collaboration with Akshitha Sriraman, Joseph Devietti, Gilles
Pokam, Heiner Litz, and Baris Kasikci [198]. Therefore, I use the “we” pronoun in this chapter to acknowledge their
involvement in this work.
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4.1 Introduction

The expanding user base and feature portfolio of modern data center applications is driving a
precipitous growth in their complexity [179]. Data center applications are increasingly composed
of deep and complex software stacks with several layers of kernel networking and storage modules,
data retrieval, processing elements, and logging components [41, 211, 212]. As a result, code
footprints are often a hundred times larger than a typical L1 instruction cache (I-cache) [39], and
further increase rapidly every year [179].

I-cache misses are becoming a critical performance bottleneck due to increasing instruction
footprints [112, 179, 41]. Even modern out-of-order mechanisms do not hide instruction misses
that show up as glaring stalls in the critical path of execution. Hence, reducing I-cache misses can
significantly improve data center application performance, leading to millions of dollars in cost
and energy savings [344, 41].

The importance of mechanisms that reduce I-cache misses (e.g., instruction prefetching) has
long been recognized. Prior works have proposed next-line or history-based hardware instruc-
tion prefetchers [328, 302, 114, 280, 113, 189, 209, 212, 211] and several software mecha-
nisms have been proposed to perform code layout optimizations for improving instruction local-
ity [236, 221, 65, 276, 278]. While these techniques are promising, they (1) demand impractical
on-chip storage [113, 114, 189], (2) require significant hardware modifications [212, 211], or (3)
face inaccuracies due to approximations used in computing a cache-optimal code layout [287, 276].

A recent profile-guided prefetching proposal, AsmDB [41], was able to reduce I-cache misses
in Google workloads. However, we find that even AsmDB can fall short of an ideal prefetcher by
25.5% on average. To completely eliminate I-cache misses, it is important to first understand: why
do existing state-of-the-art prefetching mechanisms achieve sub-optimal performance? What are
the challenges in building a prefetcher that achieves near-ideal application speedup?

To this end, we perform a comprehensive characterization of the challenges in developing an
ideal instruction prefetcher. We find that an ideal instruction prefetcher must make careful de-
cisions about (1) what information is needed to efficiently predict an I-cache miss, (2) when to
prefetch an instruction, (3) where to introduce a prefetch operation in the application code, and
(4) how to sparingly prefetch instructions. Each of these design decisions introduces non-trivial
trade-offs affecting performance and increasing the burden of developing an ideal prefetcher. For
example, the state-of-the-art prefetcher, AsmDB, injects prefetches at link time based on applica-
tion’s miss profiles. However, control flow may not be predicted at link time or may diverge from
the profile at run time (e.g., due to input dependencies), resulting in many prefetched cache lines
that never get used and pollute the cache. Moreover, AsmDB suffers from static and dynamic code
bloat due to additional prefetch instructions injected into the code.
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In this work, we aim to reduce I-cache misses with I-SPY—a prefetching technique that care-
fully identifies I-cache misses, sparingly injects “code prefetch” instructions in suitable program
locations at link time, and selectively executes injected prefetch instructions at run time. I-SPY pro-
poses two novel mechanisms that enable on average 90.4% of ideal speedup: conditional prefetch-

ing and prefetch coalescing.
Conditional prefetching. Prior techniques [238, 41] either prefetch excessively to hide more I-
cache misses, or prefetch conservatively to prevent unnecessary prefetch operations that pollute the
I-cache. To hide more I-cache misses as well as to reduce unnecessary prefetches, we propose con-

ditional prefetching, wherein we use profiled execution context to inject code prefetch instructions
that cover each miss, at link time. At run-time, we reduce unnecessary prefetches by executing an
injected prefetch instruction only when the miss-inducing context is observed again.

To implement conditional prefetching with I-SPY, we propose two new hardware modifications.
First, we propose simple CPU modifications that use Intel’s Last Branch Record (LBR) [7] to
enable a server to selectively execute an injected prefetch instruction based on the likelihood of
the prefetch being successful. We also propose a “code prefetch” instruction called Cprefetch
that holds miss-inducing context information in its operands, to enable an I-SPY-aware CPU to
conditionally execute the prefetch instruction.
Prefetch coalescing. Whereas conditional prefetching facilitates eliminating more I-cache misses
without prefetching unnecessarily at run time, it can still inject too many prefetch instructions
that might further increase the static code footprint. Since data center applications face significant
I-cache misses [179, 344], injecting even a single prefetch instruction for each I-cache miss can
significantly increase an already-large static code footprint. To avoid a significant code footprint
increase, we propose prefetch coalescing, wherein we prefetch multiple cache lines with a single
instruction. We find that several applications face I-cache misses from non-contiguous cache lines,
i.e., in a window of N lines after a miss, only a subset of the N lines will incur a miss. We propose
a new instruction called Lprefetch to prefetch these non-contiguous cache lines using a single
instruction.

We study I-SPY in the context of nine popular data center applications that face frequent I-cache
misses. Across all applications, we demonstrate an average performance improvement of 15.5%
(up to 45.9%) due to a mean 95.9% (up to 98.4%) L1 I-cache miss reduction. We also show that
I-SPY improves application performance by 22.4% compared to the state-of-the-art instruction
prefetcher [41]. I-SPY increases the dynamically-executed instruction count by 5.1% on average
and incurs an 8.2% mean static code footprint increase.

In summary, we make the following contributions:
• A detailed analysis of the challenges involved in building a prefetcher that provides close-to-ideal

speedups.

66



cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpress
0

20

40

60

80
St

al
le

d
Sl

ot
s

(%
) Frontend-bound

Figure 4.1: Several widely-used data center applications spend a significant fraction of their
pipeline slots on “Frontend-bound” stalls, waiting for I-cache misses to return (measured using
the Top-down methodology [395]).

• Conditional prefetching: A novel profile-guided prefetching technique that accurately identifies
miss-inducing program contexts to prefetch I-cache lines only when needed.

• Prefetch coalescing: A technique that coalesces multiple non-contiguous cache line prefetches
based on run-time information obtained from execution profiles.

• I-SPY: An end-to-end system that combines conditional prefetching with prefetch coalescing
using a new family of instructions to achieve near-ideal speedup.

4.2 Understanding the Challenges of Instruction Prefetching

In this section, we present a detailed characterization of the challenges in developing an ideal
instruction prefetching technique. We define an ideal prefetcher as one that achieves the perfor-
mance of an I-cache with no misses, i.e., where every access hits in the L1 I-cache (a theoretical
upper bound). We characterize prefetching challenges by exploring four important questions: (1)
What information is needed to efficiently predict an I-cache miss?, (2) When must an instruction
be prefetched to avoid an I-cache miss? (3) Where should a prefetcher inject a code prefetch in-
struction in the program?, and (4) How can a prefetcher sparingly prefetch instructions while still
eliminating most I-cache misses?

We characterize challenges using nine popular real-world applications that exhibit significant
I-cache misses. In Fig. 4.1, we show the “frontend” pipeline stalls that the nine applications exhibit
when waiting for I-cache misses to return. We observe that these data center applications can spend
23% - 80% of their pipeline slots in waiting for I-cache misses to return. Hence, we include these
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applications in our study.
From Facebook’s HHVM OSS-performance [19] benchmark suite, we analyze (1) Drupal: a

PHP content management system, (2) Mediawiki: an open-source Wiki engine, and (3) Wordpress:
a PHP-based content management system used by services such as Bloomberg Professional and
Microsoft News. From the Java DaCapo [51] benchmark suite, we analyze (a) Cassandra [2]: a
NoSQL database management system used by companies such as Instagram and Netflix, (b) Kafka:
Apache’s stream-processing software platform used by companies such as Uber and Linkedin, and
(c) Tomcat [4]: Apache’s implementation of the Java Servlet and WebSocket. From the Java
Renaissance [294] benchmark suite, we analyze Finagle-Chirper and Finagle-HTTP [15]: Twitter
Finagle’s micro-blogging service and HTTP server, respectively. We also study Verilator [16], a
tool used by cloud companies to simulate custom hardware designs. We describe our complete
experimental setup and simulation parameters in Sec. 4.5.

4.2.1 What Information is Needed to Efficiently Predict an I-Cache Miss?

An ideal prefetcher must predict all I-cache misses before they occur, to prefetch them into the I-
cache in time. To this end, prior work [328, 302, 114, 41] (e.g., next-in-line prefetching) has shown
that an I-cache miss can be predicted using the program instructions executed before the miss.
Since any arbitrary instruction (e.g., direct/indirect branches or function returns) could execute
before a miss, the application’s dynamic control flow must be tracked to predict a miss using the
program paths that lead to it. An application’s execution can be represented by a dynamic Control
Flow Graph (CFG). In a dynamic CFG, the nodes represent basic blocks (sequence of instructions
without a branch) and the edges represent branches. Fig. 4.2 shows a dynamic CFG, where the
cache miss at basic block K can be reached via various paths. The CFG’s edges are typically
weighted by a branch’s execution count. For brevity, we assume all the weights are equal to one in
this example.

Software-driven prefetchers [65, 278, 41] construct an application’s dynamic CFG and iden-
tify miss locations that can be eliminated using a suitable prefetch instruction. For example, As-
mDB [41] uses DynamoRIO’s [58] memory trace client to capture an application’s dynamic CFG
for locating I-cache misses in the captured trace. Unfortunately, DynamoRIO [58] incurs undue
overhead [138], making it costly to deploy in production. To efficiently generate miss-annotated
dynamic CFGs, we propose augmenting dynamic CFG traces from Intel’s LBR [7] with L1 I-cache
miss profiles collected with Intel’s Precise Event Based Sampling (PEBS) [99] performance coun-
ters. Generating dynamic CFGs using such lightweight monitoring enables profiling applications
in production.
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Figure 4.2: A partial example of a miss-annotated dynamic control flow graph. Dashed edges
represent execution paths that do not lead to a miss.

Observation: Representing a program’s execution using a dynamic CFG and augmenting it
with L1 I-cache miss profiles enables determining prefetch candidates.
Insight: Generating a lightweight miss-annotated dynamic CFG using Intel’s LBR and PEBS

incurs low run-time performance overhead and enables predicting miss locations in produc-

tion systems.

4.2.2 When To Prefetch an Instruction?

A prefetch is successful only if it is timely. In the dynamic CFG in Fig. 4.2, a prefetch instruction
injected at predecessor basic blocks H or I is too late: the prefetcher will not be able to bring the
line into the I-cache in time and a miss will occur at K. In contrast, if a prefetch instruction is
injected at predecessors E or F , the prefetched line may not be needed soon enough, and it may
(1) either evict other lines that will be accessed sooner, or (2) itself get prematurely evicted before
it is accessed. Instead, the prefetch must be injected in an appropriate prefetch window. In our
example, we assume block G is a timely injection candidate in the prefetch window.

Prior work [41] empirically determines an ideal prefetch window using average application-
specific IPC to inject a prefetch instruction that hides a cache miss. I-SPY relies on this approach
and injects prefetch instructions 27 - 200 cycles before a miss, a window we determine in our
evaluation.
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Observation: An instruction must be prefetched in a timely manner to avoid a miss.
Insight: Empirically determining the prefetch window such that a prefetch is not too early or

too late, can effectively eliminate a miss.

4.2.3 Where to Inject a Prefetch?

An ideal prefetcher would eliminate all I-cache misses, achieving full miss coverage. To achieve
full miss coverage, a prefetcher such as the one proposed by Luk and Mowry [238], might inject a
“code prefetch” instruction into every basic block preceding an I-cache miss. However, the prob-
lem of this approach is that due to dynamic control flow changes, naively injecting a prefetch into
a predecessor basic block causes a high number of inaccurate prefetches whenever the predecessor
does not lead to the miss. Prefetching irrelevant lines hurts prefetch accuracy (the fraction of useful
prefetches) and leads to I-cache pollution, degrading application performance.

Prefetch accuracy can be improved by assessing the usefulness of a prefetch and by restricting
the injection of prefetches to those that are likely to improve performance. To determine the like-
lihood of a prefetch being useful, we can analyze the fan-out of the prefetch’s injection site. We
define fan-out as the percentage of paths that do not lead to a target miss from a given injection
site. For example, in Fig. 4.2, the candidate injection site G has a fan-out of 75% as only one out
of four paths leads to the miss K.

By limiting prefetch injection to nodes whose fan-out is below a certain threshold, accuracy
can be improved, however, coverage is also reduced. The fan-out threshold that decides whether
to inject a prefetch represents a control knob to trade-off coverage vs. accuracy. To determine
this threshold, Fig. 4.3 analyzes the impact of fan-out on accuracy and coverage for the wordpress

application. As it can be seen, for real applications with large CFGs, a high fan-out of 99% is
required to achieve the best performance, although accuracy starts to drop sharply at this point.
Hence, prior works (including AsmDB) that rely on static analysis for injecting prefetches fall
short of achieving close to ideal performance (65% in the case of wordpress).

With I-SPY, we aim to break this trade-off by optimizing for prefetch accuracy and miss cover-
age simultaneously. To this end, we propose context sensitive conditional prefetching, a technique
that statically injects prefetches to cover each miss (i.e., high miss coverage), but dynamically ex-
ecutes injected prefetches only when the prefetch is likely to be successful, minimizing unused
prefetches (i.e., high prefetch accuracy). In Section 4.3.1, we describe our conditional prefetch-
ing technique and our approach that leverages dynamic context information to decide whether to
execute a prefetch or not.
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Figure 4.3: Prefetch accuracy vs. miss coverage tradeoff in AsmDB and its relation to ideal cache
performance: Miss-coverage increases with an increase in fan-out threshold, but prefetch accuracy
starts to reduce. Only 65% of ideal cache performance can be reached at 99% fan-out due to low
prefetch accuracy.

Observation: It is challenging to achieve both high miss coverage and prefetch accuracy if
we determine prefetch injection candidate blocks based on a static CFG analysis alone.
Insight: Leveraging dynamic run-time information to conditionally execute statically-injected

prefetch instructions can help improve both miss coverage and prefetch accuracy.

4.2.4 How to Sparingly Prefetch Instructions?

Several profile-guided prefetchers [41, 238] require at least one code prefetch instruction to miti-
gate an I-cache miss. For example, the state-of-the-art prefetcher, AsmDB [41], covers each miss
by injecting a prefetch instruction into a high fan-out (≤99%) predecessor. However, statically
injecting numerous prefetch instructions and executing them at run time, increases the static and
dynamic application code footprint by 13.7% and 7.3% respectively, as portrayed in Fig. 4.4. An
increase in static and dynamic code footprints can pollute the I-cache and cause unnecessary cache
line evictions, further degrading application performance. Hence, it is critical to sparingly prefetch
instructions to minimize code footprints.
Prefetch coalescing. Our conditional prefetching proposal allows statically injecting more
prefetch instructions to eliminate more I-cache misses, without having to dynamically perform
inaccurate prefetches. However, a large number of statically-injected code prefetch instructions
can still increase an application’s static code footprint.

A naı̈ve approach to statically inject fewer instructions is to leverage the spatial locality of I-
cache misses to prefetch multiple contiguous cache lines with a single prefetch instruction rather
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Figure 4.4: AsmDB’s static and dynamic code footprint increase: Injecting prefetches in high fan-
out predecessors significantly increases static and dynamic code footprints.

than a single line at a time [328, 302]. In contrast, another approach [211] finds value in prefetching
multiple non-contiguous cache lines together. Similarly, we posit that it is unlikely that all the
contiguous cache lines in a window of n lines after a given miss will incur misses. It is more
likely that a subset of the next-n lines will incur misses, whereas others will not. To validate this
hypothesis, we consider a window of eight cache lines immediately following a miss to implement
two prefetchers: (1) Contiguous-8, that prefetches all eight contiguous cache lines after a miss and
(2) Non-contiguous-8, that prefetches only the missed cache lines in the eight cache line window.

We profile all our benchmarks to detect I-cache misses and measure the speedup achieved by
both prefetchers in Fig. 4.5. We find that Non-contiguous-8 provides an average 7.6% speedup
over Contiguous-8. We conclude that prefetch coalescing of non-contiguous, but spatially nearby
I-cache misses, via a single prefetch instruction can improve performance while minimizing the
number of static and dynamic prefetch instructions. We note that our conclusion holds for larger
windows of cache lines (e.g., 16 and 32). We find that a window of eight lines offers a good trade-
off between speedup and circuit complexity required to support a larger window size. We provide
a sensitivity analysis for window sizes in §4.6.2.

Observation: Injecting too many prefetch instructions can increase static and dynamic code
footprints, inducing additional cache line evictions.
Insight: Conditional prefetching can minimize dynamic code footprints; coalescing spatially-

near non-contiguous I-cache miss lines into a single prefetch instruction can minimize both

static and dynamic code footprints.
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Figure 4.5: Speedup of Contiguous-8 (prefetches all 8 contiguous lines after a miss) vs. Non-
contiguous-8 (prefetches only the misses in an 8-line window after a miss): Prefetching non-
contiguous cache lines offers a greater speedup opportunity.

4.3 I-SPY

I-SPY proposes two novel techniques to improve profile-guided instruction prefetching. I-SPY
introduces conditional prefetching to address the dichotomy between high coverage and accuracy
discussed in §4.2.3. Furthermore, I-SPY proposes prefetch coalescing to reduce the static code
footprint increase due to injected prefetch instructions explored in §4.2.4. I-SPY relies on profile-
guided analysis at link-time to determine frequently missing blocks and prefetch injection sites
using Intel LBR [7] and PEBS [99]. We provide a detailed description of I-SPY’s usage model
in §4.4. I-SPY also introduces minor hardware modifications to improve prefetch efficiency at run
time. As a result, our proposed techniques close the gap between static and dynamic prefetching
by combining the performance of dynamic hardware-based mechanisms with the low complexity
of static software prefetching schemes.

4.3.1 Conditional Prefetching

Conditionally executing prefetches has a two-fold benefit: I-SPY can liberally inject conditional
prefetch instructions to cover each miss (i.e., achieve high miss coverage) while simultaneously
minimizing unused prefetches (i.e., achieve high accuracy). I-SPY uses the execution context to
decide whether to conditionally execute a prefetch or not. We first discuss how I-SPY computes
contexts leading to misses. We then explain how I-SPY ’s conditional prefetching instruction is
implemented, and finally discuss micro-architectural details.
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Miss context discovery. Similar to many other branch prediction schemes [53, 60, 212, 211],
I-SPY uses the basic block execution history to compute the execution context. Initially, we at-
tempted to use the exact basic block sequence to predict a miss. However, we found this approach
intractable since the number of block sequences (i.e., the number of execution paths) leading to a
miss grows exponentially with the increase in sequence length. As a result, I-SPY only considers
the presence of certain important basic blocks in the recent context history to inform its prefetching
decisions. This approach is in line with prior work [326] that observes that prediction accuracy is
largely insensitive to the basic block order sequence.

We use the dynamic CFG in Fig. 4.2 to describe the miss context discovery process. Recall that
in this example, the miss occurs in basic block K and block G is the injection site in the prefetch
window. As shown in Fig. 4.6a, there are six execution paths including the candidate injection site
G and two of these paths lead to the basic block K, where the miss occurs.

I-SPY starts miss context discovery by identifying predictor basic blocks—blocks with the
highest frequency of occurrence in the execution paths leading to each miss. In our example,
B and E are predictor blocks. Since I-SPY only relies on the presence of blocks to identify
the context (as opposed to relying on the order of blocks), it computes combinations of predictor
blocks as potential contexts for a given miss. Then, I-SPY calculates the conditional probability of
each context leading to a miss in a block B, i.e., P (Miss in Block “B”|context) as per the Bayes
theorem. As shown in Fig. 4.6b, I-SPY computes P (Miss K|B), P (Miss K|E), and P (Miss K|B∩
E), i.e., the probability of leading to the miss in block K, given an execution context of either (B),

or (E), or both (B and E).
I-SPY then selects the combination with the highest probability as the context for a given miss.

In our example, this context, namely (B and E) will be encoded into the conditional prefetch in-
struction injected at G. At run time, the conditional prefetch will be executed if the run-time branch
history contains the recorded context. We now detail I-SPY’s conditional prefetch instruction.
Conditional prefetch instruction. We propose a new prefetch instruction, Cprefetch that
requires an extra operand to specify the execution context. Each basic block in the context is
identified by its address, i.e., the address of the first instruction in the basic block. I-SPY computes
the basic block address using the LBR data.

To reduce the code size of Cprefetch, I-SPY hashes the individual basic block addresses in
the context into an n-byte immediate operand (context-hash) using hash functions, FNV-
1 [373] and MurmurHash3 [381]. When a Cprefetch is executed at run time, the processor
recomputes a hash value (runtime-hash) using the last 32 predecessor basic blocks (Intel
LBR [7] provides the addresses of 32 most recently executed basic blocks), and compares it against
the context-hash. The prefetch operation is performed only if the set-bits in context-hash
are a subset of the set-bits in the runtime-hash.
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Figure 4.6: An example of I-SPY’s context discovery process
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Figure 4.7: Micro-architectural changes needed to execute the context-sensitive conditional
prefetch instruction, Cprefetch

Both runtime-hash and context-hash are compressed representations of multiple basic
block addresses. While compressing multiple 64 bit basic block addresses into fewer bits reduces
the code bloat, it might also introduce false positives. A false positive might occur when the set-
bits in context-hash are a subset of the set-bits in runtime-hash, however, not all the
basic blocks represented by context-hash are present among the 32 most recently-executed
basic blocks represented by runtime-hash. We analyze a range of values for the context-
hash size in Fig. 4.21 and determine that a 16 bit immediate offers a good tradeoff between code
bloat and false positive rates.
Micro-architectural modifications Cprefetch requires minor micro-architectural modifica-
tions. Intel’s Xeon data center processors support an LBR [7] control flow tracing facility, which
tracks the program counter and target address of the 32 most recently executed branches.

I-SPY extends the LBR to maintain a rolling runtime-hash of its contents. Fig. 4.7 shows
the micro-architectural requirements of I-SPY’s context-sensitive prefetch instruction for 32 pre-
decessor basic blocks and a 16 bit context-hash. Since the LBR is a FIFO, we maintain the
runtime-hash incrementally. Using a counting Bloom filter [110, 56], we assign a 6-bit counter
to each of the 16 bits of the runtime-hash (96 bits in total). Whenever a new entry is added
into the LBR, we hash the corresponding block address and increment the corresponding counters
in the runtime-hash; the counters for the hash of the evicted LBR entry are decremented. The
counters never overflow and the runtime-hash precisely tracks the LBR contents since there
are only ever 32 branches recorded in the runtime-hash. We also add a small amount of logic
to reduce each counter to a single “is-zero” bit; in those 16 bits, we check if the context-hash
bits are a subset of the runtime-hash. If they are, the prefetch fires, otherwise it is disabled.
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add %eax, %ecx
Cprefetch 0xA, C0
Cprefetch 0xD, C0
Cprefetch 0x4, C1
Cprefetch 0x2, C1
Cprefetch 0x7, C1
cmp $4, %eax
jle 0x4F3B 

0 0 0 0 0 1 0 00xA
07 2

0 0 0 1 0 0 1 00x2
07 14

add %eax, %ecx
CLprefetch 0xA, C0, 0x4
CLprefetch 0x2,  C1, 0x12
cmp $4, %eax
jle 0x4F3B 

Figure 4.8: An example of I-SPY’s prefetch coalescing process

To clarify how Bloom filters help I-SPY match runtime-hash to context-hash, let’s
consider the same example in Fig. 4.6. Let’s assume the 16-bit hashes of B and E are 0x2 and
0x10, respectively. Therefore, the context-hash would be 0x12, where the Least Significant
Bits (LSB) 1 and 4 are set. To enable prefetching, runtime-hash must also have these bits set.
At run time, if B is present in the last 32 predecessors, the bloom filter counter corresponding to
LSB-1 must be greater than 0. Similarly for E, the counter corresponding to LSB-4 must be greater
than 0. Hence, the result of subset comparison between context-hash and runtime-hash
will be true and a prefetch will be triggered.

4.3.2 Prefetching Coalescing

Conditional prefetching enables high-accuracy prefetching. Nevertheless, it leads to static code
bloat as every prefetch instruction increases the size of the application’s text segment. Prefetch

coalescing reduces the static code bloat as well as the number of dynamically-executed prefetch
instructions by combining multiple prefetches into a single instruction. We first describe how
I-SPY decides which lines should be coalesced, followed by details of I-SPY’s coalesced prefetch-
ing instruction. We then detail the micro-architectural modifications required to support prefetch
coalescing.

To perform coalescing, I-SPY analyzes all prefetch instructions injected into a basic block and
groups them by context. As shown in Fig. 4.8, prefetches for addresses 0xA and 0xD are grouped
together since they are conditional on the same context, C0. Similarly, 0x4, 0x2, and 0x7 are
grouped together since they share the same context C1.

Next, I-SPY attempts to merge a group of prefetch instructions into a single prefetch instruction.
I-SPY uses an n-bit bitmap to select a subset of cache lines within a window of n consecutive cache
lines. In the example shown in Fig. 4.8, the coalesced prefetch for context C1 has two bits set in
the bitmask to encode lines 0x4 and 0x7 where the base address of the prefetch is 0x2. While a
larger bitmask allows coalescing more prefetches, it also increases hardware complexity. We study
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the effect of bitmask size in Fig. 4.17.
Coalesced prefetch instruction. Our proposed coalesced prefetch instruction, Lprefetch, re-
quires an additional operand for specifying the coalescing bit-vector. Prefetch instructions in cur-
rent hardware (e.g., prefetcht* on x86 and pli on ARM) follow the format, (prefetch,
address), which takes address as an operand and prefetches the cache line corresponding to
address. Lprefetch takes an extra operand, bit-vector. The prefetcht* instruction
on x86 has a size of 7 bytes, hence, with the addition of an n = 8 bits bitmask, Lprefetch has
a size of 8 bytes.

I-SPY combines prefetch coalescing and conditional prefetching via another instruction, CL-
prefetch, with the format (prefetch, address, context-hash, bit-vector) as
shown in Fig. 4.8. CLprefetch prefetches all the prefetch targets specified by bit-vector
only if the current context matches with the context encoded in the context-hash. This new
instruction has a size of 10 bytes (2 extra bytes to specify context-hash).
Micro-architectural modifications. Coalesced prefetch instructions require minor micro-
architectural modifications that mainly consists of a series of simple incrementers. These incre-
menters decode the 8-bit coalescing vector and enable prefetching up to 9 cache lines (the initial
prefetch target, plus up to 8 bit-vector-dependent targets). The resultant cache line addresses are
then forwarded to the prefetch engine.
Replacement policy for prefetched lines. I-SPY’s prefetch instructions also update the replace-
ment policy priority of the prefetched cache line. Instead of assigning the highest priority to
the prefetched cache line (as done for demand-loads), I-SPY’s prefetch instructions assign the
prefetched cache line a priority equal to the half of the highest priority. I-SPY’s goal with this
policy is to reduce the adverse effects of a potentially inaccurate prefetch operation.

4.4 Usage Model

We provide an overview of the high-level usage model of I-SPY in Fig. 4.9. I-SPY profiles an
application’s execution at run time, and uses these profiles to perform an offline analysis of I-cache
misses to suitably inject code prefetch instructions.
Online profiling. I-SPY first profiles an application’s execution at run time (step 1 ). It uses Intel’s
LBR [7] to construct a dynamic CFG (such as the one shown in Fig. 4.2), and augments the dy-
namic CFG with L1 I-cache miss profiles collected with Intel’s PEBS [99] hardware performance
counters. At every I-cache miss, I-SPY records the program counters of the previous 32 branches
that the program executed (on x86 64, LBR has a 32-entry limit). Run-time profiling using Intel
LBR’s and Intel PEBS’s lightweight monitoring [120, 7] enables profiling applications online, in
production.
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Figure 4.9: Usage model of I-SPY

Offline analysis. Next, I-SPY performs an offline analysis ( 2 ) of the miss-annotated dynamic
CFG that it generates at run time. For each miss, I-SPY considers all predecessor basic blocks
within the prefetch window. Unlike prior work [41], I-SPY does not require the per-application
IPC metric to find predecessors within the prefetch window as the LBR profile already includes
dynamic cycle information for each basic block. Apart from this, the algorithm to find the best
prefetch injection site is similar to prior work [41] and has a worst-case complexity of O(n log n).

After finding the best prefetch injection site to cover each miss, I-SPY runs two extra analyses,
context discovery and prefetch coalescing. First, if the prefetch injection site has a non-zero fan-
out, I-SPY analyzes the predecessors of the injection site to reduce its fan-out (Fig. 4.6). Next,
if the same injection site is selected for prefetching multiple cache lines, I-SPY applies prefetch
coalescing to reduce the number of prefetch instructions (Fig. 4.8).

Once I-SPY finishes identifying opportunities for conditional prefetching and prefetch coalesc-
ing, it injects appropriate prefetch instructions to cover all misses. Specifically, I-SPY injects four
kinds of prefetch instructions ( 3 ).

If the context of a given prefetch instruction differs from the contexts of all other prefetch
instructions, then this prefetch instruction cannot be coalesced with others. In that case, I-SPY
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injects a Cprefetch instruction.
Conditionally prefetching a line based on the execution context may not improve the prefetch

accuracy. In this case, I-SPY will try to inject an Lprefetch instruction. If multiple cache lines
are within a range of n lines (where n is the size of bit-vector used to perform coalescing as in
§4.3.2) from the nearest prefetch target, I-SPY will inject an Lprefetch. Otherwise, I-SPY will
inject multiple AsmDB-style prefetch instructions that simply prefetch a single target cache
line.

If conditional prefetching improves prefetching accuracy and multiple cache lines can be coa-
lesced, I-SPY injects CLprefetch instructions.

The new binary updated with code prefetch instructions is deployed on I-SPY-aware data center
servers that can conditionally execute and (or) coalesce the injected prefetches.

4.5 Evaluation Methodology

We envision an end-to-end I-SPY system that uses application profile information and our pro-
posed family of hardware code prefetch instructions. We evaluate I-SPY using simulation since
existing server-class processors do not support our proposed hardware modifications for condi-
tional prefetching and prefetch coalescing. Additionally, simulation enables replaying memory
traces to conduct limit studies and compare I-SPY’s performance against an ideal prefetch mech-
anism. We prototype the state-of-the-art prefetcher, AsmDB [41], and compare I-SPY against
it. We now describe (1) the experimental setup that we use to collect an application’s execution
profile, (2) our simulation infrastructure, (3) I-SPY’s system parameters, and (4) the data center
applications we study.
Data collection. During I-SPY’s offline phase, we use Intel’s LBR [7] and PEBS counters [83]
(more specifically (frontend retired.l1i miss)) to collect an application’s execution pro-
file and L1 I-cache miss information. We record up to 100 million instructions executed in steady-
state. We combine our captured miss profiles and instruction traces to construct an application’s
miss-annotated dynamic CFG.
Simulation. We use the ZSim simulator [310] to evaluate I-SPY. We modify ZSim [310] to support
conditional prefetching and prefetch coalescing. We use ZSim in a trace-driven execution mode,
modeling an out-of-order processor. The detailed system parameters are summarized in Table 4.1.
Additionally, we extend ZSim to support our family of hardware code prefetch instructions. Our
implemented code prefetch instructions insert prefetched cache lines with a lower replacement
policy priority than any demand load requests.
System parameters. Based on the sensitivity analysis (see Fig. 4.18), we use 27 cycles as mini-
mum prefetch distance, and 200 cycles as maximum prefetch distance. Additionally, we empiri-
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Table 4.1: Simulated System

Parameter Value
CPU Intel Xeon Haswell
Number of cores per socket 20
L1 instruction cache 32 KiB, 8-way
L1 data cache 32 KiB, 8-way
L2 unified cache 1 MB, 16-way
L3 unified cache Shared 10 MiB per socket, 20-way
All-core turbo frequency 2.5 GHz
L1 I-cache latency 3 cycles
L1 D-cache latency 4 cycles
L2 cache latency 12 cycles
L3 cache latency 36 cycles
Memory latency 260 cycles
Memory bandwidth 6.25 GB/s

cally determine that coalescing non-contiguous prefetches that occur within a cache line window
of 8 cache lines yields the best performance.
Data center applications. We evaluate nine popular data center applications described in Sec. 4.2.
We allow an application’s binary to be built with classic compiler code layout optimizations such
as in-lining [38], hot/cold splitting [72], or profile-guided code alignment [278]. We study these
applications with different input parameters offered to the client’s load generator (e.g., number of
requests per second or the number of threads).
Evaluation metrics. We use six evaluation metrics to evaluate I-SPY’s effectiveness. First,
we compare I-SPY’s performance improvement against an ideal cache and AsmDB. Second,
we study how well I-SPY reduces L1 I-cache MPKI compared to the state-of-the-art prefetcher,
AsmDB [41]. Third, we analyze how much performance improvement stems from conditional
prefetching and prefetch coalescing, individually. Fourth, we compare I-SPY’s prefetch accuracy
with AsmDB. Fifth, we analyze the static and dynamic code footprint increase induced by I-SPY.
Sixth, we determine whether I-SPY achieves high performance across various application inputs.
Since, data center applications often run continuously, application inputs can drastically vary (e.g.,
diurnal load trends or load transients [345, 324]). Hence, a profile-guided optimization for data
center applications must be able to improve performance across diverse inputs.

We also perform a sensitivity analysis of I-SPY’s system parameters by evaluating the effect of
varying the (1) number of predecessors in context-hash, (2) minimum and maximum prefetch
distances, (3) coalescing size, and (4) context size used to conditionally prefetch.
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Figure 4.10: I-SPY’s speedup compared to an ideal cache and AsmDB: I-SPY achieves an average
speedup that is 90.4% of ideal.

4.6 Evaluation

In this section, we evaluate how I-SPY improves application performance compared to an ideal
cache implementation and the state-of-the-art prefetcher [41], AsmDB, using the evaluation met-
rics defined in §4.5. We then perform sensitivity studies to determine the effect of varying I-SPY’s
configurations.

4.6.1 I-SPY: Performance Analysis

Speedup. We first evaluate the speedup achieved by I-SPY across all applications. In Fig. 4.10, we
show I-SPY’s speedup (green bars) compared against an ideal cache that faces no misses (brown
bars) and AsmDB [41] (blue bars).

We find that I-SPY attains a near-ideal speedup, achieving an average speedup that is 90.4%
(up to 96.4%) of an ideal cache that always hits in the L1 I-cache. I-SPY falls slightly short of
an ideal cache since (1) it executes more instructions due to the injected prefetch instructions and
(2) a previously unobserved execution context might not trigger a prefetch, precipitating a miss.
Additionally, I-SPY outperforms AsmDB by 22.4% on average (up to 41.2%), since it eliminates
more I-cache misses than AsmDB as we show next.
L1 I-cache MPKI reduction. We next evaluate how well I-SPY reduces L1 I-cache misses com-
pared to AsmDB [41] in Fig. 4.11. We evaluate across all nine applications.

We observe that I-SPY achieves a high miss coverage, reducing L1 I-cache MPKI by an average
of 95.8% across all applications. Furthermore, I-SPY reduces MPKI compared to AsmDB by an
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Figure 4.11: I-SPY’s L1 I-cache MPKI reduction compared with AsmDB: I-SPY removes 15.7%
more misses than AsmDB.

average of 15.7% across all applications (the greatest improvement is 28.4% for verilator). The
MPKI reduction is due to conditionally executing prefetches and coalescing them, thereby elim-
inating more I-cache misses. In contrast, AsmDB executes a large number of unused prefetches
that evict useful data from the cache.

Performance of conditional prefetching and prefetch coalescing. In Fig. 4.12, we quantify
how much I-SPY’s conditional prefetching and prefetch coalescing mechanisms contribute to net
application speedup. We show the performance improvement achieved by these novel mechanisms
over AsmDB, across all nine applications. We make two observations.

First, we note that both conditional prefetching and prefetch coalescing provide gains over As-
mDB across all applications. Conditional prefetching improves performance more than coalescing
for eight of our applications, since it covers more I-cache misses with better accuracy. In verilator,
we observe that coalescing offers a better performance since 75% of verilator’s misses have a high
spatial locality even within a cache line window of 8 lines.

Second, we find that the performance gains achieved by conditional prefetching and prefetch co-
alescing are not strictly additive. As I-SPY only coalesces prefetches that have the same condition,
many prefetch instructions that depend on different conditions are not coalesced. Yet, combining
both techniques offers better speedup than their individual counterparts.
Prefetch accuracy. We portray the prefetch accuracy achieved by I-SPY across all nine applica-
tions in Fig. 4.13. We also compare I-SPY’s prefetch accuracy against AsmDB.

We find that I-SPY achieves an average of 80.3% prefetch accuracy. Furthermore, I-SPY’s
accuracy is 8.2% (average) better than AsmDB’s accuracy, since I-SPY’s conditional prefetching
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Figure 4.12: Speedup achieved by conditional prefetching and prefetch coalescing over AsmDB:
Conditional prefetching often offers better speedup than coalescing, but their combined speedup is
significantly better.
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Figure 4.13: I-SPY’s prefetch accuracy compared with AsmDB: I-SPY achieves an average of
8.2% better accuracy than AsmDB.
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Figure 4.14: I-SPY’s static code footprint increase compared to AsmDB: I-SPY statically injects
37% (average) fewer instructions than AsmDB.

avoids trading off prefetch accuracy for miss coverage, unlike AsmDB.
Static and dynamic code footprint increase. We next evaluate by how much I-SPY increases ap-
plications’ static and dynamic code footprints. First, we illustrate the static code footprint increase
induced by I-SPY in Fig. 4.14. We also compare against AsmDB’s static code footprint.

We observe that I-SPY increases the static code footprint by 5.1% - 9.5% across all applica-
tions. By coalescing multiple prefetches into a single prefetch instruction, I-SPY introduces fewer
prefetch instructions into the application’s binary. In contrast, we find that AsmDB increases the
static code footprint much more starkly—7.6% - 15.1%.

Next, we study by how much I-SPY increases the dynamic application footprint in Fig. 4.15
across all nine applications. We note that I-SPY executes 3.7% - 7.2% additional dynamic instruc-
tions since it covers I-cache misses by executing injected code prefetch instructions. We observe
that AsmDB has a higher dynamic instruction footprint across eight applications (ranging from
5.5% - 11.6%), since it does not coalesce prefetches like I-SPY. For verilator, I-SPY’s dynamic
footprint is higher than AsmDB since I-SPY covers 28.4% more misses than AsmDB by executing
more prefetch instructions, while also providing 35.9% performance improvement over AsmDB.
Generalization across application inputs. To determine whether I-SPY achieves a performance
improvement with an application input that is different from the profiled input, we characterize
I-SPY’s performance for five different inputs fed to three of our applications—drupal, mediawiki,
wordpress (Fig. 4.16). We choose these three applications, because they have the greatest variety
of readily-available test inputs that we can run. We compare I-SPY against AsmDB in terms of
ideal cache performance.
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Figure 4.15: I-SPY’s dynamic code footprint increase compared to AsmDB: On average, I-SPY
executes 36% fewer prefetch instructions than AsmDB.

We observe that I-SPY achieves a speedup that is closer to the ideal speedup than the speedup
provided by AsmDB across all test inputs. I-SPY is more resilient to the input changes than
AsmDB because of conditional prefetching. I-SPY achieves at least 70% (up to 86.84%) of ideal
cache performance on inputs that are different from the profiled input.

4.6.2 I-SPY: Sensitivity Analysis

We next evaluate how I-SPY’s performance varies in response to variations of the different system
parameters.
Number of predecessors comprising the context. In Fig. 4.17, we observe how the I-SPY con-
ditional prefetching’s performance varies in response to a variation in the number of predecessors
comprising the context condition (see Sec 4.3.1). We vary predecessor counts from 1 to 32 (with
a geometric progression of 2) and show the I-SPY conditional prefetching’s average performance
improvement across all nine applications.

We find that the I-SPY conditional prefetching’s performance improves with an increase in the
number of predecessors composing the context condition. Using more predecessors enables a more
complete context description, and slightly improves performance by predicting I-cache misses
more accurately. However, a large number of predecessors impose a significant context-discovery
computation overhead. Specifically, the search space of possible predecessor candidates grows
exponentially with the number of predecessors comprising the context condition. Consequently,
the context discovery process takes tens of minutes to complete with more than 4 predecessors,
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Figure 4.16: I-SPY’s performance compared against AsmDB for different application test inputs:
I-SPY outperforms AsmDB when the application input differs from the profiled input.

which can be a bottleneck in the build process. Since I-SPY’s conditional prefetching achieves
more than 85% of ideal cache performance even with four predecessors, I-SPY’s design uses four
predecessors to define context and keeps the computational overhead of context discovery low.
Minimum and maximum prefetch distance. We next analyze how I-SPY’s performance varies
with an increase in the minimum and maximum prefetch distances, in Fig. 4.18. We observe that
I-SPY achieves maximum performance for a minimum prefetch distance of 20-30 cycles (which
is greater than typical L2 access latency but less than L3 access latency). On the other hand, an
increase in the maximum prefetch distance always improves I-SPY’s performance. However, the
increase is very slow after 200 cycles. Based on these results, we use 27 cycles as the minimum
prefetch distance, and 200 cycles as the maximum prefetch distance for I-SPY.
Coalescing size. We next study the sensitivity of I-SPY’s prefetch coalescing to the coalesce
bitmask size (see §4.3.2) in Fig. 4.19. We vary the coalesce bitmask size from 1 bit to 64 bits,
prefetching up to 2 and 65 cache lines using a single instruction, respectively. We then measure
the percentage of ideal speedup achieved by I-SPY’s prefetch coalescing as an average across all
applications.

We note that I-SPY’s performance improves slightly with a larger bitmask, since larger bitmasks
enable coalescing more cache lines, reducing spurious evictions. However, a large bitmask will
introduce hardware design complexities since the microarchitecture must now support additional
in-flight prefetch operations. Similar to prior work [211], to minimize hardware complexity, we
design I-SPY with an 8-bit coalescing bitmask, since it can be implemented with minor hardware
modifications (as described in §4.3.2).
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Figure 4.17: I-SPY’s conditional prefetching achieves better performance with an increase in the
number of predecessors comprising the context.

Additionally, we examine which and how many nearby cache lines a coalesced prefetch in-
struction typically prefetches for all nine applications. As shown in Fig. 4.20, the probability of
coalesced prefetching reduces with an increase in cache line distance. Moreover, most coalesced
prefetch instructions (82.4% averaged across nine applications) prefetch less than four cache lines.
Context hash size. We next analyze how I-SPY’s false positive rate varies with an increase in the
context hash size, in Fig. 4.21. We study the wordpress benchmark since its speedup is heavily
impacted by prefetch accuracy (see Fig. 4.3).

We observe that increasing the number of bits in the context hash reduces the false positive
rate. However, an increase in the context hash size increases the static code footprint, as shown
in Fig. 4.21. To minimize the static code footprint while still achieving a low false positive rate,
I-SPY’s design uses a 16-bit context hash—13% false positive rate and 4.6% static code increase.

4.7 Discussion

In this section we discuss some limitations of I-SPY and offer potential solutions.
Prefetching already resident cache lines. Although our process of discovering high-probability
contexts that lead to cache misses is effective, we also found that many times, the target cache line
of a Cprefetch is already resident in the cache. However, the overhead of such resident prefetch
operations is low since they do not poison the cache by bringing in new unnecessary cache lines.
To make this overhead even lower, we design our proposed prefetch instructions such that they are
always inserted with a lower priority as demand loads in regards to the replacement policy.
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Figure 4.18: I-SPY’s average performance variation in response to changes in the minimum (left)
and the maximum (right) prefetch distance.
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Figure 4.19: I-SPY’s average performance variation in response to increasing the coalescing size:
Larger coalescing sizes achieve higher gains.
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Figure 4.20: (left) The probability of coalesced prefetching reduces with an increase in cache line
distance. (right) Coalesced prefetch instructions usually bring in less than 4 cache lines.
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Figure 4.21: (left) I-SPY’s false positive rate variation in response to an increase in context size:
False positives are reduced with a larger context; (right) I-SPY’s static code footprint size variation
in response to context size: Static code footprint increases with an increase in context size.
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Prefetching within JITted code. Most instruction cache misses in code generated at run time are
out of I-SPY’s scope. While I-SPY is able to prefetch for some of these misses via Cprefetch
instructions inserted into non-JITted code, there are still up to 10% of code misses in JITted code
(mostly for the three HHVM applications, wordpress, drupal, and mediawiki) that are not covered.
To handle these additional misses, I-SPY could be integrated with a JIT compiler since all of I-
SPY’s offline machinery (which leverages hardware performance monitoring mechanisms) can, in
principle, be used online by the runtime instead.

4.8 Related Work

The performance criticality of instruction cache misses has resulted in a rich body of prior litera-
ture. We discuss three categories of related work.
Software prefetching. Several software techniques [65, 136, 299, 410, 238, 286, 40, 137] im-
prove instruction locality by relocating infrequently executed code via Profile-Guided Optimiza-
tions (PGO) at compile time [65], link time [221, 276], or post link time [236, 278]. However,
finding the optimal cache-conscious layout is intractable in practice [41], since it requires me-
andering through a vast number of control-flow combinations. Hence, existing techniques must
oftentimes make inaccurate control-flow approximations. Whereas PGO-based techniques have
been shown to improve data center application performance [65, 278], they still eliminate only a
small subset of all instruction cache misses [41].
Hardware prefetching. Hardware instruction prefetching techniques began with next-line in-
struction prefetchers that exploit the common case of fetching sequential instructions [31]. These
next-line prefetchers soon evolved into next-N-line and instruction stream prefetchers [328, 302,
114, 280, 113, 189, 209] that use trigger events and control mechanisms to prefetch by adaptively
looking a few instructions ahead. Next-line and stream prefetchers have been widely deployed in
industrial designs because of their implementation simplicity. However, such next-line prefetchers
are often inaccurate for complex data center applications that implement frequent branching and
function calls.

Branch predictor based prefetchers [53, 60, 212, 211, 339, 343, 114] improve prefetch accu-
racy in branch- and call-heavy code. Run-ahead execution [265], wrong path instruction prefetch-
ing [290], and speculative prefetching mechanisms [353, 412] can also explore ahead of the instruc-
tion fetch unit. However, such prefetchers are susceptible to interference precipitated by wrong
path execution and insufficient look ahead when the branch predictor traverses loop branches [113].

TIFS [113] and PIF [114] record the instruction fetch miss and instruction commit sequences to
overcome the limitations of branch predictor based prefetching. Whereas these mechanisms have
improved accuracy and miss coverage, they require considerable on-chip storage to maintain an
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ordered log of instruction block addresses. Increasing on-chip storage is impractical at data center
scale due to strict energy requirements.

More sophisticated hardware instruction prefetchers proposed by prior works (e.g., trace caches
and special hardware replacement policies) [209, 306, 152, 28] are too complex to be deployed.
We conclude that hardware prefetching mechanisms either provide low accuracy and coverage or
they require significant on-chip storage and are too complex to implement in real hardware.

In comparison, I-SPY covers most instruction cache misses with minor micro-architectural
modifications. I-SPY requires only 96-bits of extra storage while state-of-the-art hardware
prefetchers (e.g., SHIFT [189], Confluence [190], and Shotgun [211]) require kilobytes to
megabytes of extra storage.
Hybrid hardware-software prefetching. Hybrid hardware-software techniques [238, 41] attempt
to overcome the limitations of hardware-only and software-only prefetching mechanisms. These
mechanisms propose hardware code prefetch instructions [12] that are similar to existing data
prefetch instructions [11]. They use software-based control flow analyses to inject hardware code
prefetch instructions.

Although existing hybrid instruction prefetching mechanisms have been the most effective in
reducing I-cache misses in data-center applications [41], they suffer from key limitations that hurt
prefetch accuracy. First, such hybrid techniques rely on a single predecessor basic block as the
execution context to predict a future cache miss. However, as we show in Section 4.2, we find that
miss patterns are more complex and multiple predecessor basic blocks are needed to construct the
execution context to accurately predict a future cache miss. Second, existing hybrid prefetching
techniques often execute far too many dynamic prefetch instructions, further increasing application
code footprints. In contrast, I-SPY achieves near-ideal prefetch accuracy via conditional prefetch-
ing, while allowing only a small increase in application footprint.

4.9 Conclusion

Large instruction working sets in modern data center applications have resulted in frequent I-cache
misses that significantly degrade data center performance. We investigated instruction prefetching
to address this problem and analyze the challenges of designing an ideal instruction prefetcher. We
then used insights derived from our investigation to develop I-SPY, a novel profile-driven prefetch-
ing technique. I-SPY exposes two new instruction prefetching techniques: conditional prefetching

and prefetch coalescing via a family of light-weight hardware code prefetch instructions. We eval-
uated I-SPY on nine widely-used data center applications to demonstrate an average of 15.5% (up
to 45.9%) speedup and 95.9% (and up to 98.4%) reduction in instruction cache misses, outper-
forming the state-of-the-art prefetching technique by 22.5%.
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CHAPTER 5

Ripple: Profile-Guided Instruction Cache
Replacement for Data Center Applications

Modern data center applications exhibit deep software stacks, resulting in large instruction foot-
prints that frequently cause instruction cache misses degrading performance, cost, and energy effi-
ciency. Although numerous mechanisms have been proposed to mitigate instruction cache misses,
they still fall short of ideal cache behavior, and furthermore, introduce significant hardware over-
heads. We1 first investigate why existing I-cache miss mitigation mechanisms achieve sub-optimal
performance for data center applications. We find that widely-studied instruction prefetchers fall
short due to wasteful prefetch-induced cache line evictions that are not handled by existing re-
placement policies. Existing replacement policies are unable to mitigate wasteful evictions since
they lack complete knowledge of a data center application’s complex program behavior.

To make existing replacement policies aware of these eviction-inducing program behaviors, we
propose Ripple, a novel software-only technique that profiles programs and uses program con-
text to inform the underlying replacement policy about efficient replacement decisions. Ripple
carefully identifies program contexts that lead to I-cache misses and sparingly injects “cache line
eviction” instructions in suitable program locations at link time. We evaluate Ripple using nine
popular data center applications and demonstrate that Ripple enables any replacement policy to
achieve speedup that is closer to that of an ideal I-cache. Specifically, Ripple achieves an average
performance improvement of 1.6% (up to 2.13%) over prior work due to a mean 19% (up to 28.6%)
I-cache miss reduction.

1Some of the work in this chapter was performed in collaboration with Dexin Zhang, Akshitha Sriraman, Joseph
Devietti, Gilles Pokam, Heiner Litz, and Baris Kasikci [201]. Therefore, I use the “we” pronoun in this chapter to
acknowledge their involvement in this work.
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5.1 Introduction

Modern data center applications are becoming increasingly complex. These applications are com-
posed of deep and complex software stacks that include various kernel and networking modules,
compression elements, serialization code, and remote procedure call libraries. Such complex code
stacks often have intricate inter-dependencies, causing millions of unique instructions to be exe-
cuted to serve a single user request. As a result, modern data center applications face instruction
working set sizes that are several orders of magnitude larger than the instruction cache (I-cache)
sizes supported by today’s processors [179, 41].

Large instruction working sets precipitate frequent I-cache misses that cannot be effectively
hidden by modern out-of-order mechanisms, manifesting as glaring stalls in the critical path of ex-
ecution [211]. Such stalls deteriorate application performance at scale, costing millions of dollars
and consuming significant energy [344, 41]. Hence, eliminating instruction misses to achieve even
single-digit percent speedups can yield immense performance-per-watt benefits [344].

I-cache miss reduction mechanisms have been extensively studied in the past. Several prior
works proposed next-line [328, 34, 320], branch-predictor-guided [302, 212, 211], or history-
based [114, 280, 113, 189, 209, 254, 305, 128] hardware instruction prefetchers and others de-
signed software mechanisms to perform code layout optimizations for improving instruction lo-
cality [236, 221, 65, 276, 278, 279]. Although these techniques are promising, they (1) require
additional hardware support to be implemented on existing processors and (2) fall short of the ideal
I-cache behavior, i.e., an I-cache that incurs no misses. To completely eliminate I-cache misses,
it is critical to first understand: why do existing I-cache miss mitigation mechanisms achieve sub-
optimal performance for data center applications? How can we further close the performance gap
to achieve near-ideal application speedup?

To this end, we comprehensively investigate why existing I-cache miss mitigation techniques
fall short of an ideal I-cache, and precipitate significant I-cache Misses Per Kilo Instruction (MPKI)
in data center applications (§5.2). Our investigation finds that the most widely-studied I-cache
miss mitigation technique, instruction prefetching, still falls short of ideal I-cache behavior. In
particular, existing prefetchers perform many unnecessary prefetches, polluting the I-cache, caus-
ing wasteful evictions. Since wasteful evictions can be avoided by effective cache replacement
policies, we study previous proposals such as the Global History Reuse Predictor (GHRP) [28]
(the only replacement policy specifically targeting the I-cache, to the best of our knowledge)
as well as additional techniques that were originally proposed for data caches, such as Hawk-
eye [153]/Harmony [154], SRRIP [156], and DRRIP [156].

Driven by our investigation results, we propose Ripple, a profile-guided technique to optimize
I-cache replacement policy decisions for data center applications. Ripple first performs an offline
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analysis of the basic blocks (i.e., sequence of instructions without a branch) executed by a data
center application, recorded via efficient hardware tracing (e.g., Intel’s Processor Trace [207, 86]).
For each basic block, Ripple then determines the cache line that an ideal replacement policy would
evict based on the recorded basic block trace. Ripple computes basic blocks whose executions
likely signal a future eviction for an ideal replacement policy. If this likelihood is above a certain
threshold (which we explore and determine empirically in §5.3), Ripple injects an invalidation
instruction to evict the victim cache line. Intel recently introduced such an invalidation instruction
— CLDemote, and hence Ripple can readily be implemented on upcoming processors.

We evaluate Ripple in combination with I-cache prefetching mechanisms, and show that Ripple
yields on average 1.6% (up to 2.13%) improvement over prior work as it reduces I-cache misses by
on average 19% (up to 28.6%). As Ripple is primarily a software-based technique, it can be imple-
mented on top of any replacement policy that already exists in hardware. In particular, we evaluate
two variants of Ripple. Ripple-Least Recently Used (LRU) is optimized for highest performance
and reduces I-cache MPKI by up to 28.6% over previous proposals, including Hawkeye/Harmony,
DRRIP, SRRIP, and GHRP. On the other hand, Ripple-Random is optimized for lowest storage
overhead, eliminating all meta data storage overheads, while outperforming prior work by up to
19%. Ripple executes only 2.2% extra dynamic instructions and inserts only 3.4% new static in-
structions on average. In summary, we show that Ripple provides significant performance gains
compared to the state-of-the-art I-cache miss mitigation mechanisms while minimizing the meta
data storage overheads of the replacement policy.

In summary, we make the following contributions:
• A detailed analysis of why existing I-cache miss mitigation mechanisms fall short for data center

applications
• Profile-guided replacement: A software mechanism that uses program behavior to inform re-

placement decisions
• Ripple: A novel profile-guided instruction cache miss mitigation mechanism that can readily

work on any existing replacement policy
• An evaluation demonstrating Ripple’s efficacy at achieving near-ideal application speedup.

5.2 Why do existing I-cache miss mitigation techniques fall
short?

In this section, we analyze why existing techniques to mitigate I-cache misses fall short, precipitat-
ing high miss rates in data center applications. We first present background information on the data
center applications we study (§5.2.1). We then perform a limit study to determine the maximum
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speedup that can be obtained with an ideal I-cache for applications with large instruction footprints
(§5.2.2). Next, we evaluate existing prefetching mechanisms, including next-line prefetcher and
FDIP [302], to analyze why these techniques achieve sub-optimal performance (§5.2.3). Finally,
we analyze existing cache replacement policies, including LRU, Harmony, DRRIP, SRRIP, and
GHRP, to quantify their performance gap with the optimal replacement policy (§5.2.4). This anal-
ysis provides the foundation for Ripple, a novel prefetch-aware I-cache replacement policy that
achieves high performance with minimal hardware overheads.

5.2.1 Background on evaluated applications

We study nine widely-used real-world data center applications that suffer from substantial I-cache
misses [199]—these applications lose 23-80% of their pipeline slots due to frequent I-cache misses.
We study three HHVM applications from Facebook’s OSS-performance benchmark suite [19], in-
cluding drupal [378] (a PHP content management system), mediawiki [380] (a wiki engine),
and wordpress [383] (a popular content management system). We investigate three Java appli-
cations from the DaCapo benchmark suite [51], including cassandra [2] (a NoSQL database
used by companies like Netflix), kafka [377] (a stream processing system used by companies
like Uber), and tomcat [4] (Apache’s implementation of Java Servlet and Websocket). From the
Java Renaissance [294] benchmark suite, we analyze Finagle-Chirper (Twitter’s microblogging
service) and Finagle-HTTP [15] (Twitter’s HTTP server). We also study Verilator [16, 35] (used
by cloud companies for hardware simulation). We describe our complete experimental setup and
simulation parameters in §5.4.

5.2.2 Ideal I-cache: The theoretical upper bound

An out-of-order processor’s performance greatly depends on how effectively it can supply itself
with instructions. Therefore, these processors use fast dedicated I-caches that can typically be
accessed in 3-4 cycles [329]. To maintain a low access latency, modern processors typically have
small I-cache sizes (e.g., 32KB) that are overwhelmed by data center applications’ multi-megabyte
instruction footprints [179, 39, 41, 279] incurring frequent I-cache misses. To evaluate the true
cost of these I-cache misses as well as the potential gain of I-cache optimizations, we explore
the speedup that can be obtained for data center applications with an ideal I-cache that incurs no
misses. Similar to prior work [41, 199], we compute the speedup relative to a baseline cache
configuration with no prefetching and with an LRU replacement policy. As shown in Fig. 5.1, an
ideal I-cache can provide between 11-47% (average of 17.7%) speedup over the baseline cache
configuration.
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Figure 5.1: Ideal I-cache speedup over an LRU baseline without any prefetching: These data center
applications can gain on average 17.7% speedup with an ideal I-cache with no misses.

5.2.3 Why do modern instruction prefetchers fall short?

Prior works [109, 41, 199, 302] have proposed prefetching techniques to overcome the perfor-
mance challenge induced by insufficiently sized I-caches. Fetch Directed Instruction Prefetching
(FDIP) [302] is the state-of-the art mechanism that is implemented on multiple real-world proces-
sors [350, 283, 308, 129] due to its performance and moderate implementation complexity. Fig. 5.2
shows FDIP’s speedup over the baseline I-cache configuration without any prefetching. Both FDIP
and baseline configurations use the LRU replacement policy. As shown, FDIP+LRU provides be-
tween 8-44% (average of 13.4%) speedup over the baseline. This represents a 4.3% performance
loss over the ideal cache speedup (17.7%).

To analyze why FDIP falls short of delivering ideal performance, we equip the I-cache with
a prefetch-aware ideal replacement policy. In particular, when leveraging a revised version of
the Demand-MIN prefetch-aware replacement policy [154], we find that the speedup increases
to on average 16.6% falling short of the ideal cache by just 1.14%. In other words, FDIP with
prefetch-aware ideal replacement policy outperforms FDIP with LRU by 3.16%. This observa-
tion highlights the importance of combining state-of-the-art I-cache prefetching mechanisms with
better replacement policies.

To confirm the generality of our observation, we repeat the above experiment with a standard
Next-Line Prefetcher (NLP) [328]. We find that the combination of NLP prefetching with ideal
cache replacement results in a 3.87% speedup over the NLP baseline without a perfect replacement
policy.

To understand the key reasons behind the near-ideal speedups provided by the prefetch-aware
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Figure 5.2: Fetch directed instruction prefetching (FDIP) speedup over an LRU baseline without
any prefetching: FDIP provides 13.4% mean speedup with LRU replacement policy. However,
with an ideal cache replacement policy FDIP can provide 16.6% average speedup which is much
closer to ideal cache speedup.

ideal replacement policy, we first briefly describe how the policy works and then summarize the
key reasons for near-ideal speedups [154]. We also quantify the speedups that an ideal replacement
policy can provide for the data center applications we evaluate.
Prefetch-aware ideal replacement policy. Our ideal prefetch-aware replacement policy is based
on a revised version of Demand-MIN [154]. In its revised form, Demand-MIN evicts the cache
line that is prefetched farthest in the future if there is no earlier demand access to that line. If there
exists no such prefetch for a given cache set, Demand-MIN evicts the line whose demand access
is farthest in the future. We now detail and quantify two observations that were originally made by
Demand-MIN: (1) evicting inaccurately prefetched cache lines reduces I-cache misses and (2) not
evicting hard-to-prefetch cache lines reduces I-cache misses.
Observation #1: Early eviction of inaccurately prefetched cache lines reduces I-cache misses.
The ideal replacement policy can evict inaccurately prefetched cache lines (i.e., ones that will
not be used) early, improving performance. Like most practical prefetchers, FDIP inaccurately
prefetches many cache lines as its decisions are guided by a branch predictor, which occasionally
mispredicts branch outcomes. However, the ideal replacement policy has knowledge of all future
accesses, so it can immediately evict inaccurately prefetched cache lines, minimizing their negative
performance impact. Across our nine data center applications, the ideal cache replacement policy
combined with FDIP, provides 1.35% average speedup (out of 3.16% total speedup of FDIP+ideal
over FDIP+LRU) relative to an LRU-based baseline replacement policy (also combined with FDIP)
due to the early eviction of inaccurately-prefetched cache lines.
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Observation #2: Not evicting hard-to-prefetch cache lines reduces I-cache misses. An ideal re-
placement policy can keep hard-to-prefetch cache lines in the cache while evicting easy-to-prefetch
lines. Cache lines that cannot be prefetched with good accuracy or at all, are considered hard-to-
prefetch cache lines. For example, FDIP is guided by the branch predictor. A cache line that
will be prefetched based on the outcome of a branch, may not be prefetched if the predictor can-
not easily predict the branch outcome (e.g., due to an indirect branch)—in that case, the line is
hard-to-prefetch. Easy-to-prefetch cache lines are cache lines that the prefetcher is often able to
prefetch accurately. For example, a cache line that FDIP can prefetch based on the outcome of
a direct unconditional branch is an easy-to-prefetch cache line. Since the ideal replacement pol-
icy has knowledge of all accesses and prefetches, it can (1) accurately identify hard-to-prefetch
and easy-to-prefetch lines for any given prefetching policy and (2) prioritize the eviction of easy-
to-prefetch lines over hard-to-prefetch lines. Across our nine data center applications, the ideal
cache replacement policy combined with FDIP, provides 1.81% average speedup (out of 3.16% to-
tal speedup of FDIP+ideal over FDIP+LRU) relative to an LRU-based baseline replacement policy
(also combined with FDIP) due to not evicting hard-to-prefetch lines.
Summary: Exploiting the above observations for an optimized prefetch-aware replacement policy
requires knowledge about future instruction sequences that are likely to be executed. We find that
this information can be provided by the static control-flow analysis based on execution profiles
and instruction traces. As described in §5.4, Ripple leverages these analysis techniques and per-
forms well-informed replacement decisions in concert with the prefetcher, to achieve near-ideal
performance.

5.2.4 Why do existing replacement policies fall short?

In the previous section, we demonstrated that a prefetch-aware ideal cache replacement policy can
provide on average 3.16% speedup relative to a baseline LRU replacement policy. In this section,
we explore the extent to which existing replacement policies close this speedup gap. As there
exist only few works on I-cache replacement policies apart from GHRP [28], we also explore data
cache replacement policies such as LRU [249], Hawkeye [153]/Harmony [154], SRRIP [156], and
DRRIP [156] applied to the I-cache.

GHRP [28] was designed to eliminate I-cache and Branch Target Buffer (BTB) misses. Dur-
ing execution, GHRP populates a prediction table indexed by control flow information to predict
whether a given cache line is dead or alive. While making replacement decisions, GHRP favors
evicting lines that are more likely to be dead. Every time GHRP evicts a cache line, it uses a counter
to update the predictor table that the evicted cache line is more likely to be dead. Similarly, GHRP
updates the predictor table after each hit in the I-cache to indicate that that the hit cache line is more
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Figure 5.3: Speedup for different cache replacement policies over an LRU baseline with FDIP
at the L1 I-cache: None of the existing policies outperform LRU, although an ideal replacement
policy provides on average 3.16% speedup.

likely to be alive. GHRP uses 4.13KB extra on-chip metadata for a 32KB I-cache to primarily store
this prediction table.

Hawkeye/Harmony [153] was designed for the data cache, specifically for the Last Level Cache
(LLC). By simulating the ideal cache replacement policy [48] on access history, Hawkeye de-
termines whether a Program Counter (PC) is “cache-friendly” or “cache-averse”, i.e., whether
the data accessed while the processor executes the instruction corresponding to this PC follows a
cache-friendly access pattern [155] or not. Cache lines accessed at a cache-friendly PC are main-
tained using the LRU cache replacement policy, while lines accessed by a cache-averse PC are
marked to be removed at the earliest opportunity. Harmony [154] is a state-of-the-art replacement
policy that adds prefetch-awareness to Hawkeye. It simulates Demand-MIN [154] on the access
history in hardware to further categorize PCs as either prefetch-friendly or prefetch-averse.

SRRIP [156] was mainly designed to eliminate the adverse effects of the scanning [47] cache
access pattern, where a large number of cache lines are accessed without any temporal locality (i.e.,
a sequence of accesses that never repeat). SRRIP assumes that all newly-accessed cache lines are
cache-averse (i.e., scans). Only when a cache line is accessed for a second time, SRRIP promotes
the status of the line to cache-friendly.

DRRIP [156] improves over SRRIP by considering thrashing access patterns, i.e., when the
working set of the application exceeds the cache size [94]. DRRIP reserves positions for both
cache-friendly and cache-averse lines via set-dueling [297].

Fig. 5.3 shows the performance for different cache replacement policies over the LRU baseline
with FDIP. Tab. 5.1 shows the metadata storage overheads induced by each replacement policy.
As shown, none of the existing replacement policies provide any performance or storage benefits
over LRU even though the ideal cache replacement policy provides 3.16% average speedup over
LRU. We now explain why each of these prior replacement policies do not provide any significant
benefit.
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Table 5.1: Storage overheads of different replacement policies for a 32KB, 8-way set associative
instruction cache that has 64B cache lines.

Replacement Policy Overhead Notes
LRU 64B 1-bit per line
GHRP 4.13KB 3KB prediction table, 64B

prediction bits , 1KB signa-
ture, 2B history register

SRRIP 128B 2-bits× associativity
DRRIP 128B 2-bits× associativity
Hawkeye/Harmony 5.1875KB 1KB sampler (200 entries),

1KB occupancy vector, 3KB
predictor, 192B RRIP coun-
ters

GHRP classifies cache lines into dead or alive based on the prediction table, to inform eviction
decisions. One issue with GHRP is that it increases the classification confidence in the prediction
table after eviction even if the decision was incorrect (e.g., evicted a line that was still needed). We
modified GHRP so that it decreases the confidence in the prediction table after each eviction. With
this optimization, GHRP outperforms LRU by 0.1%.

Hawkeye/Harmony predicts whether a PC is likely to access a cache-friendly or cache-averse
cache line. This insight works well for D-caches where an instruction at a given PC is responsible
for accessing many D-cache lines that exhibit similar cache-friendly or cache-averse access pat-
terns. However, for I-cache, an instruction at a given PC is responsible for accessing just one cache
line that contains the instruction itself. If the line has multiple cache-friendly accesses followed
by a single cache-averse access, Hawkeye predicts the line as cache-friendly. Therefore, Hawkeye
cannot identify that single cache-averse access and cannot adapt to dynamic I-cache behavior. For
I-cache accesses in data center applications, Hawkeye predicts almost all PCs (more than 99%) as
cache friendly and hence fails to provide performance benefits over LRU.

SRRIP and DRRIP can provide significant performance benefits over LRU if the cache accesses
follow a scanning access pattern. Moreover, DRRIP provides further support for thrashing access
patterns [94]. For the I-cache, scanning access patterns are rare and hence classifying a line as a
scan introduces a penalty over plain LRU. We quantify the scanning access pattern for our data
center applications by measuring the compulsory MPKI (misses that happen when a cache line is
accessed for the first time [142]). For these applications, compulsory MPKI is very small (0.1-0.3
and 0.16 on average). Moreover, both SRRIP and DRRIP arbitrarily assume that all cache lines
will have similar access patterns (either scan or thrash) which further hurts data center applica-
tions’ I-cache performance. Consequently, SRRIP and DRRIP cannot outperform LRU for I-cache
accesses in data center applications.

We observe that data center applications tend to exhibit a unique reuse distance behavior, i.e.,
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the number of unique cache lines accessed in the current associative set between two consecutive
accesses to the same cache line, or the re-reference interval [156] of a given cache line varies widely
across the program life time. Due to this variance, a single I-cache line can be both cache-friendly
and cache-averse at different stages of the program execution. Existing works do not adapt to this
dynamic variance and hence fail to improve performance over LRU. We combine these insights
with our observations in §5.2.3 to design Ripple, a profile-guided replacement policy for data
center applications.

5.3 The Ripple Replacement Mechanism

As we show in our analysis, an ideal cache replacement policy provides on average 3.16% speedup
over an LRU I-cache for data center applications. Moreover, we find that existing instruction and
data cache replacement policies[28, 154, 153, 156] fall short of the LRU baseline, since they are
ineffective at avoiding wasteful evictions due to the complex instruction access behaviors. Hence,
there is a critical need to assist the underlying replacement policy in making smarter eviction
decisions by informing it about complex instruction accesses.

To this end, we propose augmenting existing replacement mechanisms with Ripple—a novel
profile-guided replacement technique that carefully identifies program contexts leading to I-cache
misses and strives to evict the cache lines that would be evicted by the ideal policy. Ripple’s
operation is agnostic of the underlying I-cache replacement policy. It sparingly injects “cache line
eviction” instructions in suitable program locations at link time to assist an arbitrary replacement
policy implemented in hardware. Ripple introduces no additional hardware overhead and can be
readily implemented on soon-to-be-released processors. Ripple enables an existing replacement
policy to further close the performance gap in achieving the ideal I-cache performance.

Fig. 5.4 shows Ripple’s design components. First, at run time (online), Ripple profiles a pro-
gram’s basic block execution sequence using efficient hardware-based control flow tracing support
such as Intel PT [207] or Last Branch Record (LBR) [99] (step 1 , §5.3.1). Ripple then analyzes
the program trace offline using the ideal I-cache replacement policy (step 2 , §5.3.2) to compute a
set of cue blocks. A cue block is a basic block whose execution almost always leads to the ideal
victim cache line to be evicted. The key idea behind Ripple’s analysis is to mimic an ideal policy
that would evict a line that will be used farthest in the future. During recompilation, Ripple then in-
jects an instruction in the cue block that invalidates the victim line (step 3 §5.3.3). Consequently,
the next time a cache line needs to be inserted into the cache set that the victim line belongs to,
the victim line will be evicted. In contrast to prior work [28, 153, 154, 156], Ripple moves the
compute-intensive task of identifying the victim line from the hardware to the software, thereby
reducing hardware overheads. We now describe Ripple’s three components.
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Figure 5.4: High-level design of Ripple
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5.3.1 Runtime Profiling

Ripple profiles data center applications at run time using Intel PT [207] to collect a trace of the
dynamically-executed basic blocks. As shown in Fig. 5.4, the collected program trace includes
two pieces of information for each control-flow instruction in the program. The first bit (T/NT),
denotes whether the branch in question was taken (T) or the fall-through path was followed (NT).
If the program follows the taken path of an indirect branch, the program trace also includes the
address of the next instruction on the taken path. Ripple leverages this program execution trace,
to perform (1) eviction analysis and (2) invalidation injection offline at link-time. During eviction
analysis, Ripple identifies the I-cache lines that will be touched (omitting speculative accesses) in
real hardware based on the execution trace. Ripple’s eviction analysis does not require recording
the I-cache lines that will be evicted in hardware.

Ripple leverages Intel PT [207] to collect the precise basic block execution order with low
runtime performance overhead (less than 1% [184, 413]). Ripple uses Intel PT since it is efficient
in real-world production scenarios [86, 121, 187, 186].

5.3.2 Eviction Analysis

The goal of Ripple’s eviction analysis is to mimic an ideal replacement policy, which would evict
cache lines that will not be accessed for the longest time in the future. The basic block trace
collected at run time allows Ripple to retroactively determine points in the execution that would
benefit from invalidating certain cache lines to help with cache replacement.

Eviction analysis determines a cue block, whose execution can identify the eviction of a par-
ticular victim cache line with high probability, if an ideal cache replacement policy were used.
To determine the cue block in the collected runtime profile, Ripple analyzes all the blocks in the
eviction window of each cache line, i.e., the time window spanning between the last access to that
cache line to the access that would trigger the eviction of the same line, given an ideal replacement
policy.

Fig. 5.5a shows examples of eviction windows for the cache line, A. In this example, the
cache line A gets evicted six times by the ideal cache replacement policy over the execution of
the program. To compute each eviction window, Ripple iterates backward in the basic block trace
from each point where A would be evicted by an ideal replacement policy until it reaches a basic
block containing (even partially) the cache line A. Ripple identifies the basic blocks across all
eviction windows that can accurately signal the eviction as candidate cue blocks (described further
in Sec. 5.3.3), where it can insert an invalidation instruction to mimic the ideal cache replacement
behavior. In this example, Ripple identifies basic blocks, B, C, D, and E as candidate cue blocks.

Next, Ripple calculates the conditional probability of a cache line eviction given the execution
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(b) How Ripple calculates the conditional probability of the eviction of the cache line A, given the execution
of a particular basic block.

Figure 5.5: An example of Ripple’s eviction analysis process
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of each candidate cue block. Fig. 5.5b shows an example of this probability calculation for the
cache line, A. To calculate this conditional probability, Ripple calculates two metrics. First, it
computes how many times each candidate cue block was executed during the application’s life-
time. In this example, the candidate cue blocks B, C, D, and E are executed 16, 8, 6, and 3 times
respectively. Second, for each candidate cue block, Ripple computes the number of unique eviction
windows which include the corresponding candidate cue block. In our example, basic blocks B,
C, D, and E are included in 4, 4, 2, and 2 unique eviction windows, respectively. Ripple calculates
the conditional probability as the ratio of the second value (count of windows containing the can-
didate cue block) to the first value (execution count of the cue block). For instance, P ((Eviction,
A)|(Execute, B)) = 0.25 denotes that for each execution of B, there is a 25% chance that the
cache line A may be evicted.

Finally, for each eviction window, Ripple selects the cue block with the highest conditional
probability, breaking ties arbitrarily. In our example, Ripple will select basic blocks C and E as
cue blocks for 4 (windows 1, 4, 5, 6) and 2 (windows 2, 3) eviction windows, respectively. If the
conditional probability of the selected basic block is larger than a threshold, Ripple will inject an
explicit invalidation request in the basic block during recompilation. Next, we describe the process
by which the invalidation instructions are injected as well as the trade-off that is associated with
this probability threshold.

5.3.3 Injection of Invalidation Instructions

Based on the eviction analysis, Ripple selects the cue basic block for each eviction window. Next,
Ripple inserts an explicit invalidation instruction into the cue block to invalidate the victim cache
line. Ripple’s decision to insert an invalidation instruction is informed by the conditional probabil-
ity it computes for each candidate cue block. Specifically, Ripple inserts an invalidation instruction
into the cue block only if the conditional probability is higher than the invalidation threshold. We
now describe how Ripple determines the invalidation threshold and the invalidation granularity
(i.e., why Ripple decides to inject invalidation instructions in a basic block to evict a cache line).
We then give details on the invalidation instruction that Ripple relies on.
Determining the invalidation threshold. Ripple considers two key metrics when selecting the
value of the invalidation threshold: replacement coverage and replacement accuracy. We first
define these metrics and then explain the trade-off between them.

Replacement-Coverage. We define replacement-coverage as the ratio of the total number of
replacement decisions performed by a given policy divided by the total number of replacement
decisions performed by the ideal replacement policy. A policy that exhibits less than 100%
replacement-coverage omits some invalidation candidates that the optimal replacement policy
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would have chosen for eviction.
Replacement-Accuracy. We define replacement-accuracy as the ratio of total optimal replace-

ment decisions of a given policy divided by the replacement decisions performed by the ideal
replacement policy. Therefore, if Ripple induces x invalidations over a program’s lifetime, and
y of those invalidations do not introduce any new misses over the ideal cache replacement policy,
then Ripple’s accuracy (in percentage) is: 100∗y

x
. A policy that exhibits less than 100% replacement-

accuracy will evict cache lines that the ideal cache replacement policy would not have evicted.
Coverage-Accuracy Trade-off. Replacement-coverage and replacement-accuracy represent use-

ful metrics to measure a cache replacement policy’s optimality. A software-guided policy with a
low replacement-coverage will frequently need to revert to the underlying hardware policy suffer-
ing from its sub-optimal decisions. On the other hand, a policy with low replacement-accuracy will
frequently evict lines that the program could still use. As shown in Fig. 5.6, Ripple leverages the
invalidation-threshold to control the aggressiveness of its evictions, allowing to trade-off coverage
and accuracy. Although this figure presents data from a single application (i.e., finagle-http),
we observe similar trends across all the data center applications that we evaluate.

At a lower threshold (0-20%), Ripple has almost 100% coverage, because all the replacement
decisions are made by Ripple’s invalidations. At the same time, Ripple’s accuracy suffers greatly
because it invalidates many cache lines that introduce new misses over the ideal cache replacement
policy. Consequently, at a lower threshold, Ripple does not provide additional performance over
the underlying replacement policy.

Similarly, at a higher threshold (80-100%), Ripple achieves near-perfect accuracy as cache
lines invalidated by Ripple do not incur extra misses over the ideal replacement policy. However,
Ripple’s coverage drops sharply as more replacement decisions are not served by Ripple-inserted
invalidations. Therefore, Ripple’s performance benefit over the underlying hardware replacement
policy declines rapidly.

Only at the middle ground, i.e., when the invalidation threshold ranges from 40-60%, Ripple
simultaneously achieves both high coverage (greater than 50%) and high accuracy (greater than
80%). As a result, Ripple provides the highest performance benefit at this invalidation threshold
range. For each application, Ripple chooses the invalidation threshold that provides the best per-
formance for a given application. Across 9 applications, this invalidation threshold varies from
45-65%.
Invalidation granularity. Ripple injects invalidation instructions at the basic block granularity
while invalidation instructions evict cache lines. In practice, we find that Ripple does not suffer
a performance loss due to this mismatch. In particular, Ripple provides a higher speedup when
evicting at the basic block granularity than when evicting at the cache line or combination of basic
block and cache line granularity.
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Figure 5.6: Coverage vs. accuracy trade-off of Ripple for finagle-http. Other applications also
exhibit a similar trade-off curve. The invalidation threshold providing the best performance across
the 9 data center applications we studied varies between 45-65%.

The Invalidation instruction. We propose a new invalidation instruction, invalidate that takes
the address of a cache line as an operand and invalidates it if the cache line resides in the I-
cache. Our proposed invalidate instruction exhibits one key difference compared to existing
cache line flushing instructions (e.g., the clflush instruction on Intel processors) in that it does
not invalidate the cache line from other caches in the cache hierarchy. Instead, our proposed
invalidate instruction invalidates the cache line only in the local I-cache, thereby avoiding
costly cache-coherency transactions and unnecessary invalidations in remote caches. Furthermore,
the invalidate instruction has low latency as it does not have to wait for the potentially dirty
cache line to be written back to the lower cache levels. Instead, invalidate can be regarded
as a hint that can be freely reordered with fences and synchronization instructions. Intel recently
introduced [352] such an invalidation instruction called (cldemote) slated to be supported in its
future servers, and hence Ripple will be readily implementable on such upcoming processors.

5.4 Evaluation

In this section, we first describe our experimental methodology and then evaluate Ripple using key
performance metrics.
Trace collection. We collect the execution trace of data center applications using Intel Processor
Trace (PT). Specifically, we record traces for 100 million instructions in the application’s steady-
state containing both user and kernel mode instructions as Intel PT allows to capture both. We
find that for most applications, the percentage of kernel mode instruction induced I-cache misses
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Table 5.2: Simulator Parameters

Parameter Value
CPU Intel Xeon Haswell
Number of cores per socket 20
L1 instruction cache 32 KiB, 8-way
L1 data cache 32 KiB, 8-way
L2 unified cache 1 MB, 16-way
L3 unified cache Shared 10 MiB per socket, 20-way
All-core turbo frequency 2.5 GHz
L1 I-cache latency 3 cycles
L1 D-cache latency 4 cycles
L2 cache latency 12 cycles
L3 cache latency 36 cycles
Memory latency 260 cycles
Memory bandwidth 6.25 GB/s

is small (< 1%). However, for drupal, mediawiki, and wordpress, kernel code is responsible
for 15% of all I-cache misses.
Simulation. At the time of this writing, no commercially-available processor supports our pro-
posed invalidate instruction, even though future Intel processors will support the functionally-
equivalent cldemote instruction [376]. To simulate this invalidate instruction, we evaluate Rip-
ple using simulation. This also allows us to evaluate additional replacement policies and their
interactions with Ripple. We extend the ZSim simulator [310] by implementing our proposed
invalidate instruction. We list several important parameters of the trace-driven out-of-order
ZSim simulation in Table 5.2. We implement Ripple on the L1 I-cache in our experiments.
Data center applications and inputs. We use nine widely-used data center applications described
in §5.2 to evaluate Ripple. We study these applications with different input parameters offered to
the client’s load generator (e.g., number of requests per second or the number of threads). We
evaluate Ripple using different inputs for training (profile collection) and evaluation.

We now evaluate Ripple using key performance metrics on all nine data center applications
described in Sec. 5.2. First, we measure how much speedup Ripple provides compared to ideal
and other prior cache replacement policies. Next, we compare L1 I-cache MPKI reduction (%)
for Ripple, ideal, and other policies for different prefetching configurations. Then, we evaluate
Ripple’s replacement-coverage and replacement-accuracy as described in Sec. 5.3.3. Next, we
measure how much extra static and dynamic instructions Ripple introduces into the application
binary. Finally, we evaluate how Ripple performs across multiple application inputs.
Speedup. We measure the speedup (i.e., percentage improvement in instructions per cycle [IPC])
provided by Ripple over an LRU baseline. We also compare Ripple’s speedup to speedups provided
by the prefetch-aware ideal replacement policy as well as four additional prior cache replacement
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policies including Hawkeye/Harmony, DRRIP, SRRIP, and GHRP, whose details were discussed in
§5.2. To show that Ripple’s speedup is not primarily due to the underlying hardware replacement
policy, we also provide Ripple’s speedup with two different underlying hardware replacement
policies (random and LRU). Finally, we measure the speedups for all replacement policies by
altering the underlying I-cache prefetching mechanisms (no prefetching, NLP, and FDIP).

Fig. 5.7 shows the speedup results. Ripple, with an underlying LRU-based hardware replace-
ment policy (i.e., Ripple-LRU in Fig. 5.7), always outperforms all prior replacement policies across
all different prefetcher configurations. In particular, Ripple-LRU provides on average 1.25% (no
prefetching), 2.13% (NLP), 1.4% (FDIP) speedups over a pure-LRU replacement policy baseline.
These speedups correspond to 37% (no prefetching), 55% (NLP), and 44% (FDIP) of the speedups
of an ideal cache replacement policy. Notably, even Ripple-Random, which operates with an un-
derlying random hardware replacement policy (which itself is on average 1% slower than LRU),
provides 0.86% average speedup over the LRU baseline across the three different I-cache prefetch-
ers. In combination with Ripple, Random becomes a feasible replacement policy that eliminates
all meta-data storage overheads in hardware.

The performance gap between Ripple and the ideal cache replacement policy stems from two
primary reasons. First, Ripple cannot cover all eviction windows via software invalidation as cov-
ering all eviction windows requires Ripple to sacrifice eviction accuracy which hurts performance.
Second, software invalidation instructions inserted by Ripple introduce static and dynamic code
bloat, causing additional cache pressure that contributes to the performance gap (we quantify this
overhead later in this section).
I-cache MPKI reduction. Fig. 5.8 shows the L1 I-cache miss reduction provided by Ripple (with
underlying hardware replacement policies of LRU and Random) and the prior work policies. As
shown, Ripple-LRU reduces I-cache misses over all prior policies across all applications. Across
different prefetching configurations, Ripple can avoid 33% (no prefetching), 53% (NLP), and 41%
(FDIP) of I-cache misses that are avoided by the ideal replacement policy. Ripple reduces I-cache
MPKI regardless of the underlying replacement policy. Even when the underlying replacement
policy is random (causing 12.71% more misses in average than LRU), Ripple-Random incurs 9.5%
fewer misses on average than LRU for different applications and prefetching configurations.
Replacement-Coverage. As described in §5.3.3, Ripple’s coverage is the percentage of all re-
placement decisions (over the program life time) that were initiated by Ripple’s invalidations.
Fig. 5.9 shows Ripple’s coverage for all applications. As shown, Ripple achieves on average
more than 50% coverage. Only for three HHVM applications (i.e., drupal, mediawiki, and
wordpress), Ripple’s coverage is lower than 50%, as for these applications Ripple does not insert
invalidate instructions on the just-in-time compiled basic blocks. Just-in-time (Jit) compiled
code may reuse the same instruction addresses for different basic blocks over the course of an
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(a) Over no prefetching baseline, Ripple provides 1.25% speedup compared to 3.36% ideal speedup
on average.
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(b) Over next-line prefetching baseline, Ripple provides 2.13% speedup compared to 3.87% ideal
speedup on average.
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(c) Over fetch directed instruction prefetching baseline, Ripple provides 1.4% speedup compared to
3.16% ideal speedup on average.

Figure 5.7: Ripple’s speedup compared to ideal and state-of-the-art replacement policies over an
LRU baseline (with different hardware prefetching): On average, Ripple provides 1.6% speedup
compared to 3.47% ideal speedup.
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(a) With no prefetching, Ripple-LRU reduces 9.57% of all I-cache misses compared to 28.88% miss
reduction provided by the ideal replacement policy.
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(b) With next-line prefetching, Ripple-LRU reduces on average 28.6% of all I-cache misses compared
to 53.66% reduction provided by the ideal replacement policy.
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(c) With fetch directed instruction prefetching, Ripple-LRU reduces on average 18.61% of all I-cache
misses compared to 45% reduction provided by the ideal replacement policy.

Figure 5.8: Ripple’s L1 I-cache miss reduction compared to ideal and state-of-the-art replacement
policies over an LRU baseline (with different hardware prefetching): On average, Ripple reduces
19% of all LRU I-cache misses compared to 42.5% miss reduction by the ideal replacement policy.
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Figure 5.9: Ripple’s coverage for different applications: On average 50% of replacement requests
are processed by evicting cache lines that Ripple invalidates.

execution rendering compile-time instruction injection techniques challenging. Nevertheless, even
for these Jit applications there remains enough static code that Ripple is able to optimize.
Accuracy. In Fig. 5.10, we show Ripple’s replacement-accuracy (as defined in §5.3.3). As shown,
Ripple achieves 92% accuracy on average (with a minimum improvement of 88%). Ripple’s ac-
curacy is on average 14% higher than LRU’s average accuracy (77.8%). Thanks to its higher
accuracy, Ripple avoids many inaccurate replacement decisions due to the underlying LRU-based
hardware replacement policy (which has an average accuracy of 77.8%), and, therefore, the overall
replacement accuracy for Ripple-LRU is on average 86% (8.2% higher than the LRU baseline).
Instruction overhead. Fig. 5.11 and 5.12 quantify the static and dynamic code footprint increase
introduced by the injected invalidate instructions. The static instruction overhead of Ripple is less
than 4.4% for all cases while the dynamic instruction overhead is less than 2% in most cases,
except for verilator. For this application, Ripple executes 10% extra instructions to invalidate
cache lines. This is because for verilator, Ripple covers almost all replacement policy decisions
via software invalidation (98.7% coverage as shown in Fig. 5.9). Similarly, Ripple’s accuracy for
verilator is very high (99.9% as shown in Fig. 5.10). Therefore, though Ripple executes a rela-
tively greater number of invalidation instructions for verilator, it does not execute unnecessary
invalidation instructions.
Profiling and offline analysis overhead. Ripple leverages Intel PT to collect basic block traces
from data center application executions because of its low overhead (less than 1%) and adoption
in production settings [86, 121]. While Ripple’s extraction and analysis on this trace takes longer
(up to 10 minutes), we do not expect that this expensive analysis will be deployed in production
servers. Instead, we anticipate the extraction, analysis, and invalidation injection component of
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Figure 5.10: Ripple’s accuracy for different applications: On average Ripple provides 92% accu-
racy which ensures that the overall accuracy is 86% even though underlying LRU has an accuracy
of 77.8%.

Ripple will be performed offline, similar to how existing profile-guided optimizations for data
center applications are performed [65, 278, 126, 197, 279]. Therefore, we consider the overhead
for Ripple’s offline analysis acceptable.
Invalidation vs. reducing LRU priority. When the underlying hardware cache replacement
policy is LRU, moving a cache line to the bottom of the LRU chain is sufficient to cause eviction.
This LRU-specific optimization improved Ripple’s IPC speedup from 1.6% to 1.7% (apart from
verilator, all other applications benefited from this optimization). This shows that Ripple’s
profiling mechanism works well independent of the particular eviction mechanism.
Performance across multiple application inputs. We investigate Ripple’s performance for data
center applications with three separate input configurations (‘#1’ to ‘#3’). We vary these appli-
cations’ input configurations by changing the webpage, the client requests, the number of client
requests per second, the number of server threads, random number seeds, and the size of input data.
We optimize each application using the profile from input ‘#0’ and measure Ripple’s performance
benefits for different test inputs ‘#1, #2, #3’. For each input, we also measure the performance
improvement when Ripple optimizes the application with a profile for the same input. As shown
in Fig. 5.13, Ripple provides 17% more IPC gains with input-specific profiles compared to profiles
that are not input specific. For brevity, we only show the results for the FDIP baseline. Results
with the other prefetching baselines are similar.
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Figure 5.11: Static instruction overhead introduced by Ripple: On average Ripple inserts 3.4%
new static instructions.

5.5 Discussion

Ripple generates optimized binaries for different target architectures considering the processor’s
I-cache size and associativity. Such a process is common in data centers deploying profile-
guided [65, 216] and post-link-time-based optimization [278, 279] techniques. Therefore, Ripple
can be conveniently integrated into the existing build and optimization processes. Moreover, as the
I-cache size (32KB) and associativity (8-way) for Intel data center processors has been stable for
the last 10 years, the number of different target architectures that Ripple needs to support is small.

5.6 Related Work

Instruction prefetching. Hardware instruction prefetchers such as next-line and decoupled fetch
directed prefetchers [328, 306, 152, 68, 302] have been pervasively deployed in commercial de-
signs [350, 283, 308, 129]. While complex techniques [114, 113, 189, 190] employing record
and replay prefetchers are highly effective in reducing I-cache misses, they require impractical
on-chip metadata storage. Branch predictor-guided prefetchers [211, 212, 34], on the other hand,
follow the same principle as FDIP to reduce on-chip metadata storage, however, they also re-
quire a complete overhaul of the underlying branch target prediction unit. Even recent propos-
als [268, 134, 33, 320, 254, 305, 128, 122] from 1st Instruction Prefetching Championship (IPC1)
require kilobytes of extra on-chip storage to provide near-ideal performance even on workloads
where FDIP with a large enough fetch target queue provides most of the potential performance
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Figure 5.12: Dynamic instruction overhead introduced by Ripple: On average Ripple executes
2.2% extra dynamic instructions.

benefit [150]. Hybrid hardware-software prefetchers [41, 266, 40, 238, 199] analyze a program’s
control flow information in software and inject dedicated prefetching instructions in code which
does not exist in today’s hardware. In contrast, we show that instruction prefetchers alone do not
close the performance gap due to wasteful evictions that must be handled by smarter cache line
replacement.
Cache replacement policies. Heuristic-based hardware data cache replacement policies have been
studied for a long time, including LRU and its variations [182, 219, 273, 327, 387], MRU [297],
re-reference interval prediction [156], reuse prediction [100, 108, 227] and others [21, 118, 144,
205, 298, 314, 349, 355]. Learning-based data cache replacement policies [153, 154, 193, 390]
consider replacement as a binary classification problem of cache-friendly or cache-averse. Recent
methods introduce machine learning techniques like perceptrons [168, 359] and genetic algorithms
[161]. Some learning-based policies use information of Belady’s optimal solution [48], including
Hawkeye [153], Glider [326] and Parrot [226]. However, these policies are mostly designed for
data caches and do not work well for instruction caches as we show earlier (Sec. 5.2). We also
propose a profile-guided approach that can work on top of any of these policies.
Prefetch-aware replacement policy. Prefetch-aware replacement policies focus on avoiding
cache pollution caused by inaccurate prefetches. Some prefetch-aware policies [148, 149, 206] get
feedback from prefetchers to identify inaccurate prefetches, and need co-design or prefetcher mod-
ifications. Others [341, 315, 391] work independently from the prefetcher and estimate prefetch
accuracy from cache behavior.

With prefetching, Belady’s optimal policy [48] becomes incomplete as it cannot distinguish
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Figure 5.13: Ripple’s performance for multiple application inputs with the FDIP baseline: On
average Ripple provides 17% more speedup with input-specific profiles compared to profiles from
different inputs.

easy-to-prefetch cache lines from hard-to-prefetch cache lines [341, 391]. To address this limita-
tion, Demand-MIN [154] revised Belady’s optimal policy to accommodate prefetching and pro-
posed a program counter (PC) classification based predictor, Harmony to emulate the ideal per-
formance. In this work, we not only revise Demand-MIN to cover an extra corner case, but also
show that a PC-classification based predictor performs poorly for I-cache. We address this impre-
cision and effectively emulate optimal I-cache behavior in our work via a profile-guided software
technique.

5.7 Conclusion

Modern data center applications have large instruction footprints, leading to significant I-cache
misses. Although numerous prior proposals aim to mitigate I-cache misses, they still fall short of
an ideal cache. We investigated why existing I-cache miss mitigation mechanisms achieve sub-
optimal speedup, and found that widely-studied instruction prefetchers incur wasteful prefetch-
induced evictions that existing replacement policies do not mitigate. To enable smarter evictions,
we proposed Ripple, a novel profile-guided replacement technique that uses program context to
inform the underlying replacement policy about efficient replacement decisions. Ripple identifies
program contexts that lead to I-cache misses and sparingly injects “cache line eviction” instructions
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in suitable program locations at link time. We evaluated Ripple using nine popular data center ap-
plications and demonstrated that it is replacement policy agnostic, i.e., it enables any replacement
policy to achieve speedup that is 44% closer to that of an ideal I-cache.
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CHAPTER 6

Twig: Profile-Guided BTB Prefetching for Data
Center Applications

Modern data center applications have deep software stacks, with instruction footprints that are
orders of magnitude larger than typical instruction cache (I-cache) sizes. To efficiently prefetch
instructions into the I-cache despite large application footprints, modern server-class processors
implement a decoupled frontend with Fetch Directed Instruction Prefetching (FDIP). In this work,
we1 first characterize the limitations of a decoupled frontend processor with FDIP and find that
FDIP suffers from significant Branch Target Buffer (BTB) misses. We also find that existing
techniques (e.g., stream prefetchers and predecoders) are unable to mitigate these misses, as they
rely on an incomplete understanding of a program’s branching behavior.

To address the shortcomings of existing BTB prefetching techniques, we propose Twig, a novel
profile-guided BTB prefetching mechanism. Twig analyzes a production binary’s execution pro-
file to identify critical BTB misses and inject BTB prefetch instructions into code. Additionally,
Twig coalesces multiple non-contiguous BTB prefetches to improve the BTB’s locality. Twig ex-
poses these techniques via new BTB prefetch instructions. Since Twig prefetches BTB entries
without modifying the underlying BTB organization, it is easy to adopt in modern processors. We
study Twig’s behavior across nine widely-used data center applications, and demonstrate that it
achieves an average 20.86% (up to 145%) performance speedup over a baseline 8K-entry BTB,
outperforming the state-of-the-art BTB prefetch mechanism by 19.82% (on average).

6.1 Introduction

Modern data center applications have deep software stacks that are composed of complex applica-
tion logic [275], diverse libraries [179], and numerous kernel modules [41, 211, 212]. Such deep

1Some of the work in this chapter was performed in collaboration with Nathan Brown, Akshitha Sriraman, Ni-
ranjan Soundararajan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles Pokam, Heiner Litz, and Baris
Kasikci [194]. Therefore, I use the “we” pronoun in this chapter to acknowledge their involvement in this work.
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stacks result in multi-megabyte instruction footprints [179, 41, 279] that easily exhaust typical
on-chip cache structures which are smaller than hundred kilobytes [39]. As a result, data center
applications suffer from significant frontend stalls, when the processor frontend is unable to sup-
ply instructions to the processor backend. Such frontend stalls significantly hurt the Total Cost of
Operation of a data center, as even single-digit performance improvements of frontend stalls can
save millions of dollars and meaningfully reduce the global carbon footprint [344].

Processor architects attempt to address this overwhelming frontend stall problem by proposing
numerous instruction prefetching mechanisms [328, 302, 114, 280, 113, 189, 209, 212, 211]. Fetch
Directed Instruction Prefetching (FDIP) [302] is one such mechanism that is pervasively explored
in academia [212, 211, 202] and industry [150, 151]. Between the branch prediction unit and the
instruction fetch engine, FDIP introduces a queue containing the addresses of I-cache lines that
will be accessed in the future [301]. FDIP prefetches I-cache lines based on the queue contents
to avoid instruction fetch stalls. FDIP allows the branch prediction unit and the instruction fetch
engine to operate independently with high efficiency. Prior work [150] has shown that FDIP pro-
vides comparable performance to aggressive I-cache prefetchers [320, 268, 305] used in recent
instruction prefetching championships. Due to its success, FDIP has been widely implemented in
modern processors [350, 283, 308, 129].

Given that data center applications still continue to face the frontend stall problem, we first ask
the question: What limits FDIP from eliminating all frontend stalls? To this end, we comprehen-
sively study FDIP in the context of frontend-bound data center applications and show that FDIP
still falls significantly short of an ideal I-cache (by 24% on average). We also find that FDIP’s
effectiveness primarily depends on the efficacy of the Branch Target Buffer (BTB); therefore, the
large number of BTB misses, which is typical for data center applications, hurts FDIP’s effec-
tiveness. We then investigate the reasons behind the large number of BTB misses for data center
applications. We find that these applications contain a large number of unique branch instructions
that cannot fit into moderately-sized BTBs. Furthermore, we show that the state-of-the-art BTB
prefetching techniques, such as Shotgun [211] and Confluence [190], suffer from limited prefetch-
ing coverage and accuracy while introducing significant hardware modifications. For this reason,
they have not been adopted in modern data center processors [41, 199].

In this paper, we propose Twig, a novel profile-guided BTB prefetching mechanism for data
center applications. Unlike prior techniques [190, 211], Twig does not require any modifications
to the typical BTB organization. Instead, Twig introduces a new BTB prefetching instruction that
is directly injected into the program binary at link time. By inserting BTB prefetch instructions
in software, Twig leverages the rich execution information available in a program profile, when
collected using performance counters in modern data center environments [65, 278, 179, 41].

Twig introduces two key techniques: software BTB prefetching and BTB prefetch coalescing.
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Software BTB prefetching. A BTB entry is composed of a branch instruction address and
a corresponding branch target address. To prefetch a BTB entry, the processor has to decode
the branch target of a given branch instruction. However, the branch instruction itself may not be
present in the I-cache, rendering BTB prefetching impossible. Twig addresses this challenge by in-
troducing an explicit prefetch instruction to prefetch BTB entries in advance, without bringing the
required instructions into the I-cache. This prefetch instruction prefetches branch instruction ad-
dress and target into the BTB. Unlike pure hardware techniques that rely on limited past run-time
information [190, 211], Twig determines which branch instructions cause frequent BTB misses
based on profiles collected from the entire program execution. Twig’s prefetch instruction takes as
operands the address of the branch instruction and the address of the corresponding target instruc-
tion. Twig then ensures that the corresponding entry is inserted into the BTB even if the branch
instruction is not in the I-cache.

Twig further leverages production execution profiles to identify program locations that can pre-
dict the future execution of a BTB-miss inducing branch instruction with high accuracy and time-
liness. Twig then inserts prefetch instructions into these locations.

BTB prefetch coalescing. Inserting many BTB prefetch instructions with multiple parameters
can increase the static and dynamic instruction footprint. To mitigate this code bloat, Twig pro-
poses BTB prefetch coalescing, where multiple BTB entries are prefetched with a single instruc-
tion. Twig analyzes the program profile to identify consecutively-executed branches that incur
repetitive BTB misses. Consequently, Twig uses the coalesced prefetching instruction to prefetch
the BTB entries of all of these branch instructions simultaneously.

We evaluate Twig in the context of nine data center applications that suffer from frequent fron-
tend stalls. Twig achieves an average 20.86% (2%-145%) speedup over a baseline 8K-entry BTB
across all nine applications, while reducing 65.4% of all BTB misses. Compared to the state-of-
the-art BTB prefetcher [211], Twig achieves an average 19.82% (up to 139.8%) greater speedup,
while covering 57.4% more BTB misses. Twig’s average static and dynamic instruction increase
overhead is 6% and 3% respectively.

In summary, we contribute:
• A detailed characterization of a decoupled frontend with FDIP that shows that a large number of

BTB misses hurt FDIP’s effectiveness.
• Software BTB prefetching: A technique to prefetch BTB entries that improves the decoupled

frontend’s performance by avoiding costly BTB misses.
• BTB prefetch coalescing: A profile-guided mechanism to coalesce multiple BTB prefetch oper-

ations that reduces prefetch instructions’ static and dynamic overhead.
• An evaluation of Twig in the context of nine data center applications, showing its effectiveness

in reducing BTB misses and achieving significant performance benefit.
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Figure 6.1: Many popular data center applications waste a large portion of their pipeline slots due
to “frontend-bound” stalls [147], measured using the Top-down methodology [395].

6.2 Limitations of prior I-Cache & BTB Prefetching Tech-
niques

In this section, we comprehensively characterize existing I-cache and BTB prefetching mecha-
nisms to understand why data center applications continue to suffer from frontend stalls. We first
analyze FDIP [302], the state-of-the-art prefetching technique in processors with a decoupled fron-
tend. We measure the unrealized performance potential of FDIP and find that its performance is
mainly limited by BTB misses. We then analyze Shotgun [211] and Confluence [190], two recently
proposed techniques that introduce BTB prefetching on top of FDIP. While these techniques reduce
BTB misses for some applications, they fail to eliminate BTB misses that occur due to complex
branch patterns faced by data center applications.

We characterize nine popular real-world data center applications [199] that face significant
frontend stalls. In Fig. 6.1, we use Intel’s Top-Down methodology [395] to show that these appli-
cations spend 24%-78% of the processor pipeline slots in waiting for the frontend to return. Two
applications, finagle-chirper (a microblogging service) and finagle-http (an HTTP
server) are from the Java Renaissance [294] benchmark suite and use Twitter Finagle [15] which
is a Remote Procedure Call (RPC) library. Three applications, kafka [377] (Apache stream-
processing framework used by companies like Uber, Linkedin, and Airbnb [3]), tomcat [4]
(open-source Java web server), and cassandra [2] (NoSQL DBMS used by companies like
Uber, Netflix, and Grubhub [384]) are from the Java DaCapo [51] benchmark suite. We also study
three HHVM [23, 274] applications (drupal, wordpress, and mediawiki) from Facebook’s
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Figure 6.2: Limit study of FDIP: an ideal I-cache achieves an average 24% speedup, while an ideal
BTB provides an average 31% speedup over the FDIP baseline.

OSS-performance [19] benchmark suite. verilator [16] is a tool used by companies like Intel
and ARM to evaluate custom hardware designs [382]. We detail our experimental setup, trace
collection methodology, and simulation parameters in §6.4.

6.2.1 What stops FDIP from eliminating all frontend stalls?

Recent processor designs [350, 283, 129, 308] have adopted decoupled frontends with FDIP to
reduce costly frontend stalls. Given FDIP’s widespread adoption [150, 151], we ask the ques-
tion: Does FDIP achieve performance comparable to an ideal/perfect frontend where pipeline slots
are not stalled in the frontend? To this end, we analyze FDIP’s limitations, characterizing why
FDIP falls short for data center applications. Additionally, we determine how to address FDIP’s
limitations.

We perform two limit studies, measuring the Instructions Per Cycle (IPC) metric of nine data
center applications running on an FDIP-enabled processor. In the first study, we analyze FDIP with
an ideal I-cache (i.e., every I-cache access is a hit), and in the second study, we analyze FDIP with
an ideal BTB (i.e., every branch target lookup is a hit). We assume a 75KB 8K-entry BTB and a
32KB I-cache. Fig. 6.2 shows an average IPC improvement of 24% with an ideal I-cache and a
31% improvement with an ideal BTB. FDIP with an ideal BTB offers greater performance benefits
since (1) it eliminates almost all I-cache misses (due to FDIP prefetching) and (2) it reduces branch
resteers (i.e., pipeline flushes) triggered by BTB misses. Hence, we conclude that reducing BTB
misses is critical to mitigating frontend stalls. Next, we investigate why data center applications
suffer from poor BTB locality even with a relatively large, 75KB 8K-entry BTB.
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Figure 6.3: BTB Misses Per Kilo Instructions (MPKI) for nine data center applications: these
applications experience an average BTB MPKI of 29.7 (8-121).
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Figure 6.4: Breakdown of all BTB misses using 3C miss classification [142]: data center applica-
tions suffer BTB misses due to both capacity and conflict issues.
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Figure 6.5: Percentage of capacity misses as BTB size increases from 2K to 64K entries: data
center applications require large BTB with at least 32K entries to avoid all capacity misses. For
brevity, we show results for only 3 applications, but the behavior is similar across all applications.

6.2.2 Why is a large BTB insufficient for data center applications?

As an ideal BTB significantly improves FDIP’s performance, we examine how we can improve the
performance of the 75KB 8K-entry BTB that is implemented in today’s FDIP-enabled processors.

Fig. 6.3 shows the BTB Misses Per Kilo Instructions (MPKI) across all nine data center ap-
plications. While measuring BTB MPKI, we only consider real BTB misses caused by direct
branch instructions, i.e., unconditional jumps, calls, and conditional jumps. We do not include
non-control flow instructions or branch instructions where the branch target that the BTB returns
is different from the actually taken branch target (e.g., branch target changed due to just-in-time
code compilation).

As shown in Fig. 6.3, data center applications experience MPKIs in the range of 8-121 (29.7
on average). To understand the reason behind significant BTB misses, in Fig. 6.4, we categorize
whether these misses are compulsory, capacity, or conflict misses, i.e., the 3C miss classifica-
tion [142]. We find that the majority of these misses are capacity (on average 70%) and conflict
(on average 24.48%) misses.

To investigate these capacity and conflict misses, we vary the BTB size (from 2K entries to 64K
entries) and associativity (from 4-way to 128-way) and show the results in Fig. 6.5 and Fig. 6.6. We
observe that these data center applications require a 64K-entry BTB to avoid most of the capacity
misses. On the other hand, the BTB associativity needs to be at least 128 to cover the majority
of conflict misses. Increasing BTB size and associativity to these levels will drastically increase
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Figure 6.6: Percentage of conflict misses as BTB associativity increases from 4-way to 128-way:
data center applications still suffer conflict BTB misses even with an 128-way set-associative BTB.
For brevity, we show results for only 3 applications, the behavior is similar across all applications.

on-chip storage and BTB lookup/update latency [60, 165]. Furthermore, future applications may
require an even larger BTB size and associativity since data center applications’ instruction foot-
prints grow in an unprecedented manner [179]. Therefore, we conclude that BTB prefetching is
a more future-proof solution as it can avoid latencies due to both types of BTB misses without
requiring any change to the BTB organization.

Finally, in Fig. 6.7 and Fig. 6.8, we study the distribution of all BTB accesses and misses across
different branch types to identify whether a specific branch type suffers from poor BTB locality.
We note that unconditional direct branches and calls disproportionately face more BTB misses.
Specifically, unconditional direct branches and calls are responsible for 20.75% of all dynamic
branches, but incur 37.5% of all BTB misses. This result justifies the design decisions of prior
work [211] that partitions the BTB structure to prefetch conditional branch entries that follow
unconditional branch executions.

6.2.3 Why do existing BTB prefetching mechanisms fall short?

Previously, we showed that an ideal BTB provides on average 31% speedup over the FDIP base-
line. We now compare this ideal BTB speedup against speedups achieved by state-of-the-art BTB
prefetchers, Confluence [190] and Shotgun [211].

Confluence observes that although the I-cache and the BTB operate at the granularity of a
cache line and a branch instruction respectively, hardware prefetching mechanisms for I-cache
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Figure 6.7: Breakdown of all BTB accesses into branch types: conditional branch instructions
dominate the total number of BTB accesses
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Figure 6.8: Breakdown of all BTB misses into different branch types: as conditional branch in-
structions are responsible for most BTB accesses, conditional branch instructions also experience
the most number of BTB misses.
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Figure 6.9: Speedups from Shotgun and Confluence over FDIP.

lines and BTB entries require the same metadata. Using this insight, Confluence (1) modifies the
BTB organization to match the I-cache granularity (cache line), (2) operates on the same prefetch
metadata, and (3) utilizes the temporal streaming (also referred to as “record and replay” [114, 113,
189]) technique, to perform both I-cache and BTB prefetching. While Confluence was designed
for a fixed-length instruction size (4B), we modify Confluence for variable-length instruction sizes
since most data center applications operate on servers that use variable-length ISAs (i.e., x86).

Shotgun observes that the working set size of unconditional branch instructions is significantly
smaller than the working set size of all branch instructions. Hence, Shotgun statically partitions the
BTB among unconditional and conditional branch entries to ensure that a certain type of branch
entry does not cause evictions of the other type. Moreover, Shotgun leverages dynamic execution
information to record the I-cache footprint for all unconditional branches. The next time the pro-
gram executes the same unconditional branch, Shotgun prefetches the recorded I-cache lines (if not
present in the I-cache) and predecodes the corresponding conditional branch entries. In our evalua-
tion, Shotgun consists of 5120-entry unconditional BTB (63.125KB), 1536-entry conditional BTB
(12.1875KB), and 1536-entry return address stack (7.5KB). All other methodological details are
in §6.4.

Fig. 6.9 shows the speedup provided by Confluence and Shotgun over FDIP across all nine
applications. Confluence and Shotgun offer only a fraction of an ideal BTB’s speedup as they are
unable to cover a significant portion of all BTB misses.

We investigate the performance of these prior BTB prefetching techniques to understand why
they fail to cover so many BTB misses. Since both Confluence and Shotgun leverage temporal
stream prefetching to avoid BTB misses, we categorize all BTB misses into three types of tempo-
ral streams [367]: non-repetitive, new, and recurring streams. Temporal stream prefetching can
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Figure 6.10: Fraction of BTB misses in temporal streams [367]

inherently cover only recurring miss streams. As shown in Fig. 6.10, while recurring miss streams
constitute the majority of all BTB misses (on average 52%), new and non-repetitive streams still
include a large fraction of the remaining BTB misses (on average 36% and 12% respectively) that
Confluence and Shotgun do not cover. Recording access patterns at the granularity of I-cache lines
instead of at the granularity of branch instructions helps Shotgun cover more BTB misses than
Confluence, as Shotgun predecodes all branch instructions corresponding to a single I-cache line.
Still, Shotgun falls significantly short of the ideal BTB, which we explain next.

Shotgun requires the unconditional branch footprint of the application to be small enough to
fit into the BTB partition reserved for unconditional branches. Unfortunately, different applica-
tions have different unconditional branch working set sizes as we portray in Fig. 6.11. As a re-
sult, Shotgun’s BTB partition for unconditional branches is too large for some applications and
too small for others. Moreover, irrespective of whether an unconditional branch correlates with
conditional branches, Shotgun reserves precious BTB storage bits as prefetch metadata for uncon-
ditional branches. Consequently, Shotgun wastes critical on-chip storage for some applications
(e.g., drupal, mediawiki, and wordpress) where the number of unconditional branches are
much smaller than Shotgun’s unconditional BTB partition size.

Shotgun incurs additional BTB misses due to one of its design constraints: the spatial range
of conditional branches. Shotgun prefetches conditional branch entries based on the execution of
unconditional branches. While doing so, Shotgun can only prefetch conditional branches that are
within a spatial range of up to 8 cache lines of the last executed unconditional branch target. In
other words, if a conditional branch resides outside this 8 cache line range, Shotgun will not be able
to prefetch the corresponding BTB entry. However, as we show in Fig. 6.12, a significant portion
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Figure 6.11: Working set size of unconditional branches and calls. Shotgun’s U-BTB of 5120
entries is shown in blue.
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Figure 6.12: Percentage of all conditional branches that are outside the range (8 cache lines) of the
last executed unconditional branch target. Shotgun cannot prefetch BTB entries for these condi-
tional branches.
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(26-45%) of all conditional branches falls outside this spatial range. Hence, Shotgun cannot cover
a large portion of all BTB misses.

Based on our characterization’s insights, we next present Twig, a profile-guided solution to
avoid costly BTB misses.

6.3 TWIG

Modern data center application binaries are large and contain numerous unique branch instructions.
These applications suffer from frequent BTB misses. Prior work addresses this issue with BTB
prefetchers that require significant hardware modification and yet fail to cover a large fraction
of BTB misses. We propose Twig, a profile-guided solution to prefetch BTB entries. Specifically,
Twig introduces two novel techniques to avoid BTB misses. First, Twig uses a novel profile-guided
mechanism to prefetch BTB entries. Second, Twig coalesces prefetch operations of multiple BTB
entries into a single instruction to reduce the code bloat.

6.3.1 Software BTB Prefetching

Determining branch Program Counter (PC) and target for populating the BTB requires the pro-
cessor to decode (potentially variable-length) instructions. Hardware-based BTB prefetchers such
as Shotgun [211] hence need to prefetch the instructions and decode them before filling the BTB,
introducing significant hardware overheads for implementing the additional pre-decoders. Addi-
tionally, the prefetch latency deteriorates if the instruction being prefetched into the BTB is not
present in the processor’s I-cache. Twig addresses both of these challenges. First, Twig identifies
the PC and target of every direct branch instruction for an application by examining its binary.
Then, Twig leverages the program’s dynamic execution profile to find the branch PCs causing a
large number of BTB misses. Finally, Twig modifies the application binary to prefetch correspond-
ing BTB entries in a timely manner.

To realize Twig, we introduce a new instruction, brprefetch to prefetch BTB entries. The
brprefetch instruction uses two parameters—the branch PC and the target, to insert the corre-
sponding branch entry into the BTB. Both these fields represent instruction pointers and can be as
large as 48-bit signed integers [385]. Moreover, Twig must schedule the brprefetch instruction
early enough so that it updates the BTB before the corresponding branch target lookup occurs. We
now explain how Twig meets these requirements by finding the appropriate program location to
insert the brprefetch instruction and by storing only the address difference between the branch
instruction and the target.

Prefetch injection location. Twig must insert the brprefetch instruction in a timely man-
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ner, i.e., the brprefetch instruction must retire before the corresponding branch is looked up
in the BTB to avoid a BTB miss. Hence, it is critical to precisely identify the appropriate program
location for inserting the brprefetch instruction. Twig must also emit accurate brprefetch
instructions to avoid polluting the BTB with unnecessary entries. Since many different program
paths can lead to a particular BTB miss, Twig must find the right program location to satisfy the
accuracy constraint.

Twig leverages execution information to identify the appropriate program path that satisfies
both the timeliness and accuracy constraint. With the help of Intel Last Branch Record (LBR)
feature [7], Twig collects program execution profiles that lead to BTB misses. Intel LBR records a
history of the last 32 basic blocks executed before a BTB miss along with their execution latency
in cycles.

Fig. 6.13a portrays an example of such a profile for BTB misses at the branch instruction ad-
dress, A, showing how Twig leverages this profile to find the injection site for the brprefetch
instruction. This example includes six different BTB misses for A. To satisfy the timeliness
constraint, Twig considers basic blocks that precede the BTB miss by at least several cycles as
candidate injection sites. We call this particular cycle count the prefetch distance, which is one of
Twig’s design parameters. We use 20 cycles as the prefetch distance and evaluate Twig’s sensitiv-
ity to this parameter in §6.4 (Fig. 6.26). Twig only considers predecessor basic blocks before the
prefetch distance as the prefetch injection candidates. As shown in Fig. 6.13a, predecessor basic
blocks B and C are considered for the BTB miss 1 as they precede the BTB miss by the prefetch
distance.

To satisfy the accuracy constraint, Twig computes the conditional probability of a BTB miss at
A, given the execution of each candidate basic block. We show an example of this computation
in Fig. 6.13b. First, Twig calculates the execution count/frequency of each candidate block using
the execution profile (including BTB misses at other branch instructions apart from A). Next,
Twig counts how many BTB misses at A can be avoided by inserting a prefetch instruction at the
candidate injection site. Then, Twig computes the ratio of these two counts as the conditional
probability of a BTB miss at A, given the execution of each candidate basic block. Finally, Twig
picks the candidate with the highest conditional probability for each BTB miss as the prefetch
injection site. In case of this example, Twig selects C to cover BTB misses 1 , 4 , 5 , and 6 ,
while Twig chooses E to avoid BTB misses 2 and 3 .

Prefetch target compression. The storage cost of large instruction pointers (branch PC and
target) is a significant challenge for software BTB prefetching. Twig reduces this storage over-
head by storing the prefetch-to-branch-offset instead of the entire absolute address. We define
the prefetch-to-branch-offset as the delta between the prefetch instruction PC and the prefetched
branch PC. Fig. 6.14 shows the quantitative insight behind this optimization. On the X-axis, we
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(a) An example of profile samples for BTB misses at branch instruction address, A, containing basic block
executions that precede the miss.

Basic 
block

Total 
executed

# of unique BTB misses at 
A that can be timely 

covered by the basic block

P(BTB miss at A | 
Basic block)

B 16 4 0.25

C 8 4 0.5

D 6 2 0.33

E 3 2 0.66

(b) An example of the conditional probability calculation to predict the BTB miss at A, given the execution
of a particular basic block.

Figure 6.13: An example of how Twig analyzes BTB miss profiles to find accurate and timely
prefetch injection site
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Figure 6.14: CDF of branch offset (from the prefetch injection site to the branch instruction) with
variation in the number of bits required to store the offset: with just 12-bits Twig stores 80% of all
branch offsets for all applications.

show the number of bits required to encode the prefetch-to-branch-offset, while on the Y-axis, we
show the Cumulative Distribution Function (CDF) for all BTB misses. We find that Twig covers
more than 80% of all BTB misses using just 12-bits to encode the prefetch-to-branch-offset. Twig
uses the same technique to also compress the branch target. Fig. 6.15 plots the branch-to-target-

offset on the X-axis and the CDF of all BTB misses on the Y-axis. We note that Twig again covers
80% of all BTB misses for most applications using just 12-bits. Only for verilator, covering
more than 80% of all BTB misses requires larger than 12-bit signed integers. To cover the remain-
ing BTB misses and to optimize the storage overhead even further, Twig proposes BTB prefetch
coalescing that we describe next.

6.3.2 BTB Prefetch Coalescing

Branch instructions with large address differences cannot directly be encoded using the prefetch
instruction introduced in §6.3.1. For these too-large-to-encode branch instructions, Twig stores the
addresses of the branch instruction and the target as key-value pairs in memory. Twig stores these
pairs in sorted order based on the branch instruction address. Storing branch entries in sorted order
helps Twig leverage spatial locality among different entries. The key-value pairs are generated at
compile time and added to the instruction binary as part of the text segment.

Twig introduces the brcoalesce instruction that takes the address of a key-value pair as a
parameter and prefetches the corresponding entry to the BTB. To improve its efficiency, brco-
alesce includes an n-bit bitmask as an additional parameter to prefetch multiple consecutive
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Figure 6.15: CDF of branch target offset with variation in the number of bits required to store the
offset: with just 12-bits Twig stores 80% of all branch targets for most applications.

entries (for this reason, the key-value pairs are sorted in memory). Coalescing enables prefetching
of multiple too-large-to-encode BTB entries with a minimal increase in the instruction footprint.

The size of the bitmask, n, is another design parameter. With a smaller bitmask, Twig would be
able to prefetch only a small number of correlated BTB entries. With a larger bitmask, Twig can
coalesce more prefetch operations. We investigate the impact of the bitmask size on the effective-
ness of BTB prefetch coalescing in §6.4 and show that Twig achieves a majority of the performance
benefit with just an 8-bit bitmask (Fig. 6.27).

6.4 Evaluation

In this section, we first describe (1) our experimental setup to collect execution profiles for our
target data center applications, (2) different application input configurations, and (3) our simulation
infrastructure. Then, we evaluate Twig using several key performance metrics.

6.4.1 Methodology

Data center applications and inputs. We evaluate Twig in the context of nine popular data
center applications (as described in §6.2). We evaluate these applications with different input
configurations such as the input data size, the webpage requested by the client, the number of client
requests per second, random number seeds, and the number of server threads. Since Twig’s profile-
guided optimizations depend on the application input, we optimize each of these applications using
the profile from one input and test the performance of the optimization on a different input.
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Table 6.1: Simulator Parameters

Parameter Value
CPU 3.2GHz, 6-wide OOO, 24-entry FTQ,

224-entry ROB, 97-entry RS
Branch pre-
diction unit

64KB TAGE-SC-L [317] (up to 12-
instruction), 8192-entry 4-way BTB,
32-entry RAS, 4096-entry 4-way
IBTB

Memory hi-
erarchy

32KB 8-way L1i, 32KB 8-way L1d,
1MB 16-way unified L2, 10MB 20-
way shared L3 per socket
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Figure 6.16: Percentage speedup over the FDIP baseline: 32K is for a 32K-entry BTB compared
to the 8K-entry baseline BTB. Twig outperforms even the 32K-entry BTB on average with just an
8K-entry BTB with prefetching.

Profile collection. We leverage Intel’s “baclears.any” hardware performance event along
with LBR [7] to collect the application execution context profiles that lead to a BTB miss.

Simulation and trace collection. We evaluate Twig using Scarab [14]. In Scarab, we imple-
ment support for the BTB prefetch instructions (brprefetch and brcoalesce) and also add
implementations for FDIP, Shotgun, and Confluence. We list different simulation parameters that
resemble a recent state-of-the-art industry baseline [150, 151] in Table 6.1. Both trace-driven and
execution-driven Scarab modes use Intel PIN [237], which cannot instrument kernel mode instruc-
tions. To support kernel mode instruction simulations, we collect application traces using Intel
Processor Trace [1] and modify Scarab to support simulating such traces as well. We simulate
traces of 100 million representative, steady-state instructions for each data center application.

6.4.2 Performance Analysis

We now validate Twig’s effectiveness using key performance metrics. First, we compare Twig’s
speedup to the speedup offered by an ideal BTB and the state-of-the-art BTB prefetcher, Shot-
gun [211]. Then, we evaluate the individual speedup contributions of software BTB prefetching
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Figure 6.17: BTB miss coverage of Twig, Confluence, and Shotgun: on average Twig covers
65.4% of all BTB misses.

and BTB prefetch coalescing. We also compare Twig against Shotgun in terms of BTB miss cov-
erage and BTB prefetch accuracy. Furthermore, we compare speedups achieved by Twig and Shot-
gun across different application inputs. Finally, we measure Twig’s static and dynamic overhead
due to the additional BTB prefetch instructions.

Speedup. We show Twig’s speedup (brown bars) for nine data center applications in Fig. 6.16.
For comparison, we also show speedup offered by an ideal BTB (purple bars) and state-of-the-
art BTB prefetcher, Shotgun (green bars). As shown, Twig achieves on average 20.86% speedup
compared to 31% mean speedup achieved by an ideal BTB and 1% mean speedup achieved by
Shotgun. On average, Twig achieves 48% (and up to 80%) of the speedup achieved by an ideal
BTB that incurs no BTB misses. Twig cannot provide the entire benefit (100%) of an ideal BTB
for a number of reasons. First, some BTB misses do not have a predecessor basic block that can
predict the potential BTB miss with high accuracy. Second, BTB prefetch instructions injected
by Twig incur both static and dynamic instruction overheads (we quantify this overhead later in
this section). Finally, Twig cannot cover some previously unobserved BTB misses due to the use
of different inputs in profiling and testing (we also quantify this later in the section). Still, Twig
advances the state-of-the-art by outperforming Shotgun by 19.82% on average (and up to 139.8%)
as Twig covers more BTB misses than Shotgun.

BTB miss coverage. Fig. 6.17 shows the BTB miss coverage comparison between Twig and
Shotgun. As shown, Twig covers on average 65.4% (and up to 95.84%) of all BTB misses. Addi-
tionally, Twig covers on average 57.4% (and up to 94%) more BTB misses than the state-of-the-art
prefetcher, Shotgun. Twig outperforms Shotgun to cover 57.4% more BTB misses primarily be-
cause of the reasons we describe in §6.2.3. In contrast to Shotgun’s ability to prefetch only condi-

137



cassa
ndra

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki

tomcat

verila
tor

wordpress Avg
0

25

50

75

%
of

id
ea

lB
TB

pe
rf

or
m

an
ce

Software-BTB-Prefetching BTB-Prefetch-Coalescing

Figure 6.18: Contribution of software BTB prefetching and BTB prefetch coalescing toward
Twig performance of an ideal BTB: software BTB prefetching provides greater benefits than BTB
prefetch coalescing across applications.
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Figure 6.19: Prefetch accuracy of Twig, Confluence, and Shotgun: on average Twig provides
31.3% BTB prefetch accuracy across nine data center applications.
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Figure 6.20: Twig’s speedup across different application inputs as the percentage of an ideal BTB
performance: Twig trained on a different input provides performance benefits comparable to Twig
trained on the same input and outperforms existing BTB prefetching mechanisms.

tional branch entries within a limited spatial range, Twig can prefetch BTB entries irrespective of
branch type or distance.

Performance of software BTB prefetching and BTB prefetch coalescing. Fig. 6.18 shows
the individual contributions of software BTB prefetching and BTB prefetch coalescing to Twig’s
overall speedup. As shown, software BTB prefetching without any coalescing provides on average
32.6% speedup (70.9% of overall performance gains) across different applications. On top of this,
prefetch coalescing provides on average 15.7% speedup (29.1% of overall benefits) by reducing
the static and dynamic instruction overhead.

Prefetch accuracy. We show Twig’s prefetch accuracy in Fig. 6.19 and compare it against
Shotgun’s prefetch accuracy. As shown, Twig provides 31.3% average accuracy. Moreover, Twig
achieves 12.3% higher prefetch accuracy than Shotgun due to the fundamental limitation of hard-
ware temporal stream prefetching. Like most prior hardware techniques on temporal memory
streaming [369, 367, 114, 368, 332, 60], Shotgun remembers the spatial footprint seen during the
last execution and prefetches the corresponding BTB entries. While prefetching the most recently
executed footprint is efficient in terms of metadata storage (compared to most frequently executed
footprint), it incurs many inaccurate BTB prefetches. Twig, on the other hand, leverages a large
amount of execution information from the collected profile to identify the most accurate prefetch
predecessor and achieves higher prefetch accuracy.

Performance across different application inputs. The effectiveness of profile-guided opti-
mizations usually depends on the corresponding application input. To investigate how this depen-
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Table 6.2: Twig’s average speedup across different application inputs with standard deviations.

Average Standard deviation Average Standard deviation
cassandra 49.31 10.04 45.93 15.53

drupal 36.77 14.31 43.15 9.84
finagle-chirper 38.30 9.13 31.99 10.29

finagle-http 34.03 7.73 32.66 5.62
kafka 52.35 2.17 49.93 2.26

mediawiki 38.78 10.95 43.78 5.11
tomcat 51.25 4.02 45.77 15.84

verilator 80.33 0.39 79.19 0.33
wordpress 45.15 14.69 49.71 12.85

Application
% of ideal BTB performance

Same input profile Training profile

dence affects Twig’s performance, we compare the speedups achieved by Twig across different
application inputs in Fig. 6.20. For each application, we use the profile from input ‘#0’ to opti-
mize BTB performance using Twig and measure the speedups for other inputs, ‘#1, #2, #3’.
For comparison, we also measure speedups achieved by Twig when optimized with the profile from
the same input. Finally, we compare Twig against Confluence and Shotgun for different applica-
tion inputs. For each configuration, we normalize the overall speedup by expressing it in terms of
ideal BTB performance.

As shown in Fig. 6.20, Twig provides significantly more benefit than state-of-the-art mecha-
nisms [190, 211] even while using profiles from a different application input. Twig provides a
greater speedup when optimized using input-specific profiles (as shown in Table 6.2) for 6 out of 9
applications. However, for the remaining three applications, Twig can achieve even better speedup
with profiles from a different application input. Nonetheless, Twig achieves comparable speedups
with profiles from both same and different inputs.

Prefetch overhead. Twig does not introduce any extra metadata storage. Therefore, instruc-
tions added to perform BTB prefetching are the only overhead Twig introduces. We quantify the
static and dynamic overhead of these prefetch instructions in Fig. 6.21 and 6.22. In Table 6.3, we
quantify the combined overhead of static and dynamic instruction increase based on working set
size increase in terms of the number of added bytes. As shown, Twig introduces less than 8%
static and 12.6% dynamic instruction overhead for all cases. Specifically, Twig incurs the high-
est dynamic overhead for verilator to cover the large number of BTB misses incurred by the
application (BTB MPKI of 121).
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Figure 6.21: Static overhead of Twig, measured in % of additional instructions in the binary for a
given workload: on average Twig inserts 6% extra static instructions.
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Figure 6.22: Dynamic overhead of Twig, measured in % of additional executed instructions for a
given workload: on average Twig incurs only 3% extra dynamic instructions.
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Table 6.3: Instruction working set size overhead of Twig.

Application Instruction working 
set size (MB)

Additional 
instruction size (MB) Overhead (%)

cassandra 4.23 0.26 6.08
drupal 1.75 0.05 2.93

finagle-chirper 2.05 0.07 3.54
finagle-http 5.29 0.42 7.97

kafka 3.28 0.16 4.78
mediawiki 2.24 0.08 3.70

tomcat 2.40 0.10 4.10
verilator 13.56 1.34 9.86

wordpress 1.93 0.06 3.09

6.4.3 Sensitivity Analysis

We investigate the sensitivity of different design parameters on Twig’s effectiveness. First, we
compare the speedup achieved by Twig and Shotgun for different BTB storage budgets (size and as-
sociativity) and prefetch buffer sizes. Additionally, we evaluate the effect of changing the prefetch
distance and FDIP run-ahead on Twig’s effectiveness.

BTB storage budget. In Fig. 6.23, we evaluate how sensitive Twig is to the storage budget al-
located to the BTB by varying the number of BTB entries. We fix all other parameters and vary the
number of BTB entries between 2048 (2K) and 65536 (64K). As Fig. 6.23 shows, Twig achieves
more speedup than either Shotgun or Confluence across all BTB sizes. We also vary BTB’s as-
sociativity from 4 ways per set to 128 ways per set. Fig. 6.24 shows how Twig outperforms both
Shotgun and Confluence for any associativity.

Prefetch buffer size. We next vary the size of the BTB prefetch buffer. This enables us to
hold additional BTB entry candidates at any given time, enabling Twig prefetches to not evict each
other. As shown in Fig. 6.25, Twig’s performance scales from from 8 to about 128 entries before
it begins to experience diminishing returns. Shotgun and Confluence do not experience this same
scaling, indicating that Twig provides greater benefits than prior works irrespective of the prefetch
buffer size.

Prefetch distance. Fig. 6.26 shows how Twig’s effectiveness varies in response to variation in
prefetch distance. We vary the prefetch distance from 0 to 50 cycles and measure Twig’s average
performance as a percentage of ideal BTB performance across applications. As shown, Twig pro-
vides only a portion of the potential speedup when the prefetch distance is too small to complete
the prefetch before the BTB lookup. On the other hand, Twig cannot find an appropriate prefetch
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Figure 6.23: % of speedup obtained by Twig compared to an ideal BTB for BTB capacities ranging
from 2048 entries to 65536 entries
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Figure 6.24: % of speedup obtained by Twig compared to an ideal BTB for BTB associativity
ranging from 4 to 128
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Figure 6.25: Percent of speedup obtained by Twig compared to an ideal BTB for the size of the
prefetch buffer, ranging from 8 to 256

injection site when the prefetch distance is too large to ignore accurate predecessors. Consequently,
Twig provides the greatest benefit with 15-25 cycles of prefetch distances across different applica-
tions.

Coalescing size. We investigate the effectiveness of Twig’s BTB prefetch coalescing with an in-
crease in coalescing bitmask size. Fig. 6.27 shows the average performance gains of BTB prefetch
coalescing as the percentage of ideal BTB performance for different bitmask sizes (1-bit to 64-
bit) across nine data center applications. As shown, Twig realizes a large fraction of the potential
speedup with an 8-bit bitmask. Consequently, we use 8-bits to coalesce BTB prefetch instructions.

FDIP Run-ahead. Finally, we vary the size of the Fetch Target Queue (FTQ), which de-
termines how far ahead the decoupled frontend can run. We vary the FTQ size from 1 to 64
branches. Fig. 6.28 shows that Twig achieves a similar performance relative to ideal at every
measured FTQ length. Since a longer FTQ has been shown to improve performance by reducing
frontend stalls [150], this result implies that Twig scales well to frontends that run far ahead of the
fetch unit.

6.5 Related Work

Preventing I-cache misses. Many prior works focus on reducing frontend stalls via eliminating
I-cache misses. These techniques can be summarized in three distinct categories: software only,
hardware only, and a hybrid software/hardware approach. Software techniques include improving
instruction locality via basic block/function reordering [289, 276], hot/cold splitting [78], and other
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Figure 6.26: Twig’s average performance variation in response to increasing the prefetch distance.
Across different applications, Twig provides greatest benefit with prefetch distance 15-25 cycles.
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Figure 6.27: Twig’s average performance variation in response to changes in the coalesce bitmask
size. Twig achieves a majority of the potential performance gains with a 8-bit coalesce bitmask.
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Figure 6.28: % of speedup obtained by Twig compared to an ideal BTB for the size of the FTQ, or
maximum distance the decoupled frontend can run ahead, varied between 1 and 64

Profile-Guided Optimizations (PGO) [65, 238, 136, 299, 410, 286, 40, 137, 57, 221, 236, 278]. Im-
proved layout techniques are only able to eliminate a subset of all I-cache misses and finding the
optimal code layout for I-cache performance is intractable in practice [287, 41]. Hardware-only
techniques tend to have one of two limitations. Either the techniques have prohibitive on-chip
storage costs [113, 114], or they end up being significantly more complex [189, 190, 209] than
prefetching techniques implemented in real hardware [306, 302]. Hybrid hardware and software
approaches [41, 199] attempt to avoid the pitfalls of software only or hardware only approaches
by performing the complicated software analysis ahead of time and executing simple prefetch
instructions at runtime. However, prior approaches either make assumptions that are too sim-
plistic, limiting prefetching accuracy, or execute too many dynamic instructions which exacer-
bate the application’s code footprint [41, 266]. State-of-the-art I-cache prefetchers include the
SN4L+Dis+BTB design [34] and the contenders of the first instruction cache prefetching competi-
tion (IPC-1) [268, 134, 33, 320, 254, 305, 128, 122]. Of the above proposals, FDIP has a desirable
trade-off between metadata cost and prefetching effectiveness [212, 211]. Even with significantly
smaller metadata storage costs, FDIP provides comparable performance benefits to state-of-the-art
I-cache prefetchers [150, 151]. Moreover, recent commercial CPU designs adopted some FDIP
variants to reduce frontend stalls [350, 283, 308, 129]. Therefore, in this work, we focus on im-
proving FDIP effectiveness by introducing software BTB prefetching that provides 20.86% average
speedup without requiring any extra metadata storage.

BTB redesign / compression. The design and usage of the storage allocated to the BTB has
long been debated. BTB entries commonly hold some combination of a tag, prediction informa-
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tion, and target address [218, 284]. The basic-block style BTB also contains the address of the
fall-through basic block [398]. Compressing BTB entry size is common to enable the BTB to
host more entries in the same storage budget. Such techniques [107, 322, 208, 301, 61, 165, 284]
include using fewer bits for the tag, removing the page number from the tag, encoding the branch
target as a small delta from the branch PC, and adding a larger second level BTB for which the first
level BTB acts as a small cache. BTB-X [37] and PDede [337] apply several of these compres-
sion techniques, including partitioning the BTB into segments to enable aggressive compression
and deduplication. All of these techniques enable the underlying BTB to have a larger capacity
for a given storage budget. Since Twig prefetches entries into the BTB, it is independent of the
underlying BTB and should be just as effective with the above techniques.

BTB prefetching. Phantom-BTB (PBTB) [60] virtualized predictor metadata into the shared
L2 cache, and used entries in the virtualized table to prefetch BTB entries. PBTB suffers from
a relatively high cost of metadata storage and a longer latency access time for important branch
prediction metadata. Two-level bulk preload [53] maintains two BTB levels per-core, with a mech-
anism to fetch a group of BTB entries for a fixed-size region to the first level on a miss to any
branch in that region. This is limited to exploiting the available spatial locality of a branch, and
thus is similar to the next-line prefetchers. Confluence [190] keeps the I-cache and BTB contents
in sync via their AirBTB design, with the ability to predecode branches and BTB entries for a
given I-cache block. Locking the I-cache and BTB contents limits the runahead ability of the
branch predictor unit. Moreover, Confluence relied on a metadata-expensive temporal prefetcher,
SHIFT [190, 212, 189]. Boomerang [212] modifies FDIP to predecode fetched I-cache blocks and
insert the corresponding BTB entries. However, the ability for these entries to be timely is largely
dependent upon the frontend to run far enough ahead, and miss coverage suffers when there are
many BTB misses [211]. Shotgun [211] partitions the BTB into the Unconditional BTB (U-BTB)
and much smaller Conditional BTB (C-BTB), with a way to prefetch entries into the C-BTB when
the U-BTB is hit. As such, Shotgun relies on a high U-BTB hit rate to keep the C-BTB full of
useful entries [34]. This reliance limits Shotgun’s ability to scale. Additionally, any fixed parti-
tioning scheme, as in U-BTB vs. C-BTB sizes, need the workload’s distribution of branches to
match, and results in underutilized space when the application deviates from the fixed partitioning
scheme. See §6.2.3 for a in-depth investigation on the impact of the limitations of each approach,
and why they cannot cover all BTB misses. In this work, we investigate the reasons behind their
limitation and address such limitations by proposing profile-guided BTB prefetch mechanisms that
outperform prior techniques.
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6.6 Conclusion

Large branch footprints of data center applications cause frequent BTB misses, resulting in signif-
icant frontend stalls. We showed that existing BTB prefetching techniques fail to overcome these
stalls due to inadequate understanding of the applications’ branch access patterns. To address this
limitation, we proposed Twig, a profile-guided BTB prefetching mechanism. Twig presents two
BTB prefetching techniques: software BTB prefetching and BTB prefetch coalescing. We evalu-
ated Twig in the context of nine popular data center applications. Across these applications, Twig
achieves an average of 20.86% (2%-145%) performance speedup and outperforms the state-of-the-
art BTB prefetching technique by 19.82%.
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CHAPTER 7

Whisper: Profile-Guided Branch Misprediction
Elimination for Data Center Applications

Modern data center applications experience frequent branch mispredictions – degrading perfor-
mance, increasing cost, and reducing energy efficiency in data centers. Even the state-of-the-art
branch predictor, TAGE-SC-L, suffers from an average branch Mispredictions Per Kilo Instruc-
tions (branch-MPKI) of 3.0 (0.5-7.2) for these applications since their large code footprints exhaust
TAGE-SC-L’s intended capacity.

In this work, we1 propose Whisper, a novel profile-guided mechanism to avoid branch mis-
predictions. Whisper investigates the in-production profile of data center applications to identify
precise program contexts that lead to branch mispredictions. Corresponding prediction hints are
then inserted into code to strategically avoid those mispredictions during program execution. Whis-
per presents three novel profile-guided techniques: (1) hashed history correlation which efficiently
encodes hard-to-predict correlations in branch history using lightweight Boolean formulas, (2) ran-

domized formula testing which selects a locally-optimal Boolean formula from a randomly selected
subset of possible formulas to predict a branch, and (3) the extension of Read-Once Monotone
Boolean Formulas with Implication and Converse Non-Implication to improve the branch history
coverage of these formulas with minimal overhead.

We evaluate Whisper on 12 widely-used data center applications and demonstrate that Whisper
enables traditional branch predictors to achieve a speedup close to that of an ideal branch predictor.
Specifically, Whisper achieves an average speedup of 2.8% (0.4%-4.6%) by reducing 16.8% (1.7%-
32.4%) of branch mispredictions over TAGE-SC-L and outperforms the state-of-the-art profile-
guided branch prediction mechanisms by 7.9% on average.

1Some of the work in this chapter was performed in collaboration with Muhammed Ugur, Krishnendra Nathella,
Dam Sunwoo, Heiner Litz, Daniel A Jiménez, and Baris Kasikci [200]. Therefore, I use the “we” pronoun in this
chapter to acknowledge their involvement in this work.
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7.1 Introduction

Modern data center applications exhibit large instruction footprints and suffer from frequent fron-
tend and misprediction2 stalls, incurring performance losses worth millions of dollars [279, 275,
41, 344, 39, 179, 112]. These applications contain complex application logic [275, 279, 41]
and frequently use different libraries [179], language runtimes [23, 274], and kernel mod-
ules [41, 361]. As a result, these applications’ hot code footprints range from tens to hundreds
of megabytes [179, 41, 278, 279] which overwhelm on-chip cache structures like the Instruc-
tion cache (I-cache), Branch Target Buffer (BTB), and the branch predictor, whose sizes are only
hundreds of kilobytes [39]. Consequently, processors are unable to sufficiently fetch useful in-
structions [41] when executing modern data center applications – leading to frequent frontend and
misprediction stalls [39]. These stalls notably increase the Total Cost of Ownership (TCO) of a
data center [179, 41], and even a single-digit reduction of these stalls can save millions of dollars
in management and energy costs while significantly reducing the global carbon footprint [344].

Several techniques have been proposed to address these challenges including decoupled fron-
tends [301] leveraging Fetch Directed Instruction Prefetching (FDIP) [302, 150, 151] and Profile-
Guided Optimizations (PGO) [289, 65, 278, 199, 196, 202, 195] that are efficiently supported by
today’s hardware [350, 283, 308, 129, 396] and software [65, 41, 126, 279, 263] systems.

On the hardware side, FDIP avoids the tight coupling between branch prediction and instruction
fetch, enabling branch predictor-guided instruction prefetching to avoid frontend stalls. As long
as FDIP can run sufficiently ahead, it can eliminate frontend stalls effectively. Thereby, FDIP’s
performance depends on the accuracy of the branch predictor, as frequent mispredictions limit
FDIP’s effectiveness in mitigating frontend stalls [114, 109, 212, 211].

Profile-guided code layout optimizations address the large instruction footprint problem by
placing frequently executed I-cache lines together, thereby improving instruction locality. These
techniques do not require any hardware modifications, and although these techniques are sen-
sitive to profile quality [139], they work well in practice. Profiles for data center applica-
tions change slowly over several weeks [65] while companies like Google and Facebook deploy
new binaries every few days – giving PGO techniques ample opportunity to adapt to chang-
ing profiles [65, 278, 279]. As a result, these techniques are widely-used in today’s data cen-
ters [65, 278, 41, 126, 279]. For example, half of all CPU cycles in Google data centers execute
instructions from PGO-optimized applications [65]. Unfortunately, existing PGO techniques pri-
marily reduce frontend stalls and eliminate less than 10% of all branch mispredictions [278].

To quantify the performance implications of branch mispredictions, we extensively investigate
the behavior of 12 modern data center applications to show that their large code footprints trigger

2we use ‘branch misprediction’ and ‘misprediction’ interchangeably
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frequent branch mispredictions, significantly impeding the efficacy of state-of-the-art techniques.
In particular, we find that even a 64KB TAGE-SC-L [317] predictor experiences an average branch-
MPKI of 3.0 (0.5-7.2) for these applications primarily due to capacity reasons. Furthermore, our
investigation reveals that state-of-the-art profile-guided branch prediction mechanisms, Branch-
Net [405] and Read-Once Monotone Boolean Formulas (ROMBF) [164] reduce only 8.9% of all
branch mispredictions that TAGE-SC-L incurs as they also fail to scale for large code footprints.

In this work, we focus on eliminating branch mispredictions with Whisper—a profile-guided
technique that identifies branch instructions causing frequent mispredictions, correlates their direc-
tion with many prior branch directions (i.e., history), and efficiently encodes this correlation using
Boolean formulas. In particular, Whisper introduces three novel techniques to improve profile-
guided branch prediction and reduces 16.8% of all mispredictions by leveraging (1) hashed history

correlation, (2) randomized Boolean formula testing, and (3) an extension of ROMBF [164] with
Boolean Implication and Converse Non-Implication operations.
Hashed history correlation. Prior profile-guided techniques either consider extremely long histo-
ries requiring kilobytes of metadata storage per static branch [405], or utilize short (typically 4 or
8) fixed-length histories that fail to predict many branches accurately [164]. To consider long his-
tories without incurring metadata overhead, we propose hashed history correlation that correlates
branch outcomes with a hash of variable-length histories in a profile-guided manner. To find the
best history length for predicting a branch, Whisper considers different lengths from a geometric
series and picks the length that shows the strongest correlation. Whisper converts histories of that
length into a fixed-length (8-bit) hashed history and efficiently encodes this hashed history using
Boolean formulas.
Randomized formula testing. Determining the optimal boolean formula for predicting the branch
outcome based on an N -bit history, requires exploring a search space of size 22

N . To address
this challenge, Whisper proposes randomized formula testing, a technique that only considers a
random, yet uniform, subset of all prediction formulas as candidates, selecting the best formula for
predicting branches. Whisper finds near optimal formulas, comparable to exhaustive exploration
(88.3% on average) while considering only 0.1% of all possible prediction formulas.
Implication and Converse Non-Implication operations. Besides reducing the search space of
Boolean formulas, Whisper also improves their prediction accuracy. In particular, Whisper intro-
duces Implication and Converse Non-Implication that improve prediction accuracy over ROMBF
by 1.5% while maintaining the low storage cost of ROMBF.

Whisper enables these three contributions with a novel PGO technique. In particular, it col-
lects the execution profile of data center applications in production using efficient hardware sup-
port [1, 7] and then performs an offline branch analysis. The analysis yields optimized ROMBF
enabling the injection of brhint instructions for branches that cause frequent mispredictions.

151



The brhint instruction efficiently encodes precise history lengths, a Boolean formula to differ-
entiate taken histories from not-taken histories (and vice versa), and a pointer to the corresponding
branch instruction. Using the state-of-the-art profile-guided correlation algorithm [199, 202, 195],
Whisper inserts the brhint instruction in a suitable predecessor of the branch at link time to
ensure hint timeliness. At run time, Whisper utilizes the hint of a corresponding branch instruction
to compare the hashed dynamic history against the Boolean formula for predicting the branch out-
come. Thus, Whisper leverages hardware/software co-design to eliminate data center applications’
branch mispredictions in a profile-guided manner.

We evaluate Whisper for 12 popular data center applications that suffer from frequent fron-
tend and misprediction stalls and show that, on average, Whisper eliminates 16.8% of all branch
mispredictions over the 64KB state-of-the-art TAGE-SC-L [317] baseline. Due to this 1.7%-
32.4% reduction in mispredictions, Whisper achieves an average speedup of 2.8% (0.4%-4.6%)
for data center applications. Compared to state-of-the-art profile-guided branch prediction mech-
anisms [405, 164], Whisper achieves 1.1% greater speedup while reducing 7.9% more branch
mispredictions. By injecting brhint instructions, Whisper increases the code footprint by 11.4%

and executes 9.8% extra dynamic instructions.
We make the following contributions:

• An extensive investigation of branch instructions’ behavior in data center applications demon-
strating that large code footprints of these applications trigger frequent branch mispredictions,
significantly limiting the overall performance.

• Whisper: a novel profile-guided mechanism to eliminate branch mispredictions in data center
applications. Whisper correlates a given branch’s direction with many prior branch directions,
efficiently encodes this correlation using Boolean formulas, and improves the overall efficacy of
branch prediction.

• A comprehensive evaluation of Whisper for 12 data center applications that shows that Whisper
can eliminate costly branch mispredictions (16.8% on average) and achieve substantial perfor-
mance benefits (2.8% on average).

7.2 Branch Prediction Challenges for Data Center Applica-
tions

In this section, we thoroughly investigate the behavior of branch instructions from 12 real-world
data center applications to show that branch mispredictions significantly limit their overall per-
formance. Then, we explain why state-of-the-art branch predictors fail to eliminate these branch
mispredictions. Finally, we provide valuable insights on how to overcome branch mispredictions
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Table 7.1: Data center applications and workloads we study.

Applications Workloads
MySQL [8] Different TPC-C queries [84]
PostgreSQL [10] Different pgbench queries [9]
Clang [5] Building LLVM [216]
Python [17] pyperformance benchmarks [13]
Finagle-chirper [15] Java Renaissance benchmark suite [294]
Finagle-http [15]
Cassandra [2]

Java DaCapo benchmark suite [51]Kafka [3]
Tomcat [4]
Drupal [378]

Facebook’s OSS-performance suite [19]Wordpress [383]
Mediawiki [380]

Table 7.2: Simulator parameters

Parameter Value
CPU 3.2GHz, 6-wide OOO, 24-entry FTQ, 224-entry ROB, 97-entry RS
Branch prediction unit 64KB TAGE-SC-L [317] (up to 12-instruction), 8192-entry 4-way BTB, 32-entry

RAS, 4096-entry IBTB
Caches 32KB 8-way L1i, 32KB 8-way L1d, 1MB 16-way unified L2, 10MB 20-way

shared L3 per socket

for data center applications.

7.2.1 Experimental methodology

Data center applications. Recent work from Facebook and Google reports that their widely-
deployed data center applications exhibit multi-megabyte code footprints [279, 278, 41, 179]
and consequently lose more than 15% of all pipeline slots directly due to branch mispredic-
tions [344, 39]. Due to large instruction footprints, these applications also lose more than 29%
of all pipeline slots due to frontend stalls [179, 39, 41, 344]. Accurate and timely branch pre-
dictions can effectively hide a large fraction of these frontend stalls because of the decoupled
nature [301, 302] of modern processor frontends [350, 283, 308, 129]. Since these applications
and their corresponding workloads are proprietary, we use open-source applications and work-
loads used by prior work [411, 217, 199, 202, 195, 362, 259, 278, 279] with large code footprints
that similarly cause frequent branch mispredictions and frontend stalls. We describe these data
center applications and their workloads in Table 7.1.
Trace collection and simulation parameters. We collect these applications’ traces using Intel
PT [1] and simulate these traces using the Scarab [14] simulator. Table 7.2 lists different simulation
parameters that resemble a recent state-of-the-art industry baseline [150, 151].
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Figure 7.1: Data center application limit study: an ideal branch predictor achieves an average IPC
speedup of 12.4% (1.3%-26.4%) over the state-of-the-art 64KB TAGE-SC-L baseline.

7.2.2 Why is branch prediction important for data center applications?

To understand the importance of the branch prediction mechanism for data center applications, we
perform a limit study to measure the maximum performance benefits of an ideal branch direction
predictor over the state-of-the-art 64KB TAGE-SC-L [317] predictor. For this ideal branch pre-
dictor, only the prediction direction is ideal, i.e., it always predicts taken and not-taken branches
correctly. In Fig. 7.1, we show that the ideal branch direction predictor achieves an average In-
structions Per Cycle (IPC) speedup of 12.4% (1.3%-26.4%) over the state-of-the-art TAGE-SC-L
branch predictor.

To understand the reason behind this significant performance gap, we break down the speedup
into two categories: (1) speedup due to avoiding branch misprediction stalls (i.e., pipeline
squashes [212]) and (2) speedup due to avoiding frontend stalls by performing FDIP [301, 302].
For traditional benchmarks (e.g., SPEC2017), avoiding misprediction stalls is the primary benefit
of ideal branch prediction. However, for data center applications, eliminating branch mispredic-
tions is also important as it reduces I-cache misses through FDIP.

As also shown in Fig. 7.1, among the 12.4% mean IPC speedup provided by the ideal branch
predictor, an average IPC speedup of 7.9% (0.7%-17.1%) is provided by eliminating all branch
misprediction stalls for these applications. On top of that, the ideal branch predictor achieves an
additional 4.5% speedup on average (0.5%-11.5%) by eliminating frontend stalls (I-cache misses)
for these applications. Therefore, eliminating branch mispredictions is extremely critical for data
center applications.
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Figure 7.2: Branch Mispredictions Per Kilo Instructions (branch-MPKI) for 12 data center ap-
plications: 64KB TAGE-SC-L experiences an average branch-MPKI of 3.0 (0.5-7.2) for these
applications.

7.2.3 Why does the state-of-the-art TAGE-SC-L branch predictor fall
short?

We now investigate why the state-of-the-art TAGE-SC-L branch predictor is insufficient for data
center applications with large code footprints.

Fig. 7.2 shows the branch-MPKI of 64KB TAGE-SC-L across all 12 data center applications.
While measuring the branch-MPKI, we only consider mispredictions caused by conditional branch
instructions, following the methodology of 5th Championship Branch Prediction (CBP-5) [18]. As
shown in Fig. 7.2, TAGE-SC-L exhibits a branch-MPKI in the range of 0.5-7.2 (3.0 on average)
for the analyzed data center applications. To understand the reason behind these frequent branch
mispredictions, we categorize all branch mispredictions TAGE-SC-L induces among four different
classes: (1) Compulsory mispredictions, (2) Capacity mispredictions, (3) Conflict mispredictions,
and (4) Conditional-on-data mispredictions. We perform this classification by analyzing consec-
utive accesses of a branch substream—the combination [400, 218, 250, 267, 277, 330, 397] of
branch instruction’s Program Counter (PC) and history of different lengths.

Compulsory [142, 351, 255] mispredictions occur when TAGE-SC-L predicts a branch for
the first time and the predicted direction does not match with the true direction. Capac-

ity [142, 351, 255] mispredictions occur when the reuse distance [156, 97] of a branch is too large
so that the substream is evicted from the TAGE-SC-L tables. Conflict [142, 351, 255] mispre-
dictions occur when the associativity or the replacement mechanism for TAGE-SC-L tables is not
effective enough to retain the branch substream between two consecutive accesses. Conditional-
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Figure 7.3: Breakdown of all branch mispredictions among 4 different classes [142, 351, 255]:
data center applications suffer from frequent branch mispredictions primarily (76.4% of all mis-
predictions) due to capacity issues.

on-data mispredictions occur when the branch’s direction depends on data values and does not cor-
relate with prior history. Consequently, history-based predictors like TAGE-SC-L cannot achieve
high prediction accuracy for such branches [111].

Fig. 7.3 shows the breakdown of all branch mispredictions TAGE-SC-L incurs across different
categories. As shown, the majority of these mispredictions occur due to capacity reasons (on
average 76.4%).

This result reveals that the working set size of branch substreams for data center applications is
significantly larger than the capacity of even the 64KB state-of-the-art TAGE-SC-L branch pre-
dictor. Furthermore, this characterization confirms that large instruction footprints of modern
data center applications put extreme pressure on branch predictors in addition to the instruction
cache, instruction translation lookaside buffer, and branch target buffer as prior works have ob-
served [112, 179, 65, 39, 274, 344, 41, 411, 278, 217, 199, 202, 195, 362, 259, 279, 275].

7.2.4 Why do existing profile-guided techniques fall short?

We now investigate the degree to which prior profile-guided branch prediction techniques solve
the large branch footprint problem of modern data center applications. We primarily present the
analysis for BranchNet [405], the most recent profile-guided branch prediction technique, and
ROMBF [164], the most effective profile-guided technique for data center applications in our study.
These techniques are hybrid in nature as they use profile-guided techniques for hard-to-predict
branches and use TAGE-SC-L for remaining branches.
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Figure 7.4: Performance of prior profile-guided branch prediction techniques [164, 405] over the
64KB TAGE-SC-L baseline: these techniques reduce only 3.4%-8.9% of all branch mispredictions
TAGE-SC-L incurs. Even with unlimited storage, this impractical variant of BranchNet [405]
achieves an average misprediction reduction of only 11.9%.

BranchNet. BranchNet [405] deploys Convolutional Neural Networks (CNNs) for hard-to-predict
branches together with traditional online branch predictors (e.g., TAGE-SC-L). To train CNNs for
these branches, BranchNet leverages offline profiles from multiple application inputs. At run time,
TAGE-SC-L makes predictions for the vast majority of branches while CNNs predict the few
hard-to-predict branches. Based on metadata storage, BranchNet also proposes different variants
of CNNs: (1) 8KB-BranchNet and (2) 32KB-BranchNet. To understand the potential of CNNs for
predicting branches, we also study BranchNet with no storage restrictions, unlimited-BranchNet.
Read-Once Monotone Boolean Formulas (ROMBF). Prior work [164] utilizes Boolean formu-
las to predict branch outcomes based on history. In particular, every branch outcome in the history
represents a Boolean variable that is combined using logical operations (e.g., and, or) to predict
a branch’s direction. Branch prediction using Boolean formulas faces two key challenges. First,
to determine the optimal Boolean formula that provides the best prediction accuracy for a his-
tory length of N , the approach has to explore 22

N all possible formulas. Second, to encode the
Boolean formula, the approach requires 2N -bit storage. Prior work [164] addresses only the sec-
ond challenge by using a subset of Boolean formulas where every variable appears exactly once
and by allowing only two logical operations and and or. Consequently, prior work [164] encodes
a ROMBF of N variables using only N − 1 bits. Using such a compact encoding, prior work
annotates branch instructions with N -bit hints to make branch predictions based on the outcome
of the last N branches. The study also proposes different variants of ROMBF (4-bit and 8-bit) for
different values of N . For brevity, we refer to this prior work [164] as ROMBF.

To assess the potential of these existing profile-guided branch prediction mechanisms, we eval-
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Figure 7.5: The distribution of all branch mispredictions across different branch instructions using
TAGE-SC-L for SPEC2017 integer benchmarks (left) and data center applications (right). In gen-
eral, SPEC benchmarks satisfy BranchNet’s [405] assumption as only a top-few (e.g., 50) branch
instructions cause the majority (e.g., > 60%) of all mispredictions. Data center applications, how-
ever, do not satisfy this assumption as mispredictions are distributed across thousands of different
branches.

uate BranchNet and ROMBF over the 64KB TAGE-SC-L baseline. As shown in Fig. 7.4, data
center applications do not significantly benefit from these existing mechanisms. Specifically, the
state-of-the-art profile-guided technique, BranchNet, reduces only 3.4% and 6.6% of all branch
mispredictions with 8KB and 32KB metadata storage. Even with the unlimited metadata storage,
BranchNet only avoids 11.9% of all branch mispredictions. On the other hand, ROMBF reduces
8.4% and 8.9% of all branch mispredictions using 4-bit and 8-bit formulas. Next, we investigate
the performance of these prior profile-guided techniques to understand why they fail to avoid so
many branch mispredictions.

BranchNet employs CNNs to predict hard-to-predict branches assuming that only a few static
branches disproportionately cause the vast majority of all mispredictions for an application. For
example, as shown in Fig. 7.5, the top 50 static branches experience more than 60% of all mis-
predictions for SPEC2017 integer speed benchmarks (e.g., leela, xz, omnetpp, deepsjeng,
and mcf). Consequently, for these benchmarks, BranchNet can reduce 12.6%-34% of all mispre-
dictions by allocating 256B-2KB metadata storage for each of these branches’ CNNs. However,
as also shown in Fig. 7.5, mispredictions for data center applications and gcc (from SPEC) are
more uniformly distributed across many static branches. Consequently, for these applications, even
unlimited-BranchNet can only avoid 11.9% of all mispredictions while using 2KB CNNs for each
static branch.

ROMBF predicts a branch by applying an N -bit formula to the last N branch outcomes. For
example, 4-bit and 8-bit formulas can predict branches based on only the last 4 and 8 branch
outcomes. As shown in Fig. 7.6, most branches in our data center applications correlate with
branch histories of size 32-1024 and, consequently, 4-bit and 8-bit formulas are insufficient. As
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Figure 7.6: Distributions of all branch mispredictions among different history lengths. Predicting
a branch requires correlating its direction with even 1024 prior branch outcomes.

ROMBF requires N -bit hints to consider N -bit histories, it does not scale well for long branch
histories.

Furthermore, ROMBF only considers and and or operators to compute Boolean formulas
along with contradiction (i.e., never taken) and tautology (i.e., always taken). This limitation
assumes that these formulas can encode relevant histories for the large majority of branches with-
out any quantitative insight. We characterize the implications of this assumption in Fig. 7.7 by
showing the distribution of all branches among formulas using contradiction, tautology, and, or,
implication, and converse non-implication. As shown, while formulas using and (28.9%) and
or (5.3%) operations represent histories of a significant number of branches, formulas using im-
plication (8.8%) and converse non-implication (9.2%) operations also encode histories of a large
number of branches. Consequently, ROMBF can not avoid mispredictions for these branches.

In §7.5.2 (Fig. 7.16) we will show that BranchNet requires orders of magnitude higher train-
ing time than ROMBF, while Whisper outperforms both approaches. Next, we use the insights
from these characterizations to design Whisper, our profile-guided technique to eliminate branch
mispredictions for data center applications.

7.3 Design of WHISPER

Our investigation reveals that ideal branch prediction significantly improves the performance of
data center applications as their large branch footprints exhaust 64KB TAGE-SC-L [317]. State-
of-the-art profile-guided mechanisms [405, 164] also fail to eliminate a large majority of branch
mispredictions for these applications. We propose Whisper, a combination of three novel profile-
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Figure 7.7: Distributions of branch executions among different logical operations used in the
Boolean formula to predict a branch. And (28.9%), always-taken (23.3%), converse non-
implication (9.2%), implication (8.8%), never-taken (5.9%), and Or (5.3%) operations together
can predict more than 80% of all branch executions.

guided techniques to improve branch prediction. Whisper introduces hashed history correlation to
predict branches that correlate with long variable-length histories. Furthermore, Whisper proposes
randomized formula testing to reduce the massive offline training time of existing profile-guided
branch prediction techniques [405, 164] without affecting the prediction accuracy. Finally, Whis-
per extends ROMBF by including Implication and Converse Non-Implication operations to predict
branches accurately.

Whisper leverages profile-guided analysis at link time to correlate branches with previous
branch outcomes using efficient hardware-based control flow tracing support such as Intel PT [1]
and LBR [7]. Next, Whisper maps values of variable-length histories corresponding to differ-
ent branch outcomes into fixed-length hashed values and encodes these hashed values using an
extended ROMBF formula. To pick the formula for any given branch, Whisper considers a ran-
domized subset of all formulas and selects the formula yielding the fewest mispredictions for all
hashed histories of the branch. Whisper annotates every hard-to-predict branch with its corre-
sponding formula to provide the branch predictor in hardware with the following information: (1)
how many prior branches in the global history are relevant for predicting the current branch, and
(2) how the outcome of these prior branches need to be combined to compute the direction of the
current branch. Whisper introduces minor hardware modifications to match the dynamic history
with an annotated formula, predicting the corresponding branch outcome. We describe Whisper’s
in-depth usage model in §7.4. Now, we discuss the novel techniques Whisper proposes along with
its micro-architectural modifications in greater detail.
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7.3.1 Hashed history correlation

As shown in §7.2.4, the computational complexity of learning optimal ROMBF and their storage
overhead increases linearly with the number of considered variables. In the context of branch
prediction, these variables are previous branch directions, i.e., the global branch history leading
into a branch. As a result, prior work [164] is limited in accuracy by only considering short
histories. To address this challenge, Whisper introduces hashed history correlation, providing
three key capabilities: (1) an efficient encoding scheme of large and variable-length histories, (2)
a technique to correlate a subset of the branch history with a specific branch outcome, and (3) a
mechanism to represent different history values utilizing a single formula.
History hashing. Whisper introduces history hashing that converts the history of any arbitrary
length into a fixed length. For example, Whisper transforms the 64-bit history (i.e., the outcome
of the most recent 64 branches) into a 16-bit hashed history by dividing the 64-bit value into four
16-bit chunks and applying logical operations (e.g., and, or, xor) to these 16-bit chunks. We
empirically study the sensitivity of Whisper’s hashing mechanism for different hashed lengths and
different logical operations to find that the 8-bit hash and xor operations provide a good trade-
off between instruction footprint overhead and prediction accuracy. As branch predictors used
in today’s hardware already use a similar hashing mechanism [24], Whisper does not introduce
significant micro-architectural modifications to perform history hashing.
History correlation. Directions for different branches correlate with prior histories of different
lengths. Some branches correlate with the outcome of only the most recent branches while other
branches correlate with the outcome of relatively older branches. Whisper addresses this challenge
by considering various history lengths for each static branch and selecting the length that provides
the highest accuracy for that branch using profile samples.

Whisper’s hashed history correlation technique requires three parameters: (1) the minimum
history length a, (2) the maximum history length N , and (3) the number of different history lengths
m. To find the best history length for a branch, Whisper analyzes all execution samples, referred to
as substreams, for that branch using an application profile collected via efficient hardware support
(Intel PT [1] and LBR [7]). Each substream contains two components: (1) the actual direction
of the branch execution and (2) the directions of the most recent N branches before that branch.
Using these scenarios, Whisper determines the best history length and formula for a given branch
by evaluating a list of potential history lengths.

For each branch, Whisper considers different history lengths that follow a geomet-
ric series [316], up to the m-th term, starting with the minimum history length, a, i.e.,
a, ar, ar2, · · · , arm−1, where r = (N

a
)
( 1
m−1

). At each history length in the series, Whisper encodes
the branch history up to this length. As described above, to minimize storage costs, Whisper does
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not evaluate raw, full-length histories. Instead, Whisper operates on hashed histories, allowing it to
compare histories of different original lengths. Next, Whisper determines a Boolean formula that
best fits the substream (see §7.3.2). This is done by using the total number of taken and not-taken
counts for the hashed partial history across all samples for that branch. Then, Whisper counts
the total number of mispredictions that the current history length and formula incur. If there is a
history length that results in the fewest mispredictions for that branch, then that history length is
considered the best and used later at run time. If none of these history lengths improve accuracy
when compared to the profiled results, then Whisper indicates that the given branch should be pre-
dicted in a purely dynamic manner (i.e., using the underlying branch predictor). Additionally, we
empirically study Whisper’s sensitivity to different parameters (a, N , and m) and observe that the
values a = 8, N = 1024, and m = 16 work well.
History representation. The primary goal of Whisper’s profile-guided analysis is to annotate a
static branch with a Boolean formula that efficiently encodes relevant historical branch outcomes to
predict the directions of the branch accurately. As we describe in §7.2.4, in an N -bit history, where
each branch can be either taken or not-taken, there exist 2N potential branch scenarios. Whisper
needs to partition these 2N branch scenarios into two groups using a Boolean formula, where one
group reflects the scenarios in which the branch is taken and the other group where the branch is
not taken. To achieve this goal, Whisper considers several Boolean formulas for each static branch
and selects the Boolean formula that can predict the branch with the highest accuracy based on the
collected profile. Algorithm 3 shows a simplified version of the technique Whisper utilizes to find
the best formula for representing each branch’s history.

Algorithm 3 takes two hash tables, T and NT as inputs. They contain the hashed history as
keys and the number of profile samples as values. T and NT denote taken and not-taken samples
respectively. As output, Algorithm 3 generates the Boolean formula, f , that incurs the minimum
number of mispredictions, m′.

As shown in Algorithm 3, Whisper initializes the minimum number of mispredictions, m′,
with the value ∞ (Line 1) and the best Boolean formula, f , with a default value of ∅ (Line 2).
Next, Whisper generates the list of all Boolean formulas that will be considered as candidates for
predicting the branch (Line 3). We will later (§7.3.2 and §7.3.3) describe how Whisper finds only a
subset of Boolean formulas that approximates the full potential of all Boolean formulas with high
accuracy and efficiency.

For each formula f ′, Whisper initializes the total number of mispredictions the formula sus-
tains, t, as 0 (Line 5). Next, Whisper iterates over each key-value pair of T (Lines 6-8) and NT

(Lines 9-11) to calculate the value of t. Since each key k denotes the hashed history, Whisper
first determines whether k satisfies the Boolean formula f ′ (Line 7 and 10 for T and NT respec-
tively). For taken samples (T ), if k does not satisfy f ′, predicting the branch using f ′ will result
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Algorithm 3 Finding the best Boolean formula to differentiate taken histories from not-taken his-
tories.

FIND-BOOLEAN-FORMULA (T,NT )

Input: T and NT contain different hashed history as keys and the number of profile samples as
values. T and NT denote taken and not-taken samples respectively.
Output: The Boolean formula, f which incurs the minimum number of mispredictions, m′

1: m′ ←∞
2: f ← ∅
3: F ← List-of-Considered-Formulas ()
4: for each f ′ ∈ F do
5: t← 0
6: for each k ∈ T.keys do
7: if satisfy (k, f ′) ̸= 1 then
8: t← t+ T [k]

9: for each k ∈ NT.keys do
10: if satisfy (k, f ′) = 1 then
11: t← t+NT [k]

12: if t < m′ then
13: f ← f ′

14: m′ ← t
15: return(f , m′)

in mispredictions. Therefore, Whisper adds the corresponding number of profile samples, T [k], to
t (Line 8). Similarly, for not-taken samples (NT ), if k satisfies f ′, predicting the branch using f ′

will also result in mispredictions, so Whisper also adds the corresponding number of profile sam-
ples, NT [k], to t (Line 11). Thus, Whisper counts the total number of mispredictions f ′ incurred
for all profile samples.

Finally, Whisper compares t with m′ to decide whether the current formula, f ′ causes the min-
imum number of mispredictions (Line 12). If t is smaller than m′, Whisper updates f and m′

with the values f ′ and t correspondingly (Lines 13-14). Whisper produces the final values of f
and m′ as output after iterating over all formulas from the subset of considered Boolean formu-
las (Line 15). Next, we explain how Whisper efficiently generates only a subset of all Boolean
formulas that effectively achieves the high accuracy of considering all Boolean formulas.

7.3.2 Randomized formula testing

As we discuss in §7.2.4, any N -bit variable can take 2N different values. Therefore, finding the
best formula that predicts a branch with the least number of mispredictions requires exhaustively
searching the search space of all 22N different formulas. For example, predicting a branch based on
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the outcome of the last 4 branches will require testing 65536 (= 22
4) different possible formulas.

While testing one formula does not depend on the outcome of a different formula, i.e., check-
ing all formulas is embarrassingly parallelizable, it still requires a large amount of computational
operations. Whisper leverages randomized formula testing to reduce this exponential search space.

To perform randomized formula testing, Whisper first generates a random permutation of all
formulas using the Fisher-Yates shuffle algorithm [116, 101]. The Fisher-Yates shuffle algorithm
ensures that Whisper generates the random order only once and reuses this order for all different
branches. For each branch, Whisper selects only a fraction of all formulas to consider as potential
candidates to predict the branch. Among these selected candidates, Whisper picks the best formula
using Algorithm 3. We investigate the implications of randomized formula testing to the fraction of
all formulas tested in §7.5.2 (Fig. 7.15) and show that Whisper achieves comparable performance
to exhaustive search (88.3%) even after checking only 0.1% of all Boolean formulas.

7.3.3 Implication and Converse Non-Implication

As discussed in §7.2.4, when considering arbitrary Boolean formulas for N -bit variables, we need
to evaluate 22

N formulas and also need 2N -bits of storage for tagging each hard-to-predict branch.
As accurate branch prediction often requires significantly larger histories, prior work [164] pro-
posed ROMBF to reduce the storage overheads of these formulas to N -bits. Unfortunately, con-
sidering every variable only once leads to sub-optimal Boolean formulas as it is impossible to
represent formulas where variables appear twice (e.g., (a&&b)||(!a&&c)). Whisper addresses the
reduced accuracy provided by ROMBF by introducing additional operations such as contradic-
tion, tautology, and, or, implication, and converse non-implication. This approach enables more
powerful Boolean formulas, improving branch prediction accuracy while increasing storage only
linearly.In particular, Whisper requires log2(op) ∗ hash(n)-bits for each formula, where op repre-
sents the number of supported operations and n denotes the number of branches considered in the
history. As discussed in §7.3.1, Whisper also utilizes hashing to represent longer histories of size
n because fewer bits are produced by the hash function.
Micro-architectural implementation. Adding Implication and Converse Non-Implication re-
quires minor micro-architectural modifications to the original hardware implementation of
ROMBF [164]. Fig. 7.8 shows an implementation for predicting the branch direction based on
the outcome of the last two branches (N = 2). For two data inputs (b0 and b1), Whisper requires
three control inputs ( O0 , O1 , and I ). As a single unit, Whisper produces the outcome of all
four logical operations using b0 and b1. Then, Whisper selects the output based on the two con-
trol inputs ( O0 and O1 ) using a 4 × 1 multiplexer. Finally, Whisper selects either the output of
the multiplexer or its inverted value based on the remaining control input, I using another 2 × 1
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Figure 7.8: Micro-architecture of the Read-Once Monotone Boolean Formulas Whisper extends
with Implication and Converse Non-Implication. It shows the single unit to predict a branch based
on the outcome of the last 2 branches.

multiplexer. Next, we describe how Whisper combines multiple single units in general (N > 2).
Fig. 7.9 shows the micro-architectural requirements of Whisper’s mechanism to predict a branch

based on the direction of the last 8 branches. Whisper uses four single units that operate on the
outcomes of prior branches, b0, b1, · · · , b7. Then, Whisper uses outputs of these single units as
inputs to two single units in the next layer. Next, Whisper uses the output of these two single units
as inputs to a single unit in the last layer. All of these single units at different layers require 14

(2× (8− 1)=2× 7) control inputs, O0 to O13 . Finally, Whisper uses a 2× 1 multiplexer to select
either the last layer’s output or its inverted value based on I .

As shown in Fig. 7.9, Whisper performs most of the Boolean operations at a single layer in
parallel. The longest delay Whisper incurs is due to 3 sequential single units at different layers
following the final step that uses the 2 × 1 multiplexer. Every single unit has a maximum delay
of 5 logic gates: Not gate, And/Or gate, and three gates for the 4× 1 multiplexer. The final step’s
maximum delay is 4 logic gates: Not gate and three gates for the 2 × 1 multiplexer. The hashing
operation does not incur any extra overhead as existing processors already perform similar hashing
operations [24]. Thus, Whisper incurs a maximum delay of only 19 logic gates. Even if Whisper
can not compute this entire logic in a single cycle, Whisper can easily pipeline these operations,
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Figure 7.9: Micro-architecture showing how Whisper combines multiple single units in general.
This shows how Whisper predicts a branch based on the outcome of the last 8 branches.

e.g., by registering the results of the first ten operations in one cycle and performing the last nine
operations in the next cycle. In any event, Whisper generates its prediction in parallel with TAGE-
SC-L, whose logical depth and complexity with hashed SRAM table lookups, tag comparisons,
and adder tree for the SC component exceed Whisper’s complexity.

7.4 Usage Model

We show the high-level usage model of Whisper in Fig. 7.10. Whisper collects data center appli-
cations’ execution profiles in production and analyzes these profiles offline to inject branch hint
instructions.
Run-time profiling. First, Whisper collects the execution trace of branch instructions for data
center applications in production (step 1 ) using Intel PT [1] and LBR [7]. Similar to recent
work [195, 202, 199, 41], Whisper leverages Intel PT and LBR as they are widely adopted in
today’s data centers [86, 105, 65, 278, 279]. Intel PT captures the trace of dynamically executed
branch instructions with low overhead (only up to 1% [184, 185, 188, 413]). As shown in Fig. 7.10,
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Figure 7.10: Whisper’s usage model.

this trace contains a branch direction (taken, T or not-taken, NT ) for each branch instruction along
with the next instruction’s address when an indirect branch is taken. Intel LBR provides Whisper
with the prediction accuracy of each dynamically executed branch instruction for the underlying
branch predictor. Similar to PT, LBR also incurs minimal overhead [196, 157].
Branch analysis. Next, in step 2 , Whisper analyzes the in-production execution trace of branch
instructions. For a static branch instruction, Whisper considers all of its dynamic executions and
the profiled processor’s prediction accuracy of the branch to find the best history length using the
hashed history correlation technique (§7.3.1). Also, Whisper determines the best history length
for a branch only if Boolean formula-based prediction achieves better accuracy than the profiled
processor’s predictor for the branch. For such branches, Whisper injects an extra instruction per
branch in the binary specifying hint to predict the branch.
Hint injection. Whisper’s offline analysis identifies branches for which history-based Boolean
formulas achieve better prediction accuracy than the profiled processor’s predictor. Whisper injects
a hint instruction, brhint, for each of these branches. A brhint instruction includes 4 specific
components as we show in Fig. 7.11.

The first component specifies the History length from a geometric series. As described in
§7.3.1, Whisper uses the geometric series (i.e., 8, 11, 15, · · · , 1024) with parameter values a = 8,
N = 1024, and m = 16 based on empirical results. The 4-bit History specifies which of these
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4-bit 15-bit 2-bit 12-bit
Figure 7.11: Different components of the brhint instruction Whisper proposes.

16 history lengths Whisper should use to predict the corresponding branch.
The second component specifies the 15-bit Boolean formula that Whisper uses to predict

the branch. As described in §7.3.3, Whisper needs 2N − 1 bits to encode a Boolean formula that
predicts a branch based on the outcome of the last N branches. Consequently, the 15-bit Boolean
formula can directly predict a branch with a history length of 8. To predict a branch with longer
history lengths (i.e., 11, 15, · · · 1024), Whisper transforms the long histories into 8-bit histories via
hashing as we describe in §7.3.1.

The third component specifies the 2-bit Bias for always-taken and never-taken branches. The
fourth component, PC pointer, specifies the branch instruction’s program counter (PC). Whis-
per uses a 12-bit offset to represent branch instruction pointers as such an offset is enough to cover
the vast majority (> 80%) of all branch instructions [195, 337].

Instead of directly encoding the hint in the branch instruction, Whisper injects a separate
brhint instruction for mainly two reasons. First, it avoids the instruction footprint growth for
branch instructions for which Whisper does not inject any hint as these branches are predicted dy-
namically. Second, it also ensures hint timeliness by avoiding the requirement of pre-decoding the
branch instruction. Conditional branch instructions in x86 format already support similar prefix
opcodes for biased branches [83]. We extend these opcodes with additional bytes to implement the
brhint instruction.

For a given branch, Whisper injects the corresponding brhint instruction in one of the pre-
decessor basic blocks for the branch. To find the appropriate predecessor, Whisper leverages the
execution trace collected in production and applies a conditional probability-based correlation al-
gorithm [199, 202, 195].
Run-time hint usage. Whisper produces an updated binary for an application after injecting the
brhint instructions. This updated binary is deployed in production during the next build and
deployment cycle. When a data center application executes a brhint instruction at run time,
Whisper places the corresponding four parameters in a small hint buffer. We empirically study
Whisper’s sensitivity to the size of this hint buffer and observe that Whisper provides high perfor-
mance even with a 32-entry hint buffer.

At run time, while predicting a branch, Whisper simultaneously queries the branch predictor
(e.g., TAGE-SC-L) and the hint buffer. For branch PCs currently not in the hint buffer, Whisper
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uses the branch predictor to predict the branch. If the hint buffer includes the branch PC, Whis-
per uses the hint information and the micro-architectural implementation described in §7.3.3 to
predict the branch. Furthermore, Whisper ensures that the branch predictor does not allocate new
entries for these branches. Thus, Whisper allows the branch predictor to allocate its storage for the
remaining branches and provide better prediction accuracy.

7.5 Evaluation

7.5.1 Methodology

Data center applications and their workloads/inputs. We evaluate Whisper using 12 widely-
used data center applications (as described in §7.2.1). We vary workloads/inputs for these applica-
tions by changing different database queries (e.g., oltp read only vs oltp write only),
different database scaling factors (e.g., 100 vs 8000), different input data and file sizes (e.g.,
large vs small), different query mapping styles (e.g., imperative vs declarative), dif-
ferent webpages client requests (e.g., feed=rss2 vs p=37), different numbers of concurrent
clients (e.g., 2 vs 10), and different random number seeds (e.g., 1 vs 10). We optimize each of
these applications with Whisper using the profile from one workload/input and test the performance
of Whisper’s optimization on a different workload/input.
Profile collection. We collect data center applications’ profile using Intel LBR [7] and PT [1], and
use the hardware performance event, “br misp retired.conditional” to identify branch
mispredictions.
Simulation setup. We evaluate Whisper using Scarab [14] where we implement support for the
brhint instruction and micro-architectural modifications Whisper proposes. We also modify
Scarab to simulate instruction traces collected via Intel PT and evaluate Whisper by simulating 100
million representative, steady-state instructions for each application using simulation parameters
listed in Table 7.2.

7.5.2 Performance analysis

Speedup. We show Whisper’s speedup for 12 data center applications in Fig. 7.12. For com-
parison, we also show speedups that recent techniques (different variants of ROMBF [164] and
BranchNet [405]) offer. To understand the limit, we also show speedups provided by the ideal
branch predictor and MTAGE-SC, the best predictor in the unlimited storage category of CBP-
5 [18]. As shown, Whisper provides an average speedup of 2.8% (0.4%-4.6%) that is 44.1% of the
average speedup (6.3%) MTAGE-SC achieves with unlimited storage.
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Figure 7.12: Speedup over 64KB TAGE-SC-L: Whisper achieves an average speedup of 2.8%
(0.4%-4.6%) and outperforms state-of-the-art profile-guided prediction techniques [405, 164].
Whisper’s speedup corresponds to 44.1% of the speedup MTAGE-SC offers with unlimited stor-
age [318].

The speedup gap between Whisper and MTAGE-SC originates from several reasons. Whisper
can not eliminate some mispredictions for previously unobserved branch instructions as Whisper
optimizes applications using only one different input profile in this case. We quantify the per-
formance implications of this input sensitivity later in this section. Furthermore, the brhint

instructions Whisper injects incur static and dynamic instruction increases which we also quantify
later in the section. Nevertheless, Whisper achieves greater speedup than prior works, ROMBF and
BranchNet, as they only provide 1.7% and 0.8% on average. Furthermore, on average, Whisper
provides greater speedup than BranchNet even when it leverages unlimited metadata storage. Next,
we investigate how Whisper achieves this speedup by reducing a substantial amount of branch mis-
predictions.
Misprediction reduction. We evaluate how well Whisper reduces branch mispredictions com-
pared to prior techniques and show the results in Fig. 7.13. As shown, on average, Whisper re-
duces 16.8% of all branch mispredictions (1.7%-32.4%) the TAGE-SC-L baseline incurs for these
data center applications and significantly outperforms all prior mechanisms. Specifically, Whisper
reduces 7.9% more mispredictions than the best performing prior technique that can be used in
a practical scenario. Furthermore, Whisper outperforms the state-of-the-art, BranchNet, by 4.9%

even when BranchNet uses unlimited metadata storage. This unlimited-BranchNet outperforms
Whisper only for three applications (mediawiki, python, and wordpress) that exhibit the
behavior BranchNet assumes, i.e., the top-few branch instructions cause the majority of all mis-
predictions, as shown in Fig. 7.5. Nevertheless, Whisper eliminates more mispredictions than the
practical variants (8KB and 32KB) of BranchNet even for these three applications as shown in
Fig. 7.13. Next, we provide a breakdown of mispredictions Whisper eliminates among different
sources of optimizations.
Breakdown of misprediction reduction. In Fig. 7.14, we show the contributions of hashed his-
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Figure 7.13: Whisper’s reduction in branch mispredictions compared with BranchNet and
ROMBF: Whisper eliminates 7.9% more mispredictions than the best performing realistic prior
work. Whisper even removes 4.9% more mispredictions than the unlimited-BranchNet.
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Figure 7.14: Misprediction reduction (%) achieved by hashed history correlation and Implication
and Converse Non-Implication over 8-bit ROMBF: hashed history correlation reduces more branch
mispredictions than Implication and Converse Non-Implication.

tory correlation and Implication and Converse Non-Implication to Whisper’s overall performance.
We quantify the reduction in branch mispredictions these two novel techniques offer over 8-bit
ROMBF. As shown, hashed history correlation achieves an average misprediction reduction of
6.4% while Implication and Converse Non-Implication eliminate 1.5% of all mispredictions.
Implications of randomized formula testing and training time. Whisper’s randomized formula
testing does not eliminate any new mispredictions. Instead, randomized formula testing reduces
Whisper’s offline training time (i.e., time to find the best Boolean formula to predict a branch)
without sacrificing prediction accuracy. Fig. 7.15 shows this tradeoff between Whisper’s average
misprediction reduction and average training time with an increase in the percentage of formulas
Whisper explores via randomized formula testing. As shown, Whisper eliminates 16.8% of all mis-
predictions even after exploring only 0.1% of all formulas. This reduction is comparable (88.3%
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Figure 7.15: Thanks to randomized formula testing, Whisper achieves high misprediction reduc-
tion even after exploring only 0.1% of all formulas (left) while significantly reducing the training
time (right, the y-axis is log-10 scale).

on average) to the reduction Whisper achieves after considering 100% of all formulas. In terms of
training time, randomized formula testing is also efficient as it reduces the exploration time by an
order of magnitude (Fig. 7.15). Consequently, Whisper’s training time is lower than training times
for 8-bit ROMBF and BranchNet (Fig. 7.16).
Performance across different workloads/inputs. As we mention in §7.5.1, we optimize data
center applications with Whisper using the profile from one input and test the performance of
Whisper’s optimization on a different input. Now, we investigate Whisper’s performance across
three separate input configurations (‘#1’ to ‘#3’). We optimize each application using the train-
ing input’s profile ‘#0’ and measure mispredictions Whisper eliminates for different test inputs
‘#1, #2, #3’. For each input, we also measure the performance when Whisper optimizes the
application with the same input’s profile. As shown in Fig. 7.17, Whisper avoids 6.6% more mis-
predictions with input-specific profiles compared to profiles that are not input-specific.

To address this input sensitivity, prior work [405] recommended merging profiles from multiple
inputs. We study the impact of merging profiles on Whisper’s performance in Fig. 7.18. We com-
pare Whisper’s performance against prior works after merging profiles from different application
inputs. As shown, Whisper outperforms prior techniques even for merged profiles. Furthermore,
Whisper’s effectiveness increases as profiles from multiple inputs are merged.
Hint overhead. Unlike BranchNet, Whisper does not incur any extra metadata overhead. Hence,
Whisper’s only overhead is brhint instructions added in the program binary and executed at run
time. We estimate the static and dynamic overhead of these brhint instructions in Fig. 7.19. As
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Figure 7.16: Average training time for Whisper compared to prior techniques (the y-axis is log-10
scale): BranchNet requires training times of more than thousands of seconds, even when trained on
an NVIDIA Tesla V100 GPU. The training time for ROMBF grows exponentially with an increase
in history length. The training time for Whisper is significantly lower than training times for 8-bit
ROMBF and BranchNet.

Table 7.3: Different design parameters’ values.

Design parameter Value Design parameter Value
Minimum history length 8 Length of the hashed history 8
Maximum history length 1024 Logical operations used 4
Different history lengths 16 Hint buffer's size 32

shown, on average, Whisper increases these applications’ static footprint by 11.4% (9.8%-13%)
while introducing 9.8% (5.3%-14.7%) extra dynamic instructions.
Sensitivity analysis. As we describe in §7.3, Whisper’s design includes several parameters includ-
ing a minimum, maximum, and different history lengths, hashed history length, different logical
operations used, and hint buffer’s size. We determine these parameters’ values empirically via
sensitivity studies. For brevity, we do not present detailed results corresponding to these studies.
As a summary, Table 7.3 shows these parameters’ values we use to evaluate Whisper.
128KB TAGE-SC-L as baseline. We evaluate Whisper’s effectiveness for a much larger, 128KB
TAGE-SC-L baseline and show the results in Fig. 7.20. The 128KB TAGE-SC-L exhibits a branch-
MPKI in the range of 0.4-5.4 (2.4 on average) for 12 data center applications. As shown, Whisper
achieves an average misprediction reduction of 13.4% over the 128KB TAGE-SC-L baseline high-
lighting Whisper’s effectiveness even for a larger TAGE-SC-L branch predictor.
Predictor size. We evaluate Whisper’s sensitivity to the baseline branch predictor’s size by varying
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Figure 7.17: Whisper’s performance for various application inputs: On average Whisper reduces
6.6% more branch mispredictions with input-specific profiles compared to profiles from different
inputs.
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Figure 7.18: Whisper eliminates more branch mispredictions after merging profiles from various
inputs.

TAGE-SC-L’s capacity from 8KB to 1MB. Fig. 7.21 shows the results. As shown, Whisper con-
sistently reduces more than 10% of all mispredictions irrespective of the predictor’s capacity. Even
the 1MB TAGE-SC-L incurs an average branch-MPKI of 1.9 compared to MTAGE-SC’s branch-
MPKI of 1.4. As even the 1MB TAGE-SC-L suffers from capacity and conflict mispredictions,
Whisper still has the potential to reduce a significant number of mispredictions. Consequently,
Whisper reduces mispredictions by 11.2% for the 1MB TAGE-SC-L.
Predictor warm-up. We evaluate Whisper’s sensitivity to baseline branch predictor’s (TAGE-SC-
L) state by varying % of warm-up instructions from 0% to 90%. Fig. 7.22 shows the results. As
shown, Whisper reduces all mispredictions TAGE-SC-L incurs by 17.5% without any warm-up. As
TAGE-SC-L’s warm-up period increases and TAGE-SC-L incurs fewer mispredictions, Whisper’s
average misprediction reduction (%) over to TAGE-SC-L drops slightly. Nevertheless, Whisper
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Figure 7.19: Whisper’s overhead in static and dynamic instruction increase: on average, Whisper
incurs a static overhead of 11.4% (9.8%-13%) and executes 9.8% (5.3%-14.7%) extra dynamic
instructions due to brhint instructions.

still avoids a large number of mispredictions as it reduces TAGE-SC-L’s mispredictions by 16.8%

even when warm-up instructions account for 50% of all instructions.
Simulated instructions. We evaluate Whisper’s sensitivity to the total number of instructions
simulated by varying the number of instructions from 100 million to 1 billion. Fig. 7.23 shows the
results. As shown, Whisper reduces 14.7% of all mispredictions even when one billion instructions
are simulated.

7.6 Related Work

PGO for data center applications. The large instruction footprint and software complexity of
modern data center applications make them a prime target for PGO [39, 41, 112, 179, 204, 344,
224]. Prior PGO techniques include code layout optimizations [65, 238, 136, 410, 286, 221, 236,
278, 279, 126, 139, 407], I-cache prefetching [41, 199] and replacement [202], and BTB prefetch-
ing [195] and replacement [334]. These techniques primarily focus on reducing frontend stalls
while Whisper focuses on reducing branch mispredictions. Consequently, Whisper should be
equally effective even in the presence of these techniques.
Online branch predictors. Most state-of-the-art online branch predictors are variants of
TAGE [321] and Perceptron [167]. TAGE hashes global branch and path histories of differ-
ent lengths to index into various tables composed of tagged saturating counters. TAGE-SC-
L [317, 319], which won CBP-5 [18], is a popular TAGE variant that uses additional loop predictor
and statistical corrector components to improve accuracy. Perceptron-based predictors, such as the
Multiperspective Perceptron [162, 163], use a single-layer neural network to compute a sum of
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Figure 7.20: Whisper’s reduction in branch mispredictions over the 128KB TAGE-SC-L baseline:
Whisper reduces 13.4% of all mispredictions the 128KB TAGE-SC-L incurs.
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Figure 7.21: Whisper’s performance for various baseline branch predictor’s sizes: Whisper reduces
even 1MB TAGE-SC-L’s mispredictions by 11.2%.

weights that represent a learned correlation in branch history. A fundamental limitation of TAGE
and Perceptron-based predictors is their inability to learn increasingly complex branch histories
due to storage and run-time constraints. Other work in online branch prediction includes domain-
specific branch predictors and predictors targeting data-dependent branches [296, 133, 309, 340].

Considering prior limitations, Whisper still leverages online branch predictors in the common
case. Offline profiling and hardware support for ROMBF are then used to predict branches that on-
line predictors struggle to predict accurately. This approach allows Whisper to reduce the resource
burden placed on traditional online predictors from applications with noisy branch histories. Also,
Whisper does not attempt to alter existing online branch predictors in hardware, which simplifies
its implementation in modern processors.
Offline methods for branch prediction. Offline techniques, such as profiling and compiler-
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Figure 7.22: Whisper’s performance for various TAGE-SC-L warm-up periods: Whisper reduces
16.8% of TAGE-SC-L’s mispredictions with 50% of instructions considered as warm-up. On the
other hand, Whisper avoids 17.5% of TAGE-SC-L’s mispredictions without any warm-up.

based optimizations, have been used extensively to improve accuracy for branch prediction
[115, 45, 392, 401, 210, 62, 282, 401, 164, 166, 160, 325, 356, 346, 111, 25, 363, 95, 243, 357].
BranchNet [405] is a recent offline method for reducing branch mispredictions. It uses CNNs,
with a hardware-based inference component, to handle branches that online predictors struggle to
predict accurately. The main limitation of BranchNet is its resource requirements (i.e., multiple
GPUs for efficient training, one CNN model per static branch) and implementation complexity
in hardware. Whereas for Whisper, ”training” or analyzing execution profiles can be done rela-
tively cheaply using commodity CPUs and the hardware implementation is less demanding than
hardware inference for deep learning. Additionally, BranchNet struggles to cover mispredictions
spread out across many unique static branches. Whisper has less overhead per static branch due to
the lightweight design of ROMBF compared to a CNN model in BranchNet.

7.7 Conclusion

The state-of-the-art branch predictor, TAGE-SC-L, suffers frequent branch mispredictions for data
center applications as their large branch footprints overwhelm TAGE-SC-L’s 64KB capacity. We
propose, Whisper, a profile-guided hardware/software mechanism to efficiently reduce branch mis-
predictions in these data center applications through extended Read-Once Monotone Boolean For-
mulas that encode hard-to-predict correlations in branch history. Whisper inserts lightweight for-
mulas in application code at link time using a new brhint instruction that is complemented by
micro-architectural support for ROMBF. Through efficient offline analysis of application profiles,
only select branches use these new micro-architectural changes; the remaining are predicted using
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Figure 7.23: Whisper’s performance for various numbers of simulated instructions: on average,
Whisper avoids 14.7% of all mispredictions after simulating one billion instructions.

the underlying branch predictor – requiring no changes to the predictor itself. On average, Whis-
per reduces 16.8% (1.7%-32.4%) of branch mispredictions over TAGE-SC-L for 12 widely-used
data center applications, with an average speedup of 2.8% (0.4%-4.6%), and outperforms existing
profile-guided branch prediction mechanisms, such as BranchNet, by 7.9%.
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CHAPTER 8

Conclusion and Future work: Democratizing
hardware/software co-design

My research vision is to rethink computer systems from the ground up for efficiency. My work
enabling efficient data center processing is one key step toward this vision. Going forward, I
will democratize hardware/software co-design by building open-source systems and benchmarking
methodologies. Using insights from leading these efforts, I will propose new techniques to solve a
broad set of efficiency problems across the systems stack.
Democratizing systems research on production web services. Production web services widely
deployed in today’s data centers are difficult to study outside of the industry. As systematic in-
vestigations of these workloads are key to driving future innovation, I am currently working with
Google researchers to democratize such investigations. Toward this goal, we have recently released
the first version of Google’s workload traces [6]. Next, I will build an open-source infrastructure
that will enable end-to-end hardware/software co-design (e.g., simulating clusters with network-
ing) of these web services. To aid this effort, Google has awarded me a gift that I will use to launch
my research lab.
Enabling hardware development to catch up to rapid software evolution. Software code base
of data center applications evolves at a very rapid pace (e.g., O(days)). In contrast, hardware evo-
lution is significantly slower (e.g., O(years)), making hardware design challenging as it is difficult
for the hardware to keep up with new software trends and bottlenecks. To enable hardware to
meet new software needs in a timely manner, I will design an end-to-end system that will enable
hardware development to be guided by future software trends. This system will first profile an ap-
plication’s historical software evolution to identify how ensuing hardware bottlenecks evolve over
time (i.e., across application versions). Then, using this historical bottleneck evolution, the system
will project how these key hardware bottlenecks might evolve in the future. Finally, the system will
use this projection to apply automated compiler transformations that will generate a future applica-
tion version exhibiting these projected bottlenecks. Showing interest, Intel has recently supported
my initiative with a grant.
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Managing thread oversubscription with hardware/software co-design. At any given time, even
a single data center application have hundreds of threads ready to run on a single processor core,
causing severe performance issues such as frequent context switching and interference among
threads. Hardware/software co-design is a promising direction to address these problems. In
the hardware theme, I will design techniques to quickly warm up micro-architectural structures,
reducing the overhead of context switching. In the software theme, to reduce inference among
threads, I will design mechanisms to run threads with similar access patterns (e.g., to the micro-
architectural structures) one after the other.
Hardware/software co-design for multi-tenant efficiency. Diverse data center applications (e.g.,
latency-sensitive vs. batch-processing) are co-scheduled on the same machine to achieve higher
resource utilization. However, this co-scheduling incurs a heavy cost as applications thrash each
other out of micro-architectural structures. Using hardware/software co-design, I will propose ef-
ficient co-scheduling strategies that can avoid this destructive thrashing. In particular, I will design
hardware techniques to identify different applications’ demands for different micro-architectural
structures. I will also propose software techniques that will use these demand vectors to schedule
applications in a cooperative manner.
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Nakra, Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas Sinha, et al. Evolution of
the samsung exynos cpu microarchitecture. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 40–51. IEEE, 2020.

[130] Joseph L Greathouse, Zhiqiang Ma, Matthew I Frank, Ramesh Peri, and Todd Austin.
Demand-driven software race detection using hardware performance counters. In ACM
SIGARCH Computer Architecture News, volume 39, pages 165–176. ACM, 2011.

[131] The PostgreSQL Global Development Group. Line number 3225. https:
//github.com/postgres/postgres/blob/master/src/backend/
executor/nodeHash.c.

[132] Stephan M Günther and Josef Weidendorfer. Assessing cache false sharing effects by dy-
namic binary instrumentation. In Proceedings of the Workshop on Binary Instrumentation
and Applications, pages 26–33. ACM, 2009.

[133] Saurabh Gupta, Niranjan Soundararajan, Ragavendra Natarajan, and Sreenivas Subramoney.
Opportunistic early pipeline re-steering for data-dependent branches. In Proceedings of
the ACM International Conference on Parallel Architectures and Compilation Techniques,

190

https://github.com/google/llvm-propeller
https://github.com/google/llvm-propeller
https://github.com/postgres/postgres/blob/master/src/backend/executor/nodeHash.c
https://github.com/postgres/postgres/blob/master/src/backend/executor/nodeHash.c
https://github.com/postgres/postgres/blob/master/src/backend/executor/nodeHash.c


PACT ’20, page 305–316, New York, NY, USA, 2020. Association for Computing Machin-
ery.

[134] Vishal Gupta, Neelu Shivprakash Kalani, and Biswabandan Panda. Run-jump-run: Bouquet
of instruction pointer jumpers for high performance instruction prefetching.

[135] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 290–299, 2007.

[136] Stavros Harizopoulos and Anastassia Ailamaki. Steps towards cache-resident transaction
processing. In International conference on Very large data bases, 2004.

[137] Milad Hashemi, Kevin Swersky, Jamie A Smith, Grant Ayers, Heiner Litz, Jichuan Chang,
Christos Kozyrakis, and Parthasarathy Ranganathan. Learning memory access patterns.
arXiv preprint arXiv:1803.02329, 2018.

[138] Kim Hazelwood and James E Smith. Exploring code cache eviction granularities in dynamic
optimization systems. In International Symposium on Code Generation and Optimization,
2004.

[139] Wenlei He, Julián Mestre, Sergey Pupyrev, Lei Wang, and Hongtao Yu. Profile inference
revisited. Proceedings of the ACM on Programming Languages, 6(POPL):1–24, 2022.

[140] Yuxiong He, Charles E Leiserson, and William M Leiserson. The cilkview scalability an-
alyzer. In Proceedings of the twenty-second annual ACM symposium on Parallelism in
algorithms and architectures, pages 145–156, 2010.

[141] Ravi Hegde. Optimizing application performance on intel core microarchitecture using
hardware-implemented prefetchers. Intel Software Network, 2008. [Online; accessed 5-
December-2020].

[142] Mark D Hill and Alan Jay Smith. Evaluating associativity in cpu caches. IEEE Transactions
on Computers, 38(12):1612–1630, 1989.

[143] Changwan Hong, Wenlei Bao, Albert Cohen, Sriram Krishnamoorthy, Louis-Noël Pouchet,
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tin Studener, Lubomı́r Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger,
and Walter Binder. Renaissance: Benchmarking suite for parallel applications on the jvm.
In Programming Language Design and Implementation, 2019.

[295] Aleksandar Prokopec, Andrea Rosa, David Leopoldseder, Gilles Duboscq, Petr Tuma, Mar-
tin Studener, Lubomir Bulej, Yudi Zheng, Alex Villazon, Doug Simon, et al. Renaissance:
benchmarking suite for parallel applications on the jvm. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 31–
47. ACM, 2019.

[296] Stephen Pruett and Yale Patt. Branch runahead: An alternative to branch prediction for
impossible to predict branches. In MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO ’21, page 804–815, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

203



[297] Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely, and Joel Emer. Adaptive
insertion policies for high performance caching. ACM SIGARCH Computer Architecture
News, 35(2):381–391, 2007.

[298] Moinuddin K Qureshi, Daniel N Lynch, Onur Mutlu, and Yale N Patt. A case for mlp-aware
cache replacement. In 33rd International Symposium on Computer Architecture (ISCA’06),
pages 167–178. IEEE, 2006.
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[324] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Batum, Jason
Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo Bianchini.
Serverless in the wild: Characterizing and optimizing the serverless workload at a large
cloud provider. arXiv preprint arXiv:2003.03423, 2020.

[325] Timothy Sherwood and Brad Calder. Automated design of finite state machine predictors for
customized processors. In Proceedings 28th Annual International Symposium on Computer
Architecture, pages 86–97. IEEE, 2001.

[326] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. Applying deep learning to the
cache replacement problem. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 413–425, 2019.

[327] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. Eelru: simple and effective adaptive
page replacement. ACM SIGMETRICS Performance Evaluation Review, 27(1):122–133,
1999.

[328] Alan Jay Smith. Sequential program prefetching in memory hierarchies. Computer, (12):7–
21, 1978.

[329] Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):473–530, 1982.

[330] James E Smith. A study of branch prediction strategies. In 25 years of the international
symposia on Computer architecture (selected papers), pages 202–215, 1998.

[331] Byoungro So, Mary W Hall, and Heidi E Ziegler. Custom data layout for memory paral-
lelism. In Code Generation and Optimization, 2004. CGO 2004. International Symposium
on, pages 291–302. IEEE, 2004.

[332] Stephen Somogyi, Thomas F Wenisch, Anastasia Ailamaki, and Babak Falsafi. Spatio-
temporal memory streaming. ACM SIGARCH Computer Architecture News, 37(3):69–80,
2009.

[333] Shixin Song, Tanvir Ahmed Khan, Sara Mahdizadeh Shahri, Akshitha Sriraman, Niranjan K
Soundararajan, Sreenivas Subramoney, Daniel A Jiménez, Heiner Litz, and Baris Kasikci.
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