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ABSTRACT

Stochastic computing (SC) is an unconventional computing style that uses probabilistic bitstreams
to implement algorithms like those for machine learning, digital filtering, and image processing.
SC’s unusual encoding enables highly fault tolerant, low power, and small datapaths. For in-
stance, a single AND gate performs multiplication in SC. SC’s advantages make it attractive for
use in small devices like wearables and biomedical implants, but widespread adoption of SC has
been limited due to challenges including a steep accuracy-latency trade-off and expensive inter-
face circuits. We address these challenges using a statistical approach. First, we develop a better
framework for analyzing stochastic circuit errors and then use insights from statistical analysis to
design and evaluate smaller and more accurate circuits.

Understanding SC’s many error sources is key to developing more accurate designs. However,
existing approaches to accuracy analysis fail to provide a comprehensive account of all error types.
The first part of this thesis proposes a novel framework named Bayesian Analysis of Stochastic
Errors (BASE). BASE is built on statistical estimation theory and identifies three key quantities
that must be modeled or estimated to quantify a circuit’s accuracy. BASE is used to better under-
stand and address circuit errors and is compatible with prior methods for error analysis as well as
new models that we propose in this thesis. Importantly, BASE reduces the reliance on black box
simulation methods which provide limited insight and are prone to mistakes.

SC’s low-cost multipliers make it attractive for neural network and digital filtering applications.
However, accurate addition is difficult to implement in SC and overhead from SC’s data conver-
sion circuits reduces SC’s advantage for these applications. We address these problems by using
insights from statistical modeling to develop new and better SC designs. Three such designs are
introduced: 1) CeMux, a multiplexer adder that is significantly more accurate and smaller than its
predecessors, 2) parallel sampling adders which have a flexible area-accuracy trade-off that can
be tuned for the application, and 3) multiplexer-majority chains which can reduce the overhead
of SC’s conversion units. We apply our new designs to tasks like ECG filtering, image edge de-
tection, and image classification with binarized neural networks as well as higher-precision neural
networks.
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CHAPTER 1

Introduction

Smart sensors, brain-computer interfaces, biomedical implants, wearables, and other devices can
benefit from the recent rapid progress in data-driven algorithms like neural networks. However,
such small and battery powered devices often have stringent area and energy constraints which
make on-chip implementations of their algorithms difficult. A potential solution to this problem is
stochastic computing (SC), a neuro-inspired computing paradigm that encodes and processes data
using probabilistic bitstreams called stochastic numbers (SNs). Features of SN datapaths include
high fault tolerance, low power, and small size. For instance, a single AND gate can be used to
multiply two SNs. These and other features have made SC an attractive paradigm for on-chip
implementations of image processing, error correcting, neural networks, and other algorithms.

1.1 Motivation and Challenges

Due to memory, size, and energy limitations, many devices rely on cloud servers to make use of
advanced machine learning algorithms like neural networks. In this approach, a device sends data
to cloud where it is processed and the result is sent back to the device. For example, the echo
dot, one of Amazon’s smart speakers, sends user queries to a cloud server where it is addressed
by machine learning models that implement the Alexa virtual assistant technology [47]. The result
from Alexa is sent back to the echo dot where the answer is played over the speaker for the user.

Cloud-based solutions allow devices to overcome their local resource limitations and employ
useful algorithms, but this approach also comes with many disadvantages [44, 69]. For instance,
relying on data centers in the cloud requires a connection to the internet which is not always feasi-
ble. Additionally, data privacy also becomes a concern when sending sensitive user information to
the cloud, especially in medical applications. The latency and energy consumption of data transfer
can also be high [69]. Although challenging, implementing algorithms directly on a small device
can help avoid these disadvantages.

One way to implement computationally expensive algorithms at the device level is to design
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Figure 1.1: Example of multiplying two stochastic numbers with an AND gate.

new dedicated processors for certain workloads. For example, Apple’s iPhones use a facial recog-
nition algorithm called Face ID to unlock the device and to implement other authentication-related
features. Face ID uses information from a variety of cameras and sensors on the phone to deter-
mine whether the user’s face is present or not [52]. For best user experience, Face ID must execute
quickly, minimize use of energy from the phone battery, and preserve user data privacy. To meet
these constraints, Face ID uses the phone’s ’neural engine’, a dedicated hardware unit for deep
neural networks separate from the iPhone’s CPU and GPU [98]. In this case, using a cloud-based
solution or the using phone’s GPU may not meet application requirements for energy, latency and
privacy. Thus, the inclusion of a dedicated processor for machine learning enables Face ID in
iPhones [53].

Designing application-specific integrated circuits (ASICs) that implement image processing,
digital filtering, and machine learning algorithms on constrained devices is desirable, but can be
difficult because these algorithms often require a large amount of memory or involve a large num-
ber of numeric operations. For example, the ResNet-50 neural network [43] requires more than
95MB of memory to store its network parameters and uses 3.8 billion multiplications to classify
a single image [69]. Approximate or unconventional computing paradigms like stochastic com-
puting (SC) can help address these challenges. SC’s small and low power datapaths like the AND
multiplier enable massively parallel implementations neural networks and other algorithms like
finite impulse response (FIR) filters which rely heavily on multiplication [13, 66].

SC’s advantages and challenges arise from its unconventional approach to encoding and pro-
cessing data. SC uses stochastic numbers (SNs) to represent data. An SN is a stream of bits
X = x1x2...xL where X’s value X is the probability that any of its bits take value 1. Two SNs
can be multiplied by using an AND gate as illustrated in Figure 1.1 and fully explained in Chapter
2. Likewise, two SNs can be added using a two-way multiplexer. SC’s low-cost multipliers and
adders make it an attractive paradigm for designing ASICs for small, battery powered devices.

For example, our work has examined the use of SC in hearing aids [16]. Hearing aids provide a
key solution to the problem of hearing loss which the World Health Organization estimates affects
430 million people worldwide [77]. A major component of a hearing aid is a filterbank; see
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(a)

(b)

Figure 1.2: (a) Basic structure of a digital hearing aid; (b) example audiogram that indicates the
least intense (faintest) sound that a patient can hear at the given frequency.

Figure 1.2a. The filterbank decomposes the input sound into frequency bands that are selectively
amplified to match a specific pattern of hearing loss or audiogram. For example, the audiogram
in Figure 1.2b indicates that the patient has severe high frequency hearing loss and requires more
amplification at the upper end of the audio spectrum.

Hearing aid filterbanks typically require 100s to 1000s of multiplications. The area and power
cost of filterbanks can make it difficult to meet the hearing aid’s stringent constraints on physical
size, response time, and power consumption [25]. In [16], we demonstrate that an SC-based fil-
terbank can achieve 70% lower area and 4% to 65% lower power than a serial binary filterbank.
Improvements to the SC filterbank would include increasing the stopband attenuation (a measure
of filtering quality) and improving the power efficiency using techniques like our recently proposed
SN adder and SN generator designs [14, 15].

In addition to low-cost datapaths, SC’s probabilistic encoding also offers interesting avenues
for design that are not present in conventional binary systems. For example, SC designs can ex-
ploit bit-level correlation to alter gate function. The general idea is that multiplication and other
traditional SC designs are built on the assumption that all SN bits are independent or uncorrelated.
Violating this assumption usually results in circuit inaccuracy [23], but recent work has shown
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Figure 1.3: SC edge detection. (a) circuit design; (b) Example of images and their edge detected
counterparts.

that correlation can be exploited in useful ways [3, 13, 19, 31]. For example, an AND gate with
uncorrelated inputs implements multiplication, but the same AND gate will implement the min op-
eration when its inputs are maximally correlated. Other examples of correlation-exploiting circuits
include the OR and XOR gates which implement max and absolute difference, respectively. Non-
linear operations like max are useful for implementing functions like max pooling and the ReLU
activation functions found in neural network designs [31]. Other applications of correlation-based
circuits include sorting networks [7] and the small edge detector design in Figure 1.3 which has
been proposed for use in retina implants [5].

Another advantage of SC is the high fault tolerance of its SN encoding. For an SN, a bit-flip
causes a change in value of 1/L where the L is the SN length. In contrast, a bit-flip on a highly
significant bit in traditional binary format can result in a large value change. This feature of the SN
encoding has made it a promising paradigm for use with emerging devices like memristors [7, 42,
56] and phase change memories [20]. Such devices have many advantages including high-density
or speed, but suffer from variability and random noise in their operation. SC’s fault tolerance can
help overcome the noisy nature of these components and improve their reliability.

Despite its promise, SC has some challenges and limitations that have prevented its more
widespread adoption.

Challenge 1. Poorly understood error theory. Existing methods fail to accurately quantify circuit
errors which limits design tools and forces reliance on simulation that is computa-
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tionally expensive and yields limited insight into how to improve accuracy.

Challenge 2. A steep accuracy-latency trade-off. The accuracy of estimating an SN’s value scales,
at best, linearly with bitstream length.

Challenge 3. Expensive data conversion circuits. The circuits used to generate SNs often require
a large amount of circuit area which limits the benefits of cheap arithmetic circuits.

Our work addresses these challenges in the following ways. First, we address SC’s poorly un-
derstood error theory by developing a new framework to error analysis and by introducing new
techniques for modeling circuit behavior. Then, insights gained from accurately modeling circuit
error led to new and more accurate circuit designs which address SC’s accuracy-latency challenge.
Specifically, large-scale adder design has been particularly difficult to implement efficiently in SC,
but such designs serve a central role in implementing the many-input weighted additions found in
operations like convolution. To address these challenges, we introduce CeMux, a new multiplexer
adder that is more accurate and smaller than its predecessors [13]. We show CeMux greatly out-
performs other SC designs for an electrocardiogram filtering task [13]. We then combine CeMux
with another SC adder called the accumulative parallel counter to produce a new hybrid adder
design named the parallel sampling adder (PSA) [14]. We demonstrate that PSAs have a flexible
area-accuracy trade-off that can be tuned for the application, and we show that PSAs can be used
to save about half the area of an SC neuron without sacrificing accuracy in an image classification
application.

To address SC’s expensive data conversion circuits and to improve understanding of correlation
in modern SC designs, we also analyze SC’s conversion circuits which are used to convert from
traditional binary format into SC’s SN format. We show how a well-known low-area conversion
circuit named the weighted binary generator cannot reliably generate correlated SNs which results
in high inaccuracy in correlation-reliant designs. To further analyze the correlation, area, and
accuracy of SC’s conversion circuits, we introduce multiplexer-majority chains (MMCs). MMCs
can be used to better control correlation and area in SC conversion circuits and we demonstrate
that combining MMCs with our CeMux design saves about 30% area in exchange for about 7%
lower signal-to-noise ratio for a filtering application.

1.2 Outline of Thesis

The remainder of this thesis is organized as follows. We begin with a review of basic SC concepts
in Chapter 2. More specific and technical background is introduced throughout the thesis as it
becomes relevant. Then Chapter 3 details our proposed Bayesian Analysis of Stochastic Errors
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(BASE) framework which addresses the challenge of SC’s many error sources. BASE groups sim-
ilar error types into one of two categories: systematic or random and then provides a formula for
combining these error types into a single error metric, the mean squared error. BASE also high-
lights the application-dependence of stochastic circuit accuracy and provides a strong foundation
for stochastic circuit accuracy analysis that complements existing simulation approaches.

BASE highlights three important quantities that must be statistically modeled or estimated to
quantify a circuit’s accuracy. Existing approaches to analyzing these quantities are either lacking
key features or are inaccurate. In Chapter 4, we propose new probabilistic models that better rep-
resent circuit behavior and lead to accurate estimates for important accuracy influencing quantities
like variance. We then show how accurate statistical models can be used to improve the accuracy
of small circuits like mux adders and give a complete case study that applies BASE and our new
models to SC neural network analysis.

Chapter 5 expands on the results of Chapter 4 by introducing two new large-scale adder designs,
CeMux and PSAs. We demonstrate how both adders address the challenges of implementing many-
input weighted addition in SC through example applications like electrocardiogram filtering and
image classification with neural networks. Then in Chapter 6, we study how SN generator design
impacts important circuit properties like input correlation. We show that low-area SN generator de-
signs can’t generate highly correlated bitstreams which greatly impacts the accuracy of correlation-
reliant designs. Chapter 6 also details a new SN generator design style named multiplexer-majority
chains. Chapter 7 summarizes our contributions and suggests direction for future work.
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CHAPTER 2

Stochastic Computing

This chapter introduces relevant concepts from stochastic computing (SC). Some ideas are devel-
oped further in later chapters of the thesis. For example, the basics of stochastic number generation
are covered here and then expanded on in Chapter 6 which focuses on stochastic number generator
design. Helpful introductions to SC include a 2017 review paper by Alaghi, Qian and Hayes [6],
a 2019 textbook written by established SC researchers and edited by Gross and Gaudet [40] and
the 1969 article Stochastic computing systems by Gaines [34]. A history of stochastic computing
is given in Chapter 1 of [40].

2.1 Stochastic Computing Basics

SC uses stochastic numbers (SNs) to represent data. An SN X is a sequence of random bits
X = x1x2...xL where each bit has the same probability of taking value 1, namely, Px = P(xt = 1).
X’s numeric value depends on the chosen SN format. When X is a unipolar SN, its value is simply
X = Px while a bipolar SN X has value X = 2Px − 1. Bipolar SNs are useful for representing
negative values. For example, the 8-bit SN X = 00100110 has an estimated unipolar value of
X̂ = 3/8 and estimated bipolar value of X̂ = −1/4. Scaling can be used to represent numbers
outside of the [0, 1] or [−1, 1] intervals.

A central advantage of SN encoding is that arithmetic is performed using simple logic elements.
Consider the AND gate in Figure 2.1a with unipolar SN inputs X and Y and output Z. The output
value Z is P(zt = 1) = P ((xt ∧ yt) = 1). If the bits of X and Y are uncorrelated or independent,
then Z = P(xt = 1)P(yt = 1) = XY . Thus, the output value is equal to the product of the input
values implying the AND gate acts a single-gate SN multiplier. For bipolar SNs, multiplication is
performed with an XNOR gate.

Like multiplication, addition is simple to implement in SC, but addition must be scaled or
approximated due to the confinement of SN values to fixed intervals like [0, 1]. Scaled addition
is usually performed with a multiplexer (mux) like the one in Figure 2.1b. Here, S is a control
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Figure 2.1: Stochastic logic elements: (a) unipolar multiplier (b) scaled mux adder.

Figure 2.2: End-to-end SC system.

SN with a fixed probability of Ps = 0.5 and X and Y are data SNs that are added. With this
configuration, the output Z has value Z = 0.5(X + Y ) when X, Y and Z are all unipolar SNs
or when they are all bipolar SNs (the control S is always unipolar). Thus, the mux acts as a
scaled unipolar or bipolar SN adder. Alternatively, an OR gate with inputs X and Y and output Z
performs saturated addition on unipolar SNs: Z = X +Y −XY . In general, stochastic arithmetic
is approximate, and accuracy depends on SN length, correlation levels, and other factors. For
example, when viewed as an adder, the OR gate has an approximation error of −XY .

The general structure of an SC system that can be embedded into a traditional fixed-point system
is shown Figure 2.2. Here, a small stochastic datapath, the AND multiplier, is surrounded by
peripheral circuits that convert between binary fixed-point format and the SN format. The input
side of the SC system consists a set of stochastic number generators (SNGs) used to create input
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Figure 2.3: Stochastic number generators (SNGs): (a) unipolar SNG that encodes fixed-point X
into SN X; (b) bipolar SNG that encodes 2’s complement X into X.

Figure 2.4: Feedback shift registers. (a) 4-bit maximal LFSR; (b) 4-bit maximal LFSR with all-0
state inserted to its state sequence.

SNs X and Y. SNGs are typically constructed with a random number source (RNS) and a a
probability conversion circuit (PCC) as illustrated in Figure 2.3a. The RNS produces a sequence
of n-bit random numbers R1R2...RL which the PCC converts one-by-one to produce an SN X =

x1x2...xL with P(xt = 1) = Px. For example, a common PCC is a digital comparator which
outputs xt = Rt < X . Since Rt is uniformly distributed, P(xt = 1) = P(Rt < X = 1) = X as
desired. To generate bipolar SNs, the unipolar SNG of Figure 2.3a can be slightly modified as in
Figure 2.3b.

An n-bit maximal linear feedback shift register (LFSR; Figure 2.4a) [37] is commonly em-
ployed as the RNS in an SNG because it is relatively low-cost and is sufficiently random for SC
use [34, 37]. The LFSR’s n-bit state S iterates through all values in {1/2n, 2/2n, . . . (2n − 1)/2n}
in a pseudo random order. Importantly, S never takes value 0 which can cause a small bias in SN
generation and complicates later analysis. Fortunately, any maximal LFSR can be easily modified
to include the all-zero state by adding a single n−1 input OR gate as shown in Figure 2.4b [8, 91].

9



Notation Meaning

X = X1X2...XL An L-bit stochastic number (SN).
X = P(xt = 1) = E[X̂] X’s (expected) unipolar value.
X̂ = 1

L

∑L
t=1 xt X’s estimated unipolar value.

X∗ X’s target value.
X ∗ = [X∗

1 , X
∗
2 , ..., X

∗
M ] Vector of M target SN values.

n SN generator precision.
L SN length. Usually set to 2n.

Table 2.1: Major Notation and Definitions

All LFSRs used in this thesis are modified in this manner.

2.2 Stochastic Number Estimation

After generation, SNs are processed through an SN arithmetic circuit (e.g., an AND gate multiplier
or a mux adder) and produce an output SN Z as illustrated in Figure 2.2. If Z’s length L is a power
of two, a digital counter can be used to determine the frequency of 1s in Z, i.e.,

Ẑ =
1

L

L∑
t=1

zt (2.1)

effectively converting from the SN format to traditional fixed-point format. Likewise a bipolar SN
Z with value Z = 2Pz − 1 can have its value estimated as

Ẑ = 2

(
1

L

L∑
t=1

zt

)
− 1 (2.2)

An up-down counter that increments when zt = 1 and decrements when zt = 0 implements
Equation (2.2) when the SN length L is a power of two. In both the unipolar and bipolar cases,
the counter’s output Ẑ is an estimate of Z’s target value Z∗, which is the intended result of the
computation. The difference between Ẑ and Z∗ is the circuit’s error which fluctuates randomly
due to the stochasticity of Z.

Before proceeding further, it is helpful to highlight the three distinct values associated with
every SN such as X. The first is X’s expected value or just ”value” X which is a function of the
underlying probability Px that its bits take value 1. In unipolar format X = Px and in bipolar
format X = 2Px − 1. The second is X’s desired or target value X∗ determined by the application
and which may indicate a bias error if it differs from X . In many cases, X = X∗ and the SN is
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Figure 2.5: Basic mux tree adder.

said to be unbiased. The third value is X’s estimated value X̂ found by counting the 1s in X, as
in Equations (2.1) and (2.2). In traditional SC and this thesis, it is always the case that X = E[X̂].
Table 2.1 summarizes these values as well as some other important notation conventions used in
this work.

In general, there will be some difference between an output SN’s estimated value Ẑ and its
target value Z∗. Such errors come from a variety of sources like random fluctuations of SN bits
and unwanted correlations between them. In general, the average error decreases as SN length
increases. Thus, SC is an approximate computing paradigm with an inherent accuracy-latency
trade-off. Quantifying this trade-off will be the central topic of Chapters 3 and 4. A final remark
on SC accuracy is that SNs are very fault tolerant. Specifically, Equations (2.1) and (2.2) indicate
that a bit-flip amounts to a small change in the estimated value of 1/L or 2/L while, in traditional
fixed-point format, a bit-flip can cause a large error in value.

2.3 Many-input SN Adders

A tree of 2-way mux adders can be extended to add more SNs as shown in Figure 2.5. All
mux adders sample their data inputs to implement scaled addition. For example, the mux tree
in Figure 2.5 has a 1/8th chance of sampling each input implying that Z’s expected value is
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Figure 2.6: Accumulative parallel counter (APC) [78]. (a) APC structure consisting of an adder
whose sum is accumulated over many clock cycles; (b) block symbol.

Z = 1/8
∑8

i=1Xi. Although mux tree adders are small, they are often very inaccurate espe-
cially when used to add 100s or 1000s of SNs [13, 71]. Mux inaccuracy is largely due its sampling
behavior where only one input SN is sampled each clock cycle while the bits from all other in-
puts are ignored. Specifically, the chosen SN is randomly determined by the select bits and so
the sampling process results in high noise and random fluctuation error. In Chapter 5, we analyze
mux adder error using a new statistical model and then introduce CeMux, a new mux adder that is
significantly more accurate and smaller than existing mux adder designs.

Along with mux adders, accumulative parallel counters (APCs) [78] are among the most pop-
ular SN adder designs. An M -input APC performs the popcount operation where it counts all 1s
from each incident SN and accumulates the result each clock cycle as shown in Figure 2.6. The
APC effectively sums its M input bitstreams while also converting them into a fixed-point estimate.
In comparison to mux adders, APCs are very accurate due to their exhaustive counting approach,
but also are costlier in terms of area and power. As mentioned earlier, conventional mux adders are
usually inaccurate when summing many bitstreams and so APCs have become the preferred adder
type for some applications like neural networks [66] which rely on large, many-input summations.

APCs are often used to perform weighted addition, a central operation in many important al-
gorithms. Figure 2.7 illustrates a 4-input bipolar weighted APC. Here, the input values X1 to X4

and corresponding weights W1 to W4 are converted into bipolar SNs and are then multiplied us-
ing XNOR gates. The product SNs Y1 to Y4 with value Yi = WiXi are then summed using an
APC. The APC output is Ẑ with value Z =

∑4
i=1 Yi =

∑4
i=1 WiXi. In general, weighted APCs

implement Z =
∑M

i=1WiXi where M is the number of inputs.
In a weighted APC, using a separate SNG for each input SN and weight SN can be costly in

terms of area and power. However, cost can be greatly reduced by sharing a single RNS across
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Figure 2.7: Bipolar weighted APC adder.

several SNGs. For weighted APCs, one RNS is generally shared amongst all input SNGs and a
second RNS is shared amongst all weight SNGs [66]. This method employs as much RNS-sharing
as possible while still allowing for accurate XNOR multiplication that requires inputs SNs and
weight SNs to be uncorrelated. RNS-sharing is generally believed to not affect APC accuracy
[66], but a case study in Section 5.2 proves that this is incorrect in some cases. Even with RNS-
sharing, a weighted APC still has high area which we address in Section 5.3 with our parallel
sampling adder design.

2.4 Correlation

As alluded to earlier, SN bits are usually assumed to be independent. However, correlations some-
times arise between SN bits with major implications on circuit function and accuracy. In SC, the
stochastic cross correlation (SCC) metric [3] is typically used to quantify correlation between the
bits of SNs X and Y:

SCC(X,Y) =


Px∧y − PxPy

min(Px, Py)− PxPy

ifPx∧y ≥ PxPy

Px∧y − PxPy

PxPy −max(Px + Py − 1, 0)
otherwise

(2.3)

where Px∧y = P(xt ∧ yt = 1). SCC’s numerator is the difference between the actual overlap of
1s in X and Y and expected overlap of 1s if X and Y were independent. SCC’s denominator
normalizes the value to range [−1, 1].

If SNs X and Y are uncorrelated, then the 1s in these bitstreams are expected to overlap at a
rate of PxPy. For example, when Px = 1/2 and Py = 1/4, the 1s in uncorrelated SNs X and Y
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Gate Function when
SCC(X,Y) = 0

Function when
SCC(X,Y) = 1

AND Z = XY Z = min(X, Y )
OR Z = X + Y −XY Z = max(X, Y )
XOR Z = X + Y − 2XY Z = |X − Y |
MUX Z = 0.5(X + Y ) Z = 0.5(X + Y )

Table 2.2: Unipolar Stochastic Operation with Independent or Correlated Inputs

overlap about 1/8th of the time and SCC(X,Y) is 0. When the 1s in X and Y overlap more often
than expected, SCC > 0 and X and Y are said to be correlated. Likewise, when their 1s overlap
less often than expected, SCC < 0 and X and Y are said to be anti-correlated. SCC is maximized
with a value of ±1 when the 1s in X and Y overlap or do not overlap as much as possible based
on Px and Py. For example, A = 110101 and B = 100101 have an estimated SCC(A,B) of +1

while A and C = 001010 have an estimated SCC(A,C) of −1.
In SC design, correlation can be exploited to change circuit function [3, 19]. For example,

an AND gate normally multiplies uncorrelated inputs X and Y when SCC(X,Y) = 0, but an
AND gate instead outputs Z with Z = min(X, Y ) when X and Y are maximally correlated with
SCC = 1. Table 2.2 gives other examples of how correlation changes gate function in useful ways.
Using correlated SNs to implement functions like min, max and absolute difference has practical
applications in image processing [1, 19, 61], sorting networks [7] and neural networks [2, 31]. For
example, neural network max pooling and ReLU activation functions rely on the max operation
which can be implemented with just an OR gate if the input SNs are maximally correlated.

In addition to modifying circuit function, correlated SNs can improve circuit accuracy compared
to using independent SNs. For example, in Chapter 4 we introduce a large mux-based SN adder
named CeMux [13] that is significantly more accurate than traditional mux-based adders that don’t
leverage correlation. Other circuits like sorting networks or median filters can also achieve very low
or even zero error under certain conditions [19]. If designers are not careful, however, correlation
may increase output error as in the case of a mux adder with negatively correlated inputs [12].

2.5 Sequential Stochastic Circuits

Sequential stochastic circuits are another type of design that uses memory to implement useful
arithmetic functions. For example, the circuit in Figure 2.8 implements Z ≈ X2. The D flip-flop
in the circuit creates a delayed copy of input X where dt = xt−1. D’s value D = P(dt = 1) ≈
P(xt = 1) = X therefore approximates X’s value and the AND gate multiplies X and D to yield
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Figure 2.8: Stochastic squarer circuit.

Z with Z = XD ≈ X2. Other sequential stochastic circuits can be used to implement useful
functions like tanh and exp [18, 64].

Sequential stochastic circuits can be analyzed using Markov chains [18, 64] as described in
detail in Section 4.3. Such circuits usually assume that there is no correlation within an SN or, in
other words, that the input SNs are have no autocorrelation. For example, the SN X = 01010101

is highly autocorrelated because a 1 always follows a 0 and vice versa. X = 11110000 is an-
other example of a highly autocorrelated SN which will produce an inaccurate result if used in a
sequential circuit like the squarer. It is understood that autocorrelation causes high error, but simu-
lation was the only method quantifying that error for a given design. In Section 4.3, we formalize
autocorrelation error and propose an analytic approach for quantifying this error type.

2.6 SC Applications

SC has been applied to many domains including image processing, digital filtering, error correction
codes, and neural networks. SC is well-suited to these areas given its low-cost computational
elements, its fault tolerance, and its potential for massive parallelism. SC synergizes best with
applications that can tolerate or benefit from the random noise inherent to SC’s processing. For
example, a neural network’s class prediction is usually found by taking the argmax of the neuron
values in the network’s final layer. These neuron values can contain random noise without changing
the overall class prediction as long as the largest neuron value is sufficiently higher than the rest.
Moreover, random noise during neural network training can improve classification performance
[73, 84] and random noise during neural network inference can help defend against adversarial
attacks [89]. Thus, SC is well-suited for designing low-cost implementations of neural networks.

Table 2.3 lists some of the many SC applications with references, and indicates whether this
thesis includes an example of the application. Our work largely focuses on SC’s application to
neural networks, image processing, and digital filtering. For example, our CeMux adder design is
applied to filtering noisy electrocardiogram (ECG) signals for heart monitoring [13, 14, 15] and
applied to filtering audio signals for hearing aids [16]. Meanwhile our parallel sampling adder
(PSA) design improves SC-based neural network performance [14] and our multiplexer-majority
chain (MMC) design [15] can be used to better understand and improve SNG overhead in any
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design.

Application Reference(s) Covered in this work

Image classification with neural networks [18, 29, 31, 45] Sections 4.5, 5.3, 6.4
Digital filtering [13, 21, 51, 91] Sections 5.2, 6.4
Median filtering [19] Section 6.4
Edge detection [5, 19] Section 6.4
Error correction with LDPC codes [39, 49] -
Sorting networks [7] -
Encoding for noisy emergent devices [20, 45, 56] -
Near-sensor processing [30, 60] -
Bayesian inference [28, 42] -
Brain-inspired computing [76, 86] -
Drone stabilization [26] -

Table 2.3: Examples of Stochastic Computing Applications
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CHAPTER 3

Bayesian Analysis of Stochastic Errors

Understanding accuracy and its trade-offs is key to evaluating the growing list of SC circuit designs.
Prior works have identified many sources of error in SC systems which can be difficult to combine.
Prior approaches to error analysis have focused on one particular error type [10, 23, 67, 74] or have
focused on deriving conservative upper bounds on error [79]. However, a lack of a comprehen-
sive and general framework for errors impedes the design process and makes comparing designs
difficult. This chapter summarizes our progress towards a more general theory of SC errors by
detailing our Bayesian analysis of stochastic errors (BASE) framework. The work in this chapter
is mostly published in [11], but the name BASE is introduced here for the first time.

3.1 Error Types

In general, error is the difference between a circuit’s target output value and its estimated output
value found by counting the output SN’s bits. For example, a stochastic circuit used to multiply
1/4 by 3/4 has target output 3/16, but may output Z = 0000100011000100 which has four 1s
and sixteen total bits. In this case, the output’s estimated value is 4/16 which constitutes an error
of 1/16. Stochastic circuit inaccuracy arises from a variety of sources including approximation,
quantization, correlation and random fluctuation [74, 79].

Approximation error is the difference between the target function and the function implemented
by the circuit. Approximating a target function can help reduce hardware cost if the approximating
function is simpler to implement than the target function. For example, an OR adder implements
Z = X+Y −XY which approximates standard addition Z∗ = X+Y with an approximation error
of −XY . Approximation error also arises when using reconfigurable architectures where target
functions must be approximated by a specific functional form, such as a Bernstein polynomial [79].

Quantization error is due to the limited precision of the SNGs. For example, a 4-bit SNG can
only generate SNs with value {0, 1/16, 2/16, . . . , 15/16}. An input SN X with X∗ = 0.72 has its
target value rounded by truncation to X = 11/16 producing a quantization error of 11/16−0.72 ≈
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−0.03. Other works [48, 74] may define quantization error in terms of the smallest value a SN can
represent based on its length, but our concept of quantization is based on the SN’s underlying
probability and is separate from SN length. For example, in our definition, X = x1 with unipolar
value X = 0.5 and length L = 1 has zero quantization error if X’s lone bit takes value 1 with
probability 0.5.

Correlation error is another, more subtle error source due to unwanted similarities between
bit-streams. Most traditional SC circuits are designed assuming that all input SNs are independent
or uncorrelated. In practice though, SNs may be correlated thus changing the circuit’s expected
output and introducing error [23]. For example, consider an AND gate with no quantization error
and with inputs X and Y. If X and Y are highly correlated, the output Z will have Z = min(X, Y )

rather than Z∗ = XY . The correlation error in this case is min(X, Y ) − XY . Interestingly, the
min function, and hence deliberately introduced correlation, is useful in some applications [3]. In
general, correlation error arises whenever SNs do not have the desired amount of correlation.

Random fluctuation error is usually the largest source of error in SC. In general, estimated
values like Ẑ fluctuate around their expected value Z = E[Ẑ] because the bits of Z are stochastic.
For example, an AND gate may have expected output value Z = 0.5, but may actually output
Z = 01100001. In this case, Z’s value would be estimated as Ẑ = 3/8 which constitutes a random
fluctuation error of −1/8. In general, the expected magnitude of random fluctuation errors tends
to decrease proportionally to 1/

√
L or 1/L where L is SN length [4, 74].

Since there are many error types, it can be difficult to quantify a circuit’s overall error. In [79],
an upper bound for each error type is identified and then combined to produce an upper bound
for overall error. However, such an approach ignores cancellations between errors. For example,
a positive approximation error can partly cancel with negative quantization error. Ignoring such
cancellations causes the analysis to overestimate the overall error’s true upper bound. Other error
analysis approaches focus mostly on random fluctuation error because it is usually the most promi-
nent error source [67, 74]. However, random fluctuation error is not always the dominant error
source as correlation error can sometimes be very high [23].

Overall, it is desirable to have a general and comprehensive error analysis framework that si-
multaneously accounts for all error sources and can produce accurate estimates for the circuit’s
expected error which is often the desired metric of interest. Our Bayesian analysis of stochastic
errors (BASE) framework makes significant progress on this goal. The framework consists of two
key concepts which lead to a better understanding of stochastic circuits. The first concept is that
all error types fall into one of two fundamental categories: systematic or random. The second
concept is that a circuit’s expected error is application dependent. Overall, the BASE framework
simultaneously accounts for all error types, provides a useful decomposition of expected error, and
leads to a methodology for comparing the accuracy of different stochastic or deterministic circuit
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Figure 3.1: Generic end-to-end SC system consisting of stochastic number generators, a stochastic
datapath and an output accumulator.

designs.

3.2 Systematic and Random Errors

Existing methods in other areas of the statistical sciences can be leveraged to build an error analysis
framework for SC. Specifically, stochastic circuits can be viewed as estimators of a target value.
Through this useful lens, results and insights from statistical estimation theory [54] can be utilized
to develop a framework for stochastic circuit error analysis. We detail this formulation for unipolar
SC, but it readily extends to the bipolar format by replacing all unipolar SN values with bipolar
ones.

Consider the generic SC system in Figure 3.1. The M -input stochastic circuit has target input
values X ∗ = [X∗

1 , X
∗
2 , ..., X

∗
M ] and a target output function Z∗ = f(X ∗). The circuit’s output is

an SN Z = z1z2...zL whose value Z = P(zt = 1) equals or approximates the target Z∗. However,
Z is not available directly and must be estimated by using an accumulator to count the 1s in Z:

Ẑ =
1

L

L∑
t=1

zt. (3.1)

The circuit’s error ϵZ is the difference between the estimate Ẑ and the target value Z∗.

ϵZ = Ẑ − Z∗ (3.2)

A cost or loss function can be used to determine the severity of this estimation error. No standard
cost function exists for SC, but L(ϵ) = ϵ2 (quadratic error) and L(ϵ) = |ϵ| (absolute error) are
commonly used. We focus on quadratic cost due to its useful bias-variance decomposition, but the
following formulation, especially Equations (3.3) and (3.9) can readily be framed in terms of other
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cost functions.
The circuit’s mean squared error (MSE) given target input values X ∗ is defined as

MSE(Z∗, Ẑ|X ∗) = E[(Ẑ − Z∗)2|X ∗] (3.3)

In Equation (3.3), it is explicit that error is dependent on the target input values X ∗ which is
normally the case in SC. MSE also usually depends on other parameters like SN length and SNG
precision whose influence is implicit in (3.3).

In standard statistical analysis [54], the MSE of an estimator such as Ẑ can be decomposed into
a combination of bias and variance, the so-called bias-variance decomposition of MSE:

MSE(Z∗, Ẑ|X ∗) = Bias2(Z∗, Ẑ|X ∗) + Var(Ẑ|X ∗) (3.4)

where
Bias(Z∗, Ẑ|X ∗) = E[Ẑ|X ∗]− E[Z∗|X ∗] (3.5)

Var(Ẑ|X ∗) = E[(Ẑ − E[Ẑ])2|X ∗] (3.6)

Bias is the difference between the target value and the circuit’s expected estimated value. Bias
quantifies error as if the SNs had infinite length and all randomness was averaged out. In other
words, bias captures the systematic error of the circuit. Bias is the combined error of consistent
and usually independent error sources like approximation, quantization and correlation errors. For
example, an approximation error of 0.02, quantization error of−0.05 and correlation error of 0.04,
combine to give an overall bias of 0.01. A circuit’s bias can be reduced by addressing these error
sources by, for example, redesigning the circuit to improve approximation error, increasing SNG
bitwidth to reduce quantization error, or by using decorrelation techniques to reduce correlation
error [87].

Variance, the counterpart to bias, captures the random fluctuation error of the circuit by quan-
tifying the expected difference between the estimated output value Ẑ and its expected value
Z = E[Ẑ]. Variance decreases as SN length increases because random fluctuations tend to av-
erage out over many clock cycles. Variance depends on the SNG design (e.g., what RNS type is
used) and on the datapath design, but does not depend on the target value Z∗. Thus, variance is
a property of the circuit rather than the target application. In many cases, variance is much larger
than bias and bitstream length has a dominating influence on accuracy.

Although bias-variance decomposition is well-known in statistical estimation theory, to our
knowledge, our work [11] was the first to explicitly apply it to the analysis of SC circuits. One
work on correlation error analysis [23] derived some equations that resemble bias-variance de-
composition, but did not develop the analysis to include other error types like approximation and
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Algorithm 3.1 Stochastic Circuit Error Analysis

Input: X ∗ = [X∗
1 , X

∗
2 , ..., X

∗
M ] ▷ Target input values

Output: MSE(Z∗, Ẑ|X ∗) ▷ Mean squared error given target input values X ∗

1: Z∗ ← f(X ∗) ▷ Compute target output based on application
2: X ← ⌊2nX ∗⌋/2n ▷ Use truncation to quantize target inputs to SNG precision n
3: Z ← g(X ) ▷ Compute expected output value based on stochastic circuit logic
4: B ← Z − Z∗ ▷ Compute bias using (3.5)
5: V ← h(X ) ▷ Compute variance using (3.6)
6: E ← B2 + V ▷ Compute MSE using (3.4)
7: return E

quantization. Other works acknowledge SC’s various error sources, but focus mostly on analyzing
random error (variance) [67, 74].

The notions of bias and variance are a key component of BASE. They each quantify a fun-
damental error type: bias quantifies systematic error and variance quantifies random error. A
high MSE may indicate a high bias, a high variance, or both. Understanding which is the case is
paramount to addressing inaccuracies. For example, increasing SN length will greatly reduce MSE
if variance is the dominant error source, but will not mitigate a high MSE if bias is the dominant
error source since SN length does not affect bias. Algorithm 3.1 is based on MSE’s bias-variance
decomposition and describes a general process for determining a circuit’s MSE given its target
input values. The following two examples illustrate Algorithm 3.1 in action.

Example 3.1: Consider using the SC system in Figure 3.2a to multiply X∗ = 15/32 and
Y ∗ = 13/32 with n = 4-bit SNGs and L = 16-bit SN length. Following Algorithm 3.1 to analyze
circuit accuracy, the target output value is first noted as Z∗ = X∗Y ∗ ≈ 0.19 (Step 1). Then, X∗

and Y ∗ are truncated to 4-bit precision to yield X = 7/16 and Y = 6/16; these truncated values
are input to the SNGs in Figure 3.2a (Step 2). Based on the circuit’s logic and the independence of
X and Y, the expected output value is then found to be Z = XY ≈ 0.164 (Step 3) which yields a
squared bias of 6.95× 10−4 (Step 4). Next, simulation or analysis can be used to find the variance
of Ẑ (Step 5). In Chapter 4, the variance of Figure 3.2a is derived as

Var(Ẑ|X ∗) =
XY (1−X)(1− Y )

L− 1
(3.7)

which yields Var(Ẑ) = 3.85 × 10−3 with this example’s X , Y and L. Finally, squared bias and
variance are combined to give an overall MSE of about 4.54× 10−3 (Step 6). Here, MSE has been
derived analytically and matches the results of using simulation to estimate MSE.

Example 3.1 demonstrates a few important aspects of errors in stochastic circuits. First, bias
can arise due to quantization of input values, just as in traditional computing systems. This type
of quantization error can be reduced by increasing SNG bitwidth and is unaffected by SN length.
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Figure 3.2: Examples of basic SC circuits: (a) unipolar multiplier; (b) unipolar biased adder.

Second, in this example, variance is about 5.6x higher than bias squared and thus dominates MSE.
Consequently, the small bias from input quantization is sometimes ignored in analysis [74, 79].

Example 3.2: Next, other features of errors in stochastic circuits are demonstrated by applying
Algorithm 3.1 to the circuit in Figure 3.2b which is intended to implement addition Z∗ = X∗+Y ∗

with SN length L and target input values X∗ and Y ∗. For this example, the SNG bitwidth is
sufficiently large that there is no quantization error implying that X = X∗ and Y = Y ∗. Based
on the logic of an OR gate and independence of X and Y, the circuit’s expected output value is
Z = X + Y −XY which yields squared bias of X2Y 2. The variance of OR adder can be derived
as Equation (3.7), i.e., the variance is the same as in Example 3.1 [67]. Thus, the overall MSE of
Figure 3.2b is

MSE(Z∗, Ẑ|X ∗) = X2Y 2 +
XY (1−X)(1− Y )

L− 1
(3.8)

Figure 3.3 illustrates the bias-variance decomposition of Equation (3.8) when Y = 0.20, L = 32

and X is varied. In Figure 3.3, the (non-squared) bias is visualized as the difference between the
black target value curve and the red circuit expected value curve. Due to random fluctuations, the
estimated value Ẑ will fluctuate around its expected value as shown by the red dots in Figure 3.3.
Each dot represents the estimated value Ẑ of one simulation run. Sometimes Ẑ fluctuates away
from its mean and towards target value Z∗ constituting lower overall error while other times Ẑ

fluctuates away from Z∗ constituting higher overall error. The expected variation of Ẑ is visu-
alized in Figure 3.3 as the red shaded region whose width is Ẑ’s standard deviation (square root
of variance). The average effect of fluctuation on MSE is captured as variance in MSE’s bias-
variance decomposition in Equation (3.4). Although Ẑ can sometimes fluctuate closer to its target
value, variance is always non-negative indicating that random fluctuations are always expected to
increase overall error in terms of MSE.

Example 3.2 demonstrates a few further aspects of errors in stochastic circuits. First, rather
than plain addition, an OR gate implements X + Y −XY which leads to approximation bias that
is much higher than last example’s bias from quantization. Second, Figure 3.3 illustrates that both
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Figure 3.3: Visualization of bias-variance decomposition for an OR-gate adder with one input
value fixed to 0.2.

bias and variance vary with the input value X . For example, bias is very low for small X which
reflects the conventional wisdom that the OR gate adder is more accurate for small X and Y . Third,
variance (the second term in Equation 3.8), decreases with L, but bias (the first term in Equation
3.8) does not. As L approaches infinity, the MSE converges to the bias and, importantly, does
not approach zero. Thus, it is paramount to understand whether a stochastic circuit’s error is due
mainly to bias or due to variance because in the former case, error will not improve significantly
by simply increasing L.

In summary, Algorithm 3.1 built around MSE’s bias-variance decomposition encapsulates the
first aspect of our BASE framework. Algorithm 3.1 has the following useful features:

1. Separability: Bias-variance decomposition enables systematic errors and random errors to
be analyzed separately and then easily combined into a single overall error metric, MSE.

2. Flexibility: Both bias and variance can be derived from statistical analysis as in Examples
3.1 and 3.2 or bias and variance can be estimated via simulation. Thus, even pure simulation
approaches can benefit from Algorithm 3.1’s approach to error analysis.

3. Actionability: The relative magnitude of bias and variance can provide actionable insight
into design improvement as we will demonstrate throughout this thesis. High variance can be
combated by increasing SN length, by improving RNS design, or by improving circuit design
as shown later. High bias is unaffected by SN length, but can instead be mitigated through
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means like increasing SNG bitwidth, improving correlation control and using datapaths with
lower approximation error.

3.3 Application-Specific Performance

In the foregoing error analysis framework of Algorithm 3.1, error is expressed as a function of the
target inputs values X ∗ and SN length L. While such formulas provide useful insights, it would
also be helpful to have a single number which encapsulates a circuit’s expected accuracy and which
reproduces simulation error estimates that are often given as a single numeric value. The next part
of our framework details such a metric, namely, the Bayes mean squared error (BMSE) defined
[54] as

BMSE(Z∗, Ẑ) = E[MSE(Z∗, Ẑ|X ∗)] (3.9)

where the expectation is taken with respect to X ∗’s distribution. Like plain MSE, BMSE also has
a bias-variance decomposition.

BMSE(Z∗, Ẑ) = E[Bias2(Z∗, Ẑ|X ∗)] + E[Var(Ẑ|X ∗)] (3.10)

where the expectations are again taken with respect to X ∗’s distribution.
One advantage of BMSE over plain MSE is that, given SN length L, BMSE is a single nu-

meric value which can be used to rank stochastic circuits against other stochastic circuits and their
non-stochastic counterparts. BMSE can be intuitively understood by expanding the expectation
operator in Equation (3.9):

BMSE(Z∗, Ẑ) =

∫
x∗∈UM︸ ︷︷ ︸

integrate
over all x∗

fX ∗(x ∗)︸ ︷︷ ︸
probability

density for x∗

MSE(Z∗, Ẑ|X ∗ = x ∗)︸ ︷︷ ︸
MSE given

input values x∗

dx ∗ (3.11)

where U = [0, 1] is the unit interval. In Equation (3.11), the MSE for each particular set of input
values MSE(Z∗, Ẑ|X ∗ = x ∗) is weighted by its corresponding probability density fX ∗(x ) and
the MSE contributions from all valid sets of input values are integrated to compute a single error
metric, BMSE. Note that the limits of integration in Equation (3.11) may change depending on the
application, but usually unipolar SC circuits have target input values confined to the unit interval.

Bayes MSE and our BASE framework are ”Bayesian” in the sense that prior knowledge is
being leveraged to reason about something random in the future. In this case, knowledge about
the circuit’s input value distribution is being leveraged to provide a better numerical estimate of
the circuit’s expected error. The leveraging of prior information is a central idea in Bayesian
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Figure 3.4: MSE curve and example PDFs for an AND-gate multiplier with one input value fixed
to 0.7.

probability theory as exemplified by Bayes’ theorem [54]

P(H|D) =
P(D|H)P(H)

P(D)
(3.12)

where, for instance, H might be some hypothesis and D might be some data influencing belief
in H . Equation (3.12) indicates how the prior probability of the hypothesis H , P(H), affects the
posterior belief in the hypothesis given the data, P(H|D). In the case of our BASE framework,
the prior belief about the input value distribution informs our posterior belief about the circuit’s
expected error (i.e., its BMSE).

BMSE is well-known in statistical estimation theory [54] and is a natural choice of error metric
for SC. In fact, although not recognized by name, BMSE and other forms of Bayesian cost is what
many simulations studies in SC implicitly measure [51, 79, 91] when reporting a numeric error
metric from simulation. Usually, such works will refer to a simulation’s numeric error estimate as
’mean absolute error’ or ’mean squared error’, but in our BASE framework, these values would be
called ’Bayes mean squared error’ or ’Bayes mean absolute error’ while terms like ’mean squared
error’ are used to refer to expressions for error in terms of input values. Importantly, BMSE
highlights the fact that stochastic circuit performance can be highly application-dependent because
the expectation in Equation (3.9) is taken with respect to the input value distribution (IVD) fX ∗

which is determined by the application. The following example shows the application-dependence
of stochastic circuit accuracy in action.

Example 3.3 Consider the AND gate multiplier of Figure 3.2a with two uncorrelated 64-bit
input SNs X and Y and output Z. To illustrate the influence of an application’s IVD on the
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multiplier’s MSE, the circuit is simulated with X = 0.7 held fixed and Y drawn from one of
two possible probability density functions (PDFs). Figure 3.4 illustrates the PDFs: PDF1 (red
dashed line) is a peaked distribution centered at 0.70 while PDF2 (blue dotted line) is a U-shaped
distribution with most of its density concentrated near 0.0 and 1.0. For both PDFs, R = 50, 000

simulation runs are used to estimate BMSE as

BMSE(Z∗, Ẑ) ≈ 1

R

R∑
r=1

(Z∗
r − Ẑr)

2 (3.13)

where and Ẑr and Z∗
r are Z’s estimated and target values during simulation run r. The BMSE was

found to be 3.82 × 10−3 when using PDF1 to choose values for Y , but the BMSE is 2.28 × 10−3

(40% lower) when using PDF2 to choose values for Y .
This large difference in MSE is due to PDF2’s more favorable IVD for Y . Specifically, PDF2

has a higher density for Y values that result in very low multiplication error while PDF1 has higher
density for Y values that result in high error. Thus, the circuit is more accurate on average when
Y is drawn from PDF2. Evidently, Y ’s PDF exerts a large influence on the average output error
as captured by BMSE. This leads to an important conclusion: the accuracy of a stochastic circuit
can be highly dependent on an application’s IVD. Having knowledge of the IVD enables a better
understanding of average accuracy which can lead to a more informed choice about SN length and
thus circuit latency.

Case studies presented later in this thesis will give other concrete examples of the IVD’s im-
portance. For example, the neural network case study of Section 4.5 shows that the MNIST image
classification benchmark [58] has a very favorable IVD that results in about five times lower BMSE
than other benchmarks like CIFAR10 [57]. The analysis concludes that SC-based neural networks
may perform worse on CIFAR10 not only because it is a harder classification benchmark than
MNIST, but also because the CIFAR10’s IVD results in noisier stochastic processing as indicated
by its five times higher BMSE.

3.4 Comparing Circuit Accuracy

BMSE can be used to compare the accuracy of two circuits, e.g., by computing the difference or
ratio of BMSE. In some cases, however, one circuit may have a lower BMSE than another circuit
for some IVDs, but not for others. Such a scenario points to a potential problem with SC simulation
studies that only use one method of choosing input values. For example, it may seem intuitive to
compare different adder designs with uniformly random input data to determine how the adders
compare. In this case, however, only one BMSE (or similar metric) is calculated and compared, but
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the comparison may not generalize well to other IVDs. For general design studies, it is important
to appreciate that accuracy is application-specific and test against several benchmark applications
or IVDs to get a full picture of accuracy behavior. Section 3.5 gives an example where various
different IVDs yield different estimates for circuit error and conclusions about required SN length.

Comparing circuits using multiple IVDs is generally a good idea, but it is sometimes the case
that circuit A is never less accurate than another circuit B for any IVD. In that case, circuit A is
said to dominate B. Formally, a circuit A with output Â dominates another circuit B with output
B̂ with respect to a target value Z∗ when [54]:

1. MSE(Z∗, Â|X ∗ = x ∗) < MSE(Z∗, B̂|X ∗ = x ∗) for at least one input value set x ∗.

2. MSE(Z∗, Â|X ∗ = x ∗) ≤ MSE(Z∗, B̂|X ∗ = x ∗) for all other values of x ∗.

In words, circuit A dominates B when A is more accurate for at least one input combination x ∗ and
no less accurate than B for all other input combinations. Here, MSE is the chosen error metric, but
dominance can also be phrased in terms of other cost functions like mean absolute error or mean
percent error. The notion of estimator dominance leads to the following theorem.

Theorem 3.1: Consider two circuits A and B with the same input X ∗ and the same target
function Z∗. If A dominates B, then A never has a greater BMSE than B for any distribution of
X ∗.

Theorem 3.1 follows from the definition of dominance and the fact that BMSE is computed
as a weighted integral (i.e., infinite sum) of MSEs where all weights are positive. When a circuit
dominates another circuit, then the former is always at least as accurate as the latter for any IVD
implying that proving dominance can be very useful. For example, our novel CeMux adder intro-
duced in Chapter 5, dominates all other mux adders while also having lower area implying that it
is the best mux-based adder design for any application.

3.5 Application of Error Analysis

One key application of error analysis is determining the critical SN length, i.e., the minimum SN
length required to achieve a user-specified level of accuracy. Since error varies with the circuit’s
input values, latency can be determined in terms of the worst-case error [74], in terms of average-
case error or in terms of expected error (BMSE) for a given IVD. As shown next, each approach
can yield significantly different critical SN lengths.

Example 3.4: Consider again the SN multiplier of Figure 3.2a. Assuming inputs X and Y have
length L = 2n and are generated with n-bit SNGs. The BMSE is derived for four different IVDs:
(1) PDF1 of Figure 3.4, (2) PDF2 of Figure 3.4, (3) the worst-case IVD that maximizes BMSE
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Figure 3.5: BMSE for an AND multiplier with target input values drawn from various IVDs.

and (4) the average-case IVD defined as when X∗ and Y ∗ are chosen uniformly randomly from
the unit interval U = [0, 1].

The BMSE results are plotted in Figure 3.5. The latency-error curve is lowest for the PDF2
case because input SN values that result in low error occur with high probability. The opposite
situation occurs for PDF1 where the latency-error curve is high because input SN values that result
in high error occur with high probability. Meanwhile, the average case latency-error curve falls
between PDF1’s and PDF2’s error curve, which highlights the fact that average case analysis is
not representative of these (and many other) IVDs. The BMSE curve for the worst-case IVD is the
highest by definition.

The relationship between error and SN length in Figure 3.5 can be used to derive the critical
SN length for a given accuracy. For instance, if the target BMSE is 3 × 10−3, then Figure 3.5
shows that 32-bit SNs are needed when IVD is PDF2, 64-bit SNs are needed for the average case
IVD and 128-bit SNs are needed for the worst case IVD or when the IVD is PDF1. The factor
of four difference in required SN length demonstrates the influence that the IVD can have on the
error. Note that SN length is restricted to be a power-of-two so that the output SN’s value can be
estimated using only a counter.

In summary, average case or worst case analysis can be useful, but more reliable results are
achievable through analyzing the application’s IVD. For example, stochastic circuits are designed
to operate for a specific application such as image processing. The IVD of natural image pixels
contrasts starkly with random values as in average case analysis and with adversarial examples
as in worst case analysis. Later, it is shown that our CeMux adder design performs significantly
better on real-world data, supporting the argument that application-specific performance should be
considered when assessing stochastic circuit accuracy. Specifically, the case study in Section 5.2
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finds that CeMux’s error is over 100 times lower when applied to electrocardiogram denoising than
when applied to uniformly random input data.

3.6 Summary

Our Bayesian analysis of stochastic errors (BASE) framework is composed of two important com-
ponents. The first is MSE’s bias-variance decomposition which allows systematic errors and
random errors to be analyzed separately and then combined to yield the overall expected error.
Specifically, systematic errors like approximation, quantization and correlation combine to yield
the circuit’s bias while random errors like SN fluctuation and transient faults are quantified as the
circuit’s variance. Bias squared and variance sum to give the circuit’s overall error in terms of
MSE.

The main advantage of using MSE and its bias-variance decomposition is that SC’s various
error sources can be accounted for in a straightforward manner because the analysis of systematic
errors and random errors is separated. Furthermore, knowing whether bias or variance dominates
the MSE can guide attempts to improve accuracy. For example, increasing SN length can help
address a high circuit variance, but will not affect circuit bias.

The second component of our BASE framework is the Bayes MSE (BMSE) metric which gives
a single numeric estimate for circuit accuracy that can be used to compare different SC designs.
BMSE and other Bayesian cost functions [54] are what SC simulation studies implicitly measure
when they report error estimates. Thus, BMSE reproduces simulation-derived MSE which allows
for the validation of simulation results and enables a better understanding of simulation results as
will be further illustrated in the upcoming NN case study of Section 4.5. In addition, BMSE also
stresses the influence of the input value distribution on a circuit’s expected accuracy. This fact
underpins the importance of assessing a circuit’s accuracy performance using a variety of expected
applications in addition to the usual practice of testing circuits with uniformly random input data.

Our overall BASE framework is encapsulated in Algorithm 3.1 and illustrated in Figure 3.6.
There are three key parameters to determine when evaluating a stochastic circuit’s accuracy as
measured by BMSE: the circuit’s bias, the circuit’s variance, and the input value distribution. In
the next chapter, we show how these quantities can modeled for different important circuits like
multipliers and adders and for different applications including digital filtering and neural networks.
These examples will also help clarify and reinforce this chapter’s key ideas.

29



Figure 3.6: Bayesian analysis of stochastic errors (BASE) framework for error analysis. An arrow
indicates influence between components of the framework.
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CHAPTER 4

Statistical Models for Error Analysis

The Bayesian analysis of stochastic errors (BASE) framework proposed in Chapter 3 serves as
a mathematical basis for analyzing circuit accuracy. BASE stresses that overall circuit accuracy
depends on the circuit variance, circuit bias, and input value distribution (IVD). These compo-
nents can be estimated using simulation or be analyzed statistically. Employing both methods and
achieving matching results can increase confidence in the results and statistical models can further
lead to better design understanding and innovations. Unfortunately, prior work on statistical anal-
ysis in SC is limited and, where it does exist, often produces incorrect results due to assumptions
that do not map on to real circuit designs. In this chapter, we give examples of where existing
analysis techniques produce inaccurate error estimates and propose several new statistical models
for bias, variance, and the IVD. The work in this chapter is mostly published in [10, 11, 12].

4.1 Interplay Between Simulation and Analysis

Simulation models and statistical models can both be used to analyze stochastic circuit accuracy,
but with differing advantages and benefits. Simulation provides an unequivocal account of error
given that the simulation uses enough samples for statistical significance and that the circuit’s logic
is faithfully emulated. Thus, circuits should always be simulated for error analysis. Simulation may
be slow in some cases, but when given the circuit’s logic, it is straightforward to build a simulation
model whereas it may not be obvious how to build a statistical model for a given design.

On the other hand, statistical models can provide a detailed account of how error varies with
parameters like SN length, input values and correlation. For example, the error of an AND multi-
plier can sometimes be expressed as MSE = XY (1−X)(1− Y )/(L− 1) [12]. Such expressions
provide a fine-grain account of how error varies with the input values X, Y and SN length L. Statis-
tical models can also inspire new designs and design improvements. For example, modeling mux
adders as sampling units leads to various design improvements explained later. Statistical mod-
els should not strictly replace simulation models because analytic results should always be tested
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Figure 4.1: The synergistic interplay between simulation and analysis.

with simulation to validate their correctness. In short, simulation and analysis are complementary
methods, not competing approaches.

Iterating between simulation and analysis can be an effective process as illustrated in Figure
4.1. Simulation provides data to validate analysis and to test new designs. Unexpected simulation
results also provide new directions for statistical modeling. Meanwhile, analyzing unexpected or
known phenomena can lead to new designs for simulation to test. Based on these benefits and
others, a soundly based statistical approach to complement simulation error analysis is desirable.
For example, our adder designs in Chapter 5 and SNG designs in Chapter 6 were developed as a
result of many iterations of analysis and simulation that aimed to understand the errors of various
stochastic circuits.

However, due to shortcomings in current SC error theory, simulation is often the only method
used to estimate a circuit’s accuracy which breaks the synergistic process in Figure 4.1. Some prior
works have proposed analytic techniques that provide useful insights, but also fall short in some
respects. For example, the SN model in [74] leads to overestimation of the variance in common SC
designs while the variance analysis approach in [68] cannot be easily extended to include correlated
SNs. In this chapter, we present new statistical models that overcome some of these shortcomings
and accurately predict the error of important circuits like adders. Like all models, the ones we
propose in this chapter are not perfect, but they are useful in that they have explained unexpected
simulation results and have led to new and improved circuit designs.
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4.2 Variance and SN Models

Variance quantifies a stochastic circuit’s random error. The output SN’s variance can be expressed
as

Var(Ẑ) = Var

(
1

L

L∑
t=1

zt

)
(4.1)

which expands to

Var(Ẑ) =
1

L2

L∑
t=1

Var(zt) +
1

L2

∑
t=1

∑
k=1
k ̸=t

Cov(zt, zk) (4.2)

where
Var(zt) = E[z2t ]− E[zt]2 (4.3)

is the variance of bit zt and

Cov(zt, zk) = E[ztzk]− E[zt]E[zk] (4.4)

is the covariance between bits zt and zk. Since variance quantifies squared error, taking its square
root can be useful:

σZ =

√
Var(Ẑ) (4.5)

where σZ is known as the standard deviation. Variance and standard deviation are used inter-
changeably in this thesis except where the distinction matters.

Equation (4.2) makes no assumptions about the SN bits and thus can be applied to any SN gen-
erated by any means. It applies to unipolar SNs and also to bipolar SNs whose bits are redefined
to take values {−1, 1} rather than {0, 1} (see also Appendix A). Importantly, Equation (4.2) re-
veals that the variance of an SN’s estimated value depends on the distribution of its bits z1z2...zL.
Specifically, Var(Ẑ) depends on the variance of Z’s bits and the correlations between bits of Z.
Thus, modeling variance can be accomplished by modeling Z’s bits. In the following section, the
traditional SN model is covered. Weaknesses of the traditional approach is then discussed and our
novel hypergeometric SN model [12] is proposed.

4.2.1 Traditional Binomial SN Model

In the traditional model of stochastic computing, all bits within a newly generated an SN are
assumed to be independent [34, 74]. More formally, the traditional model presumes every bit of
an L-bit SN X is an independent Bernoulli trial with Px probability of success. Consequently, X’s
estimated unipolar value X̂ = 1

L

∑L
t=1 xt is a scaled Binomial random variable with L trials and
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Px probability of success per trial. Formally, X̂ = 1
L
A where A ∼ Binomial(Px, L) [38]. Given

the connection to the binomial distribution, we refer to such SNs as binomial SNs.1 When the
inputs to a combinational stochastic circuit are binomial SNs, the output Z is also a binomial SN
[74]. Thus, Z’s estimated value is a scaled binomial random variable with

Var(Ẑ) =
Z(1− Z)

L
(4.6)

where L is SN length and Z = E[Ẑ] by definition. Equation (4.6) can be derived from Equation
(4.2) by noting that binomial SN Z has Var(zt) = Z(1 − Z) and Cov(zt, zk) = 0. This section
focuses on unipolar SNs, but it is worth noting that a version of Equation (4.6) exists for bipolar
SNs as well. The bipolar variance expression is

Var(Ẑ) =
1− Z2

L
(4.7)

which can be derived from Equation (4.2) by noting that Var(zt) = 1 − Z2 and Cov(zt, zk) = 0

for bipolar binomial SN Z [74].
Two things are immediately apparent from Equations (4.6) and (4.7). First, Var(Ẑ) is straight-

forward to determine because Z is usually known or simple to compute. For example, an AND
multiplier with Z = XY would be found to have Var(Ẑ) = XY (1 − XY )/L where L is SN
length. Second, variance scales as 1/L meaning that standard deviation decreases as 1/

√
L. This

relatively poor accuracy-latency trade-off is an oft-cited criticism of SC and motivates our work on
developing more accurate circuits. The discussion of modeling variance of combinational circuits
could end here, however, as shown next, Equation (4.6) often fails to predict the accuracy of basic
stochastic circuits designed using traditional approaches.

Example 4.1: Consider an AND multiplier with inputs X, Y, and output Z. The SN length is
L = 256 bits. According to Equation (4.6), the circuit’s standard deviation is predicted to be

σZ =

√
XY (1−XY )

256
(4.8)

which is plotted as the yellow surface in Figure 4.2a. This deviation can also be estimated using
simulation. In this example, the SNG bit-width is large enough that there is no quantization error,

1In previous work, such SNs have occasionally been referred to as ”Bernoulli SNs.” Here, we opt to use the term
binomial to better contrast with the SN model introduced later.
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Figure 4.2: Analysis-derived deviation (yellow surface) and simulation-derived deviation (blue
surface or mesh) for an AND-gate multiplier. (a) Binomial SN analysis; (b) hypergeometric SN
analysis.

so Ẑ’s bias is zero. Thus, σZ can be estimated accurately as

σZ ≈

√√√√ 1

R

R∑
r=1

(Ẑr − Zr)
2 (4.9)

where R is the number of simulation runs, Ẑr is Z’s estimated value during simulation run r, and
Zr is Z’s expected (target) value during run r.

The multiplier is simulated with traditional SNGs built around linear feedback shift regis-
ters (LFSRs) and R = 10, 000 simulation runs are used for each pair of values X , Y to achieve
statistically significant estimates for σZ . The results are plotted as the blue surface in Figure 4.2a.
Despite the simplicity of the AND multiplier, Figure 4.2a shows that the theory greatly over-
estimates the error and also poorly predicts how error varies with X, Y as indicated by difference
in shape between the yellow and blue surfaces. This disagreement between theory and practice
stems from assumptions made about LFSR SNs, i.e., SNs generated by LFSR-based SNGs. In
short, LFSR SNs are not well modeled as binomial SNs.

4.2.2 Hypergeometric SN Model

The large discrepancy between the surfaces in Figure 4.2a suggests the need for a new model of
LFSR SNs and we proposed such a model in [12]. The model is motivated by how LFSRs produce
random numbers. Figure 4.3a shows a LFSR-based SNG for X while Figure 4.3b shows a 4-bit
modified maximal LFSR state sequence.2 Each clock cycle, the LFSR state acts as the pseudo-
random number that determines X’s generated bit, but each LFSR state is only visited once during
its state sequence. Put another way, LFSR states are visited in a pseudo-random order without

2Recall all LFSRs in this work are modified to include the all-0 state.
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Figure 4.3: LFSR-based SN generation. (a) generic SNG with LFSR RNS; (b) 4-bit LFSR state
diagram with added state 0.

replacement. Therefore, bits within X are not independent which violates the traditional binomial
model’s assumptions. For example, if a 1 is generated for X in the first clock cycle, then the
probability of generating a 1 in the next clock cycle decreases since the LFSR state that led to
the 1 being generated will not be repeated. This pattern of generating bits emulates trials of a
hypergeometric random variable [38] which serves as the basis of our hypergeometric SN model
[12].

As suggested by its name, the hypergeometric SN model is based upon the hypergeometric
distribution [38]. A hypergeometric random variable A ∼ Hypergeometric(M,K,N) is defined
by three parameters: the population size M , the total number of success states in the population
K ≤ M , and the number of trials N ≤ M . For each trial, a state is drawn from the population
without replacement and A’s value is the number of success states drawn during the N trials. Note
that if states are instead drawn with replacement, A would be a binomial random variable with
probability of success K/M and N trials (i.e., A ∼ Binomial(K/M,N)).

To contrast hypergeometric and binomial random variables, let p = K
M

and consider two ran-
dom variables: A ∼ Hypergeometric(M,K,N) and B ∼ Binomial(p,N). A’s expectation, and
variance are

E[A] = pN (4.10)

Var(A) = p(1− p)N
M −N

M − 1
(4.11)
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while, for B, these formulas are similar

E[B] = pN (4.12)

Var(B) = p(1− p)N (4.13)

The only difference between these statistics is that A’s variance is lower than B’s variance by
M−N
M−1

, a factor which decreases as the number of trails N increases. Intuitively, A has lower vari-
ance than B because hypergeometric random variables model situations involving sampling with-
out replacement whereas binomial random variables model sampling with replacement behavior.
The former has less opportunity for random fluctuations and thus lower variance.

Returning to SN models, suppose that X is an L-bit SN generated by an n-bit LFSR SNG with
value input X . Since LFSRs sample random states without replacement, the bits of X can be
modeled as trials of a hypergeometric random variable A with a 2n population size, 2nX success
states and L trials: A ∼ Hypergeometric(2n, 2nX,L). Consequently, X’s estimated value is a
scaled hypergeometric random variable: X̂ = 1

L
A. Equations (4.10) and (4.11) then imply that

E[X̂] = X and Var(X̂) = 0 in the common case that the entire LFSR sequence is used (L = 2n).
In short, compared to a similar binomial SN, a hypergeometric SN has the same expected value,
but less variance and often with zero variance. Other work has also noted that LFSRs can generate
input SNs that have no variance in their estimated value [51, 67]. Our work, however, goes further,
by proposing an explicit model for such SNs and then deriving important consequences of the
model including new, more accurate circuit designs.

Example 4.1, Part 2: The simulation of Example 4.1 used 8-bit LFSRs to generate 256-bit SNs
and Figure 4.2a showed that the binomial SN model poorly predicted the circuit’s accuracy. Since
X and Y are LFSR SNs, they can be better modeled as hypergeometric SNs. First, it is noted that
Var(X̂) = Var(Ŷ ) = 0 since the entire LFSR sequence is used. Next, the methodology presented
in [67] is used to derive the output variance. Overall, the multiplier output’s deviation is found to
be

σZ =

√
XY (1−X)(1− Y )

L− 1
(4.14)

which is plotted as the yellow surface in Figure 4.2b. The blue mesh in Figure 4.2b again shows the
result of using simulation to approximate σZ accurately. The two surfaces closely match implying
that modeling the LFSR input SNs X and Y as hypergeometric SNs leads to a correct prediction
of output error.

Note that Equation (4.14) applies when X and Y are generated using the LFSR’s entire se-
quence. In other words, X and Y have length 2n where n is the LFSR bitwidth. Unless otherwise
noted, all remaining analysis in this chapter will assume that any LFSR SN is also generated using
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Figure 4.4: Mux adder with LFSR SNGs that share an RNS.

the entire LFSR sequence which is almost always the case in recent SC work. Next, other common
circuits are analyzed using the hypergeometric SN model.

Example 4.2: Consider a standard 2-input mux adder where n-bit LFSR SNGs are used to
generate input SNs X, Y, and control SN S. The SN length is L = 2n. Mux adders often fix S’s
value to S = Ps = 0.5, but here arbitrary S is considered such that the mux performs weighted
addition of the form

Z = S̄X + SY (4.15)

where S̄ = 1 − S. Assuming no correlation is present, the hypergeometric model used with the
variance propagation methodology in [67] yields the following prediction for the standard deviation
of Ẑ.

σZ =

√
SS̄
(
X(1−X) + Y (1− Y )

)
L− 1

(4.16)

For comparison, σZ can also be found using the binomial SN model and Equation (4.6).

σZ =

√
S̄X(1− S̄X) + SY (1− SY )− 2SS̄XY

L
(4.17)

The deviation in the hypergeometric case is always less than or equal to the deviation in the bino-
mial case for all X, Y when S = 0.5 and L ≥ 2. This fact implies that hypergeometric input SNs
generally lead to more accurate mux output than binomial input SNs.

An important result derived from the binomial SN model is that a single LFSR can be shared
between X’s and Y’s SNGs without affecting accuracy [3, 51]. Figure 4.4 shows an example
of such sharing which can greatly reduce circuit area, but also correlates X and Y. Correlation
amongst input SNs often causes a degradation in accuracy because SNs are usually required to
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Figure 4.5: Mux adder output deviation with maximally correlated inputs (blue surface), with
uncorrelated inputs (yellow mesh), or with anti-correlated input (translucent white surface).

be uncorrelated. However, the binomial model predicts that correlation amongst X and Y causes
no change in accuracy in the case of mux addition. When tested, simulations involving LFSR-
generated SNs shows that this prediction is incorrect. Since the mux circuit employs LFSR input
SNs, the hypergeometric SN model can be used to develop new insight.

According to our hypergeometric SN model, correlation amongst hypergeometric input SNs
significantly affects mux variance. Specifically, positive correlation (SCC > 0) decreases mux
variance while negative correlation (SCC < 0) increases variance. In [12], the variance of a
mux adder with hypergeometric inputs was derived for when SCC(X,Y) = 1 and for when
SCC(X,Y) = −1. These two SCC levels are especially important because they occur often
as the result of sharing an RNS between X’s and Y’s SNGs. These variance expressions were
derived using the hypergeometric SN model and the general SN variance formula Equation (4.2).
When SCC(X,Y) = 1, the output variance is

σZ =

√
SS̄(Y −X)(1− (Y −X))

L− 1
(4.18)

where L is the SN length and X ≤ Y is assumed without loss of generality. When SCC(X,Y) =

−1, the output variance is:

σZ =

√√√√SS̄
(
X(1−X) + Y (1− Y ) + 2min

(
XY, (1−X)(1− Y )

))
L− 1

(4.19)

Figure 4.5 visualizes the hypergeometric mux variance equations, (4.16), (4.18) and (4.19) by
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Figure 4.6: Comparison of mux behavior with varying levels of input correlation. An output bit
denoted as ‘?’ is uncertain and depends on the select input.

plotting the output deviation when S = 0.5, L = 256, and X and Y are varied. These plots match
those produced by estimating σZ via simulation of the mux with LFSR input SNs. Most noteworthy
is that the standard deviation is lowest when SCC(X,Y) = 1 and highest when SCC(X,Y) = −1.
In fact, the error is 0 when X = Y in the SCC(X,Y) = 1 case. Thus, there is motivation to
correlate mux inputs to save circuit area (through RNS sharing), and also to improve accuracy. If
analysis relied only on the traditional binomial SN model, then these important conclusions would
be missed which emphasizes the usefulness and importance of correct statistical models.

Statistical analysis and simulation both conclude that correlation substantially impacts mux
adder accuracy for hypergeometric inputs, but not for binomial inputs. Figure 4.6 illustrates the in-
tuition behind this result. When X and Y are correlated, their 1s overlap more often and the output
becomes more certain compared to the uncorrelated case. In other words, the mux processing ap-
pears less random when X and Y are correlated which suggests the variance may be lower. When
X and Y are binomial SNs, however, the increased determinism of the mux processing does not
decrease variance because the variance of inputs X and Y propagates to the output Z: noisy inputs
plus less noisy processing equals noisy output. In contrast, when X and Y are hypergeometric
or LFSR SNs, their variance is zero, and the less random mux processing induced by correlation
leads to lower variance: non-noisy inputs plus less noisy processing equals less random output.

To summarize the foregoing analysis, Table 4.1 reports the average mux adder deviation for var-
ious input SN types and correlation levels. The calculation of average σZ assumes the mux input
values X and Y are randomly chosen from [0, 1], the mux select value is S = 0.5 and the SN length
is L = 256. The hypergeometric model’s predictions aligns closely with results from simulations
of LFSR SNs which further validates our model. Overall, Table 4.1 yields three important con-
clusions about applying SN models to mux adders with LFSR SNs: 1) the binomial model greatly
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SN model SCC(X,Y)
Average standard

deviation σZ

Ratio of σZ to uncorrelated
hypergeometric σZ

Binomial Any 0.0282 1.59
Hypergeometric 0 0.0178 1
Hypergeometric +1 0.0123 0.69
Hypergeometric −1 0.0214 1.21

Table 4.1: Average Mux Output Deviation

overestimates σZ by 59% on average in the uncorrelated input case, 2) the binomial model incor-
rectly concludes that correlation does not affect accuracy and 3) the hypergeometric model shows
that maximum positive correlation decreases deviation by 31% on average while anti-correlation
increases deviation by 21% on average compared to the uncorrelated case. These conclusions may
have been missed in the past without using insights gleaned from the hypergeometric SN model.

4.2.3 Low-Discrepancy SNs

LFSRs are a common RNS-type used in SC because of their relative low area and sufficient ran-
domness for accurate SN computation. When LFSRs are used to generate SNs, the stochastic cir-
cuit’s root BMSE usually decreases proportionally to 1

√
L where L is SN length. This accuracy-

latency trade-off can sometimes be substantially improved by using Sobol sequence generators
instead of LFSRs [29, 65, 72].

Sobol sequences are an example of low-discrepancy sequences [4, 65]. Low discrepancy se-
quences are fully deterministic but share certain properties with random numbers. Figure 4.7
illustrates how Sobol sequences differ from random sequences and LFSR sequences. In each plot,

Figure 4.7: Comparison of random, LFSR, and Sobol sequences.
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Target value Sobol SN

0/16 X = 0000 0000 0000 0000
1/16 X = 1000 0000 0000 0000
2/16 X = 1000 0000 1000 0000
3/16 X = 1000 1000 1000 0000
4/16 X = 1000 1000 1000 1000
5/16 X = 1010 1000 1000 1000
6/16 X = 1010 1000 1010 1000
7/16 X = 1010 1010 1010 1000

Target value Sobol SN

8/16 X = 1010 1010 1010 1010
9/16 X = 1110 1010 1010 1010

10/16 X = 1110 1010 1110 1010
11/16 X = 1110 1110 1110 1010
12/16 X = 1110 1110 1110 1110
13/16 X = 1111 1110 1110 1110
14/16 X = 1111 1110 1111 1110
15/16 X = 1111 1111 1111 1110

Table 4.2: Examples of 16-bit Sobol SNs

Counter state Sobol state Sobol value

0000 0000 0
0001 1000 8
0010 0100 4
0011 1100 12
0100 0010 2
0101 1010 10
0110 0110 6
0111 1110 14

Counter state Sobol state Sobol value

1000 0001 1
1001 1001 9
1010 0101 5
1011 1101 13
1100 0011 3
1101 1011 11
1110 0111 7
1111 1111 15

Table 4.3: 4-bit Sobol RNS Implementation

a random (x,y) coordinate is repeatedly chosen using either random sequences, LFSR sequences
or Sobol sequences. The points in all three plots appear random to some extent, but the points in
the Sobol plot fill the 2D space more evenly. This is a key feature of low-discrepancy sequences:
they tend to appear random while also sampling spaces more evenly than truly random sequences,
as shown in the 2D space of Figure 4.7c. Thus, low-discrepancy sequences are sometimes referred
to as quasi-random sequences because of their similarity, yet distinct differences with random se-
quences.

When an SN is generated with a Sobol sequence, the resulting Sobol SN has its 1s roughly
equally distributed throughout its length, whereas binomial SNs and LFSR SNs have their 1s ran-
domly distributed. Table 4.2 shows examples of Sobol SNs. For instance, X with X = 6/16 is
generated by comparing the Sobol sequence R = 0, 8, 4, 12, 6, 10, 2, 14, 1, 9, 5, 13, 7, 11, 3, 15 to
X interpreted as the integer 6. On the first clock cycle, 0 is compared to X yielding a 1 for X.
Next X is compared with 8 and then with 4 to yield a 0 and 1, respectively. The process continues
until all 16 bits of X are generated.
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Filter name No RNS sharing
average absolute error (×10−2)

Basic RNS sharing
average absolute error (×10−2)

f4-1 2.09 1.58
fs4-2 1.81 1.78
fs4-3 2.27 2.09
fs5-1 2.57 2.23
fs5-2 2.75 2.27

... ... ...

Average 4.22 4.03

Table 4.4: Excerpt of Experimental Results from Table 4 of [51].

Prior work has shown that using Sobol SNs improves SCs accuracy-latency trade-off [29, 65,
72]. For instance, when multiplying two L-bit Sobol SNs, the average error decreases as 1/L,
a notable improvement over the 1

√
L scaling when using LFSR-generated SNs. In terms of area

cost, the simplest Sobol RNS can be implemented as the reverse state of an ordinary base-2 counter
as in Table 4.3, but additional Sobol RNSs have much higher area cost than LFSRs. Despite their
higher area, using Sobol RNSs tends to be more energy efficient because their higher accuracy
allows the use of shorter SNs [65]. The benefits of Sobol SNs are most pronounced when a circuit
contains few RNSs.

Sobol SNs share some features with hypergeometric SNs. If the SN length is L = 2n, then
any Sobol SN will have a precise number of 1s just like hypergeometric SNs. However, a Sobol
SN will have its 1s roughly uniformly distributed throughout its length as shown in Table 4.2
whereas a hypergeometric SN will have its 1s randomly distributed throughout its length. Thus, the
hypergeometric SN model is not perfectly applicable to Sobol SNs. For example, when modeling
the error of an AND multiplier with Sobol SN inputs, our hypergeometric model overestimates
the error. Although a new SN model is needed to fully capture the behavior of Sobol SNs. our
hypergeometric model can yield some insight. For example, mux adders with Sobol input SNs also
benefit from correlation just like mux adders with hypergeometric SNs.

4.2.4 Applications of Accurate SN Models

One useful application of the hypergeometric SN model is that it can help explain unexpected
results found in simulations performed in prior studies. In [51], mux adders with hundreds of
inputs are used to implement finite impulse response (FIR) filters with SC. The filter designs
aggressively share LFSR RNSs among many SNGs and this sharing is expected to introduce some
additional error in return for area savings. Data from Table 4 in [51] is presented here as Table
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4.4. It gives error estimates from simulation and, surprisingly, shows that in most cases and on
average, basic LFSR sharing produces smaller errors than the the no RNS sharing case. This
unexpected accuracy improvement is mentioned but not explained in [51] presumably because the
paper’s focus is on other aspects of SNG design. However, our analysis of mux adders with LFSR
SNs clearly explains the result: LFSR sharing introduces correlation amongst the input SNs which
leads to higher mux adder accuracy compared to not sharing LFSRs. This example helps highlights
that accurate analysis can help explain anomalous simulation results which is one key motivation
for this line of work.

Another useful application of our statistical analysis is that it can prove circuit dominance
amongst different designs by comparing the derived variance equations. Such equations include
the AND multiplier standard deviation equations (4.8), (4.14) and the mux adder deviation equa-
tions (4.16) to (4.19). Recall that a circuit dominates another circuit when the former is no less
accurate than the latter for all possible input value combinations and is more accurate for at least
one input combination. Dominance is a strong and useful statement about circuit accuracy. The
following are a few of the dominance relations and their consequences.

1. For practical SN lengths L ≥ 4, AND multipliers and mux adders with uncorrelated hyper-
geometric inputs dominate equivalent circuits with binomial inputs. Therefore, these simple
circuits should use LFSR RNS instead of other RNS like S-box random number genera-
tor (SBoNG) because the former generates hypergeometric SNs while the latter generates
more binomial-like SNs [75].

2. Mux adders with correlated hypergeometric inputs dominate those with uncorrelated hyper-
geometric inputs. Therefore, basic mux circuits should share their LFSR RNS to save both
area and accuracy.

3. Mux adders with uncorrelated hypergeometric input SNs dominate those with anti-correlated
hypergeometric inputs. Therefore, anti-correlation should be avoided whenever possible in
favor of independent or correlated SNs.

A third application of our statistical analysis is actionable design improvement. Consider
the subtractor circuit in Figure 4.8a that operates on bipolar SNs X and Y and computes
Z = 0.5(X − Y ) [63]. Since the subtractor is built around a mux, the conventional binomial
SN model (incorrectly) dictates that an LFSR can be shared amongst X and Y’s SNGs to save area
and not affect accuracy. This reasoning results in the design of Figure 4.8a which is sub-optimal
due to correlation. Specifically, SCC(X,Y) = 1 after generation, but then SCC(X,Y′) = −1
after Y passes through the inverter. Thus, the inputs to the subtractor’s mux are anti-correlated
and, because an LFSR RNS is used, the hypergeometric model correctly predicts that the mux’s
error will be relatively high.
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Figure 4.8: SN subtractor designs: (a) traditional subtractor circuit; (b) CAM subtractor.

Fortunately, a relatively small modification can be used to improve the subtractor design: the
LFSR state can be inverted before it enters Y’s comparator as illustrated in Figure 4.8b. This
change causes Y to initially be anti-correlated with X with SCC(X,Y) = −1. Then, after
passing through the inverter and before entering the mux, Y′ becomes correlated with X with
SCC(X,Y′) = 1. Our resulting design is named the correlation-adjusted multiplexer (CAM)
subtractor and is significantly more accurate than the traditional subtractor design. Assuming all
values of X, Y ∈ [−1, 1] are equally likely to occur, the CAM subtractor reduces standard de-
viation by 39% on average compared to the original subtractor circuit. The CAM subtractor is
an exemplar of how insight derived from improved analysis can be leveraged to improve circuit
design.

4.2.5 SN Model Summary

Guided by the foregoing analysis, we propose hypergeometric SNs, i.e., SNs whose bits are treated
as hypergeometric trials. In general, the hypergeometric model is suitable for SNs produced from
SNGs built around any uniform, non-repeating RNS such as an LFSR.3 Once an input SN has
been identified as hypergeometric, its variance can be computed using Equation (4.11) and then
used with the variance propagation formulas of [67] to predict the output variance of a stochastic
circuit when the inputs are uncorrelated. When correlation is present, output variance can be
derived using the definition of variance (Equation (4.2)) and the circuit’s logic.

Overall, the comparison of binomial and hypergeometric SNs demonstrates the value of having
accurate analytic models of stochastic computing. The benefits include:

3Another notable, but rarely used, RNS of this type is the rule 90-150 hybrid cellular automata that has been shown
to be a competitive alternative to the LFSR for SN generation [18, 46]
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Figure 4.9: Stochastic squarer circuit with Z ≈ X2.

1. Explanations of anomalous simulation results. The simulation analysis of [51] noted that
accuracy was noticeably higher when mux inputs were correlated whereas the prediction
in [51] was that correlation would not affect accuracy. Our analysis of mux adders and
correlation explains this data and validates the unexpected simulation results in [51].

2. Definitive proof of circuit dominance. Hypergeometric input SNs nearly always lead to lower
output variance than binomial input SNs for important circuits like multipliers and adders.
Consequently, LFSRs should be favored over other RNS like SBoNG for these designs.
Without analytic models, simulation alone can offer evidence, but not definite proof for
circuit dominance.

3. Insights for new designs. Our analysis on mux adders and correlation led to the design of
the novel CAM subtractor which requires similar logic as a basic SN subtractor, but is 39%
more accurate on average. In Chapter 5 these insights developed further and culminate in the
CeMux design, a many-input mux adder that is significantly more accurate than other mux
adders while also occupying less area.

4.3 Bias and Autocorrelation Error

As mentioned earlier, bias can arise from many sources including approximation, quantization
and correlation. One type of correlation-related bias is autocorrrelation error which occurs when
bits within a single SN do not meet required correlation levels. Autocorrelation causes bias for
sequential stochastic circuits like the squaring circuit mentioned in the introduction and shown
again in Figure 4.9.

Although recognized, autocorrelation has been largely neglected in the SC context while
correlation between SNs (also known as cross-correlation) has been the topic of many studies
[3, 12, 13, 23, 51]. In particular, mathematical tools are not available for statistically modeling au-
tocorrelation in SC or measuring its impact on system accuracy. Here, an approach for managing
autocorrelation in the SC context is proposed. It includes a metric for quantifying SN autocor-
relation and a method for determining autocorrelation bias via analysis. The content presented
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in this section is published in [10]. Before introducing our autocorrelation model, we provide a
motivating example of autocorrelation error.

Example 4.3: Consider the stochastic squaring circuit in Figure 4.9. The circuit has a single
input X = x1x2...xL and a delay unit implemented with a D flip-flop. The flip-flop output D =

d1d2...dL is a delayed copy of X with dt = xt−1 and d0 = 0. If L is large, then D will have
approximately the same value as X:

D = P(dt = 1) ≈ P(xt = 1) = X (4.20)

If X has no autocorrelation, then X and D will be uncorrelated, and the AND multiplier will
output Z = XD ≈ X2. However, suppose X∗ = 0.5 and X is highly autocorrelated in that a
1 always follows a 0 and vice versa: X = 101010 . . . . In this case, the squarer output would be
all 0s, i.e., Z = 000000... with Ẑ = 0 regardless of SN length. Noting that the target output is
Z∗ = 0.52 = 0.25, the large bias due to autocorrelation is Ẑ − Z∗ = −0.25.

As Example 4.3 shows, autocorrelation can cause very large bias in sequential circuits which
motivates the development of a methodology that quantifies autocorrelation error for a given circuit
and input autocorrelation. First, a metric for quantifying autocorrelation is needed. In general,
autocorrelation describes the similarity between values in a sequence of random variables, such as
the bits of an SN. The k-th order autocovariance function [10, 17] of SN X = x1x2...xL is

rX(k) = E[xtxt+k]− E[xt]
2 (4.21)

where autocovariance measures the dependence between a bit of X at some time t and a bit of X
k cycles later. Note that E[xt] = Px since xt ∈ {0, 1} which leads to a close connection between
rX(k) and conditional probability given by

rX(k) = Pxt+k|xt − P 2
x (4.22)

where Pxt+k|xt is shorthand for P(xt+k = 1|xt = 1).
The autocovariance rX can be derived through analysis or be estimated for X = x1x2...xL as

rX(k) ≈
1

L

L−k∑
t=1

xtxt+k −
( 1
L

L∑
t=1

xt

)2
(4.23)

In the SC context, autocovariance has a drawback in that its range depends on the SN’s value,
so comparing the severity of autocorrelation for SNs can be difficult. For example, if X = 0.5,
then rX generally varies between [−0.25, 0.25] but if X = 0.25, then rX generally varies between
[−0.0625, 0.1875]. To normalize autocorrelation values across SN values, the k-th order autocor-
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relation function can be used. It is defined as

ρX(k) =
rX(k)

Px(1− Px)
(4.24)

for an SN X where k is the lag time of interest [17]. For example, ρX(2) measures the self-
similarity between X and X delayed by two clock cycles. Put another way, ρX(2) measures the
correlation between bits xt and xt−2.

The autocorrelation function ρX normalizes autocovariance based on the X’s value and is useful
for comparing autocorrelation of SNs with different values. In general, ρX is bound to the range of
[−δ, 1] where a value of 1 corresponds to a high amount of autocorrelation in X. Likewise, −δ =

−min( Px

1−Px
, 1−Px

Px
) corresponds to a high amount of anti-autocorrelation in X and 0 corresponds to

no autocorrelation X. In this work, rX(k) is used for analysis while ρX(k) is used when comparing
autocorrelation error for SNs of different values as in an error plot.

For our autocorrelation error analysis, conditional probabilities derived from the auto-
covariance function rX(k) are used extensively. For instance, four quantities determine xt+1’s
dependence on xt. Two of the quantities are P(xt+1 = 1|xt = 1) which is abbreviated as Px|x and
P(xt+1 = 0|xt = 0) abbreviated as Px̄|x̄. The other two quantities are Px|x̄ and Px̄|x. These four
quantities can be derived from autocovariance rX(1) in the following manner:

Px|x = rX(1) + P 2
x (4.25)

Px̄|x = 1− Px|x (4.26)

Px̄|x̄ =
Px|xPx

1− Px

(4.27)

Px̄|x̄ = 1− Px|x̄ (4.28)

where Equation (4.27) is derived using Bayes’ theorem. These four quantities completely describe
xt+1’s dependence on xt. Next, the methodology for applying these conditional probabilities is
developed.

Sequential stochastic circuits are usually modeled using Markov chains [18, 64, 88]. Consider
the quartic circuit in Figure 4.10a where each of the three D flip-flops outputs a delayed copy of
X. The three delayed copies are then multiplied together with X to yield Z ≈ X4. The operation
of the quartic circuit can also be understood in a more systematic way by examining its state
diagram shown in Figure 4.10b. The transitions in the state diagram are probabilistic since they
are determined by X’s stochastic bits. Thus, the state diagram can be redrawn as a Markov chain
as in Figure 4.10c. The steady state of this Markov chain can then be analyzed to determine Z’s
expected value as explained next.
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(a)

(b) (c)

Figure 4.10: Stochastic quartic circuit where Z = X4: (a) circuit diagram; (b) Mealy-style state
diagram; (c) Markov chain.

The Markov chain in Figure 4.10c has a matrix representation M = [mij], where each element
mij is the probability of transitioning from state Si to state Sj .

M =



1− Px 0 0 0 Px 0 0 0

1− Px 0 0 0 Px 0 0 0

0 1− Px 0 0 0 Px 0 0

0 1− Px 0 0 0 Px 0 0

0 0 1− Px 0 0 0 Px 0

0 0 1− Px 0 0 0 Px 0

0 0 0 1− Px 0 0 0 Px

0 0 0 1− Px 0 0 0 Px


(4.29)

The circuit’s state during clock cycle t is then represented by an 8-element vector πt =

[πt,0, . . . , πt,7] where πt,i is the probability that the state is Si during cycle t. The next state πt+1

can be determined from present state with

πt+1 = πtM (4.30)

In the limit of t→∞, πt will converge into a steady state π∗ where π∗ = π∗M . This steady state
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π∗ = [π∗
1, π

∗
2, ..., π

∗
7] can be used to find Z’s expected value as

Z ≈
i=7∑
i=0

π∗
i Pz|Si

(4.31)

where Pz|Si
is the probability that Z is 1 given the circuit is in state Si. Equation (4.31) approxi-

mates Z because steady state analysis does not account for the circuit’s start state. However, if the
SN length is long, then the influence of the start state is relatively small and the approximation will
be accurate.

According to its state diagram, the quartic circuit has Pz|Si
= 0 for all Si ̸= 7 and Pz|S7 = Px.

Meanwhile, the steady state π∗ can be found with Equations (4.29) and (4.30). Putting everything
together in Equation (4.31) gives Z ≈ π∗

7Px = P 4
x = X4 proving that the quartic circuit performs

as reasoned previously. The advantage of the Markov chain approach is that it can be systematically
applied to more complicated circuits where Z cannot be intuitively derived. The Markov chain
approach also serves as the basis for our autocorrelation error analysis.

The foregoing Markov chain analysis of the quartic circuit offers no opportunity to include
autocorrelation information since the analysis only used Px, Pz|Si

and standard techniques for an-
alyzing Markov chains. Thus, the analysis would yield the same result, Z ≈ X4, for uncorrelated
X or highly autocorrelated X. However, autocorrelation analysis is possible by modifying the
transitions in the Markov chain. Observe that the D flip-flops in the quartic circuit form a shift
register which acts as a finite memory of 3 bits. For example, when the circuit is in state S3, the
D flip-flop bits are d2,td1,td0,t = 011. To arrive at such a state, the previous three bits of X must
have been xt−1xt−2xt−3 = 011. Thus, S3’s outgoing Px and Px̄ transitions in the Markov chain
can be relabeled as Px|x̄xx = P(xt = 1|x̄t−1, xt−2, xt−3) and Px̄|x̄xx = P(xt = 0|x̄t−1xt−2xt−3),
respectively.

The reasoning applied to S3 can be applied to any state Si because d2,t = xt−1, d1,t = xt−2 and
d0,t = xt−3 is true for all states. The result is the Markov chain in Figure 4.11a which contains
conditional probabilities that carry autocorrelation information unlike the original Markov chain
in Figure 4.10c. Unfortunately, deriving or estimating the 16 different conditional probabilities
(e.g., Px|xxx and Px̄|x̄x̄x) in Figure 4.11a can be laborious or difficult. Instead, each conditional
probability can be simplified to contain only X’s most recent bit xt−1. For instance, Px|xx̄x̄ becomes
Px|x and Px̄|xxx̄ becomes Px̄|x. Simplifying all conditional probabilities in this manner results in
the Markov chain of Figure 4.11b which contains just four distinct conditional probabilities that
can be easily derived from autocovariance using Equations (4.25) to (4.28).

The Markov chain in Figure 4.11b containing simplified conditional probabilities can be an-
alyzed in same the manner as before to yield a different steady state π∗ which is in terms of
conditional probabilities. The steady state π∗ can be difficult to determine by hand, but can be de-
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(a) (b)

Figure 4.11: Modified quartic circuit Markov chains. Markov chain with: (a) with conditional
probabilities denoting state transition probabilities; (b) simplified conditional probabilities

rived numerically. The expected output value can then be estimated using Equation (4.31) which
yields Z = π∗

7Px|x. And finally, the circuit’s bias can be estimated as

Bias(Z∗, Z) ≈ π7Px|x − P 4
x (4.32)

If there is no quantization error, then the bias is completely due to autocorrelation and Equation
(4.32) is approximately the autocorrelation error. Figure 4.12a shows how the autocorrelation error
varies with input value X = Px and with first-order autocorrelation ρX(1). When autocorrelation
is large (close to +1), the autocorrelation error is very high and, importantly, it can not be decreased

(a) (b)

Figure 4.12: Quartic circuit autocorrelation error: (a) analysis results; (b) comparison of analysis
and simulation results.
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(a) (b)

Figure 4.13: Diagrams for a stochastic tanh circuit with input X, G = 4 states and output Z: (a)
Moore-style state diagram; (b) corresponding Markov chain.

by increasing SN length unless increasing the SN length also decreases X’s autocorrelation. This
analysis was confirmed by simulation in [10] and the results are shown in Figure 4.12b where the
analysis predictions closely match the results of bitstream simulation.

While our autocorrelation analysis was successful, it must be further generalized to apply to
other sequential stochastic circuits. In [88], two major classes of sequential stochastic designs are
identified: shift register based (SRB) and up/down counter based (UCB). The quartic and squarer
circuits are examples of SRB designs. Such designs are characterized by their implicit use of shift
registers as multi-bit delays which is a useful method of generating copies of SNs [87]. Since the
circuit’s state is a shift register, X’s previous bits can always be determined by the current state.
For example, the quartic circuit had input X and state bits d2,td1,td0,t with d2,t = xt−1, d1,t = xt−2

and d0,t = xt−3. This property of SRB circuits allows conditional probabilities to be easily added
to the circuit’s Markov chain diagram, but most sequential circuits, including UCB designs, do not
have this useful property.

UCB designs are used to implement functions like stochastic tanh (Stanh) and stochastic exp.
[18, 64]. They are characterized by a “linear” state diagram with a variable number of states, G.
For example, Figure 4.13a is the state diagram for an Stanh element with input X and G = 4. As
before, the behavior of this sequential circuit can be modeled by translating its state diagram into a
Markov chain (Figure 4.13b) and analyzing the steady state. Assuming no autocorrelation in X, the
Stanh circuit outputs Z with Z ≈ tanh (G

2
X) = tanh (2X). Designs based on up-down counters

have long been the focus of research into stochastic sequential circuits. It has often been noted that
autocorrelation in the inputs to these designs lowers accuracy [18, 65, 88], but no analytic method
for quantifying this error existed before the following approach that we introduced in [10].

Quantifying autocorrelation error in the Stanh circuit is difficult because conditional probabil-
ities cannot be added to its Markov chain in a straightforward manner. For example, state S2 in
Figure 4.13b has an incoming transition from S1 where xt−1 = 1 and another incoming transition
from S3 where xt−1 = 0. Therefore, given that the present state is S2, one cannot identify if xt−1

52



(a) (b)

Figure 4.14: Modified Stanh Markov chains: (a) extended Markov chain; (b) extended Markov
chain with with conditional probabilities.

was 0 or was 1 implying that S2’s outgoing transitions cannot be readily replaced by conditional
probabilities. A solution to this problem is to extend the Markov chain state space to allow states
to encode information about previous input bits. An extended Markov chain of this type is shown
in Figure 4.14a where each state Si from the original Markov chain is split into two copies: an
unshaded version Si that can only be reached when xt−1 = 0, and a shaded version S ′

i that can
only be reached when xt−1 = 1. The copied states output the same bits as the original state, so that
the modified design preserves the overall circuit function.

The purpose of the extended Markov chain in Figure 4.14a is to enable states to encode infor-
mation about previous input bits. Once this is done, conditional probabilities can be used for the
state transitions as before when analyzing the quartic circuit. For example, all shaded states S ′

i can
only be reached when xt−1 = 1. Therefore the outgoing transition probabilities of these states (Px

and Px̄) can be relabeled as Px|x and Px̄|x, respectively. In short, Figure 4.14b is a Markov chain for
the Stanh circuit that includes conditional probabilities necessary for autocorrelation analysis and
this Markov chain can be analyzed using the same steady state analysis that was used to quantify
the quartic circuit’s autocorrelation error.

The quartic circuit experiments are repeated for an Stanh circuit with bipolar input X, bipolar
output Z and G = 8 states. The extended Markov chain for this circuit is derived in a similar
manner as Figure 4.14b. In this case, Z∗ = tanh(4X) and Z ≈ π∗

4 + π∗
5 + π∗

6 + π∗
7 where π∗

i is
the steady-state probability of being in Si or S ′

i . Figure 4.15a summarizes the analysis by plotting
the autocorrelation error as a function of input value X and input autocorrelation ρX(1). The
autocorrelation error is high when ρX is very negative or positive which matches observations in
other works [18, 65]. Our autocorrelation analysis is compared against simulation and the results
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(a) (b)

Figure 4.15: Stanh autocorrelation error: (a) analysis results; (b) comparison of analysis and
simulation results.

appear in Figure 4.15b. As in the quartic circuit experiment, there is strong agreement between
the analytic model’s predicted error, and the errors measured by simulation. However, some small
deviations between analysis and simulation occur due to the influence of the circuit’s initial state
which is not accounted for in steady state analysis. Only negative values for X are shown for
clarity in Figure 4.15b, but their positive counterparts behave similarly.

Understanding the sensitivity of SC elements to autocorrelated inputs can help inform design
choices. For example, consider using the Stanh element in an SC neural network. If the inputs to
the Stanh element typically have a certain level of autocorrelation, then a decision can be made
whether to include some form of decorrelation. Using the preceding analysis, a designer could
determine the amount by which shuffling would improve output accuracy and weigh that against
the area and power cost of including the shuffler circuit. Overall, the accuracy, and thus the poten-
tial application range of SC, can be significantly increased if autocorrelation-induced errors can be
identified, measured and controlled.

4.4 Input Value Distribution

The impact of the input value distribution (IVD) on circuit error is rarely explicitly considered
in the SC literature, but it has significant implications for design and for interpreting simulation
results as shown in later examples. Modeling the IVD fX ∗ requires some knowledge about the
target input values X ∗ in the form of data or in the form of prior belief. It is important to note
that the current objective is to model the distributions of SN target values values like X∗. This
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(a) (b)

Figure 4.16: (a) Example beta PDFs; (b) beta PDFs from Example 3.3.

distribution is completely determined by the application. The present analysis is not currently
concerned with SN estimated values like X̂ which is another random quantity distinct from X∗

and which was the focus of the earlier discussion of bias and variance.

4.4.1 Beta Distribution

In this section, the beta distribution is proposed a flexible tool for modeling the IVD. The beta
distribution is a continuous probability distribution with two shape parameters, α > 0 and β > 0.
The PDF of a random variable A ∼ Beta(α, β) is

fbeta(a|α, β) =
aα−1(1− a)β−1

B(α, β)
(4.33)

where B is the beta function used to normalize the distribution [38].

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt (4.34)

The beta distribution is defined on the (0, 1) interval if α, β < 1, or on the [0, 1] interval otherwise.
It is thus a suitable distribution for modeling probabilities, proportions or, in this case, SN values
[11].

Figure 4.16a illustrates the versatility of the beta distribution achieved by varying α and β.
When A ∼ Beta(α, β) and α = β = 1, A has uniform density across [0, 1]. Thus the uniform
distribution is a special case of the beta distribution. When α, β > 1, A has a unimodal distribution
reminiscent of a Gaussian distribution, but where A is bounded to the unit interval. The sharpness
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Figure 4.17: Example of a beta mixture model with π1 = 0.35, α1 = 3, β2 = 8, π2 = 0.65, α2 = 8
and β2 = 3.

of the distribution’s peak depends on the magnitude of α, β while the location of the peak’s center
depends on the ratio of α to β. When α, β < 1, A has bimodal distribution with peaks at 0 and
1, respectively. The PDFs from Example 3.3 are also beta distributions and are shown again in
Figure 4.16b. Overall, the beta distribution is bound to the [0, 1] interval and can flexibly represent
a variety of shapes which makes it a strong candidate for modeling SN values.

Once it is decided that an SN target value will be modeled as beta random variable, the pa-
rameters α and β must be estimated from available data or be based on prior belief. Data driven
methods include the method of moments, maximum likelihood estimation and maximum a pos-
teriori estimation [54]. The method moments is less computationally costly than the latter two
methods whereas the latter two methods may yield better estimates for α and β. A key distinction
between maximum likelihood and maximum a posteriori estimates is that maximum a posteriori
estimates can incorporate prior beliefs about α and β into its estimate.

Although the beta distribution is fairly flexible, it cannot represent some PDF types such as a
bimodal distribution with peaks at 0.3 and 0.8. Nevertheless, the representational power of the
beta distribution can be increased by using a so-called mixture model [82]. For example, an SN
target value X∗ can be distributed as a mixture of two beta distributions with parameters α1, β1 and
α2, β2. In that case, the PDF of X∗ is

fX∗(x∗|α1, β1, α2, β2, π) = (1− π)fbeta(x
∗|α1, β1) + πfbeta(x

∗|α2, β2) (4.35)

where 0 ≤ π ≤ 1 determines the relative weighting of the two beta distributions in the mixture
model. By tuning the parameters α1, β1, α2, β2 and π, the PDF of X∗ can represent a variety of
distribution shapes including bimodal ones; Figure 4.17 shows an example. In general, mixture

56



models can contain an arbitrary number of component distributions. For a k component mixture
model, the PDF is

fX∗(x∗|θ) =
k∑

i=1

πifbeta(x
∗|αi, βi) (4.36)

where πi is the weight of the i-th component distribution,
∑k

i=1 πi = 1 and θ is the set containing
all the distributions parameters (i.e., the αi’s, βi’s and πi’s). Mixture models with more components
have more expressive power, but such models require more computation for parameter estimation
and can be prone to over-fitting. Parameter estimation for beta mixture models can be done using
the modified expectation maximization algorithm presented in [82].

Thus far, we have proposed modeling a single SN target value X∗ as a beta random variable
or beta mixture model. When modeling a set of input values X ∗ = [X∗

1 , X
∗
2 , ..., X

∗
M ] it could be

assumed that all elements of X ∗ are independent implying that the joint distribution is simply the
product of the marginal distributions:

fX ∗(x ∗) = fX∗
1
(x∗

1)fX∗
2
(x∗

2)...fX∗
M
(x∗

m) (4.37)

where x ∗ = [x∗
1, x

∗
2, ..., x

∗
M ] is a realization of X ∗. In this case, each fX∗

i
can be modeled separately

using the aforementioned (or other) techniques for modeling a single SN value’s distribution. In
some settings, however, the circuit’s input values may be correlated4 and Equation (4.37) cannot be
used. For example, values of adjacent pixels in an image tend to be highly correlated. In situations
like these, modeling the input distribution becomes a domain-specific task.

The beta distribution is just one useful way to model SN values. An advantage of this mod-
eling approach is that beta distributions and beta mixture models can flexibly represent a variety
of distribution shapes and there are relatively few parameters that must be estimated from data.
Other approaches such as using a piece-wise polynomial could also be used. We demonstrate the
usefulness of the beta distribution in an neural network application in the following section.

4.5 Case Study: Neural Networks

The foregoing error framework and modeling methodology is now applied to an SC-based
convolutional neural network (CNN) trained for image classification. Artificial neural networks
have long been seen as a promising application for SC because of the huge number of multiplica-
tions they require to implement inner-product operations of the form

∑M
i=1WiXi, where the Wi

4It is important to note that correlated SN values and correlated SN bits are distinct concepts. Two SNs X and
Y can have correlated values X,Y but have independent bits xt, yt. Likewise, X and Y can have correlated bits but
independent values. Although the concepts of correlated SN values and correlated SN bits sound superficially related,
they are essentially separate ideas.
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Figure 4.18: Convolution layer of a CNN based on the design in [29].

are the constant trained network weights and the Xi are variable network inputs. This case study
investigates stochastic circuit accuracy when used to implement inference on a trained CNN.

A basic part of a high-performing SC-based CNN design is shown in Figure 4.18 [29]. The
convolution layer is largely implemented in the SC domain where LFSRs (not shown in Figure
4.18) are used to generate the SNs. In this SC CNN design style, positive and negative weights are
separated into two groups and multiplication is performed using the unipolar format.5 As illustrated
in Figure 4.18, the products with positive weights and the products with negative weights are
summed separately using APCs. Then the difference is taken between the positive weight group’s
sum and negative weight group’s sum to compute the overall inner product between weights and
inputs. Since multiplication is done in the SC domain, the goal of this analysis is to characterize
the multiplication accuracy of the CNN using simulation and our BASE framework.

For this case study, two CNNs with structures similar to the classic LeNet-5 [58] are trained.
One network is trained for handwritten digit recognition using the grayscale MNIST handwritten
digit dataset [58] while the other is trained to classify animals or objects using the colored CIFAR-
10 natural image dataset [57]. Both MNIST and CIFAR-10 are popular 10-class benchmarks used
in machine learning, and Figure 4.19 gives example images from both datasets.

The two objectives of this case study are 1) investigate how the input value distribution (IVD)
affects SC accuracy and 2) accurately model SC error using our BASE framework. In both CNNs,
the first convolutional layer’s multiplications are implemented with SC and the accuracy of this
operation will be the focus of analysis. Since one objective is for our analysis to reproduce the
results of simulation, the first step is to establish the simulation-based results. The two trained

5The absolute value of negative weights are used for SN generation purposes
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(a) (b)

Figure 4.19: Example images from (a) MNIST dataset [58]; (b) CIFAR-10 dataset [57].

networks are simulated with the corresponding MNIST or CIFAR-10 test dataset as input. Since
8-bit precision is commonly used for image processing, both networks use 8-bit LFSRs for SN
generation and the SN length is set to 256-bits.

The multiplication BMSE derived from simulation is 1.18 × 10−5 for the MNIST CNN and
5.61 × 10−5 for the CIFAR-10 network. Despite both CNNs being very similar, the BMSE is
nearly five times higher for multiplications in the CIFAR-10 CNN. The reason for this large error
difference can be speculated on these simulation results alone, but a principled analysis using our
BASE framework provides a structured approach that arrives at a clear answer.

Circuit bias, variance, and input value distribution must be modeled to predict BMSE analyt-
ically using BASE. In this experiment, there is very little quantization error because the SNG
precision is 8-bits and the image pixels from these benchmarks are also represented in 8-bit pre-
cision. There is also no correlation error since separate LFSRs are used to generate the input SNs
and weight SNs and there is no approximation error since AND gate implements multiplication.
Thus, the overall bias is relatively small compared to variance which will be the focus of analysis.

Bias(Z∗, Ẑ|X∗,W ∗) ≈ 0 (4.38)

Since bias is approximated as zero, the input target values X∗ and W ∗ will simply be written as
X and W , i.e., without the usual star notation. Except where stated, notation will return to its
standard after this section concludes.

Next, variance is modeled. The variance of an AND multiplier with L-bit LFSR SN inputs X
and W and output Z was given in Example 4.1 Part 2.

Var(Ẑ|X,W ) =
X(1−X)W (1−W )

L− 1
(4.39)
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The BMSE can now be expressed in terms of bias and variance.

BMSE(Z∗, Ẑ) = E[Bias2(Z∗, Ẑ|X,W )] + E[Var(Ẑ|X,W )] (4.40)

BMSE(Z∗, Ẑ) = 02 +

∫ 1

0

∫ 1

0

fX,W (x,w)Var(Ẑ|X = x,W = w) dx dw (4.41)

The weights and pixel values are modeled as independent meaning that fX,W (x,w) =

fX(x)fW (w). This simplification along with Equation (4.39) can be used to re-express Equation
(4.41) as

BMSE(Z∗, Ẑ) =
1

L− 1

∫ 1

0

fX(x)x(1− x) dx

∫ 1

0

fW (w)w(1− w) dw (4.42)

In this case, BMSE is the product of two integrals of the same form. We now turn our attention to
the x integral since the w integral will be handled in the same manner.

The distributions of pixel values fX and network weights fW are modeled as mixtures of KX

and KW beta distributions, respectively. The x integral can be re-expressed using the beta PDF
(Equation (4.33)) along with the beta mixture model PDF (Equation (4.36)

∫ 1

0

fX(x)x(1− x) dx =

KX∑
k=1

π
[X]
k

∫ 1

0

xα
[X]
k (1− x)β

[X]
k

B
(
α
[X]
k , β

[X]
k

) (4.43)

where π[X]
k , α

[X]
k , β

[X]
k are the coefficient and parameters for the k-th component of X’s beta mixture

model. Equation (4.43) can be further simplified by evaluating the definite integral.

∫ 1

0

fX(x)x(1− x) dx =

KX∑
k=1

π
[X]
k

α
[X]
k β

[X]
k

α
[X]
k + β

[X]
k + 1

(4.44)

Equation (4.44) and its counterpart that uses w in place of x can then be substituted into the BMSE
equation (4.42) to yield

BMSE(Z∗, Ẑ) =
1

L− 1

KX∑
j=1

KW∑
k=1

π
[X]
j π

[W ]
k

α
[X]
j β

[X]
j α

[W ]
k β

[W ]
k

(α
[X]
j + β

[X]
j + 1)(α

[W ]
k + β

[W ]
k + 1)

(4.45)

where π[W ]
k , α

[W ]
k , β

[W ]
k are the coefficient and parameters for the k-th component of W ’s beta mix-

ture model.
To summarize, the objective of this analysis is to derive the BMSE of the neural network’s

SC multipliers. The first step of analysis found that multiplier bias was zero and the variance of
the multiplier was Equation (4.39). Next, it was decided that the IVD would be modeled using
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Distribution π1 α1 β1 π2 α2 β2

MNIST pixels 1 0.0362 0.1817 - - -
CIFAR-10 pixels 0.6653 2.2919 3.2944 0.3347 0.9236 0.8315
MNIST weights 1 1.2800 7.5486 - - -

CIFAR-10 weights 1 1.6704 17.782 - - -

Table 4.5: Estimated Beta Distribution Parameters

two independent beta mixture models – one mixture model for the input pixels and one mixture
model for the network weights. The BMSE was then expressed as Equation (4.42) and eventually
simplified to Equation (4.45). The remaining steps of the analysis is to estimate the beta mixture
model parameters, i.e., the α

[X]
k ’s, β[W ]

k ’s, π[X]
k ’s, etc. and compute a numeric value for BMSE.

The beta mixture model parameters will be estimated using available data. There are four
sets of beta mixture model parameters that must be estimated in this way – one parameter set for
the MNIST pixel values, one for the CIFAR-10 pixel values, one for the MNIST CNN weights,
and one for the CIFAR-10 CNN weights. Although our objective is to compute the BMSE of
the MNIST and CIFAR-10 test datasets, the parameters for the pixel value distributions will be
estimated only using the MNIST and CIFAR-10 training data. This decision makes our analysis
more representative of a real-world setting and will demonstrate that this analysis generalizes to
unseen data. The parameters for the CNN weight distributions will be estimated with the weights
from the respective trained networks since these are known during inference.

The parameters for each beta mixture model are estimated using the aforementioned data and
the algorithm in [82]. Beta mixture models of up to three components were considered and the
best-fitting model was chosen. Overall, the CIFAR-10 pixel distribution was fitted with a two-
component mixture model whereas all other distributions were fitted with a single component
mixture model (i.e., as a plain beta distribution). The estimated parameters are reported in Table
4.5, while the distributions and best fits are shown in Figure 4.20. The beta mixture model fits are
representative of the target distribution in all cases.

The final step of the BMSE analysis can now be completed. The BMSE for both the MNIST
and CIFAR-10 test datasets are computed using the fitted model parameters found in Table 4.5 with
Equation (4.45). Both the simulation-derived BMSE mentioned earlier and analysis-derived BMSE
are reported in Table 4.6. There is close agreement between both methods of estimating BMSE
suggesting that the analysis and simulation are correct. Results obtained during the statistical
analysis can now be leveraged to better understand circuit performance.

Many insights not apparent from simulation alone can be gained from the BMSE analysis. For
example, the multiplier variance expression (4.39) implies that error is highest with X = W = 0.5
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(a) (b)

(c) (d)

Figure 4.20: Representative IVDs and their beta distribution models: (a) MNIST pixel values; (b)
CIFAR-10 pixel values; (c) MNIST CNN weights (absolute values); (d) CIFAR-10 CNN weights
(absolute values).

and lowest when X = 0, 1 or W = 0, 1. As Figure 4.20 shows, pixel values in the MNIST dataset
almost always take value 0 or 1 while the MNIST networks weights are concentrated near 0. The
high probability density for X and W values that correspond to low variance implies implying the
multiplication will be very accurate in the MNIST case. In the CIFAR-10 case, however, pixel
values vary across the whole interval [0,1] while the weights are concentrated towards 0, implying
that multiplication will be fairly accurate, but not as accurate as the MNIST case. Put simply, the
favorable IVDs for pixels and weights in the MNIST case explains why multiplication BMSE is
significantly lower for the MNIST case study than for the CIFAR-10 case study.

In general, CIFAR-10 poses a more difficult classification task than MNIST, but in the SC
setting there is an added wrinkle of higher multiplication error in the CIFAR-10 case. In other
words, the extremely favorable IVD for the MNIST task implies that SC CNN results on MNIST
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Network Simulation-derived BMSE Analysis-derived BMSE

MNIST 1.18× 10−5 1.083× 10−5

CIFAR-10 5.61× 10−5 5.55× 10−5

Table 4.6: BMSE for Multiplications in the MNIST and CIFAR-10 CNNs

may poorly generalize to other classification tasks like CIFAR-10. For instance, in [29], accurate
MNIST classification was achieved with an impressive SN length of just 8 bits. The favorable
MNIST IVD could be one reason that high performance was possible with such short bitstreams
as SC CNNs sometimes require SN lengths of hundreds or even thousands of bits. If a designer
wishes to extend these results to other datasets with less favorable IVDs (like CIFAR-10), then
knowing multiplication error will be higher informs the design process and may suggest that longer
bitstreams will be needed.

In sum, the IVDs should be carefully considered when assessing the accuracy of a circuit design.
These IVDs should be representative of data in the application domain of the circuit, or, in the case
of general designs, should represent a variety of different distributions. The beta distribution can
be useful for constructing or modeling input distributions with a variety of shapes. Alternatively,
multiple datasets can used to assess a circuit’s accuracy where each dataset represents an IVD as
in this case study. When comparing circuits, if circuit dominance cannot be proved, then it is not
sufficient to simply simulate the designs with uniformly random input values and declare design
as superior to another. One should test multiple IVDs or sample from the target applications IVD
to gain a comprehensive comparison of circuit accuracy.

4.6 Summary

Modeling a circuit’s bias, variance, and input value distribution (IVD) leads to better understand-
ing of its accuracy. In this chapter, we proposed the hypergeometric SN model which can better
predict the variance of circuits that employ non-repeating RNSs like LFSRs. Insights from the hy-
pergeometric SN model led to the CAM subtractor design which is much more accurate on average
than a standard subtractor. In the following chapter, these same insights will form the basis of our
CeMux adder which is more accurate and smaller than standard mux adders.

In addition to the hypergeometric SN model, we also proposed a method for modeling auto-
correlation error in sequential stochastic circuits. This method improves the understanding of
sequential stochastic circuits and can inform trade-off decisions involving decorrelation methods.
We also proposed using the beta distribution to flexibly model the IVD. The chapter culminated in
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a neural network case studied which combined many of our results and demonstrated the usefulness
of these statistical models and the BASE framework. Overall, the BASE framework combined with
our statistical models gives insights into the circuit design process. In the next chapter, we further
develop these insights and present new advances in stochastic computing adder design.
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CHAPTER 5

Large-Scale Stochastic Adder Design

Stochastic computing’s most effective applications include image processing and digital filtering
because they are error tolerant to some degree and have high computational demand. In these
applications, the bulk of the computing cost often comes from the vast number of many-input
inner products that underlie important algorithms like convolution and artificial neural networks.
Multiplication is relatively accurate in SC, but highly accurate addition is much more challenging,
particularly when there are hundreds or thousands of summands. For instance, when used to add
many SNs, basic mux adders have low area but poor accuracy while another common SN adder
design, the accumulative parallel counter (APC), has good accuracy but high area. This chapter ad-
dresses the challenge of large-scale SN adder design by improving existing adders and introducing
new adder types. The work in this chapter is mostly published in [13, 14].

5.1 Mux Adders

Mux adders are the traditional SN adder design type. Figure 5.1 shows a 2-input mux adder with
data inputs A, B, select input S, and output Z. The select SN has Ps = 0.5 and the output value is

Z =
1

2
(A+B) (5.1)

One way to understand Equation (5.1) is to envision the mux as a sampling unit, where each clock
cycle the control input S determines whether A or B is sampled and has its bit propagated to
the output. Since Ps = 0.5, A and B have an equal chance of being sampled each clock cycle
implying that, on average, half of Z’s bits will be from A and half from B. Thus, Z’s value is
given by Equation (5.1). The viewpoint of mux adders as sampling units is illustrated in Figure 5.1
and will serve an important role in understanding how to improve the accuracy of mux adders.

The two-input mux that performs two-input scaled addition can be generalized to an M -input
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Figure 5.1: Multiplexer (mux) sampling adder.

mux adder that performs weighted addition of the form

Z =
1∑M

i=1 |Wi|

M∑
i=1

WiXi (5.2)

where X1,X2, ...,XM are bipolar input SNs with weights W1,W2, ...,WM , respectively. Conven-
tional bipolar mux adders that compute Equation (5.2) do not use bipolar SNs to encode weight
values. Instead, they use a two stage implementation: an XOR gate array followed by a mux adder
tree as shown in Figure 5.2 [51, 91, 94, 97]. The XORs multiply each bipolar input Xi with the
sign of its corresponding weight Wi. Then, each XNOR output Yi with Yi = sign(Wi)Xi is routed
into a mux tree that computes Z = 1∑M

i |Wi|

∑M
i=1 |Wi|Yi which is equivalent to Equation (5.2). In

short, the XOR array accounts for the sign of the adder weights while the mux tree accounts for

Figure 5.2: Generic M -way mux weighted adder design.
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Figure 5.3: Hardwired mux tree example: (a) full design; (b) internal mux tree structure where the
shaded two-way muxes are redundant and can be removed.

the magnitude of the adder weights.
There are various mux tree designs that, together with an XOR array, implement Equation (5.2).

The trees mainly differ in how they use the mux select inputs to encode the normalized magnitude
of each weight |W̃i| = |Wi|∑M

i=1 |Wi|
. One basic design is the hardwired mux tree [91] which is best

explained with an example. The hardwired mux tree in Figure 5.3 computes

Z =
1

2
Y1 +

3

8
Y2 +

1

8
Y3 (5.3)

The hardwired mux’s select inputs S2, S1, and S0 all have value 0.5 and are shared amongst muxes
on the same level of a full mux tree as shown in Figure 5.3. With this configuration, all 8 mux
tree inputs have probability 1/8 of being sampled each clock cycle and the normalized weight
magnitudes can be implemented by hardwiring each Yi to one or more input mux slots. For
example, Y2 is hardwired to three of the eight mux tree inputs because W̃2 = 3/8. Likewise,
Y1 is hardwired to half the mux tree inputs since W̃1 = 1/2 and Y3 is hardwired to just one
input because W̃3 = 1/8. In general, the number of levels or height of the mux tree determines
the values to which the normalized weights must be quantized, and Algorithm 5.1 describes the
quantization procedure. In Figure 5.3, the height is 3 and all |W̃i| are quantized to 3-bit precision.
The hardwired mux tree is most useful in resource-limited applications where the weights are not
expected to be updated, such as in hearing aid filters [16] or electrocardiogram filtering [9].

In cases where weights are expected to be updated, the biased selector mux tree introduced in
[21] can be used to implement weighted addition. In this case, the weights are not hardwired,
but rather are encoded into the select input SNs’ values which are no longer all set to 0.5. When
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Algorithm 5.1 Hardwired Mux Tree Weight Normalization and Quantization

Input: w =
[
W ∗

1 ,W
∗
2 , ...,W

∗
M

]
▷ Target adder weights

Input: h ▷ Desired height of hardwired mux tree
Output:

[
|W̃1|, |W̃2|, ..., |W̃M |

]
▷ Absolute values of the quantized, normalized weights.

1: a← abs(w) ▷ Take the element-wise absolute value of w.
2: t← 2ha/ sum(a) ▷ Compute the numerators of the normalized weights.
3: q← round(t) ▷ Quantize t to nearest integer.
4:
5: ▷ Sometimes after rounding, the sum of the quantized normalized weights is not equal to 1.
6: ▷ and slight adjustments are needed:
7: while sum(q) > 2h do
8: i← argmax(q− t)
9: qi ← qi − 1 ▷ Decrement the numerator that results in smallest bias.

10: end while
11:
12: while sum(q) < 2h do
13: i← argmax(t− q)
14: qi ← qi + 1 ▷ Increment the numerator that results in smallest bias.
15: end while
16:
17: return q/2h

a change in summand weights is needed, the select input values can be updated. The weight
flexibility comes at a high area cost, however, since many additional SNGs are needed for the
select input SNs. Recent work aims at reducing this SNG overhead [51, 97]. Section 3 in [51]
gives a detailed explanation of the biased selector mux tree design methodology. Note that the
terminology “biased selector tree” is not used in [51], but was introduced in our CeMux work [13]
to help differentiate mux tree designs.

Mux adders are often criticized for their high error when used to add many SNs [66, 71]. In-
accuracy must be addressed by using very long bitstreams or by using a costlier adder design like
an APC. Mux inaccuracy stems from its sampling behavior. Every clock cycle, an M -input mux
samples one input SN and ignores the bits from the other M − 1 inputs. When M is large, a
significant amount of information is lost which leads to inaccuracy. This explanation for mux ac-
curacy inspires two techniques that substantially improve mux accuracy: precise sampling and full
correlation. These techniques reduce the amount of information lost during sampling by employ-
ing correlation in useful ways. A new formula for mux variance that we introduced in [13] and
repeated below explains how these techniques affect mux accuracy.

Var(Z) = ϵnoise + ϵsamp + ϵcorr (5.4)
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Figure 5.4: Bipolar mux adder variance: (a) conventional mux adder; (b) mux adder with precise
sampling and full correlation. Values are normalized by multiplying by 512, the bitstream length.

Formal definitions and derivations for ϵnoise, ϵsamp and ϵcorr are given in Appendix A. Here, the
focus is a high-level explanation of Equation (5.4). Note that Equation (5.4) flexibly applies to
both Bernoulli and hypergeometric SN models and applies to both unipolar and bipolar SC.

Like most variance expressions, ϵnoise, ϵsamp and ϵcorr all depend on the SN length L, the input
values, and the summation weights. Decomposing mux variance into these three components
highlights how mux adder accuracy can be improved. For instance, Figure 5.4 illustrates how
these three variance components and overall mux variance vary with the number of bipolar mux
adder inputs. Figure 5.4a corresponds to a conventional mux adder and shows that the overall
variance quickly saturates to a high value of 1/L as the number of inputs increases [71]. Figure
5.4b corresponds to a mux adder with our proposed precise sampling and full correlation methods.
Comparing Figures 5.4a and 5.4b reveals that precise sampling reduces ϵsamp from about 1/(3L) to
zero while full correlation pushes ϵcorr from zero to about −1/(3L). These reductions are additive
and lead to a significant overall variance reduction of 67%. This accuracy improvement is further
amplified in our CeMux design where a low-discrepancy RNS type is used in place of an LFSR
RNS.

5.1.1 Precise Sampling and Full Correlation

A mux adder’s inaccuracy largely stems from its sampling behavior. Every clock cycle, an M -input
mux adder samples a bit from one of its input SNs and ignores the bits from the other M−1 inputs.
Due to the amount of unused information, the mux adder output has high variability as quantified
by variance. Two new techniques, precise sampling and full correlation, can significantly decrease
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this variability and thus greatly improve mux accuracy. Both techniques address one component
of mux adder variance: precise sampling reduces ϵsamp to zero while full correlation reduces ϵcorr

from zero to a negative value.
Mux addition relies on sampling the input SNs and ϵsamp quantifies the variation in the number

of times each input is sampled. For instance, consider the previously discussed hardwired mux
tree of Figure 5.3 with data inputs Y1, Y2, Y3, adder weights W̃1 = 1/2, W̃2 = 3/8, W̃3 = 1/8,
and SN length L = 16. Since |W̃1| = 1/2, Y1 is expected to be sampled eight times (|W̃1|L = 8),
Likewise, Y2 is expected to be sample six times since |W̃2|L = 6 and Y3 is expected to be sampled
two times since |W̃3|L = 2. However, Y1, Y2 and Y3 may each be sampled anywhere from zero
to sixteen times due to random fluctuations in the mux select inputs S2, S1 and S0. When inputs
are not sampled their expected number of times, the mux output will be biased thus causing error
that is characterized by ϵsamp.

Let Ci be a random variable denoting the number of times bipolar mux input Yi is sampled.
Then

ϵsamp =
1

L2

M∑
i=1

M∑
j=1

YiYj Cov(Ci, Cj) (5.5)

where L is the SN length, M is the number of mux inputs, Cov(Ci, Cj) is the covariance between
Ci and Cj , and Cov(Ci, Ci) = Var(Ci) by the definition. For the foregoing example of Figure
5.3, L = 16, M = 3 and the covariance terms depend on how the select SNs are generated. The
covariance terms in Equation (5.5) highlight the fact that ϵsamp (and thus part of the mux’s variance)
is dependent on the variation in the number of times each input is chosen. Reducing this variation
motivates the concept of precise sampling.

Let L-bit SNs Y1,Y2, ...,YM with normalized weights |W̃i| be input to a mux tree and let Ci

be a random variable representing the number of times Yi is sampled by the tree. The expected
number of times Yi is sampled is E[Ci] = |W̃i|L. A mux tree performs precise sampling when
P(|Ci − E[Ci]| < 1) = 1 for all 1 ≤ i ≤ M . In simpler terms, precise sampling is when each
input Yi is always (i.e., with probability 1) sampled its expected number of times, up to a rounding
error (i.e., |Ci − E[Ci]| < 1). In the case where E[Ci] is an integer for all i, implementing precise
sampling guarantees that Ci = E[Ci] for all i implying that Var(Ci) = Cov(Ci, Cj) = 0 and, as
a result, ϵsamp = 0. A mux tree that does not perform precise sampling is said to implement noisy

sampling.
Conventional hardwired mux trees such as HWA [91] perform noisy sampling because separate

and independent n-bit RNSs drive the mux select lines. Fluctuations between these RNSs cause
sampling variation as seen in the noisy sampling behavior of Figure 5.5a. Instead, we propose to
generate the select inputs of a height h hardwired mux tree with a single RNS as shown in Figure
5.5b. This new construction saves considerable area compared to the former construction because
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Figure 5.5: Sampling inputs from a hardwired mux tree: (a) noisy sampling; (b) precise sampling.

a single RNS is used in place of h RNSs. Moreover, it allows a straightforward implementation of
precise sampling.

An n-bit RNS is used to implement precise sampling of SNs with length 2n. The RNS is
constrained to sample numbers from [0, 2n−1] without replacement. For example, an LFSR could
be used. Then, for a height h mux tree, h out of the n RNS bits are used to drive the mux select
lines. This restriction ensures that the mux adder performs precise sampling because each mux
input slot is sampled exactly 2n−h times as in Figure 5.5b where n = h = 4. Suitable choices for
the RNS include an n-bit LFSR as in Figure 5.5b or a counter as in our CeMux adder design.

Full correlation is another technique that can reduce mux variance. Input correlation arises
when the input SNs share an RNS. The sharing of a single RNS amongst the M data inputs of a
mux adder is common practice in SC because it saves considerable area and because correlation
among the data inputs of mux adders was believed to have no effect on output error [3, 51]. In
Section 4.2, our hypergeometric SN model [12] showed that this belief is incorrect by demonstrat-
ing that correlation has a substantial effect on the variance of a 2-input mux adder. Full correlation
generalizes these ideas and analysis to M -input mux adders.

To illustrate correlation’s effect on a larger mux adder, consider the mux tree in Figure 5.6a
with four uncorrelated inputs A, B, C, D each with unipolar value 0.5, length 8 and weight 0.25.
During each clock cycle i, some of the input bits are 0 and others 1. By happenstance, it is possible
for the mux to propagate a 0 every single clock cycle resulting in Z = 00000000. In this somewhat
unlikely, yet possible, case, Z’s estimated value Ẑ is 0 which poorly represents Z’s expected value
Z = E[Ẑ] = 0.5 and target value Z∗ = 0.5.

In contrast, Figure 5.6b shows the same mux adder configuration, but when A, B, C, D are
maximally correlated by sharing an RNS. Since A to D have the same value of 0.5, they contain
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Figure 5.6: Effect of input correlation on mux behavior. Possible behavior of mux tree with: (a)
uncorrelated inputs; (b) maximally correlated inputs.

the same number of 1s and since they share an RNS, those 1s occur during the same clock cycle.
Thus, A to D are identical bitstreams implying that the output bitstream Z will be the same for
any realization of select inputs S0 and S1. Essentially, it does not matter which SN is sampled each
clock since each SN is identical due to correlation. In this case, Z will have a correct estimated
value of Ẑ = Z = 0.5 with zero variance when inputs A to D are hypergeometric SNs. Figure 5.6b
is an extreme example since mux input SNs rarely all have the same value. In general, when mux
input values differ, the input SNs will not be identical because each SN will contain a different
number of 1s. In that case, the output variance is nonzero, but lower when input correlation is
higher.

The component ϵcorr quantifies how mux variance is impacted by bit-level correlation amongst
mux data inputs:

ϵcorr =
1

L2

M∑
i=1

M∑
j=1
j ̸=i

E[Ci]E[Cj] Cov(xi,k, xj,l) (5.6)

where L is the SN length, M is the number of mux inputs, Ci is the number of times Xi is sampled,
xi,k is a bit of Xi during arbitrary clock cycle k, and xj,l is a bit of a different SN Xj during a
different, but otherwise arbitrary, clock cycle l (k ̸= l).

ϵcorr is 0 when no correlation is present or when the inputs are binomial SNs. ϵcorr is positive
when the inputs are anti-correlated hypergeometric SNs while ϵcorr is negative when the inputs are
correlated hypergeometric SNs. Most importantly, ϵcorr is lowest when all mux data inputs are
maximally correlated with a pairwise SCC of +1. When correlation is maximized in this manner,
the mux is said to achieve full correlation. Implementing full correlation is not as straightforward
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Figure 5.7: CeMux bipolar weighted adder.

as simply sharing an RNS amongst mux input SNs because of the XOR array found between the
SNGs and mux tree (see Figure 5.2). A method for implementing full correlation is given in the
following section which covers our CeMux design.

5.1.2 CeMux

Correlation-enhanced multiplexer (CeMux) refers to a bipolar weighted mux adder that combines
our two correlation-inspired techniques, precise sampling and full correlation, with other recent
advances in SC to form a particularly efficient design method for large adders. Figure 5.7 shows
CeMux which implements weighted addition (Equation (5.2)). CeMux uses an XOR array and
hardwired mux tree as in the general mux adder structure of Figure 5.2. Since the weights are
fixed and known ahead of time, Figure 5.7 simplifies the XOR array by explicitly showing that
inputs with negative weights are inverted by the XOR array while inputs with positive weights
are unmodified by the XOR array. The remainder of this section explains CeMux component by
component.

Like other compact mux adders [51, 91, 97], CeMux uses a single RNS to generate its data input
SNs. While LFSRs are a popular and relatively low-cost RNS-type, a stochastic circuit’s accuracy
can sometimes be improved by using Sobol sequence generators as the RNS for SN generation
[29, 65]. Sobol sequences and the properties of SNs generated by such sequences are covered
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Figure 5.8: Visualizing the correlation of mux tree inputs: (a) conventional SN generation with
RNS-sharing; (b) full correlation generation method.

in Section 4.2.3. CeMux requires a single RNS and uses the simplest Sobol RNS which can be
implemented with the reverse state of a standard binary counter [72]. Our later experiments show
that using a Sobol RNS in place of an LFSR improves CeMux’s accuracy.

CeMux’s mux tree achieves full correlation when SCC(Yi,Yj) = +1 for all i, j. Ensuring
maximum correlation is not as straightforward as simply sharing the RNS amongst all data input
SNGs. Figure 5.8a illustrates this point where a mux containing four inputs X1, X2, X3, X4 with
corresponding weights W1,W4 > 0 and W2,W3 < 0 is shown. In this case, the pairwise SCC
amongst X1, X2, X3, X4 is 1. However, since W2,W3 < 0, X2 and X3 are inverted by the
inversion array which results in SCC(Y1,Y4) = SCC(Y2,Y3) = 1 and SCC = −1 for the other
four pairwise combinations of Y1, Y2, Y3, Y4. Thus, full correlation is not achieved for the mux
tree in Figure 5.8a.

In contrast, CeMux’s SNG configuration for these SNs is shown in Figure 5.8b. A single RNS
is shared by the SNGs, but the RNS output is inverted for X2’s and X3’s SNGs. The result is
SCC(X1,X4) = SCC(X2,X3) = 1, and SCC = −1 for all other SN pairings. Following the
inversion of X2 and X3, the SCC between all pairings of Yi and Yj is +1 and full correlation is
achieved by the mux tree. More generally, to achieve full correlation in CeMux, all inputs share an
RNS, but inputs with negative weights use the inverted RNS output for SN generation while inputs
with positive weights use the unaltered RNS output for SN generation.

CeMux’s hardwired mux tree height is set to n where 2n is the SN length. This is the largest tree
height that enables precise sampling to function fully and yields the lowest quantization error. A
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Figure 5.9: CeMux precise sampling implementation. The shaded muxes are redundant and can
be removed.

high mux height n might seem to imply a high area cost due to the exponential number of 2-input
muxes needed to construct the tree. That is not the case, however, because many of the 2-way
muxes in a hardwired mux tree have identical data inputs and thus can be eliminated. For instance,
all the shaded muxes in Figure 5.9 can be removed, reducing the mux count from fifteen to four.
In general, a loose upper bound on the number of 2-input muxes in a height-n hardwired mux tree
with M unique input SNs is min(Mn−1, 2n−1) [13]. Thus, for a given input size M , the number
of mux gates grows linearly with tree height n rather than exponentially as 2n. CeMux implements
precise sampling by using an n-bit counter’s state as the mux select input lines. The counter’s i-th
MSB is connected to muxes on the i-th level of CeMux’s hardwired mux tree as in Figure 5.9.

Overall, CeMux is built around a hardwired mux tree adder design similar to HWA [91], but
with three new key optimizations: full correlation, precise sampling, and a Sobol RNS. The fol-
lowing experiments measure the root Bayes mean squared error (BMSE) of a hardwired mux tree
adder with and without CeMux’s these three optimizations. For each configuration, the adder is
simulated with random bipolar input values Xi and weights Wi. The circuit precision is fixed at
n = 10, and the number of inputs M is varied from 8 to 256. The SN length is L = 210 and
R = 5, 000 simulation runs are used. Root BMSE is estimated as

Root BMSE ≈

√√√√ 1

R

R∑
r=1

(Ẑr − Z∗
r )

2 (5.7)
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(a) (b)

Figure 5.10: Error of a mux adder with various optimizations and when using: (a) an LFSR RNS;
(b) a Sobol RNS.

where Ẑr and Z∗
r are, respectively, Z’s estimated and target values during simulation run r. Figure

5.10a shows the accuracy results when the adder uses a LFSR RNS while Figure 5.10b shows
the accuracy results when using a Sobol RNS. The curves within both Figures 5.10a and 5.10b
correspond to different configurations of using or not using full correlation and precise sampling.
The ”Precise sampling and full correlation” curve in Figure 5.10b corresponds to our full CeMux
design while the ”No optimizations” curve in Figure 5.10a corresponds to a traditional mux adder
like HWA [91]. These error results are normalized by multiplying by

√
L where L = 1024 is the

SN length used in the experiments.
As the number of inputs increases, the root BMSE for every configuration increases and then

saturates which is consistent with other mux adder studies [51, 71, 91, 97]. When using an LFSR
RNS, the mux accuracy is exactly as our earlier analysis predicted. Full correlation and precise
sampling decrease variance by about 33% each which translates to a reduction of about 40% in
terms of root BMSE.1 Comparing Figures 5.10a and 5.10b illustrates that using the Sobol RNS
greatly improves accuracy when precise sampling is also used. Depending on the input size, using
a Sobol RNS with precise sampling and full correlation is 1.5 times to 5.7 times more accurate than
using a LFSR with both correlation techniques. This improvement arises because the method of
precise sampling with a counter works particularly well with the Sobol RNS as explained earlier.

In all, the full CeMux design is 2.6 times to 9.3 times more accurate than a conventional hard-
wired mux tree design like HWA [91]. In terms of area, CeMux is also smaller than existing mux
adder designs because the precise sampling uses much less hardware than prior approaches that

1In this case, bias is relatively low so root BMSE is approximately equal to the square root of variance.
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Figure 5.11: APC-based bipolar weighted adder with M = 4 input size.

have noisy sampling. For example, the later case study in Section 5.2 finds that CeMux’s area is
30% to 75% less than traditional mux adder areas.

5.2 ECG Filtering Case Study

The World Health Organization estimates that 17.9 million people died of cardiovascular disease in
2019, representing about 32% of global deaths [93]. Low-power continuous heart rate monitoring
can help to better address the risk of cardiovascular disease. A key preprocessing step in heart
monitors is the denoising of the electrocardiogram signal with digital filters [83]. Large-scale SC
weighted adders have been applied to the design of linear digital finite impulse response (FIR)
filters [13, 50, 91] that are often used to denoise signals and have desirable properties like linear
phase response. An M -tap filter implements

Zt =
M−1∑
k=0

hkXt−k (5.8)

where Xt is the noisy input signal, hk are the M filter coefficients and Zt is the filtered output
signal. Generally, FIR filters with more taps (higher M ) perform better filtering at the cost of more
computational resources. Here, various large-scale bipolar SC adders are used to implement an
FIR filter that denoises ECG signals.

The purpose of this case study is to determine how various large-scale SN adders perform when
used implement FIR filtering applied to ECG denoising. The tested designs include a conventional
hardwired mux tree design [91], a conventional weighted APC design like that of Figure 5.11, a
design built around a tree of T flip-flops (TFF tree) [60] and our CeMux design [13].

Before testing the ECG filtering application, each design is evaluated using a baseline test where
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(a)

(b)

Figure 5.12: Error of bipolar weighted SC adders with: (a) uniformly random input and weight
values; (b) ECG filtering input and weight values.

the adders are configured to add bipolar SNs with random values Xi ∈ [−1, 1] and weights Wi ∈
[−1, 1]. The circuit precision is n = 10 bits and SN length is L = 210 bits. The input size M is
varied as each adder’s root BMSE is estimated using R = 10, 000 runs per value of M .

This baseline experiment with random inputs and weights helps validate the correctness of
software implementations and establishes expectations for how the designs will perform on other
tests. Figure 5.12a shows the results after error values were normalized to account for difference in
adder scale factor.2 The APC has the lowest error because it takes an exhaustive counting approach
to summation. The next most accurate design is the TFF adder which was introduced as a more
accurate, but costlier alternative to the mux adder [60]. Finally, CeMux has the next best accuracy
followed by the conventional mux adder.

The ECG filtering case study uses a similar setup to the baseline test: the circuit precision is
n = 10 bits and the SN length is L = 210 bits. The number of filter taps M is varied as each adder’s
root BMSE is estimated using R = 10, 000 simulations runs per value of M . The input values are
derived from Physiobank’s MIT arrhythmia data-base [36] where random noise is added to the

2Specifically, mux adders have scale factor α =
∑M−1

k=0 |hk|, the APC has no scale factor α = 1 and the TFF tree
has a scale factor that depends on the tree height h: α = 2h. The TFF tree height is determined by the number of
adder inputs h = ⌈log2(M)⌉. All scale factors are multiplied out so that error comparisons are fair.
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(a) (b)

Figure 5.13: Noisy ECG signals: (a) 500 samples of a noisy ECG signal; (b) 100 samples of a
noisy ECG signal taken from the region between the red vertical lines in (a).

benchmark signals as in [32] to simulate three major noise types: device noise, electro-surgical
noise, and noise from muscle contractions. Filter coefficients are derived using MATLAB. The
APC and TFF adders are expected for perform the best on the ECG task based on the random input
baseline results. Intuitively, these designs are also expected to be more accurate because they are
less random, albeit costlier, alternatives to the mux adder.

Figure 5.12b plots the root BMSE of each SC adder against the number of filter taps M . Com-
pared to the baseline test, the APC’s error is 1.3 times to 3.5 times higher depending on M . In
contrast, the conventional mux and CeMux error is 31 times to 132 times lower compared to the
baseline test. This is a significant decrease in error completely caused by the change in input value
distribution. Overall, Figure 5.12 shows that the magnitude of each adder’s error as well as the rel-
ative ranking of adder accuracy differ significantly between the baseline test and ECG case study.
The two major contributing reasons for the change in adder performance are that 1) the ECG input
value distribution is especially favorable for mux adders and 2) the weighted APC’s accuracy is
degraded by correlation-related error.

As explained in Section 4.4, an important, but sometimes overlooked influence on circuit ac-
curacy is the application’s input value distribution (IVD) [11]. In the case of ECG filtering, the
weight values are derived using MATLAB and the input SN values are derived from a noisy ECG
signal like that of Figure 5.13. These are highly non-uniformly random IVDs that lead to a different
BMSE than was measured in the baseline test. Moreover, consecutive samples from an ECG signal
are highly similar in value. For example, a 100-tap FIR filter may have the highly similar ECG
samples shown in Figure 5.13b as input. Similarity of input values especially benefits CeMux’s
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Figure 5.14: Sharing an RNS amongst several SNGs: (a) direct sharing; (b) sharing with inversion
networks fi.

accuracy [12, 13] as explained fully in Appendix A.2. Our data reflects these claims as CeMux has
up to 132 times lower error when applied to ECG filtering than when applied to the random input
baseline. This result underpins the importance of accounting for the IVD.

In contrast to CeMux, the APC’s error was up to 3.5 times higher on the ECG filtering case
study than on the random baseline test. This accuracy degradation is due to correlation from RNS-
sharing which is normally thought to not affect APC accuracy [66]. Consider a 4-input weighted
APC like that of Figure 5.11. Since the APC counts all 1s of the product SNs Y1 to Y4, the APC’s
error ϵZ = Ẑ − Z∗ can be expressed as the sum of multiplication errors ϵYi

= Ŷi − Y ∗
i where Ŷi is

Yi’s estimated value and Y ∗
i = W ∗

i X
∗
i is Yi’s target value.

ϵZ =
M∑
i=1

ϵYi
(5.9)

When no RNS sharing is used, the Yi’s are independent and, on any given simulation run, about
half the multiplication errors ϵYi

are positive and about half are negative. The positive and negative
errors partially cancel out when the Yi are summed by the APC which results in a low overall APC
error ϵZ . For example, if the multiplication errors of a 4-input weighted APC are 0.02, −0.1, 0.05
and −0.03, then the overall APC error is −0.06.

In contrast, when RNS-sharing is employed, the product SNs Yi and the multiplication errors
ϵYi

are correlated. In this case, on any given simulation run the magnitude of the multiplication
errors are the same as the no RNS-sharing case, but about 60% of the multiplication errors have
the same sign. Consequently, the overall weighted summation error ϵZ is higher as multiplication
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Figure 5.15: ECG filtering error for various bipolar SC adders.

errors accumulate much more often and cancel out less often. For example, if the multiplication
errors are 0.02, 0.1, 0.05, and 0.03, then the overall APC error is 0.2 which is much higher than the
previous example because all the multiplication errors have matching signs.

In [14], we proposed a low-cost technique for decorrelating the weighted APC design. It in-
volves applying a randomly chosen network of inverters to the shared RNS output before it enters
each SN’s PCC as illustrated in Figure 5.14b. Using the decorrelation scheme lowers the APC’s
root BMSE for ECG filtering by 1.4 times to 4.5 times depending on the input size. Although the
decorrelation scheme significantly improves the accuracy of the APC in the ECG filtering case, it
does not affect APC accuracy in the baseline or in any of the other case studies in this work. In
those cases, the multiplication errors ϵYi

are uncorrelated even without decorrelation. The sensi-
tivity of APCs to input correlation therefore depends on the application’s input value distribution.
In all of our experiments, however, the proposed decorrelation technique either decreased error or
left it unchanged compared to direct sharing. Given that this decorrelation technique is low-cost,
it appears useful in general.

Even with decorrelation, the APC’s error is still up to 3.8 times higher than CeMux’s error
for ECG filtering as shown in Figure 5.15. This result is extremely surprising since APCs are
usually more accurate than mux adders and since, intuitively, APCs should be more accurate due
to their exhaustive counting approach. However, the ECG case study’s IVD is favorable for CeMux
whose accuracy depends on differences in input values. One advantage of the APC design over
CeMux, however, is that the weights are programmable whereas CeMux implements weights via
hardwiring. Therefore, CeMux is best used with field programmable gate arrays or for applications
where the weights are not expected to change as in hearing aid filtering [16, 25] or ECG filtering
[9].
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Figure 5.16: Area vs. input size for various SC digital filter designs.

5.2.1 Area Comparison

Next, Synopsys Design Compiler is used with the Nangate 45nm open cell library [85] to synthe-
size SC filters and estimate the area of their weighted addition datapath. We do not consider the
memory used to store prior signal values since each design requires the same amount of memory.
Figure 5.16 plots the circuit area versus number of filter taps M for n = 10 bit precision. Ce-
Mux occupies 30% to 75% less area than other SC designs because it replaces costly SNGs for
weights or mux select inputs with a simple but precise sampling counter. Figure 5.16 also shows
that the two largest designs are the conventional biased selector mux adder and the APC. These
designs have higher area because they use more SNGs and because, unlike the other designs, they
are flexible in their ability to update filter coefficients stored in an external memory whose cost is
not considered here. While flexibility in updating filter coefficients is a convenient feature, FIR
designs for resource limited applications like ECG filtering [9] and hearing aids [25] often as-
sume and benefit from fixed filter coefficients. If programmable weights are desired, a CeMux-like
design built around biased selector mux tree can be used [14].

The focus of our analysis has been on the analysis and improvement of SC mux adders. We
have demonstrated that CeMux is the best mux-based SC adder in terms of accuracy (Figure 5.15)
and area (Figure 5.16). For completeness, we also give a brief comparison with a conventional
binary design. We compare a 10-bit CeMux filter with a traditional sequential binary (SB) filter
designed using MATLAB’s Filter Design HDL coder. The SB design is synthesized assuming the
filter coefficients are fixed, and the SB design employs standard optimizations like the exploitation
of symmetric coefficients which greatly reduces multiplier count. Note that the designs’ precision
levels are chosen to give them similar accuracy, CeMux uses 10-bit precision while the SB design
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10-bit CeMux Filter 10-bit Sequential Binary Filter

Filter size
M

Area
(µm2)

Power
(µW )

Root BMSE
(×10−3)

Area
(µm2)

Power
(µW )

Root BMSE
(×10−3)

25 566 13.16 4.17 1158 20.67 5.06
50 853 20.16 4.47 1385 23.45 3.49
75 1085 25.71 4.57 1603 28.51 3.99

100 1212 28.82 4.87 1761 29.64 3.61
125 1314 31.42 5.16 1855 30.83 3.13
150 1465 35.52 5.41 2066 36.58 4.69
175 1578 37.50 5.62 2119 37.99 4.85
200 1670 39.79 5.64 2293 39.71 3.55
225 1658 39.44 6.26 2324 39.70 4.19
250 1813 43.20 6.05 2477 41.70 4.12

Table 5.1: Cost and Performance of a CeMux Filter and a Sequential Binary (SB) Filter

uses 8-bit precision. Both designs are also configured to operate in real-time which requires each
one to process digitized ECG samples at the sampling rate of 360 Hz.

Table 5.1 shows the area, power and RMSE of the CeMux and SB filters as the filter size M is
varied from 25 to 250. CeMux’s area is 49% to 73% lower than the SB design’s area due to the use
of cheap SC computational units. The CeMux design must process the entire 1024-bit SN at a rate
of 360 Hz to meet the real-time latency constraint. Consequently, CeMux’s digital clock frequency
is set to be faster than the SB’s design digital clock frequency which results in both designs having
similar power despite CeMux having lower area. Finally, the SB design has slightly better root
BMSE, especially as input size grows. Based on the data presented in Table 5.1, we conclude that
CeMux, a mux-based SC adder, has the potential of being a lower-cost alternative to conventional
binary designs. Besides being smaller, SC designs also offer greater fault tolerance [7] which is
one avenue for future exploration with CeMux.

As a closing example, we compare the performance of SC filter designs in the case of a noisy
ECG signal filtered by an M = 100 tap filter with precision n set to 10. As Figure 5.17 shows, the
CeMux-based filter produces the smoothest, most noise-free curves, another reflection of CeMux’s
superior accuracy. In general, we have seen that CeMux is the best mux adder design developed
so far for large weighted-adder networks, in terms of both accuracy and area trade-offs. These
properties result from three key design features: full correlation, precise sampling and a Sobol
RNS. CeMux can thus be considered a major step towards practical implementation of many-input,
compact adders for a variety of SC applications
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Figure 5.17: Noisy ECG waveform (top-left) filtered by a full precision design (top-middle) and
various 10-bit precision SC designs.

5.3 Parallel Sampling Adders

Although CeMux is a major improvement over prior mux adder designs and even outperforms
APCs for ECG filtering, mux adders are generally less accurate than APCs. The latency of CeMux
is also fundamentally limited by its sampling approach. Specifically, if CeMux has M inputs,
then the SN length L must be at least M clock cycles so that each input is sampled at least once.
If L < M , then some inputs are never sampled by CeMux which usually results in high error.
For example, a fully connected input layer of a network used to classify Fashion-MNIST clothing
items [95] employs inner products with 784 inputs each. In that case, CeMux would require an
SN length of at least 784 bits (and likely more) to achieve good image classification accuracy. In
contrast, an APC may needs only 16 bits for good classification performance [14, 45]. A major
drawback of APCs, however, is that they often dominate the area of SC-based neurons due to their
large size [45, 66].

In short, mux adders like CeMux sample one bit from one input per clock cycle, thus limiting
their accuracy. On the other hand, an M -input APC adds the bits from all input SNs and, in
some sense, samples all M inputs each clock cycle resulting in high area. In between these two
extremes lies an opportunity for a new flexible design methodology, our parallel sampling adders
(PSAs) [14]. Each clock cycle, an M -input PSA samples between 1 and M input SNs. The
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Figure 5.18: Basic PSA designs with group size: (a) G = 4; (b) G = 2.

Figure 5.19: All 8-input PSA designs.
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Figure 5.20: Weighted PSA with group size G = 4.

PSA framework generalizes the mux and APC adders and includes hybrid mux-APC designs that
are more accurate than mux adders, but less costly than APCs. Most usefully, PSAs exhibit an
accuracy-area trade-off that can be adapted based on the application and its requirements.

PSAs combine mux adders and APCs into a single flexible design as shown in Figure 5.18. In a
PSA, input SNs are arranged into disjoint groups of size G, each of which is applied to a separate
mux adder. The outputs of all muxes are then accumulated by an APC. For example, Figure 5.18a
shows an 8-input PSA with two groups of size G = 4. Both groups are summed separately by
muxes with outputs Y1 and Y2 that have value Y1 = 0.25

∑4
i=1 Xi and Y2 = 0.25

∑8
i=5 Xi,

respectively. Left bit-shifts are used to remove the 0.25 scale factors from the mux output values
before Y1 and Y2 are accumulated by a small APC whose output value is Z =

∑8
i=1 Xi.

We parameterize a PSA by its group size G which is the maximum input size of any mux adder
used in the PSA. For example, the PSA in Figure 5.18a has G = 4 while the PSA in Figure
5.18b has G = 2. Group size represents the degree of approximation of the PSA – higher G

means a more aggressive approximation and typically lower area and accuracy. For an M -input
PSA, G takes values between 1 and M and is restricted to be a power-of-two so that scale factors
introduced by the mux adders can always be removed by bit-shifts. For example, all 8-input PSAs
are shown in Figure 5.19. All muxes in a PSA are implemented as CeMux designs because it is the
smallest and most accurate mux adder [13]. APCs and CeMux are special cases of the PSA design
corresponding to group size G = 1 and G = M , respectively.
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Figure 5.21: Unipolar PSA area trade-offs. Area is normalized by dividing by an APC’s area.

Like APCs, the basic PSA designs in Figures 5.18 and 5.19 can be extended to implement
general weighted addition. Figure 5.20 displays a bipolar weighted PSA with M = 7 inputs
and G = 4 group size. It is designed in the following manner. First, inputs and weight SNs
are multiplied using XNOR gates to produce 7 product SNs Pi with value Pi = WiXi. The
product SNs are then grouped into sets of size G = 4. In this case, one group is constructed:
{P1,P2,P3,P4}. Three SNs remain that cannot form another four-element group, so G is cut in
half and one group of size 2 is constructed: {P5,P6}. As one SN remains, the group size is again
cut in half to size one and a final group {P7} is formed. Each group is input to a separate mux and
all mux outputs are summed with an APC to produce the final output Ẑ.

One viewpoint on PSA design is that it uses mux adders to approximate and reduce the size of a
pure APC design. PSAs may therefore seem superficially similar to approximate APC designs like
AxPC [55] and SUC adders [62], but they actually differ in fundamental ways. Unlike AxPC and
SUC adders, PSAs can be used with bipolar SNs. PSA weights also do not need to be partitioned
into disjoint subsets that sum to 1 as in SUC adders. Lastly, PSA weights are programmable,
whereas changing weights in an SUC adder requires redesigning hardwire interconnections.

5.3.1 Accuracy Area Trade-offs

An M -input PSA’s area and accuracy depend on the PSA’s group size G ∈ {1, 2, 4, 8, ...,M}.
When G = 1, the PSA is equivalent to an APC. Larger G implies a higher level of approximation
compared to an APC which leads to lower area and accuracy. A PSA’s G is best taken into context
with its input size M . For example, when M = 512, a group size of G = 16 implies a relatively
low amount of approximation. In contrast, when M = 16, a group size of G = 16 is the highest
level of approximation possible.

To determine how area changes with G, Synopsys Design Compiler (DC) with the Nangate
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(a)

(b)

Figure 5.22: Accuracy trade-off of a: (a) unipolar PSA; (b) bipolar PSA.

45nm library [85] is used to synthesize PSAs with various sampling group sizes, input sizes, and
SN lengths. Figure 5.21 shows the area of a PSA configured to perform weighted addition on 512
unipolar SNs of length 128. Here, area varies roughly linearly with the log of the group size G.
When G = 1, the PSA is equivalent to a pure APC adder and its area is about 70% higher than
the smallest PSA design with G = 512. These results make intuitive sense: as sampling group
size increases, the size of the APC in the PSA shrinks proportionally thus decreasing area cost in
a consistent manner. Other SN lengths and input sizes were tested and yielded similar normalized
area results.

The impact of group size G on accuracy is investigated by simulating a 512-input PSA with
SN length L using both unipolar and bipolar SC. For each pair of values G and L, the PSA is
simulated with uniformly random input and weight values: Xi,Wi ∈ [0, 1] for unipolar SC and
Xi,Wi ∈ [−1, 1] for bipolar SC. As before root BMSE is estimated over R = 10, 000 simulation
runs with Equation (5.7).

Figure 5.22a plots the unipolar SC simulation results. Interestingly, all PSAs with G ≤ 16 have
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nearly the same root BMSE as an APC, which is equivalent to a PSA with G = 1. This finding is
significant because a PSA with G = 16 has 50% less synthesized area than an APC, as shown in
Figure 5.21. For G ≥ 32, the log of root BMSE increases roughly proportionally with the log of
G implying that area can be traded for accuracy by adjusting G. The SN length L only affects the
magnitude of error but does not affect the shape of the root BMSE vs. group size curve. Thus, the
accuracy trade-off is very consistent across different SN lengths.

Next, Figure 5.22b plots the bipolar SC simulation results. As in the unipolar case, SN length L

only impacts the magnitude of root BMSE, but not how it varies with PSA group size G. However,
unlike the unipolar case, the accuracy does not saturate as G decreases. Instead, root BMSE
exhibits a consistent power law relationship with G for all tested SN lengths L. The error saturates
in the unipolar case, but not the bipolar due to complicated interactions between the Sobol RNS
used in the CeMux adders and the multipliers in the weighted PSA design. Nonetheless, PSA still
offers a useful area-accuracy trade-off for bipolar SC whose value is demonstrated in the following
case study.

5.4 Binarized Neural Network Case Study

Next, PSAs are applied to neural network image classification. Large-scale SC adders have been
used to design low-power neural network ASICs [66] which rely heavily on the weighted summa-
tion operation. One such design [45] uses SC to implement the first layer of a binarized neural
network (BNN). BNNs are a class of neural networks where all weights and activations are bina-
rized to take values±1 during the inference (but not the training) phase. This extreme quantization
facilitates the design of low-cost NNs while maintaining high classification accuracy on image
classification benchmarks.

When used for image processing, BNNs often do not binarize the raw (grayscale) pixel inputs
because too much information would be lost. Thus, pixel values are kept at their original 8-bit
precision implying that the first NN layer will require fixed-point multipliers and adders. Instead
of employing traditional fixed-point computing, implementing the first BNN layer with SC and
popcount circuits (i.e., APCs) leads to a 62% reduction in overall area for the two-layer network
in [10]. Here we investigate the extent to which PSAs can be used to further improve hardware
efficiency while maintaining classification accuracy.

As in [45], we apply a binarized multi-layer perceptron with two 1,024-neuron hidden layers
to the Fashion-MNIST benchmark [95]. Fashion-MNIST consists of 28x28 grayscale images of
fashion items that fall into one of ten classes like “coat” or “sneaker” – examples are shown in
Figure 5.23. The hybrid SC-BNN network employs PSA adders in the first layer and the iterative
training procedure from [45] is used to train the network.
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Figure 5.23: Example images from each class of the Fashion-MNIST classification benchmark
[95].

After training, the network is evaluated on the 10,000 test images from the Fashion-MNIST
dataset. The SN length is set to 16 bits which is the shortest length that gave the same image
classification accuracy as a fixed-point version of the network. The area of a first-layer neuron is
measured for each value of G using Synopsys DC with the Nangate 45nm library [85] and area
is normalized by dividing by the area of a neuron that employs an APC adder. Since SNGs can
be shared across many neurons, normalized neuron area is given both with and without SNG cost
included.

Alongside area, the network classification accuracy and PSA neuron accuracy are also measured
as G is varied. Neuron accuracy is characterized in two ways. First the PSA’s root BMSE relative
to the fixed-point version of the network is measured. Second, the percentage of neurons with
correct3 activations are reported since the accuracy of the PSA only matters insofar as the binarized
neuron has a correct output of either +1 or −1. For example, a neuron with very high PSA error
could still output a correct activation of, say, +1. In that case, the high PSA error turns out to
be inconsequential. Likewise, a neuron with very low PSA error could have an incorrect neuron
activation of, say,−1. In that case, the low PSA error is consequential since the neuron’s activation
flipped compared to a fixed-point implementation. In general, higher PSA error will result in a
higher likelihood of incorrect neuron activation value. Then, in turn, more neurons with incorrect
activations will increase the likelihood of network image mis-classification.

Table 5.2 shows the experimental results. The PSA root BMSE increases roughly in proportion
with group size G. This increasing PSA error is reflected in the decreasing accuracy of neuron
activation values. However, the network is robust to some neuron activation inaccuracy. Compared

3Correct with respect to a non stochastic version of the BNN.
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Group
size, G

PSA root
BMSE

First layer neuron
activation accuracy

Classification
accuracy

Norm. area
w/ SNGs

Norm. area
w/o SNGs

1 (APC) 1.83 95.72% 87.26% 1.00 1.00
2 2.23 93.99% 87.86% 0.73 0.74
4 3.93 89.10% 87.00% 0.56 0.50
8 7.43 81.50% 85.66% 0.47 0.35

16 13.26 71.08% 84.22% 0.45 0.24

Table 5.2: PSA-Based Binarized Neural Network Performance

to using an APC (G = 1), the neuron activation inaccuracy is up to 6% higher for G = 2 or 4, but
the overall image classification accuracy varies only slightly. Using a PSA with G = 4 in place
of an APC reduces the neuron area by half while only reducing image classification accuracy by
0.26%. For larger group sizes like G = 8 and G = 16, the classification accuracy drops by 1.6%
and 3% in exchange for further area savings. Group sizes beyond G = 16 lead to poor results since
the SN length is only 16 bits.4 A hybrid SC-BNN network that employs pure CeMux adders in
the first layer is also evaluated. The network’s classification accuracy is only 25% because 16-bit
SN length is very short relative to the number of neuron inputs (784). In contrast, the PSA avoids
inaccuracy problems by employing several small mux adders which operate in parallel to sample
multiple SNs each clock cycle.

5.5 Summary

SC offers the promise of low-cost large-scale weighted adders. However, traditional mux adders
are inaccurate while alternative adders like APCs are costly. We first addressed mux inaccuracy
by introducing a novel mux adder named CeMux which, for an ECG filtering application, was
around 9 times more accurate than conventional mux adders while also occupying up to 75%
less area. CeMux uses correlation-related optimizations to improve its accuracy and area. These
optimizations were directly inspired by our error modeling work presented in Chapters 3 and 4.
Thus, statistical models like those not only improve circuit understanding, but also lead to tangible
design improvements like CeMux.

When used for ECG filtering, CeMux was demonstrated to be more accurate than an APC. This
result underpins another important conclusion from Chapters 3 and 4: an application’s input value
distribution (IVD) can drastically affect a circuit’s accuracy performance. In this case, the ECG

4Recall that group size G is the size of the largest mux adder used in the PSA. When G is greater than the SN
length, some mux input SNs are never sampled which usually leads to high inaccuracy.
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task’s IVD was particularly favorable for CeMux. Compared to a random baseline test, CeMux’s
error was up to 130 times lower on the ECG task. Meanwhile, the APC suffered from correlation-
related error which we addressed with an inversion-based decorrelation technique presented in
[14]. However, even after decorrelation, the APC’s error was still up to 3.8 times higher than
CeMux’s error for the ECG task. These results are atypical, but now can be understood by using
the error framework and statistical models of Chapters 3 and 4.

Despite its success with ECG filtering, CeMux does not perform well with neural networks
where the number of summands is several hundred or thousand. Compared to an APC, CeMux
needs to use a bitstream length that is significantly longer to reach similar network classification
accuracy. Although APCs are more efficient than CeMux for this task, APCs tend to dominate
neuron area which motivated our parallel sampling adder (PSA) design. PSAs combine mux and
APC adders into a single flexible design framework that can trade area for accuracy depending on
the application needs. PSAs generalize mux and APC adders and we showed how they can be used
to attain a 50% reduction in SC neuron area without significant classification accuracy loss.
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CHAPTER 6

Probability Conversion Circuit Design

Although computing with SNs is cheap, encoding non-stochastic data into SNs is very costly as
SNGs often account for 70% or more of the total circuit area [61]. Addressing the high overhead
of SNGs is an important area of ongoing research. This chapter investigates how the design of
PCCs, a core SNG component, influences circuit area, accuracy and correlation. PCC area varies
by as much as 60% between designs and we demonstrate that existing low-area PCC types cannot
consistently generate highly correlated SNs. To address correlation-area limitations, we introduce
multiplexer-majority chains (MMCs), a new PCC design framework that has an exploitable area-
correlation trade-off. The work in this chapter is partly published in [15] and the remainder is
being prepared for publication. For ease of reference, Table 6.1 summarizes the abbreviations used
in this chapter.

Abbreviation Meaning Note

SNG Stochastic number generator Used to create SNs. Consists of an RNS and
PCC.

RNS Random number source Supplies necessary pseudo-randomness for
SN generation.

PCC Probability conversion circuit Converts the RNS output into an SN with
specified probability.

CMP Comparator The most common PCC type.
WBG Weighted binary generator Another widely used PCC type.
MMC Multiplexer-majority chain Our novel PCC type.

Table 6.1: Major SNG-related Abbreviations
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Figure 6.1: SNG design: (a) generic SNG design; (b) SNGs with shared RNS.

Figure 6.2: Comparison of output error for various circuit types with differing PCCs.

6.1 RNS Sharing and PCCs

A typical SNG consists of an RNS and a PCC as shown in Figure 6.1a. The RNS supplies a
sequence of random numbers which the PCC converts one-by-one to a probabilistic sequence of
bits forming an SN X. Partly in response to high SNG area, there has been growing interest in
stochastic circuits that share a single RNS across two or more SNGs as in Figure 6.1b. Examples
are found in image processing [1, 19], neural networks [2, 31] and our CeMux design [13]. RNS-
sharing saves area, but correlates the input SNs which often causes inaccuracies [23, 51], but other
times is beneficial as in CeMux [3, 13]. In either case, optimizing PCC design can greatly reduce
area since each distinct SN still requires its own PCC when RNS-sharing is used. For example,
replacing traditional comparator (CMP) PCCs with weighted binary generators (WBGs) reduces
overall circuit area by 50-60% in SC digital filter designs [13, 97].

In addition to circuit size, PCC design can also significantly affect circuit accuracy, a fact that
has been noticed, but has received little attention [13, 80]. For example, Figure 6.2 shows the error
level for three diverse circuit types [3, 13]. In each case, the average output error is measured
when using either CMP or WBG PCCs. As can be seen, the PCC type’s impact on accuracy varies
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Figure 6.3: Weighted binary generator PCC design.

considerably. A key motivation of our PCC analysis is to explain behavior like that depicted in
Figure 6.2 and show when and how PCC choice influences accuracy and area.

Before exploring further, we develop a formal definition for PCCs. An n-bit PCC has an n-bit
random input Rt and n-bit value input Px. The PCC output is a generated SN bit xt with

P(xt = 1) = Px (6.1)

For example, CMP that outputs xt = Rt < Px is a common PCC type. Since Rt is uniformly
distributed, P(xt = 1) = P(Rt < Px) = Px confirming that the CMP satisfies Equation (6.1) and
is therefore a valid PCC. Another PCC type is the weighted binary generator (WBG) [41] whose
two-stage implementation is illustrated in Figure 6.3. The WBG’s first stage first creates a one-hot
encoding wn−1wn−2...w0 which then determines which bit of Px = pn−1pn−2...p0 is propagated to
the output. Overall, the WBG also satisfies the defining PCC equation (6.1) and is therefore a valid
PCC type [15, 41].

6.2 Multiplexer-Majority Chains

This section introduces a novel and flexible PCC design style based on systematically combining
mux and maj gates. The new design has a useful area-correlation trade-off and is helpful in ana-
lyzing the WBG and CMP PCCs. Figure 6.4a shows a 5-bit version of our proposed multiplexer-
majority chain (MMC) framework for PCCs. Like all 5-bit PCCs, an MMC has a random input
Rt = r4r3r2r1r0 and a value input Px = p4p3p2p1p0; it outputs a single SN bit xt. Each M -block
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Figure 6.4: 5-bit MMC PCC design framework: (a) generic design; (b-c) MMC examples; (d)
reversed MMC example.

in the MMC performs the same stochastic operation:

P(ci+1 = 1) =
1

2
(pi + P(ci = 1)) (6.2)

The chain’s output xt = c5 is seen to satisfy the PCC equation (6.1) by recursively applying
Equation (6.2) and setting c0 = 0. In particular,

P(xt = 1) =
1

2
(p4 +

1

2
(p3 +

1

2
(p2 +

1

2
(p1 +

1

2
(p0 + 0))))) (6.3)

when expanded yields

P(xt = 1) =
1

2
p4 +

1

4
p3 +

1

8
p2 +

1

16
p1 +

1

32
p0 = Px (6.4)

proving that the defining PCC equation (6.1) is satisfied and the MMC is a valid PCC.
The stochastic operation (Equation (6.2)) of each M -block is equivalent to a basic SN scaled

addition operation. In a similar vein as SN addition, each M -block can be implemented by either
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Figure 6.5: All 6-bit MMCs with various γ. (a) γ = 0 (equivalent to WBG); (b) γ = 1/5; (c)
γ = 2/5; (d) γ = 3/5; (e) γ = 4/5; (f) γ = 1 (similar to CMP).

a mux or a maj gate [24].1 For example, Figure 6.4b is an MMC that uses two mux and two maj
gates while Figure 6.4c is an MMC that uses use one mux and three maj gates. Figures 6.4b, 6.4c,
and 6.4d also explicitly show that the leftmost M -block always simplifies to an AND gate because
c0 = 0.

Any combination of mux and maj gates can be assigned to the M -blocks in Figure 6.4a to
produce a valid PCC. However, a special restriction imposed on MMCs is that the chain must be
all mux gates followed by as maj gates like in Figures 6.4b and 6.4c. Figure 6.4d is a valid PCC,
but is not an MMC because a maj gates precede the mux gates in the chain. The advantage of
MMCs over other possible designs is that MMCs have a useful area-correlation control trade-off
as explained in the following section.

For a given PCC bitwidth n, there are n distinct MMCs. For example, Figure 6.5 shows all
6-bit MMCs. A specific MMC can be identified by the number of maj gates it contains, k ∈
{0, 1, . . . , n − 1}. An MMC’s k parameter can be normalized to give γ = k/(n − 1) which is
the proportion of maj gates in the MMC. Characterizing an MMC in terms of γ is particularly
insightful because MMCs with different bitwidth n, but similar γ will have similar correlation
properties.

When γ = 0, each M -block in an MMC is implemented as a mux gate as in Figure 6.5a. The

1Maj gates implement scaled addition like mux gates, but are larger than mux gates. When used for SN addition,
maj gates seem to offer no advantage over multiplexers so they are rarely used in practice.
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Figure 6.6: Synthesized 8-bit MMC area per SN. Area is normalized by dividing by the PCC area
of one CMP-type PCC.

resulting PCC is a chain of mux gates which has appeared before [18] and is logically equivalent
to a WBG. Thus, the WBG is a special case of an MMC. Likewise, when γ = 1, each M -block in
an MMC is implemented as a maj gate as in Figure 6.5f. The resulting maj chain design has also
appeared before [90] but is rarely used. MMCs containing both mux and maj gates like those of
Figures 6.4b-c and 6.5b-e are novel designs with 0 < γ < 1.

Interestingly, a chain of n maj gates forms the carry (or borrow) logic of an n-bit ripple subtrac-
tor and can be shown to compute R̄t < Px where R̄t = r̄n−1r̄n−2...r̄0. Since P(ri = 1) = P (ri =

0) = 0.5, the inversions on R̄t’s bits can be absorbed into the RNS allowing us to henceforth con-
sider a chain of maj gates as implementing a standard CMP that computes Rt < Px. Thus, both
WBGs and CMPs are special cases of MMCs where MMCs with γ = 0 are logically equivalent to
WBGs and MMCs with γ = 1 behave like CMPs. The MMC framework also generalizes to novel
PCC designs like those in Figures 6.5b-e which are implemented with a mix of mux and maj gates.

6.3 PCC Design Trade-offs

This section discusses the useful area-correlation trade-off supported by the MMC design.

6.3.1 Area Analysis

SNGs often dominate the area of a stochastic circuit [13, 61]. Thus, minimizing PCC cost is crucial
to meeting SC’s promise of low-cost, yet computationally powerful circuits. Here, we determine
the relationship between PCC design and area by using Synopsys Design Compiler (DC) with the
Nangate 45nm cell library [85] to synthesize MMCs with different proportions of maj gates γ. The
analysis includes the CMP and WBG designs since they are special cases of the MMC. Synopsys
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DC is given a Verilog description of the MMC’s logic and the final synthesized area is reported.
The objective of this area analysis is to characterize the PCC area based on its Boolean function;
the objective is not to compare chain implementations against non-chain implementations of PCCs.

The M = 1 curve in Figure 6.6 shows that a single 8-bit MMC’s area increases linearly with γ.
When γ = 1, the MMC is like a CMP and area is at its highest. When γ = 0, the MMC is a WBG,
and has an area 28% lower than that of a CMP. We also synthesized 6-bit through 12-bit MMCs
and found similar results (which are omitted here for brevity).

When generating two or more SNs with a shared RNS as in Figure 6.1b, considerable area can
be saved by sharing part of the WBG alongside the shared RNS [96, 97]. Consequently, the area
cost per SN is lower when WBGs are used to generate SNs with a shared RNS than when WBGs
are used with separate RNSs. In contrast to WBGs, no portion of a CMP can be shared alongside a
shared RNS implying CMP area efficiency does not improve with RNS-sharing. Here, we extend
the work of [97] by characterizing the per-SN area efficiency of MMCs.

Figure 6.6 shows the area-per-SN of using MMCs to generate M = 3, 5, 10 or 50 SNs with a
shared RNS. For each M , the MMC area increases linearly with γ as in the single M = 1 SN case,
but the area efficiency is much better. For example, when M = 50 the area-per-SN for WBGs is
62% lower than for CMPs. This 62% difference is much better than the 28% difference noted in
the single SN case, highlighting the improved area efficiency of WBGs. When 0 < γ < 1, the
area-per-SN of the MMCs is also lower than the single M = 1 SN case. Thus, like WBGs, MMCs
consisting of mux and maj gates are also more area efficient when using RNS-sharing, especially
when γ is small. Note that M in Figure 6.6 is determined by the application, i.e., how many input
SNs that share an RNS are needed.

6.3.2 Correlation Analysis

Recent work has demonstrated that correlation amongst input SNs can sometimes drastically
change a circuit’s function [3, 19] or improve its accuracy [13]. Owing to the importance of corre-
lation, we investigate the ability of different PCCs to generate correlated SNs. The most frequent
correlation level required by correlation exploiting designs is a pairwise SCC of +1 between all or
most input SNs. CeMux is an example of such a design. The correlated SN generator in Figure
6.1b is often used to generate SNs with SCC(X,Y) = 1, however the actual SCC of the generated
SNs can vary wildly depending on the PCC used, as we show next.

Figure 6.7 shows SCC(X,Y) as a function of Px, Py when using a correlated SN generator.
Figure 6.7h corresponds to using CMP PCCs and shows SCC(X,Y) = 1 for all Px, Py as desired.
In contrast, Figure 6.7a corresponds to using WBGs and shows that SCC(X,Y) varies greatly
with Px, Py and that SCC(X,Y) often takes negative values which is antithetical to the goal of
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Figure 6.7: SCC of SNs generated with a shared RNS and MMCs with (a) γ = 0 (WBG); (b)
γ = 1/7; (c) γ = 2/7; (d) γ = 3/7; (e) γ = 4/7; (f) γ = 5/7; (g) γ = 6/7; (h) γ = 1 (CMP)

SCC(X,Y) = +1. Thus, although WBGs are very area efficient at producing SNs with a shared
RNS (Figure 6.6), WBGs are unable to consistently generate maximally correlated SNs. The
WBG’s failure to generate maximally correlated SNs implies that WBGs are not suitable for use
in correlation-reliant designs and is a key conclusion of our analysis.

Next, Figures 6.7b to 6.7g show how SCC(X,Y) varies with Px, Py, for an 8-bit MMC with
other γ values. When γ = 1/7, Figure 6.7b shows that the overall correlation is much higher
than in the WBG case although the proportion of maj gates γ has only increased from 0 to 1/7.
When γ is increased further to γ = 4/7, Figure 6.7e shows that SCC is +1 or close to +1 for many
more values of Px, Py. Thus, novel MMC designs where 0 < γ < 1 generate significantly more
correlated SNs than WBGs, but at a lower area cost than CMPs. The correlation trend in Figure
6.7 is summarized by calculating the average SCC as a function of an MMC’s parameter γ.

SCCavg(γ) =

∫ 1

0

∫ 1

0

fx,y(px, py) SCC(X,Y|pX , pY , γ) dpx dpy (6.5)

where fx,y is the input value distribution for Px, Py and SCC(X,Y|Px, Py, γ) is the SCC between
X and Y given Px, Py and γ. Note that SCC(X,Y|Px, Py, γ) is visualized in Figure 6.7 for various
γ values.

Figure 6.8 plots SCCavg for the correlated SN generator in the general case where Px and Py

are uniformly and independently distributed, fx,y = 1. When γ = 0, the MMC is equivalent to
a WBG and the average SCC is nearly 0. As γ increases, the average SCC quickly rises until it
hits a maximum value 1 when γ = 1 and the MMC is similar to a CMP. The reason for the rapid
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Figure 6.8: Average SCC when using 8-bit MMCs or reversed MMCs in a correlated SN generator.

growth of correlation in Figure 6.8 is that the maj gates always act on the MSBs of the MMCs’
value inputs Px and Py. Consequently, the maj gates have significant influence on the MMC output
and cause the correlation level to reflect that of a CMP more so than that of a WBG.

The desired rapid rise in correlation magnitude in Figure 6.8 is precisely why MMCs are singled
out from the space of all possible adder chain designs. For example, consider a ”reversed MMC”
which is similar to a plain MMC, but with the reverse ordering of mux and maj gates. In other
words, the mux gates in a reversed MMC act on the MSBs of Px or Py while maj gates act on the
LSBs; Figure 6.4d is an example of a reversed MMC. For reversed MMCs, the correlation level
per maj gate is much lower than for regular MMCs as shown in Figure 6.8.

Overall, MMCs offer a very favorable area-correlation trade-off when generating correlated or
anti-correlated SNs. The trade-off is controlled by γ, the number of maj gates in the MMC. As γ
increases Figure 6.6 shows that the synthesized area of the MMC increases linearly while Figure
6.8 shows that the correlation control rises faster than linearly. Our analysis showed that WBGs
(i.e., MMCs with γ = 0) have very poor correlation control but slightly increasing γ beyond 0
to, for example γ = 1/7, greatly increases correlation levels of generated SNs for very little area
overhead.

6.4 Case Studies

The foregoing analysis shows that PCC designs vary in the amount of area they occupy and in their
ability to generate correlated SNs. When RNS-sharing is not used, the input SNs are uncorrelated
and the main considerations for PCC design are area and power. In that case, MMCs with γ = 0 or,
equivalently, WBGs are the preferred PCC type since they are the most hardware efficient (Figure
6.6). However, when RNS-sharing is used, the PCC’s correlation properties can impact circuit
accuracy to various degrees. The relationship between PCC design and accuracy depends on why
the circuit employs RNS-sharing.

Here, four categories of RNS-sharing circuits are introduced and summarized in Table 6.2:
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PCC impact on

Correlation category Bias Variance Overall accuracy Example design

Agnostic None None None BNN Neuron [45]
Reliant High Moderate High Edge detector [5]
Optional None Moderate Moderate CeMux [13]
Averse High Moderate High AND Multiplier [81]

Table 6.2: RNS-Sharing Circuit Categorization

correlation-agnostic, correlation-reliant, correlation-optional and correlation-averse. Correlation-
agnostic circuits are designs whose accuracy is unaffected by correlation. In contrast, correlation-
reliant circuits use correlation to change gate function. These circuits require correlated inputs to
avoid high error. Next, correlation-optional designs are those like CeMux that use correlation to
improve accuracy, but not alter gate function. Finally, correlation-averse designs are those that
share an RNS, but require uncorrelated inputs to avoid high error. Although such circuits could use
separate RNSs to achieve uncorrelated inputs, RNS-sharing is used to save area and power, usually
at the expense of some accuracy [51, 80].

The RNS-sharing circuit categorization of Table 6.2 is useful because the impact of PCC design
on accuracy is consistent within a category, but differs between categories as demonstrated by
the following case studies. These applications represent a variety of high-performing SC designs
that use RNS-sharing for applications in neural networks [45, 66], digital filtering [13], and image
processing [19]. The area and accuracy of the four representative designs are measured as PCC
type is varied. The results will demonstrate how PCC design impacts these important metrics for
different types of RNS-sharing circuits.

Figure 6.9: SC implementation of a first-layer BNN neuron [45].
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Figure 6.10: Median filter application. (a) Image corrupted with salt-and-pepper noise. SC median
filter output when PCCs are: (b) WBGs; (c) MMCs with γ = 4/7; (d) CMPs.

6.4.1 Applications

The first application is image classification with a binarized neural network (BNN). This applica-
tion was also explored earlier when analyzing the PSA design in Section 5.4. An SC implementa-
tion of a BNN neuron is shown in Figure 6.9. Since weights in a BNN are binarized and held fixed
at logical 1 (to represent +1) or logical 0 (to represent −1), correlation amongst the pixel input
SNs does not affect accuracy. Thus, the BNN neuron design is an example of a correlation-agnostic
circuit where a single RNS is shared amongst all SNGs. For our experiments, input images are de-
rived from the Fashion-MNIST image classification benchmark [95] while input weights are from
a trained BNN consisting of two hidden layers with 1,024 neurons each [45]. The error is measured
between the multiplier outputs in Figure 6.9 and target output Wj,iXi.

The second application is electrocardiogram denoising with finite impulse response (FIR) fil-
ters. This application was also explored earlier when analyzing CeMux and other adders in Section
5.2. In that experiment, CeMux was shown to be the most accurate and smallest FIR filter design.
Here, we run a similar experiment and study the extent to which MMCs can be used to further im-
prove CeMux’s area efficiency. Since CeMux uses correlation to reduce variance, but not change
gate function, it is a correlation-optional design. For the following experiments, CeMux’s target
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Figure 6.11: SC median filter design: (a) compare and swap block symbol; (b) SC compare and
swap block implementation; (c) median filter built from 19 compare and swap blocks.

input is derived from a noisy ECG signal [36, 70] and the error is measured between CeMux’s
output and the target filtered output value.

The third application is image denoising with median filters which are effective at filtering out
impulse noise types. For example, the image in Figure 6.10a that is corrupted by salt-and-pepper
noise can be mostly recovered by convolving the noisy image with a 3× 3 median filter as shown
by the filtered image in Figure 6.10d. A 3× 3 median filter replaces each noisy image pixel Xh,w

with the median value of itself and the surrounding 8 noisy pixels

Zh,w = Median({Xh−i,w−j | −1 ≤ i, j,≤ 1 }) (6.6)

where Zh,w is the filter’s output pixel. In SC, a median filter can be implemented very efficiently by
using AND and OR gates to implement a series of MIN and MAX operations on correlated SNs.
The arrangement of the AND and OR gates that constitutes the SN median filter design is shown
in Figure 6.11 [7, 19]. SC median filters require that their input SNs be maximally correlated with
a pairwise SCC of +1 to alter the functions of AND and OR to MIN and MAX, respectively. Thus,
the median filter is a correlation-reliant design.

For out experiments, the SC median filter’s target inputs are pixel values of grayscale test images
from the MATLAB image processing toolbox. The images are corrupted with random salt-and-
pepper noise where each image pixel is assigned a 5% chance of becoming corrupted to all-black
or all-white. The cameraman photo of Figure 6.10 is an example of one of the test images. The
target output of the median filter is Zh,w (Equation (6.6)). In total, the ten images constitute over 1
million kernel placements and thus yield statistically significant accuracy estimates.

The fourth application is image edge detection. The Roberts Cross edge detector (RCED) used
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Figure 6.12: SC Roberts cross edge detector design [3].

in image processing can be implemented efficiently with SC using the correlation-exploiting circuit
of Figure 6.12 [3]. The SC RCED implements

Zh,w =
1

2

(
|Xh,w −Xh+1,w+1|+ |Xh+1,w −Xh,w+1|

)
(6.7)

where Zh,w is a pixel of the edge detector output and Xh,w is a pixel of the input image. To
accurately implement Equation (6.7), the SC RCED requires that its inputs are correlated with an
SCC of +1 to alter the function of XOR gates which implement the absolute differences in Equation
(6.7). Thus, the edge detector is also a correlation-reliant design. For our experiments, the circuit’s
target inputs are derived from non-corrupted versions of the same 10 MATLAB image processing
toolbox images used for the median filter experiments; the target output for error measurements is
Zh,w defined in Equation (6.7).

6.4.2 Experiments and Results

For our evaluation, the four application circuits follow a similar structure. The SNG precision is set
to 8 bits while the SN length is 256 bits. All designs use a single RNS since they benefit from RNS-
sharing. A Sobol sequence generator is used as the RNS because it gives the best accuracy and has
low cost as it can be implemented as the bitwise reverse state of a counter [61]. All designs employ
8-bit MMC PCCs with γ proportion of maj gates and the focus of the following experiments is to
determine how overall circuit area and accuracy varies with γ. The widely-used WBG and CMP
designs are included in the analysis since they are special cases of the MMC design with γ = 0

and γ = 1, respectively. Area is quantified by synthesizing designs using Synopsys DC with the
Nangate 45nm cell library [85] while accuracy is quantified with BMSE estimated by bitstream
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(a)

(b)

Figure 6.13: MMC area trade-off for various applications implemented in an: (a) open-ended SC
system; (b) end-to-end SC system.

simulation.
The relationship between circuit area and MMC γ is investigated for two cases. The first case

is an open-ended SC system where the output SN is kept as a bitstream so that it can be routed to
another SC design. The second case is an end-to-end SC system where the output SN feeds into an
accumulator (i.e., counter) that estimates its value as a fixed-point number. The difference between
these two cases is that the area of the open-ended system does not include the cost of the output
counter found in the end-to-end system. Both systems include the cost of the SNGs and arithmetic
circuits. For ease of comparison, area is normalized by dividing by the area of the corresponding
design that employs MMCs with γ = 1.

All four designs exhibit a linear relationship between γ and circuit area. For open-ended sys-
tems, Figure 6.13a illustrates that each design is 30% to 50% smaller when γ = 0 relative to γ = 1

For end-to-end SC systems, Figure 6.13b shows that the area reduction at γ = 0 relative to γ = 1

is now only 20% for the edge detector and median filter. This 20% reduction is less than the 40%
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reduction in the open-ended system because the end-to-end system’s output accumulator occupies
a considerable portion of these relatively small circuits. Consequently, PCC area has less influence
on overall area. In contrast, the area trade-off is the same in both cases for the BNN neuron and
FIR filter because these are large circuits where the added cost of an output accumulator hardly
affects its total area.

The results of Figure 6.13 highlight two important conclusions. First, the slope of γ’s linear
relationship with total circuit area implies that PCC design has a notable influence on overall area
for all four circuits. Second, for end-to-end SC systems, the PCC design influences total area more
when the circuit has many inputs because PCCs occupy a higher percentage of total circuit area and
because MMC area varies considerably when RNS-sharing is used as shown earlier in Figure 6.6.
PCC choice should therefore be carefully considered by SC designers, especially in view of the
increasing use of RNS-sharing and correlation in recent work [1, 2, 3, 7, 13, 19, 23, 31, 59, 80, 97].

When RNS-sharing is used, PCC design influences input SN correlation which can impact
circuit accuracy [23]. Figure 6.14a plots each application circuit’s BMSE on a log scale while
Figure 6.14b shows the normalized root BMSE on a linear scale. The PCC design has no impact
on BNN multiplier accuracy, a small impact on CeMux FIR filtering accuracy and a very large
effect on median filtering and edge detection accuracy. Specifically, comparing MMCs with γ = 0

to γ = 1, the BNN multiplier’s BMSE is the same while the FIR filter’s BMSE is 2.8 times higher
for γ = 0. In contrast, the edge detector’s BMSE is over 7000 times times higher for γ = 0 and the
median filter’s BMSE is 1000 times higher when γ = 0 compared to γ = 6/7 (the median filter
has 0 BMSE when γ = 1).

The PCC design’s widely varying impact on BMSE relates to our proposed categorization of
RNS-sharing designs. The BNN neuron is a correlation-agnostic design so PCC design does not
affect accuracy. Meanwhile, the FIR filter is a correlation-optional design where PCC design has a
moderate effect on accuracy. In contrast, the median filter and edge detector are correlation-reliant
designs where PCC design has a drastic impact on accuracy because correlation control is central
to these designs.

The bias-variance decomposition used in our BASE framework also sheds light on how error
can be understood in these designs. Recall that BMSE can be expressed as a sum of bias squared
and variance where bias quantifies systematic error and variance quantifies random error. For
correlation-agnostic circuits, correlation does not affect bias or variance so BMSE is unchanged.
For correlation-optional circuits, correlation only affects variance which impacts MSE a moderate
amount. For correlation-reliant and correlation-agnostic designs, correlation has some effect on
variance, but a very large effect on bias which results in drastically high BMSE when correlation
requirements are not met. Importantly, this high bias is a systematic error that cannot be mitigated
by increasing SN length.
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(a)

(b)

Figure 6.14: Impact of PCC design on: (a) BMSE and squared bias (log-scale); (b) root BMSE
normalized by dividing the value when γ = 0.

As an example, the edge detector’s expected output value is the desired Roberts cross edge
detection formula (Equation (6.7)) when the pairwise SCC between all input SNs +1. However, if
instead the pairwise SCC is 0, the expected output value is

Zh,w =
1

2
(Xh,w +Xh+1,w+1 − 2Xh,wXh+1,w+1 +Xh+1,w +Xh,w+1 − 2Xh+1,wXh,w+1) (6.8)

which is systematically different than Equation (6.7). Ignoring quantization error for simplicity,
the bias of the edge detector when the inputs have SCC = 0 rather than SCC = 1 is the differ-
ence between the desired Roberts cross formula (Equation (6.7)) and Equation (6.8). This bias is
relatively large and is not improved by increasing SN length.

As part of the experiment, bias was calculated for each design by combining the methodologies
of [23] and our BMSE framework [11]. The results are illustrated in Figure 6.14a. Each bar
representing BMSE in Figure 6.14a is partially hatched to show the squared bias. For the BNN
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Figure 6.15: MMC accuracy-area trade-off. Each data point corresponds to using a different MMC
γ where left-more points correspond to lower γ.

and FIR filter, bias is small and constant across MMC γ because correlation has no affect on bias.
Bias only arises in these designs due to quantization error. In contrast, the median filter’s and
edge detector’s bias varies greatly because these correlation-reliant designs are biased when MMC
γ < 1. The bias arises because the required input correlation of SCC = +1 is not met.

In addition to BMSE, application-specific accuracy metrics are measured to better capture the
practical performance of each design. For image classification, the overall BNN classification
accuracy is tracked. For FIR filtering, the signal-to-noise ratio (SNR) is measured as

SNR = 10 log10
E[Z2

t ]

BMSE
(6.9)

where E[Z2
t ] is the average signal power and BMSE quantifies the average noise power. SNR is

commonly used in signal processing and usefully puts the error in context with the target output
value Zt.

For the median filter and edge detector, the mean structural similarity index (MSSIM) [92]
between the output image and target image Y is evaluated. MSSIM is a useful measure because
two distorted images having the same MSE relative to a reference image can vary substantially in
terms of perceived visual quality [92]. MSSIM was designed to address this problem by capturing
the perceptual differences between images better than measures like MSE. MSSIM is based on
the hypothesis that the human visual system is adapted to perceive large-scale structural features
of images rather than low-level details or differences in luminance and contrast. MSSIM varies
between 0 and 1 where high values indicate the two images are more visually similar.

Figure 6.15 shows the accuracy-area trade-off for each design achieved by varying the MMC’s
γ parameter. Curves that are more horizontal, i.e., with lower slope, indicate a more favorable
accuracy-area trade-off for that design. The BNN’s classification rate is a constant 89% across
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all area values because it is a correlation-agnostic design. Relative to using MMCs with γ = 1,
using MMCs with γ = 0 leads to an area reduction of 30% and no loss in classification accuracy.
For FIR filtering, using γ = 0 yields a 40% area reduction in exchange for 25% lower SNR. The
trade-off becomes much better at γ = 1/7 where a 30% area reduction is achieved in exchange for
only an 8% drop in SNR. The reason for the better trade-off is that MMCs with γ = 1/7 generate
much more correlated SNs than MMCs with γ = 0 (Figure 6.8) and, although correlation is not
maximized, it is high enough to achieve most of the variance-reduction benefits.

In the case of edge detector and median filtering, area-accuracy trade-off is less favorable than in
the BNN or FIR filter case because these image processing circuits are correlation-reliant designs.
Both designs can save between 5% and 10% area in exchange for sacrificing a similar percentage
of MSSIM by using MMCs with γ = 4/7, 5/7, 6/7 in place of MMCs with γ = 1. In contrast to
the BNN and FIR filter, the edge detector and median filter designs generally require that MMC γ

be high because these designs are sensitive to even small deviations in input correlation.

6.5 Summary

MMCs are parameterized by γ ∈ [0, 1], the proportion of maj gates used in the design. Section 6.3
showed that higher γ corresponds to higher area and higher correlation in the generated SNs when
RNS-sharing is used. The widely used WBG and CMP PCC designs are special cases of MMCs,
having γ = 0 or γ = 1, respectively. Thus, MMCs and adder chains generalize these PCC designs
and offer new correlation-area trade-offs.

When RNS-sharing is used, PCC design impacts input correlation which affects accuracy to
varying degrees. Table 6.2 summarizes four categories of RNS-sharing circuits that are differenti-
ated based on how correlation affects the circuit’s bias and variance. PCC design impacts overall
accuracy differently for each category, but PCC design has a consistent impact on circuit accuracy
within a category. In contrast, PCC impact on area is consistent for all RNS-sharing circuits and
tends to depend on the number of circuit inputs.

The analysis in Section 6.4 investigated three of the four RNS sharing circuit types. The accu-
racy of correlation-agnostic circuits is not affected by PCC type and so these circuits should use
MMCs with γ = 0 because they are the smallest PCC. Meanwhile, the accuracy of correlation-
reliant circuits is extremely sensitive to PCC type. In general, these designs should use MMCs with
γ ≥ 0.5 to avoid high bias. The accuracy of correlation-optional circuits is somewhat sensitive to
PCC type. Such designs can use MMCs with γ just above 0 to strike a balance between circuit
accuracy and area. For correlation-optional and correlation-reliant circuits, higher γ can be used
to improve accuracy at the cost of higher area.

Overall, PCC design has a substantial impact on circuit area, correlation and accuracy, es-
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pecially when RNS-sharing is used. Poor PCC design can increase error by over 7000 times
for correlation-reliant circuits while effective design can reduce total circuit area by 30% for
correlation-agnostic designs. The novel MMC design framework can be used to flexibly trade
area for accuracy and offers a new avenue to circuit optimization.
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CHAPTER 7

Concluding Remarks

SC’s probabilistic approach to computing enables its low-cost datapaths and high fault tolerance.
However, its unique encoding also comes with challenges, some of which were studied and ad-
dressed in this thesis. This section summarizes our contributions and points to some promising
directions for future work on SC.

7.1 Summary of Contributions

This thesis demonstrates the value of leveraging statistical models in stochastic circuit error analy-
sis. Statistical analysis yields a better understanding of circuit behavior and complements existing
simulation approaches. Insights gleaned from iterating between theoretical analysis and exper-
imental simulation was shown to yield more accurate and smaller circuit designs for important
operations like subtraction and many-input summation. Our major contributions are as follows:

1. Bayesian analysis of stochastic errors (BASE), a comprehensive framework for analyzing
stochastic circuit accuracy that can account for SC’s many error types.

2. New statistical models were described for analyzing circuit variance, bias, and input value
distribution. Analysis led to important new insights into SN adder and generator designs.

3. Correlation-enhanced multiplexer (CeMux), a smaller and significantly more accurate mux
adder that was demonstrated to have high performance for FIR filtering.

4. Parallel sampling adders (PSAs), a new large-scale adder design style that addresses chal-
lenges in many-input SN adder design and can improve the area of SC-based neural net-
works.

5. Multiplexer-majority chains (MMCs), a new probability conversion circuit design style that
has a favorable area-correlation trade-off and provides new insights into SN generation and
correlation.
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In Chapter 3, we proposed BASE, a comprehensive framework that can account for the effect
of SC’s many errors sources. BASE is built on statistical estimation theory [54] and highlights
three key quantities determine a circuit’s accuracy: the input value distribution (IVD), bias, and
variance. The IVD is determined by the application. Different IVDs will result in different ex-
pected circuit accuracy, highlighting the application-dependence of a design’s performance. Bias
quantifies the circuit’s systematic error from sources like approximation, quantization, and corre-
lation while variance quantifies the circuit’s random error from sources like SN stochasticity and
transient faults. Decomposing total error into bias and variance reveals how to address high error
levels. For example, increasing SN length will address high variance, but not high bias.

BASE provides a framework for error analysis where its three key quantities, variance, bias, and
IVD must be derived or estimated for a given circuit and application. BASE is compatible with
existing simulation approaches as well as methods for variance analysis [67, 74] and for correlation
error analysis [23]. However, existing analysis methods sometimes fail to accurately represent the
behavior of stochastic circuits such as those with LFSRs and correlation. Chapter 4 introduced the
new hypergeometric SN model which can be used to analyze the variance of such designs. Other
new models were also presented, such as a Markov chain model for quantifying autocorrelation
error, and a beta mixture model for representing an IVD. We demonstrated the usefulness of our
models and the BASE framework for a neural network classification task in Section 4.5.

Overall Chapters 3 and 4 stress the value that statistical models bring to SC. By introduc-
ing concepts from probability theory and statistics like the hypergeometric and beta distributions,
bias-variance decomposition of MSE, higher-order Markov chains, and estimator dominance, we
derived new methods for stochastic circuit error analysis. Then insights from accurate statistical
models led to better designs. For example, our hypergeometric SN model led to the CAM sub-
tractor which was shown to be 39% more accurate than an existing subtractor design when tested
on random input data. Chapters 5 and 6 took these insights further to address the challenges in
many-input SN adder design and in SN generator design.

Chapter 5 applied the hypergeometric SN model to many-input mux adder design which led
to two new design concepts, full correlation and precise sampling. Together these optimizations
reduce mux variance by 67% on average when applied to random input data. Full correlation and
precise sampling were combined with a Sobol generator RNS to create our CeMux adder design.
CeMux is up to 12 times more accurate [13] and 30% to 75% smaller than existing SC adder when
applied to ECG filtering with FIR filters. CeMux’s accuracy was found to be better than an APC
for ECG filtering because the application’s IVD is particularly favorable for CeMux.

While CeMux performs well for FIR filtering, its accuracy or latency is poor when used in
applications like neural networks. Due to mux inaccuracy, other adders like APCs are usually
preferred for SC neural network design [29, 45, 66]. Although using APCs leads to highly accurate
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classification performance with reasonable SN lengths, APCs tend to dominate the area of an SC-
neuron. In Chapter 5, we introduced PSA, a new adder circuit which combines the mux and
APC adders into a single design supporting a flexible area-accuracy trade-off. Compared to using
APCs, we showed that using PSAs can save half the area of a SC-based neuron without sacrificing
significant network classification accuracy.

This thesis and many recent works exploit correlation to save area, change gate function, and
improve accuracy [2, 7, 12, 13, 31, 49, 80]. Correlated bitstreams are usually obtained by sharing
an RNS between one or more SNGs. The area savings from RNS-sharing is higher when using
WBG PCCs alongside the shared RNS than when using traditional comparator PCCs [13, 96, 97].
However, in Chapter 6, we showed that using WBGs with a shared RNS leads to inconsistently
correlated input bitstreams. This results in very high inaccuracy for designs that rely on correlation,
but has little effect on other designs that are less correlation sensitive. Thus, we concluded that the
area efficiency of WBGs can only be only exploited in some circuits like CeMux, but not others
like edge detectors.

To investigate area, accuracy, and correlation trade-offs in PCC design further, we introduced
MMCs in Chapter 6. MMCs unify the comparator and WBG designs into a single PCC design
framework that has a favorable area-correlation trade-off. Our analysis with MMCs inspired a
new classification system for RNS-sharing circuits that can be used to minimize PCC overhead
while maintaining accuracy. For example, we showed that MMCs can reduce CeMux’s area by
25% while lowering SNR by only 7% for an ECG filtering application. Analysis also revealed that
correlation-reliant designs like the median filter and edge detector should use higher-area PCCs like
the comparator that can generate highly correlated bitstreams and avoid inaccuracy. Meanwhile,
correlation-agnostic designs like binarized NN multipliers should use WBGs to minimize area
because the accuracy of such designs are unaffected by input correlation levels.

7.2 Future Directions

Overall, our work demonstrates the value of using statistical models to analyze stochastic circuit
accuracy. Many of our designs were developed out of insights gleaned from iterating between
statistical analysis and simulation. The BASE framework provides a starting point for the analysis
of any stochastic circuit, but new models may be required to analyze new designs. One promising
direction along these lines would be to focus on SNs derived from Sobol sequences. Our hyper-
geometric SN model was developed for LFSR-generated SNs and tends to overestimate the error
of circuits that use Sobol sequences for SN generation. A new SN model for Sobol or other low-
discrepancy SNs may reveal new ways to improve circuit design just as the hypergeometric SN
model revealed insights for improving mux adder design.
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Another promising direction for research is the use of SC’s probabilistic encoding with emerg-
ing devices like memristors [7, 44, 56] and phase change memories [20]. Such devices are subject
to random errors due to device variability, temperature fluctuations and electronics noise. Thus,
SC’s fault tolerant encoding is especially useful as it provides much higher robustness than conven-
tional fixed-point format. Moreover, If the device noise is characterized, then our BASE framework
could be used to analyze how device noise affects variance and overall accuracy.

Additionally, SC’s small multipliers are also useful for enabling near-memory computing with
emerging devices. Combining SC with memristors, for example, can minimize data movement
which tends to consume a large portion of the overall energy used by a neural network [44]. Our
new SC designs could possibly improve the performance of these designs further. For example,
our PSA design saves a significant amount of area over using an APC for SC neuron design [14].

SC’s performance on benchmark machine learning applications like MNIST, CIFAR-10, and
Fashion-MNIST has steadily improved. For example, the SN length and circuit area required for
accurate classification has been reduced by using correlation, Sobol sequences and new adder de-
signs like the PSA [14, 29, 31, 62, 66]. A promising future step would be leverage these advances
and target specific applications of neural networks and other algorithms on small devices like wear-
ables, medical implants, and heart monitors. For example, SC can be used for gesture recognition
using data from an inertial measurement unit [42] and our work on filtering demonstrates the po-
tential of using SC in hearing aid design [16]. In short, more ”real-world” applications of SC NNs
and other designs like FIR filters would be a valuable contribution.

SC’s probabilistic encoding is similar to encodings used in other areas. For example, SC’s
bipolar format is similar to the binarization used in binarized neural networks and our work on built
on others that show SC’s synergy with these networks [14, 45]. Likewise, spiking neural networks
encode values using neural spikes similar to SC’s unipolar format and recent work combines SC,
binarized NNs and, spiking NNs into an efficient design deployed on FPGAs [35, 86]. Another
related area is stack filtering which uses a ’threshold decomposition’ similar to SN generation
[22, 33]. Combining insights and advances in different fields could yield even further design
improvements and insights.

Overall, SC’s future is promising. Interest in the field has been steady growing [40] and its
probabilistic encoding enables new directions for overcoming the challenges facing integrated cir-
cuit design. We hope that this thesis can help enable the development of better SC theory and new
SC designs such that SC may continue to see more widespread use in the future.
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APPENDIX A

Derivation of Mux Variance Formulas

Here we derive analytic expressions for mux adder variance and various adder configurations using
the binomial and hypergeometric SN models. Expressions derived with the hypergeometric SN
model match the simulated variance of circuits that employ LFSR SNGs but overestimate the
variance of CeMux which uses a low discrepancy random number source.

Normally, a bipolar SN X = x1, x2, ..., xL has expected value E[X̂] = 2
(

1
L

∑L
i=1 xi

)
− 1

and expected bit value E[xi] =
X+1
2

where X = 2Px − 1 is X’s bipolar value. In the following
derivations, however, a bipolar SN’s bits are defined to take values {−1, 1} rather than {0, 1}where
−1 acts as logical 0. Consequently, a bipolar X has estimated value 1

L

∑L
i=1 xi and expected bit

value E[xi] = X , both of which match the unipolar case. Ultimately, changing the definition of
bipolar bits in this way allows the following derivation to simultaneously apply to both unipolar
and bipolar SC.

We assume that all input SN bits are identically distributed which is the case in both the bi-
nomial and hypergeometric SN models, but not true for low discrepancy SNs. When bits are
identically distributed1, they become statistically indistinguishable which allows one to focus on
reasoning about an arbitrary bit xi. For example,

∑L
i=1Var(xi) becomes LVar(xi) when the xi’s

are identically distributed. The following analysis also makes extensive use of the fact that the
expectation operator, E[·], is linear.

A.1 Mux Variance Decomposition

Consider a mux tree with M data input SNs, X1,X2, ...,XM that have values X1, X2, ..., XM and
length L. The mux tree has a select input S which is not treated as an SN, but rather as a stream
of identically distributed random words. S’s value during clock cycle j, Sj , determines which data
input is selected during that clock cycle. For example, S5 = 3 indicates that SN X3 is sampled

1Note that the concept of identically distributed is separate from the concept of independence. A set of bits can be
identically distributed and also correlated.
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during the 5th clock cycle. Let the normalized weight |W̃i| be the probability that Xi is sampled
during any given clock cycle and let the output of the mux tree be SN Z = z1, z2, ..., zL. Z’s
estimated value Ẑ = 1

L

∑L
i=1 zi is the mux’s output value. By definition, the variance of the mux

tree output estimate is

Var(Ẑ) = E
[(

Ẑ − E[Ẑ]
)2]

(A.1)

Let Ci be a random variable representing the number of times that Xi is sampled by the mux tree.
Since the input SN bits are identically distributed, the output SN’s estimated value can be expressed
as follows.

Ẑ =
1

L

L∑
i=1

zi =
1

L

M∑
i=1

Ci∑
j=1

xi,j (A.2)

where xi,j is defined to represent Xi’s bit when it is sampled by the mux tree for the j th time rather
than Xi’s j th bit. This re-definition of xi,j is justified at the end of the derivation.

Next, the expected output value can be found.

E[Ẑ] =
1

L

M∑
i=1

E

[
Ci∑
j=1

xi,j

]
(A.3)

Since Ci is a random variable, E
[∑Ci

j=1 xi,j

]
is a random sum of random variables that evaluates to

E[Ci][xi,j]. Further, since Ci is the number of times that Xi is sampled and |W̃i| is the probability
that Xi is sampled during any given clock cycle, we have E[Ci] = |W̃i|L. Putting together these
notions yields

E

[
Ci∑
j=1

xi,j

]
= E[Ci]E[xi,j] = |W̃i|LXi (A.4)

Thus, Equation (A.3) becomes

E[Ẑ] =
M∑
i=1

|W̃i|Xi (A.5)

In words, the mux’s expected output value is a weighted sum of its input values as is the known
operation of the mux. The output variance can now be written as

Var(Ẑ) = E

[(
1

L

M∑
i=1

Ci∑
j=1

xi,j −
M∑
i=1

|W̃i|Xi

)2
]

(A.6)

by combining Equations (A.1), (A.2), and (A.5).
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Let ϵi = 1
L

∑Ci

j=1 xi,j − |W̃i|Xi. Then

Var(Ẑ) = E

( M∑
i=1

ϵi

)2
 = E

[
M∑
i=1

M∑
j=1

ϵiϵj

]
(A.7)

Var(Ẑ) =
M∑
i=1

E
[
ϵ2i
]
+

M∑
i=1

M∑
j=1
j ̸=i

E
[
ϵiϵj
]

(A.8)

Next, the two sums of Equation (A.8) will be re-expressed one at a time. Noting Equation (A.4)
and the definition of variance, the term in the first summation of Equation (A.8) can be rewritten.

E
[
ϵ2i
]
=

1

L2
E

[( Ci∑
j=1

xi,j − W̃iXiL

)2
]

(A.9)

E
[
ϵ2i
]
=

1

L2
Var

(
Ci∑
j=1

xi,j

)
(A.10)

As before,
∑Ci

j=1 xi,j is a random sum of random variables. Since the xi,j’s are identically dis-
tributed and independent of Ci, it can be shown that

E
[
ϵ2i
]
=

1

L2

Var

E[Ci]∑
j=1

xi,j

+Var(Ci)E[xi,jxi,k]

 (A.11)

Next, the terms in the second summation of Equation (A.8) are re-expressed.

E[ϵiϵj] = E

( 1

L

Ci∑
k=1

xi,k − |W̃i|Xi

)(
1

L

Cj∑
l=1

xj,l − |W̃j|Xj

) (A.12)

Expanding yields

E[ϵiϵj] = E

 1

L2

Ci∑
k=1

xi,k

Cj∑
l=1

xj,l −
|W̃j|Xj

L

Ci∑
k=1

xi,k −
|W̃i|Xi

L

Cj∑
l=1

xj,l + |W̃i||W̃j|XiXj


(A.13)

which can be simplified using Equation (A.4)

E[ϵiϵj] =
1

L2
E

 Ci∑
k=1

Cj∑
l=1

xi,kxj,l − L2|W̃i||W̃j|XiXj

 (A.14)
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Noting that
∑Ci

k=1

∑Cj

l=1 xi,kxj,l is a random sum of random variables, that E[Ci] = |W̃i|L, and that
E[xi,j] = Xi yields

E[ϵiϵj] =
1

L2

[
E[CiCj]E[xi,kxj,l]− E[Ci]E[Cj]E[xi,k]E[xj,l]

]
(A.15)

Given that the covariance of two random variables A and B is Cov(A,B) = E[AB]− E[A]E[B],
Equation (A.15) can be rewritten as

E[ϵiϵj] =
1

L2

[
Cov(Ci, Cj)E[xi,kxj,l]− E[Ci]E[Cj] Cov(xi,k, xj,l)

]
(A.16)

Putting Equations (A.8), (A.11) and (A.16) together yields

Var(Ẑ) =
1

L2

 M∑
i=1

Var

( E[Ci]∑
j=1

xi,j

)
+

M∑
i=1

M∑
j=1

Cov(Ci, Cj)E[xi,k, xj,l]+

M∑
i=1

M∑
j=1
j ̸=i

E[Ci]E[Cj] Cov(xi,k, xj,l)

 (A.17)

Define

ϵnoise =
1

L2

M∑
i=1

Var

( E[Ci]∑
j=1

xi,j

)
(A.18)

ϵsamp =
1

L2

M∑
i=1

M∑
j=1

Cov(Ci, Cj)E[xi,k, xj,l] (A.19)

ϵcorr =
1

L2

M∑
i=1

M∑
j=1
j ̸=i

E[Ci]E[Cj] Cov(xi,k, xj,l) (A.20)

Thus, the mux output estimate’s variance is

Var(Ẑ) = ϵnoise + ϵsamp + ϵcorr (A.21)

To summarize, the mux has M input SNs X1,X2, ...,XM and output Z. Ci is the number
of times Xi is sampled by the mux and xi,k is the k-th sampled bit of Xi and not the k-th bit
of Xi. This redefinition of xi,k is permitted because both the binomial and hypergeometric SN
models stipulate that SN bits are identically distributed. Further, the analysis assumes that mux

119



sampling, which is directed by its select inputs, correctly implement the quantized, normalized
addend weights: |W̃i| = P(Xi is sampled). Equations (A.18-A.21) apply when modeling the Xi’s
as binomial or hypergeometric SNs and apply for both the unipolar SN and bipolar SC cases.
However, in the bipolar SN case, the SN bits take value {−1, 1} instead of {0, 1} where −1 acts
as logical 0. This redefinition is important when evaluating the expectations and covariances of
the SN bits xi,k in Equations (A.18), (A.19) and (A.20). Finally, if an XOR array is used before
the mux tree as is usual in bipolar mux adders, then Equations (A.18-A.21) still apply, but xi,k is
re-defined to be sign(Wi)xi,k where sign(Wi) = 1 if Wi ≥ 0 and sign(Wi) = −1 otherwise.

Some intuitions can be gained from Equations (A.18-A.20). ϵnoise only depends on the variance
of the input SNs which is determined by the SN model (i.e., binomial or hypergeometric). ϵsamp de-
pends mainly on the covariance of the number of times each input is sampled which is determined
by the sampling method (noisy or precise). ϵcorr is a function of the covariance between sampled
bits of two input SNs which depends on the SN model and on the correlation between input SN
bits.

A.2 Mux Variance Formulas

Here we list expressions for Var(Ẑ) when the mux tree has bipolar inputs and when an XOR array
is used before the mux tree. To derive such expressions, ϵnoise, ϵsamp, and ϵcorr are re-expressed
according to which SN model (binomial or hypergeometric), sampling method (noisy or precise),
and input correlation level (SCC = 0 or SCC = +1) is used. Then ϵnoise, ϵsamp, and ϵcorr are
summed together and the expression simplified and reported in Table A.1. For precise sampling,
we assume that all W̃iL are integers, which is always the case if SN length L is a power of 2 and a
hardwired mux tree is used. Input correlation of SCC = 0 in Table A.1 means the pairwise SCC
between all mux tree inputs is 0. Likewise, SCC = +1 in Table A.1 means the pairwise SCC
between all mux tree inputs is +1 (as is the case when full correlation is achieved). Note that these
derived equations were experimentally validated by simulating the stochastic circuits in which they
correspond to.

For the SCC = +1 case, it is helpful to define the order statistics [27] of the mux tree input.
Let si = sign(Wi) and let A = {s1X1, s2X1, ..., sMXM} be the values of the SN inputs to the
mux tree. Then s(i)X(i) is defined to be the i-th order statistic of A. For instance, s(1)X(1) is the
minimum element in A, s(M)X(M) is the maximum element in A and, in general, s(i)X(i) is the
i-th smallest element in A.

Of the six equations presented in Table A.1, only the first corresponding to the binomial model
with noisy sampling has appeared before [74, 91]. Inspecting the equations in Table A.1 reveals
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that circuits that use hypergeometric SNs dominate2 those that use binomial input SNs. Thus,
LFSR RNSs that generate hypergeometric-like SNs should be preferred over other RNS that gen-
erate binomial-like SNs. Mux adders that use precise sampling dominate those that use noisy
sampling and mux adders that use correlated inputs dominate those that use independent inputs
except when the inputs are binomial SNs. In that case, correlation does not affect variance so there
is no circuit dominance. Thus, according to the hypergeometric and binomial SN models, using
precise sampling and achieving full correlation are always beneficial.

The most interesting aspect of the equation in Table A.1 is the equations corresponding SCC =

+1. Normally, variance equations in SC are functions of the input values. For example, an AND
multiplier with hypergeometric inputs has variance XY (1 −X)(1 − Y )/L where L is SN length
and X and Y are the input values. However, the mux variance equations for the SCC = +1 case
are different. For those equations, the mux variance is a function of the difference of input values
rather than a function of the input values themselves. In the extreme case that all input values are
the same value, the mux variance would be 0 for the SCC = 1 case. This fact is shown in the
example of Figure 5.6. In general, when the input values are similar (but not exactly the same),
the mux variance is low for the SCC = 1 case. This fact is why CeMux performs so well on ECG
filtering: the ECG signal values that serve as the mux adder inputs have very similar value. Thus,
the ECG filtering application has a favorable input value distribution for CeMux.

2Recall that a circuit A dominates a circuit B when A is more accurate than B for at least one set of input values
and no less accurate than B for all other sets of input values.
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SN model Sampling
method

Input
SCC Derived Mux Variance

Binomial Noisy Any
1−

(∑M
i=1 W̃iXi

)2
L

Binomial Precise Any
1−

∑M
i=1 |W̃i|X2

i

L

Hypergeometric Noisy 0
1−

(∑M
i=1 W̃iXi

)2 −∑M
i=1 W̃

2
i

(
1−X2

i

)
L

Hypergeometric Noisy 1

∑M
i=1

∑i−1
j=1 |W̃i||W̃j|

(
s(j)X(j) − s(i)X(i)

)
L

Hypergeometric Precise 0
∑M

i=1 |W̃i|
(
1− |W̃i|

)(
1−X2

i

)
L− 1

Hypergeometric Precise 1
∑M

i=1

∑i−1
j=1 |W̃i||W̃j |

((
s(j)X(j)−s(i)X(i)

)
−
(
s(j)X(j)−s(i)X(i)

)2)
L−1

Table A.1: Mux Adder Variance Formulas
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