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ABSTRACT

Recent technological advancements have generated vast amounts of complex data in various
fields, including biomedical sciences such as neuroimages, electronic health records, and electroen-
cephalogram (EEG) signals obtained from brain computer interface (BCI) systems. However, the
analysis of such data presents significant challenges due to its high dimensionality, spatial or tempo-
ral resolution, correlation structure, and heterogeneity. Gaussian Processes (GPs) have emerged as a
flexible tool for Bayesian nonparametrics and machine learning, enabling the modeling of functional
and dependent data over time and space. The nonparametric flexibility and high interpretability
of GPs have led to their success in numerous applications. Nevertheless, existing GP models and
methods are inadequate in addressing new questions that arise in analyzing large-scale and complex
data. This dissertation aims to fill this gap by developing novel GP-based models and proposing
efficient posterior computation algorithms using GP priors for the statistical analysis of large-scale
and complex data, with a focus on biomedical applications such as brain imaging and EEG-BCI
data analysis.

The first chapter of this dissertation addresses the issue of negative transfer in the multi-output
Gaussian process (MGP). While the MGP assumes that outputs share commonalities, negative
transfer can occur when this assumption is not met, resulting in reduced performance compared
to learning outputs independently or in subsets. To avoid negative transfer in MGP models, we
first define the concept and derive necessary conditions for avoiding it. Our analysis shows that,
under the convolution construction, having a sufficient number of latent functions Q is the key
factor in avoiding negative transfer, irrespective of the kernel or inference procedure used. However,
increasing Q leads to a higher number of parameters that need to be estimated. To tackle this
challenge, we propose two latent structures that can scale to large datasets, prevent negative transfer,
and allow the use of any kernel or sparse approximations. We also demonstrate that our model
supports regularization, facilitating the automatic selection of related outputs. We evaluate our
proposed model on the Parkinson dataset, where it outperforms the original MGP model in predicting
disease symptom scores.

In the second chapter, we incorporate GP into the Bayesian framework and focus on the brain
image analysis using GP prior. Specifically, we propose a Bayesian nonparametric spatially varying
correlation model, which is to address the question of estimation and inference of spatial regions

xi



where two imaging modalities are significantly correlated. We build our model based on the
thresholded correlation Gaussian process (TCGP), which ensures piecewise smoothness, sparsity, as
well as jump discontinuity of spatially varying correlations, and works well even when the number
of subjects is limited or the signal-to-noise ratio is small. We study the identifiability of our model,
establish the large support property, and derive the posterior consistency and selection consistency.
Moreover, we derive a highly efficient Gibbs sampler algorithm and its variant to compute the
posterior distribution. We illustrate the method with both simulations and an analysis of functional
magnetic resonance imaging data from the Human Connectome Project.

The third chapter focuses on the electroencephalogram (EEG)-based brain computer interface
(BCI) analysis, where the goal is to infer the participant’s intended character on a 6 × 6 virtual
keyboard using the EEG signal. We developed a Bayesian time-varying classification model with
signal interaction via the relaxed thresholded Gaussian Process priors (SI-RTGP), which leads to an
enhanced prediction and interpretation. To the best of our knowledge, we are among the first to
explicitly consider the effect of the signal interaction across different channels for predicting the
stimulus type outcomes. We extend the thresholded GP prior in the second chapter to the relaxed
thresholded GP prior, which is more flexible and is able to model both the sparse and the non-sparse
patterns by varying the “relaxing” parameter. Moreover, it provides a more computationally efficient
way to conduct MCMC sampling compared to other thresholded GP priors. The proposed SI-RTGP
model is applied to the P300 speller study conducted by the University of Michigan direct brain
interface (UMDBI) laboratory, which achieves improved classification accuracy on multiple subjects.
Additionally, the model can identify a number of scientifically meaningful channels and channel
pairs, providing valuable insights for future BCI research.
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CHAPTER 1

Introduction

1.1 Motivation and challenges

Biomedical research faces a myriad of challenges, including the need for robust data analysis
techniques to handle the growing complexity and volume of data generated by modern medical
studies. As researchers strive to develop innovative solutions for an aging population, increasing
prevalence of disabilities, and rapidly evolving technology, the demand for advanced statistical
methods becomes paramount. This dissertation aims to explore the development of novel statistical
methods for the analysis of complex data in medical studies. The study will focus on the potential of
these advanced methods to identify patterns and transform intricate data into actionable knowledge
for precision medicine and informed decision-making. The investigation will encompass specific
applications of these statistical techniques in various aspects of biomedical research, such as
neuroimaging analysis and electronic health records, to demonstrate their value in improving patient
care and fostering innovation within the field.

Neuroimaging has been playing pivotal roles in clinical diagnosis and basic biomedical research
in the past decades. In this context, complex data encompasses not only large amounts of data
but also complex data structures and various kinds of modalities. The most widely used imaging
modalities are magnetic resonance imaging (MRI) (Abd-Ellah et al. 2019), computerized tomog-
raphy (CT) (Withers et al. 2021), positron emission tomography (PET) (Jiang et al. 2019), and
single-photon emission computed tomography (SPECT) (Verger et al. 2021). Recently, more and
more research has focused on using multimodal imaging data obtained separately, from different
subjects, and/or from different clinical or research sites (Kelberman et al. 2020, Niu et al. 2020).
This practice offers the advantages of large and diverse datasets. However, it also comes with
challenges of sophisticated models, complicated data normalization that includes correction of
errors and variations imbedded in data from different institutions (Calhoun and Sui 2016, Tulay
et al. 2019). Moreover, it is very difficulty to appropriately process data across different domains
with high quality, while controlling for potential bias introduced during the preprocessing stage. It
requires the whole scientific community to work closely to test all major preprocessing tools by
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using well-designed synthetic and real datasets in terms of reproducibility, generalizability, and
reliability (Zhu et al. 2022). Additionally, it remains unclear how to appropriately and efficiently an-
alyze neuroimaging related data sets with multiple Vs (e.g., Volume, Velocity, Variety and Veracity),
while ensuring algorithmic fairness. Therefore, the efficient analysis and processing of large-scale
and complex data and the development of high-performance computing tools are critical for modern
neuroscientific studies.

Another example of large-scale and complex data in biomedical research is from the electroen-
cephalogram (EEG)-based brain computer interface (BCI) speller system (Won et al. 2022), which
is a device that enables a person to “type” words by EEG signal patterns in the brain activity in
response to external stimuli without using a physical keyboard. It has been used to assist people
with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), with regular
communication (Wolpaw et al. 2018). Different from neuroimaging data which has high spatial
resolution, EEG signal has the characteristic of high temporal resolution, hence downsampling is
usually needed when analyzing EEG data. Another challenge rises from the low signal-to-noise
ratio of EEG signals, so to achieve a decent spelling accuracy, users have to repeat the experiment
many times to collect enough data. Moreover, when users spend too much time calibrating this BCI,
they may experience variations in attention including fatigue and boredom. Such variations can
lead to ignored, misperceived, or delayed brain response activity that may further reduce spelling
efficiency.

Due to its high spatial/temporal resolution, complex data structure, low signal to noise ratio
and human variability, modeling and analyzing this type of data is one of the most important and
challenging work in biomedical research. In this dissertation, we develop novel statistical methods
to address those issues and aim to provide insights for cognitive neuroscience research.

1.2 Existing solutions

Given the increasing volume of data, significant efforts are being made to enhance traditional
computational and analytical data models. Recent modeling approaches primarily aim to achieve
two goals: maximizing learning accuracy with minimal computational cost and processing large
datasets quickly and efficiently.

The first type of widely used methods relies on dimension reduction techniques such as support
vector machines (SVMs) (Gao et al. 2022, Sethi et al. 2022), independent component analysis (ICA)
(Wu et al. 2022a, Boonyakitanont et al. 2022), and principal component analysis (PCA) (Mini
et al. 2021, Cimmino et al. 2021). These methods are widely used to extract vital features from
high-dimensional, complex datasets for subsequent analysis, such as prediction or classification.
For example, Xu et al. (2004) and Kaper et al. (2004) developed ICA- and SVM-based algorithms,
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respectively, for BCI applications, while Du et al. (2020) proposed an automated, adaptive ICA-
based pipeline for identifying reproducible fMRI markers of brain disorders. However, these
approaches of reducing data size through dimension reduction may sacrifice some information,
making subsequent analyses more challenging, particularly when sample sizes are small or signal-
to-noise ratios are already low.

The second type of method is deep learning, which is a subfield of machine learning and
recently showed a remarkable performance in various area. Convolutional neural networks (CNNs)
are widely used in brain image classification and segmentation. For example, Sultan et al. (2019)
proposed a model based on CNN to classify different brain tumor types. Khan et al. (2020) introduce
the CNN approach along with data augmentation to categorize brain MRI scan images into cancerous
and non-cancerous. More recently, several neural network methods have been proposed in the BCI
context for EEG-based classification tasks. For example, multi-task autoencoder-based models
such as Ditthapron et al. (2019), compact CNNs like EEGNet (Lawhern et al. 2018), and weighted
ensemble strategies such as Kshirsagar and Londhe (2019) have shown promising results. However,
deep learning methods are typically regarded as black boxes, lacking interpretability and making it
challenging to gain insight into the underlying neural mechanisms despite their high prediction or
classification accuracy.

Finally, Bayesian methods are commonly used to analyze large-scale and complex data as they
offer statistical inference capabilities that allow us to simulate the entire posterior distribution,
compute posterior inclusion probabilities, and quantify uncertainty for selection or prediction. For
instance, Marroquı́n et al. (2002) proposed an efficient Bayesian method for automatic segmentation
of brain MRI, while Jayachitra and Prasanth (2021) used a weighted Gaussian Naı̈ve Bayes classifier
for brain stroke classification, and Kia et al. (2020) introduced a hierarchical Bayesian regression
model for probabilistic modeling of batch effects in neuroimaging data. Researchers have also
explored the use of Bayesian methods in EEG-based BCI classification. For example, Barthélemy
et al. (2023) proposed a novel Bayesian accumulation of Riemannian probabilities, which is an
end-to-end pipeline for P300 BCI classification, and Ma et al. (2022) made the first attempt to study
the probability distribution of multi-trial EEG signals using a Bayesian generative model, providing
a useful tool to simulate EEG signals in P300 BCI and a novel probabilistic classifier. Despite the
success of these methods, challenges still remains in prior specification and computational efficiency.
Although several new MCMC sampling algorithms have been developed recently (e.g., Ahn et al.
2012, Chen et al. 2014, Nishimura et al. 2020), they usually converge slowly and require multiple
tuning parameters. Furthermore, specifying a proper prior is crucial, particularly for datasets with
complex structures and small sample sizes.
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1.3 Gaussian Process

Gaussian Process (GP) is a flexible and powerful tool for modeling complex and high-dimensional
data, and has been widely used in machine learning, statistics, and signal processing. In Bayesian
inference, GP can be adopted for prior specifications of functional parameters in the model. It has
flexibility to incorporate prior knowledge into the model and more accurately quantify uncertainty
of model inference. This makes GP a valuable tool for many applications, such as regression,
classification, optimization, and control.

A Gaussian process is a collection of random variables, any finite number of which have a joint
Gaussian distribution, which is completely specified by its mean function and covariance function.
Let x ∈ Rd be a d-dimensional input vector and f(x) be the corresponding output. We define mean
function m(x) and the covariance function k (x,x′) of a real process f(x) as

m(x) = E[f(x)]

k (x,x′) = E [(f(x)−m(x)) (f (x′)−m (x′))]

and will write the Gaussian process as

f(x) ∼ GP(m(x), k(x,x′)). (1.1)

The choice of mean and covariance functions determines the properties of the GP. The mean
function describes the overall trend of the function, while the covariance function describes the
smoothness and correlation between different input points. Commonly used covariance functions
include the squared exponential (Stein 1999), Matérn (Matérn 2013), and periodic kernels (Smola
and Schölkopf 1998), which can be combined and modified to suit different applications.

Given n training points X =
{
xi ∈ Rd

}n
i=1

and their observations y = {yi = y (xi) ∈ R}ni=1,
where y (xi) = f (xi) + ε with the iid noise ε ∼ N(0, σ2

ε), GP seeks to infer the latent function
f : Rd 7→ R in the function space GP (m(x), k (x,x′)) defined by the mean m(·) and the kernel
k(·, ·). Let Knn = k(X,X) and Kε

nn = Knn + σ2
εIn, then the model evidence (marginal

likelihood) can be represented as pr(y | θ) =
∫
pr(y | f)pr(f)df = N(y | 0,Kε

nn) where θ

comprises the hyperparameters which could be inferred by maximizing

log pr(y) = −n
2
log 2π − 1

2
log |Kε

nn| −
1

2
y⊤ (Kε

nn)
−1 y. (1.2)

Let D = {X,y} represents the training data, the predictive distribution at a test point x∗, i.e.
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pr (f∗ | D,x∗) = N (f∗ | m (x∗) , σ
2
∗ (x∗)) has the mean and variance respectively expressed as

m (x∗) = k∗n (K
ε
nn)

−1 y,

σ2 (x∗) = k∗∗ − k∗n (K
ε
nn)

−1 kn∗,
(1.3)

where k∗n = k (x∗,X) and k∗∗ = k (x∗,x∗). For y∗, we need to consider the noise such that
pr (y∗ | D,x∗) = N (y∗ | m (x∗) , σ

2
∗ (x∗) + σ2

ε).
Recently, GP models have demonstrated success in various domains. For example, Futoma et al.

(2017) developed a GP-based model that can help detect and improve treatment of sepsis, and Li
et al. (2021) proposed a deep Bayesian GP to estimate uncertainty in electronic health records. GPs
also have wide applications in modeling spatial and temporal dependencies and are widely used
in modeling image and time series data. For instance, Wu et al. (2022b) and Kang et al. (2018)
both use GP priors to model neuroimaging data, while Ma et al. (2022) uses a GP prior to perform
Bayesian inferences on neural activity in EEG-based brain-computer interfaces.

In conclusion, GP is a powerful tool for modeling complex systems and making predictions
with uncertainty quantification. Its ability to incorporate prior knowledge and adjust to new data in
a Bayesian framework makes it a popular choice in many fields, including engineering, computer
science, finance, and healthcare. With its versatility and potential for various applications in
modeling and prediction, Gaussian Process is poised to continue to be a useful tool for solving
complex problems in the future.

1.3.1 Multi-output Gaussian Process (MGP)

A Multi-output Gaussian Process (MGP) is an extension of the standard GP that can model
multiple outputs simultaneously. In a MGP, the outputs are modeled as a collection of correlated
GPs, where the covariance structure between outputs is specified by a cross-covariance function.
The cross-covariance function describes the correlation between the output of two different GPs at
any two input points. Let x ∈ Rd be a d-dimensional input vector, a MGP can be formally defined
as follows:

f(x) ∼ MGP(m(x),K(x,x′)), (1.4)

where f(x) = [f1(x), f2(x), . . . , fn(x)] ∈ Rn is the vector of outputs at input vector x and
fi : Rd 7→ R, i = 1, . . . , n are n GPs. m(x) = [m1(x),m2(x), . . . ,mn(x)] ∈ Rn is the vector of

mean functions, and K(x,x′) =


K11 . . . K1n

... . . . ...
Kn1 . . . Knn

 is the block matrix of covariance functions that

describe the correlations between the outputs at input vectors x and x′. Specifically, the covariance
between fi at input x and output fj at input x0 is defined as Kij(x,x0) = cov(fi(x), fj(x0)).
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The advantages of MGP lies in its ability to integratively analyze multiple outputs in order to
leverage their commonalities and share information among outputs, hence improve predictive and
learning accuracy. MGPs have been widely used in various applications, including sensor fusion
and spatial-temporal modeling of the health care data. For example, Kia and Marquand (2018)
introduce a scalable MGP regression by modeling both spatial and across-sample variances, which
provides higher sensitivity in novelty detection scenarios, Kia et al. (2018) proposed a scalable
MGP tensor regression for normative modeling of structured variation in neuroimaging data.

Overall, the MGP provides a flexible and powerful framework for modeling multiple related
functions, and has been successfully applied in various domains, such as computer vision, robotics,
and bioinformatics.

1.3.2 Thresholded Gaussian Process (TGP)

Given a Gaussian Process f(x) defined on R, we use Ts(f(x), ω) to represent the soft thresh-
olded GP. Ts(·, ω) is the soft threshoding function.

Ts(x, ω) =

{
0, |x| ⩽ ω

sgn(x)(|x| − ω), |x| > ω

where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(0) = 0. The thresholding parameter
ω > 0 determines the degree of sparsity. On the other hand, we use Th(f(x), ω) to represent the
hard thresholded GP, where

Th(x, ω) =

{
0, |x| ⩽ ω

x, |x| > ω

TGP has numerous applications in modeling neuroimaging and brain activity temporal data, where
prior knowledge indicates that the signal should vary smoothly over the brain region or throughout
the time. For instance, Kang et al. (2018) utilized the soft thresholded GP as a prior for the scalar-on-
image regression problem, enabling a large prior support over the class of piecewise-smooth, sparse,
and continuous spatially varying regression coefficient functions. Wu et al. (2022b) introduced a
Bayesian model incorporating the hard thresholded GP for separating latent brain networks and
detecting activated brain activation.

1.3.3 Gaussian Process Approximation

Although GP models have demonstrated success in various domains, their main limitation is the
O(n3) computation and O(n2) storage for n training points (Rasmussen 2004). In order to improve
the scalability of standard GP for large-scale data, several approximation methods of GP have been
extensively presented and studied in recent years.
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The first type of model uses global approximations, which achieve the sparsity of the full
kernel matrix Knn through (i) using a subset of the training data (subset-of-data) (Keerthi and
Chu 2005, Lawrence et al. 2002); (ii) removing the entries of Knn with low correlations (sparse
kernels) (Melkumyan and Ramos 2009); and (iii) employing a low-rank representation (sparse
approximations). Subset-of-data (SoD) is the simplest strategy to approximate the full GP by using
a subset Dsod of the training data D. Hence, the SoD retains the standard GP inference at lower
time complexity of O (m3), since it operates on Kmm which only comprises m(m ≪ n) data
points. A recent theoretical work (Hayashi et al. 2020) analyzes the error bounds for the prediction
and generalization of SoD through a graphon-based framework, indicating a better speed-accuracy
trade-off in comparison to other approximations reviewed below when n is sufficiently large. Sparse
kernels (Melkumyan and Ramos 2009) attempt to directly achieve a sparse representation K̃nn of
Knn via the particularly designed compactly supported (CS) kernel, which imposes k (xi,xj) = 0

when |xi − xj| exceeds a certain threshold. Therefore, only the non-zero elements in K̃nn are
involved in the calculation. As a result, the training complexity of the GP using CS kernel scales as
O (αn3) with 0 < α < 1.

In this dissertation, we will focus on using one of the sparse approximations approaches. We first
introduce Mercer’s theorem here, which is a continuous analog of the singular-value or eigenvalue
decomposition of a symmetric positive definite matrix. One of its main applications is to find
convenient ways to express stochastic processes, via the Karhunen-Loeve expansion (Xiu 2010).

Suppose κ(s, t) is a symmetric, continuous, and non-negative definite kernel function on
[a, b]× [a, b]. Mercer’s theorem asserts that there is an orthonormal set of eigenfunctions ψl(t) and
eigenvalues λl such that

κ(s, t) =
∞∑
l=1

λlψl(s)ψl(t), (1.5)

where the values and functions satisfy the integral eigenvalue equation λlψl(s) =
∫ b
a
κ(s, t)ψl(t).

Now suppose that f(t) is a stochastic process for t in some interval [a, b]. The process is character-
ized by its mean, m(t), and its covariance, κ(s, t). Using Mercer’s theorem on κ, we can express
the process by the K-L expansion

f(t) = m(t) +
∞∑
l=1

√
λlZlψl(t), (1.6)

where λj and ψj are Mercer eigenmodes for κ, and the Zj are uncorrelated and of unit variance.
K-L expansion is a generalization of the singular value decomposition of a matrix, which can be
written as a sum of outer products of vectors. In practice, we truncate the above expansions by
focusing on the leading L eigenvalues and eigenfunctions to approximate the original GP, where
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L can be determined following the usual practice of principal components analysis that retains a
certain percentage of total variation. This reduces the problem to finding the first L eigenvalues and
eigenfunctions in Eq.(1.5). The truncation point L should depend on the required level of accuracy
in the reconstruction of the covariance function.

Another type of methods focus on local approximations, which use localized experts to improve
the scalability of GP. Notable examples include (i) Naive-local-experts (Gramacy and Apley 2015,
Park and Huang 2016, Datta et al. 2016) (ii) Mixture-of-experts, which devotes to combining the
local and diverse experts owning individual hyperparameters for improving the overall accuracy
and reliability (Yuksel et al. 2012, Masoudnia and Ebrahimpour 2014) (iii) Product-of-experts (Cao
and Fleet 2014, Hinton 2002). Different from the MoE which employs a weighted sum of several
probability distributions (experts) via an “or” operation, the product-of-experts (PoE) multiplies
these probability distributions.

1.4 Our Contributions

In this dissertation, we present several novel statistical methods based on Gaussian Process and
make important contributions to modeling, theory, computation and applications.

For statistical modeling and theory, we develop several new models based on MGP and TGP. In
the first project, we introduce two novel latent structures: the pairwise model and the arrowhead
model. These structures address the negative transfer problem in MGP and allow for regularization
penalties on hyper-parameters, which facilitates selection of related and unrelated outputs. In
the second project, we propose a Bayesian nonparametric spatially varying correlation model for
conducting multimodal correlation analysis. We propose a new Bayesian nonparametric prior, the
thresholded correlation Gaussian process (TCGP), which targets second-order correlations between
two modalities. TCGP is a nontrivial extension of TGP or threshold prior, which has been adopted
in prior constructions for modeling sparse regressions or spatially varying functions, i.e., either
thresholding Gaussian random variables (Nakajima and West 2013, Ni et al. 2019, Cai et al. 2020),
or thresholding GP (Kang et al. 2018, Wu et al. 2022b). However, none of those priors are readily
applicable for Bayesian analysis of multimodal correlation analysis as in our setting. Moreover,
we are among the first to study the theoretical properties of Bayesian analysis of spatially varying
correlations. Particularly, we prove the model identifiability and establish the posterior consistency
and the selection consistency based upon the foundational work of Choi (2005), Ghosal and Roy
(2006), Tokdar and Ghosh (2007). In the third project, we extend the thresholded GP to the relaxed
thresholded GP and propose a Bayesian time-varying regression model with signal interactions via
relaxed thresholded GP priors (SI-RTGP). The proposed relaxed thresholded GP prior encompasses
a large class of temporal varying functions that are piecewise smooth and sparse, which enables
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the feature selection during the Bayesian MCMC sampling. Moreover, compared to the previous
thresholded GP prior (Kang et al. 2018, Cai et al. 2020), the relaxed thresholded GP prior is more
flexible and is able to model both the sparse and the non-sparse patterns by varying the “relaxing”
parameter. These contributions provide innovative solutions for complex problems and demonstrate
the potential of our proposed frameworks in advancing the field of Gaussian Process modeling.

This dissertation reserach also has led to the development of computational tools and new
algorithms that can effectively analyze large-scale and complex datasets. One major contribution
is the relaxation models we proposed for the MGP structure, which can scale to handle arbitrarily
large datasets. By distributing the MGP into a group of bivariate GPs that are independently
built, predictions can be obtained by combining the predictions from each bivariate GP. This
approach allows for parallelization, enabling each submodel to be estimated with a limited number
of parameters. Additionally, we have developed an efficient sampling algorithm for posterior
computation in Bayesian models with thresholding-type priors. Most existing solutions resort to
gradient based MCMC algorithms (Roberts and Rosenthal 1998, Girolami and Calderhead 2011),
where a smooth approximation of the thresholding function is required to get the analytically
tractable first derivative (Cai et al. 2020, Wu et al. 2022b). There have also been recent advances
in developing new sampling algorithms (e.g., Ahn et al. 2012, Chen et al. 2014, Nishimura et al.
2020). However, these algorithms usually converge relatively slowly, and require multiple tuning
parameters. Our approach is based on the full conditional distributions, resulting in a highly efficient
Gibbs sampler algorithm that outperforms other methods in terms of convergence speed and tuning
parameters.

The proposed work has wide-ranging applications across different domains. One promising area
is multimodal neuroimaging analysis, where the goal is to investigate the association between two
imaging modalities and identify brain regions where such an association is statistically significant.
As an illustrative example, we applied our model to study the association between resting-state
fMRI and memory task-related fMRI in the Human Connectome Project. Our findings identified
several brain regions where resting-state and task-related brain activities are strongly associated.
This type of analysis is particularly useful given the growing interest in predicting task-related brain
activations from resting-state fMRI data in recent years (Tavor et al. 2016, Jones et al. 2017, Cohen
et al. 2020). In our study, we found that the angular gyrus exhibited the highest positive mean
correlation, which is consistent with existing research on this region’s role in cognitive processes
related to language, number processing and memory retrieval (Farrer et al. 2008, Seghier 2013).
We also identified strong positive correlations in the middle temporal gyrus and superior parietal
gyrus. The former has been linked to numerous cognitive processes (Acheson and Hagoort 2013),
while the latter is critically involved in information manipulation in working memory (Koenigs et al.
2009). Furthermore, our analysis identified two regions in the lingual gyrus with strong negative
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correlation, which is believed to play an important role in visual memory and word processing
(Leshikar et al. 2012). These findings offer useful insights into brain activities during rest and
working memory tasks and demonstrate the potential of our proposed model in studying complex
brain networks. Another application is analyzing brain-computer interface (BCI) data. We applied
our model to EEG data collected from the P300 speller study conducted by the University of
Michigan Direct Brain Interface Laboratory. The experiment aimed to infer a participant’s intended
character on a virtual keyboard using the EEG signal. By leveraging the signal interactions across
channels and performing feature selection using relaxed thresholded prior, our proposed method
improved prediction accuracy compared to other machine learning methods. We identified several
significant channels and channel pairs that contribute most to predicting the stimulus type outcomes,
confirming and extending existing findings (Krusienski et al. 2008, McCann et al. 2015). Overall,
our proposed model demonstrates its potential for various applications in studying brain structure
and activity and offer insight for future neuroscientific study.
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CHAPTER 2

On Negative Transfer and Structure of Latent Functions in Multi-output
Gaussian Processes

2.1 Introduction

The multi-output, also referred to as multivariate/vector-valued/multitask, Gaussian process (GP)
Williams and Rasmussen (2006) draws it root from transfer learning, specifically multitask learning.
The goal is to integratively analyze multiple outputs in order to leverage their commonalities
and hence improve predictive and learning accuracy. Indeed, the multi-output GP (MGP) has
seen many success stories in the last decade (Journel and Huijbregts 1976, Jones and Johnson
2009, Gramacy and Apley 2015, Sung et al. 2020). This success can be largely attributed to
the convolution construction which provided the capability to account for heterogeneity and non-
trivial commonalities in the outputs. The convolution process (CP) is based on the idea that a
GP, fi(x) : RD → R can be constructed by convolving a latent Gaussian process X(x) with a
smoothing kernel Ki(x). This construction, first proposed by Ver Hoef and Barry (Ver Hoef and
Barry 1998) and Higdon (Higdon 2002), is equivalent to stimulating a linear filter characterized by
the impulse response Ki(x). The only restriction is a stable filter, i.e.,

∫
|Ki(u)|du < ∞. Given

the CP construction, if we share multiple latent functions Xq(x) across fi(x), i ∈ {1, ..., N}, then
all N outputs can be expressed as jointly distributed GP, i.e., an MGP (Álvarez and Lawrence
2011). This is shown in eq. (2.1).

fi(x) =

Q∑
q=1

Kqi(x) ⋆ Xq(x), (2.1)

where ⋆ denotes a convolution. The key feature in eq. (2.1) is that it allows information to be shared
through different kernels which enables great flexibility in describing the data. Many models used
to build cross correlations across outputs including the large class of separable covariances and the
linear model of corregonialization were shown to be special cases of the convolution construction
Alvarez et al. (2012), Fricker et al. (2013). Since then, work on MGP has mainly focused on two
trends: (i) Efficient inference procedures that address the computational complexity (a challenge
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inherited from the GP) (Nychka et al. 2015, Gramacy and Apley 2015, Damianou et al. 2016,
Gramacy 2016, Gramacy and Haaland 2016). This literature has mainly focused on variational
inference which laid the theoretical foundation for the commonly used class of inducing point/kernel
approximation (Burt et al. 2019, Snelson and Ghahramani 2006, Sung et al. 2016, Yang et al. 2020).
Interestingly, variational inference also reduced overfitting and helped generalization due to its
regularizing impact (Zhao and Sun 2016, Nguyen et al. 2014, Moreno-Muñoz et al. 2018). A recent
push on utilizing distributed computations for exact GP has also shown promise in this area (Wang
et al. 2019, Nguyen et al. 2019, Zhang et al. 2021). (ii) Building expressive kernels (Wilson 2014,
Zhang and Apley 2016, Parra and Tobar 2017, Chen et al. 2019, Ulrich et al. 2015) that often can
represent certain unique features of the data studied. Recent literature have focused on spectral
kernels, despite the fact that convolved covariance based on the exponential, Gaussian or Matérn
kernels are still very common in applications. Relating to this, many studies have provided elegant
formulations of qualitative features in a GP based on an MGP treatment with separable covariances
(Li et al. 2020a, Zhou et al. 2011, Qian et al. 2008). This set of literature models outputs with
different qualitative features as separate GPs and assumes that correlation over the continuous input
is separable from correlation across qualitative features.

However, a key question is yet to be answered. The MGP is based on the assumption that
outputs share commonalities, but what happens if this assumption does not hold? would negative
transfer occur? which in turn leads to forced correlation and decreased performance relative to

learning each output independently (Caruana 1997). This question is especially relevant when using
the CP, which implicitly implies that outputs have heterogeneous, possibly unique, features. For
instance, following recent literature, would an expressive kernel and an efficient inference procedure
for finding good kernel parameter estimates automatically avoid spurious correlations? Or say in an
extreme case where all outputs share no commonalities, would the MGP automatically collapse
into independent GPs? Indeed, recent literature Mak et al. (2018), Li et al. (2020a) has recognized
that an MGP is not necessarily better than an individual GP.

In this article we shed light on the aforementioned questions. Specifically, we first define
negative transfer in the context of an MGP. We then show that addressing the challenge above is
mainly dependent on having a sufficient number of latent functions, i.e., Q in eq. (2.1). However,
even when N is relatively small, a small increase in Q would cause the number of parameters
to be estimated to skyrocket. This renders estimation in such a non-convex and highly nonlinear
setting impractical, which explains why current literature including the above cited papers only use
1 ≤ Q ≤ 4. To this end, we investigate easy-to-implement relaxation models on the MGP structure
that scale to arbitrarily large datasets, can avoid negative transfer and allow any kernel or sparse
approximations to be used within. A key feature of our models is that they allow regularization
penalties on the hyper-parameters which can provide selection of related/unrelated outputs.
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We organize the remaining paper as follows. Sec.2.2 provides some preliminaries. Sec.2.3
defines negative transfer and provides conditions to avoid it in the MGP. In Sec.2.4 we provide
scalable relaxation models on the MGP structure, we then explore regularization schemes that help
generalization and automatic selection in the relaxation models. A proof of concept and illustration
on real-data is given in Sec.2.5. Finally, we conclude our paper in Sec.2.6. Technical details are
given in the supplementary materials.

2.2 Preliminaries

Consider the set of N noisy output functions y(x) = [y1(x), · · · , yN(x)]⊤ and let I =

{1, · · · , N} be the corresponding index set.
y1(x)

y2(x)
...

yN(x)

 =


f1(x)

f2(x)
...

fN(x)

+


ϵ1(x)

ϵ2(x)
...

ϵN(x)

 = F (x) + E(x),

where F : RD → RN is zero mean multivariate process with covariance

covfij(x,x
′) := cov

(
fi(x), fj(x

′)
)

for i, j ∈ I and ϵi(x) ∼ N (0, σ2
i ) represents additive noise. For the ith output the observed data is

denoted as Di = {(yi,Xi)}, where yi = [y1i , · · · , y
pi
i ]

⊤, yci := yi(xic), Xi = [xi1, · · · ,xipi ]⊤ and
pi represents the number of observations for output i. Now let P =

∑
pi and DI = {D1, · · · , DN},

then the predictive distribution for output i at x0 is given as

pr(yi(x0)|DI) = N
(
C⊤

f ,f0i
(Cf ,f +Σ)−1y, Cf0i ,f0i + σ2

i −C⊤
f ,f0i

(Cf ,f +Σ)−1Cf ,f0i

)
(2.2)

where y = [y⊤
1 , · · · ,y⊤

N ]
⊤ corresponds to the latent function values f = [f⊤

1 , ...,f
⊤
N ]

⊤, Cf ,f ∈
RP×P is the covariance matrix from the operator covfij(x,x

′) and Σ = diag[σ2
1Ip1 , ..., σ

2
NIpN ] is a

block diagonal matrix with I as the identity matrix.
As shown in (2.2), information transfer is facilitated via covfij(x,x

′). Now, under the CP in
(2.1) and assuming independent latent function Xq with cov(Xi(u), Xi(u

′)) = δ(u− u′) = δuu′

(δ is the Dirac delta function) we then have

covfij(x,x
′) =

Q∑
q=1

∫ ∞

−∞
Kqi(u)Kqj(u− d)du. (2.3)
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where d = x− x′ ∈ RD denotes a convolution. Here we note that a more general case can be used
where Xi is a GP generated from a CP, i.e., cov(Xi(u), Xi(u

′)) =
∫
KXi

(u)KXi
(u− d)du. In

the appendix we show that the following results also hold under such a case.

2.3 Negative Transfer: Definition and Conditions

2.3.1 Definition of negative transfer

Similar to multi-task learning, negative transfer draws its roots from transfer learning Pan and
Yang (2009). A widely accepted description of negative transfer is stated as “transferring knowledge

from the source can have a negative impact on the target learner”. In an MGP, negative transfer
could be defined similarly: the integrative analysis of all outputs can have negative impact on the
performance of the model compared with separate modeling of each output or a subset of them.

Definition 1. Consider an MGP with N possible outputs, and assume yi represents the target

output. Let the index set of all outputs I comprise of M non-empty disjoint subsets I = {I1 ∪
· · · Im ∪ · · · IM}. Then, we can define the information transfer metric (IT ) of the ith output yi,

i ∈ Im as follows:

ITi(DIm) = Ri[MGP(DI)]−Ri[MGP(DIm)],

where MGP(Du) is an MGP using data Du, Ri[MGP(Du)] = E
[
L
(
yi(x), yi,true(x)

)∣∣Du] defines

the expected risk using some loss function L and yi(x) denotes the predicted random variable in

(2.2). Here the expectation is taken over the data distribution (x, yi(x)) ∼ Pi. We say negative

transfer occurs for output yi if ITi(DIm) is positive.

Definition 1 implies that negative transfer happens for output yi when using DI leads to worse
accuracy compared to using a subset of the data or just an individual GP. Therefore, one can provide
a model flexible enough to avoid negative transfer if there exists an MGP such that ∀ x0 ∈ RD

pr(yi(x0)|DI) = pr(yi(x0)|DIm),∀ i ∈ Im ⊆ I (2.4)

One can think of Im as the index for the subset of outputs that share commonalities with yi (Im
here includes i). For instance, if yi shares no commonalities with any other output (Im = i) then
the MGP should be able to have pr(yi(x0)|DI) = pr(yi(x0)|Di) for all x0, i.e., the conditional
predictive distribution in (2.2) for output i is independent of all other outputs. In other words, we
need an MGP that is able to collapse into independent GPs or an MGP with only related outputs.

Building a model that can achieve (2.4) is a challenging task under the non-separable covariance
structure (See Remark 4). However, a sufficient condition to achieve (2.4) is to ensure ∀x,x′ ∈ RD,

covfij(x,x
′) = 0,∀ i ∈ Im and j ∈ I/Im (2.5)
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In the following section we study the necessary condition for the MGP to achieve (2.5). Specif-
ically we show that if M is known (we know how many distinct/unrelated subgroups of outputs
exist) then the necessary condition to achieve (2.5) is Q ≥ M . However the fact that M is not
known beforehand implies that we need Q ≥ N .

2.3.2 Conditions to avoid negative transfer

We first provide a lemma based on the CP covariance in (2.3) needed to establish our result.

Lemma 2. Given two outputs, y1 and y2, modeled using one latent function X1, i.e. yi = K1i(x) ⋆

X1(x) + ϵi(x) for i = 1, 2. Assume, the kernels K1i(x) ∈ L1(RD), i ∈ {1, 2}, satisfy one of the

following conditions:

• K1i(x) = α1ik1i(x), α1i ∈ R and k1i(x) > 0 ∀ x ∈ RD. Typical cases include squared

exponential, Matern, quadratic kernel, periodic and local periodic.

• k1i has the form
∑

u a
2
uexp

(
xTBux

)
cos(2πcuTx) with parameters (au,Bu, cu). Typical

cases include the Spectral, generalized spectral, MOCSM Chen et al. (2019), CSM Ulrich

et al. (2015) and SMD Chen et al. (2018) kernels.

Then for ∀x,x′ ∈ RD, covf12(x,x
′) =

∫∞
−∞K11(u)K12(u− d)du = 0 if and only if at least one of

K11 and K12 is identically equal to zero.

The technical details for Lemma 22 are given in Appendix A. Clearly when using one latent
function X1 if one of the kernels is identically zero then the MGP is invalid (covfuu(x,x

′) =

0 ∀ x, u ∈ {1, 2}). On the other hand, if we use Q ≥ 2 latent functions, then the model has enough
flexibility to construct fi from different latent functions, i.e. f1 = K1 ⋆ X1 and f2 = K2 ⋆ X2.
In this case, covf12 = 0, ∀ x,x′. Hence, Lemma 22 implies that only if Q ≥ 2 we can achieve
covf12(x,x

′) = 0 ∀ x,x′. In Lemma 22 the assumption that kernels belong to the L1 space is also
needed for a stable CP construction in (2.1). Here we note that despite the fact that the conditions
presented satisfy most (if not all) of the kernels currently used in the CP, in the appendix we also
provide some simple means based on the injectivty of the Fourier transform to check the conditions.
We now give the main theorem for the necessary condition to avoid negative transfer.

Theorem 3. Given Kqi(x) ∈ L1(RD) that satisfies the conditions in Lemma 22, and

yi(x) = fi(x) + ϵi(x) =

Q∑
q=1

Kqi(x) ⋆ Xq(x) + ϵi(x), (2.6)

then there exists an MGP, constructed using a CP, that can achieve covfij(x,x
′) = 0,∀ i ∈

Im and j ∈ I/Im if and only if we have Q ≥M latent functions.
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Proof. We use an induction argument to establish the proof.
In Lemma 1, we have shown that if we model two outputs using one latent function, then
covf12(x,x

′) ̸= 0 for any x,x′ ∈ Rd. On the other hand, if we use Q(Q ≥ 2) latent func-
tions, then the model has enough flexibility to construct fi, i = 1, 2 from different latent functions,
i.e. f1 = K1 ⋆ X1 and f2 = K2 ⋆ X2, where X1 ̸= X2. In this case, covf12(x,x

′) = 0 for any x and
x′. i.e. we have proved that when M = 2, the model could achieve

covfij(x,x
′) = 0,∀ i ∈ Im and j ∈ I/Im ,m = 1, 2

if and only if the number of latent function Q ≥ 2.
Then we use induction: Assume the conclusion holds for M = K − 1: Consider a MGP with
N outputs y1, y2 · · · , yN . Let the index set of all outputs I comprise of K − 1 non-empty dis-
joint subsets I = {I1, · · · , IK−1}. If for any i, j ∈ {1, 2, · · · , K − 1} and ∀ x,x′ ∈ RD,
cov(fis(x), fjt(x

′)) = 0, then we need at least K − 1 latent functions, where is ∈ Ii and jt ∈ Ij .
Now consider M = K. We could separate this problem into two steps: first, we want K − 1

disjoint subsets of y1, · · · , yN to be uncorrelated. Denote the index of these K − 1 subsets as
I1, I2 · · · , IK−1. Follow the assumption in the induction, we at least need K − 1 latent functions
{X1, X2, · · · , XK−1}, i.e. any output fis in Ii, i = 1, 2, · · · , K − 1 is constructed from the convo-
lution of Xi and a smooth kernel: fis = Kis ⋆ Xi, i = 1, 2 · · · , K − 1. Then, we want the outputs
with index IK = I\{I1 ∪ I2 · · · ∪ IK−1} to be uncorrelated with the outputs in the previous K − 1

subsets. If we still useK−1 latent functions, then the outputs yi, i ∈ IK has to be constructed using
the latent functions in {X1, X2, · · · , XK−1}. Then, similar to the case when we have 2 outputs,
there must exist a subset Ii0 , i0 ∈ {1, 2, · · · , K − 1}, such that yi, i ∈ Ii0 has non-zero covariance
function with the outputs in IK , i.e. these two subsets are correlated. On the other hand, if we use
K latent functions, then the model has capability to construct the outputs in Ii, i = 1, 2, · · · , K
from different latent functions, i.e. any output fis , is ∈ Ii can be constructed as fis = Kis ⋆ Xi,
i = 1, 2, · · · , K. In this case, cov(fis(x), fjt(x′)) = 0 for any x and x′, where fis and fjt are
respectively arbitrary outputs with index in Ii and Ij .
Therefore, we have proved that when I = {I1 ∪I2 · · · ∪ IM}, where I1, · · · , IM are M non-empty
disjoint subset of I, cov(fi(x), fj(x′)) = 0 for any x and x′ if and only if the number of latent
functions Q ≥M , where i ∈ Im and j ∈ I/Im. That is to say, the model could achieve

covfij(x,x
′) = 0,∀ i ∈ Im and j ∈ I/Im

if and only if Q ≥M .
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It is crucial to note here that in reality we do not know M , i.e., we do not know how many
distinct subgroups that are uncorrelated exist. Thus, in order to guarantee that negative transfer can
be avoided we need Q ≥ N . This also implies that the model is flexible enough to collapse to N
independent GPs and hence predict each output independently. We note that Q = N only gives
the model enough flexibility to collapse into N independent GPs when necessary, while the model
can still borrow strength from other outputs to improve the prediction, i.e., the model can choose
whether to have information sharing or not by itself.

Remark 4. Equation (2.5) is a sufficient condition for independent predictions (2.4). However, for

non-separable constructions, achieving (2.4) without (2.5) is a very challenging task. Basically, if

Ω = C−1
f ,f , then we need (see Uhler (2017))

Ωci,cj = 0 IFF det
(
C[P ]\ci,[P ]\cj

)
= 0 ∀ i ∈ Im, j ∈ I/Im

for independent predictions (2.4). Here we use ci to denote the input entry for data from output i.

Designing a kernel that can achieve this is very challenging. This points to an interesting research

direction: defining kernels specifically intended to minimize negative transfer without the need for

Q ≥M which is necessary for (2.5) in the convolution construction. Additive kernels that cancel

out the covariance can be an interesting structure to investigate.

Remark 5. It is no surprise that when Q ≥M , negative transfer can be avoided. Basically, each

correlated group (or individual output) has flexibility to be modeled via a separate latent function.

The interesting results are necessity. Under most mature kernels used for MGP’s, negative transfer

cannot be avoided without Q ≥M .

2.3.3 Induced Challenges

Despite the many works in the previous decade on reducing the computational complexity of
both the GP and MGP, the results in Sec.2.3.2 induce another key challenge for MGP: the high
dimensional parameter space. This challenge is inherited from the CP construction which provides
different covariance parameters (via the kernels) to different outputs levels. For instance, assume
any kernel Kqi(x) has ω parameters to be estimated then using the CP, this implies estimating
QNω +N parameters, where the added N parameters are for ϵi(x). Following our results, a model
that can avoid negative transfer thus needs at least N2ω + N . Note here that ω also increases
with D, i.e., the dimension of x. Obtaining good estimates in such a high dimensional space
is an impractical task specifically under a non-convex and highly nonlinear objective, be it the
exact Gaussian likelihood or its variational bound. Indeed, it is crucial to note that computational
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complexity and parameter space are two separate challenges and the many papers that tackle the
former still suffer from the latter challenge. We conjecture that for this reason, most (if not all)
MGP literature (including all aforementioned cited papers) have used 1 ≤ Q ≤ 4. To address this
challenge, in Sec. 2.4 we provide relaxation models that can significantly reduce the parameters
space and scale to arbitrarily large datasets by parallelization. Further, our proposed models allow
any sparse approximation to be plugged in. This in turns allows utilization of the many advances in
reducing the computational complexity (inducing point, state space approximation, etc..).

2.4 Relaxation models

We investigate two relaxation models: the arrowhead and pairwise models. Without loss of
generality, we focus on predicting y1 using the other N − 1 outputs. We use I/1 to index all outputs
except y1.

2.4.1 Arrowhead Model

The idea of an arrowhead model originates from the arrowhead matrix. While still usingN latent
functions, we can assume all outputs yi, i ∈ I/1, are independent and only share information with
y1, the output of interest. This implies covfij(x,x

′) = 0,∀ i, j ∈ I/1. The structure and covariance
matrix are highlighted in Fig. 2.1(a) and (2.7) respectively. As shown in the figure, y1 possesses
unique features encoded in X1 and shared features with other outputs encoded in Xi, i ∈ I/1.

CP×P
f ,f =


Cf1,f1 Cf1,f2 . . . Cf1,fN

Cf2,f1 Cf2,f2 . . . 0p2×pN
...

... . . . ...

CfN ,f1 0pN×p2 . . . CfN ,fN

 (2.7)

v...
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Figure 2.1: Arrowhead Model
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Figure 2.2: Pairwise Model
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The arrowhead structure in fact poses many unique advantages: (1) Linear increase of parameter
space dimension with N : The number of parameters to be estimated is reduced to (2N − 1)ω +N .
(2) provides enough flexibility to achieve (2.5) and hence avoid negative transfer. For instance, if
covf1i(x,x

′) = 0 ∀x and i ∈ I/1 then outputs y1 and yi are predicted independently. (3) can be
parallelized, where independent arrowhead models are build to predict each output. (4) One nice
interpretation of the arrowhead structure is through a Gaussian directed acyclic graphical model
(DAG) with vertices V = {yi : i ∈ I}. Unlike typical DAGs, each vertex in this graph is in itself a
fully connected undirected Gaussian graphical model, i.e. a functional response. This is shown in
Fig.2.1(b). Based on this, the full likelihood factorizes over parent nodes. To see this, let L(θ;y)
denote the likelihood of the dataset, where θ = {θ⊤

f ,σ
⊤}⊤, such that θf and σ are kernel and

noise parameters. Then, L(θ;y) = L1|i∈I/1(θ;y1|y2, · · · ,yN)
∏

i∈I/1 L
i(θ;yi). This reduces the

complexity of exact inference to O(Np3) assuming pi = p ∀i, i.e, complexity of N independent
GPs. This complexity is similar to the well known inducing point sparse approximation in Alvarez
and Lawrence (2009), however without the assumption of conditional independence given discrete
observations from the latent functions. Despite reduced complexity, the main advantage is the
reduction in the parameter space. Here it is crucial to note that any sparse approximation, be it an
inducing point/variational approximation, a state space approximation, a matrix tapering approach or
just a faster matrix inversion/determinant calculation scheme, can be plugged in into this structure.

Remark 6. To predict all N outputs the arrowhead model should be learned N times. Yet, it is

critical to highlight that a key benefit of the arrowhead model is optimization in a much lower

dimensional space. In a full MGP the number of parameters to be estimated is O(N2). However,

in the arrowhead model then the number of parameters to be estimated reduces to O(N) when

predicting one output. For predicting all N outputs, this will rise up to O(N2). In this case,

although the parameters to be estimated are both O(N2), the optimizer in full MGP and arrowhead

approach operate in different parameter space dimensions. In the MGP model, we optimize over

O(N2) parameters together, which may lead to a highly complex objective function. Instead, in the

arrowhead model, we parallel run N models where each model only has O(N) parameters. This is

the key reason why in our numerical studies to follow, the arrowhead approach is much faster to fit

and converge compared to the full MGP model even when predicting all N output.

2.4.2 Pairwise Model

Despite the linear increase in parameter space in the arrowhead model, when N is extremely
large, model estimation can still be prohibitive. To this end, we investigate distributing the MGP

into a group of bivariate GPs which are independently built. Predictions are then obtained through
combining predictions from each bivariate GP. We here note that pairwise modeling of longitudinal
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data is not new and was first investigated by Fieuws and Verbeke (2006) in the context of linear
models. Pairwise models where then used to scale GPs while allowing qualitative features to be
added Li et al. (2018), Kontar et al. (2020). However, the ability of pairwise models to provide
Q ≥M while reducing complexity has not been highlighted and poses great value beyond scalability.
As previously mentioned we focus on predicting output 1 through borrowing strengths from the
other N − 1 outputs. Fig. 2.2(a) illustrates the pairwise submodel between y1 and yi, i ∈ I/1, where
two latent functions are used to avoid negative transfer. Note here that the structure in Fig. 2.2(b)
is proposed for efficient regularization and is discussed later in Sec. 2.4.3. The key advantage
of the pairwise structure is that: (i) it can scale to an arbitrarily large N by parallelization where
each submodel is estimated with a limited number of parameters (4ω + 2) and with complexity of
O(2p3) (assuming exact inference with no approximations and pi = p ∀i). (ii) It can avoid negative
transfer as each sub-model satisfies Q ≥M . (iii) After building the N − 1 sub-models, combining
predictions boils down to combining N − 1 predictive distributions pr(y1(x0)|D1, Di)i∈I/1 in
(2.2). This can be readily done using the rich literature on product of experts (PoE) and Bayesian
committee machines Deisenroth and Ng (2015), Moore and Russell (2015), Tresp (2000). For
instance, in the PoE model, each expert is weighted by the inverse covariance, therefore experts
which are uncertain about their predictions are automatically weighted less than experts that are
certain about their predictions. As a result, we obtain the final prediction as follows,

ŷ1(x0) =

N−1∑
i=1

ŷ1i(x0)/Vi(x0)

N−1∑
i=1

1/Vi(x0)

(2.8)

where ŷ1i(x0) represents the mean prediction of y1(x0) in the ith bivariate submodel for i =

1, 2, · · · , N − 1 and Vi(x0) is the corresponding variance (see 2.2). The key idea across such
approaches, in our context, is that sub-models that are uncertain about their predictions of y1(x0)

(i.e., have larger predictive variance) will get less weight.

Remark 7. Our two proposed models share a common theme which aims at guaranteeing a sparse

precision matrix from a sparse covariance. This is the key of GPs as they model the covariance

yet predictions are based on the precision matrix. For instance, assume that yi and yj should

be predicted independently, then in the arrowhead matrix, the model allows the inverse for any
input/output pair to be zero if their covariance Cfi,fj

is zero. However, in a regular MGP they will

still be able to talk to each other via other outputs (i.e. the precision matrix will not be sparse).

Similarly for the pairwise model a zero covariance between the outputs will directly lead to zero

precision.

Remark 8. The arrowhead model is designed for predicting yi using y1, · · · , yi−1, yi+1, · · · , yN .
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If we need to get the predictions of y1, · · · , yi−1, yi+1, · · · , yN , we need to parallel run separate

arrrowhead models. That being said, the arrowhead model enjoys multiple key properties, (1) it

provides enough flexibility to achieve Eq. (3.2) and hence avoid negative transfer, (2) it leads only

to a linear increase in the parameter space with N , (3) it reduces the complexity of exact inference

to O(Np3) assuming pi = p ∀i, i.e, complexity of N independent GPs. However, the pairwise

model is readily applied to predicting N outputs. The only thing we need to do is to parallel run all

possible bivariate MGP models and then directly get the predictions for any output by combining

the predictions using product of experts (PoE). Both pairwise and arrowhead models require a

fraction of time to that of the MGP with N latent functions.

2.4.3 Encouraging sparsity via regularization

Besides the fact that these two models can avoid negative transfer, an interesting feature is
that we can add regularization that helps reduce negative transfer and is capable of automatic
variable selection. Here variable selection implies selection of which functions should be predicted
independently or not. Let ℓ(θ;y) = −log L(θ;y) = 1

2
⟨Y , (Cf ,f +Σ)−1⟩+ 1

2
log|Cf ,f +Σ| where

⟨A,A′⟩ = trace(AA′) and Y = yy⊤. A penalized version of ℓ(θ;y) is defined as

ℓP(θ;y, λ) = ℓ(θ;y) + Pλ(θ0) , (2.9)

where Pλ(|θ0|) is a penalty function and θ0 ⊆ θ. Possible well-known choices include the ridge
penalty Pλ(|θi|) = λθ2i , L

1 penalty Pλ(|θi|) = λ|θi|, bridge penalty Pλ(|θi|) = λ|θi|0<·<1, and
SCAD penalty which includes two tuning parameters (λ and γ) Pλ(|θi|) = λ|θi| if |θi| ≤ λ,
(θ2i − 2γλ|θi| + λ2)/(2γ − 2) if λ < |θi| ≤ γλ, λ2(γ + 1)/2 if |θi| > γλ Fan and Li (2001). The
tuning parameters can be estimated using cross validation Friedman et al. (2001).

In the arrowhead model, one can directly observe that for Kqi(x) = αqikqi(x), then θ0 =

{αq1}Nq=2. Therefore when αq1 → 0 =⇒ covf1i(x,x
′) =

∫∞
−∞Ki1(u)Kii(u − d)du → 0

and hence outputs y1 and yq=i will be predicted independently. Thus any shrinkage penalty will
encourage the arrowhead model to limit information sharing across unrelated output. Another
advantage besides automatic shrinkage is functional variable selection where the sparse elements in
{αq1}Nq=1 would identify which outputs are related to y1.

Similar to the arrowhead model, the pairwise approach also facilitates regularization and
automatic variable selection. For the structure illustrated in Fig. 2.2(a), we have covf1i(x,x

′) =∫∞
−∞K11(u)K1i(u− d)du+

∫∞
−∞Ki1(u)Kii(u− d)du. Therefore to encourage sparsity, a group

penalty PGλ on Ki1 and K1i is needed.

ℓP(θ1i;y1,yi, λ) = ℓ(θ1i;y1,yi) + PGλ (α1i, αi1). (2.10)
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One well-known option for PGλ is the group Lasso PGλ =
√
2λ||(α1i, αi1)

T ||2. Alternatively, one
can utilize the structure in Fig. 2.2(b) and instead of penalizing the kernels, one can regularize the
shared latent function X0. For instance, one can augment the covariance of X0 with a parameter α0

such that cov(X0(u), X0(u
′)) = α0δ(u − u′). Then, ℓP(θ1i;y1,yi, λ) = ℓ(θ1i;y1,yi) + Pλ(α0).

It can be directly verified that as α0 → 0 outputs y1 and yi are predicted independently.

Remark 9. In Section 2.5, we demonstrate the empirical benefits of the relaxation models and

having Q ≥ M latent functions. However, it is important to note that having sufficient latent

functions does not automatically imply that the MGP will perform well. It only says that the model

is flexible enough (spans the hypothesis space) to avoid negative transfer. Model estimation still

may suffer from getting stuck at critical points with bad generalization. Unfortunately, clearly

understanding the predictive capability of our model, albeit the effect of Q, is a tough question. It

requires tight generalization bounds, possibly as a function of Q. At this stage, only few papers were

able to get generalization bounds in GPs particularly for simple kernels Wang et al. (2020). Also

these bounds turn out to be loose in moderate to high dimensions. For these reasons, understanding

how Q affects prediction is a challenge. Hopefully a big crack to this problem will happen in either

deep learning (great progress is happening here - see Dziugaite and Roy (2017)) or kernel methods

soon, and hence opening up this challenge.

2.5 Simulations and Case Studies

Since negative transfer is a subject yet to be explored in MGP, we dedicate most of this section

towards a proof of concept for the: (1) impact of negative transfer, (2) need for sufficient latent
functions as shown in theorem 3, (3) advantageous properties of the proposed relaxations.

2.5.1 Illustration of Negative Transfer

2.5.1.1 Convolved Squared exponential Kernel

In this setting, we aim to illustrate theorem 3 using the well-known convolved squared exponen-
tial kernel in Álvarez and Lawrence (2011). We generate outputs y1, y2 and y3 from

y1(x) = 5 · sin(3x/2) + 3 + ϵ1(x)

y2(x) = 5 · sin(x)− 3 + ϵ2(x)

y3(x) = x2/10− 5 + ϵ3(x)

where x ∈ R is evenly spaced in [0, 10], p1 = p2 = p3 = 20 and σ1 = σ2 = σ3 = 0.05. All
parameters are estimated by optimizing the log-likelihood function, i.e. ℓ(θ;y) = −log L(θ;y) =
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1
2
⟨Y , (Cf ,f +Σ)−1⟩ + 1

2
log|Cf ,f +Σ|. In Table 2.1 we report the means squared error (MSE),

averaged over the 3 outputs, on p = 70 uniformly spaced points in [0, 10] when Q = 1, 2, 3 and 4.
Table 2.1 provides many interesting insights. Indeed from the function specifications, it is clear
that they have very different shape and length scales (i.e., frequency and amplitude). As a result,
when using one or two latent functions negative transfer leads to large predictive errors. It is also
noticeable that the result of using Q = 4 does not have much difference with that Q = 3. This
confirms our theorem which implies that with at least N latent functions an MGP is capable of
avoiding negative transfer.

Table 2.1: Predictive error with varying Q

Q 1 2 3 4

MSE 25.183 11.464 0.00159 0.00157

2.5.1.2 Spectral Kernel

The immediate follow up question is what if we use the recently proposed, more flexible class
of spectral kernels. The aim is to illustrate that as shown in Lemma 22, avoiding negative transfer is
mainly independent of what kind of kernel we use, i.e. even if we use a more flexible kernel. We
use the same data with that in setting 2.5.1.1. The covariance function is given as:

covfij(x, x
′) =

Q∑
q=1

aqiaqj
2

√
π

σ2
qi + σ2

qj

H(d)

where H(d) = eA1(d) cos (θ1d) + eA2(d) cos (θ2d). Formulation of Ai(d) and θi, i = 1, 2 are
given in Appendix C. This covariance is the result of a convolution across spectral kernels.

(a) one latent function (b) three latent functions

𝑦𝑦1

𝑦𝑦2𝑦𝑦3

Figure 2.3: Illustration of predictions using a spectral kernel
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The predictive results for the three outputs are illustrated in Fig. 2.3. The results confirm that
even with a flexible kernel, negative transfer will detrimentally affect model performance without
enough latent functions. Indeed in Fig. 2.3(a) one can observe that y1(x) and y3(x) have larger
length scales and hence are smoother. As a results when Q = 1, output y1(x) is forced to have a
larger length scale in lieu of the two other outputs. This however, can be avoided with a sufficient
number of latent functions as shown in Fig. 2.3(b).

2.5.2 Role of Regularization

Still under the setting of Sec 2.5.1.1, we try to verify theorem 3 and the impact of Pλ on
automatic selection of related output. We use the pairwise model described in Fig. 2.2(b) where
two bivariate submodels are used to predict y1: (y1, y2) and (y1, y3). The covariance function of y1
and yi (i = 2, 3) constructed using Fig. 2.2(b) are given as

covf11(d) = α2
11 exp{−

d2

4 · l211
}+ α2

01 exp{−
d2

4 · l201
}+ σ2

covfii(d) = α2
ii exp{−

d2

4 · l2ii
}+ α2

0i exp{−
d2

4 · l20i
}+ σ2

covf1i(d) = α01α0i

√
2|l01l0i|
l201 + l20i

exp{−1

2

(d− µ)2

l201 + l20i
}

(2.11)

We applied the pairwise model with a regularization term respectively to the data. For the
penalty we use Pλ(α0) = λ|α01 · α0i| where α0 = (α01, α0i)

T and i = 2, 3. Table 2.2 shows the
estimated parameters. Note that here we use the structure described in Fig. 2.2(b), hence as long
as one of α01 and α0i is penalized to be 0, then the negative transfer between y1 and yi could be
avoided, for i = 2, 3.

Table 2.2: Estimated parameters for the regularized pairwise model

pair α01 α0i l01 l0i

(y1, y2) 8.27 e-7 1.91 6.61 -1.21

(y1, y3) -3.27 e-6 0.93 2.37 1.77

One can directly observe from Table 2.2 that when adding regularization on θ0, αi1 is shrunk to
nearly zero in both submodels. This implies that covf1i(d) ≈ 0 ∀x and i ∈ {2, 3} and hence y1 is
predicted independently. This not only confirms that regularization can limit information sharing but

24



also illustrates that in the proposed MGP models, one can automatically perform variable selection
(cluster the outputs that ought to be predicted independently). A user might then choose to perform
a separate MGP on the selected subsets. To the best of our knowledge this is the first model that can
achieve simultaneous estimation and functional selection for non-separable and dependent GPs.

2.5.3 Illustration with Subsets of Correlated Outputs

2.5.3.1 Low Dimensional Setting

We then study the case when subsets of outputs are correlated. We first perform inference
in a low dimensional regime to compare with the full MGP that does not face the challenge of
large complexity and extremely high dimensional parameter space. We generate outputs y(j)i (x) =

f
(j)
i (x) + ϵ

(j)
i (x) from f

(1)
i (x) = x2/(0.8 · (1 − x)) for i ∈ {1, 2}; f (2)

i (x) = x/(1 − x) for i ∈
{3, 4}; f (3)

i (x) = 2 · x2 for i ∈ {5, 6}; f (4)
i (x) = x3 for i ∈ {7, 8}.

Figure 2.4: Prediction comparison for y1(x)

Here we focus on predicting output y1, using the following models: (1) MGP − Q where
Q = 1, 4 and 8 respectively, (2) Pairwise model where predictions are combined using the robust
product of experts in Deisenroth and Ng (2015), (3) Arrowhead model, (4) A univariate GP on y1,
(5) A bivariate GP with outputs y1 and y2 (i.e. outputs in y(1)i (x) ) denoted as MGP− sub.

The main difference between MGP − 8 and GP lies in whether there is information sharing
among the outputs or not. GP represent the result when the model is only trained using the data
from y1. However, MGP−8 represents the result when we model y1, y2, · · · , y8 together as a MGP

model using Q = 8 latent functions.
We use p = 7, σi = 0.1 for i = 1, 2 and σi = 0.01 for i = 3, 4 · · · , 8. The convolved squared
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exponential kernel in Alvarez and Lawrence (2009) is used. Results for the mean squared error
(MSE) over p = 30 uniformly spaced points in [0, 0.8] are given in Fig. 2.4 where the experiment
is replicated 30 times. Also Tukey’s multiple comparison test is done and only significant results
are reported in the discussion below. The first result to observe is that MGP− sub outperformed
MGP− 1 which confirms that negative transfer occurred since when outputs from y

(1)
i are analyzed

separately they produce better predictive results. However the key observation is that the pairwise
and arrowhead models outperform MGP− 1. This is because, when learning an output from y

(1)
i ,

both pairwise and arrowhead models can leverage the correlation with other outputs and still avoid

negative transfer evidenced through MGP−1. Also both proposed latent structures had comparable
performance with MGP − 8, which confirms their capability to provide competitive predictive
results with lower number of parameters and computational complexity. Another interesting result
is that MGP−4 and MGP−8 have similar performance. Indeed, this is expected based on theorem
3, where if we have M distinct subsets we only need Q =M to avoid negative transfer. However in
reality M is not given in advance; which is why N latent functions are needed. To this point, we
highlight the remark below.

Remark 10. Estimating M beforehand, i.e., defining how to cluster or what aspects of the functions

to cluster upon, is very hard. As shown in the simulation above, even if we cluster the functions

based on their generating latent function, MGP-sub performs worse than our approach. Recall,

MGP-sub is equivalent to a pre-processing step where only outputs from the same function are

modeled together. This is because, outputs from different functions have common knowledge to

share.

For instance, assume we have sin(·) and cos(·) functions. A preprocessing clustering approach

will separate those two functions. Yet, an MGP will see the commonalities in both the length and

shape scale of the sin(·) and cos(·) functions and hence borrow strength between them. As such,

clustering should be done with the fact that an MGP will be used afterward, in mind. Theoretically,

clustering should be done based on an MGP and then a separate MGP is fitted on the clusters.

This is what our approach does, yet without doing it in two steps to allow error propagation.

2.5.3.2 Moderate Dimensional Setting

In this setting we aim to compare our proposed structures when the number of parameters is
significantly increased. Specifically N = 20 and N = 50 outputs are used. For the N = 20 setting,
outputs are generated from a GP with zero mean and covyii(x, x

′) = α2
i exp((x − x′)2/2 · l2i ) +

σ2
i δ(x, x

′) under; αi = 4, li = 1, σi = 0.005 for i = 1, · · · , 5; αi = 1, li = 4, σi = 0.0001 for i =
6, · · · , 12; αi = 4, li = 1, σi = 0.001 for i = 13, · · · , 20.

For N = 50 setting, we generate 50 outputs from a GP with mean zero and covyii (x, x
′) =
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α2
i exp

(x−x′)2

2·l2i
+ σ2

i δ (x, x
′) under the following setting

αi = 4, li = 1, σi = 0.001 for i = 1, 2, · · · , 9

αi = 1, li = 4, σi = 0.0001 for i = 10, · · · , 19

αi = 1, li = 8, σi = 0.0001 for i = 20, · · · , 29

αi = 8, li = 1, σi = 0.001 for i = 30, · · · , 39

αi = 3, li = 1, σi = 0.005 for i = 40, · · · , 50

We have 15 points evenly spaced in [0, 3] and we randomly choose 8 points from them as training
data and the left 7 points are testing points. For the full MGP model in this setting, we use 20 latent
functions to construct the model.

Similar to the setting in Sec. 2.5.3.1 we test on y1 under 30 replications. The results for N = 20

are shown in Fig. 2.5a. From the result we can see that MGP− 3, MGP− 20 and the arrowhead
model yield similar results (also confirmed via Tukey’s test). This once again confirms that the
arrowhead model has competitive performance and that with enough latent functions one can
avoid negative transfer. Yet the interesting result is that the pairwise model showed much better
performance. This is intuitively understandable as in each pair the number of estimated parameters
is very small and thus one can except better estimators compared to the competing models. This
fact is further illustrated through the results of N = 50 shown in Fig. 2.5b.

Arrowhead ℳ𝒢𝒢𝒢𝒢 − 1 ℳ𝒢𝒢𝒢𝒢 − 20 ℳ𝒢𝒢𝒢𝒢 − 3 Pairwise

0.00

0.10

0.20

0.30

(a) Moderately Large Parameter Space

Arrowhead Pairwiseℳ𝒢𝒢𝒢𝒢 − 20

0.0

0.1

0.2

0.3

(b) Large Parameter Space

Figure 2.5: Predictive error on moderate and large parameter space

In Fig. 2.5b for the MGP we use Q = 20 thus we have QNω + N = 2050 parameters to
estimate. The results show that with N = 50 there is a huge decrease in predictive performance.
This result is expected as it is extremely challenging to obtain good parameter estimates specifically
for a GP likelihood function which is known to be highly non-linear with many local critical points
with bad generalization power. Indeed, similar decrease in performance in a high dimensional
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parameter space has been reported in Li and Zhou (2016) and Li et al. (2018). Here both the
arrowhead and pairwise models offer a solution that, not only scales with any N , but also can lead
to better performance. We note that on average MGP−20 with N = 50 took ≈ 24 hours to estimate
despite the computational complexity being relatively small with P = 400. While the arrowhead
model took ≈ 30 minutes and ≈ 30 seconds for the pairwise model. In practice its very common to
have N >> 50. This indeed exacerbates the challenge above and further highlights the needs for
the proposed relaxation models.

2.5.3.3 Large Dimensional Setting

In this setting we aim to show that the proposed pairwise model can be applied to a very large
N by parallelization. We generate 1000 outputs from a GP with mean zero and covyii (x, x

′) =

α2
i exp

(x−x′)2

2·l2i
+σ2

i δ (x, x
′) with different values of αi, li and σi. Specifically, we generate 1000 out-

puts from 10 different groups, where α = {4, 1, 1, 8, 3, 10, 1, 5, 20, 3}, l = {1, 4, 8, 1, 2, 1, 2, 4, 1, 3}
for each group. We generate 40 points evenly spaced in [0, 3] and we randomly choose 10 points
from them for training and the remaining 30 points are for testing. Under this setting, the original
MGP model has QNω+N = 30000 parameters to be estimated. However, the pairwise model can
be easily applied in solving this problem by inferring the bivariate GPs in parallel. The following
result is based on the structure in Fig. 2.2(a). We replicate the simulation 100 times and show
the mean MSE and standard deviation for the prediction of y1, · · · , y1000 using different penalty
methods. We also compare with using independent GPs. The results are shown in Table 2.3.
Besides the significant improvement in performance compared to individual modeling, it is critical
to note that the pairwise model took less than 10 minutes to obtain the predictive results for all 1000
outputs in a single simulation run.

Table 2.3: Mean MSE and std for the predictions of y1, · · · , y1000 using different penalties based on
the pairwise model and 1000 individual GPs. The result is based on 100 replications.

model (penalty) pairwise (ridge) pairwise (bridge) pairwise (SCAD) GP

MSE 0.38 0.32 0.33 1.59

std 0.11 0.09 0.08 0.33

2.5.4 Case Studies

2.5.4.1 Exchange Rate Data

We perform a case study on the pacific exchange rate service (http://fx.sauder.ubc.ca/
data.html). Our goal is to predict the foreign exchange rate compared to the United States dollar
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currency. This dataset is specifically chosen as research has shown that only subsets of exchange
rates are correlated Reboredo et al. (2014). Here we provide MSE and Negative Loglikelihood
(NLL) using a two phase cross-validation on two key rates during the 157 weeks (each week is a
datapoint) from 2017 to 2020. Once again the results confirm the need for the proposed relaxation
models as parameter estimates tend to deteriorate as the parameter dimension increases. Fig. 2.6
provides illustrations of the prediction results of KRW/USD and MXN/USD using pairwise model
and arrowhead model.

Figure 2.6: illustrations on exchange rate data

Table 2.4: Predictive Error of MXN/USD and KRW/USD

model pairwise arrowhead MGP−10

(MSE, NLL) of MXN/USD (0.040, 70) (0.031, 102) (0.217, 747)

(MSE, NLL) of KRW/USD (0.015, 53) (0.035, 66) (0.322, 719)

2.5.4.2 Parkinson Data

We use the Parkinson data set to predict the disease symptom score (motor UPDRS and
total UPDRS) of Parkinson patients at different times. The data set is available on http://
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archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring. At each time,
we randomly choose 10 patients from the data set to model a MGP model with 10 outputs and
randomly split 60% data of each patient as training sets and 40% as testing sets. Our goal is to
predict the motor UPDRS and total UPDRS of the 10th patient in each round. We run our model for
70 times. Fig. 2.7 shows the predictive error using different models.

ℳ𝒢𝒢𝒢𝒢 −10 ℳ𝒢𝒢𝒢𝒢 −10Arrowhead ArrowheadPairwise Pairwise

0

0.2

0.4

0

1

0.6

0.8

0.5

1.5

2
1

Motor UPDRS Total UPDRS

Figure 2.7: Parkinson data set

2.6 Conclusion

This chapter addresses the key challenge of constructing an MGP that can borrow strength
across outputs without forcing correlation. We show that this is achieved by having a sufficient
number of latent functions regardless of the kernel used. We then propose two latent structures
that can avoid negative transfer and maintain estimation in a low-dimensional parameter space.
A key feature of our structures is that they allow functional variable selection via regularization.
Further analysis into the use of such latent structures and other dependent GP models for selection
in functional data settings or probabilistic graphical models can be an interesting topic to explore.
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CHAPTER 3

Bayesian Inference of Spatially Varying Correlations via the Thresholded
Correlation Gaussian Process

3.1 Introduction

Multimodal neuroimaging is now prevailing in neuroscience research, where different types
of brain images are collected for a common set of subjects. Common imaging modalities in-
clude anatomic magnetic resonance imaging (MRI), resting-state or task-based functional MRI
(fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), among many others.
Multimodal neuroimaging analysis aggregates such diverse but often complementary information,
consolidates knowledge across different modalities, and produces improved understanding of neuro-
logical development or disorders (Uludağ and Roebroeck 2014). Multimodal analysis is receiving
increasing attention in numerous other scientific applications as well, e.g., the multi-omics studies
(Richardson et al. 2016).

A central question in multimodal neuroimaging analysis is to understand the association between
two imaging modalities and to identify brain regions where such an association is statistically
significant. This question is of great scientific interest. For instance, Zhu et al. (2014a) surveyed
and showed joint analysis of fMRI and DTI reveals important interplays between brain functions
and structures. Cavaliere et al. (2018) showed fMRI and PET together improve the characterization
of patients with consciousness disorder. Li et al. (2019) jointly analyzed two PET modalities with
different nuclear tracers, and identified brain regions where the tau protein and glucose metabolism
are strongly correlated to facilitate the understanding of Alzheimer’s disease pathology. Harrewijn
et al. (2020) studied resting-state and task-based fMRI, and found that functional connectivities
during the rest and the dot-probe task are positively correlated, which conforms to and further
extends the current studies of human cognitive behaviors.

In this article, we propose a Bayesian nonparametric spatially varying correlation model to
address the question of estimation and inference of spatial regions where two imaging modalities are
significantly correlated. We build our model based on the thresholded correlation Gaussian process,
which ensures piecewise smoothness, sparsity, as well as jump discontinuity of spatially varying
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correlations, and works well even when the number of subjects is limited or the signal-to-noise ratio
is small. We study the identifiability of our model, establish the large support property, and derive
the posterior consistency and selection consistency. We derive the full conditional distributions,
propose a Gibbs sampling algorithm that is highly efficient, and propose a hybrid mini-batch
Markov chain Monte Carlo (MCMC) to further improve the computational efficiency. We apply our
proposed method to jointly analyze the resting-state and working memory task-based fMRIs from a
study of the Human Connectome Project (HCP), and identify a number of scientifically meaningful
brain regions that offer useful insights for cognitive neuroscience research.

Our proposal is related to but also substantially different from the existing literature on multi-
modal correlation analysis as well as Bayesian modeling and inference.

For multimodal correlation analysis, there are, broadly speaking, three categories of solutions.
The first category is voxel-wise analysis, which estimates the correlation at each voxel separately,
then conducts massive voxel-wise significance tests with false discovery control. This approach is
computationally easy to implement, but it does not incorporate any spatial or scientific knowledge
into statistical inference. Besides, the number of voxels, and thus the number of tests, is huge,
whereas the number of subjects in most studies is limited. As a result, voxel-wise analysis often
suffers from a particularly low detection power. Although the random field theory has been
suggested for multiple testing correction so to improve voxel-wise analysis (Worsley et al. 2004),
it does not fully address the low power issue, and is also not directly applicable in our problem
due to the complex structure of spatially varying correlations. The second category is region-wise
analysis, which first summarizes, usually by averaging, the imaging signals within each brain
region defined by some pre-specified brain atlas, then carries the correlation analysis at the region
level. Although region-wise analysis generally enjoys a better power than voxel-wise analysis, it
is sensitive to the choice of brain atlas. More importantly, the voxels within the same region may
not always share the same correlation patterns. Averaging the signals by regions may weaken or
cancel out significant correlations. The third category merges voxel-wise and region-wise analysis.
In particular, Li et al. (2019) adapted the spatially varying coefficient model, which is widely used
in neuroimaging analysis but generally for a different purpose (e.g., Zhu et al. 2014b, Li et al. 2017,
2020b), to the problem of multimodal correlation analysis. They proposed a multi-step procedure,
which first fits a spatially varying coefficient model and obtains a smoothed correlation estimate at
the voxel level, then applies a graph clustering algorithm to partition the brain into regions with
homogeneous correlations, and finally carries out a likelihood ratio test at the region level to identify
the regions where two imaging modalities are significantly correlated. However, this procedure
involves multiple tuning parameters, and the testing results may be sensitive to their choices. In
addition, due to multiple steps of estimation, it is difficult to establish the theoretical guarantees for
the final inference method.
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For Bayesian modeling and inference, our proposal also makes a number of useful contributions.
First of all, we propose a new Bayesian nonparametric prior, i.e, the thresholded correlation Gaussian
process, for spatially varying correlation coefficients that are sparse and piecewise smooth over the
space. It is constructed under a Bayesian hierarchical model, by thresholding a Gaussian process
of the variances for another two correlated Gaussian processes. Our model targets the second-
order correlations between two modalities. Relatedly, Bhattacharya and Dunson (2011) proposed
a multiplicative Gamma process shrinkage prior with latent factors to model high-dimensional
covariance matrices. Nevertheless, their method places the sparsity on the individual latent factors,
whereas we need to impose the sparsity at the voxel level, and the sparsity on the latent factors does
not lead to the sparsity on the voxels. In addition, our model hinges on the idea of thresholding a
Gaussian process. A similar strategy has been adopted in prior constructions for modeling sparse
regressions or spatially varying functions, i.e., either thresholding Gaussian random variables
(Nakajima and West 2013, Ni et al. 2019, Cai et al. 2020), or thresholding Gaussian processes (Kang
et al. 2018, Wu et al. 2022b). However, none of those priors are readily applicable for Bayesian
analysis of spatially varying correlations as in our setting.

Second, we contribute to posterior computations for Bayesian models with thresholding type
priors. Most existing solutions resort to gradient based MCMC algorithms (Roberts and Rosenthal
1998, Girolami and Calderhead 2011), where a smooth approximation of the thresholding function
is required to get the analytically tractable first derivative (Cai et al. 2020, Wu et al. 2022b). There
have also been recent advances in developing new sampling algorithms (e.g., Ahn et al. 2012, Chen
et al. 2014, Nishimura et al. 2020). However, these algorithms usually converge relatively slowly,
and require multiple tuning parameters. By contrast, instead of using a gradient-based MCMC, we
successfully derive the full conditional distributions, and propose a Gibbs sampler algorithm that is
highly efficient. Besides, the proposed posterior computation algorithm is fairly general, and can be
applied to other Bayesian models with thresholding priors as well.

Finally, we are among the first to study the theoretical properties of Bayesian analysis of spatially
varying correlations. Particularly, we show that the proposed thresholded correlation Gaussian
process has a large prior support on a wide class of sparse, piecewise smooth, and spatially varying
correlation functions. We establish the posterior consistency based upon the foundational work of
Choi (2005), Ghosal and Roy (2006), Tokdar and Ghosh (2007). However, it is far from a simple
extension, as it involves a two-level Bayesian hierarchical model, multiple Gaussian processes, as
well as some thresholding functions. To address these challenges, we propose an equivalent model
representation for the transformed data, where the spatially varying correlation coefficients become
model parameters that specify the mean of the transformed data. This equivalent formulation
substantially simplifies the theoretical analysis in the original model. In light of the sparsity, we
further establish the selection consistency of activation regions with nonzero correlation coefficients.
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The rest of the article is organized as follows. We develop our spatially varying correlation
model in Section 3.2. We derive the theoretical properties in Section 3.3, and the Gibbs sampling
algorithm in Section 3.4. We carry out the simulations in Section 3.5, and analyze the fMRI data in
Section 3.6. We relegate all technical proofs to the Supplementary Material.

3.2 Spatially Varying Correlation Model

In this section, we first propose our Bayesian spatially varying correlation model and the
correlation Gaussian process. We then present an equivalent model formulation.

3.2.1 Nonparametric model and correlation Gaussian process

Suppose the observed data consist of n subjects, each with two imaging modalities. Suppose
these two imaging modalities are well aligned in a d-dimensional compact spatial space B ⊂ Rd,
which is generally true for multimodal neuroimaging. Suppose each image consists of measurements
at m voxel locations Bm = {v1, . . . , vm} ⊆ B, and we often use v, v′ ∈ B to denote some generic
voxel locations in B. Let Y1,i(v) and Y2,i(v) denote the two imaging measures at location v, for
subject i = 1, . . . , n. We consider the following model:

Yk,i(v) = µk,i(v) + εk,i(v), εk,i(v) ∼ N
(
0, τ 2k (v)

)
, for k = 1, 2, (3.1)

where µk,i(v) are the spatially varying functions that represent the expected values of Yk,i(v), εk,i(v)
are the random noises that are mutually independent over k, i, v, and follow a normal distribution
N(·, ·) with mean zero and variance τ 2k (v), k = 1, 2.

We next propose a novel prior model for µ1,i(v) and µ2,i(v).i.e.,

µ1,i(v) = η+,i(v) + η−,i(v), µ2,i(v) = η+,i(v)− η−,i(v), for i = 1, . . . , n,

η+,i ∼ GP(0, κ+), η−,i ∼ GP(0, κ−),
(3.2)

where η+,i and η−,i are two independent Gaussian processes GP(·, ·), with mean zero and covariance
kernel κ+(v, v′) and κ−(v, v′), v, v′ ∈ B, which capture the positive and negative correlations
between the two modalities, respectively. We assume κ+ and κ− are of the form,

κ+(v, v
′) = σ+(v)σ+(v

′)κ(v, v′), κ−(v, v
′) = σ−(v)σ−(v

′)κ(v, v′), (3.3)

where σ2
+(v) and σ2

−(v) are the spatially varying variance functions for η+,i(v) and η−,i(v), respec-
tively, and κ(·, ·) is a stationary correlation kernel function. There are various choices for the kernel
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function κ(·, ·); for instance, we employ a Matern kernel in our implementation,

κ(v, v′) =
21−γ1

Γ(γ1)

(√
2γ1

∥v − v′∥
γ2

)γ1
Bγ1

(√
2γ1

∥v − v′∥
γ2

)
, (3.4)

where Γ(·) is the gamma function, Bγ1(·) is the modified Bessel function of the second kind, and γ1
and γ2 are two positive hyperparameters that can be determined by the Bayes factor. To impose the
sparsity as well as to ensure the identifiability, we require that σ2

+(v)σ
2
−(v) = 0. In other words,

only one of the two terms σ2
+(v) and σ2

−(v) is nonzero.
Finally, we impose that the variance functions are of the form,

σ+(v) = Gω{ξ(v)}, σ−(v) = Gω{−ξ(v)},

ξ(v) ∼ GP(0, κ),
(3.5)

where Gω(x) = xI(x > ω) is a thresholding function with the thresholding parameter ω ≥ 0

and I(·) the indicator function, ξ(v) is a spatially varying function that determines both σ+(v)
and σ−(v) through Gω(x)(·). As a prior specification, we assume ξ(v) follows another Gaussian
process with mean zero and correlation kernel κ(·, ·), and κ(·, ·) is the same as that in (3.3). Note
that the construction in (3.5) ensures σ2

+(v) and σ2
−(v) are uniquely determined by ξ(v), and

σ2
+(v)σ

2
−(v) = 0.

Following the prior specifications (3.2) to (3.5), and integrating out µ1,i(v) and µ2,i(v) in (3.1),
we obtain the spatially varying correlation function between Y1,i(v) and Y2,i(v) of the form,

ρ(v) = Corr
{
Y1,i(v), Y2,i(v)

∣∣ ξ(v), τ 21 (v), τ 22 (v)}
=

G2
ω{ξ(v)} −G2

ω{−ξ(v)}√
G2
ω{ξ(v)}+G2

ω{−ξ(v)}+ τ 21 (v)
√
G2
ω{ξ(v)}+G2

ω{−ξ(v)}+ τ 22 (v)
.

(3.6)

We say that ρ(v) in (3.6) follows a thresholded correlation Gaussian Process, as formally defined
below.

Definition 11. Given any nonzero spatially varying variance functions τ 21 (v) and τ 22 (v), and the

thresholding parameter ω ≥ 0, suppose ξ(v) ∼ GP(0, κ), then ρ(v) in (3.6) follows a thresholded

correlation Gaussian process, denoted as ρ ∼ TCGP(ω, κ, τ 21 , τ
2
2 ).

Under this construction, with probability one, a correlation Gaussian process is between -1 and
1, and enjoys both piecewise smoothness and sparsity.

Our proposed model enjoys several benefits. It encompasses a large class of spatially varying
functions that are piecewise smooth, sparse, and jump discontinuous, the features that we commonly
encounter in neuroimaging data (Zhu et al. 2014b). Moreover, instead of specifying a voxel-wise
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prior, our thresholded correlation Gaussian process incorporates the spatial information of the image,
leading to potentially more accurate detection.

3.2.2 Equivalent model representation

To facilitate both the theoretical investigation and posterior computation, we next derive an
equivalent representations of model (3.1) under the prior specifications (3.2) to (3.5).

We first note that, from (3.5) and (3.6), σ+(v) and σ−(v) can be uniquely determined by ρ(v),
in that, given τ 21 (v) and τ 22 (v),

σ+(v) = Gω{ξ(v)} = s
{
ρ(v); τ 21 (v), τ

2
2 (v)

}
,

σ−(v) = Gω{−ξ(v)} = s
{
−ρ(v); τ 21 (v), τ 22 (v)

}
, where (3.7)

s(x; t1, t2) =

√
2t1t2√

(t1 − t2)2 + 4x−2t1t2 − (t1 + t2)
I(x > 0), for any x ∈ [−1, 1], t1, t2 > 0.

We next consider a transformation of the observed images {Y1,i(v), Y2,i(v)}, the average
Y+,i(v) = {Y1,i(v) + Y2,i(v)}/2, and the contrast Y−,i(v) = {Y1,i(v)− Y2,i(v)}/2. Denote

E+,i(v) =
η+,i(v)

σ+(v)
, E−,i(v) =

η−,i(v)

σ−(v)
. (3.8)

By (3.7), model (3.1) is equivalent to

Y+,i(v) = s
{
ρ(v); τ 21 (v), τ

2
2 (v)

}
E+,i(v) + ε+,i(v),

Y−,i(v) = s
{
−ρ(v); τ 21 (v), τ 22 (v)

}
E−,i(v) + ε−,i(v),

(3.9)

where ε+,i(v) and ε−,i(v) are random noises that are independent over i, v, and follow a normal
distribution with mean zero and variance {τ 21 (v) + τ 22 (v)}/4. The covariance between ε+,i(v) and
ε−,i(v) is {τ 21 (v)− τ 22 (v)}/{τ 21 (v) + τ 22 (v)}.

Following the prior specifications (3.2) to (3.5), we have the equivalent prior specifications for
E+,i(v), E−,i(v), and ρ(v) as,

E+,i ∼ GP(0, κ), E−,i ∼ GP(0, κ), ρ | τ 21 , τ 22 ∼ TCGP(ω, κ, τ 21 , τ
2
2 ), (3.10)

where κ(·, ·) is the correlation kernel as specified in both (3.3) and (3.5), and in our modeling
process, we use the Matérn kernel as specified in (3.4) for κ(·, ·).

Figure 3.1 gives a graphical illustration of our nonparametric Bayesian spatially varying cor-
relation model. In our subsequent theoretical and numerical analysis, we focus on the equivalent
transformed model.
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Figure 3.1: Graphical illustration of the proposed Bayesian spatially varying correlation model. The
transformed image Y±,i(v) are modeled based on (3.9).

3.3 Theory

In this section, we study the model identifiability, derive the large support property, and establish
the posterior and selection consistency.

3.3.1 Notations and definitions

We begin with some notations and definitions. For any vector v = (v1, . . . , vd)
T ∈ Rd, let

∥v∥p =
(∑d

l=1 |vl|
p
)1/p

denote the Lp-norm, p ≥ 1, and ∥v∥∞ = maxdl=1 |vl| the supremum

norm. For any real function f on the region B, let ∥f∥p =
{∫

B |f(v)|
p dv

}1/p denote the Lp-
norm, p ≥ 1, and ∥f∥∞ = supv∈B |f(v)| be the supremum norm. Suppose B is a compact
convex set. Recall there are n subjects, and m spatial locations for each image. Denote Y± =

{Y T
±,1, . . . , Y

T
±,n}T, where Y±,i = {Y±,i(v1), . . . , Y±,i(vm)}T. Furthermore, denote our parameter

of interest as θ(·) =
{
ρ(·), ET

+(·), ET
−(·)

}T, where E±(·) = {E±,1(·), . . . , E±,n(·)}T, and the true
parameter θ0(·) =

{
ρ0(·), ET

+,0(·), ET
−,0(·)

}T.

Definition 12. Define Cq(B) as a set of differentiable functions of order q defined on B, such that a

function f ∈ Cq(B) has the partial derivative,

Dbf(v) =
∂∥b∥1f

vb11 . . . vbdd
(v) =

∑
∥a∥1+∥b∥1≤q

Db+af(u)

a!
(v − u)a +Rq(v, u),

where b = (b1, . . . , bd)
T ∈ Zd+, a ∈ Zd+, Z+ denotes the set of non-negative integers, u ∈ Rd, and the
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remainder Rq(v, u) satisfies the following properties: (i) Given any point v0 of B and any constant

ϵ > 0, there is a constant δ > 0, such that if v and u are any two points of B with ∥v − v0∥1 < δ

and ∥u− v0∥1 < δ, then |Rq(v, u)| ≤ ∥v − u∥q−∥b∥1
1 ϵ; (ii) If ∥Dbf∥∞ ≤ C <∞ for some constant

C, then |Rq(v, u)| ≤ (C∥v − u∥q+1
1 )/(q + 1)!.

Definition 13. Define Θρ =
{
ρ(v) ∈ (−1, 1) : v ∈ B

}
as a collection of spatially varying cor-

relation functions that satisfy the following properties: (i) There exist two disjoint non-empty

open sets R−1 and R1 with R1 ∩ R−1 = ∅, such that ρ(v) is smooth over R−1 ∪ R1, i.e.,

ρ(v)I
[
v ∈ R−1 ∪R1

]
∈ Cα

(
R−1 ∪R1

)
, with α = ⌈d/2⌉ + 1, the least integer greater than

or equal to d/2; (ii) ρ(v) = 0 for v ∈ R0, ρ(v) > 0 for v ∈ R1, and ρ(v) < 0 for v ∈ R−1, where

R0 = B − (R−1 ∪R1) and R0 − (∂R1 ∪ ∂R−1) ̸= ∅; (iii) ρ(v) is a discontinuous function and

is bounded away from zero for any v /∈ R0, i.e., γ = infv/∈R0 |ρ(v)| > 0.

Definition 14. Define ΘE = {E(v) ∈ Rn : ∥E(v)∥22 = Cv} for some constant Cv <∞.

In summary, Θρ is the collection of all piecewise smooth, sparse, and jump discontinuous
correlation functions ρ(v) defined on B, where γ in Definition 13 represents the minimum nonzero
effect size of the correlation functions that have discontinuity jumps, and ΘE is the collection of the
spatially varying functions E(v) that satisfy some second moment constraints.

3.3.2 Model identifiability and large support

We first show that model (3.9) is identifiable, then show that the prior specification in (3.10) has
a large support. We begin with a regularity condition.

Assumption 14.1. The true correlation function ρ0 is piecewise smooth, sparse, and jump discontin-

uous, in that ρ0 ∈ Θρ. In addition, the true functions E+,0 and E−,0 have constant second moments

with respect to the location v, i.e., E+,0 ∈ ΘE and E−,0 ∈ ΘE .

Assumption 14.1 essentially specifies the class of true functions that we target. Denote V(ρ) =
{v : ρ(v) ̸= 0}, and V(ρ′) = {v : ρ′(v) ̸= 0}. The next proposition shows that model (3.9) is
identifiable. Specifically, ρ(v) is identifiable for all v ∈ B, and E+(v), E−(v) are identifiable for
v ∈ V(ρ) ∪ V(ρ′). The identifiability of E+(v) and E−(v) is constrained on V(ρ) ∪ V(ρ′) because
when ρ(v) = 0, s{ρ(v)} = 0 in model (3.9).

Proposition 15. (Identifiability) Suppose Assumption 14.1 holds. Then model (3.9) is identifi-

able. That is, if the probability distributions of {Y+, Y−} under θ =
{
ρ, ET

+, E
T
−
}T and θ′ ={

ρ′, E ′
+

T, E ′
−

T
}T are equal, then we have ρ = ρ′ for v ∈ Bm, and θ = θ′ for v ∈ V(ρ) ∪ V(ρ′).

To ensure the large-support property, we introduce another condition on the correlation kernel
function κ(·, ·). The same condition was imposed in Ghosal and Roy (2006) as well.
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Assumption 15.1. The correlation kernel κ(·, ·) satisfies that, for any v ∈ B, κ(v, ·) has continuous

partial derivatives up to order 2α + 2, where α = ⌈d/2⌉ + 1. In addition, suppose κ(v, v′) =∏d
l=1 κl(vl − v′l; νl), for any v = (v1, . . . , vd)

T, and v′ = (v′1, . . . , v
′
d)

T ∈ [0, 1]d, where κl(·; νl)
is a continuous, nowhere zero, symmetric density function on R with parameter νl ∈ R+, for

l = 1, . . . , d.

The next theorem shows that our prior specification in (3.10) is desirable, in that it has support
over a large class of sparse, piecewise smooth and jump discontinuous spatially varying correlation
functions. That is, there is a positive probability that θ =

{
ρ, ET

+, E
T
−
}T concentrates on an arbitrarily

small neighborhood of any true parameter in the parameter space Θ = Θρ ×ΘE ×ΘE .

Theorem 16. (Large Support) Suppose Assumptions 14.1 and 15.1 hold. Under the prior specifica-

tion in (3.10), for any ϵ > 0, Π
(
∥θ − θ0∥∞ < ϵ

)
> 0, where Π(·) denotes a probability measure on

the Borel set of Θ.

3.3.3 Posterior consistency

Next, we establish the posterior consistency, then the selection consistency.

Assumption 16.1. There exist constants d/(2α) < ν0 < 1, C0 > 0, C1 > 0, and N ≥ 1, with

α = ⌈d/2⌉+ 1, such that C0n
d ≤ m ≤ C1n

2αν0 for all n > N .

Assumption 16.1 imposes that the number of spatial locations m should be of the polynomial order
of the sample size n. The lower bound indicates that m needs to be sufficiently large to ensure that
the posterior distribution of the spatially varying coefficient function concentrates around the true
value. The upper bound ensures that a sufficient amount of information is collected across subjects
to identify the population level true parameters.

The next theorem shows that, under the proposed prior, the posterior distribution of θ concen-
trates in an arbitrarily small neighborhood of the true parameter θ0, when the number of subjects n
and the number of spatial locations m are sufficiently large.

Theorem 17. (Posterior Consistency) Suppose Assumptions 14.1, 15.1 and 16.1 hold. Under model

(3.9) and the prior specification in (3.10), for any ϵ > 0, as m→ ∞ and n→ ∞,

Π
(
{θ ∈ Θ : ∥θ − θ0∥1 < ϵ}

∣∣Y+, Y−)→ 1 in P(m,n)
θ0

-probability,

where P(m,n)
θ0

denotes the distribution of {Y+, Y−} given the true parameter θ0, and Π(· | Y+, Y−)
denotes the posterior probability measure on the Borel set of Θ given data {Y+, Y−}.
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The next theorem shows that, with probability tending to one, our method can identify the
true activation regions that have positive correlations, negative correlations, and no correlations,
respectively, when both n and m tend to infinity.

Theorem 18. Suppose the same conditions in Theorem 17 hold. Then, as m→ ∞ and n→ ∞,

Π
(
sgn{ρ(v)} = sgn{ρ0(v)}, v ∈ B

∣∣Y+, Y−)→ 1 in P(m,n)
θ0

-probability,

where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 and sgn(0) = 0.

3.4 Posterior Computation

In this section, we first adopt the Karhunen-Loève expansion to simplify the model to a finite
number of parameters. We next derive the full conditional distributions of the model parameters,
and develop an efficient Gibbs sampling algorithm. We also propose a hybrid mini-batch MCMC to
further improve the computational efficiency.

3.4.1 Karhunen-Loève approximation

Model (3.9) involves three Gaussian processes, for E+,i(v), E−,i(v), and ξ(v), respectively, and
all hinge on the infinite dimensional correlation kernel function κ(·, ·). We first adopt the usual
strategy of Karhunen-Loève expansion to simplify the model to a finite number of parameters.
Specifically, consider the spectral decomposition of the kernel function,

κ (v, v′) =
∞∑
l=1

λlψl(v)ψl (v
′) ,

where {λl}∞l=1 are the eigenvalues in descending order, and {ψl(v)}∞l=1 are the corresponding
orthonormal eigenfunctions. By Mercer’s Theorem (Mercer 1909), we can represent the Gaussian
processes in our model by the Karhunen-Loève (KL) expansion,

E+,i(v) =
∞∑
l=1

ei,l,+ψl(v), E−,i(v) =
∞∑
l=1

ei,l,−ψl(v), ξ(v) =
∞∑
l=1

clψl(v).

where cl, ei,l,± are Karhunen-Loève coefficients. We further truncate the above expansions by
focusing on the leading L eigenvalues and eigenfunctions, where L can be determined following the
usual practice of principal components analysis that retains a certain percentage of total variation.
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Based on the Karhunen-Loève truncation, model (3.1) becomes,

Y+,i(v) = Gω

{
L∑
l=1

clψl(v)

}{
L∑
l=1

ei,l,+ψl(v)

}
+ ε+,i(v),

Y−,i(v) = Gω

{
−

L∑
l=1

clψl(v)

}{
L∑
l=1

ei,l,−ψl(v)

}
+ ε−,i(v).

(3.11)

Recall that Bm = {v1, . . . , vm} denotes the set of locations where the imaging data are observed,
and let Y = {Y1,i(v), Y2,i(v), i = 1, . . . , n, v ∈ Bm} denote the imaging data observed at the set of
voxels in Bm. Then all the parameters in our model include:

Θ̃ =
{
{cl}Ll=1,

{
{ei,l,+}Ll=1, {ei,l,−}Ll=1

}n
i=1
, {τ 21 (v), τ 22 (v)}v∈Bm , ω

}
. (3.12)

We specify their prior distributions as,

cl ∼ N(0, λl), ei,l,± ∼ N(0, λl), τ 21 (v), τ
2
2 (v) ∼ IG(aτ , bτ ), ω ∼ U(aω, bω), (3.13)

That is, we impose a normal distribution for the Karhunen-Loève coefficients cl, ei,l,±, where λl is
the eigenvalue of the kernel κ(v, v′) as specified above. We impose an inverse Gamma prior for
the variance terms τ 21 (v), τ

2
2 (v), with shape aτ and scale bτ , and we choose some small values for

aτ , bτ , so that this prior is non-informative. We also impose a uniform prior for the thresholding
parameter ω, with range from aω to bω, and we choose aω, bω based on the quantiles of |ξ(v)|v∈Bm .
It is also possible to consider other types of prior for ω, e.g., an exponential distribution. Note
that the conditional prior for ω allows it to be adaptively learnt in a fully Bayesian way in our
Gibbs sampling. This is different from the gradient based MCMC methods, which require a smooth
approximation of the thresholding function.

3.4.2 Gibbs sampling

We first present a general result that is useful for deriving the full conditional distributions of
some of our key parameters. We note that this result is both new and general, and can be applied to
deriving the Gibbs sampler for other types of models involving Gaussian process.

Proposition 19. Consider a random variable θ, and two sets of functions fp(θ) = a1pθ
2 + a2pθ +

a3p, and hk(θ) = b1kθ
2 + b2kθ + b3k, where a1j, a2j, a3j, b1k, b2k, b3k are some coefficients, p =
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1, . . . , P, k = 1, . . . , K. Suppose the density of θ is proportional to

exp

{
P∑
p=1

fp(θ)I(θ > Lp) +
K∑
k=1

hk(θ)I(θ < Uk)

}
, (3.14)

where Uk, Lp are some thresholding coefficients, p = 1, . . . , P, k = 1, . . . , K. Then,

(i) If at least one of {a1p, . . . , a1P , b1k, · · · , b1K} is not equal to 0, then θ follows a mixture of

truncated normal distributions.

(ii) If a1p = b1k = a2p = b2k = 0 for all p, k, and at least one of {a3p, . . . , a3P , b3k, . . . , b3K} is

not equal to 0, then θ follows a mixture of uniform distributions.

(iii) If a1p = b1k = 0 for all p, k, and at least one of {a2p, · · · , a2P , b2k, · · · , b2K} is not equal to 0,

then θ follows a mixture of exponential distributions.

We next derive the full conditional distributions of our model parameter Θ̃ in (3.12). Specifically,
we first derive the full conditionals of {cl}Ll=1 and ω, both of which are based on Proposition 19.
We then derive the full conditionals of {ei,l,±}L,nl=1,i=1 and {τ 21 (v), τ 22 (v)}v∈Bm , both of which have
closed forms thanks to their conjugate priors. Let Θ̃\θ denote the set of parameters in Θ̃ but without
θ.

The full conditional of cl is a mixture of truncated normal distributions, as we show in Section
B.3.2 of the Supplementary Material. This is because the density of cl is of the form,

π(cl | Y, Θ̃\cl) ∝ exp

 m∑
j=1

ψl(vj)>0

[
g+(cl; vj)I{cl > T+(vj)}+ g−(cl; vj)I{cl < T−(vj)}

]

+
m∑
j=1

ψl(vj)<0

[
g+(cl; vj)I{cl < T+(vj)}+ g−(cl; vj)I{cl > T−(vj)}

] .

Given the location vj , g±(cl; vj) are two quadratic functions of cl, and T±(vj) are two scalars, whose
detailed forms are given in Section B.3.2. If we set fp(θ) = g+(cl; vj), hk(θ) = g−(cl; vj) for
those locations vj satisfying ψ1(vj) > 0, and set fp(θ) = g−(cl; vj), hk(θ) = g+(cl; vj) otherwise,
then the density of cl satisfies the condition of Proposition 19(i), and thus it follows a mixture of
truncated normal distributions.

The full conditional of ω is a mixture of uniform distributions, as we show in Section B.3.3 of
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Algorithm 1 Gibbs sampling for TCGP
input: the observed imaging data Y = {Y1,i(v), Y2,i(v), i = 1, . . . , n, v ∈ Bm},

the kernel function κ(·, ·), the Karhunen-Loève truncation number L,
the prior hyperparameters aτ , bτ , aω, bω.

output: the posterior samples of Θ̃ = {{cl}Ll=1, {ei,l,±}
L,n
l=1,i=1, {τ 21 (v), τ 22 (v)}v∈Bm , ω}.

1: initialize Θ̃: sample Θ̃ from the prior distribution.
2: for t = 1, · · · , T do
3: parallel sample τk2(v) from the inverse Gamma distribution, v ∈ Bm, k = 1, 2.
4: for l = 1, . . . , L do
5: sample cl from the mixture of truncated normal distributions.
6: sample ω from the mixture of uniform distributions.
7: sample ei,l,± from the normal distribution, i = 1, . . . , n.
8: end for
9: end for

the Supplementary Material. This is because the density of ω is of the form,

ω | Y, Θ̃\ω ∼ exp

 m∑
j=1

aω<ξ(vj)<bω

C+(vj)I{ω < ξ(vj)}+
m∑
j=1

aω<−ξ(vj)<bω

C−(vj)I{ω < −ξ(vj)}

 .
Given the location vj , ξ(vj) =

∑L
l=1 clψl(vj), C±(vj) are two scalars, whose detailed forms are

given in Section B.3.3. If we set hk(θ) = C+(vj) for those vj satisfying aω < ξ(vj) < bω, and set
hk(θ) = C−(vj) for those locations satisfying aω < −ξ(vj) < bω, then the density of ω satisfies the
condition of Proposition 19(ii), and thus it follows a mixture of uniform distributions. We make
two additional remarks. First, we specify the prior of ω as U(aω, bω), where we choose aω, bω to
have a non-informative prior. In practice, we may adopt the empirical Bayes idea, by running the
Gibbs sampling once with a non-informative prior first, then using the quantile values of the sorted
{|ξ(v)|}v∈Bm to refine the range of the uniform distribution for ω. This can further improve the
convergence behavior of the algorithm. Second, if we specify the prior of ω as an exponential
distribution, then we may apply Proposition 19(iii) to obtain the full conditional of ω.

The full conditionals of ei,l,± (i = 1, . . . , n; l = 1, . . . , L) is a normal distribution, thanks to the
conjugate prior. Its derivation is given in Section B.3.4.

The full conditional of τ 2k (v) (k = 1, 2; v ∈ Bm) is an inverse Gamma distribution, again thanks
to the conjugate prior. Its derivation is given in Section B.3.5.

We summarize the Gibbs sampling for the thresholded correlation Gaussian process in Algorithm
1.
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3.4.3 Hybrid mini-batch MCMC

The proposed Gibbs sampler is computationally efficient in general. Meanwhile, the complexity
of computing the full conditional of cl is O(m2), where m is the total number of voxels. When m
is large, this step can be expensive. We next propose a hybrid mini-batch MCMC, with two key
components, to further improve the computational efficiency.

The first component is to develop an adaptive proposal function in Gibbs sampling. We
note that the Gibbs sampler can be viewed as a special case of Metropolis–Hastings, in which
the newly proposed state is always accepted with probability one, and the proposal function in
Metropolis–Hastings corresponds to the full conditional distribution in the Gibbs sampler. There
have been some recent progress developing scalable MCMC methods (Li and Wong 2017, Wu et al.
2022c). However, those algorithms mainly focus on how to more efficiently evaluate the ratio of
the likelihood function at each iteration, instead of focusing on the proposal function. Moreover,
their aims are not to perform Bayesian inference from the exact posterior, but rather to exploit the
tempered posterior with an efficient MCMC sampler to obtain a better solution from the global
optimization.

We propose an adaptive proposal function, by subsampling voxel locations, instead of individual
subjects. More specifically, let Bms ⊂ Bm denote a random subset of all the observed locations
Bm, Yms the corresponding imaging data observed at those voxels in Bms , and ms = |Bms| the
cardinality of Bms . Recognizing that the Gibbs sampler is a special case of Metropolis–Hastings, the
proposal function for the parameter θ ∈ Θ̃ is P{θ|Θ̃\θ, Y }, which is the full conditional distribution
of θ. Instead of using the entire imaging data Y to derive the full conditional distribution of θ,
we propose to use a mini-batch of data Yms to obtain the proposal function P{θ|Θ̃\θ, Yms}. The
acceptance ratio of θ is,

ϕ(θ′, θ) = min

[
1,

Πv/∈Bms
P{Y (v)|θ′, Θ̃\θ}

Πv/∈Bms
P{Y (v)|θ, Θ̃\θ}

]
,

whose derivation is given in Section B.3.6 of the Supplementary Material. In this case, the
computational complexity of sampling cl is reduced from O(m2) to O(m2

s).
The second component is to consider a hybrid version of mini-batch. This is because, when

keeping using the mini-batch of voxels during the whole sampling process, the Markov chain may
converge to local modes, and may also converge slowly. To overcome these issues, we propose to
use the full dataset after, say, every T0 iterations of using the mini-batch data.

We summarize the hybrid mini-batch MCMC procedure in Algorithm 2. In our implementation,
we set ms = m/16 and T0 = 20, which leads to a good empirical performance. We also carry out a
sensitivity analysis in Section B.4.2 of the Supplementary Material, and find that the result is not

44



Algorithm 2 Hybrid mini-batch MCMC for TCGP.
input: the observed imaging data Y = {Y1,i(v), Y2,i(v), i = 1, . . . , n, v ∈ Bm},

the kernel function κ(·, ·), the Karhunen-Loève truncation number L,
the prior hyperparameters aτ , bτ , aω, bω.

output: the posterior samples of Θ̃ = {{cl}Ll=1, {ei,l,±}
L,n
l=1,i=1, {τ 21 (v), τ 22 (v)}v∈Bm , ω}.

1: initialize Θ̃: sample Θ̃ from the prior distribution.
2: for t = 1, · · · , T do
3: parallel sample τk2(v) from the inverse Gamma distribution, for all v ∈ Bm, k = 1, 2.
4: random sample ms locations from Bm and form Bms and Yms .
5: for l = 1, · · · , L do
6: if t mod T0 = 0 then
7: sample cl from the mixture of truncated normal distributions based on Y .
8: sample ω from the mixture of uniform distributions based on Y .
9: else

10: sample c(t)l from the mixture of truncated normal distributions based on Yms .
11: accept c(t)l with probability ϕ(c(t)l , c

(t−1)
l ).

12: sample ω(t) from the mixture of uniform distributions based on Yms .
13: accept ω(t) with probability ϕ(ω(t), ω(t−1)).
14: end if
15: parallel sample ei,l,± from the normal distribution, i = 1, . . . , n.
16: end for
17: end for

sensitive to ms and T0, as long as they are in a reasonable range.

3.5 Simulations

In this section, we carry out two simulation studies, one for a 2D example and the other a 3D
example, to investigate the empirical performance of the proposed method.

3.5.1 2D image simulation

We simulate the data from model (3.1), with the sample size n = 50, and the image reso-
lution m = 64 × 64. We simulate the mean µk,i from (3.2) and (3.3), k = 1, 2, with κ(v, v′) =
exp−0.1(v2 + v′2)− 10(v − v′)2, σ2

+(v) = ζ+
∑3

j=1 I(∥v−u+,j∥1 < 0.1), where u+,1 = (0.3, 0.7),
u+,2 = (0.7, 0.7), u+,3 = (0.3, 0.3), and σ2

−(v) = ζ−{I(∥v−u−,1∥1 < 0.1)+I(∥v−u−,2∥2 < 0.1)},
where u−,1 = (0.5, 0.5), u−,2 = (0.7, 0.3). Here (ζ+, ζ−) controls the signal strength, and we con-
sider two settings, with (ζ+, ζ−) = (0.15, 0.25) for a weak signal, and (ζ+, ζ−) = (0.75, 0.85) for a
strong signal. We simulate the noise εk,i from the normal distribution with mean zero and variance
τ 2k (v), and simulate log(τ 2k (v)) from a Gaussian process with mean zero and correlation kernel
κ(v, v′), k = 1, 2.
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Table 3.1: Results of 2D image simulations. Reported are the average sensitivity, specificity,
and FDR, with standard error in the parenthesis, based on 100 data replications. Six methods
are compared: the voxel-wise analysis, the region-wise analysis, the integrated method with two
thresholding values, 0.95 and 0.90, and the proposed Bayesian method (TCGP) with the Gibbs
sampler and the hybrid mini-batch MCMC.

Signal Method
Positive Correlation Negative Correlation

Sensitivity Specificity FDR Sensitivity Specificity FDR

Weak Voxel-wise 0.000 (0.000) 1.000 (0.000) 0.020 (0.010) 0.000 (0.001) 1.000 (0.001) 0.010 (0.001)
Region-wise 0.238 (0.001) 0.953 (0.002) 0.447 (0.002) 0.473 (0.002) 0.956 (0.003) 0.629 (0.004)
Integrated (0.95) 0.612 (0.001) 0.994 (0.000) 0.134 (0.010) 0.844 (0.003) 0.993 (0.000) 0.131 (0.003)
Integrated (0.90) 0.821 (0.001) 0.971 (0.000) 0.341 (0.010) 0.963 (0.003) 0.966 (0.000) 0.398 (0.006)
TCGP (Gibbs) 0.855 (0.003) 0.996 (0.001) 0.057 (0.008) 0.997 (0.002) 0.993 (0.001) 0.108 (0.005)
TCGP (Hybrid) 0.851 (0.006) 0.993 (0.001) 0.092 (0.010) 0.993 (0.002) 0.992 (0.001) 0.126 (0.005)

Strong Voxel-wise 0.062 (0.002) 1.000 (0.000) 0.000 (0.014) 0.091 (0.002) 1.000 (0.000) 0.000 (0.006)
Region-wise 0.741 (0.002) 0.852 (0.003) 0.747 (0.004) 0.479 (0.002) 0.950 (0.002) 0.645 (0.003)
Integrated (0.95) 0.773 (0.001) 0.998 (0.000) 0.036 (0.002) 0.933 (0.002) 0.996 (0.000) 0.067 (0.001)
Integrated (0.90) 0.996 (0.020) 0.959 (0.000) 0.378 (0.017) 0.999 (0.020) 0.953 (0.000) 0.468 (0.001)
TCGP (Gibbs) 0.976 (0.002) 0.999 (0.000) 0.015 (0.004) 1.000 (0.001) 0.999 (0.000) 0.018 (0.001)
TCGP (Hybrid) 0.960 (0.003) 0.997 (0.001) 0.049 (0.005) 0.990 (0.001) 0.999 (0.000) 0.023 (0.002)

To apply the proposed method, we employ the Matérn kernel in (3.4) in our data analysis. We set
the prior hyperparameters aτ = bτ = 0.001 to obtain a non-informative prior, and choose aω and bω
adaptively as the minimum and the maximum of |ξ(v)|v∈Bm

, respectively, from each iteration. We
run the Gibbs sampler for 1000 iterations, with the first 200 iterations as the burn-in. We also run the
hybrid mini-batch MCMC for 1200 iterations, with the first 400 iterations as the burn-in. We claim
a voxel having a nonzero correlation by simply thresholding the posterior inclusion probability
at 0.5, an approach commonly used in Bayesian analysis. We also compare with a number of
alternative solutions, including the voxel-wise analysis, the region-wise analysis, and the integrated
analysis method of Li et al. (2019) with two different thresholding values, 0.90 and 0.95, following
the analysis in Li et al. (2019). We evaluate the performance of each method by the sensitivity,
specificity, and false discovery rate (FDR).

Table 3.1 reports the results averaged over 100 data replications, and Figure 3.2 visualizes the
result for one data replication. We see that our proposed method clearly outperforms the alternative
solutions. In particular, the voxel-wise analysis suffers from a low detection power, the region-wise
analysis yields a high false discovery rate, and the integrated method of Li et al. (2019) is sensitive to
the thresholding parameter. With the 90% threshold, the integrated method enjoys a better sensitivity
and specificity, but yields a larger FDR, whereas with the 95% threshold, it can well control the
FDR, is not as powerful. In addition, the proposed Bayesian method is also capable of statistical
inference, in that we can simulate the entire posterior distribution, compute the posterior inclusion
probability, and quantify the uncertainty for the spatially varying correlation. Figure 3.3 shows the

46



S
tr

on
g 

S
ig

na
ls

W
ea

k 
S

ig
na

ls
True Correlation Voxel−wise Region−wise Integrated(0.90) Integrated(0.95) TCGP (Gibbs) TCGP (Hybrid)

1 3 5 7

2 4 6 8

9 11 13 15

10 12 14 16

1 3 5 7

2 4 6 8

9 11 13 15

10 12 14 16

−1.0

−0.5

0.0

0.5

1.0

Figure 3.2: Results of 2D image simulations. The first row is for a weak signal and the second
row a strong signal. The panels from left to right show the true correlation map, the significantly
positively (red) and negatively (blue) correlated regions selected by different methods.

Figure 3.3: Results of 2D image simulations. The posterior inclusion probability map of the positive
and negative spatially-varying correlations using the Gibbs sampler and the hybrid mini-batch
MCMC.

probability map of the identified positively and negatively correlated regions, which are close to the
truth. Finally, we briefly remark on the computational time of the two Gibbs samplers. On a laptop
with 2 cores, 3.1GHz clock speed and 8GB memory, the Gibbs sampler algorithm took about 90
minutes for one data replication, while the hybrid algorithm took about 30 minutes, with the mean
acceptance ratio around 0.3.
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Table 3.2: Simulation results of the 3D image example. Reported are the average sensitivity, specificity, and
FDR, with standard error in the parenthesis, based on 100 data replications. Six methods are compared: the
voxel-wise analysis, the region-wise analysis, the integrated method with two thresholding values, 0.95 and
0.90, and the proposed Bayesian method with the Gibbs sampler and the hybrid mini-batch MCMC.

Signal Method
Positive Correlation Negative Correlation

Sensitivity Specificity FDR Sensitivity Specificity FDR

Weak Voxel-wise 0.084 (0.003) 0.999 (0.005) 0.001 (0.006) 0.101 (0.005) 0.999 (0.000) 0.002 (0.003)
Region-wise 0.357 (0.001) 0.865 (0.002) 0.573 (0.011) 0.472 (0.002) 0.891 (0.003) 0.451 (0.004)
Integrated(0.95) 0.489 (0.002) 0.981 (0.001) 0.160 (0.010) 0.582 (0.001) 0.952 (0.005) 0.100 (0.001)
Integrated(0.90) 0.663 (0.008) 0.959 (0.001) 0.230 (0.009) 0.731 (0.004) 0.946 (0.005) 0.150 (0.001)
TCGP (Gibbs) 0.891 (0.005) 0.984 (0.001) 0.071 (0.007) 0.883 (0.002) 0.977 (0.004) 0.073 (0.001)
TCGP (Hybrid) 0.878 (0.002) 0.977 (0.002) 0.083 (0.009) 0.869 (0.005) 0.965 (0.003) 0.089 (0.002)

Strong Voxel-wise 0.210 (0.005) 0.999 (0.002) 0.001 (0.001) 0.237 (0.004) 0.999 (0.000) 0.002 (0.001)
Region-wise 0.638 (0.003) 0.765 (0.001) 0.587 (0.010) 0.627 (0.006) 0.824 (0.005) 0.532 (0.003)
Integrated(0.95) 0.553 (0.005) 0.992 (0.000) 0.066 (0.005) 0.882 (0.005) 0.970 (0.000) 0.101 (0.002)
Integrated(0.90) 0.746 (0.010) 0.974 (0.003) 0.144 (0.007) 0.933 (0.010) 0.955 (0.001) 0.133 (0.000)
TCGP (Gibbs) 0.933 (0.002) 0.986 (0.001) 0.062 (0.005) 0.929 (0.002) 0.987 (0.001) 0.061 (0.002)
TCGP (Hybrid) 0.920 (0.003) 0.974 (0.001) 0.075 (0.004) 0.918 (0.005) 0.967 (0.001) 0.085 (0.001)

3.5.2 3D image simulation

We next consider a d = 3 example that mimics the HCP data analyzed in Section 3.6. More
specifically, we obtain the posterior means of cl, ei,l,±, ω from our HCP data analysis, then gen-
erate Y+, Y− following model (3.11). We continue to employ the kernel function κ(v, v′) =

exp−0.1(v2 + v′2)− 10(v − v′)2 for data generation. We simulate the noise εk,i from the normal
distribution with mean zero and variance τ 2k (v), and simulate log(τ 2k (v)) from a Gaussian process
with mean zero and correlation kernel ζkκ(v, v′), k = 1, 2. We consider two noise levels, or
equivalently the signal strengths, with ζ = 10 for a weak signal, and ζ = 1 for a strong signal.
We follow the HCP data and set the sample size n = 904 and the image resolution 91× 109× 91

with m = 117, 293 voxels in the brain region. Table 3.2 reports the results averaged over 100 data
replications, and Figure 3.4 visualizes the result for one data replication. We observe essentially
the same patterns as in the 2D example. Besides, in Figure 3.4, we only show the result for the
positively correlated regions, as the result for the negative correlated regions is very similar.

3.6 Analysis of HCP Data

In this section, we further illustrate our method with an fMRI dataset from the Human Con-
nectome Project. Our specific goal is to study the association between the resting-state fMRI and
the memory task-related fMRI, and identify brain regions where the resting-state and task-related
brain activities are strongly associated. This type of analysis is useful, as there has been increasing
interest in recent years to predict task-related brain activations from resting-state fMRI (Tavor et al.
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Figure 3.4: Simulation results of the 3D image example. The 2D slices of positively correlated regions
identified by the voxel-wise analysis, the region-wise analysis, the integrated method with two thresholding
values, 0.95 and 0.90, and the proposed Bayesian method with the Gibbs sampler and the hybrid mini-batch
MCMC. The red, yellow and blue regions represent the true positive, the false negative, and the false positive
regions, respectively.

2016, Jones et al. 2017, Cohen et al. 2020). It also reveals numerous brain regions and offers useful
insights to understand brain activities during rest and working memory tasks.

The dataset we analyze consists of n = 904 subjects with both resting-state and task fMRI scans.
We preprocess both types of images following the usual pipelines. In particular, the preprocessing
of resting-state fMRI includes correction for distortions and head motion, removal of slowest
temporal drifts and structured non-neuronal artifact (Smith et al. 2013). The resulting data is the 3D
fractional amplitude of low frequency fluctuation (fALFF) image, which quantifies the amplitude
of the low frequency oscillations in fMRI signals to reflect the local brain activities at resting
state. The preprocessing of task fMRI includes gradient unwarping, motion correction, distortion
correction, and grand-mean intensity normalization (Barch et al. 2013). The resulting data is the 3D
volumetric image. In addition, we regress out potential confounding variables of age and sex using
the image-on-scalar approach of Zhu et al. (2014b). Finally, we register and align both images to
the standard MNI space (Mazziotta et al. 2001), and the resulting image resolution is 91× 109× 91

with m = 117, 293 voxels in the brain region.
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Table 3.3: Results of HCP data analysis. Reported are the activation regions containing more than
100 voxels that are declared having a nonzero correlation.

Regions with positive correlations

AAL Regions Cluster Size Activation Center Mean Std. PIP

Precentral-L 385 (45.4, 6.75, 42.95) 0.39 0.07 0.79
Frontal-Sup-R 141 (-25.6, 60.5, 19.2) 0.30 0.05 0.64
Frontal-Sup-R 329 (-26.4, 8.0, 65.2) 0.35 0.08 0.62
Frontal-Mid-L 643 (33.7, 32.9, 42.2) 0.35 0.04 0.59
Frontal-Inf-Tri-R 218 (-51.9, 28.0, 22.6) 0.21 0.06 0.64
Calcarine-R 200 (-13.8, -87.4, 3.64) 0.37 0.05 0.69
Cuneus-L 120 (-0.4, -87.4, 22.6) 0.33 0.04 0.65
Lingual-R 144 (-10.4, -75.3, -4.5) 0.35 0.05 0.62
Parietal-Sup-L 187 (20.0, -67.4, 53.7) 0.35 0.05 0.53
Parietal-Sup-L 108 (26.0, -52.8, 62.4) 0.40 0.06 0.58
Parietal-Sup-R 165 (-29.2, -20.9, 68.3) 0.30 0.08 0.76
Parietal-Inf-L 253 (47.2, -46.1, 49.7) 0.40 0.05 0.59
Angular-R 209 (-46.9, -60.2, 44.7) 0.43 0.03 0.70
Temporal-Sup-L 331 (54.3, -31.8, 18.0) 0.40 0.05 0.82
Temporal-Mid-L 104 (63.1, -25.7, 1.38) 0.41 0.07 0.56

Regions with negative correlations

AAL Regions Cluster Size Activation Center Mean Std. PIP

Precentral-L 115 (28.6, -23.1, 65.4) -0.44 0.03 0.90
Precentral-R 183 (-54.4, 8.0, 36.0) -0.40 0.08 0.59
Frontal-Mid-L 191 (28.2, 52.2, 12.7) -0.39 0.06 0.78
Rolandic-Oper-L 186 (-45.6, -14.5, 15.9) -0.36 0.14 0.58
Supp-Motor-Area-L 120 (1.1, -7.9, 66.1) -0.36 0.05 0.71
Supp-Motor-Area-R 143 (-6.9, -13.3, 69.5) -0.38 0.07 0.85
Calcarine-R 183 (-15.4, -68.8, 10.5) -0.32 0.06 0.65
Lingual-L 292 (10.5, -75.0, -5.5) -0.28 0.04 0.79
Lingual-R 286 (-21.2, -86.3, -9.0) -0.38 0.05 0.80
Occipital-Sup-L 111 (16.0, -89.8, 25.0) -0.40 0.06 0.80
Occipital-Sup-R 147 (-25.2, -89.9, 26.2) -0.37 0.04 0.77
Occipital-Inf-R 122 (-38.8, -81.7, -3.2) -0.44 0.05 0.56
SupraMarginal-L 191 (58.8, -25.7, 30.8) -0.37 0.04 0.83
SupraMarginal-R 121 (-58.2, -36.9, 28.3) -0.38 0.03 0.98
Paracentral-Lobule-R 147 (-5.7,-30.5, 70.4) -0.33 0.04 0.63
Temporal-Mid-L 109 (58.6, -36.3, 7.7) -0.43 0.05 0.55

To apply the proposed methods to this data, we employ the Matérn kernel in (3.4) in our data
analysis. We set the prior hyperparameters aτ = 0.001, bτ = 0.001, and choose aω and bω as the
75% quantile and 100% quantile of {|ξ(v)|}v∈B, respectively. The choice of aω is based on the belief
that at most 25% voxels have non-zero correlations. We perform sensitivity analysis on the small
changes of prior specfiication for the threshold parameters in Section B.4.3 of the Supplementary
Material. We run the Gibbs sampler for 1000 iterations, with the first 200 iterations as the burn-in.
We also run the hybrid mini-batch MCMC for 1200 iterations, with the first 400 iterations as the
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(a) Positive correlation map

(b) Negative correlation map

Figure 3.5: Results of HCP data analysis. The sagittal slices of activation regions with significant
correlations. Panel (a) shows the slices of positive correlation map and the associated inclusion
probability map. Panel (b) shows the slices of negative correlation map and the associated posterior
inclusion probability map.
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burn-in. We again claim a voxel having a nonzero correlation by simply thresholding the posterior
inclusion probability at 0.5.

Table 3.3 summarizes the estimated activation regions with strong positive or negative correla-
tions. Here we only report those regions containing more than 100 voxels that are declared having
a nonzero correlation. We also map those estimated regions to the automatic anatomical labeling
(AAL) brain atlas, and report where each estimated activation region is located, the cluster size, the
activation center coordinates, the mean and the standard deviation of the correlation in a specific
cluster, and the posterior inclusion probability. We make the following observations. We identify
a region in angular gyrus that has the highest positive mean correlation. This finding agrees with
the literature, as intensive research has shown that angular gyrus is involved in cognitive processes
related to language, number processing, spatial cognition, memory retrieval, and attention (Farrer
et al. 2008, Seghier 2013). We also identify a region with strong positive correlations in middle
temporal gyrus and superior parietal gyrus. The former region is connected with numerous cognitive
processes including recognition of known faces, audio-visual emotional recognition, and accessing
word meaning while reading (Acheson and Hagoort 2013), and the latter is critically involved in
information manipulation in working memory (Koenigs et al. 2009). In addition, we identify two
regions in lingual gyrus with strong negative correlation, while lingual gyrus is believed to play an
important role in visual memory and word processing (Leshikar et al. 2012). Figure 3.5 shows the
identified activation regions with significant correlations.
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CHAPTER 4

Bayesian Time-varying Classification with Signal Interactions via the Relaxed
Thresholded Gaussian Process

4.1 Introduction

Brain-computer interfaces (BCIs) are “speech translators” between the human brain and comput-
ers. These signal processing systems acquire brain signals through noninvasive electroencephalog-
raphy (EEG) with the help of scalp electrodes, usually in the 10-20 configuration. Among various
EEG signals, the event-related potentials (ERPs) refer to a set of brain signals that are generated in
response to some external stimuli such as visual, auditory, or somatosensory (Farwell and Donchin
1988). Its popularity is aided by its tremendous application possibilities in movement and communi-
cation assistance, especially for rehabilitation of the disabled. In the health care sector, it can assist
partially paralyzed people such as those who have diseases like Amyotrophic Lateral Sclerosis
(ALS) and stroke. Although it was originally developed for people with disabilities (Pfurtscheller
et al. 2008), the prevailing spectrum of use has been expanded to competent users (Van Erp et al.
2012), neuro-rehabilitation (Kwak et al. 2015), etc.

To better illustrate the framework, we briefly introduce the motivating dataset following the
experimental protocol by (Thompson et al. 2014). The EEG data is collected from the P300 speller
study conducted by the University of Michigan direct brain interface (UMDBI) laboratory. The
goal of the experiment is to infer the participant’s intended character on a 6 × 6 virtual keyboard
using the electroencephalography (EEG) signal. Before the experiment, the subjects were told that
a specified character in the visual stimulator was the target character. During the experiment, the
subjects were asked to keep an eye on the target character position in the visual stimulator, while any
row or column in the visual stimulator flashed randomly. When the target character’s row or column
was flashing, a positive potential (P300 ERP) related to the event could be detected in the subject’s
scalp; if not, the detected EEG data were non-P300 event-related potentials. Each event was either a
row stimulus or a column stimulus. Rows and columns of the keyboard flash in a random order, and
it looped through all rows and columns every consecutive 12 stimuli, called a sequence. Thus, each
sequence always had two events (stimuli) that were supposed to elicit P300 ERPs (one row and one
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Figure 4.1: An illustration of the conventional procedure of the P300 ERP-BCI operation. The
P300 ERP-BCI design presents a sequence of events on a virtual screen to the user. The user
focuses on a specific character and responds to different events with different brain signals (P300 or
non-P300). These brain signals are recorded by the EEG machine. Classifiers are then constructed
to analyze EEG signals in a fixed time response window after each event to make a binary decision
whether a P300 ERP response is produced. Finally, the binary classification results are converted
into character-level probabilities, and the character with the highest probability is shown on the
screen.

column) out of every 12 events. In particular, Figure 4.1 shows 36 characters in a 6× 6 grid with
the fourth row being highlighted.

The most-studied, and foundation computational neuroscience challenge in ERP BCIs is the
classification of the brain activity after each stimulus as either a target or non-target response.
Correct binary classification of the brain activity after each stimulus enables identification of the
stimulus groups of interest, and at their intersection, the target key. The original work (Farwell
and Donchin 1988) developed four classification methods, stepwise linear discriminant analysis
(SWLDA), peak picking, area, and covariance, with the best performance achieved by SWLDA
with 95% accuracy. Subsequent research aimed to improve P300 Speller performance using
various techniques, including independent component analysis (Xu et al. 2004) and support vector
machine (SVM) (Kaper et al. 2004). Philip and George (2020) did a comprehensive review of the
articles related to classification methods, finding that most of the methods fall into three categories:
ensemble learning, SVM, and discriminant analysis. The paper highlighted the superiority of
ensemble learning methods as they take the advantages of different classifiers while accurately
classifying the imbalanced P300 dataset. Researchers have also explored the use of Bayesian
methods in BCI classification. For example, Zhang et al. (2015) introduced a sparse Bayesian
method by exploiting Laplace priors for EEG classification. Barthélemy et al. (2023) proposed a
novel Bayesian accumulation of Riemannian probabilities, which is an end-to-end pipeline for P300
BCI classification. Ma et al. (2022) made the first attempt to study the probability distribution of
multi-trial EEG signals using a Bayesian generative model, which provides a useful tool to simulate
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EEG signals in P300 BCI and a novel probabilistic classifier.
Despite the success of these methods, they mostly rely on EEG signals on each channel but

ignore the possible functional relationships between different signals recorded from distinct brain
areas. Several existing studies have demonstrated that brain functions require the integration of
distributed brain areas (Tononi and Edelman 1998, Friston et al. 1997). In the BCI context, Kabbara
et al. (2016) also shows a clear difference between functional networks obtained in the case of target
and non-targets visual stimuli. Hence, the signal interactions among channels involved in the brain
network is an important feature in BCI studies and their association to a stimulus type outcome
offers another potential to contribute to the predictive mechanism.

For modeling signal interactions, two-step methods are commonly used by first identifying main
effects and then refitting the model with both main effects and their interaction effects (Hao et al.
2018, Wang et al. 2021). However, this approach may not be suitable for EEG analysis since the
selection of the interaction effect is not based on the existence of a main effect. Recent works under
Bayesian paradigms have attempted to place both main and interaction terms in one inference system
via hierarchical shrinkage priors (Griffin and Brown 2017), but developing specific priors to capture
the structure of EEG data is necessary for this approach to be effective. More recently, several
neural network methods have been proposed for EEG-based classification tasks. For example,
multi-task autoencoder-based models such as Ditthapron et al. (2019), compact CNNs like EEGNet
Lawhern et al. (2018), and weighted ensemble strategies such as Kshirsagar and Londhe (2019)
have shown promising results. These methods have been able to implicitly capture the interaction
effects among different channels and their association to a stimulus type outcome. However, they
often require task-specific knowledge to design the network architecture, and the amount of data
used to train these networks varied significantly across studies. Furthermore, these methods may
suffer from the black-box nature of neural networks, which limits their interpretability. In other
words, it may not be possible to identify which channel pairs are most contributing to the stimulus
type output (i.e., target or non-target classification). This makes it challenging to gain insight into
the underlying neural mechanisms and limits the generalizability of the models. Therefore, there is
a need to develop methods that can incorporate the interaction effect among EEG channels while
maintaining interpretability and generalizability of the model.

In this paper, we developed a Bayesian time-varying classification model with signal interactions
via relaxed thresholded Gaussian Process priors (SI-RTGP). We remove the linearity constraint
among EEG signal predictors by including signal interaction effects across different channels for
an enhanced prediction and interpretation. To the best of our knowledge, we are among the first
to explicitly incorporate the signal interaction across different channels into the EEG prediction
model. We also propose a relaxed thresholded Gaussian process prior to capture the association
between EEG signal and the stimulus type outcomes, which has several advantages compared to the
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existing work. First, the proposed relaxed thresholded Gaussian Process (RTGP) prior encompasses
a large class of temporal varying functions that are piecewise smooth and sparse, which enables
the feature selection during the Bayesian MCMC sampling. Second, compared to the previous
thresholded Gaussian Process (GP) prior such as the soft (Kang et al. 2018) and the hard tresholded
GP (Cai et al. 2020), the relaxed thresholded GP prior is more flexible and is able to model both
the sparse and the non-sparse patterns by varying the “relaxing” parameter. Also, it provides a
computationally efficient way to conduct MCMC sampling while other thresholded GP priors
may raise a challenge in posterior computation when handling large-scale dataset. We applied
the proposed model to the P300 speller study conducted by the University of Michigan direct
brain interface (UMDBI) laboratory. The proposed SI-RTGP model can improve the classification
accuracy on several subjects and can identify a number of scientifically meaningful channels and
channel pairs that offer useful insights for BCI research.

Our contribution are of several folds. First, we incorporate the signal interaction into the
prediction model to improve the prediction accuracy. Our model jointly identifies both main and
interaction effects within a single Bayesian inference framework, avoiding potential misspecification
from a two-step approaches. Compared with neural network model that implicitly add interaction
effect, the proposed model is more interpretable and can explicitly identify the important channel
pairs. Second, we introduce a new selection prior model based on relaxed thresholded Gaussian
Process (RTGP) priors, which takes into account the temporal correlation of the EEG signal on each
channel through Gaussian Process and ensures the piecewise smoothness and sparsity of the effect
of EEG signal. Moreover, the proposed RTGP prior is more flexible than other thresholded Gaussian
Process priors and ensures an efficient posterior sampling process by introducing a “relaxing”
parameter.

4.2 Method

4.2.1 Bayesian time-varying classification model with signal interactions

Our model focuses on the multi-channel EEG data for one participant. Suppose a total of R
target characters are typed for BCI calibration in the training data. For each character r(r = 1, ..., R),
the BCI generates S sequences of J(J = 12) stimuli consisting of six row stimuli, denoted as
1, · · · , 6 and six column stimuli, denoted as 7, · · · , 12 on the 6× 6 keyboard in a random order. Let
I = {(r, s, j) | r = 1, . . . , R; s = 1, . . . , S; j = 1, . . . , J}. Hence, there are n = |I| = R× S × J

flashes in total. Let i ∈ I index the flash. In practice, people call a random presentation 6 rows and
6 columns a sequence, and run multiple sequences for a single character. Multiple scores for each
row and column are averaged to increase the accuracy.

During the BCI calibration stage, each participant was asked to wear an EEG cap with K(K =
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16) channels corresponding to different regions on the brain surface. Let T be the number of
time points of the EEG signals we collect for each stimulus. Let Xki(t) be the observed EEG
signal intensity of the ith stimulus from channel k at time t. Xki = {Xki(t)}Tt=1 ∈ RT and
Xi =

(
X⊤

1i,X
⊤
2i, · · · ,X⊤

Ki

)⊤ ∈ Rp, where p = K × T . We use X0i(k1, k2) to represent the signal
interaction between the EEG signal on channel k1 and that on channel k2, where 1 ≤ k1 < k2 ≤ K.
In this paper, the signal interaction X0i(k1, k2) is defined as the Z-transformed correlation between
Xk1i and Xk2i. Let X0i = {X0i(k1, k2)}1≤k1<k2≤K ∈ Rp0 , where p0 =

(
K
2

)
. Finally, let Yi ∈ {0, 1}

be the stimulus type outcomes of thr ith flash. A graphical illustration is shown in Figure 4.2.
To build a model that uses the EEG signal and signal interactions to predict the stimulus type

outcome, we propose a Bayesian time-varying classification model with signal interactions as
follows:

Pr(Yi = 1 | Xi,X0i) = Φ(µi),

µi =
1

p

K∑
k=1

(
T∑
t=1

βk(t)Xki(t)

)
+

1

p0

∑
k1<k2

β0(k1, k2)X0i(k1, k2),
(4.1)

where Φ(·) is the cumulative distribution function of the standard normal distribution, βk(t) is a
time-varying coefficient function on channel k and β0(k1, k2) quantifies the effect of the signal
interaction between the EEG signal on channel k1 and that on channel k2. The role of the rescaling
factor 1/p and 1/p0 are to rescale the total effects of massive predictors such that they are bounded
away from infinity with large probability, when K and T are very large. Model (4.1) uses the
signal on each channel and signal interactions across channels as predictors to model stimulus type
outcomes.

The model is trained using the data collected from the BCI calibration stage. Then for the BCI
working stage, given an unknown character r⋆, the binary classification probability of each flash
p̂i, i ∈ Ir⋆ can be obtained using the trained model (4.1), where Ir⋆ = {(r⋆, s, j) | s = 1, . . . , S; j =

1, . . . , J}. The binary classification are then converted into character-level probabilities by averaging
over all the sequences of r⋆. Specifically, let Ir⋆,j = {(r⋆, s, j) | s = 1, . . . , S} be the set of index
of all the sequences of the jth flash for the unknown character r⋆. Then pr⋆,j = 1

S

∑
i∈Ir⋆,j

p̂i,

j = 1, . . . , 12 represents the character-level probabilities. The predicted character is then located
in the argmax

j=1,...,6
pr⋆,j row and argmax

j=7,...,12
pr⋆,j column on the keyboard. We give an illustration of this

process in Figure 4.3.
Based on the following prior construction, our model can perform channel selection and

explicitly identify important channel pairs.
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Figure 4.2: Illustration of the data preparation step for the SI-RTGP model. Xki represents the EEG
signal on channel k of the ith flash. For the ith flash, the signal interaction between channel k1 and
channel k2, i.e. SI(Xk1i, Xk2i), is measured by the z-transformed correlation between EEG signals
on channel k1 and that on channel k2.

4.2.2 Relaxed thresholded Gaussian Process prior

Thresholded Gaussian Process prior can capture the sparsity and temporal dependency of the
associations between stimulus type and the EEG signal predictors. However, existing thresholded
GP priors such as soft-thresholded Gaussian Process in Wu et al. (2022b) and multiscale thresholded
Gaussian process Shi and Kang (2015) raise a challenge in posterior computation when handling
large-scale data. In order to incorporate with feature selection in Gaussian process with computation
feasibility, we propose a relaxed thresholded Gaussian Process (RTGP) prior as follows.

Definition 20. Given the kernel κ, the thresholding parameter ω ≥ 0 and the relaxing param-

eter ξ > 0, suppose f(x) ∼ GP(0, κ) and f̃(x) ∼ N(f(x), ξ2). Let g(x) = f(x)I(|f̃(x)| >
ω) ≜ Tr(f, ω, ξ

2), then g(x) follows a relaxed thresholded Gaussian Process, denoted as g(x) ∼
RTGP(κ, ω, ξ2).

Here, I(·) is the indicator function and Tr represents the relaxed thresholding function. The
introduction of f̃(x) allows for the full conditional distribution of f(x) to have a conjugate, nice
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Figure 4.3: The conversion from binary classification probability to character-level probabilities.
For an unknown character r⋆, character-level probabilities is obtained by averaging the binary
classification probabilities over all the sequences. The corresponding row and column are determined
by the maximum value of probabilities.

explicit closed-form, ensuring an efficient posterior sampling process. ξ2 represents the variance
of f̃(x), which serves as a “relaxing” parameter to control the independent white noise added to
f(x). A smaller value of ξ2 indicates more strict constraint on preserving the mean structure of
f(x). On the other hand, a larger value of ξ2 provides more flexibility. To illustrate, we compare
different kinds of thresholded functions in Figure 4.4, where f(x) ∼ GP(0, κ), Ts(·, 0.5) represent
the soft thresholding function, i.e. Ts(f(x), 0.5) = 0, if |f(x)| < 0.5, otherwise Ts(f(x), 0.5) =
sgn {f(x)} (|f(x)| − λ). Th(·, 0.5) denote the hard thresholding function, i.e. Th(f(x), 0.5) = 0,
if |f(x)| < 0.5, otherwise Th(f(x), 0.5) = f(x). Both of the soft and hard thresholding functions
on GP can impose sparsity and piece-wise smoothness. While the hard thresholded GP has the
jump discontinuity property, the soft thresholded GP is continuous. The second row in Figure
4.4 shows the plot of the proposed relaxed thresholded GP with different value of ξ. When
ξ = 0.01, Tr{f(x), 0.5, 0.01} almost converge to the hard thresholded GP. On the other hand, when
ξ = 0.1, Tr{f(x), 0.5, 0.1} is a continuous function with sparsity, which is similar to the structure
of Ts{f(x), 0.5}. If we keep increasing ξ to 1, then Tr{f(x), 0.5, 1} can recover f(x) with some
probability. When modeling the EEG data, we do not know what the true curve looks like. For
example, if the true curve around x = 100 does not have sparsity, the relaxed thresholded GP has the
flexibility to recover the pattern by choosing a reasonable ξ. However, the soft and hard thresholded
GP both will impose sparsity with probability 1. The following proposition shows the relationship
between the RTGP and other TGPs.
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Figure 4.4: Illustration of different thresholded Gaussian Process prior. Ts(·, 0.5) and Th(·, 0.5)
represents the soft and the hard thresholding function thresholded at 0.5. Tr(·, 0.5, ξ2) represents
the proposed relaxed thresholding function with different value of relaxing parameter ξ2.

Proposition 21. Given the thresholding parameter ω > 0, let Tr(θ, ω, ξ2) = θ · I(|θ̃| > ω),

Th(θ, ω) = θ · I(|θ| > ω) and Ts(θ, ω) = sgn(θ)(|θ| − ω) · I(|θ| > ω) where θ ∼ Pθ(θ), then for

any ϵ > 0, there exist ξ2, such that

Pr
(
|Tr(θ, ω, ξ2)− Th(θ, ω)| < ϵ

)
> 0,

Pr
(
|Tr(θ, ω, ξ2)− θ| < ϵ

)
> 0,

Pr
(
|Tr(θ, ω, ξ2)− Ts(θ

⋆, ω)| < ϵ
)
> 0,

(4.2)

where θ⋆ = θ+ω when θ > 0 and θ⋆ = θ−ω when θ < 0. Furthermore, lim
ξ2→0

Tr(θ, ω, ξ
2) = Th(θ, ω)

and lim
ξ2→∞

Tr(θ, ω, ξ
2) = θ.

Proposition 21 gives a mathematical illustration of Figure 4.4, which shows that relaxed thresh-
olded function has certain probability to reduce to soft or hard thresholded function and the flexibility
is controlled by the relaxing parameter ξ2. The proof is shown in the supplementary material.

Given a stationary kernel κ, we assign βk(t) ∼ RTGP(κ, ω1, ξ
2). Specifically,

βk(t) = Ek(t)I(|Ẽk(t)| > ω1),

Ek(t) ∼ GP(0, κ),

Ẽk(t) ∼ N(Ek(t), ξ
2),

(4.3)
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where {Ek(·)}Kk=1 follow independent Gaussian Process GP(·, ·) with mean 0 and stationary covari-
ance kernel κ(·, ·). There are various choices for the kernel function κ(·, ·); for instance, we use the
modified form of squared exponential (SE) covariance kernel, defined as:

κ (x, x′) = exp
{
−α
(
|x|+ |x′|2

)
− ρ |x− x′|2

}
(4.4)

for α > 0, ρ > 0, where | · | is the L2-norm. Here α is the decay parameter which controls the
decay rate of Var{Ek(·)} compared to Var{Ek(0)}. The parameter ρ is the smoothing parameter,
a smaller value of ρ corresponds to a smoother GP. The relaxed thresholded GP prior for βk(t)
can incorporate the temporal information of the EEG signal, leading to potentially more accurate
prediction. Moreover, it encompasses a large class of temporal varying functions that are piecewise
smooth and sparse, which enable the channel selection during the Bayesian MCMC sampling.

Similarly, to quantify the effect of signal interaction across channels, we assign β0(k1, k2) ∼
RTGP(κI , ω2, ξ), k1 < k2, where κI represents the identity kernel. Specifically,

β0(k1, k2) = η(k1, k2)I(|η̃(k1, k2)| > ω2),

η(k1, k2) ∼ N(0, σ2
η),

η̃(k1, k2) ∼ N(η(k1, k2), σ
2
η),

σ2
η ∼ IG(a, b).

(4.5)

We choose to use the identity kernel here to assume the independency across channel pairs. Different
kernel can be applied when other prior information is available.

Combining Model (4.1) and the prior specification in Eq. (4.3) and Eq. (4.5), we name
the proposed model as Bayesian time-varying classification model with signal interactions via
relaxed thresholded Gaussian Process prior (SI-RTGP). Our proposed model enjoys several benefits.
First, it explicitly incorporate the signal interaction into the Bayesian probit regression model,
leading to potential improvement in prediction accuracy. Second, we use RTGP prior to capture
the characteristics of the EEG signal, signal interaction and their effects on the stimulus type
outcomes, which is more flexible than other thresholded GP priors and can lead to a more efficient
posterior computation. Third, our model can perform variable selection and explicitly identify
important channels and channel pairs when predicting stimulus type outcomes, which provides
more interpretable results in EEG data analysis.

4.3 Posterior Computation

In this section, we introduce the details of the posterior computation of the proposed SI-RTGP
model. We use the modified form of squared exponential (SE) covariance kernel, defined in Eq.(4.4).
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We first adopt the usual strategy of Karhunen-Loève expansion to simplify the model to a finite
number of parameters. Specifically, consider the spectral decomposition of the kernel function,

κ (x, x′) =
∞∑
l=1

λlψl(x)ψl (x
′) ,

where {λl}∞l=1 are the eigenvalues in descending order, and {ψl(x)}∞l=1 are the corresponding
orthonormal eigenfunctions. By Mercer’s Theorem, we can represent the Gaussian processes in our
model as Ek(t) =

∑∞
l=1 eklψl(t). where ekl are Karhunen-Loève coefficients. We further truncate

the above expansions by focusing on the leading L eigenvalues and eigenfunctions, where L can
be determined following the usual practice of principal components analysis that retains a certain
percentage of total variation. Based on the Karhunen-Loève truncation, the proposed SI-RTGP
model becomes:

Pr(Yi = 1 | Xi,X0i) = Φ(µi),

µi =
1

p

K∑
k=1

(
T∑
t=1

βk(t)Xki(t)

)
+

1

p0

∑
k1<k2

β0(k1, k2)X0i(k1, k2);

βk(t) = Ek(t)I(|Ẽk(t)| > ω1); Ek(t) =
L∑
l=1

eklψl(t); Ẽk(t) ∼ N(Ek(t), ξ
2);

β0(k1, k2) = η(k1, k2)I(|η̃(k1, k2)| > ω2); η(k1, k2) ∼ N(0, σ2
η); η̃(k1, k2) ∼ N(η(k1, k2), ξ

2).

(4.6)

Then all the parameters in our model include:

Θ = {{{ekl}Ll=1, {Ẽk(t)}Tt=1}Kk=1, {η(k1, k2), η̃(k1, k2)}k1<k2 , σ2
η, ξ

2, ω1, ω2}.

The priors are set as ekl ∼ N(0, σ2
eλl), η(k1, k2) ∼ N(0, σ2

η) and σ2
η ∼ IG(aη, bη). We set σ2

e

and σ2
η to be large values and a = b = 0.001 so that the priors becomes non-informative prior.

Following the idea of simulated annealing, we give ξ2 a starting value and an ending value, where ξ2

gradually decrease during the MCMC sampling process. In practice, we first set ξ2 = 1 in the first
200 iterations during sampling and then gradually decrease the value of ξ until ξ2 = 0.0001. As for
the thresholding parameters, we set ω1 = ω2 = 0 in the first 200 steps. Then we assign an adaptive
discrete prior to ω1 and ω2, i.e. P (ω1 = γ1z) = 1/Z and P (ω2 = γ2z) = 1/Z, z = 1, · · · , Z,
where {γ1z}Zz=1 and {γ2z}Zz=1 are Z evenly spaced number between aω = 0.25 quantile and
bω = 0.9 quantile of {|Ẽk(t)|}K,Tk=1,t=1 and {|η̃(k1, k2)|}k1<k2 respectively. We will discuss the
details of the prior of ω1 and ω2 in Section 4.4. Given the prior specification, the full conditionals
of {ek,l}K,Lk=1,l=1, {Ẽk(t)}

T,K
t=1,k=1, {η(k1, k2)}k1<k2 and {η̃(k1, k2)}k1<k2 are normal distributions,
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thanks to the conjugate prior. The full conditionals of ω1 and ω2 are discrete distribution, again
thanks to the conjugate prior. The detailed derivation and the sampling procedure is provided in the
supplementary material.

4.4 Analysis of EEG-BCI Data

In this section, we apply the proposed method to the analysis of EEG data. We show that the
proposed model can improve the prediction accuracy by leveraging the signal interactions across
different channels and perform variable selection using relaxed thresholded Gaussian Process prior.

4.4.1 Dataset and preprocessing

The EEG data is collected from the P300 speller study conducted by the University of Michigan
direct brain interface (UMDBI) laboratory. The goal of the experiment is to infer the participant’s
intended character on a 6× 6 virtual keyboard using the EEG signal.

For the training session, each participant was asked to wear an EEG cap with K = 16 channels
corresponding to different regions on the brain surface and sit approximately 0.8 m from a 17-inch
monitor with the BCI display. Figure 4.5 shows the spatial distribution of channels. Channels
marked with red were used for recording and analysis purposes. The abbreviated names were F3,
Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4, PO7, PO8, and Oz (Thompson et al. 2014).
We defined the J = 12 stimuli flashing all rows and columns as a sequence and defined multiple
sequences as a super-sequence. In our P300 ERP-BCI design, a super-sequence corresponded
to the EEG signals associated with the given target character. During the training session, each
super-sequence included S = 15 sequences, and a total of 19 super-sequences were collected,
corresponding to 19 target charaters, “THE QUICK BROWN FOX”. The length of each super-
sequence was about 29,000ms with the sampling rate of 256 Hz. We first apply a notch filter at 60
Hz to remove the power line noise and a band-pass filter between 0.5 Hz and 6 Hz to all 16 channels.
We then extract 800 milliseconds of EEG signal after each flash. With this processing, each flash is
followed by 205 time points of K = 16 dimensional EEG signal.

4.4.2 SI-RTGP modeling

To construct Xki, we use the first 500 milliseconds of EEG signal for each flash, i.e., T = 128,
because the EEG signal collected in the following 300 milliseconds usually contains a lot of noise.
We then calculate X0i(k1, k2), which is measured by the z-transformed correlation between the
EEG signal on channel k1 and that on channel k2. Under this setting, we have {Xi}ni=1 ∈ Rn×p,
{X0i}ni=1 ∈ Rn×p0 , where n = R × S × J = 19 × 15 × 12, p = K × T = 16 × 128, and
p0 =

(
K
2

)
= 120.
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Figure 4.5: A figure from Wikimedia Commons by Brylie Christopher Oxley / CC0, 2017, demon-
strating a 64-channel EEG locations using the International 10–20 standard. Channels marked with
red were used in our ERP-BCI design.

We then apply the proposed model to EEG data analysis and perform Gibbs sampling for
2000 steps with the first 400 steps as burn in. We set α = 0.01, ρ = 50 in Eq.(4.4), which is
selected based on Bayes factor. We assign adaptive priors for ω1 and ω2. Specifically, in the first
200 steps, ω1 = ω2 = 0, then we assign ω1 a discrete distribution with P (ω1 = C1,m) = 1/10,
m = 1, . . . , 10. The value of {C1m}10m=1 also adaptively change during MCMC sampling. In each
iteration, let C1,1, . . . , C1,10 be 10 evenly spaced number between the 0.25 and 0.90 quantile of
{|Ẽk(t)|}K;T

k=1;t=1. Similarly, the prior of ω2 is also a discrete distribution with P (ω1 = C2,m) = 1/10,
m = 1, . . . , 10, where {C2,m}10m=1 are 10 evenly spaced number between the 0.25 and 0.90 quantile
of {|η̃(k1, k2)|}Kk=1;k1<k2

. We claim a node (main effect) or a edge (interaction effect) should be
selected by simply thresholding the posterior inclusion probability at 0.5, an approach commonly
used in Bayesian analysis. The character-level prediction accuracy is listed in Table 4.1, where
we compare the proposed model with random forest (RF), support vector machine (SVM), deep
neural network (DNN), SWLDA (Krusienski et al. 2008), SMGP (Ma et al. 2022) and EEGnet
(Lawhern et al. 2018). The architecture of DNN is chosen such that it has the comparable number
of parameters with the proposed SI-RTGP.

Since each super sequence consists of 15 sequences during the BCI training session, we apply
the proposed model using 1, 2, . . . , 15 sequences respectively to obtain the selection results and
then calculate selection reproducibility based on the frequency of each feature is selected. The
results are shown in Figure 4.6. We also visualize the signal interaction effect (positive or negative)
of those channel pairs with high reproducibility value in Figure 4.7.
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Table 4.1: Character-level prediction accuracy on test data for six subjects. The subjects’ gender
and age are provided. Subject 151 among these six subjects has been diagnosed with ALS.

108 112 114 151(ALS) 152 212
(male, 60) (female, 31) (female, 24) (male, 62) (male, 78) (male, 17)

SI-RTGP 0.932 0.566 0.965 0.931 0.634 0.686
EEGnet 0.930 0.515 0.965 0.925 0.587 0.623
SWLDA 0.889 0.509 0.944 0.922 0.596 0.620
SMGP 0.877 0.511 0.935 0.880 0.601 0.609
DNN 0.711 0.305 0.935 0.850 0.399 0.461
RF 0.650 0.421 0.877 0.605 0.519 0.445

SVM 0.671 0.275 0.735 0.601 0.355 0.311

4.4.3 Results interpretation

Based on these results, we made the following observations. First, by leveraging the signal
interactions across channels and performing feature selection using relaxed thresholded prior, the
proposed methods can improve the prediction accuracy compared to other machine learning methods,
which confirms that the signal interactions among channels play important role in predicting stimulus
type outcomes. We use two selected channel pairs Fz-T7 and Pz-PO8 of subject 114 as an illustrative
example. The mean of the EEG signal across all target or non-target flash on channel Fz and T7 is
shown in Figure 4.8a, and the scatter plot is shown in Figure 4.8b, from which we can observe that
the EEG signal on channel Fz and T7 have higher correlation on those target flashes. On the other
hand, the EEG signal on channel Pz and PO8 have higher correlation on those non-target flashes
as shown in Figure 4.9. That is consistent to the results in Figure 4.7 where the signal interaction
effect of Fz-T7 is positive while that of Pz-PO8 is negative. That is to say, the correlation structure
among channels are different between target and non-target flashes. Therefore, incorporating
signal interaction, i.e., signal correlation information, into the prediction model can help the model
differentiate target and non-target flashes more accurately, resulting in improved prediction accuracy.

Second, we identify important main effect (nodes) and interaction effect (edges) as shown in
Figure 4.6 and 4.7. In terms of the main effects, PO7, PO8, Oz, Pz and Cz are important across all
subjects. This result is reasonable given that the brain regions corresponding to PO7 and PO8 are
involved in visual object recognition and receive processed visual information. The occipital lobe,
corresponding to Oz, is primarily responsible for visual processing. The brain regions related to Pz
are called the precuneus, which is involved in memory tasks, such as when people look at images
and try to respond based on what they have remembered. Similar findings have been reported by
Krusienski et al. Krusienski et al. (2008) and McCann et al. McCann et al. (2015). It is also worth
mentioning that channel CP4 is selected with a high reproducibility value for subject 151, who has
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Subject 114 (female, 24)Subject 112 (female, 31)

Subject 151 (ALS) (male, 62)

Subject 108 (male, 60)

Subject 152 (male, 78) Subject 212 (male, 17)

main 
effect

interaction 
effect

Figure 4.6: The reproducibility results of the six subjects. The subjects’ gender and age are provided.
Specifically, we use different number of sequences to train the model, leading to several feature
selection results. The reproducibility is measured based on the frequency with which each feature
was selected.

been diagnosed with amyotrophic lateral sclerosis (ALS), whereas CP4 was not as important for
other healthy subjects. Regarding the signal interaction effect, the channel pairs Cz-Pz and Pz-Oz
are relatively important across all subjects and the interaction between PO7 and PO8 is generally
important for males. Furthermore, Cz is a hub region, indicating that it has a strong interaction
effect with different nodes across subjects.
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Subject 114 (female, 24)Subject 112 (female, 31)

Subject 151 (ALS) (male, 62)

Subject 108 (male, 60)

Subject 152 (male, 78) Subject 212 (male, 17)

interaction 
effect

negative

positive

main 
effect

Figure 4.7: The signal interaction effect of the six subjects. The subjects’ gender and age are
provided. The green edges represent the positive effect (β0(k1, k2) > 0) while the blue edges
represent the negative effect (β0(k1, k2) < 0) of the selected channel pairs when predicting stimulus
type outcomes.

(a) EEG signal on channel Fz and T7 (b) Scatter plot of EEG signal on channel Fz and T7

Figure 4.8: EEG Signal comparison on channel Fz and T7. Figure 4.8a shows the overall EEG
signal across all target and non-target stimulus and Figure 4.8b gives the scalar plot of EEG signal
on one of the target or non-target stimulus
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(a) EEG signal on channel Pz and PO8 (b) Scatter plot of EEG signal on channel Pz and PO8

Figure 4.9: EEG Signal comparison on channel Pz and PO8. Figure 4.8a shows the overall EEG
signal across all target and non-target stimulus and Figure 4.8b gives the scalar plot of EEG signal
on one of the target or non-target stimulus
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CHAPTER 5

Conclusion and Future Work

5.1 Summary

In this dissertation, we developed several models and algorithm based on Gaussian Process,
which address the challenges of analyzing large-scale and complex data in biomedical research.
Conclusions drawn from this dissertation work are summarized below.

Novel GP-based models with scalability and generalizability We present several contributions
to the field of GP-based methods for analyzing complex datasets. First, we have addressed the
negative transfer problem in the context of an MGP and proposed two novel latent structures that
can avoid negative transfer and maintain estimation in a low-dimensional parameter space. Our
approach is highly scalable and allows for functional variable selection through regularization,
making it a valuable tool for many real-world applications. Second, we have introduced a Bayesian
framework based on two levels of hierarchical Gaussian process priors to perform multimodal
correlation analysis in neuroimaging data. The proposed thresholded correlation Gaussian process
prior is highly flexible and can accommodate a wide range of spatially varying functions, including
those that are piecewise smooth, sparse, and jump discontinuous, which are commonly encountered
in neuroimaging data. This model is quite general and can be applied to various neuroimaging
correlation analysis problems. Finally, we have proposed a novel Bayesian classification model
with signal interactions using the relaxed thresholded Gaussian process prior, which enables us to
model the effect of signal interactions and perform variable selection during the Bayesian MCMC
sampling. Our proposed approach represents a significant advancement in the field of GP-based
methods and has the potential to be further applied to future neuroscience studies.

Algorithm with computational efficiency Throughout this dissertation, we have proposed
several efficient algorithms based on GP. In the first project, we introduce a pairwise structure that
can be parallelized to scale to an arbitrarily large N . Each sub-model is estimated with a limited
number of parameters, resulting in a significant reduction in computation time. For instance, in an
MGP model withN = 50 outputs, the original MGP model took approximately 24 hours to estimate,
while the pairwise model only took ≈ 30 seconds. In the second project, we propose an efficient
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MCMC sampling algorithm based on thresholded GP. Compared to the existing gradient-based
MCMC algorithm, our Gibbs sampler is highly efficient, and does not require any tuning parameters.
A hybrid mini-batch MCMC is also introduced to further improve computational efficiency. Finally,
in the third project, we extended the thresholded GP prior to the relaxed thresholded GP, leading to
a more efficient posterior computation in analyzing large-scale and complex data. Our proposed
algorithms have demonstrated significant improvements in computational efficiency and can be
applied to other Bayesian model with thresholding priors.

Applications in neuroimaging studies Our proposed model has been successfully applied to
various real-world data analyses. One notable application is in multimodal neuroimaging analysis
in the Human Connectome Project. Our goal is to study the association between resting-state
fMRI and memory task-related fMRI to identify brain regions where these two brain activities are
strongly associated. This type of analysis provides valuable insights into predicting task-related
brain activations from resting-state fMRI, which is a useful research area that provides a “task-free”
method for mapping brain functions in patients who are unable to perform tasks. We also apply
our proposed model to brain-computer interface data, with the goal of inferring the participant’s
intended character on a 6× 6 virtual keyboard using the EEG signal. Our proposed model improves
the character-level prediction accuracy and identifies several important channels and channel pairs
that contribute most to predicting stimulus type outcomes. These applications demonstrate the
effectiveness of our proposed model and its potential for use in a wide range of fields.

5.2 Future work

Based on the findings of this dissertation, there are several potential avenues for future research.
One such direction would be to explore the use of variational inference (VI) as an alternative to

Markov chain Monte Carlo (MCMC) sampling. Although MCMC sampling is asymptotically exact,
it can be computationally expensive, particularly when there is no closed form of full conditional
distributions. VI, on the other hand, is a machine learning technique that approximates probability
densities through optimization and has been successfully applied in various domains. Unlike
MCMC, VI assumes a model, which introduces some bias but also reduces the variance. Although
it is generally less accurate than MCMC, it is much faster and thus better suited for large-scale
statistical problems. Recently, some researchers have proposed hybrid methods that combine the
advantages of both MCMC and VI, such as contrastive VI and auxiliary-likelihood MCMC. These
hybrid methods have shown promising results in various applications (Ruiz and Titsias 2019, Habib
and Barber 2019). By leveraging these approaches, it may be possible to reduce the computational
burden and improve the efficiency of inference for the problem addressed in this dissertation, and
further research in this direction could yield valuable insights and applications.
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Another possible direction would be to study the correlation structure among multiple imaging
modalities. In this dissertation, we perform spatially-varying correlation analysis between two
modalities. We could further apply the proposed method to study the correlation structure among
multiple modalities. In this case, the pairwise structure introduced in the first project can be
adopted to reduce the computational complexity. By studying the correlation structure among
multiple modalities, it may be possible to uncover new insights into the complex interactions and
functional relationships between different brain regions. This could lead to improved diagnostic
and treatment approaches for neurological and psychiatric disorders. Additionally, incorporating
more modalities may provide a more complete picture of the brain, potentially enabling researchers
to better understand the mechanisms underlying cognitive processes, such as learning and memory,
and their disruptions in neurological and psychiatric disorders.

Finally, it is worth exploring the possibility of incorporating spatial dependency when modeling
the EEG signals. While some work has already incorporated temporal dependency in ERP-based
BCIs (Koçanaoğullari et al. 2018, Ma et al. 2022), there have been few attempts to account for
spatial information. Our work has considered the interaction between EEG signals across different
channels, but the prior we imposed on the effect of signal interactions is spatially independent.
Given that several studies have shown that brain functions require the integration of distributed brain
areas (Tononi and Edelman 1998, Friston et al. 1997), a promising direction would be to incorporate
prior knowledge based on the brain network and design a more informative kernel or other prior
structure that can capture the spatial dependency of EEG signals. Such an approach could lead to
improved prediction accuracy of BCI systems by better capturing the underlying neural mechanisms
involved in the cognitive task.
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APPENDIX A

Supplementary Material of Chapter 1

A.1 Proof of Lemma 3.2

Consider the MGP model with 2 outputs y1 and y2, modeled with one latent functionX1, where
fi(x) = K1i(x) ⋆ X1(x) and X1 is Dirac Delta function. We will show that for any x,x′ ∈ RD,
covf12(x,x

′) = 0 if and only if at least one of K11, K12 is identically equal to zero. The sufficiency
is obvious, then we prove necessity.
First assume K11 and K12 satisfy the first condition, i.e. ∃ α11, α12 ∈ R such that K11 = α11k11

and K12 = α12k12, where k11 > 0 and k12 > 0. Gaussian, Matern, rational quadratic, periodic and
locally periodic kernels are typical examples for this case. For any two inputs points x and x′,
denote d = x− x′. Then

covf12(x,x
′) =

∫ +∞

−∞
K11(u)K12(u− d)du

= α11α12

∫ +∞

−∞
k11(u)k12(u− d)du

Since k11 > 0 and k21 > 0,
∫ +∞
−∞ k11(u)k12(u−d)du ̸= 0 for ∀d ∈ RD. Thus, covf12(x,x

′) = 0 if
and only if at least one of α1i, i = 1, 2 is equal to zero, i.e. at least one of K1i, i = 1, 2 is identically
equal to 0.

Then consider the second case when k1i has the form
∑

u a
2
uexp

(
xTBux

)
cos(2πcuxT ) with

parameters (au,Bu, cu). Here for simplicity, we only prove for one dimension case when x, x′ ∈ R
and the proof for general case is similar. We rewrite k1i, i = 1, 2 as

k1i =

Qi∑
q=1

a2iq exp{−σ2
iqd

2} cos(µiqd)
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. Since now k1i(d) = k1i(−d),

covf12(x, x
′) =

∫ +∞

−∞
K11(u)K12(u− d)du

=

∫ +∞

−∞
K11(u)K12(d− u)du

= K11 ⋆ K12(d)

= F−1(F(K11) · F(K12))(d)

where F is the Fourier operator and ⋆ denote the convolution operator. The last equality is derived
using the conclusion of Convolution Theorem. Hence covf12(x, x

′) = 0 if and only if

F(K11) · F(K12)(ξ) =

Q1∑
k=1

Q2∑
j=1

a21ka
2
2j

4
M1kM2j = 0

where

M1k =

√
π

σ2
1k

(exp(
(µ1k − 2πξ)2

−4σ2
1k

) + exp(
(µ1k + 2πξ)2

−4σ2
1k

))

M2j =

√
π

σ2
2j

(exp(
(µ2j − 2πξ)2

−4σ2
2j

) + exp(
(µ2j + 2πξ)2

−4σ2
2j

))

Note that if the kernel does not satisfy this two condition, we can still check if F−1(F(K11) ·
F(K12))(d) = 0, i.e. whether (F(K11) · F(K12))(ξ) = 0 or not using Fourier Transform. Since
M1k,M2j > 0, we have a21ka

2
2j = 0 for any k ∈ {1, 2, · · ·Q1} and j ∈ {1, 2, · · ·Q2}. Therefore, we

reach the conclusion either a1k = 0,∀k or a2j = 0, ∀j, i.e. at least one of K1i, i = 1, 2 is identically
equal to 0.
For general case when X1 is a GP constructed from CP , i.e.

cov(X1(u), X1(u
′)) =

∫ +∞

−∞
KX1(v)KX1(v − d)dv

where d = u− u′. Consider the first case when there ∃ α11, α12, α1 ∈ R such that K11 = α11k11,
K12 = α12k12 and KX1 = α1kX1 , where k11 > 0, k12 > 0 and kX1 > 0.

covf12(x,x
′) =

∫ +∞

−∞
K11(x− z)

∫ +∞

−∞
K12(x

′ − z′) ·
∫ +∞

−∞
KX1(v)KX1(v − d)dvdz′dz

= α11α12α1

∫ +∞

−∞
k11(x−z)

∫ +∞

−∞
k12(x

′−z′) ·
∫ +∞

−∞
kX1(v)kX1(v−d)dvdz′dz

Similar as the argument when X1 is Dirac Delta function, we have covf12(x,x
′) = 0 if and only if

one of K11, K12 and KX1 is identically equal to 0.
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Now consider the case when K11, K12 and KX1 satisfy the second condition, then

covf12(x,x
′)

= K11 ⋆ K12 ⋆ KX1 ⋆ KX1(d)

= F−1(F(K11 ⋆ K12) · F(KX1 ⋆ KX1))(d)

= F−1(F(K11) · F(K12) · F(KX1) · F(KX1))(d)

Hence covf12(x,x
′) = 0 if and only if F(K11) · F(K12) · F(KX1) · F(KX1) = 0. Similar as the

proof when X1 is Dirac Delta function, we reach the conclusion that covf12(x,x
′) = 0 if and only if

one of K11, K12 and KX1 is identically equal to 0.

A.2 Illustrative example of Theorem 3.3

Here we present a simple example when N = 2 and Q = 2 to illustrate Theorem 2. We have
proved that in this case, the model could achieve covf12(x,x

′) = 0, ∀x,x′ ∈ RD. For any new
input point x⋆, the integrative analysis of y1 and y2 leads to the prediction:(

y⋆1

y⋆2

)
=

(
C⋆

11 C⋆
12

C⋆
21 C⋆

22

)(
C11 C12

C21 C22

)−1(
y1

y2

)

=

(
C⋆

11 0

0 C⋆
22

)(
C11 0

0 C22

)−1(
y1

y2

)

=

(
C⋆

11C
−1
11 y1

C⋆
22C

−1
22 y2

)
where yi = fi(x) + ϵi(x) and y⋆i = fi(x

⋆) + ϵi(x), i = 1, 2; Cij = covf12(x,x
′), C⋆

ij =

covf12(x
⋆,x′) The prediction result is exactly the same with that when we model y1 and y2 indepen-

dently, which means that the model has capability to make the MGP model collapse into two 2
independent GPs, hence we achieve our goal of avoiding negative transfer between y1 and y2.

A.3 Formula of covariance functions using spectral kernels

Consider the MGP model with two outputs and one latent function X1

fi(x) = K1i(x) ⋆ X1(x), i = 1, 2, x ∈ R (A.1)

where

K1i(d) =

Qi∑
q=1

aqi · exp{−σ2
qid

2} · cos(µqid)
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From the proof of Lemma 1, we know that

covf12 (x, x
′) =

∫ +∞

−∞
K11(u)K12(u− d)du

=

∫ +∞

−∞
K11(u)K12(d− u)du

= K11 ⋆ K12(d)

= F−1 (F (K11) · F (K12)) (d)

Compute the Fourier Transform of K11 and K12 respectively:

F(K11)(ξ) =

Q1∑
q=1

aq1
2

√
π

σ2
q1

(exp{−(µq1 − 2πξ)2

4σ2
q1

}+ exp{−(µq1 + 2πξ)2

4σ2
q1

})

=

Q1∑
q=1

aq1
2
Mq1(ξ)

F(K12)(ξ) =

Q2∑
q=1

aq2
2

√
π

σ2
q2

(exp{−(µq2 − 2πξ)2

4σ2
q2

}+ exp{−(µq2 + 2πξ)2

4σ2
q2

})

=

Q2∑
q=1

aq2
2
Mq2(ξ)

Thus

F(K1)(ξ) · F(K2)(ξ) =

Q1∑
s=1

Q2∑
t=1

as1at2
4

Ms1Mt2

We hence get the covariance function between f1 and f2:

covf12(x, x
′) = F−1 (F (K11) · F (K12)) (d) =

Q1∑
s=1

Q2∑
t=1

as1at2
2

√
π

σ2
s1 + σ2

t2

H(d)

where

H(d) = (eA1(d) cos (θ1d) + eA2(d) cos (θ2d))

A1(d) =
−(µs1 − µt2)

2 − 4σ2
s1σ

2
t2π

2d2

4(σ2
s1 + σ2

t2)

A2(d) =
−(µs1 + µt2)

2 − 4σ2
s1σ

2
t2π

2d2

4(σ2
s1 + σ2

t2)

θ1 =
µs1σ

2
t2 + µt2σ

2
s1

σ2
s1 + σ2

t2

θ2 =
µs1σ

2
t2 − µt2σ

2
s1

σ2
s1 + σ2

t2

Note that in our simulation, we use the kernel with Q1 = Q2 = 1 and the number of latent functions
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is Q. Thus the covariance function between fi and fj becomes

covfij(x, x
′) =

Q∑
k=1

aqiaqj
2

√
π

σ2
qi + σ2

qj

H(d)

76



APPENDIX B

Supplementary Material of Chapter 2

In this supplement, we first present the proofs of all the theoretical results in the paper, along
with a number of useful lemmas. We next derive the full conditional distributions of the model
parameters, and present some additional numerical results.

B.1 Proofs

B.1.1 Proof of Proposition 15

Given τ 21 (v) and τ 22 (v), if π(Y+,i(v), Y−,i(v) | θ) = π (Y+,i(v), Y−,i(v) | θ′), for any i =

1, . . . , n, v ∈ Bm, and since {Y+,i(v), Y−,i(v)} follows a bivariate normal distribution, we have
that µ+,i(v) = µ′

+,i(v), and µ−,i(v) = µ′
−,i(v), i.e., s{ρ(v)}E+,i(v) = s{ρ′(v)}E ′

+,i(v), and
s{−ρ(v)}E−,i(v) = s{−ρ′(v)}E ′

−,i(v), for any i = 1, . . . , n, v ∈ Bm.
Furthermore, we have that,

0 =
n∑
i=1

[
s{ρ(v)}E+,i(v)− s{ρ′(v)}E ′

+,i(v)
]2

=
n∑
i=1

[
s{ρ(v)}2E+,i(v)

2 − 2s{ρ(v)}s{ρ′(v)}E+,i(v)E
′
+,i(v) + s{ρ′(v)}2E ′

+,i(v)
2
]

= [s{ρ(v)} − s{ρ′(v)}]2
n∑
i=1

E2
+,i(v) + s{ρ′(v)}s{ρ(v)}

n∑
i=1

{E+,i(v)− E ′
+,i(v)}2

+ s{ρ′(v)} [s{ρ(v)} − s{ρ′(v)}]
n∑
i=1

{
E+,i(v)

2 − E ′
+,i(v)

2
}

By Definition 14, we have
∑n

i=1E+,i(v)
2 =

∑n
i=1E

′
+,i(v)

2.
When v ∈ V(ρ) ∪ V(ρ′), we have s{ρ(v)} ≥ 0, s{ρ′(v)} ≥ 0, and at least one of s{ρ(v)}

and s{ρ′(v)} is not equal to 0. Therefore, s{ρ(v)} = s{ρ′(v)}, and E+,i(v) = E ′
+,i(v), for any

i = 1, . . . , n, v ∈ Bm. On the other hand, if v /∈ V(ρ) ∪ V(ρ′), then s{ρ(v)} = s{ρ′(v)} = 0.
Similarly, we have E−,i(v) = E ′

−,i(v) = 0, for any i = 1, . . . , n, v ∈ Bm.
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Since s(·) is a monotonic function, we have ρ(v) = ρ′(v) for all v ∈ Bm. This completes the
proof of Proposition 15. □

B.1.2 Proof of Theorem 16

By Lemma 22, we have ρ(v) = Tω{ξ(v)} = H[Rω{ξ(v)}], where H(t) = t2/(t2 + 1) when
ξ(v) > ω, H(t) = −t2/(t2 + 1) when ξ(v) < −ω, and H(t) = 0 otherwise, and Rω(x) =

Gω(x)−Gω(−x) is the hard thresholded function. Therefore, we have that,

Π(∥ρ− ρ0∥∞ < ε) = Π (∥H[Rω{ξ(v)}]−H[Rω{ξ0(v)}]∥ < ϵ)

≥ Π(∥Rω{ξ(v)} −Rω{ξ0(v)}∥ < ϵ) ,

by the Lipschitz continuity of H(·). Given the assumptions for ρ0(v), we have that ξ(v) is bounded
away from 0 for v /∈ R0. Henceforth,

Π(∥Rω(ξ(v))−Rω(ξ0(v))∥ < ϵ)

≥ Π

(
sup
v/∈R0

|ξ(v)− ξ0(v)| < ϵ, inf
v/∈R0

|ξ(v)| > ω, sup
v∈R0

|ξ(v)| ≤ ω

)
.

(B.1)

Without loss of generality, we only consider 0 < ϵ < ω − ω0, where ω0 = infv/∈R0 |ρ(v)|. Note that
for all v /∈ R0, |ξ(v)− ξ0(v)| < ϵ and |ξ0(v)| ≥ ω0, which implies that |ξ(v)| ≥ ω0 − ϵ > ω. Then
(B.1) is equivalent to

Π(∥ρ(v)− ρ0(v)∥ < ϵ) ≥ Π

(
sup
v/∈R0

|ξ(v)− ξ0(v)| < ϵ, sup
v∈R0

|ξ(v)| ≤ ω

)
.

Let ψl(v) and λl be the normalized eigenfunctions and eigenvalues of the kernel function κ(·, ·).
The KL expansions of ξ(v) and ξ0(v) are ξ(v) =

∑∞
l=1 clψl(v), ξ0(v) =

∑∞
l=1 cl0ψl(v).

For v /∈ R0, we have that,

sup
v/∈R0

|ξ(v)− ξ0(v)| ≤ sup
v/∈R0

|ξL(v)− ξ0L(v)|+ sup
v/∈R0

|ξ(v)− ξL(v)|+ sup
v/∈R0

|ξ0L(v)− ξ0(v)|.

Since the RKHS of κ(·, ·) is the space of the continuous functions on R, ξ(v) is uniformly
continuous on B\R0 with probability 1. Then by Theorem 3.1.2 of Adler and Taylor (2009),
limL→∞ supv/∈R0

|ξ(v)− ξL(v)| = 0 with probability 1. By the uniform convergence of the series∑L
l=1 cl0ψl(v) to ξ0(v) on B\R0, as L→ ∞, we have limL→∞ supv/∈R0

|ξ0(v)− ξ0L(v)| = 0. Then
we can find a finite integer L′, such that, for all L > L′, supv/∈R0

|ξ(v)− ξL(v)| < ϵ/3 with probabil-
ity 1, and supv/∈R0

|ξ0(v)− ξ0L(v)| < ϵ/3. Since ψl(v), l = 1, . . . , L, are all continuous functions in
R, we have max1≤l≤L ∥ψl(v)∥∞ < Mψ,L, for some constant Mψ,L. When |cl − cl0| < ϵ/(3LMψ,L)

for all l = 1, . . . , L, we have supv/∈R0
|ξL(v)− ξ0L(v)| ≤ ϵ/3. Therefore, |cl − cl0| < ϵ/(3LMψ,L),

l = 1, . . . , L, guarantees that supv/∈R0
|ξ(v)− ξ0(v)| ≤ ϵ with probability one.
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For v ∈ R0, we have that,

sup
v∈R0

|ξ(v)| ≤ sup
v∈R0

|ξ(v)− ξL(v)|+ sup
v∈R0

|ξL(v)|.

Similarly, we can find L and Mψ,L, such that |cl| ≤ ω/(2LMψ,L), l = 1, . . . , L, guarantees that
supv∈R0

|ξ(v)| ≤ ω with probability 1.
Then we have that,

Π(∥ρ− ρ0∥∞ < ε) ≥ Π

(
{|cl − cl0| <

ϵ

3LMψ,L

: L = 1, 2, . . . , L when v /∈ R0}

∪ {|cl| ≤
ω

2LMψ,L

: L = 1, 2, . . . , L when v ∈ R0}
)
.

This completes the proof of Theorem 16. □

B.1.3 Proof of Theorem 17

Based on Theorem 16, Lemma 24 shows the positivity of prior neighborhoods. We then construct
sieves for θ(v) as follows:

Θn =

{
ρ ∈ Θρ, E+, E− ∈ ΘE :

∥ρ∥∞ ≤ H
(
m1/(2d)

)
, sup
v∈R1∪R−1

|Dτρ(v)| ≤ m1/(2d), 1 ≤ ∥τ∥1 ≤ α

∥E+,i∥∞ ≤ m1/(2d), sup
v∈R1∪R−1

|DτE+,i(v)| ≤ m1/(2d),

∥E−,i∥∞ ≤ m1/(2d), sup
v∈R1∪R−1

|DτE−,i(v)| ≤ m1/(2d), for i = 1, . . . , n

}
,

(B.2)

where α and m are defined in Assumption 16.1.
We can then find an upper bound for the tail probability, and construct the uniform consistent

tests in Lemmas 25, 26, 27 and 29. These lemmas verify the three key conditions in Theorem A1 of
Choudhuri et al. (2004), which leads to the posterior consistency. That is, by Lemmas 25, 26, 27
and 29, as n→ ∞, m→ ∞, we have that,

Eθ0 (Ψn) → 0,

sup
θ∈UC

ϵ ∩Θn

Eθ (1−Ψn) ≤ C0 exp (−C1n) ,

Π
(
ΘC
n

)
≤ K exp

(
−bm1/d

)
≤ K exp (−C3n) .

where Uϵ = {θ ∈ Θ : ∥θ − θ0∥1 < ϵ} for any ϵ > 0, and Ψn is the test statistic defined in (B.10).
This completes the proof of Theorem 17. □
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B.1.4 Proof of Theorem 18

Let R0 = {v : ρ0(v) = 0}, R1 = {v : ρ0(v) > 0}, and R−1 = {v : ρ0(v) < 0}. For any
A ⊂ B and any integer k ≥ 1, define

Fk(A) =

{
ρ ∈ Θρ :

∫
A
|ρ(v)− ρ0(v)| dv <

1

k

}
.

Then Fk+1(A) ⊆ Fk(A) for all k, and Fk(B) ⊆ Fk(A). Consider

Fk (R0) =

{
ρ ∈ Θρ :

∫
R0

|ρ(v)|dv < 1

k

}
.

Define Uρ
ϵ = {ρ ∈ Θρ : ∥ρ− ρ0∥1 < ϵ}. By Theorem 17 and the fact that Uρ

1/k = Fk(B), we have

Π {Fk (R0) | Y+, Y−} ≥ Π
(
Uρ
1/k | Y+, Y−

)
→ 1, as n→ ∞.

In addition,

{ρ(v) = 0, for all v ∈ R0} =

{∫
R0

|ρ(v)|dv = 0

}
=

∞⋂
k=1

Fk (R0) .

By the monotonic continuity of the probability measure, we have,

Π
{
ρ(v) = 0, for all v ∈ R0 | Y+, Y−

}
= lim

k→∞
Π
{
Fk (R0) | Y+, Y−

}
= 1, as n→ ∞.

For any v0 ∈ R1 and any integer k ≥ 1, there exists δ0 > 0, such that |ρ (v1)− ρ (v0)| < 1/2k,
for any v1 ∈ B (v0, δ0) = {v : ∥v1 − v0∥1 < δ0}. As R1 is an open set, there exists δ1 > 0, such
that B (v0, δ1) ⊆ R1. Let δ = min {δ1, δ0} > 0, we have that,{

ρ (v0) > −1

k
, for all v0 ∈ R1

}
⊇
{
ρ (v0) > ρ (v1)−

1

2k
and ρ (v1) > − 1

2k
, for some v1 ∈ B (v0, δ) , for all v0 ∈ R1

}
⊇
{∫

B(v0,δ)
ρ(v)dv > − 1

2k
, for all v0 ∈ R1

}
⊇
{∫

B(v0,δ)
ρ(v)dv >

∫
B(v0,δ)

ρ0(v)dv −
1

2k
, for all v0 ∈ R1

}
⊇ F2k [B (v0, δ)] ⊇ Uρ

1/2k.

Therefore, Π {ρ (v0) > −1/k, for all v0 ∈ R1 | Y+, Y−} ≥ Π
(
Uρ
1/2k | Y+, Y−

)
→ 1, as n → ∞.

By the monotonic continuity of the probability measure, we have that,

Π {ρ(v) > 0, for all v ∈ R1 | Y+, Y−} = lim
k→∞

Π

{
ρ (v0) > −1

k
, for all v0 ∈ R1 | Y+, Y−

}
→ 1,

as n → ∞. Similarly, we can obtain that Π {ρ(v) < 0, for all v ∈ R−1 | Y+, Y−} → 1, n → ∞.
This completes the proof of Theorem 18. □
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B.1.5 Proof of Proposition 19

We prove this proposition by sorting all the thresholding values, and derive the unnormalized
density on each interval, respectively. We then obtain the full conditional density function of θ by
normalizing the function on each interval as the density function.

We sort (L1, . . . , LP , U1, . . . , UK) in ascending order, which leads to P +K + 1 intervals, and
denoted them as I1, I2, . . . , IP+K+1. For each interval Ii, i = 1, . . . , P +K +1, the full conditional
distribution of θ is proportional to exp(−Diθ

2 − Eiθ − Fi). We initialize Di = Ei = Fi = 0,
then loop through p = 1, . . . , P and k = 1, . . . , K to update Di, Ei and Fi. More specifically, if
Ii ⊂ [Lp,+∞), we update Di = Di + a1p, Ei = Ei + a2p, and Fi = Fi + a3p. If Ii ⊂ (−∞, Uk],
we update Di = Di + b1k, Ei = Ei + b2k, and Fi = Fi + b3k. We consider three specific cases.

• If at least one of {a1p, . . . , a1P , b1k, . . . , b1K} is not equal to 0, then Di ̸= 0, for any
i = 1, . . . , P + K + 1. Therefore, when θ ∈ Ii, the full conditional distribution of θ is
N{−Ei/(2Di),−1/(2Di)}. Incorporating the normalizing constant Mi for each interval,
which is independent of θ, the full conditional distribution of θ is the mixture of truncated
normal distributions,

∑P+K+1
i=1 Mi · TruncatedNormalIi{−Ei/(2Di),−1/(2Di)}.

• If at least one of {a2p, . . . , a2P , b2k, . . . , b2K} is not equal to 0 and a1p = b1k = 0, for any
p = 1, . . . , P and k = 1, . . . , K, then Di = 0 and Ei ̸= 0, for any i = 1, . . . , P + K + 1.
Therefore, when θ ∈ Ii, the full conditional distribution of θ is the exponential distribution
Exp(Ei). Incorporating the normalizing constant Mi, the full conditional distribution of θ is∑P+K+1

i=1 Mi · ExponentialIi(Ei).

• If at least one of {a3p, . . . , a3P , b3k, . . . , b3K} is not equal to 0, a1p = b1k = a2p = b2k = 0,
for any p = 1, . . . , P and k = 1, . . . , K, then Di = Ei = 0, and at least one of Fi ̸= 0, for
any i = 1, . . . , P + K + 1. Therefore, when θ ∈ Ii, the full conditional distribution of θ
is proportional to the uniform distribution on Ii = [u1i, u2i]. Incorporating the normalizing
constant Mi, the full conditional distribution of θ is

∑P+K+1
i=1 Mi · U(u1i, u2i).

This completes the proof of Proposition 19. □

B.2 Additional Lemmas

Lemma 22. Rewrite ρ(v) = Tω{ξ(v); τ 21 (v), τ 22 (v)} in (3.6). Then Tω(·) is a piecewise Lipschitz

continuous function for any ω.
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Proof : From (3.6), it is straightforward to verify that ρ(v) can be written as

ρ(v) = Corr{Y1,i(v), Y2,i(v)}

=
G2
ω{ξ(v)} −G2

ω{−ξ(v)}√
G2
ω{ξ(v)}+G2

ω{−ξ(v)}+ τ 21 (v)
√
G2
ω{ξ(v)}+G2

ω{−ξ(v)}+ τ 22 (v)

=
sign{ξ(v)}R2

ω{ξ(v)}√
R2
ω{ξ(v)}+ τ 21 (v)

√
R2
ω{ξ(v)}+ τ 22 (v)

,

where Rω(x) = Gω(x) − Gω(−x). Without loss of generality, suppose τ 21 (v) and τ 22 (v) are
both equal to one. Then Tω(x) = H{Rω(x)}, where H(t) = t2/(t2 + 1) when ξ(v) > ω,
H(t) = −t2/(t2 + 1) when ξ(v) < −ω, and H(t) = 0 otherwise. Since H(t) is continuous and
|H ′(t)| ≤ 1/(2ω), H(t) is Lipschitz continuous. As Rω(x) is the hard thresholding function, which
is piecewise Lipschitz continuous function, Tω(x) = H{Rω(x)} is also a piecewise Lipschitz
continuous function. This completes the proof of Lemma 22. □

Lemma 23. Given ρ(v) = Tω{ξ(v); τ 21 (v), τ 22 (v)} in (3.6), there exist a piecewise Lipschitz contin-

uous function s(·), such that Gω{ξ(v)} = s{ρ(v); τ 21 (v), τ 22 (v)}

Proof : It is straightforward to show that Gω{ξ(v)} = s {ρ(v); τ 21 (v), τ 22 (v)}, and Gω{−ξ(v)} =

s {−ρ(v); τ 21 (v), τ 22 (v)}, where s(x; t1, t2) is as given in (3.7). Therefore, s is a piecewise Lipschitz
continuous function. This completes the proof of Lemma 23. □

Lemma 24. Let Πn,i(·; θ) denote the density function of Zn,i = (Y+,i, Y−,i). Define Λn,i(·; θ0, θ)
= log πn,i(·; θ) − log πn,i(·; θ0), Kn,i(θ0, θ) = Eθ0 {Λn,i (Zn,i; θ0, θ)}, and Vn,i (θ0, θ) = varθ0

{Λn,i(Zn,i; θ0, θ)}. There exists a set O with Π(O) > 0, such that, for any ϵ > 0,

lim inf
n→∞

Π

[{
θ ∈ O, n−1

n∑
i=1

Kn,i (θ0, θ) < ϵ

}]
> 0 and n−2

n∑
i=1

Vn,i (θ0, θ) → 0 for θ ∈ O.

Proof : The density function is of the form,

Πn,i(Zn,i; θ) =
∑
v∈Bm

1

2πu2(v)
√

1− r2(v)
· exp

[
− Wi(v)

2{1− r2(v)}u2(v)

]
,

whereWi(v) = {Y+,i(v)−µ+,i(v)}2+{Y−,i(v)−µ−,i(v)}2+2r(v){Y+,i(v)µ−,i(v)+Y−,i(v)µ+,i(v)},
r(v) = {τ 21 (v)− τ 22 (v)}/{τ 21 (v) + τ 22 (v)}, and u2(v) = {τ 21 (v) + τ 22 (v)}/4. Therefore, we have,

Λn,i (Zn,i; θ0, θ) = log Π(Zn,i; θ)− log Π(Zn,i; θ0)

=
∑
v∈Bm

[
− 1

2{1− r2(v)}u2(v)

] [
µ2
+,i(v)− µ2

+,i,0(v) + µ2
−,i(v)− µ2

+,i,0(v)

+ 2Y+,i(v){µ+,i,0(v)− µ+,i(v)}+ 2Y−,i(v){µ−,i,0(v)− µ−,i(v)}(v)

+ 2rY+,i(v){µ−,i(v)− µ−,i,0(v)}+ 2rY−,i(v){µ+,i(v)− µ+,i,0(v)}
]
,
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Kn,i (θ0, θ) = Eθ0 {Λn,i (Zn,i; θ0, θ)}

=
∑
v∈Bm

(
− 1

2{1− r2(v)}u2(v)

[
{µ+,i(v)− µ+,i,0(v)}2 + {µ−,i(v)− µ−,i,0(v)}2

+ 2r(v)µ+,i,0(v)µ−,i(v) + 2r(v)µ−,i,0(v)µ+,i(v)

− 2r(v)µ+,i,0(v)µ−,i,0(v)− 2r(v)µ−,i,0(v)µ+,i,0(v)
])
.

Given any ζ > 0, let O(ζ) = {θ : ∥θ − θ0∥∞ < ζ}, with

∥θ − θ0∥∞ = max
v∈V(ρ)∪V(ρ0)

{
∥ρ− ρ0∥∞, max

1≤i≤n
∥E−,i − E−,i,0∥∞, max

1≤i≤n
∥E+,i − E+,i,0∥∞

}
.

and V(ρ) = {v : ρ(v) ̸= 0}, V(ρ0) = {v : ρ0(v) ̸= 0}. Then for any v ∈ O(ζ),

|µi,+(v)− µi,+,0(v)| ≤ |s{ρ(v)}E+,i(v)− s{ρ0(v)}Ei,+,0(v)|

≤ |E+,i(v) (s{ρ(v)} − s{ρ0(v)})|+ |s{ρ0(v)} (E+,i(v)− Ei,+,0(v))| ≤ K1ζ,

where the last inequality is due to the compactness and convexity of Bm, and

K1 = max
v∈V(ρ)∪V(ρ0)

{E+,i(v), s{ρ0(v)}} (B.3)

Similarly, we have |µi,−(v)− µi,−,0(v)| ≤ K2ζ , for any v, where

K2 = max
v∈V(ρ)∪V(ρ0)

{E−,i(v), s{−ρ0(v)}} . (B.4)

Therefore, we have that,∣∣∣∣∣
n∑
i=1

Kn,i(θ, θ0)

∣∣∣∣∣ ≤ ∑
v∈V(ρ)∪V(ρ0)

1

2 {1− r2(v)}u2(v)

( n∑
i=1

|µi,+(v)− µi,+,0(v)|2

+
n∑
i=1

|µi,−(v)− µi,−,0(v)|2

+ 2r(v)M
n∑
i=1

|µi,−(v)− µi,−,0(v)|+ 2r(v)M
n∑
i=1

|µi,+(v)− µi,+,0(v)|
)

≤
∑

v∈V(ρ)∪V(ρ0)

1

2{1− r2(v)}u2(v)
(
nK2

1ζ
2 + nK2

2ζ
2 + 2|r(v)|Mn(K1 +K2)ζ

)
≤ Anζ2 +Bnζ,

where M = max
v∈V(ρ)∪V0(ρ0),∀i

{µ+,i,0(v), µ−,i,0(v)}, A = (K2
1 +K2

2)
∑

v∈V(ρ)∪V(ρ0)

1

2{1− r2(v)}u2(v)
,
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and B =M(K1 +K2)
∑

v∈V(ρ)∪V(ρ0)

|r(v)|
2{1− r2(v)}u2(v)

. Henceforth, for any ϵ > 0, we obtain that,

lim inf
n→∞

Π

[{
θ ∈ O, n−1

n∑
i=1

Kn,i (θ0, θ) < ϵ

}]
> 0.

Similarly, we have that,

Vn,i (θ0, θ) =
∑

v∈V(ρ)∪V(ρ0)

1

{1− r2(v)}u2(v)
[
{µ+,i(v)− µ+,i,0(v)}2 + {µ−,i(v)− µ−,i,0(v)}2

+{r3(v)− 3r(v)}{µ+,i(v)− µ+,i,0(v)}{µ−,i(v)− µ−,i,0(v)}
]
,

|Vn,i (θ0, θ) | ≤
∑

v∈V(ρ)∪V(ρ0)

1

{1− r2(v)}u2(v)
(
K2

1ζ
2 +K2

2ζ
2 + |r3(v)− 3r(v)|K1K2ζ

2
)
≤ Cζ2,

whereC = (K2
1+K

2
2)

∑
v∈V(ρ)∪V(ρ0)

1

{1− r2(v)}u2(v)
+K1K2

∑
v∈V(ρ)∪V(ρ0)

|r3(v)− 3r(v)|
{1− r2(v)}u2(v)

. Hence-

forth, we obtain that,∣∣∣∣∣
n∑
i=1

Vn,i (θ0, θ)

∣∣∣∣∣ ≤ nCζ2 and
1

n2

n∑
i=1

Vi,n (θ0, θ) → 0, as n→ ∞.

This completes the proof of Lemma 24. □

Given the sieves we construct in (B.2), we next derive an upper bound for the tail probability,
and construct the uniform consistent tests in Lemmas 25, 26, 27 and 29.

Lemma 25. Suppose ρ ∼ TCGP(ω0, κ) with ω0 > 0, the kernel function κ satisfies Assumption

15.1, and E+,i, E−,i ∼ GP(0, I), for i = 1, . . . , n. Then there exist constants K and b, such that

Π
(
ΘC
n

)
≤ K exp(−C3n).

Proof : Following the same notation as that in the proof of Lemma 22, we have ρ(v) = Tω{ξ(v)} =

H[Rω{ξ(v)}]. Let R1 = {v : ρ(v) > 0}, and R−1 = {v : ρ(v) < 0}. We have Rω{ξ(v)} =
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ξ(v) > ω when v ∈ R1, and Rω{ξ(v)} = ξ(v) < −ω when v ∈ R−1. Then

Π
(
ΘC
n

)
≤ Π

{
sup

v∈R1∪R−1

|H(ξ(v))| > H
(
m1/2d

)}
(B.5)

+
∑

τ :1≤∥τ∥1≤α

Π

{
sup

v∈R1∪R−1

|DτH(ξ(v))| > m1/2d

}

+
n∑
i=1

Π

{
sup

v∈R1∪R−1

|E+,i| > m1/2d

}
+

n∑
i=1

Π

{
sup

v∈R1∪R−1

|E−,i| > m1/2d

}
+

n∑
i=1

∑
τ :1≤∥τ∥1≤α

Π

{
sup

v∈R1∪R−1

|DτE+,i| > m1/2d

}

+
n∑
i=1

∑
τ :1≤∥τ∥1≤α

Π

{
sup

v∈R1∪R−1

|DτE−,i| > m1/2d

}
. (B.6)

Since H(t) is a monotonic function,

Π

{
sup

v∈R1∪R−1

|H(ξ(v))| > H(m1/2d)

}
≤ Π

{
sup

v∈R1∪R−1

|ξ(v)| > m1/2d

}
≤ K1 exp

(
−b1m1/d

)
+K−1 exp

(
−b−1m

1/d
)
,

where the existence of K1, K−1, b1, b−1 in the second inequality is ensured by Theorem 5 of Ghosal
and Roy (2006).

We next consider the second term in (B.5). Since |H ′(t)| ≤ 1 and |H ′′(x)| ≤ 2, we have,∑
τ :1≤∥τ∥1≤α

Π

{
sup

v∈R1∪R−1

|DτH(ξ(v)− ω)| > m1/2d

}

≤ Π

{
sup

v∈R1∪R−1

|Dτξ(v)| > m1/2d

}
+Π

{
sup

v∈R1∪R−1

|2 ·Dτξ(v)| > m1/2d

}
≤

∑
τ :0<∥τ∥1≤α

Kτ exp
(
−bτm1/d

)
.

Denote the sum of the last four terms in (B.5) as SE . By Theorem 5 of Ghosal and Roy (2006)
again, there exist KE+ , bE+ ,KE− , bE− , KEτ and bEτ , such that

SE ≤ KE+ exp(−bE+m
1/d) +KE− exp(−bE−m

1/d) +
∑

τ :0<∥τ∥1≤α

KEτ exp
(
−bEτm

1/d
)
.

Taking

K = K−1 +K1 +KE+ +KE− +
∑

τ :0<∥τ∥≤α

Kτ +
∑

τ :0<∥τ∥≤α

KEτ

b = min

{
b−1, b1, bE+ , bE− , min

1≤|τ |≤α
bτ , min

1≤|τ |≤α
bEτ

} (B.7)
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we have
Π
(
ΘC
n

)
≤ K exp

(
−bm1/d

)
≤ K exp (−C3n) .

This completes the proof of Lemma 25. □

Lemma 26. Suppose Assumption 14.1 holds. The hypothesis testing problem,

H0 : ρ(v) = ρ0(v), E±,i(v) = E±,i,0(v), i = 1, . . . , n, v ∈ V(ρ1) ∪ V(ρ0),

H1 : ρ(v) = ρ1(v), E±,i(v) = E±,i,1(v),

is equivalent to the hypothesis testing problem,

H∗
0 : µ±,i(v) = µ±,i,0(v), i = 1, . . . , n, v ∈ V(ρ1) ∪ V(ρ0),

H∗
1 : µ±,i(v) = µ±,i,1(v),

where V(ρ1) = {v : ρ1(v) ̸= 0} and V(ρ0) = {v : ρ0(v) ̸= 0}.
Proof : For any k ∈ {0, 1}, it is straightforward to see that if Hk holds, then H∗

k also holds. We
show that, if H∗

k holds, then Hk also holds. For any v ∈ Bm,

0 =
n∑
i=1

[s{ρ(v)}E+,i(v)− s{ρk(v)}E+,i,k(v)]
2

=
n∑
i=1

[
s{ρ(v)}2E+,i(v)

2 − 2s{ρ(v)}s{ρk(v)}E+,i,1(v)E+,i,k(v) + s{ρk(v)}2E+,i,0(v)
2
]

= [s{ρ(v)} − s{ρ0(v)}]2
n∑
i=1

E2
+,i,k(v) + s{ρk(v)}s{ρ(v)}

n∑
i=1

{E+,i(v)− E+,i,k(v)}2

+ s{ρ0(v)} [s{ρ(v)} − s{ρ0(v)}]
n∑
i=1

{
E+,i(v)

2 − E+,i,k(v)
2
}
,

By Definition 14, we have
∑n

i=1E+,i(v)
2 =

∑n
i=1E+,i,0(v)

2 =
∑n

i=1E+,i,1(v)
2. When v ∈

V(ρ1)∪V(ρ0), s{ρ0(v)} ≥ 0, s{ρ1(v)} ≥ 0, and at least one of s{ρ0(v)} and s{ρ1(v)} is not equal
to 0,

s{ρ(v)} − s{ρk(v)} = 0, E+,i(v)− E+,i,k(v) = 0, i = 1, . . . , n.

Similarly, we have that E−,i(v)−E−,i,k(v) = 0 for any v ∈ V(ρ1)∪V(ρ0), i = 1, . . . , n. Since
s(·) is a monotonic function, ρ(v) = ρk(v) for any v ∈ Bm, which ccompletes the proof of Lemma
26. □

Lemma 27. For the hypothesis testing problem,

H0 : µ±,i(vj) = µ±,i,0(vj), i = 1, . . . , n, vj ∈ V(ρ1) ∪ V(ρ0), j = 1, . . . ,m,

H1 : µ±,i(vj) = µ±,i,1(vj),
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construct the testing statistic, Ψn = Ψ+n +Ψ−n −Ψ+nΨ−n, where

Ψ±n = max
i=1,...,n

{
I

(
m∑
j=1

δ±,i(vj)(Y±,i(vj)− µ±,i,0(vj)) > 2

(
m

C0

) ν
d
+ 1

2d

)}
,

δ±,i(vj) = 2I{µ±,i,1(vj) ≥ µ±,i,0(vj)} − 1, ν0/2 < ν < 1/2, and ν0, d, C0 are as defined in

Assumption 16.1. Write µ = {µi,±(vj)}, and µk = {µi,±,k(vj)} for k = 0, 1. Then, for any ϵ0 > 0,

there exist constants C0, C1 and i∗ ∈ {1, . . . , n}, such that, for any µ1 and µ0 satisfying that∑m
j=1 |µ+,i∗,1(vj)−µ+,i∗,0(vj)| > mϵ0, or

∑m
j=1 |µ−,i∗,1(vj)−µ−,i∗,0(vj)| > mϵ0, and µ satisfying

that ∥µ− µ1∥∞ < ϵ0/4, we have Eµ0(Ψn) < C0 exp(−2n2ν) and Eµ(Ψn) < C0 exp(−C1n).

Proof : To bound the type I error, we have Eµ0(Ψn) ≤ Eµ0(Ψ+n)+Eµ0(Ψ−n). By Assumption 16.1,
we have (m/C0)

ν/d ≥ nν . By the definition of Ψ+n, we have that,

Eµ0(Ψ+n) ≤ Pr

(
m∑
j=1

δ+,i∗(vj){Y+,i∗(vj)− µ+,i∗,0(vj)} > 2

(
m

C0

) ν
d
+ 1

2d

)

= Pr

(√
C0

md

m∑
j=1

δ+,i∗(vj){Y+,i∗(vj)− µ+,i∗,0(vj)} > 2

(
m

C0

) ν
d

)

= 1− Φ

(
2

(
m

C0

) ν
d

)
≤ 1− Φ (2nν) ≤ ϕ(2nν)

2nν
=

1

2
√
2π

exp(−2n2ν)

nν
.

Similarly, we have that Eµ0(Ψ−n) ≤
1

2
√
2π

exp(−2n2ν)

nν
. Therefore,

Eµ0(Ψn) ≤
1√
2π

exp(−2n2ν)

nν
.

To bound the type II error, we have that,

Eµ [1−Ψn] ≤ min {Eµ (1−Ψ+n) ,Eµ (1−Ψ−n)} .

As such, we only need to show that at least one of the type II error probabilities for Ψ+n and Ψ−n

is exponentially small. Suppose
∑m

j=1 |µ+,i∗,0(vj)− µ+,i∗,1(vj)| > mϵ0. Since
∑m

j=1 |µ+,i∗(vj)−
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µ+,i∗,1(vj)| < mϵ0/4, we have,

Eµ(1−Ψ+n)

≤ Pr

(
m∑
j=1

δ+,i∗(vj){Y+,i∗(vj)− µi∗,+,0(vj)} > 2

(
m

C0

) ν
d
+ 1

2d

)

= Pr

(√
C0

md

m∑
j=1

δ+,i∗(vj){Y+,i(vj)− µ+,i,0(vj)} ≤ 2

(
m

C0

) ν
d

)

= Pr

(√
C0

md

m∑
j=1

δ+,i∗(vj){Y+,i(vj)− µ+,i(vj)}+
√
C0

md

m∑
j=1

δ+,i∗(vj){µ+,i(vj)− µ+,i,1(vj)}

+

√
C0

md

m∑
j=1

δ+,i∗(vj){µ+,i,1(vj)− µ+,i,0(vj)} < 2(m/C0)
ν/d

)

≤ Pr

(√
C0

md

m∑
j=1

δ+,i∗(vj){Y+,i(vj)− µ+,i(vj)} ≤ C0ϵ0m
1/2d

4
− C0ϵ0m

1/2d + 2(m/C0)
ν/d

)
.

Since ν < 1/2, there exists N > N0, such that, for all n ≥ N , (m/C0)
ν/d < C0m

1/2dϵ0/4.
ByAssumption 16.1, this further implies that,

Eµ(1−Ψ+n) ≤ Pr

(√
C0

md

m∑
j=1

δ+,i∗(vj){Y+,i∗(vj)− µ+,i∗(vj)} ≤ −C0ϵ0m
1/2d

4

)

≤ Φ

(
−C0ϵ0m

1/2d

4

)
≤ Φ

(
−ϵ0n

1/2

4

)
≤ 4

ϵ0(2πn)1/2
exp

(
−nϵ

2
0

32

)
.

Taking C0 = max
{
2−1(2π)−1/2, 4ϵ−1

0 (2π)−1/2
}

and C1 = ϵ20/32 completes the proof of
Lemma 27. □

Lemma 28. Suppose Assumption 14.1, 15.1 and 16.1 hold. For any ϵ > 0, there exist N , i and

ϵ0 > 0, such that, for all n ≥ N and all θ ∈ Θn that ∥θ − θ0∥1 > ε, we have
m∑
j=1

|µ±,i (vj)− µ±,i,0 (vj)| > ϵ0m

.

Proof : We first note that,

∥θ − θ0∥1 =
∑

v∈V(ρ)∪V(ρ0)

|ρ(v)− ρ0(v)|+ max
i=1,...,n

∑
v∈V(ρ)∪V(ρ0)

|E+,i(v)− E+,i,0(v)|

+ max
i=1,...,n

∑
v∈V(ρ)∪V(ρ0)

|E−,i(v)− E−,i,0(v)|
(B.8)

Since ∥θ − θ0∥1 > ϵ, at lease one of the three terms in (B.8) is greater than ϵ/3. Without loss of

generality, suppose max
i=1,...,n

{ ∑
v∈V(ρ)∪V(ρ0)

|E+,i(v)− E+,i,0(v)|

}
> ϵ/3. Then there exist i, such that
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∑
v∈V(ρ)∪V(ρ0)

|E+,i(v)− E+,i,0(v)| > ϵ/3. Therefore,

m∑
j=1

|µ±,i (vj)− µ±,i,0 (vj)| =
m∑
j=1

|s{ρ(vj)}E+,i(v)− s{ρ0(vj)}E+,i,0(v)|

=
m∑
j=1

|s{ρ(vj)} {E+,i(v)− E+,i,0(v)}+ E+,i,0(v) [s{ρ(vj)} − s{ρ0(vj)}]|

>
m∑
j=1

|s{ρ(vj)}| |E+,i(vj)− E+,i,0(vj)| −
m∑
j=1

|E+,i,0(vj)| |s(ρ(vj))− s(ρ0(vj))|

(B.9)

By Definition 13, there exists Cρ > 0, such that |s{ρ(vj)}| > Cρ when vj ∈ V(ρ) ∪ V(ρ0). By the
compactness of V(ρ) ∪ V(ρ0), there exists C, such that max

j=1,...,m
|E+,i,0(vj)| |s(ρ(vj))− s(ρ0(vj))|

< C. Therefore,
m∑
j=1

|µ+,i (vj)− µ+,i,0 (vj)| > Cρmϵ/3−mC

Taking ϵ0 = Cρϵ/3− C completes the proof of Lemma 28. □

Lemma 29. For any ϵ⋆ > 0 and ν0 < ν < 1
2
, there exist N,C0, C1 and C2, such that, for

all n > N and θ ∈ Θn, if ∥θ − θ0∥1 > ϵ⋆, a test function Ψn can be constructed satisfying

that Eθ0 (Ψn) ≤ C0 exp (−C2n
2ν) and Eθ (1−Ψn) ≤ C0 exp (−C1n), where ν0 is as defined in

Assumption 16.1.

Proof : Let Nt be the t covering number of Θn in the supremum norm. Let θ1, . . . , θNt ∈ Θn satisfy
that, for each θ ∈ Θn, there exist at least one l such that

∥∥θ − θl
∥∥
∞ < t. For any θ ∈ Θn, define

Ψn = max
1≤l≤Nt

Ψn

(
θ0, θ

l
)
, (B.10)

where Ψn

(
θ0, θ

l
)

is the test statistic constructed in Lemma 27 for the hypothesis testing problem
H0 : θ = θ0 versus H1 : θ = θl. If ∥θ − θ0∥1 > ϵ⋆, then for θl satisfying that

∥∥θ − θl
∥∥
1
<

t ≤ ϵ⋆/2, we have
∥∥θl − θ0

∥∥
1
> ϵ⋆/2. By Lemma 28, there exist N∗

0 , i and ϵ > 0, such that∑m
j=1

∣∣µl+,i (vj)− µ+,i,0 (vj)
∣∣ > ϵm. By Lemma 27, we can choose ϵ0, such that

Eθ0
{
Ψn

(
θ0, θ

l
)}

≤ C0 exp
(
−2n2ν

)
, and Eθ

{
1−Ψn

(
θ0, θ

l
)}

≤ C0 exp (−C1n) .

Furthermore, we have,

Eθ0 (Ψn) ≤
Nt∑
l=1

Ψn

(
θ0, θ

l
)
≤ C0Nt exp

(
−2n2ν

)
= C0 exp

(
logNt − 2n2ν

)
≤ C0 exp

{
Cn1/(2α)t−d/α − 2n2ν

}
≤ C0 exp

(
Cnν0t−d/α − 2n2ν

)
= C0 exp

{
−
(
2− Cnν0−2νt−d/α

)
n2ν
}
.

When Ct−d/α < 2, Eθ0 (Ψn) ≤ C0 exp
{
−
(
2− Ct−d/α

)
n2ν
}

. When Ct−d/α ≥ 2, since ν0−2ν <
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0, there exists N⋆
1 , such that, for all n > N∗

1 , Cnν0−2νt−d/α < 1. Then Eθ0 (Ψn) ≤ C0 exp {−n2ν}.
In addition,

Eθ (1−Ψn) = Eθ
[
min

1≤l≤Nt

{
1−Ψn

(
θ0, θ

l
)}]

≤ Eθ
[{
1−Ψn

(
θ0, θ

l
)}]

≤ C0 exp (−C1n)

Taking C2 =
(
2− Ct−d/α

)
I
(
Ct−d/α < 2

)
+ I

(
Ct−d/α ≥ 2

)
> 0, and N = max {N∗

1 , N
∗
0}

completes the proof of Lemma 29. □

B.3 Derivation of full conditional distributions

B.3.1 Full conditional distribution

We first summarize in Algorithm 3 the general procedure of deriving the full conditional
distribution of θ using Proposition 19. The main steps are to first rewrite the density of θ in the form
of (3.14), where {Lp}Pp=1, {Uk}Kk=1, {fp(θ)}Pp=1, {hk(θ)}Kk=1 are the input to Algorithm 3. We then
sort (L1, . . . , LP , U1, . . . , UK) in ascending order, which leads to P +K + 1 intervals. We next
loop through all the intervals, and update the coefficient of Hi(θ) as shown in Algorithm 3 (line
12). Finally, after obtaining the unnormalized conditional density function of θ on each interval, we
derive the full conditional density of θ by incorporating the corresponding normalizing constants.

B.3.2 Full conditional distribution of cl

Without loss of generality, we only consider c1 in the following discussion. By model (9) and
the Karhunen-Loève expansion, we have µ±,i(v) = Gω {±ξ(v)}E±,i(v), ξ(v) =

∑L
l=1 clψl(v), and

E±,i(v) =
∑L

l=1 ei,l,±ψl(v). Given Y+, Y−, Θ̃\c1 , the full conditional density of c1 is,

π(c1 | Y+, Y−, Θ̃\c1) ∝ exp

(
−
∑
v∈Bm

∑n
i=1Wi(v)

K(v)

)
· exp

(
− c21
2λl

)
, (B.11)

where

Wi(v) = {Y+,i(v)− µ+,i(v)}2 + {Y−,i(v)− µ−,i(v)}2 + 2r(v){Y+,i(v)µ−,i(v) + Y−,i(v)µ+,i(v)}

, and K(v) = 2{1 − r2(v)}u2(v), with r(v) = {τ 21 (v) − τ 22 (v)}/{τ 21 (v) + τ 22 (v)} and u2(v) =

{τ 21 (v) + τ 22 (v)}/4. Write T±(v) = {±λ1 −
∑L

l=2 clψl(v)}/{ψ1(v)}. According to the sign of
ψ1(v), we have two different representations of

∑n
i=1Wi(v).

When ψ1(v) > 0,
n∑
i=1

Wi(v) = {A+(v)c
2
1 +B+(v)c1 + C+(v)}I{c1 > T+(v)}

+ {A−(v)c
2
1 +B−(v)c1 + C−(v)}I{c1 < T−(v)}.
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Algorithm 3 Full conditional distribution of θ
Input: {Lp}Pp=1, {Uk}Kk=1, {fp(θ)}Pp=1, {hk(θ)}Kk=1.
Output: the full conditional distribution of θ

1: Sort (L1, . . . , LP , U1, . . . , UK) in ascending order, which leads to P +K +1 intervals, denoted
as I1, I2, . . . , IP+K+1.

2: for interval Ii, i = 1, . . . , P +K + 1 do
3: Initialize Di = Ei = Fi = 0
4: for p = 1, . . . , P , k = 1, . . . , K do
5: if Ii ⊂ [Lp,+∞) then
6: Di = Di + a1p, Ei = Ei + a2p, Fi = Fi + a3p.
7: end if
8: if Ii ⊂ (−∞, Uk] then
9: Di = Di + b1k, Ei = Ei + b2k, Fi = Fi + b3k.

10: end if
11: end for
12: Write Hi(θ) = Diθ

2 + Eiθ + Fi.
13: end for
14: if there exists i, such that Di ̸= 0 then
15: the full conditional distribution of θ is a mixture of truncated normal distributions.
16: end if
17: if Di = 0 for all i, and there exists i, such that Ei ̸= 0 then
18: the full conditional distribution of θ is a mixture of truncated exponential distributions.
19: end if
20: if Di = Ei = 0 for all i, and there exists i, such that Fi ̸= 0 then
21: the full conditional distribution of θ is a mixture of uniform distributions.
22: end if

When ψ1(v) < 0,
n∑
i=1

Wi(v) = {A+(v)c
2
1 +B+(v)c1 + C+(v)}I{c1 < T+(v)}

+ {A−(v)c
2
1 +B−(v)c1 + C−(v)}I{c1 > T−(v)}.

where A±(v), B±(v), C±(v) are all functions of Θ̃\c1 , and are of the form,

A±(v) =

{
n∑

i=1

E±,,i(v)
2

}
· ψ2

1(v),

B±(v) = 2ψ1(v)

[{
L∑

l=2

clψ1(v)

}{
n∑

i=1

E±,i(v)
2

}
∓

n∑
i=1

{Y±,i(v) · E±,i(v)} ∓ r(v)

n∑
i=1

{Y∓,i(v) · E±,i(v)}

]
,

C±(v) =

{
L∑

l=2

clψ1(v)

}2{ n∑
i=1

E±,i(v)
2 ∓

2 ·
∑n

i=1 Y±,i(v)E±,i(v)∑L
l=2 clψ1(v)

±
2r(v)

∑n
i=1 Y∓,i(v)E±,i(v)∑L
l=2 clψ1(v)

}
.
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Algorithm 4 Full conditional distribution of cl
Input: P = K = m, where m is the number of spatial locations,

Lp =

{
T+(vj) if ψl(vj) > 0
T−(vj) if ψl(vj) < 0

, Uk =
{
T−(vj) if ψl(vj) > 0
T+(vj) if ψl(vj) < 0

,

fp(θ) =

{
g+(cl; vj) if ψl(vj) > 0
g−(cl; vj) if ψl(vj) < 0

, hk(θ) =
{
g−(cl; vj) if ψl(vj) > 0
g+(cl; vj) if ψl(vj) < 0

.

Output: the full conditional distribution of cl
1: Follow the procedure in Algorithm 3.

Therefore, given Y+, Y−, Θ̃\c1 and the eigenfunctions {ψ1(vj)}mj=1 evaluated on Bm, we have,

π(c1 | Y+, Y−, Θ̃\c1) ∝ exp

 m∑
j=1

ψ1(vj)>0

[g+(c1; vj)I{c1 > T+(vj)}+ g−(c1; vj)I{c1 < T−(vj)}]

+
m∑
j=1

ψ1(vj)<0

[g+(c1; vj)I{c1 < T+(vj)}+ g−(c1; vj)I{c1 > T−(vj)}]

 ,

where

g±(c1; vj) =

{
−A±(vj)

K(vj)
− 1

2λ21

}
c21 +

B±(vj)

K(vj)
c1 +

C±(vj)

K(vj)
.

By Proposition 1, the full conditional distribution of c1 is a mixture of truncated normal
distributions. We summarize the procedure of obtaining this distribution in Algorithm 4.

B.3.3 Full conditional distribution of ω

Recall that the prior of ω is the uniform distribution on [aω, bω]. Then we have,

π(ω | Y+, Y−, Θ̃\ω) ∝ exp

{
−
∑
v∈Bm

∑n
i=1Wi(v)

K(v)

}
· 1

bω − aω
I(aω ≤ ω ≤ bω), (B.12)

where Wi(v) is defined as in (B.11). Then,
n∑
i=1

Wi(v) = Q+(v)I{ω < ξ(v)}+Q−(v)I{ω < −ξ(v)},

where

Q±(v) = ξ(v)2

{
n∑
i=1

E±,i(v)
2

}
∓2ξ(v)

{
n∑
i=1

Y±,i(v)E±,i(v)

}
±2r(v)ξ(v)

{
n∑
i=1

Y∓,i(v)E±,i(v)

}
.

Therefore, given Y+, Y−, Θ̃\ω and the eigenfunctions ψl(vj), j = 1, . . . ,m, l = 1, . . . , L, evalu-
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ated on Bm, we have,

π(ω | Y+, Y−, Θ̃\ω) ∝ exp

 m∑
j=1

aω<ξ(vj)<bω

C+(vj)I{ω < ξ(vj)}+
m∑
j=1

aω<−ξ(vj)<bω

C−(vj)I{ω < −ξ(vj)}

 ,
where C±(vj) = −Q±(vj)

K(vj)
− log(bω − aω), and we only consider those ξ(vj) and −ξ(vj) that are

between aω and bω.
By Proposition 15, the full conditional distribution of ω is a mixture of uniform distributions.

We summarize the procedure of obtaining this distribution in Algorithm 5.

B.3.4 Full conditional distribution of ei,l±

Since ei,l,+ only exist in µ+,i(v), we can rewrite µ+,i(v) as µ+,i(v) = a+,i(v) + b+,i(v), where
a+,i(v) = Gω

{∑L
l=1 clψl(v)

}
ei,l,+ψl(v) = Cl,+(v) · ei,l,+, and b+,i(v) = Gω

{∑L
l=1 clψl(v)

}∑
l′ ̸=l ei,l′,+ψl′(v). Note that b+,i(v) does not depend on ei,l,+. Henceforth, we have that,

{Y+,i(v)− µ+,i(v)}2 =

Y 2
+,i(v) + a2+,i(v) + b2+,i(v) + 2a+,i(v)b+,i(v)− 2Y+,i(v)a+,i(v)− 2Y+,i(v)b+,i(v),

{Y+,i(v)− µ+,i(v)}{Y−,i(v)− µ−,i(v)} =

Y+,i(v){Y−,i(v)− µ−,i(v)} − a+,i(v){Y−,i(v)− µ−,i(v)} − b+,i(v){Y−,i(v)− µ−,i(v)}.

Ignoring the terms {Y−,i(v)− µ−,i(v)}2 that do not contain ei,l,+, we have,

π(ei,l+ | Y+, Y−, Θ̃\ei,l+)

∝
∏
v∈Bm

exp

(
−
a2+,i(v) + 2a+,i(v)[b+,i(v)− Y+,i(v)− r(v){Y−,i(v)− µ−,i(v)}]

2{1− r2(v)}u2(v)

)

· exp
(
−
e2i,l,+
2λl

)
∝ exp

[
−1

2

{ei,l,+ −Mi,l,+}2

V 2
i,l,+

]
.

Algorithm 5 Full conditional distribution of ω
Input: P = 0, K = 2m,

Uk =

{
ξ(vj), if aω < ξ(vj) < bω
−ξ(vj) if aω < −ξ(vj) < bω

, hk(θ) =
{
C+(vj), if Uk = ξ(vj)
C−(vj) if Uk = −ξ(vj)

.

Output: the full conditional distribution of ω
1: Follow the procedure in Algorithm 3
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where Mi,l,± =
∑
v∈Bm

[
{λlmi,l,±(v)}/{λl + σ2

i,l,±(v)}
]
, V 2

i,l,± =
∑
v∈Bm

[
λlσ

2
i,l,±(v)/{λl + σ2

i,l,±(v)}
]
,

with mi,l,±(v) = − [{Y±,i(v)− b±,i(v)} − r(v) · {Y±,i(v)− µ±,i(v)}] /Cl,±(v), and σ2
i,l,±(v) =

{1− r2(v)}u2(v)/C2
l,±(v). Therefore, ei,l± follows a normal distribution, i.e.,

ei,l± | Y+, Y−, Θ̃\ei,l± ∼ N(Mi,l,±, V
2
i,l,±).

B.3.5 Full conditional distribution of τ 21 (v) and τ 22 (v)

For a given v0 ∈ Bm, we have,

π
{
τ21 (v0) | Y+, Y−, Θ̃\τ2

1 (v0)

}
∝

n∏
i=1

1√
τ21

· exp
[
−1

2

(
1

τ21
+

1

τ22

){
Ỹ+,i(v0)

2 + Ỹ−,i(v0)
2 − 2

τ21 − τ22
τ21 + τ22

Ỹ+,i(v0)Ỹ−,i(v0)

}]
· Γ−1

τ2
1
(aτ , bτ )

∝
{

1

τ21 (v0)

}n
2

exp

[
− 1

2τ21 (v0)

n∑
i=1

{Y+,i(v0)− µ+,i(v0) + Y−,i(v0)− µ−,i(v0)}2
]

where Ỹ±,i(v0) = Y±,i(v0)− µ±,i(v0). Therefore, we have,

τ 21 (v0) | Y+, Y−, Θ̃\τ21 (v0) ∼ IG

(
aτ +

n

2
,

∑n
i=1{Ỹ+,i(v0) + Ỹ−,i(v0)}2

2
+ nbτ

)
.

Similarly, we have,

τ 22 (v0) | Y+, Y−, Θ̃\τ22 (v0) ∼ IG

aτ + n

2
,

∑n
i=1

{
Ỹ+,i(v0)− Ỹ−,i(v0)

}2

2
+ nbτ

 .

B.3.6 Derivation of hybrid mini-batch MCMC

We derive the acceptance ratio in the hybrid mini-batch MCMC. Let Y = {Y1i(v), Y2i(v),
i = 1, . . . , n, v ∈ Bm}, Yms = {Y1i(v), Y2i(v), i = 1, . . . , n, v ∈ Bms , }, and Θ̃ = {θ, Θ̃\θ}, where
ms < m, and henceforth Bms ⊂ Bm. In the Gibbs sampler, we use the full conditional distribution
P (θ|Y, Θ̃\θ) as the proposal function, with the acceptance ratio equal to 1. In the hybrid mini-batch
MCMC, we use P (θ|Yms , Θ̃\θ) as the proposal function, and the acceptance ratio becomes,

ϕ(θ′, θ) = min

{
1,
P (Y |θ′, Θ̃\θ)

P (Y |θ, Θ̃\θ)

P (θ|Yms , Θ̃\θ)

P (θ′|Yms , Θ̃\θ)

}

= min

{
1,

∏
v∈Bm

P (Y (v)|θ′, Θ̃\θ)∏
v∈Bm

P (Y (v)|θ, Θ̃\θ)
·
∏

v∈Bms
P (Y (v)|θ, Θ̃\θ)p(θ)∏

v∈Bms
P (Y (v)|θ′, Θ̃\θ)p(θ′)

}

= min

{
1,

∏
v/∈Bms

P (Y (v)|θ′, Θ̃\θ)∏
v/∈Bms

P (Y (v)|θ, Θ̃\θ)

}
.
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B.4 Additional numerical results

B.4.1 Additional simulations

We carry out some additional simulations for the 2D image example, where we vary the
sample size n = {30, 50, 100} while fixing the image resolution m = 64 × 64, or when we vary
m = {32 × 32, 64 × 64, 100 × 100} while fixing n = 50. Table B.1 reports the results averaged
over 100 data replications. We see that our proposed method performs the best across different
values of n and m. Meanwhile, it maintains a competitive performance even when n is relatively
small or when m is relatively large.

B.4.2 Sensitivity analysis

In our hybrid mini-batch MCMC, we sample a subset of ms voxels and use the full dataset after
every T0 iterations of using the mini-batch data. We next carry out a sensitivity analysis to study the
effect of ms and T0. Table B.2 reports the results averaged over 100 data replications. We see that
the results are relatively stable for different values of ms and T0.

B.4.3 Prior specification for the HCP data analysis

In our HCP data analysis, we set the prior for ω as U(aω, bω), and we choose aω and bω as the
75% quantile and 100% quantile of {|ξ(v)|}v∈B, respectively. The choice of aω is based on the
belief that at most 25% voxels have non-zero correlations. Here we vary aω = {0.73, 0.75, 0.77},
and investigate the corresponding performance of our proposed method. Table B.3 reports the
results, which we see that are relatively stable across different choices of aω.
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Table B.1: The 2D simulation example with the varying sample size n and the varying image
resolution m. Reported are the average sensitivity, specificity, and FDR, with standard error in the
parenthesis, based on 100 data replications. Six methods are compared: the voxel-wise analysis, the
region-wise analysis, the integrated method with two thresholding values, 0.95 and 0.90, and the
proposed Bayesian method (TCGP) with the Gibbs sampler and the hybrid mini-batch MCMC.

Method
Positive Correlation Negative Correlation

Sensitivity Specificity FDR Sensitivity Specificity FDR

n = 30 Voxel-wise 0.080(0.002) 1.000(0.000) 0.004(0.003) 0.102(0.002) 1.000(0.000) 0.001(0.002)
Region-wise 0.148(0.005) 0.971(0.002) 0.326(0.003) 0.473(0.006) 0.957(0.003) 0.624(0.003)
Integrated(0.95) 0.518(0.005) 0.992(0.003) 0.199(0.008) 0.781(0.003) 0.993(0.004) 0.146(0.009)
Integrated(0.90) 0.855(0.007) 0.960(0.005) 0.378(0.010) 0.871(0.004) 0.937(0.004) 0.392(0.011)
TCGP (Gibbs) 0.910(0.004) 0.991(0.003) 0.109(0.005) 0.990(0.002) 0.993(0.001) 0.065(0.007)
TCGP (Hybrid) 0.890(0.005) 0.990(0.003) 0.111(0.008) 0.983(0.004) 0.990(0.002) 0.110(0.008)

n = 50 Voxel-wise 0.098(0.002) 1.000(0.000) 0.002(0.001) 0.150(0.002) 1.000(0.000) 0.003(0.001)
Region-wise 0.438(0.004) 0.953(0.005) 0.547(0.010) 0.573(0.003) 0.956(0.001) 0.629(0.010)
Integrated(0.95) 0.659(0.003) 0.995(0.002) 0.130(0.008) 0.899(0.005) 0.997(0.001) 0.110(0.009)
Integrated(0.90) 0.959(0.009) 0.970(0.005) 0.308(0.009) 0.969(0.003) 0.969(0.003) 0.355(0.010)
TCGP (Gibbs) 0.941(0.004) 0.995(0.002) 0.081(0.005) 0.996(0.002) 0.992(0.001) 0.063(0.005)
TCGP (Hybrid) 0.931(0.005) 0.993(0.003) 0.092(0.005) 0.993(0.002) 0.992(0.002) 0.086(0.006)

n = 100 Voxel-wise 0.102(0.004) 1.000(0.001) 0.002(0.003) 0.198(0.001) 1.000(0.000) 0.003(0.001)
Region-wise 0.617(0.010) 0.881(0.003) 0.744(0.004) 0.476(0.005) 0.955(0.002) 0.631(0.010)
Integrated(0.95) 0.714(0.005) 0.998(0.003) 0.099(0.005) 0.898(0.004) 0.997(0.002) 0.099(0.008)
Integrated(0.90) 0.980(0.010) 0.969(0.010) 0.300(0.010) 0.975(0.003) 0.971(0.003) 0.298(0.011)
TCGP (Gibbs) 0.953(0.002) 0.997(0.002) 0.041(0.002) 0.999(0.001) 0.997(0.001) 0.033(0.001)
TCGP (Hybrid) 0.945(0.003) 0.997(0.002) 0.069(0.003) 0.993(0.003) 0.996(0.001) 0.085(0.002)

m = 32× 32 Voxel-wise 0.017(0.001) 1.000(0.000) 0.005(0.001) 0.040(0.002) 1.000(0.000) 0.004(0.002)
Region-wise 0.297(0.005) 0.945(0.005) 0.531(0.010) 0.472(0.003) 0.957(0.002) 0.617(0.010)
Integrated(0.95) 0.620(0.005) 0.989(0.004) 0.138(0.005) 0.852(0.004) 0.989(0.001) 0.198(0.009)
Integrated(0.90) 0.933(0.010) 0.971(0.006) 0.287(0.008) 0.944(0.004) 0.957(0.005) 0.300(0.011)
TCGP (Gibbs) 0.931(0.003) 0.993(0.002) 0.083(0.003) 0.991(0.004) 0.992(0.003) 0.065(0.004)
TCGP (Hybrid) 0.922(0.005) 0.992(0.002) 0.082(0.005) 0.991(0.005) 0.991(0.002) 0.089(0.005)

m = 64× 64 Voxel-wise 0.098(0.002) 1.000(0.000) 0.002(0.001) 0.150(0.002) 1.000(0.000) 0.003(0.001)
Region-wise 0.438(0.004) 0.953(0.005) 0.547(0.010) 0.573(0.003) 0.956(0.001) 0.629(0.010)
Integrated(0.95) 0.659(0.003) 0.995(0.002) 0.130(0.008) 0.899(0.005) 0.997(0.001) 0.110(0.009)
Integrated(0.90) 0.959(0.009) 0.970(0.005) 0.308(0.009) 0.969(0.003) 0.969(0.003) 0.355(0.010)
TCGP (Gibbs) 0.941(0.004) 0.995(0.002) 0.081(0.005) 0.996(0.002) 0.992(0.001) 0.063(0.004)
TCGP (Hybrid) 0.931(0.005) 0.993(0.003) 0.092(0.005) 0.993(0.002) 0.992(0.002) 0.086(0.006)

m = 100× 100 Voxel-wise 0.005(0.001) 1.000(0.000) 0.004(0.002) 0.011(0.001) 1.000(0.000) 0.000(0.001)
Region-wise 0.627(0.002) 0.861(0.003) 0.763(0.005) 0.462(0.002) 0.948(0.002) 0.663(0.008)
Integrated(0.95) 0.843(0.002) 0.998(0.003) 0.039(0.005) 0.952(0.004) 0.997(0.002) 0.052(0.007)
Integrated(0.90) 0.960(0.003) 0.965(0.005) 0.300(0.012) 0.977(0.002) 0.965(0.004) 0.298(0.011)
TCGP (Gibbs) 0.971(0.001) 0.999(0.000) 0.029(0.002) 0.997(0.001) 0.998(0.002) 0.031(0.001)
TCGP (Hybrid) 0.964(0.001) 0.999(0.000) 0.033(0.001) 0.995(0.001) 0.997(0.002) 0.033(0.002)
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Table B.2: The sensitivity analysis of the batch size ms and the number of iterations T0 for the
hybrid mini-batch MCMC. Reported are the average sensitivity, specificity, and FDR, with standard
error in the parenthesis, based on 100 data replications.

ms T0
Positive Correlation Negative Correlation

Sensitivity Specificity FDR Sensitivity Specificity FDR

m/32 20 0.950(0.003) 1.000(0.001) 0.015(0.003) 0.991(0.002) 0.989(0.003) 0.050(0.005)

m/16 20 0.953(0.003) 0.996(0.001) 0.061(0.002) 0.991(0.003) 0.997(0.001) 0.049(0.005)

m/4 20 0.955(0.002) 0.997(0.001) 0.058(0.002) 0.990(0.001) 0.997(0.001) 0.047(0.003)

m/16 50 0.948(0.003) 0.998(0.001) 0.045(0.002) 0.990(0.002) 0.990(0.003) 0.062(0.003)

m/16 20 0.953(0.003) 0.996(0.001) 0.061(0.002) 0.991(0.003) 0.997(0.001) 0.049(0.005)

m/16 10 0.953(0.001) 0.995(0.001) 0.059(0.003) 0.993(0.002) 0.998(0.001) 0.041(0.004)
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Table B.3: Prior specification for the HCP example under different choices of aω. Reported are the
activation regions containing more than 100 voxels that are declared having a nonzero correlation.

Lingual-R

aω cluster size Activation center overlap rate mean correlation

0.73 151 (-10.0, -74.5, -4.0) 0.931 0.35

0.75 144 (-10.4, -75.3, -4.5) 1.000 0.35

0.77 140 (-10.6, -75.8, -5.4) 0.905 0.38
Angular-R

aω cluster size cluster center overlap rate mean correlation

0.73 215 (-45.9, -60.1, 45.5) 0.910 0.41

0.75 209 (-46.9, -60.2, 44.7) 1.000 0.43

0.77 200 (-46.0, -59.9, 43.9) 0.911 0.43
Temporal-Mid-L

aω cluster size cluster center overlap rate mean correlation

0.73 110 (62.1, -24.9, 1.3) 0.940 0.42

0.75 104 (63.1, -25.7, 1.4) 1.000 0.41

0.77 99 (62.7, -25.5, 1.3) 0.921 0.43
Precentral-L

aω cluster size cluster center overlap rate mean correlation

0.73 130 (29.1, -23.0, 64.5) 0.930 -0.41

0.75 115 (28.6, -23.1, 65.4) 1.000 -0.44

0.77 107 (28.8, -23.1, 65.8) 0.931 -0.42
Occipital-Inf-R

aω cluster size cluster center overlap rate mean correlation

0.73 130 (-38.1, -81.0, -3.9) 0.910 -0.45

0.75 122 (-38.8, -81.7, -3.2) 1.000 -0.44

0.77 107 (-38.5, -80.0, -4.0) 0.901 -0.43
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APPENDIX C

Supplementary Material of Chapter 3

C.1 Derivation of full conditional distributions

For the simplicity of notations, let

SR =
1

KT

K∑
k=1

(
T∑
t=1

βk(t)Xki(t)

)

S0 =
1

K0

∑
k1<k2

β0(k1, k2)X0i(k1, k2)

C.1.1 Sample ekl

First, consider the full conditional distribution of ek0l0 .

µi = Si + Ciek0l0 (C.1)

where

Ci =
1

KT

T∑
t=1

(
ψl0(t)I(|Ẽk0(t)| > ω)Xk0i(t)

)
Si = SR + S0 − Ciek0l0

(C.2)

Hence

π(ek0l0|Θ\ek0l0 , Y ) ∝ exp

{
−
λl0
∑n

i=1(Yi − µi)
2 + e2k0l0

2λl0

}
= exp

{
−
λl0
∑n

i=1(Yi − Si − Tiek0l0)
2 + e2k0l0

2λl0

}
∝ exp

{
−
(λl0

∑n
i=1 T

2
i + 1)e2k0l0 − 2λl0(

∑n
i=1 Ti(Yi − Si))ek0l0

2λl0

} (C.3)

Hence the full conditional distribution of ek0l0 is N
(
−2λl0

∑n
i=1 Ti(Yi − Si)

λl0
∑n

i=1 T
2
i + 1

,
λl0

λl0
∑n

i=1 T
2
i + 1

)
.
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C.1.2 Sample Ẽk0(t0)

Then considering the full conditional distribution of Ẽk0(t0). Rewrite µi as a function of Ẽk0(t0)
as follows.

µi = Ek0(t0)I(|Ẽk0(t0)| > ω)Xk0i(t0) +
∑
t̸=t0

Ek0(t)I(|Ẽk0(t)| > ω)Xk0i(t)

+
∑
k ̸=k0

T∑
t=1

βk(t)Xki(t) + S0

= Si + CiI(|Ẽk0(t0)| > ω)

(C.4)

where

Si =
∑
t̸=t0

Ek0(t)I(|Ẽk0(t)| > ω)Xk0i(t) +
∑
k ̸=k0

T∑
t=1

βk(t)Xki(t) + S0

Ci = Ek0(t0)Xk0i(t0)

(C.5)

Then (Yi − µi)
2 = (Yi − Si)

2 + {C2
i − 2Ci(Yi − Si)} I(|Ẽk0(t0)| > ω). Hence

Ẽk0(t0)|Θ\Ẽk0
(t0)
, X,X0, Y ∝ exp

(
−
∑n

i=1(Yi − µi)
2

2

)
· exp

(
−(Ẽk0(t0)− Ek0(t0))

2

2ξ2

)

= exp

(
−
AẼ2

k0
(t0) +BẼk0(t0) + C

2ξ2

) (C.6)

• when |Ẽk0(t0)| > ω, A = 1, B = −2Ek0(t0) and C = E2
k0
(t0) + ξ2

∑n
i=1(Yi − Si − Ci)

2

• when |Ẽ2
k0
(t0)| < ω, A = 1, B = −2Ek0(t0) and C = E2

k0
(t0) + ξ2

∑n
i=1(Yi − Si)

2

Hence

Ẽk0(t0)|Θ\Ẽk0
(t0)
, X, Y ∝M1N(−∞,−ω)(m,V

2) +M2N(−ω,ω)(m,V
2) +M3N(ω,∞)(m,V

2) (C.7)

where m = − B

2A
= Ek0(t0), V

2 =
ξ2

A
= ξ2 and

M1 =

{
Φ

(
−ω −m

V 2

)
− 0

}
exp

{
−ξ

2
∑n

i=1(Yi − Si − Ci)
2

2ξ2

}
M2 =

{
Φ

(
ω −m

V 2
)− Φ(

−ω −m

V 2

)}
exp

{
−ξ

2
∑n

i=1(Yi − Si)
2

2ξ2

}
M3 =

{
1− Φ

(
ω −m

V 2

)}
exp

{
−ξ

2
∑n

i=1(Yi − Si − Ci)
2

2ξ2

} (C.8)

C.1.3 Sample η(k1, k2)

µi = Si + Ciη(k1, k2) (C.9)
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where Si = SR + S0 − Ciη(k1, k2) and Ci = I(|η̃(k1, k2)| > ω)X0i(k1, k2).

π(η(k1, k2)|Θ\ek0l0 , X,X0, Y ) ∝ exp

{
−
∑n

i=1(Yi − µi)
2

2
− η(k1, k2)

2

2σ2
η

}
∝ exp

{
−
∑n

i=1{(C2
i + 1)η(k1, k2)

2 − 2Ci(Yi − Si)η(k1, k2)}
2σ2

η

}
(C.10)

Hence the full conditional distribution of η(k1, k2) is N
(∑n

i=1Ci(Yi − Si)∑n
i=1C

2
i + 1

,
σ2
η∑n

i=1C
2
i + 1

)

C.1.4 Sample η̃(k1, k2)

µi = Si + Ciη(k1, k2) (C.11)

where Si = SR + S0 − CiI(|η̃(k1, k2)| > ω) and Ci = η(k1, k2)X0i(k1, k2).
Hence

η̃(k1, k2)|Θ\η̃(k1,k2), X, Y ∝ exp

(
−
∑n

i=1(Yi − µi)
2

2

)
· exp

(
−{η̃(k1, k2)− η(k1, k2)}2

2ξ2

)
= exp

(
−Aη̃

2(k1, k2) +Bη̃(k1, k2) + C

2ξ2

)
(C.12)

• when |η̃(k1, k2)| > λ, A = 1, B = −2η(k1, k2) and C = η(k1, k2)
2+ξ2

∑n
i=1(Yi−Si−Ci)2

• when |η̃(k1, k2))| < λ, A = 1, B = −2η(k1, k2) and C = η(k1, k2)
2 + ξ2

∑n
i=1(Yi − Si)

2

Hence

η̃(k1, k2)|Θ\η̃(k1,k2), X, Y ∝M1N(−∞,−ω)(m,V
2) +M2N(−ω,ω)(m,V

2) +M3N(ω,∞)(m,V
2)

(C.13)

where m = − B

2A
= η(k1, k2), V 2 =

ξ2

A
= ξ2 and

M1 =

{
Φ

(
−ω −m

V 2

)
− 0

}
exp

{
−ξ

2
∑n

i=1(Yi − Si − Ci)
2

2ξ2

}
M2 =

{
Φ

(
ω −m

V 2
)− Φ(

−ω −m

V 2

)}
exp

{
−ξ

2
∑n

i=1(Yi − Si)
2

2ξ2

}
M3 =

{
1− Φ

(
ω −m

V 2

)}
exp

{
−ξ

2
∑n

i=1(Yi − Si − Ci)
2

2ξ2

} (C.14)
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Algorithm 6 Gibbs sampling for SI-RTGP
input: the stimulus type outcomes Y .

the kernel function κ(·, ·), the Karhunen-Loève truncation number L,
the prior hyperparameters aω1 , bω1 , aω2 , bω2 . The total number of iterations Q

output: the posterior samples of
Θ = {{{ekl}Ll=1, {Ẽk(t)}Tt=1}Kk=1, {η (k1, k2) , η̃ (k1, k2)}k1<k2 , ω1, ω2}.

1: initialize Θ: sample Θ from the prior distribution.
2: for q = 1, · · · , Q do
3: sample ekl from the normal distribution, l = 1, . . . , L, k = 1, · · · , K.
4: sample Ẽk(t) from the normal distribution, t = 1, . . . , T , k = 1, · · · , K.
5: for k1 = 1, . . . , K − 1 do
6: for k2 = k1 + 1, . . . , K do
7: sample η (k1, k2) and η̃ (k1, k2) from the normal distribution.
8: end for
9: end for

10: sample ω1 and ω2 from the discrete distribution as shown in Eq.(C.15).
11: sample Zi from the normal distribution, i = 1, . . . , n.
12: end for

C.1.5 Sample ω1 and ω2

The prior of ω1 is discrete prior with P (ω1 = γ1z) = 1/Z. Hence the posterior of ω1 is still the
discrete prior with P (ω1 = γ1z) = pz. where

pz ∝
1

Z
exp

{
−
∑n

i=1(Yi − µi)
2|ω1=γz

2

}
. (C.15)

C.2 Gibbs Sampling

First, we have the equivalent model representation for the probit regression as follow

Yi|µi ∼ Bernoulli {Φ(µi)} (C.16)(
Zi|{Xki}Kk=0, {βk}Kk=0

)
∼ N(µi, 1), i = 1, . . . , n (C.17)

µi =
1

p

K∑
k=1

(
T∑
t=1

βk(t)Xki(t)

)
+

1

p0

∑
k1<k2

β0(k1, k2)X0i(k1, k2) (C.18)

where Z = (Z1, · · · , Zn) are latent variables introduced by Albert and Chib (1993) to obtain partial
conjugacy. The sampling process is shown in Algorithm 1.
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C.3 Proof of proposition 21

Proof. For the simplicity of notation, we use Tr(θ) to represent Tr(θ, ω, ξ2). The joint density of
Tr(θ) and θ can be written as

P(Tr(θ),θ)(x, y) = PTr(θ)|θ=y(x; y)Pθ(y)

where
PTr(θ)|θ=y(x; y) = Pr(|N(y, ξ2)| > ω)Pθ(x) + Pr(|N(y, ξ2)| ≤ ω)δ0(x) (C.19)

Hence

PTr(θ)(x) =
∫

P(Tr(θ),θ)(x, y)dy

=

∫
P(Tr(θ)|θ=y)(x, y)Pθ(y)dy

=

∫
{Pr(|N(y, ξ2)| > ω)Pθ(x) + Pr(|N(y, ξ2)| ≤ ω)δ0(x)}Pθ(y)dy

(C.20)

When ξ2 → 0,

lim
ξ2→0

PTr(θ)(x) =
∫

lim
ξ2→0

[
{Pr(|N(y, ξ2)| > ω)Pθ(x) + Pr(|N(y, ξ2)| ≤ ω)δ0(x)}Pθ(y)dy

]
=

∫
[I|y|>ωPθ(x) + I|y|≤ωI(x = 0)]Pθ(y)dy

= PTh(θ)|θ=yPθ(y)dy

= PTh(θ)(x)
(C.21)

On the other hand, when ξ2 → ∞,

lim
ξ2→∞

PTr(θ)(x) =
∫

Pθ(x)Pθ(y)dy = Pθ(x) (C.22)

Then consider Pr (|Tr(θ, ω, ξ2)− Th(θ, ω)| < ϵ),

|Tr(θ, ω, ξ2)− Th(θ, ω)| = |f{I(|θ̃| > ω)− I(|θ| > ω)}| (C.23)

For the case (1) |θ̃| > ω and |θ| > ω and case (2) |θ̃| < ω and |θ| < ω, |Tr(θ, ω, ξ2)−Th(θ, ω)| = 0.
Hence, we only consider the case (3) when |θ̃| > ω and |θ| ≤ ω and the case (4) when |θ̃| ≤ ω

and |θ| > ω. For case (3), there exist δ > 0, such that |θ̃| ≥ ω + δ. Hence, given θ, we only
need to choose ξ21 such that Φ(−θ/ξ21) < ϵ/(2θ), where Φ(·) represent the CDF of standard normal
distribution. Similarly, we choose ξ22 such that Φ(−θ2/ξ2) < ϵ/(2θ). Therefore, P (|f{I(|θ̃| >
ω)− I(|θ| > ω)}| < ϵ) > 0. Similarly, we can prove that Pr (|Tr(θ, ω, ξ2)− Ts(θ

⋆, ω)| < ϵ) > 0.
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C.4 Sensitivity Analysis

In this section, we provide the sensitivity analysis of the thresholding parameters ω1 and ω2 for
BCI analysis.

Table C.1: Sensitivity Analysis of the prior of ω1

aω1 108 112 114 151 152 212

0.23 0.933 0.563 0.964 0.930 0.633 0.686

0.25 0.932 0.566 0.965 0.931 0.634 0.686

0.27 0.932 0.564 0.965 0.929 0.635 0.687

Table C.2: Sensitivity Analysis of the prior of ω2

aω2 108 112 114 151 152 212

0.23 0.934 0.564 0.966 0.933 0.632 0.684

0.25 0.932 0.566 0.965 0.931 0.634 0.686

0.27 0.930 0.566 0.959 0.930 0.633 0.687
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