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Abstract 

Advancements in transcriptomic technologies have enabled the measurement of gene 

expression at single cell resolution and provided spatial localization information on tissues. The 

increasing accessibility of these single-cell RNA sequencing (scRNA-seq) or spatially resolved 

transcriptomic (SRT) datasets provides a comprehensive cell atlas. It enables the thorough 

characterization of transcriptomic landscapes of tissues for a mechanistic understanding of many 

biological processes. In the meantime, improvements in transcriptomic technologies have 

increased both the volume and complexity of data, introducing new computational and statistical 

challenges for data analysis, including differential expression analysis, gene set enrichment 

analysis, cell type deconvolution analysis, and spatial domain clustering. In this dissertation, I 

propose three statistical and computational methods to address these challenges for capturing and 

dissecting cellular and tissue heterogeneity with high statistical power and accuracy, while 

providing new insight into biological systems.  

In Chapter 2, I develop a method, iDEA, that performs joint DE and GSE analysis in 

scRNA-seq studies. By integrating DE and GSE analyses, iDEA can improve the power and 

consistency of DE analysis, produce effective control of type I errors, thus yielding high statistical 

power and accuracy of GSE analysis. Importantly, iDEA uses only DE summary statistics as input, 

enabling effective data modeling through complementing and pairing with various existing DE 

methods. I illustrate the benefits of iDEA with extensive simulations, and three scRNA-seq data 

sets, where iDEA achieves up to five-fold power gain over existing GSE methods and up to 64% 

power gain over existing DE methods.  



 xix 

In Chapter 3, I develop a method CARD to perform spatially informed cell type 

deconvolution for SRT data. CARD builds upon a non-negative matrix factorization (NMF) model 

that leverages the cell-type-specific gene expression from scRNA-seq data. A unique feature of 

CARD is its ability to accommodate the spatial correlation structure in cell-type composition 

across tissue locations by a conditional autoregressive (CAR) modeling assumption. This enables 

accurate and robust deconvolution of SRT data across technologies and in the presence of 

mismatched scRNA-seq references. Furthermore, modeling spatial correlation allows CARD to 

impute cell-type compositions and gene expression levels on new locations of the tissue, 

facilitating the reconstruction of high-resolution map. Importantly, CARD is computationally 

scalable and efficient to datasets with tens of thousands of genes measured on tens of thousands 

of samples. With extensive simulations and comprehensive applications to four real datasets, 

CARD outperforms other methods, provide novel biological insight underlines the tissue 

heterogeneity.  

In Chapter 4, I develop a method that simultaneously characterize the transcriptomic 

landscapes on multiple tissues. While SRT datasets can be generated from multiple tissue sections 

with high resolution, existing methods primarily focus on a single tissue section and fail to utilize 

information from scRNA-seq datasets for spatial domain detection. Additionally, many published 

methods lack computational scalability for high-resolution large-scale SRT datasets being 

collected today. To fill these gaps, I developed IRIS, which leverages cell type specific gene 

expression information from scRNA-seq to detect spatial domains on multiple tissue sections. By 

iteratively updating spatial domain labels while considering within-slice and between-slice 

compositional similarities, IRIS ensures optimal clustering performance. Through in-depth 

analysis of six spatial transcriptomics datasets, IRIS demonstrates significant advantages, 



 xx 

achieving up to 1083% clustering accuracy improvement over existing methods. This enables the 

identification of transcriptomic landscapes in complex tissues, including the human prefrontal 

cortex, spermatogenesis, olfactory bulb, and human breast cancer. 

 



 1 

Chapter 1 Introduction 

1.1 Background 

The transcriptomics technologies have revolutionized our understanding of the complete 

set of RNA transcripts present within cells, tissues, or organisms (Wang, Gerstein and Snyder 

2009). Through the comprehensive analysis of gene expression patterns, these technologies 

provide crucial insights into regulatory networks, cellular heterogeneity, and disease mechanisms 

(Angerer et al. 2017, Ramachandran et al. 2020, Fiers et al. 2018, Lowe et al. 2017). In the last 

decade, transcriptomics technologies have also driven a paradigm shift in genomics, leading to 

remarkable advancements in our comprehension of biological systems. These technical 

breakthroughs have significantly expanded our knowledge in areas such as cellular heterogeneity, 

developmental processes, and disease progression, thereby paving the way for the development of 

novel therapeutic strategies. Over the years, a number of innovative sequencing technologies have 

emerged to investigate the transcriptome, with two notable advancements standing out: single-cell 

RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT). These cutting-edge 

approaches have propelled the field of transcriptomics further by enabling the study of gene 

expression at unprecedented levels of resolution and spatial context.  

1.2 Single-cell RNA-sequencing 

Prior to single-cell RNA sequencing (RNA-seq), bulk RNA-seq served as a popular tool to 

measure the average gene expression levels in a population of cells or tissues. Nonetheless, this 

technique lacks the ability to discern variations in gene expression between individual cells, 
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thereby masking rare cell populations, especially for tumor cells. Tumors exhibit high 

heterogeneity both between individual tumor cells and within tumor microenvironment. Tumor 

microenvironment is a complex ecosystem comprising stromal cells, immune cells, and other non-

neoplastic components (Baghban et al. 2020).  The infiltration of these diverse cell types and the 

crosstalk among them influence the tumor’s behavior and response to therapy (Li and Wang 2021). 

The averaging effect of bulk RNA-seq can obscure the true signals driving tumorigenesis or 

therapeutic resistance that may originate from rare cell populations or specific cell types (Li and 

Wang 2021). Understanding the precise molecular mechanisms driving tumorigenesis and 

therapeutic resistance requires the ability to capture and dissect the gene expression profiles of 

individual cells within the heterogeneous tumor ecosystem. By overcoming the limitations of bulk 

RNA-seq, scRNA-seq technology has revolutionized the field of transcriptomics. It enables gene 

expression profiling at a single-cell resolution, facilitating the identification of rare cell populations 

and uncovering previously unseen cellular heterogeneity (Saliba et al. 2014, Zhu, Preissl and Ren 

2020, Eberwine et al. 2014). Moreover, scRNA-seq allows for the reconstruction of cellular 

trajectories during disease progression, unraveling the dynamic changes in gene expression 

patterns that underlie the development and progression of complex disease (Qiu et al. 2022, 

Papalexi and Satija 2018, Farrell et al. 2018, Hwang, Lee and Bang 2018).  

1.3 Spatially resolved transcriptomics 

Despite its ability to characterize cell populations within a tissue, scRNA-seq is not able to 

capture spatial information due to the tissue dissociation step involved. However, spatial 

information is important for understanding the tissue organization and interactions between 

different cell types within a tissue. It provides crucial insights into the spatial arrangement of cells, 

cell-to-cell communication, and the influence of microenvironments on cellular function. To 
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overcome this limitation, spatially resolved transcriptomics (SRT) technologies have emerged as 

a groundbreaking technique that perform gene expression profiling on many tissue locations while 

preserving spatial localization information (Tian, Chen and Macosko 2022, Rao et al. 2021, 

Williams et al. 2022, Moses and Pachter 2022, Burgess 2019). Broadly, SRT technologies can be 

classified into two categories based on how they profile transcriptomes (Williams et al. 2022, Asp, 

Bergenstråhle and Lundeberg 2020). Firstly, there are imaging based SRT technologies, which 

utilize microscopy to image mRNAs in situ, thereby enabling transcriptome profiling. In imaging 

based SRT technologies, two widely used methods for distinguishing different mRNA species are 

in situ hybridization (ISH) and in situ sequencing (ISS). ISH-based methods, such as MERFISH 

(Chen et al. 2015, Vizgen 2021), seqFISH (Lubeck et al. 2014), seqFISH+ (Lubeck et al. 2014), 

10x Xenium (Janesick et al. 2022), involve the use of fluorescently labeled probes that specifically 

bind to target mRNAs within the tissue. These methods allow for the visualization and 

differentiation of specific mRNA species within the sample. On the other hand, ISS-based 

methods, such as STARmap (Wang et al. 2018a) and FISSEQ (Lee et al. 2015a), use a barcoded 

nucleotide sequence to record imaging location. This enables the reading of the captured mRNAs' 

sequences and subsequent identification of different mRNA species. Secondly, sequencing-based 

SRT technologies, such as Spatial Transcriptomics (ST) (Ståhl et al. 2016), 10x Visium 

(10XGenomics), Slide-seq (Rodriques et al. 2019), HDST (Vickovic et al. 2019), Slide-seq V2 

(Stickels et al. 2021), Seq-Scope (Cho et al. 2021), and Stereo-seq (Chen et al. 2022), are employed 

to extract mRNAs while preserving their spatial location, followed by mRNA profiling using next-

generation sequencing (NGS) techniques. These sequencing-based methods provide a 

comprehensive transcriptomic profile of the tissue while retaining information about the spatial 

organization of the mRNAs. Nevertheless, both categories of methods have their unique data 
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features and limitations. For example, current imaging-based SRT technologies can localize only 

a limited number of genes, typically ranging from hundreds to thousands, within intact tissue 

samples (Choe et al. 2023). Conversely, sequencing-based technologies offer the advantage of 

genome-wide transcript coverage; however, the transcript depth achieved by these methods may 

not be sufficiently high. Additionally, most of the sequencing-based techniques have a resolution 

larger than a typical single cell (Williams et al. 2022, Asp et al. 2020). Consequently, these aspects 

highlight the necessity for sophisticated computational and statistical methods to harness the full 

potential of large-scale SRT data, enabling the extraction of spatial information to derive novel 

biological insights.  

1.4 Challenges in transcriptomics data analysis 

The rapid progress in transcriptomic technologies has broadened our comprehension of 

gene expression dynamics, but it has also introduced significant challenges in transcriptomics data 

analysis. These challenges stem from multiple factors, including the increasing volume and 

complexity of transcriptomics data, which often exhibit high-dimensional features, inherent noise, 

biases, batch effects, and the inclusion of spatial information. Consequently, it is imperative to 

develop efficient computational algorithms and robust statistical methods that can effectively 

handle these complexities and extract meaningful biological insights from the data. Next, I will 

discuss the major analytical challenges in transcriptomics data analysis.  

1.4.1 Differential expression and gene set enrichment analysis 

In scRNA-seq studies, differential expression (DE) and gene set enrichment (GSE) analysis 

are the most common analytical tasks (Lähnemann et al. 2020, Yu et al. 2021b). DE analysis aims 

to identify genes that are significantly up-regulated or down-regulated between different cell type 
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populations, experimental conditions, or time points. While bulk RNA-seq methods have been 

traditionally used for DE analysis, scRNA-seq data possesses unique characteristics, including 

generally low library sizes, high noise levels, and a large fraction of zeros, so-called "dropout" 

events. Consequently, several methods specifically tailored for scRNA-seq DE analysis have been 

developed (Das, Rai and Rai 2022, Soneson and Robinson 2018). These methods can be 

categorized based on their data input requirements (counts or transformed data), data distribution 

(parametric or non-parametric), and statistical models (e.g., generalized linear models, generalized 

additive models, mixture models). However, most existing DE methods analyze genes 

individually, potentially leading to power loss and inconsistencies among different approaches. 

Previous studies have highlighted the lack of agreement in identifying DE genes across different 

methods (Squair et al. 2021, Mou et al. 2020).  

GSE analysis is another crucial tool that aggregates gene-level evidence to the gene set 

level, providing a robust and interpretable biological context for DE results. However, the 

application of GSE analysis to single-cell data remains challenging, with only a few methods 

currently available but lack efficiency (Maleki et al. 2020, Noureen et al. 2022, Aibar et al. 2017, 

Pont, Tosolini and Fournié 2019). Moreover, most GSE methods treat GSE analysis as a separate 

sequential step following DE analysis, overlooking their statistically interconnected relationship. 

Hence, there is an urgent need for novel computational methods capable of efficiently detecting 

biologically relevant gene sets and pathways while considering the relationship between DE and 

GSE analyses. 

1.4.2 Cell type deconvolution  

scRNA-seq has revealed the transcriptional heterogeneity of cell types whereas the 

information on tissue organization is still missing. In contrast, SRT allows for dissecting spatial 
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heterogeneity of complex tissues, but most sequencing-based SRT (i.e., 10x Visium) do not 

provide single-cell resolution. Consequently, gene expression measurements on each tissue 

location represent a mixture of cells belonging to potentially distinct cell types, with the proportion 

of each being unknown. Therefore, an essential task is to estimate the cell type compositions for 

each spatial location, commonly referred to as cell type deconvolution. Knowledge of the cell type 

composition and spatial distribution of diverse cell types is critical for identifying cellular targets 

of diseases and investigating the tumor microenvironment. In recent years, several deconvolution 

methods have been proposed (Elosua-Bayes et al. 2021, Song and Su 2021, Lopez et al. 2022, 

Biancalani et al. 2021, Danaher et al. 2022, Gayoso et al. 2022, Andersson et al. 2020, 

Kleshchevnikov et al. 2022, Dong and Yuan 2021, Cable et al. 2021, Li et al. 2022, Li et al. 2023), 

falling into two categories: 1) reference-based deconvolution methods that leverage cell type 

specific gene signatures from scRNA-seq datasets, and 2) reference-free deconvolution methods 

that do not rely on predefined scRNA-seq datasets. However, most of current methods have the 

following limitations: 1) they do not fully utilize the available spatial information 2) their choice 

of scRNA-seq references is not robust 3) they cannot enhance the resolution of the original dataset 

at both cell type and gene expression level, and 4) they lack computational scalability for large-

scale datasets.  

1.4.3 Spatial domain detection 

In SRT studies, another critical task is detecting distinct spatial domains on the tissue, 

which allows for the transcriptomic characterization of tissue structures and microenvironments. 

While conventional clustering algorithms designed for scRNA-seq primarily rely on gene 

expression measurements, incorporating spatial information into clustering models becomes 

essential for spatial domain detection. Several computational and statistical methods (Hu et al. 
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2021, Zhao et al. 2021, Fu et al. 2021, Dries et al. 2021, Moses and Pachter 2022, Palla et al. 2022, 

Zhu et al. 2018, Tian et al. 2022, Rao et al. 2021, Li and Zhou 2022, Shang and Zhou 2022) have 

been developed to address the need, but most of them focused on analyzing single tissue slice. 

However, with the recent advancements in SRT techniques, it is now possible to generate large-

scale datasets from multiple tissue sections at high resolution. As a result, detecting spatial 

domains efficiently and accurately through integrative analysis of multiple tissue slices has 

emerged as a new challenge. 

1.5 Dissertation outline 

In this dissertation, I present a series of statistical and computational methods to tackle the 

aforementioned challenges in the field. Specifically, in Chapter 2, I focus on scRNA-seq data and 

develop a statistical method, iDEA, to perform integrative DE and GSE analysis based on 

summary statistics through a hierarchical Bayesian modeling framework. iDEA models all genes 

together by borrowing information across genes in terms of DE effect size distributional properties. 

Moreover, iDEA utilizes summary statistics output from existing DE tools, making it scalable to 

large-scale scRNA-seq data sets. As evaluated by extensive simulations and comprehensive real 

data applications, iDEA shows a higher consistency in detected DE genes, produces calibrated 

type I error control, and a large power gain over existing GSE methods. Notably, iDEA is the only 

DE method to date that takes summary statistics as input, which can take advantage of flexible 

data modeling.  

In chapter 3, I shift the focus to SRT data and develop a method, CARD for spatially 

informed cell type deconvolution for spatial transcriptomics. CARD is built on a non-negative 

matrix factorization (NMF) framework with conditional autoregressive (CAR) modeling 

assumption, which is widely applied in graph network analysis. By leveraging information from 
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scRNA-seq studies and information from the spatial correlation structure among tissue locations, 

CARD performs accurate and robust cell type deconvolution, and can reconstruct a refined spatial 

map with enhanced resolution. Additionally, I have extended CARD to include a reference-free 

version that allows flexibility in scRNA-seq references and a single-cell mapping version that 

constructs single-cell level gene expression from a reference dataset for each spatial location. 

Through extensive simulations studies and comprehensive analyses on four real datasets, I 

demonstrate that CARD is more accurate and computationally efficient than other methods and 

can provide novel biological insights into cell types and molecular markers that define the tissue 

heterogeneity. 

In chapter 4, I focus on SRT data across multiple tissue slices and develop a method, IRIS 

for reference informed spatial domain detection on multiple tissue sections. IRIS accounts for both 

within-slice and between-slice compositional similarities using a graph Laplacian matrix and a 

Euclidean distance matrix to jointly detect spatial domains across multiple tissue sections. Through 

an iterative optimization framework, IRIS updates the cell type composition matrix and spatial 

domain labels across tissue slices. I demonstrate the advantages of IRIS through extensive analyses 

on diverse spatial transcriptomics datasets, including different technologies, species, and tissues. 

IRIS substantially improves domain detection accuracy when compared to the existing methods, 

enabling a more accurate depiction of the transcriptomic landscape in complex tissues such as the 

human prefrontal cortex, mouse spermatogenesis, mouse olfactory bulb, and human breast cancer.
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Chapter 2 Integrative Differential Expression and Gene Set Enrichment Analysis Using 

Summary Statistics for scRNA-seq Studies. 

2.1 Abstract 

Differential expression (DE) analysis and gene set enrichment (GSE) analysis are 

commonly applied in single cell RNA sequencing (scRNA-seq) studies. Here, we develop an 

integrative and scalable computational method, iDEA, to perform joint DE and GSE analysis 

through a hierarchical Bayesian framework. By integrating DE and GSE analyses, iDEA can 

improve the power and consistency of DE analysis and the accuracy of GSE analysis. Importantly, 

iDEA uses only DE summary statistics as input, enabling effective data modeling through 

complementing and pairing with various existing DE methods. We illustrate the benefits of iDEA 

with extensive simulations. We also apply iDEA to analyze three scRNA-seq data sets, where 

iDEA achieves up to five-fold power gain over existing GSE methods and up to 64% power gain 

over existing DE methods. The power gained by iDEA allows us to identify many pathways that 

would not be identified by existing approaches in these data. 

2.2 Introduction 

DE analysis is a routine association analysis task in scRNA-seq studies for identifying 

genes that are differentially expressed between cell subpopulations, between experimental 

conditions, or between case control status. Commonly applied DE methods in scRNA-seq include 

MAST (Finak et al. 2015), SCDE (Kharchenko, Silberstein and Scadden 2014) and zinger (Van 

den Berge et al. 2018), to name a few. While different DE methods make various modelling 
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assumptions to capture diverse aspects of scRNA-seq data (Soneson and Robinson 2018), almost 

all of them analyze one gene at a time. Analyzing one gene at a time can lead to potential power 

loss, as this approach fails to exploit consistent DE evidence across similar genes that could 

otherwise be used to enhance DE analysis power. It is plausible that due to low statistical power, 

different scRNA-seq DE methods would tend to prioritize a different set of DE genes in real data 

applications, leading to sub-optimal performance and inconsistency of results among different 

methods. In many other types of association analysis such as genome-wide association studies, it 

has been well recognized that Bayesian approaches that model multiple predictor variables 

together, even with the simple composite likelihood strategy where information is borrowed across 

multiple predictor variables each treated independently, can substantially increase power over 

univariate approaches (Zhou, Carbonetto and Stephens 2013).  

GSE analysis is also a routine task that aims to aggregate gene-level DE evidence to the 

gene set or pathway level. By aggregating gene-level DE evidence, GSE analysis can facilitate the 

robust biological interpretation of DE results. Many different GSE analysis approaches have been 

developed, but almost all of them are developed in the bulk RNA-seq analysis setting (Khatri, 

Sirota and Butte 2012). These existing GSE approaches include over-representation analysis 

methods such as  DAVID (Huang et al. 2007) and Fisher’s exact test (Camp et al. 2015); self-

contained test methods such as t-test (Oron, Jiang and Gentleman 2008), Chi-square test (Goeman 

et al. 2004) and others; and competitive test methods such as PAGE (Kim and Volsky 2005), 

GSEA (Subramanian et al. 2005) and CAMERA (Wu and Smyth 2012). Despite the abundance of 

the existing GSE methods, their effectiveness for scRNA-seq analysis remains elusive. Indeed, no 

comparison studies have been performed thus far to evaluate the effectiveness of the existing GSE 

methods in the scRNA-seq setting. In addition, and perhaps more importantly, almost all existing 
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GSE methods treat GSE analysis as a separate analytic step after DE analysis. However, GSE 

analysis and DE analysis are interconnected with each other statistically: while DE results are 

certainly indispensable for performing GSE analysis to detect enriched gene sets, detected enriched 

or unenriched gene sets also contain invaluable information that can serve as feedback into DE 

analysis to enhance its statistical power. Therefore, integrating DE analysis and GSE analysis has 

the potential to substantially increase the power of both and ensure result reproducibility for 

scRNA-seq analysis. 

Here, we develop a statistical method, which we refer to as the integrative Differential 

expression and gene set Enrichment Analysis (iDEA), that addresses the aforementioned 

shortcomings of previous methods for scRNA-seq data analysis. iDEA models all genes together 

by borrowing information across genes in terms of DE effect size distributional properties. iDEA 

also integrates DE analysis and GSE analysis into a joint statistical framework, providing 

substantial power gains for both analytic tasks. Importantly, iDEA makes use of summary statistics 

output from existing DE tools and does not make explicit modeling assumptions on the individual-

level scRNA-seq data. Use of summary statistics not only allows iDEA to take advantage of 

various existing DE models for effective and flexible data modeling, but also ensures its scalable 

computation to large-scale scRNA-seq data sets. In addition, incorporating summary statistics 

from scRNA-seq DE analysis into GSE analysis under the framework of iDEA makes GSE 

analysis less susceptible to gene-gene correlations and other technical difficulties such as dropout 

events. We illustrate the benefits of iDEA with extensive simulations and applications to three 

scRNA-seq data. 

2.3 Results 

2.3.1 Methods overview and simulation design 
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We provided an overview of iDEA in Methods, with technical details provided in 

Appendix A.1 - A.2 and a method schematic for shown in Figure 2.1. Briefly, iDEA requires 

gene-level summary statistics in terms of fold change/effect size estimates and their standard errors 

as inputs. The input summary statistics can be obtained using any existing scRNA-seq DE 

methods. As we will show below, given the input from any DE method, iDEA can often improve 

its power. Besides DE summary statistics, iDEA also requires pre-compiled gene sets. For human 

data, we have compiled and pruned a total of 12,033 gene sets from seven existing gene 

set/pathway databases including GO (Ashburner et al. 2000), KEGG (Kanehisa and Goto 2000), 

Reactome (Joshi-Tope et al. 2005), BioCarta (Nishimura 2001), PubChem Compound (Bolton et 

al. 2010), ImmuneSigDB (Godec et al. 2016), and PID (Schaefer et al. 2009). For mouse data, we 

have compiled and pruned a total of 2,851 gene sets from GO (Ashburner et al. 2000). With these 

inputs, iDEA examines one gene set at a time, performs inference through an expectation 

maximization algorithm, and uses Louis method (Louis 1982) to compute a calibrated p-value 

testing whether the gene set is enriched in DE genes or not. In addition, given any gene set, iDEA 

produces for each gene a posterior probability of DE as its DE evidence. iDEA is implemented as 

an open-source R package, freely available at www.xzlab.org/software.html.  

We performed simulations to evaluate the effectiveness of iDEA for GSE analysis and DE 

analysis (details in Methods). Briefly, we simulated zero-inflated count data for 10,000 genes on 

174 cells through a zero-truncated negative binomial distribution using parameters inferred from 

a real scRNA-seq data. The simulated data shared similar characteristics with the real scRNA-seq 

data (Figure S2.1). Among the simulated genes, a certain percentage of them belong to a gene set 

and we refer to this percentage as the gene set coverage rate (CR). In the null simulations of GSE 

analysis, each of the 10,000 genes is randomly assigned to be a DE gene with a probability 

http://www.xzlab.org/software.html
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exp(𝜏0) /(1 + exp(𝜏0)), where 𝜏0 determines the baseline probability of a gene being DE. Note 

that the null simulations of GSE analysis contain DE genes, though these DE genes are not 

enriched in any gene set. In the alternative simulations of GSE analysis, the j-th gene is randomly 

assigned to be a DE gene with probability exp(𝜏0 + 𝑎𝑗𝜏1)/(1 + exp(𝜏0 + 𝑎𝑗𝜏1)), where 𝑎𝑗 is a 

binary indicator on whether the j-th gene belongs to the gene set and 𝜏1 is the gene set enrichment 

coefficient that determines whether belonging to the gene set is predictive for the gene being DE. 

We performed our main simulations in a baseline scenario with 𝜏0 = −2.0 and CR = 10% and 

explored different combinations of 𝜏0, 𝜏1 and CR to create various simulation scenarios. 

2.3.2 Simulation results 

For GSE analysis, we compared the performance of iDEA with the commonly used GSE 

analysis methods fGSEA (Sergushichev 2016), CAMERA (Wu and Smyth 2012), PAGE (Kim 

and Volsky 2005) and GSEA (Subramanian et al. 2005). We found that iDEA produces well-

calibrated p-values under the null in different simulation scenarios (Figure 2.2, Figure S2.2). The  
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Figure 2.1 Schematic overview of iDEA.  

iDEA is designed to jointly model all genes together for integrative differential expression (DE) 

analysis and gene set enrichment (GSE) analysis. iDEA requires input association summary 

statistics from existing scRNA-seq DE methods in terms of the DE effect size estimate �̂�𝑗 and its 

standard error se (�̂�𝑗) for every gene (𝑗 = 1,2,⋯ , 𝑝) (top left panels). iDEA also requires a pre-

defined set of gene sets that we have compiled and pruned for use with the software (top right 

panels). With these two inputs, iDEA performs joint DE and GSE analysis through a Bayesian 

hierarchical model. For each gene set, iDEA outputs a p-value for testing whether the gene set is 

enriched with DE genes (bottom right panel) for GSE analysis. In addition, iDEA outputs the 

posterior inclusion probability of each gene being DE (bottom left panel) for DE analysis. By 

modeling all genes together and integrating DE and GSE analyses in a joint framework, iDEA can 

increase the power of both analyses. 

genomic control factor (𝜆gc), defined as the ratio between the median empirically observed test 

statistic and the expected median under the null, is close to one for iDEA across a range of 

scenarios. Among the other methods, fGSEA, PAGE, and GSEA generally produce calibrated p-

values (Figure S2.2); although occasionally the p-values from PAGE may slightly deviate from 

the diagonal line (e.g., when CR = 10% and 𝜏0 = -2.0; Figure 2.2D). In contrast, the p-values from 

CAMERA are only calibrated when CR is very low (1%) and become increasingly overly 

conservative with increasingly large CR regardless of the DE gene percentage (e.g., Figure 2.2B 

– Figure 2.2D; the last two columns in Figure S2.2). The deflation of CAMERA p-values under 

large CR is presumably because the asymptotic normal approximation used in CAMERA is no 

longer accurate there. Certainly, we note that under settings with both extremely low 𝜏0 (e.g. 𝜏0 = 

-3; which corresponds to an average of 4.7% genes being DE) and extremely low CR (e.g. CR = 

1%), the distribution of p-values from all methods would start to deviate from the expected null 

(e.g., Figure S2.2, 𝜏0 = -3, CR = 1%; and to a lesser extent, CR = 5%). Under these extreme 

parameter combinations, the suboptimal performance of iDEA in terms of type I error control is 

presumably due to the potential parameter identifiability issue encountered when fitting rare and 

imbalanced event data (Zhou et al. 2018). The suboptimal performance of the other methods is 
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presumably because the asymptotic normal approximation for obtaining p-values in these methods 

becomes no longer accurate.  

 

Figure 2.2 iDEA produces well-calibrated p-values for gene set enrichment analysis under 

null simulations.  

Quantile-quantile plots of -log10(p-values) from iDEA (orange), fGSEA (green), CAMERA 

(navyblue), PAGE (skyblue) and GSEA (yellow) are shown under different null scenarios with 

varying gene set coverage rates (CR): (A) CR = 1%; (B) CR = 2%; (C) CR = 5%; (D) CR = 10%. 

CR represents the percentage of genes inside the gene set. Here, the other parameters are set to be 

𝜏0 = −2𝑎𝑛𝑑𝜏1 = 0. 𝜆𝑔𝑐 is genomic control factor. 

Besides type I error control, we found that iDEA is more powerful than the other GSE 

methods across a range of alternative scenarios (Figure 2.3A, Figure 2.3C and Figure S2.3). 

Because different methods have different type I error control, to allow for fair comparison, we 

computed power at a fixed false discovery rate (FDR) of 5%. In the baseline parameter setting of 

𝜏1 = 0.5 and CR = 10%, we found that iDEA achieved a power of 98%. In contrast, fGSEA, 

CAMERA, PAGE and GSEA achieved a power of 26%, 0%, 8% and 26%, respectively (Figure 

(B)(A)

(D)(C)
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2.3A). The power of iDEA and the other methods all increase with increasing 𝜏1 as well as with 

increasing CR (Figure S2.3). In addition to the power versus FDR plots, the receiver operating 

characteristic (ROC) curves, displaying false positive rates (FPR) across a range of true positive 

rates (TPR), also show that iDEA achieves a higher Area Under the Curve (AUC) for GSE analysis 

(Figure S2.4). The superior performance of iDEA over existing GSE methods presumably is due 

to the previously known fact that methods using Kolmogorov Smirnov test (e.g. fGSEA, GSEA) 

are often not powerful in detecting differences between the distribution of DE test statistics in the 

gene set vs that outside the gene set, while methods using t-tests on the DE z-scores (e.g., 

CAMERA, PAGE) would also fail to detect gene set enrichment as there is no difference in the 

mean of DE test statistics in the gene set versus that outside the gene set (Kim and Whitt 2015).  

For DE analysis, we found that iDEA can improve DE analysis power regardless of 

whether the summary statistics are from MAST (Finak et al. 2015), edgeR (Van den Berge et al. 

2018, Robinson, McCarthy and Smyth 2010) or zinger (Van den Berge et al. 2018, Love, Huber 

and Anders 2014) (Figure 2.3B, Figure 2.3D, Figure S2.5 and Figure S2.6). For example, with 

𝜏1 = 5 and CR = 10%, iDEA achieves a power of 81%, 61% and 83% at a true FDR of 5%, when 

it uses the input summary statistics obtained from zingeR, MAST, and edgeR, respectively. In 

contrast, the power of these three different DE methods is 65%, 52%, and 67%, respectively 

(Figure S2.5 and Figure S2.6). The power improvement brought by iDEA is higher in zingeR and 

MAST than that in edgeR, presumably because the p-values from both zingeR and MAST follow 

approximately a uniform distribution under the null, more so than that from edgeR (Figure S2.7). 

Because the model assumption of iDEA also requires the input p-values from the DE methods to 

be well-behaved, we will mostly report results based on using zingeR as input in the main text. In 

the analysis, we also found that the power gain brought by iDEA is mostly due to its joint modeling 
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of DE and GSE analyses, rather than its joint modeling across all genes. Indeed, when the gene set 

enrichment parameter 𝜏1  is small, then the power gain brought by iDEA becomes small or 

negligible (Figure S2.5 and Figure S2.6). Importantly, iDEA produces reasonably calibrated (or 

slightly conservative) FDR estimates across a range of simulation scenarios (Figure S2.8). The 

ROC curves also yielded consistent results, with iDEA achieving a higher AUC for DE analysis 

(Figure S2.4). Besides direct examination of DE analysis power, we also used the Jaccard index 

to examine the results consistency of different DE methods. Presumably because of the power gain 

brought up by iDEA, we found that iDEA can also improve the consistency of DE results in terms 

of the top DE gene list obtained from different methods (Figure S2.9). For example, when 𝜏1 = 5 

and CR = 10%, the Jaccard index for the top 1,500 genes with the strongest DE evidence obtained 

by each of three DE methods (MAST, edgeR, and zingeR) is 0.59. After applying iDEA to the 

corresponding summary statistics, the Jaccard index increases to 0.77.  

 

(B)(A)

(D)(C)
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Figure 2.3 iDEA is more powerful for both GSE and DE analyses than existing approaches 

in power simulations. 

The power of iDEA in identifying enriched pathways (y-axis; A and C) and in identifying 

differentially expressed genes (y-axis; B and D) are higher than that of the other methods (x-axis). 

The compared GSE methods (A and C) include iDEA (orange), fGSEA (green), CAMERA 

(navyblue), PAGE (skyblue) and GSEA (yellow). The compared DE methods (B and D) include 

iDEA (orange) and zingeR (skyblue). Simulations are performed under two parameter settings: 

𝜏0 = −2, 𝜏1 = 0.5, and CR = 10% (A and B); 𝜏0 = −2, 𝜏1 = 5, and CR = 10% (C and D). Here, 

power was calculated based on an FDR of 5%. 

2.3.3 Human embryonic stem cell scRNA-seq data 

 We applied iDEA to analyze three publicly available scRNA-seq data sets. The first scRNA-

seq dataset (Chu et al. 2016) consists of gene expression measurements for 15,280 genes on five 

cell types (details in Methods). We carried out both GSE and DE analyses on all ten pairs of the 

five cell types. Because results are largely consistent across different cell type pairs, we mainly 

report our analysis here on comparing two cell types, DECs and ECs. For the results comparing 

the other pairs of the cell types, please refer to (Ma et al. 2020). 

We first applied iDEA and other GSE methods to detect significantly enriched gene sets 

across our compiled database of 11,474 human gene sets (Figure 2.4A). We also constructed an 

empirical null p-value distribution by permuting the gene labels for each gene set 10 times. 

Consistent with simulations, we found that the p-values in the permuted data from iDEA (𝜆gc =

1.13), fGSEA (𝜆gc = 1.02), PAGE (𝜆gc = 0.96), and GSEA (𝜆gc = 1.01) are well behaved, while 

that from CAMERA show severe deflation (𝜆gc = 0.29) (Figure 2.4B). For each method, we 

relied on the empirical null distribution of p-values to compute power in detecting enriched gene 

sets based on a fixed empirical FDR. Consistent with simulations, iDEA identified more 

significantly enriched gene sets compared to the other GSE methods (Figure 2.4C). For example, 

at an empirical FDR of 5%, iDEA identified 2,106 significantly enriched gene sets, which is 20.9% 

higher than the next best GSE method (fGSEA, 1,742 significant gene sets). In contrast, 
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CAMERA, PAGE and GSEA identified 537, 1,328, and 1,079 gene sets, respectively. Besides 

these GSE methods, iDEA is also more powerful than the hypergeometric test (Figure S2.10). 

Notably, besides the statistical power, many of the top gene sets identified by iDEA are closely 

related to embryonic development (Figure 2.4E). Examples include the Wnt signaling pathway, 

the transforming growth factor beta (TGF-beta) receptor signaling pathway(Gadue et al. 2006), 

and relevant GO terms such as GO:0048514 (blood vessel morphogenesis), GO:0001944 

(vasculature development) and GO:0007492 (endoderm development) (Vokes and Krieg 2002). 

To quantify the biological significance of gene sets identified by different GSE methods, we 

quantified the relevance between gene sets and embryonic cell development in an unbiased way 

by searching the related literatures in PubMed (details in Methods). Indeed, in the top 50 enriched 

gene sets identified by different methods, iDEA identified more gene sets relevant to embryonic 

cell development (25; Table S2.1) than fGSEA (20), CAMERA (23), PAGE (10), and GSEA (12). 

The higher number of detected enriched gene sets relevant to embryonic cell development by iDEA 

provides convergent support for the higher power of iDEA for GSE analysis. 

We next applied iDEA for DE analysis where we treated the biologically meaningful gene 

set GO:0001944 (vasculature development) as the annotation. Consistent with simulations, iDEA 

identified more DE genes than zingeR. For example, at an empirical FDR of 1%, iDEA identified 

2,753 DE genes, which is 64.0% higher than zingeR (which identified 1673; Figure 2.4D). The 

50 selected important DE genes identified by iDEA clearly distinguishes the two examined cell 

types, DECs and ECs (Figure 2.4F). Importantly, based on (Chu et al. 2016), iDEA identified 

1,119 genes directly related to definitive endoderm cell differentiation, a process one would expect 

to be detected by comparing DECs versus ECs, while zingeR only identified 706. The higher 

number of DE genes relevant to definitive endoderm cell differentiation detected by iDEA 
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provides convergent support for its higher power for DE analysis. Important DE genes involved in 

the cell differentiation process that are detected by iDEA but missed by zingeR include SMAD3 

(Teo et al. 2011), GATA3 (Song et al. 2009), TGFBR1 (Mullen and Wrana 2017), WNT7B (Wang 

et al. 2018b), HAND1 (Barnes et al. 2010), CCND1 (Pauklin et al. 2016) and HEY2 (Weber et al. 

2015). Among them, SMAD3 is essential for activating the necessary transcriptional network for 

directing definitive endoderm (DE) formation (Teo et al. 2011); GATA3 is indispensable for the 

signaling pathways in large vessel endothelial cells (Song et al. 2009); TGFBR1 plays an important 

role in activating SMAD2 and SMAD3 (Mullen and Wrana 2017); WNT7B is necessary for the 

redundant ligand–receptor systems which helps activating activate β-catenin signaling in vascular 

endothelial cells during endoderm development (Wang et al. 2018b). Finally, as in simulations, 

iDEA improves the consistency of DE analysis results: the Jaccard index for the top DE genes 

obtained by each of the three DE methods (MAST, edgeR, or zingeR) at an FDR of 1% is only 

0.10; after applying iDEA to the corresponding summary statistics, the Jaccard index increases 

substantially to 0.25 (Figure S2.11 - Figure S2.12). 
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Figure 2.4 Analysis results in the embryonic stem cell scRNA-seq data. 

Results are shown for comparing two cell types, endothelial cell (EC) and definitive endoderm 

derivatives cell (DEC). (A) p-values from iDEA for GSE analysis display expected enrichment of 

small p-values (for true signals) and a long flat tail towards large p-values. (B) Quantile-quantile 

plots of -log10(p-values) from GSE methods including iDEA (orange), fGSEA (green), CAMERA 

(navyblue), PAGE (skyblue) and GSEA (yellow) are shown under permuted null. The p-values 

from iDEA, fGSEA, PAGE and GSEA are reasonably well calibrated, while that from CAEMRA 

are overly conservative. Here 𝜆gc is the genomic control factor. (C) Number of identified enriched 

gene sets by iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA 

(yellow) are plotted against different empirical false discovery rates (FDR). iDEA is more 

powerful than other methods for GSE analysis. (D) Number of identified DE genes by iDEA 

(orange) and zingeR (blue) are plotted against different empirical FDR values. iDEA is more 

powerful than zingeR for DE analysis. (E) Heatmap shows the normalized expression level (log10-

transformation with pseudo-count 0.1) for selected 50 DE genes (rows) identified by iDEA for 

cells in the two cell types (columns). Genes are sorted by Hierarchical clustering; cells are ordered 

by cell types (EC: red; DEC: blue). These DE genes clearly distinguish two compared cell types. 

(F) Bubble plot shows –log10 p-values for GSE analysis from iDEA (y-axis) for different gene 

sets. Gene sets are colored by ten categories: immunologic signatures (red), chemical and genetic 

perturbations (yellow), GO biological process (blue), GO molecular function (green), GO cellular 

component (orange), oncogenic signatures (deep blue), Reactome (grass-green), KEGG (purple), 

PID (rose), and Biocarta (grey). The size of the dot represents the number of genes contained in 

the gene set. Names for ten of the gene sets that are closely related to embryonic cell development 

are highlighted in the panel.  

2.3.4 Mouse sensory neuron scRNA-seq data 

(E)

(A) (B) (D)

(F)

(C)
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 The second scRNA-seq data set (Usoskin et al. 2015) consists of 13,598 genes and 622 

mouse neuronal cells from eleven different cell types. Following the original paper (Usoskin et al. 

2015), we carried our analysis on comparing the nonpeptidergic nociceptor type I (NP1) neurons 

with each of the other ten cell-types (details in Methods). Because the results are again largely 

consistent across different cell type pairs, we mainly report our analysis here on comparing NP1 

versus the remaining ten cell types together. For the corresponding results comparing NP1 versus 

each of the ten cell types, please refer to ref (Ma et al. 2020). 

We first applied iDEA for GSE analysis on a pre-compiled set of 2,851 mouse gene sets 

(Figure 2.5A). Consistent with simulations, the GSE p-values in the permuted data from iDEA 

(𝜆gc = 1.07), fGSEA (𝜆gc = 1.08), PAGE (𝜆gc = 0.99), and GSEA (𝜆gc = 0.94) are all well-

behaved, while the p-values from CAMERA show severe deflation (𝜆gc = 0.11) (Figure 2.5B). 

Also consistent with simulations, iDEA identified more significantly enriched gene sets compared 

to the other methods (Figure 2.5C). For example, at an FDR of 5%, iDEA identified 1,268 

enriched gene sets, which is five times higher than the second-best method (GSEA, 246). In 

contrast, fGSEA, CAMERA and PAGE identified 236, 134, and 205 enriched gene sets, 

respectively. Besides these GSE methods, iDEA is also more powerful than the hypergeometric 

test (Figure S2.13). Notably, the significant gene sets identified by iDEA are biologically relevant 

to the compared cell type pair (Figure 2.5E and Table S2.2). Most of the top 1% enriched terms 

were associated with the nervous system, neuronal response, and neuronal functions. Such 

examples include neuron projection (GO:0043005), neuron part (GO:0097458), and 

somatodendritic compartment (GO:0036477) (Guo et al. 2019). Other identified gene sets such as 

axon (GO:0030424) synapse (GO:0045202) and ion transport (GO:0006811) (Hubel 1985) also 

play important roles in neuronal functions and activities. None of these gene sets were detected by 
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fGSEA and CAMERA. PAGE and GSEA can also detect these gene sets but do not rank them 

highly: the rank of these gene sets ranges from top 5% to 61% by PAGE and from top 15% to 71% 

by GSEA. In addition, use of iDEA recovered 102 out of the 237 gene sets known to be involved 

in inflammatory itch (Usoskin et al. 2015). In contrast, fGSEA, CAMERA, PAGE, and fGSEA 

identified 31, 20, 19, and 29 gene sets among them, respectively.  

We next applied iDEA for DE analysis where we treated the gene set GO:0097458 (neuron 

part) as the annotation. Again, iDEA identified more DE genes than zingeR (Figure 2.5D). At an 

FDR of 1%, iDEA detected 1,103 DE genes, which is 11.0% higher than zingeR (993). We 

illustrate 50 selected DE genes identified by iDEA in Figure 2.5F, which clearly distinguish the 

two compared cell types. Many NP1 neuron marker genes are identified by iDEA but missed by 

zingeR even at an FDR of 5%. These marker gene examples include MRGPRB5, STX1B, 

FAM167A, KLK8, and STK32A. Among these genes, MRGPRB5 is a Mas-related gene expressed 

in primary nociceptive sensory neurons (Zylka et al. 2003). KLK8 mediates signals in the PAR1-

dependent signaling responses in the nociceptive neurons (Oikonomopoulou, Diamandis and 

Hollenberg 2010). Importantly, iDEA detected 79 DE genes out of top 100 previously known NP1 

DE genes listed in the original study, while zingeR detected 75 DE genes, again supporting the 

high power of iDEA. Finally, consistent with simulations, iDEA also improves the consistency of 

DE analysis results; namely, the Jaccard index for the top DE genes obtained by each of the three 

DE methods (MAST, edgeR, or zingeR) at an FDR of 1% is 0.14; after applying iDEA to the 

corresponding summary statistics, the Jaccard index increases to 0.17 (Figure S2.14 - Figure 

S2.15). 
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Figure 2.5 Analysis results in the mouse neuronal cell scRNA-seq data. 

Results are shown for comparing nonpeptidergic nociceptors 1 (NP1) versus all the other cell 

types. (A) p-values from iDEA for GSE analysis display expected enrichment of small p-values 

(for true signals) and a long flat tail towards large p-values. (B) Quantile-quantile plots of -log10(p-

values) from GSE methods including iDEA (orange), fGSEA (green), CAMERA (navyblue), 

PAGE (skyblue) and GSEA (yellow) are shown under permuted null. The p-values from iDEA, 

fGSEA, PAGE and GSEA are reasonably well calibrated, while those from CAEMRA are overly 

conservative. Here 𝜆gc is the genomic control factor. (C) Number of identified enriched gene sets 

by iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA (yellow) 

are plotted against different empirical false discovery rates (FDR). iDEA is more powerful than 

other methods for GSE analysis. (D) Number of identified DE genes by iDEA (orange) and zingeR 

(blue) are plotted against different empirical FDR values. iDEA is more powerful than zingeR for 

DE analysis. (E) Heatmap shows the normalized expression level (log10-transformation with 

pseudo-count 0.1) for selected 50 DE genes (rows) identified by iDEA for cells in the two cell 

types (columns). Genes are sorted by Hierarchical clustering; cells are ordered by cell types (NP1: 

blue; Others: red). These DE genes clearly distinguish two compared cell types. (F) Bubble plot 

shows –log10 p-values for GSE analysis from iDEA (y-axis) for different gene sets. Gene sets are 

colored by four categories: GO biological process (orange), GO molecular function (blue), GO 

cellular component (green) and other gene ontology terms with only GO numbers (yellow). The 

size of the dot represents the number of genes contained in the gene set. Names for ten of the gene 

sets that are closely related to nociceptive sensory neurons’ activities are highlighted in the panel.  

2.3.5 10x Genomics PBMC scRNA-seq data 

(A) (B) (D)(C)

(F)(E)
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The third scRNA-seq data set consists of 13,713 genes and 2,638 cells collected from 

peripheral blood mononuclear cells (PBMCs) (Zheng et al. 2017b). We focused on comparing 

CD4+ T-cells with CD8+ T-cells to examine the performance of various methods in the 

challenging setting where the two examined cell types are similar (Figure S2.16). We also focused 

on examining a small set of 144 gene sets that contain important gene signatures of immune and 

stroma cell types (Aran, Hu and Butte 2017). These gene sets contain CD4+ and CD8+ cell type 

signatures and thus can be treated as true positives for method comparison in this data.   

We first applied iDEA to identify enriched gene signatures among these true positives 

(Figure 2.6A). Due to the small number of gene sets examined here, the p-values from all methods 

in the permuted data are not discernable from the null expectation (Figure 2.6B). Likely due to 

the low read depth in 10x genomics data and the subsequent high gene expression measurement 

noise, all GSE methods have similar power in terms of detecting enriched gene sets based on a 

fixed FDR threshold (Figure 2.6C). However, almost all top enriched gene sets identified by iDEA 

are relevant to CD4 or CD8 cell functions (Figure 2.6E). For example, in the top 25 gene sets 

identified by iDEA, 22 of them are relevant to CD4 or CD8 cells (Table S2.3). In contrast, 13 

from fGSEA, 13 from CAMERA, 14 from PAGE, and 13 from GSEA are relevant to CD4 or CD8 

cells (Table S2.4). Besides these commonly used GSE methods, iDEA is also more powerful than 

the hypergeometric test, which only identified one significant gene set (Figure S2.17). 

We next applied iDEA to perform DE analysis where we treated the gene set CD8+ T-

effector memory as the annotation. Consistent with simulations, iDEA identified more DE genes 

than zingeR (Figure 2.6D). At an FDR of 1%, iDEA detected 255 significant DE genes, which is 

15.3% higher than that detected by zingeR (221). We illustrate 30 selected DE genes identified by 

iDEA (Figure 2.6F), which clearly distinguish the two cell types. The significant DE genes 
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identified by iDEA include CD8A, KLRG1, GNLY, and PRF1 that are all relevant to CD T cell 

differentiation (Palmer et al. 2006). Indeed, iDEA identified many T cell activation and 

differentiation related genes that are missed by zingeR. Among the genes missed by zingeR, BTG2 

is important for T-cell activation marker expression, T cell proliferation and migration (Terra et 

al. 2008); KLF2 is involved in both the activation of CD4+ T cell trafficking (through regulation 

of S1PR1) and T helper cells differentiation (Lee et al. 2015b); CD247 of the Ctex region is 

essential for the TCR-mediated activation of T cells (Lundholm et al. 2010); and LSP1 is found to 

be down regulated in human T-cell lines and plays an important role in the process of T-cell 

transformation (Huang et al. 1997). iDEA also improved the consistency of DE analysis results. 

Specifically, the Jaccard index for the top DE genes obtained by each of three DE methods (MAST, 

edgeR or zingeR) at an FDR of 1% was only 0.06; after applying iDEA to the corresponding 

summary statistics, the Jaccard index increased substantially to 0.15 (Figure S2.18 - Figure 

S2.19).  

Finally, while the DE analysis relies on a pre-selected gene set, we found that the number 

of DE genes identified by iDEA without the pre-selected gene set (=252, at an FDR of 1%) is 

similar to the results using the cell type defined gene set (=255), both are larger than that identified 

by zingeR (=221) (Figure S2.20). In the three real data applications, we also found that the results 

from iDEA are largely insensitive to the choice of hyperparameters in the prior distribution for the 

variance parameters (analysis details in Methods; Figure S2.21). Performing analysis on two 

groups of cells randomly selected form the same cell type also demonstrates the proper type I error 

control by iDEA (Figure S2.22). 
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Figure 2.6 Analysis results in the 10X Genomics scRNA-seq data. 

Results are shown for comparing CD4+ T cells versus CD8+ T cells. (A) p-values from iDEA for 

GSE analysis display expected enrichment of small p-values (for true signals) and a long flat tail 

towards large p-values. (B) Quantile-quantile plots of -log10(p-values) from GSE methods 

including iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA 

(yellow) are shown under permuted null. The p-values from all methods in the permuted data are 

not discernable from the null expectation. Here 𝜆gc is the genomic control factor. (C) Number of 

identified enriched gene sets by iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE 

(skyblue) and GSEA (yellow) are plotted against different empirical false discovery rates (FDR). 

iDEA is as the same powerful than other methods for GSE analysis. (D) Number of identified DE 

genes by iDEA (orange) and zingeR (blue) are plotted against different empirical FDR values. 

iDEA is more powerful than zingeR for DE analysis. (E) Heatmap shows the normalized 

expression level (log10-transformation with pseudo-count 0.1) for selected 30 DE genes (rows) 

identified by iDEA for cells in the two cell types (columns). Genes are sorted by Hierarchical 

clustering; cells are ordered by cell types (NP1: blue; Others: red). These DE genes clearly 

distinguish two compared cell types. (F) Bubble plot shows –log10 p-values for GSE analysis from 

iDEA (y-axis) for different gene sets. Gene sets are colored by six projects: FANTOM (red), 

HPCA (yellow), BLUEPRINT (blue), ENCODE (green), NOVERSHTERN (orange), IRIS (deep 

blue). The size of the dot represents the number of genes contained in the gene set. Names for ten 

of the gene sets that are closely related to CD4+ and CD8+ immune process are highlighted in the 

panel.  

 

(A) (B) (D)(C)
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2.4 Discussion 

We have presented a computational method, iDEA, for integrating DE analysis and GSE 

analysis in scRNA-seq studies. iDEA directly models summary statistics from existing scRNA-

seq DE tools, produces well-calibrated p-values for enriched gene set detection, and provides 

increased power for both DE and GSE analyses. Modeling summary statistics in iDEA 

circumvents the need for explicit modeling of individual-level scRNA-seq data, allowing iDEA to 

be paired with existing DE tools for quick adaptation across a range of scRNA-seq data types. We 

have demonstrated the benefits of iDEA using both simulations and applications to three recently 

published scRNA-seq data sets. 

We have primarily focused on scRNA-seq data, as we aimed to perform a comprehensive 

comparative study on GSE methods for scRNA-seq studies in addition to developing iDEA. 

However, the flexible modeling framework of iDEA can be equally applied to bulk RNA-seq 

studies. To illustrate this, we applied iDEA to an oral carcinoma bulk RNA-seq dataset (Tuch et 

al. 2010), where we show that iDEA can identify more DE genes and more enriched gene sets that 

are relevant to oral carcinogenesis (Figure S2.23; APPENDIX A.3).  

We have primarily focused on modeling the marginal effect size estimates and standard 

errors from DE analysis, which is equivalent to modeling of marginal z-scores. Our modeling of 

z-scores follows that of (Efron 2001) (Efron and Tibshirani 2002) and effectively assumes that the 

prior distribution of true effect sizes is dependent on the standard errors, and subsequently the 

sample size. Such prior dependence on sample size appears to have relatively mild consequences 

in practical data analysis and has attractive theoretical properties (Narisetty and He 2014). 

Nevertheless, we have developed a variant of iDEA that does not require prior dependence on 
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sample size. The iDEA variant has similar performance as the original iDEA in the real data 

applications, properly controlling for type I error and displaying higher power than the other 

methods. For more details of the iDEA variant, please refer to the ref (Ma et al. 2020) 

The DE analyses in our real data applications are performed by treating a pre-selected gene 

set as annotation based on prior biological knowledge. Certainly, selecting such gene set may not 

always be possible in every study. In the absence of a pre-selected gene set to serve as the 

annotation, we developed a Bayesian model averaging (BMA) approach (APPENDIX A.4) to 

aggregate DE evidence across all available gene sets. The BMA approach yields consistent results 

for majority of genes as compared to the pre-selection approach in the real data applications 

(Figure S2.24), demonstrating its utility for practical applications. 

iDEA does not explicitly account for gene set overlap that may cause non-independence 

among gene sets. In practice, we found that the gene set overlap is generally small: the median 

number of overlapped genes among pairs of gene sets in the human data is only 1 (5 in the mouse 

data), as compared to the median gene set size of 143 (131 in the mouse data). A careful 

examination of the top identified enriched gene sets in the real data applications also suggest that 

gene set overlap does not appear to introduce excessive false signals (Table S2.5 - Table S2.6; 

APPENDIX A.5). In addition, the sparse data structure in scRNA-seq appears to further diminish 

the concern on gene-gene correlations. Indeed, GSE methods that do not explicitly account for 

gene-gene correlation (e.g., iDEA, PAGE, fGSEA and GSEA) appear to provide more calibrated 

p-values than methods that explicitly account for gene-gene correlation (e.g., CAMERA) in these 

real data applications. Nevertheless, we followed most existing GSE approaches and accounted 

for GSE test non-independence due to gene set overlap through permutation of gene labels. Such 

permutation retains the gene set overlap proportion under the empirical null: if one gene set 
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contains genes that are overlapped with genes in another gene set in the real data, then the 

overlapped number remains the same in the permuted data. Consequently, the test statistics on the 

two gene sets would be correlated in a somewhat comparable fashion between the permuted data 

and the real data. By estimating FDR based on such permuted null, we can account for test non-

independence due to gene set overlaps.  

Finally, we acknowledge that general caveat exists for DE analysis between cell types in 

scRNA-seq studies: because cell types are often inferred based on the whole gene expression 

matrix, DE analysis performed on the inferred cell types may lead to inflated DE test statistics with 

artificially smaller standard errors (Zhang, Kamath and Tse 2019). We have attempted to alleviate 

such issue by conducting our analysis on datasets where cell types are reasonably rigorously 

defined and validated through other experiments (APPENDIX A.6). Nevertheless, future 

methodological innovations are needed to account for the uncertainty associated with cell type 

inference for DE analysis between cell types in scRNA-seq studies.  

2.5 Methods 

2.5.1 iDEA overview 

Here, we provide a brief overview of iDEA, with technical details provided in APPENDIX 

A.1-A.2. iDEA models all genes jointly and requires summary statistics from standard DE analysis 

for all genes. These summary statistics are in the form of marginal DE effect size estimate �̂�𝑗 and 

its standard error se(�̂�𝑗),   𝑗 = 1,2,⋯ 𝑝, where p is the number of genes. We assume that the 

estimated DE effect size centers around the true effect size �̂�𝑗  ~ 𝑁(𝛽𝑗, se(�̂�𝑗)
2
), and that the true 

effect size 𝛽𝑗 follows a mixture of two distributions depending on whether j-th gene is a DE gene 

or not:  
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                                               𝛽𝑗  ~ 𝜋𝑗  𝑁 (0, se(�̂�𝑗)
2
𝜎β
2) +(1 − 𝜋𝑗)𝛿0,                                      (2.1) 

where 𝜋𝑗 is the prior probability of being a DE gene; 𝜎β
2 is a scaling factor that determines the DE 

effect size strength; and 𝛿0 is the Dirac function that represents a point mass at zero. Therefore, 

with proportion 𝜋𝑗, j-th gene is a DE gene and its DE effect size 𝛽𝑗 follows a normal distribution 

with a large variance se(�̂�𝑗)
2
𝜎β
2. With proportion 1 − 𝜋𝑗 , j-th gene is a non-DE gene and its DE 

effect size is exactly zero. Note that our modeling above is also equivalent to modeling using 

marginal z-statistics, 

                                                 𝑧𝑗  ~ 𝜋𝑗  𝑁(0, 𝜎β
2 + 1) +(1 − 𝜋𝑗)𝑁(0,1),                                    (2.2) 

where 𝑧𝑗 is the marginal z-score on the DE evidence for the j-th gene.  

In Equation (2.1), we have scaled the variance with respect to se(�̂�𝑗)
2
 using the scaling 

factor 𝜎β
2 , so that our analysis results are scale invariant; that is, the results remain the same 

regardless of what the DE effect size is measured on. For the scaling factor, we followed existing 

statistical literature and chose the conjugate distribution for a variance parameter as the prior for 

𝜎β
2.  Specifically, we specify an inverse gamma prior on 𝜎β

2 : 𝜎β
2~ InvG(𝑎β, 𝑏β)  with 𝑎β =

3.0, 𝑏β = 20.0, which ensures a prior mean of 10 (= 𝑏β/(𝑎β − 1)) and the existence of a prior 

variance (which requires 𝑎β > 2). To integrate the gene set information into the above model, we 

model the gene-specific probability of being a DE gene as  

                                                    logit(𝜋𝑗) = log (
𝜋𝑗

1−𝜋𝑗
) = 𝜏0 + 𝑎𝑗𝜏1.                                        (2.3) 

where 𝜏0 is an intercept that determines the proportion of DE genes outside the gene set; 𝑎𝑗 is a 

binary indicator on whether 𝑗-th gene belongs to the gene set (𝑎𝑗 = 1) or not (𝑎𝑗 = 0); and 𝜏1 is a 
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gene set enrichment parameter that determines the odds ratio of DE for genes inside the gene set 

versus genes outside the gene set. To facilitate computation, we introduce a vector of binary 

indicators 𝛄 = (𝛾1,⋯ , 𝛾𝑝)
𝑇
to indicate whether each gene is a DE gene (𝛾𝑗 = 1) or not (𝛾𝑗 = 0). 

Therefore, the prior distribution of 𝛾𝑗 is effectively a Bernoulli distribution,  

                                                               𝛾𝑗 ~Bern(𝜋𝑗).                                                                (2.4) 

With proportion 𝜋𝑗, j-th gene is a DE gene and with proportion 1 − 𝜋𝑗 , j-th gene is a non-DE gene 

and its DE effect size is exactly zero. With the above model setup, we are primarily interested in 

inferring two parameters: the gene-specific indicator 𝛾𝑗, which indicates whether j-th gene is a DE 

gene or not; and the enrichment parameter 𝜏1, which represents the enrichment of DE genes in the 

gene set. We aim to infer the posterior probability of 𝛾𝑗 = 1 as evidence for j-th gene being DE 

and test the null hypothesis 𝐻0:𝜏1 = 0 that DE genes are not enriched in the gene set.  

To achieve both goals, we develop an expectation maximization (EM)-Markov chain 

Monte Carlo (MCMC) algorithm for parameter estimation. Briefly, we treat the vector of both 𝛃 

and 𝛄 as missing data and develop an iterative EM optimization algorithm that alternates between 

an expectation step and a maximization step. In the expectation step, the expectation of the log 

likelihood effectively requires computing the posterior probability of each gene being a DE gene, 

𝑃(𝛾𝑗 = 1|data), through MCMC. In the maximization step, we estimate the enrichment parameter 

through optimization, which is effectively equivalent to fitting a logistic regression model, where 

we treat the posterior probabilities for each gene being DE obtained from the expectation step as 

the outcome variable. While our EM-MCMC algorithm yields accurate parameter estimates, we 

found that the standard errors for the enrichment parameter obtained through the complete-data 

log-likelihood function is overly liberal and leads to p-value inflations (𝜆gc = 1.33 ; Figure 
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S2.25A), a phenomenon that has been observed in many other settings (Spall 2005, Louis 1982). 

Therefore, we used the Louis method (Louis 1982) to obtain the corrected information matrix and 

produce calibrated p-values (𝜆gc = 1.06; Figure S2.25B).  

2.5.2 Summary statistics and gene annotations 

iDEA requires DE summary statistics in the form of fold change/effect size estimates and 

their standard errors as input. These summary statistics in principal can be obtained using any 

existing scRNA-seq DE methods, such as MAST (Finak et al. 2015) or zinger (Van den Berge et 

al. 2018) etc. Here, we primarily focus on presenting the results obtained based on input from 

zingeR, which directly outputs DE effect size estimates and their standard errors and which is the 

most recent DE method for scRNA-seq analysis. However, we also explored the benefits of pairing 

iDEA with different scRNA-seq DE methods in part of the Results section. Details of these DE 

methods are provided in the next subsection.  

In addition to DE summary statistics, iDEA also requires pre-defined gene sets. For human 

data, we downloaded a total of 12,033 gene sets based on seven existing gene set/pathway 

databases annotated on the reference genome GRCh37 from MSigDB databases  

(http://software.broadinstitute.org/gsea/downloads.jsp). These databases include BioCarta 

(Nishimura 2001), KEGG (Kanehisa and Goto 2000), GO (Ashburner et al. 2000), PubChem 

Compound (Bolton et al. 2010), ImmuneSigDB (Godec et al. 2016), PID (Schaefer et al. 2009) 

and Reactome (Joshi-Tope et al. 2005). We divided the compiled gene sets into ten functional 

categories that include immunologic signatures (4,856 gene sets), chemical and genetic 

perturbations (2,379 gene sets), GO biological process (2,835 gene sets), GO molecular function 

(544 gene sets), GO cellular component (355 gene sets), oncogenic signatures (186 gene sets), 

Reactome (415 gene sets), KEGG (163 gene sets), PID (207 gene sets), and Biocarta (93 gene sets). 

http://software.broadinstitute.org/gsea/downloads.jsp
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We merged the gene sets with summary statistics and filtered out gene sets that contain less than 

20 genes and finally focused on a total of 11,474 gene sets in GSE analysis. For mouse data, we 

downloaded the gene ontology (GO) annotations of mouse genes in the GAF 2.0 format from the 

website (http://www.informatics.jax.org/downloads/reports/index.html#go). We merged the gene 

sets with summary statistics and filtered out gene sets that contain less than 50 genes and finally 

focused on a total of 2851 gene sets in GSE analysis. These GO terms were based on four 

categories: biological process (1,719 gene sets), cellular component (279 gene sets), molecular 

function (297 gene sets), and unannotated gene sets (556 gene sets). For 10x Genomics data, we 

collected a total of 489 gene sets consisting of cell type specific gene signatures from Xcell and 

these gene signatures were previously collected to annotate 64 distinct cell types and cell subsets 

(Aran et al. 2017). We merged the gene sets with summary statistics and filtered out gene sets that 

contain less than 10 genes to focus on a final set of 144 cell type specific gene sets. We note that 

we filtered out gene sets with a small number of genes (e.g., <10 or <20) as the pruning step due 

to computational reasons: for iDEA and other GSE methods, the gene set enrichment parameter 

estimation can become inaccurate and unstable for gene sets with small sizes. 

2.5.3 Compared methods 

For DE analysis in both simulations and real data applications, we compared iDEA with 

three existing approaches: (1) MAST (version 1.8.1), which outputs a coefficient (coef) as the 

effect size estimate and a corresponding p-value for each gene (Finak et al. 2015); (2) edgeR 

(version 3.8), which outputs a log fold change (logFC) as the effect size estimate and a 

corresponding p-value for each gene (Robinson et al. 2010). The edgeR function we used was the 

weighted version of edgeR: it first calculated the cell-level weights using ZINB-WaVE and then 

used these weights inside edgeR for final computation; (3) zingeR (version 1.0) (Van den Berge 

http://www.informatics.jax.org/downloads/reports/index.html#go
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et al. 2018), where we applied zingeR to obtain cell-level weights, which were further supplied to 

DESeq2 (version 1.18.1) for DE analysis. The output from this procedure consists of a log fold 

change (log2FoldChange) as the effect size estimate and a corresponding standard derivation 

(lfcSE) for every gene (Love et al. 2014). iDEA can be paired with each of these DE methods to 

use the corresponding summary statistics as input for analysis. In these DE methods, in order to 

extract summary statistics for iDEA, we treated either the logarithm fold change or fold change as 

the gene effect size�̂�𝑗, and back derived the standard error of �̂�𝑗 using the unsigned z-score by 

se(�̂�𝑗) = | �̂�𝑗 zscore⁄ | , where zscore  was either directly available or was obtained by 

transforming the p-value via the R function qnorm (p-value/2.0, lower.tail=F). Afterwards, we 

used summary statistics obtained from these DE methods to fit iDEA.  

For GSE analysis in both simulations and real data applications, we mainly compared 

iDEA with four existing approaches: (1) fGSEA  (R version 1.8.0) (Sergushichev 2016); (2) 

CAMERA (inside limma, R version 3.8.3) (Wu and Smyth 2012); (3) PAGE (PGSEA, R version 

1.56.0) (Kim and Volsky 2005); and (4) GSEA (Java version 2.2.4) (Subramanian et al. 2005). We 

used z-score statistics from zingeR DE analysis as input for all these methods. Here, the z-score 

statistics were calculated by the transformation of the unadjusted p-values, paired with the sign of 

log-fold change estimate: zscore = Φ−1(1 −
pvalue

2
)sign(logFC) , where Φ(·)  denotes the 

standard Gaussion cumulative distribution. We used the default settings for all GSE methods. We 

used the recommended interGeneCorrelation function in CAMERA to calculate the correlation 

between genes. In addition, we compared iDEA with the hypergeometric test in all real data 

applications. We counted the number of DE genes (defined as p-value < 0.05) and non-DE genes 

in the gene set as well as outside the gene set and performed hypergeometric test to obtain GSE p-

value.  
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Note that, in the GSE analysis, we have primarily focused on comparing our method with 

traditional GSE methods that aim to identify gene sets whose genes are differentially expressed 

between cell types or treatment conditions. Different from these traditional GSE methods, several 

methods have been recently developed for scRNA-seq studies that are targeted for a completely 

different enrichment task: identifying gene sets whose genes show coordinated transcriptional 

heterogeneity. Exemplary such methods include the pathway and gene set overdispersion analysis 

(PAGODA) (Fan et al. 2016) and f-scLVM (Buettner et al. 2017). Because both PAGADA and f-

scLVM are targeted for detecting coordinated expression heterogeneity (i.e., gene-gene correlation 

within a gene set) rather than the usual GSE analysis based on DE analysis, we did not compare 

our method and other GSE methods with them. 

2.5.4 Simulations 

We performed simulations to evaluate the performance of iDEA for both DE analysis and 

GSE analysis. In each simulation replicate, we simulated 10,000 genes. We randomly assigned a 

proportion of these genes to belong to a gene set of interest. We referred to the percentage of genes 

belonging to the gene set as the coverage rate (CR), which were set to be either 1%, 2%, 5%, or 

10%; where 10% is close to the median CR of all analyzed pathways in the present study. We 

further introduced a binary indicator 𝑎𝑗 to represent whether j-th gene belongs to the gene set (𝑎𝑗 =

1 ) or not ( 𝑎𝑗 = 0 ). Afterwards, we randomly assigned each gene to be a DE gene with 

probability𝜋𝑗, which depends on 𝑎𝑗. In particular, the parameter𝜋𝑗 is in the form of 

                                                              𝜋𝑗 =
exp(𝜏0+𝑎𝒋𝜏1)

1+exp(𝜏0+𝑎𝒋𝜏1)
,                                                         (2.5) 

where the intercept parameters 𝜏0 was set to be either -0.5, -1.0, -2.0, or -3.0 to present different 

proportions of DE genes in the data (e.g. 𝜏0 = −2 represents that roughly 12% of genes are DE 
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genes; 
exp(−2)

1+exp(−2)
≈ 0.12); while the gene set enrichment coefficient 𝜏1 was set to be either 0 (no 

enrichment of DE genes in the gene set), 0.25 (weak enrichment), 0.5, 1.0 (moderate enrichment), 

or 5.0 (strong enrichment). Note that the median gene set enrichment parameter estimate across all 

analyzed pathways in the real data applications is close to 0.5 while the highest enrichment 

parameter estimate is 17.  

In order to compare the performance of iDEA of DE analysis with other count-based DE 

methods, we simulated scRNA-seq gene expression counts first. To make our simulations as 

realistic as possible, the simulations were performed based on parameters inferred from a 

published scRNA-seq data (Chu et al. 2016). Specifically, to simulate scRNA-seq gene expression 

counts, we selected two cell types that include endothelial cells (EC; 105 cells) and trophoblast-

like cells (TB, 69 cells) from Chu et al (Chu et al. 2016). We fitted each gene using a zero-truncated 

negative binomial (ZTNB). Through the ZTNB model, we first inferred the gene-specific mean 

expression parameter 𝜆𝑗 and dispersion parameter 𝜙𝑗  in the negative binomial component of 

ZTNB through method of moments (Van den Berge et al. 2018). In particular, these parameter 

estimates are obtained iteratively through 

                                                     𝜆𝑗
(𝑡+1)

=
∑ 𝑌𝑖𝑗(1−fNB(𝜆𝑗

(𝑡)
𝑁𝑖,𝜙𝑗

(𝑡)
))𝑖

∑ 𝑁𝑖𝑖
                                            (2.6) 

                                    𝜙𝑗
(𝑡+1)

=
∑ (𝜆𝑗

(𝑡)
𝑁𝑖)

2

𝑖

∑ 𝑌𝑖𝑗
2(1−fNB(𝜆𝑗

(𝑡)
𝑁𝑖,𝜙𝑗

(𝑡)
))−∑ (𝜆

𝑗
(𝑡)
𝑁𝑖)

2

𝑖 −∑ (𝜆
𝑗
(𝑡)
𝑁𝑖)𝑖𝑖

,                              (2.7) 

where 𝑌𝑖𝑗 is the non-zero expression count for i-th cell and j-th gene in the real data (note that we 

ignored zero counts in this estimation step); 𝑁𝑖 denotes the total read counts (i.e. read depth) for 𝑖-

th cell; the superscripts (t) and (t+1) denote the t-th and (t+1)-th iteration estimates, respectively; 

fNB(∙,∙) is the negative binomial density function.  
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In addition, we also followed (Van den Berge et al. 2018) to infer the zero proportion 

parameters 𝑝𝑖𝑗 in the ZTNB model by borrowing information across all genes. Specifically, we 

model the dropout probability for i-th cell and j-th gene, 𝑝𝑖𝑗, using a semi-parametric additive 

logistic regression model: 

                                                                  𝑧𝑖𝑗 ~Bern(𝑝𝑖𝑗),                                                          (2.8) 

log
𝑝𝑖𝑗

1−𝑝𝑖𝑗
= s(𝐴𝑗) + log(𝑁𝑖) + s(𝐴𝑗)log(𝑁𝑖),                                  (2.9) 

where 𝑧𝑖𝑗 is an indicator on whether the observed count for i-th cell and j-th gene is zero or not; 

Bern(𝑝𝑖𝑗) denotes a Bernoulli distribution with the dropout parameter 𝑝𝑖𝑗; s(∙) is a non-parametric 

thin-plate spline; 𝐴𝑗  is the average logarithm scale counts per million (CPM) calculated by 

aveLogCPM function in edgeR (Robinson et al. 2010). This way, the dropout probability becomes 

both cell-specific and gene-specific.  

With the above estimated parameters, we simulated gene count through ZTNB model for 

both DE and non-DE genes. For DE genes, we simulated each DE effect size from a normal 

distribution with mean zero and standard deviation 3.5. For non-DE genes, we directly set the DE 

effect size to zero. We then calculated the true fold change of each gene as the exponential of effect 

sizefc𝑗 = exp(𝛽𝑗), which is multiplied to the estimated mean gene expression levels �̂�𝑗 in one 

population, resulting in a mean of �̂�𝑖𝑗 = �̂�𝑗fc𝑗 for all cells in one population and a mean of �̂�𝑖𝑗 =

�̂�𝑗 for all cells in the other population. Afterwards, we simulated count data for i-th cell and j-th 

gene, 𝐶𝑖𝑗, follows a negative binomial distribution NB(�̂�𝑖𝑗 , �̂�𝑗). We set 𝐶𝑖𝑗 to be exactly zero with 

probability �̂�𝑖𝑗. Note that the simulations do not exactly match the iDEA modeling assumptions, 

allows us to examine the robustness of iDEA.  
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We simulated the gene expression counts with 𝜏0 fixed to be -2, and with varying 𝜏1 (i.e., 

0, 0.25, 0.5, 1.0, or 5.0) and varying CR (i.e., 1%, 2%, 5%, or 10%). With the simulated count 

data, we fitted different DE methods to obtain summary statistics, with which we fitted iDEA and 

other GSE methods. We evaluated the power of DE analysis and GSE analysis. To evaluate the 

type I error control of different GSE methods, we examined the null simulation settings (𝜏1 = 0). 

In each null setting, we permuted the gene labels 10 times to construct the permuted null sets, to 

which we applied different GSE methods.  We then calculated the genomic inflation factor (𝜆gc) 

for each GSE methods. Here, the genomic inflation factor (𝜆gc)  is defined as the ratio of the 

median of the empirically observed distribution of the test statistic to the expected median. 

Specifically, we first convert the p-value for the gene sets to chi-squared test statistics then 

calculated 𝜆gc by dividing the resulting chi-squared test statistics by the expected median of a chi-

squared distribution with one degree of freedom (0.4549364; qchisq (0.5,1) in R). To evaluate the 

power of different GSE methods, in each simulation setting, we obtained 1,000 simulation 

replicates with enriched pathways (i.e., 𝜏1 ≠ 0) and 9,000 simulation replicates without enriched 

pathways (i.e., 𝜏1 = 0). We then evaluated the power of GSE analysis in detecting these 1,000 true 

signals given an FDR of 5%. To evaluate the power of different DE methods, we again computed 

power to detect true DE genes based on an FDR of 5%. 

2.5.5 scRNA-seq datasets 

We applied iDEA to analyze three published scRNA-seq data sets. The first scRNA-seq 

data is from Chu et al. (Chu et al. 2016) (GEO accession number GSE75748). It contains a total 

of 19,097 genes on 1,018 cells from seven cell types. The seven cell types include the human 

embryonic stem (ES) cell with subtypes H1 (212 cells) and H9 (162 cells); four ES derived linear-

specific progenitor cell types that include neuronal progenitor cell (NPC, ectoderm derivatives, 



 40 

173 cells), definitive endoderm derivatives cell (DEC, 138 cells), endothelial cell (EC, mesoderm 

derivatives, 105 cells), trophoblast-like cell (TB, extraembryonic derivatives, 69 cells); and human 

foreskin fibroblasts cell (HFF, 159 cells). We focused our analysis on five ES derived cell types 

(NPCs, DEs, ECs, TBs, and HFFs) and examined all pairs among them. For each pair, we filtered 

out lowly expressed genes that have more than 5 counts in at most two cells. The resulting number 

of analyzed genes ranges from 14,918 (EC vs TB) to 15,778 (DEC vs NPC). We considered batch 

information as a covariate when we fit zingeR to obtain summary statistics. For DE analysis of 

iDEA, we included the gene set vasculature development which is known to be important for 

vasculature progression and endothelial cell development (Tufro et al. 1999). To evaluate GSE 

analysis results, we examined the top 50 significant gene sets identified by each GSE method. To 

obtain the unbiased evaluation of different GSE methods, we used the R package RISmed (version 

2.1.7) to query the related articles with the keywords: gene set name, cell type, and “embryonic 

development”. We input one gene set at a time, and the number of gene set that do has the relevant 

literatures is counted to quantify the performance of different GSE methods. 

The second scRNA-seq data is from Usoskin et al. (Usoskin et al. 2015) (GEO accession 

number GSE59739). This dataset contains a total of 19534 genes on 622 neuronal cells collected 

from the mouse lumbar dorsal root ganglion. These cells were classified into 11 neuronal cell types 

from four categories. The cell types include the neurofilament containing (NF) category: NF1 (31 

cells), NF2 (48 cells), NF3 (12 cells) and NF4 (22 cells), NF5 (26 cells); 

nonpeptidergic nociceptors (NP) category: NP1 (125 cells), NP2 (32 cells), and NP3 (12 cells); 

peptidergic nociceptors (PEP) category: PEP1 (64 cells) and PEP2 (17 cells); and tyrosine 

hydroxylase containing (TH; 233 cells) category. NPs cell type versus the remaining cell types are 

shown in main results, while the pairs of NP1 cell type with each of the other ten cell types are 



 41 

shown in Figures S2.16 – 2.18. For each pair, we filtered out lowly expressed genes that have 

more than 5 counts in at most two cells. The resulting number of analyzed genes ranges from 

10,009 (comparing NP1 cell type vs NP3 cell type) to 10,948 (comparing NP1 cell type vs NF2 

cell type). We included picking sessions as a covariate when we fit zingeR to obtain summary 

statistics (Van den Berge et al. 2018). For DE analysis of iDEA, we used the biological meaningful 

gene set neuron part (GO:0097458) (Guo et al. 2019) in the model. 

The third scRNA-seq data is a peripheral blood mononuclear cells (PBMCs) data obtained 

from 10x Genomics website (https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.1.0/pbmc3k) (Zheng et al. 2017b). We downloaded the filtered gene/cell 

matrix that contains 2,700 cells and 32,738 genes. We processed the data using the R package 

Seurat (Butler et al. 2018) following the tutorial (https://satijalab.org/seurat/pbmc3k_tutorial.html) 

to obtain at a final set of 2,638 cells and 13,713 genes. We obtained clustering results from Seurat 

as shown in Figure S2.16. Here, we focus our analysis on 1,153 CD4+ T-cells and 305 CD8+ T-

cells, to examine the performance of various methods in the challenging setting where the two 

examined cell types are similar to each other. We obtained summary statistics from zingeR and 

filtered out genes with p-values larger than 0.8 to focus on a final set of 1,696 genes. We did this 

due to the p-values obtained by the zingeR under the null are seriously left-skewed distributed. For 

DE analysis of iDEA, we used the gene signature CD8+ T-effector memory (Greenough et al. 

2015) in the model. 

In the real data applications, for both DE analysis and GSE analysis, we calculated power 

of different methods based on estimated FDR through permutations. Specifically, for DE analysis, 

we permuted the cell type label across cells ten times. We then applied different DE methods and 

obtained the empirical null distribution of test statistics (p-values or posterior estimates of 𝛄’s), 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://satijalab.org/seurat/pbmc3k_tutorial.html
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with which we calculated the empirical FDR for each threshold. For iDEA, in the permuted data, 

we also fixed the gene set enrichment parameters �̂� to be those estimated in the real data without 

re-estimating them. In our experience, re-estimating the enrichment parameters can lead to overly 

liberal FDR estimates and slows computation. For GSE analysis, we permuted the gene set label 

across all genes for each gene set ten times. We then applied different methods and obtained the 

enrichment p-values in the permuted null, with which we further calculated the empirical FDR for 

each p-value threshold. 

2.5.6 Sensitivity analysis 

In the main real data applications, we have fixed the hyperparameters for the inverse 

Gamma distribution (𝑎β = 3.0, 𝑏β = 20.0, to ensure a prior mean 
𝑏β

𝑎β−1
 of 10) because there is 

insufficient information to estimate these parameters. Specifically, the inverse Gamma distribution 

serves as the prior for the variance parameter, which can be estimated by the effect sizes across 

many DE genes. Because there is only one variance parameter, it is impossible to estimate the 

hyperparameters in the inverse Gamma distribution for this variance parameter. Therefore, instead 

of estimating these hyperparameters, we performed sensitivity analysis to examine whether results 

would change with respect to the hyperparameters. To do so, we varied the hyperparameters and 

tested across a range of gene sets with different coverages in the three real datasets. Specifically, 

we varied the hyperparameters so that the prior mean of the inverse gamma distribution is 0.001, 

0.1, 1, 10, 100. We also varied the coverage rate to be the 10th, 30th,50th,70th, 90th percentile of the 

gene set size of the gene sets we used for the corresponding real data analysis. For example, for 

the human embryonic scRNA-seq dataset, we pick the gene set with coverage rate to be the 10th, 

30th,50th,70th, 90th percentile of the gene set size of the human gene sets we analyzed and set the 
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hyper parameter in the prior distribution of 𝜎β
2, (𝑎β, 𝑏β) to be (3, 0.02), (3, 0.2), (3, 2), (3, 20), (3, 

200) respectively. For the mouse sensory neuron scRNA-seq dataset and 10x Genomics PBMC 

scRNA-seq data, we followed the same procedure as the first scRNA-seq dataset.   

2.5.7 Data and code availability 

The datasets used in the present study are all publicly available. The human embryonic 

stem cell scRNA-seq dataset is available at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75748. The Mouse sensory neuron 

scRNA-seq data is available at http://linnarssonlab.org/drg/. The 10x Genomics PBMC scRNA-

seq data is available at 10x Genomics website https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.1.0/pbmc3k. For the gene sets we collected, the human gene sets are 

available from MSigDB databases  http://software.broadinstitute.org/gsea/downloads.jsp and the 

mouse gene sets are available from the website 

http://www.informatics.jax.org/downloads/reports/index.html#go. The iDEA software package 

and source code have been deposited at www.xzlab.org/software.html. All scripts used to 

reproduce all the analysis is also available at the same website. 

2.6 Supplementary Figures 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75748
http://linnarssonlab.org/drg/
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
http://software.broadinstitute.org/gsea/downloads.jsp
http://www.informatics.jax.org/downloads/reports/index.html#go
http://www.xzlab.org/software.html
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Figure S2.1 Characteristics of simulated data. 

Simulated data has very similar characteristics as compared to the real scRNA-seq dataset. The 

data was simulated under the following parameters setting: 𝜏0 = −2, 𝜏1 = 0.5, and CR = 0.1. (A) 

Proportion of zero versus mean under log10 scale for both simulated data (blue) and real data 

(pink); (B) Mean-variance plot under log10 scale for both simulated data (blue) and real data 

(pink). 

 

Figure S2.2 iDEA produces well-calibrated p-values for gene set enrichment analysis under 

null simulations. 

Quantile-quantile plots of -log10(p-values) from iDEA (orange), fGSEA (green), CAMERA 

(navyblue), PAGE (skyblue) and GSEA (yellow) are shown under different null scenarios with 

varying number of DE genes (denoted by the odd parameter 𝜏0; −0.5, -1.0, -2.0, or -3.0) and gene 

set coverage rates (CR; 1%, 2%, 5% or 10%). CR represents the percentage of genes inside the 

gene set. 𝜆gc is genomic control factor. 
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Figure S2.3 iDEA is more powerful than GSE methods for identifying enriched gene sets 

under alternative simulations. 

The power plots from iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) 

and GSEA (yellow) are shown under different scenarios with varying gene set enrichment 

coefficient (denoted by the odd parameter 𝜏1; 0.25, 0.5, 1.0 or 5.0) and gene set coverage rates 

(CR; 1%, 2%, 5% or 10%). CR represents the percentage of genes inside the gene set. Here, power 

was calculated based on an FDR of 5%. 
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Figure S2.4 iDEA is more powerful for both GSE and DE analyses than existing approaches 

in power simulations. 

The AUC of iDEA in identifying enriched pathways (A and C) and in identifying differentially 

expressed genes (B and D) are higher than that of the other methods. The compared GSE methods 

(A and C) include iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and 

GSEA (yellow). The compared DE methods (B and D) include iDEA (orange) and zingeR 

(skyblue). Simulations are performed under two parameter settings: 𝜏0 = −2, 𝜏1 = 0.5, and CR 

= 0.1 (A and B); 𝜏0 = −2, 𝜏1 = 5, and CR = 0.1 (C and D). 
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Figure S2.5 iDEA is more powerful than DE methods for identifying DE genes under 

alternative simulations when gene set enrichment parameter is larger. 

Simulations were performed on one fixed scRNA-seq data set with 𝜏0 = −2, varying 𝜏1 and CR. 

𝜏1 is set to be 0.25, 0.5,1.0 or 5.0 and CR is set to be 1%, 2%, 5%, 10% respectively. In each 

simulation setting, power of DE results between common DE method (zinger (blue), MAST 

(green), edgeR (purple)) and iDEA (orange) with summary statistics obtained from that 

corresponding DE method when adding simulated gene set (filling color) or not (not filling color) 

is plotted. Here, power was calculated based on an FDR of 5%. 

 

Figure S2.6 iDEA is more powerful in DE analysis than zingeR, when varying 𝝉𝟏 and CR.  

The data were simulated based on the parameter setting𝜏0 = −2, 𝜏1 = 0,0.25, 0.5, 1.0 or 5.0 and 

CR = 1%, 2%, 5% or 10%. iDEA identifies more significant gene sets on simulation studies when 

varying parameters. CR represents the percentage of genes inside the gene set. Here, power was 

calculated based on an FDR of 5%. 
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Figure S2.7 Distribution of marginal DE p-values from common DE methods. 

The data were simulated based on the parameter setting𝜏0 = −2, 𝜏1 =0.5 and CR = 10%. P-

values from zingeR (blue) and MAST (green) follow approximately a uniform distribution under 

the null while P-values from edgeR (purple) does not. 

 

Figure S2.8 iDEA produces calibrated (or slightly conservative) FDR estimates. 

Simulations were performed on one fixed scRNA-seq data set with 𝜏0 = −2, varying 𝜏1 and CR. 

𝜏1 is set to be 0, 0.25, 0.5,1.0 or 5.0 and CR is set to be 1%, 2%, 5%, 10% respectively. In each 

simulation setting, the scatterplot plot showed the number of detected signals based on true FDR 

(y-axis) versus the number of detected signals based on estimated FDR (x-axis). The yellow line 

is the reference line which represents y = x.  
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Figure S2.9 iDEA displays high consistency in detecting DE genes in simulations. 

The data were simulated based on the parameter setting𝜏0 = −2, 𝜏1 = 5, and CR = 0.1. The plot 

shows the Jaccard index for top DE genes between zingeR, edgeR, and MAST (blue) and the 

Jaccard index for top DE genes between iDEA when using summary statistics from zingeR, edgeR 

and MAST respectively(orange). CR represents the percentage of genes inside the gene set, 𝜏0 

represents number of DE genes and 𝜏1 represents the gene set enrichment coefficient. 

 

Figure S2.10 GSE Analysis including hypergeometric test results in human embryonic stem 

cell scRNA-seq dataset. 

Results are shown for comparing definitive endoderm derivatives cell (DEC, 138 cells) and 

endothelial cell (EC, mesoderm derivatives, 105 cells).  (A) Quantile-quantile plots of -log10(p-

values) from GSE methods including iDEA (orange), fGSEA (green), CAMERA (navyblue), 

PAGE (skyblue), GSEA (yellow) and Hypergeometric test (purple) are shown under permuted 

null; (B) Number of identified enriched gene sets by iDEA (orange), fGSEA (green), CAMERA 

(navyblue), PAGE (skyblue) GSEA (yellow) and Hypergeometric test (purple) are plotted against 

different empirical false discovery rates (FDR). Here 𝜆gc is the genomic control factor. 
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Figure S2.11 iDEA displays high consistency in detecting DE genes in human embryonic stem 

cell scRNA-seq data. 

iDEA displays higher Jaccard index in the common DE genes. (B) Jaccard index for top DE genes 

at an FDR of 1% between zingeR, MAST, and edgeR, Jaccard index for top DE genes at an FDR 

of 1% between iDEA when using summary statistics from zingeR, MAST, and edgeR, 

respectively; (A) Overlap in top DE genes at an FDR of 1% between zingeR, MAST and edgeR; 

(C) Overlap in top DE genes at an FDR of 1% between iDEA when using summary statistics from 

zingeR, MAST and edgeR; (D) and (E) are just another visualization of the overlap corresponding 

to (A) and (C) by UpSetR (Conway, Lex and Gehlenborg 2017).  
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Figure S2.12 iDEA displays high consistency in detecting DE genes in human embryonic stem 

cell scRNA-seq data. 

(A) Overlap in top DE genes at an FDR of 0.1% between zingeR, MAST and edgeR; (B) Overlap 

in top DE genes at an FDR of 0.1% between iDEA when using summary statistics from zingeR, 

MAST and edgeR respectively; (C) Overlap in top DE genes at an FDR of 5% between zingeR, 

MAST and edgeR; (D) Overlap in top DE genes at an FDR of 5% between iDEA when using 

summary statistics from zingeR, MAST and edgeR, respectively. 
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Figure S2.13 GSE Analysis including hypergeometric test results in mouse neuronal cell 

scRNA-seq dataset. 

Results are shown for comparing nonpeptidergic nociceptors 1 (NP1) versus all the other cell 

types. (A) Quantile-quantile plots of -log10(p-values) from GSE methods including iDEA 

(orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue), GSEA (yellow) and 

Hypergeometric test (purple) are shown under permuted null. (B) Number of identified enriched 

gene sets by iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) GSEA 

(yellow) and Hypergeometric test (purple) are plotted against different empirical false discovery 

rates (FDR). Here 𝜆gc is the genomic control factor. 

 

Figure S2.14 iDEA displays high consistency in detecting DE genes in mouse neuronal cell 

scRNA-seq data. 

iDEA displays higher Jaccard index in the common DE genes. (B) Jaccard index for top DE genes 

at an FDR of 1% between zingeR, MAST and edgeR, Jaccard index for top DE genes at an FDR 

of 1% between iDEA when using summary statistics from zingeR, MAST and edgeR 

respectively(red); (A) Overlap in top DE genes at an FDR of 1% between zingeR, MAST and 

edgeR; (C) Overlap top DE genes at an FDR of 1% between iDEA when using summary statistics 

from zingeR, MAST and edgeR; (D) and (E) are just another visualization of the overlap 

corresponding to (A) and (C) by UpSetR (Conway et al. 2017). 
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Figure S2.15 iDEA displays high consistency in detecting DE genes in mouse neuronal cell 

scRNA-seq data. 

(A) Overlap in top DE genes at an FDR of 0.1% between zingeR, MAST and edgeR; (B) Overlap 

in top DE genes at an FDR of 0.1% between iDEA when using summary statistics from zingeR, 

MAST and edgeR respectively; (C) Overlap in top DE genes at an FDR of 5% between zingeR, 

MAST and edgeR; (D) Overlap in top DE genes at an FDR of 5% between iDEA when using 

summary statistics from zingeR, MAST and edgeR respectively. 

 

Figure S2.16 The scatterplot of first two t-SNE principal components for 10x Genomics data 

set. 

There is a total of 8 cell types. CD4+ T cell type and CD8+ T cell type are highlighted in red 

circles. The cells are colored by the Seurat clustering method. 
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Figure S2.17 GSE Analysis including hypergeometric test results in 10x Genomics data set. 

Results are shown for comparing CD4+ T cells versus CD8+ T cells. (A) Quantile-quantile plots 

of -log10(p-values) from GSE methods including iDEA (orange), fGSEA (green), CAMERA 

(navyblue), PAGE (skyblue), GSEA (yellow) and Hypergeometric test (purple) are shown under 

permuted null. (B) Number of identified enriched gene sets by iDEA (orange), fGSEA (green), 

CAMERA (navyblue), PAGE (skyblue) GSEA (yellow) and Hypergeometric test (purple) are 

plotted against different empirical false discovery rates (FDR). Here 𝜆gc is the genomic control 

factor. 
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Figure S2.18 iDEA displays high consistency in detecting DE genes in 10x Genomics scRNA-

seq data. 

iDEA displays higher Jaccard index in the common DE genes. (B) Jaccard index for top DE genes 

at an FDR of 1% between zingeR, MAST and edgeR, Jaccard index for top DE genes at an FDR 

of 1% between iDEA when using summary statistics from zingeR, MAST and edgeR 

respectively(red); (A) Overlap in top DE genes at an FDR of 1% between zingeR, MAST and 

edgeR; (C) Overlap top DE genes at an FDR of 1% between iDEA when using summary statistics 

from zingeR, MAST and edgeR; (D) and (E) are just another visualization of the overlap 

corresponding to (A) and (C) by UpSetR (Conway et al. 2017). 

 

Figure S2.19 iDEA displays high consistency in detecting DE genes in 10x Genomics scRNA-

seq data. 

(A) Overlap in top DE genes at an FDR of 0.1% between zingeR, MAST and edgeR; (B) Overlap 

in top DE genes at an FDR of 0.1% between iDEA when using summary statistics from zingeR, 

MAST and edgeR respectively; (C) Overlap in top DE genes at an FDR of 5% between zingeR, 

MAST and edgeR; (D) Overlap in top DE genes at an FDR of 5% between iDEA when using 

summary statistics from zingeR, MAST and edgeR respectively. 
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Figure S2.20 DE analysis results in the 10X Genomics scRNA-seq data. 

Results are shown for comparing CD4+ T cells versus CD8+ T cells. The number of identified DE 

genes by iDEA (orange) and zingeR (blue) are plotted against different empirical FDR values. 

iDEA is more powerful than zingeR for DE analysis when there is no interesting gene set 

information provided. 

 

Figure S2.21 Sensitivity analysis of hyperparameters in prior distribution of  𝝈𝜷
𝟐 . 

Boxplot of the estimates of gene set coefficient and variance of gene set coefficient are displayed 

for three scRNA-seq datasets: human embryonic stem cell (Chu et al), mouse neuronal cell 

(Usoskin et al) and 10x Genomics PBMC scRNA-seq dataset. For each dataset, we tested the 

parameter estimates on gene sets with different coverage rate percentile among all gene sets we 

analyzed in that corresponding dataset. For each gene set with different coverage rate, estimates 

of gene set coefficient and variance were obtained under different prior distribution of 𝜎β
2 . 

Parameter estimates are stable for gene sets across a wide range of prior distribution of 𝜎β
2. For 

each box plot, the bottom and the top of the box are the 25th and 75th quantiles, while the whiskers 

represent 1.5 * interquartile range from the lower and upper bounds of the box. 
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Figure S2.22 Type I error rate in real datasets. 

We split the dataset within the same cell type (n = 10 replicates) to construct the true null 

distribution. Box plot of Type I error rate of iDEA (orange), fGSEA (green), CAMERA 

(navyblue), PAGE (skyblue) and GSEA (yellow) are shown in human embryonic stem cell 

scRNA-seq dataset (Chu et al), mouse neuronal cell scRNA-seq dataset (Usoskin et al) and 10x 

Genomics PBMC scRNA-seq dataset. iDEA controlled type I error well in all three data sets. For 

each box plot, the bottom and the top of the box are the 25th and 75th quantiles, while the whiskers 

represent 1.5 * interquartile range from the lower and upper bounds of the box. 

 

Figure S2.23 Analysis results in the bulk RNA-seq data. 
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Results are shown for comparing matched normal oral tissue versus oral squamous cell carcinoma. 

(A) p-values from iDEA for GSE analysis display expected enrichment of small p-values (for true 

signals) and a long flat tail towards large p-values. (B) Quantile-quantile plots of -log10(p-values) 

from GSE methods including iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE 

(skyblue) and GSEA (yellow) are shown under permuted null. The p-values from iDEA, fGSEA, 

PAGE and GSEA are reasonably well calibrated. The p-values from CAMERA are overly 

conservative. Here 𝜆gc is the genomic control factor. (C) Number of identified enriched gene sets 

by iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA (yellow) 

are plotted against different empirical false discovery rates (FDR). iDEA is as the same powerful 

as PAGE than other methods for GSE analysis. (D) Number of identified DE genes by iDEA 

(orange) and DESeq2 (blue) are plotted against different empirical FDR values. iDEA is more 

powerful than DESeq for DE analysis. (E) Heatmap shows the normalized expression level (log10-

transformation with pseudo-count 0.1) for selected 50 DE genes (rows) identified by iDEA for 

cells in the two tissue types (columns). Genes are sorted by Hierarchical clustering; cells are 

ordered by tissue types (Normal: blue; Tumor: red). These DE genes clearly distinguish two 

compared tissues. (F) Bubble plot shows –log10 p-values for GSE analysis from iDEA (y-axis) 

for different gene sets. Gene sets are colored by ten categories: immunologic signatures (red), 

chemical and genetic perturbations (yellow), GO biological process (blue), GO molecular function 

(green), GO cellular component (orange), oncogenic signatures (deep blue), Reactome (grass-

green), KEGG (purple), PID (rose), and Biocarta (grey). The size of the dot represents the number 

of genes contained in the gene set. Names for ten of the gene sets that are closely related to oral 

squamous cell carcinoma are highlighted in the panel. 

 

Figure S2.24 Posterior inclusion probabilities (PIPs) calculated by iDEA when adding 

specific gene set is highly correlated with averaging PIPs across all gene sets in all three 

scRNA-seq datasets. 

Here, each dot represents each gene with x-axis represents the averaged pip a y-axis represents 

gene set specific pip. Genes in that selected gene set are highlighted by grey color. In Human 

embryonic stem cell scRNA-seq dataset (Chu et al), we added the gene set GO:0001944 

(vasculature development). In Mouse Sensory neuron scRNA-seq dataset, we added the gene set 

GO:0097458 (neuron part). In 10x Genomics PBMC dataset, we added the gene set CD8+ T-

effector memory Term. 
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Figure S2.25 iDEA produces calibrated p-values in scRNA-seq based null simulations when 

using Louis Method to correct the observed information matrix. 

Quantile-quantile plots of -log10(p-values) are shown for: iDEA without Louis Method (A); iDEA 

with Louis method (B); respectively under the null that simulated one fixed scRNA-seq data set 

and permute the gene set 10,000 times. Here, the other parameters are set to be 𝜏0 = −2, 𝜏1 =
0andCR = 0.1. CR represents the percentage of genes inside the gene set. 𝜆gc is genomic control 

factor. 

2.7 Supplementary Tables 

Gene Set Coefficient Variance P-value 

GO_VASCULATURE_DEVELOPMENT 0.000 0.016 7.340E-18 

GO_BLOOD_VESSEL_MORPHOGENESIS 1.203 0.021 1.070E-16 

SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_

UP 

1.267 0.024 3.650E-16 

GO_ANGIOGENESIS 1.344 0.028 1.310E-15 

LIU_PROSTATE_CANCER_DN 0.992 0.016 1.930E-15 

SWEET_LUNG_CANCER_KRAS_DN 1.048 0.018 4.590E-15 

ONDER_CDH1_TARGETS_2_DN 1.020 0.017 8.180E-15 

SMID_BREAST_CANCER_NORMAL_LIKE_UP 1.110 0.021 9.870E-15 

GO_SINGLE_ORGANISM_CELL_ADHESION 1.024 0.018 3.300E-14 

GO_ANCHORING_JUNCTION 0.848 0.013 5.390E-14 

Table S2.1 Top 10 enriched gene sets identified by iDEA on the human embryonic stem cell 

scRNA-seq dataset.  

Note: only the top 10 gene sets identified by iDEA are listed here. For the full tables, please refer 

to https://www.nature.com/articles/s41467-020-15298-6.

https://www.nature.com/articles/s41467-020-15298-6
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Gene Ontology Gene Ontology Term Coefficient Variance P-value 

GO:0044425 membrane part 1.040 0.004 2.260E-72 

GO:0043005 neuron projection 1.240 0.007 8.680E-63 

GO:0071944 cell periphery 0.996 0.005 4.630E-63 

GO:0016020 membrane 0.995 0.005 3.970E-63 

GO:0097458 neuron part 1.140 0.006 4.200E-62 

GO:0005886 plasma membrane 0.994 0.005 2.510E-62 

GO:0031224 intrinsic component of membrane 0.934 0.005 6.740E-56 

GO:0044459 plasma membrane part 1.040 0.006 3.880E-51 

GO:0045202 synapse 1.130 0.007 2.210E-50 

GO:0006811 ion transport 1.180 0.008 3.850E-51 

Table S2.2 Top 10 enriched gene sets identified by iDEA on the mouse neuronal cell scRNA-

seq dataset.  

Note: only the top 10 gene sets identified by iDEA are listed here. For the full tables, please refer 

to https://www.nature.com/articles/s41467-020-15298-6.

Signature Project Coefficient Variance P-value 

CD8+ Tem BLUEPRINT 1.780 0.121 2.960E-07 

CD8+ Tem NOVERSHTERN 2.240 0.359 1.860E-04 

CD4+ memory T-cells FANTOM 0.915 0.062 2.270E-04 

CD8+ Tem NOVERSHTERN 2.064 0.325 2.980E-04 

CD4+ memory T-cells FANTOM 0.798 0.054 5.770E-04 

CD8+ Tcm NOVERSHTERN 2.220 0.432 7.310E-04 

CD8+ Tem NOVERSHTERN 1.766 0.280 8.450E-04 

CD8+ T-cells HPCA 1.618 0.236 8.710E-04 

CD8+ Tem HPCA 1.039 0.107 1.468E-03 

CD8+ Tem BLUEPRINT 0.934 0.087 1.574E-03 

Table S2.3 Top 10 enriched gene sets identified by iDEA on the 10x Genomics PBMC scRNA-

seq dataset.  

Note: only the top 10 gene sets identified by iDEA are listed here. For the full tables, please refer 

to https://www.nature.com/articles/s41467-020-15298-6. 

 

Method Signature Project P-value Adjust p-value/FDR 

fGSEA  CD4+ memory T-cells FANTOM 2.490E-04 3.987E-03 

https://www.nature.com/articles/s41467-020-15298-6
https://www.nature.com/articles/s41467-020-15298-6
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CD8+ Tem NOVERSHTERN 2.740E-04 3.987E-03 

CD8+ Tem NOVERSHTERN 2.790E-04 3.987E-03 

NK cells HPCA 2.840E-04 3.987E-03 

CD8+ Tem NOVERSHTERN 2.870E-04 3.987E-03 

NK cells HPCA 2.870E-04 3.987E-03 

NK cells HPCA 2.970E-04 3.987E-03 

CD8+ Tem BLUEPRINT 3.400E-04 3.987E-03 

CD8+ Tem HPCA 3.550E-04 3.987E-03 

Tgd cells HPCA 3.580E-04 3.987E-03 

CAMERA 

 

CD8+ Tem BLUEPRINT 5.650E-22 8.140E-20 

CD8+ Tem HPCA 2.270E-13 1.640E-11 

Tgd cells HPCA 6.660E-13 3.190E-11 

CD8+ Tem HPCA 5.270E-12 1.900E-10 

NK cells HPCA 9.870E-12 2.840E-10 

CD8+ Tem BLUEPRINT 2.570E-11 6.150E-10 

NK cells HPCA 2.990E-11 6.150E-10 

Tgd cells HPCA 5.960E-10 1.070E-08 

CD8+ Tem NOVERSHTERN 1.610E-07 2.500E-06 

NK cells HPCA 1.740E-07 2.500E-06 

PAGE 

 

CD8+ Tem BLUEPRINT 5.140E-44 0.000 

CD8+ Tem HPCA 1.240E-26 0.000 

Tgd cells HPCA 1.580E-25 0.000 

CD8+ Tem BLUEPRINT 5.150E-23 0.000 

CD8+ Tem HPCA 1.060E-21 0.000 

Tgd cells HPCA 3.610E-21 0.000 

NK cells HPCA 1.200E-20 0.000 

CD8+ Tem NOVERSHTERN 2.190E-19 0.000 

CD8+ Tem NOVERSHTERN 4.580E-19 0.000 

GSEA 

 

CD4+ MEMORY T-Cells FANTOM 0.000E+00 0.036 

CD4+ MEMORY T-Cells FANTOM 0.000E+00 0.026 

CD8+ T-Cells HPCA 0.000E+00 0.023 
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CD8+ TCM HPCA 0.000E+00 0.006 

CD8+ TCM NOVERSHTERN 0.000E+00 0.007 

CD8+ TEM BLUEPRINT 0.000E+00 0.000 

CD8+ TEM BLUEPRINT 0.000E+00 0.000 

CD8+ TEM HPCA 0.000E+00 0.000 

CD8+ TEM HPCA 0.000E+00 0.000 

CD8+ TEM NOVERSHTERN 0.000E+00 0.000 

Table S2.4 Top 10 gene sets identified by fGSEA, CAMERA, PAGE, GSEA respectively. 

Note: only the top 10 gene sets identified by iDEA are listed here. For the full tables, please refer 

to https://www.nature.com/articles/s41467-020-15298-6. 

P-value Adjusted 

p-value 

Set Count Set2 

5.456E-17 1.970E-13 inters

ection 

332 GO_BLOOD_VESSEL_MORPHOGENESIS 

1.132E-02 1.000E+00 set1 97 GO_BLOOD_VESSEL_MORPHOGENESIS 

NA NA set2 0 GO_BLOOD_VESSEL_MORPHOGENESIS 

3.397E-04 1.000E+00 inters

ection 

49 SCHUETZ_BREAST_CANCER_DUCTAL_INVAS

IVE_UP 

2.937E-15 1.060E-11 set1 380 SCHUETZ_BREAST_CANCER_DUCTAL_INVAS

IVE_UP 

8.564E-20 3.092E-16 set2 261 SCHUETZ_BREAST_CANCER_DUCTAL_INVAS

IVE_UP 

1.327E-15 4.793E-12 inters

ection 

268 GO_ANGIOGENESIS 

1.031E-03 1.000E+00 set1 161 GO_ANGIOGENESIS 

NA NA set2 0 GO_ANGIOGENESIS 

2.819E-04 1.000E+00 inters

ection 

41 LIU_PROSTATE_CANCER_DN 

1.816E-14 6.557E-11 set1 388 LIU_PROSTATE_CANCER_DN 

9.917E-17 3.581E-13 set2 383 LIU_PROSTATE_CANCER_DN 

4.875E-06 1.760E-02 inters

ection 

57 SWEET_LUNG_CANCER_KRAS_DN 

1.097E-12 3.960E-09 set1 372 SWEET_LUNG_CANCER_KRAS_DN 

4.693E-14 1.695E-10 set2 320 SWEET_LUNG_CANCER_KRAS_DN 

https://www.nature.com/articles/s41467-020-15298-6


 63 

Table S2.5 Results for the top gene set GO:0001944 with the combinations of the top 5 gene 

sets in the human embryonic stem cell scRNA-seq dataset.  

Note: only combinations between the top 5 gene sets are listed here. For the full tables, please refer 

to https://www.nature.com/articles/s41467-020-15298-6. From the second gene set to the 50th 

gene set, we calculate the adjusted p-values for their intersection with the top first gene set as well 

as the disjoint parts. P-values were determined by two-sided Wald test and adjusted by Bonferroni 

correction. 

P-value Adjusted p-value Set Count Set2 

5.530E-40 1.865E-36 intersection 674 GO:0043005 

4.480E-22 1.511E-18 dis1 3014 GO:0043005 

4.015E-10 1.354E-06 dis2 447 GO:0043005 

1.497E-50 5.047E-47 intersection 2021 GO:0071944 

1.346E-06 4.538E-03 dis1 1667 GO:0071944 

2.991E-02 1.000E+00 dis2 819 GO:0071944 

2.696E-55 9.092E-52 intersection 3688 GO:0016020 

NA NA dis1 0 GO:0016020 

9.927E-01 1.000E+00 dis2 1393 GO:0016020 

1.179E-40 3.975E-37 intersection 878 GO:0097458 

3.187E-19 1.075E-15 dis1 2810 GO:0097458 

2.933E-09 9.890E-06 dis2 594 GO:0097458 

1.920E-51 6.474E-48 intersection 2011 GO:0005886 

2.378E-06 8.018E-03 dis1 1677 GO:0005886 

6.089E-02 1.000E+00 dis2 751 GO:0005886 

Table S2.6 Results for the top gene set GO:0044425 with the combinations of the top 5 gene 

sets in the mouse neuronal cell scRNA-seq dataset.  

Note: only combinations between the top 5 gene sets are listed here. For the full tables, please refer 

to https://www.nature.com/articles/s41467-020-15298-6. From the second gene set to the 50th gene 

set, we calculate the adjusted p-values for their intersection with the top first gene set as well as 

the disjoint parts. P-values were determined by two-sided Wald test and adjusted by Bonferroni 

correction. 

https://www.nature.com/articles/s41467-020-15298-6
https://www.nature.com/articles/s41467-020-15298-6
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Chapter 3 Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics 

3.1 Abstract 

Many spatially resolved transcriptomic technologies do not have single-cell resolution but 

measure the average gene expression for each spot from a mixture of cells of potentially 

heterogeneous cell types. Here, we introduce a deconvolution method, conditional autoregressive 

deconvolution (CARD), that combines cell type–specific expression information from single-cell 

RNA sequencing (scRNA-seq) with correlation in cell type composition across tissue locations. 

Modeling spatial correlation allows us to borrow the cell-type composition information across 

locations, improving accuracy of deconvolution even with a mismatched scRNA-seq reference. 

CARD can also impute cell type compositions and gene expression levels at unmeasured tissue 

locations, enable the construction of a refined spatial tissue map with a resolution arbitrarily higher 

than that measured in the original study, and perform deconvolution without a scRNA-seq 

reference. Applications to four datasets including a pancreatic cancer dataset identified multiple 

cell types and molecular markers with distinct spatial localization that define the progression, 

heterogeneity, and compartmentalization of pancreatic cancer. 

3.2 Introduction 

Spatially resolved transcriptomic technologies perform gene expression profiling on many 

tissue locations with spatial localization information (Burgess 2019), enabling the characterization 

of transcriptomic landscape on tissues (Soldatov et al. 2019, Prinz et al. 2011, Svensson, 

Teichmann and Stegle 2018, Dries et al. 2021, Pham et al. 2020, Biancalani et al. 2021, Fu et al. 
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2021, Fischl et al. 2014, Moses and Pachter 2022). Despite fast technological development, 

however, most technologies are of limited spatial resolution. Almost all sequencing-based 

technologies collect expression measurements on tissue locations that consist of a few to a few 

dozen single cells belonging to potentially distinct cell types (Asp et al. 2020, 10XGenomics , 

Rodriques et al. 2019, Ståhl et al. 2016). Because each measured location contains a mixture of 

cells, these sequencing-based technologies effectively quantify the average expression level across 

many cells on the location. Consequently, performing cell type deconvolution on tissue locations 

becomes an essential analytic task for disentangling the spatial localization of cell types and 

characterizing the complex tissue architecture (Liao et al. 2020, Rao et al. 2021). 

Deconvolution of spatial transcriptomics data requires cell type specific gene expression 

information and tailored spatial methods. Cell type specific gene expression information are 

nowadays readily available from single-cell RNA sequencing (scRNA-seq) studies (Hwang et al. 

2018), which have been previously used for deconvoluting bulk RNA-seq data (Cobos et al. 2020) 

by recently developed deconvolution methods including MuSiC (Wang et al. 2019), SCDC (Dong 

et al. 2020), and Bisque (Jew et al. 2020). These methods can in principle be directly applied to 

spatial transcriptomics and are being adapted so by several recently developed methods (Elosua-

Bayes et al. 2021, Song and Su 2021, Lopez et al. 2022, Biancalani et al. 2021, Danaher et al. 2022, 

Gayoso et al. 2022, Andersson et al. 2020, Kleshchevnikov et al. 2022, Dong and Yuan 2021, 

Cable et al. 2021) such as RCTD (Cable et al. 2021), stereoscope (Andersson et al. 2020), 

SPOTlight (Elosua-Bayes et al. 2021), cell2location (Kleshchevnikov et al. 2022), and 

spatialDWLS (Dong and Yuan 2021) (details in APPENDIX B.1). All these methods, however, 

do not make use of the rich spatial localization information available in spatial transcriptomics.  
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Spatial localization information in spatial transcriptomics measures the relative distance 

between tissue locations and contains potentially invaluable information for deconvolution. 

Specifically, a tissue is composed of multiple cell types that are segregated in a spatially correlated 

fashion into tissue domains (Stoltzfus et al. 2020, Dudas et al. 2008, Bove et al. 2017, van Vliet et 

al. 2018), which are characterized by a domain-specific composition of cell types, with similar cell 

types colocalized spatially (Phillips et al. 2021, Schürch et al. 2020). Histological characterization 

of various tissues (Hawrylycz et al. 2014b, 10XGenomics), including the Hematoxylin and Eosin 

(H&E) staining images accompanying spatial transcriptomics datasets (Ståhl et al. 2016), highlight 

the spatial segregation of cell types and neighboring cell type composition similarity. In single cell 

resolution spatial transcriptomics (Xia et al. 2019, Eng et al. 2019), we also observed that similar 

cell types tend to colocalize, with colocalization pattern decaying with distance (Ma and Zhou 

2022). Consequently, neighboring locations on the tissue likely contain more similar cell type 

compositions as compared to locations that are far away. Therefore, modeling the neighborhood 

similarity in cell type compositions and accommodating their spatial correlation would allow us to 

borrow composition information across locations on the entire tissue section to enable accurate 

deconvolution of spatial transcriptomics on each individual location.   

Here, we develop a method, named Conditional AutoRegressive based Deconvolution 

(CARD), to perform such spatially informed deconvolution of cell types for spatial transcriptomic. 

CARD builds upon a non-negative matrix factorization model to use the cell type specific gene 

expression information from scRNA-seq data for deconvoluting spatial transcriptomics. A unique 

feature of CARD is its ability to accommodate the spatial correlation structure in cell type 

composition across tissue locations by a conditional autoregressive modeling assumption 

(Banerjee, Carlin and Gelfand 2014, Lee 2011). As a result, CARD can take advantage of the 
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spatial correlation structure to enable accurate and robust deconvolution of spatial transcriptomics 

across technologies with different spatial resolutions and in the presence of mismatched scRNA-

seq references. In addition, modeling spatial correlation allows CARD to impute cell type 

compositions as well as gene expression levels on new locations of the tissue, facilitating the 

construction of a refined spatial map with an arbitrarily high resolution for any spatial 

transcriptomics technologies -- both these features are in direct contrast to a recent method 

BayesSpace (Zhao et al. 2021) that can only enhance Spatial Transcriptomics (ST) or 10x Visium 

data with a fixed resolution of either six or nine times higher than that of the original. Importantly, 

an extension of CARD is also capable of performing reference-free deconvolution without a 

scRNA-seq reference. We develop a computationally efficient algorithm for constrained maximum 

likelihood inference, making CARD scalable to data with tens of thousands of spatial locations 

and tens of thousands of genes. We illustrate the benefits of CARD through extensive simulations 

and applications to four published spatial transcriptomics studies with distinct technologies, spatial 

resolutions, tissue structures, and scRNA-seq references. 

3.3 Results 

3.3.1 Simulations 

CARD is described in Methods, with its method schematic shown in Figure 3.1. We 

performed simulations to evaluate the performance of CARD and compared it with six existing 

deconvolution methods: MuSiC, SPOTlight, RCTD, cell2location, spatialDWLS, and stereoscope 

(details in Methods). Briefly, we used a scRNA-seq data (Zeisel et al. 2018) to construct spatial 

transcriptomics and we varied a noise level parameter 𝑝𝑛 to modify cell type compositions and 

spatial correlation patterns across locations (Figure S3.1). The simulated data are realistic, 

preserving data features observed in the published spatial transcriptomics data (Figure S3.2). We 
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examined four simulation settings, each of which consists of five simulation replicates. In each 

replicate, we applied various deconvolution methods to deconvolute the spatial transcriptomics 

data, using either the same set of scRNA-seq data or its modified version or another set as 

reference. We then followed (Wang et al. 2019) and quantified the deconvolution performance by 

computing the root mean square error (RMSE) between the estimated cell type composition and 

the underlying truth on each location. We primarily displayed RMSE difference plots where we 

contrasted the RMSE of other methods with respect to CARD following (Yang and Zhou 2020, 

Zhou et al. 2013). We kept the original RMSE and rank plots in the supplements, which show 

consistent results.  

 

Figure 3.1 Schematic overview of CARD 

CARD is designed to deconvolute spatial transcriptomics data and infer cell type composition on 

each spatial location based on the reference scRNA-seq data. CARD requires a scRNA-seq data 

with cell type specific gene expression information (left box) along with the spatial transcriptomics 

data with localization information (right box). With these two inputs, CARD performs 

deconvolution through a non-negative matrix factorization framework and outputs the estimated 
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cell type composition across spatial locations (bottom box). A unique feature of CARD is its ability 

to account for the spatial correlation of cell type compositions across spatial locations through a 

conditional autoregressive (CAR) model (top box). By accounting for the spatial correlation of 

cell type compositions across spatial locations, CARD is also capable of imputing cell type 

compositions and gene expression levels on locations not measured in the original study, 

facilitating the construction of a refined high-resolution spatial map on the tissue (bottom box).  

We first explored a baseline analysis scenario (scenario I), where we used the same scRNA-

seq data used in the simulations for deconvolution. Here, CARD outperforms all other 

deconvolution methods across all simulation settings (median RMSE = 0.079), with 9%, 8%, 33%, 

7%, 23%, and 18% improvement in terms of RMSE as compared to MuSiC (0.087), RCTD 

(0.086), SPOTlight (0.118), cell2location (0.085), spatialDWLS (0.103), and stereoscope (0.096), 

respectively (Figure 3.2 scenario I, Figure S3.3 - Figure S3.4). In addition, CARD identifies the 

dominant cell type on each spatial location accurately as measured by AUC and ARI (Figure 

S3.5).  
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Figure 3.2 Comparison of deconvolution accuracy of different methods in simulations under 

the analysis scenarios I-V. 

In the analysis scenario I, the same scRNA-seq dataset used in simulations is used as the reference 

for deconvolution. In the analysis scenario II, the same scRNA-seq data but with one missing cell 

type (e.g., Neuron cells) is used as the reference for deconvolution. In the analysis scenario III, the 

same scRNA-seq data but with one additional cell type (e.g., Blood cells) is used as the reference 

for deconvolution. In the analysis scenario IV, the same scRNA-seq reference data but with miss-

classified cell type in the reference for deconvolution. In the analysis scenario V, the different 

scRNA-seq reference sequenced from a different platform but with similar cell types is used as the 

reference for deconvolution. Compared deconvolution methods (x-axis) include MuSiC (purple), 

RCTD (yellow), SPOTlight (orange), cell2location (green), spatialDWLS (blue), and stereoscope 

(blue gray). Simulations were performed under different spatial correlation strength as represented 

by the proportion of noisy locations (𝑝𝑛). High 𝑝𝑛  corresponds to low spatial correlation. We 

calculated the root mean square errors (RMSE) between the estimated cell type compositions and 

the true cell type compositions for each method to measure its deconvolution performance. We 

further contrasted RMSE of the other methods with respect to that of CARD by computing an 

RMSE difference to remove the unnecessarily difficulty level variation across replicates. An 

RMSE difference (y-axis) below zero suggests that CARD performs better than other methods. 

Differences of RMSE across five simulation replicates (n = 5) were displayed in the form of box 

plots. Each boxplot ranges from the third and first quartiles with the median as the horizontal line 

while whiskers represent 1.5 times the interquartile range from the lower and upper bounds of the 

box. 

To examine the robustness of different deconvolution methods, we explored four additional 

scenarios (APPENDIX B.2) where we either removed one cell type in the scRNA-seq reference 

(scenario II); added one cell type (scenario III); used miss-classified cell types (scenario IV); or 

used another scRNA-seq data sequenced on a different platform for deconvolution (scenario V). 

Compared to scenario I, the performance of all methods remains similar in scenarios III (except 

SPOTlight) and generally reduces in other scenarios, though their relative rank remains largely 

consistent across scenarios. In addition, CARD outperforms the other methods in all settings, with 

its performance gain more apparent than scenario I (Figure 3.2). Specifically, in scenario II, 

CARD loses a median of 3% accuracy across settings as compared to using the original scRNA-

seq data (APPENDIX B.3). However, CARD is more accurate than the other methods across 

settings with 13% ~ 32% accuracy improvement (Figure 3.2, Figure S3.6). In scenario III, CARD 

only loses a median of 0.4% accuracy across settings as compared to using the original scRNA-
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seq data. It remains the most accurate method across settings with 7% ~ 40% accuracy 

improvement over the other methods (Figure 3.2, Figure S3.7). In scenario IV, CARD loses a 

median of 4% accuracy as compared to using the original scRNA-seq data (Figure 3.2). However, 

CARD is again more accurate than the other methods across settings (Figure 3.2, Figure S3.8), 

with 6% ~ 32% accuracy improvement across misclassified cell types (Figure S3.9). In scenario 

V, CARD loses a median of 10% accuracy across settings as compared to using the original 

scRNA-seq data. But it remains the most accurate method across settings with 5% ~ 35% accuracy 

improvement over the other methods (Figure 3.2, Figure S3.10).  

We examined the deconvolution accuracy of different methods at distinct cell type 

resolution levels (APPENDIX B.2) and found that the deconvolution accuracy of most methods 

improved initially with increasing number of sub-cell types (Figure S3.11) and reached a 

saturation point with sufficiently large number of sub-cell types, where many sub-cell types are no 

longer distinguishable from each other. Regardless of the cell type resolution, the relative 

performance of most deconvolution methods remains consistent (Ma and Zhou 2022). We also 

carried out additional model-based simulations where we can more effectively control for spatial 

correlation and found as expected that the advantage of CARD over the other methods shows a 

clear dependency on spatial correlation (details in (Ma and Zhou 2022)). 

3.3.2 Mouse olfactory bulb data 

We applied CARD and the other methods to analyze four published spatial transcriptomics 

data that include two obtained from Spatial Transcriptomics (ST), one from Slide-seq, and one 

from 10x Visium (details in APPENDIX B.4). In each data, the majority of marker genes (92% 

by Moran’s I test and 54% by Geary’s C test) display statistically significant spatial autocorrelation 
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(adjusted p-value < 0.05; Table S3.1), with the semivariance generally increasing with distance 

and the expression correlation between locations decreasing with distance, supporting cell type 

composition similarity between neighboring locations (Ma and Zhou 2022). We used scRNA-seq 

data from sequencing platforms different from the spatial transcriptomics for deconvolution.  

We first examined the mouse olfactory bulb (MOB) data (Ståhl et al. 2016), where we used 

a scRNA-seq data (Tepe et al. 2018) from 10x Chromium on the same tissue for deconvolution 

(Table S3.2). The MOB data consists of four main anatomic layers organized in an inside out 

fashion annotated based on H&E staining: the granule cell layer (GCL), the mitral cell layer 

(MCL), the glomerular layer (GL), and the nerve layer (ONL) (Figure 3.3A). The cell type 

compositions inferred by CARD accurately depict such expected layered structure (Nagayama, 

Homma and Imamura 2014), as is evident by visualizing either the first principal component (PC1) 

of the estimated cell type composition matrix (Figure S3.12) or the inferred dominant cell types 

(Figure 3.3B). In contrast, MuSiC, SPOTlight, spatialDWLS, and stereoscope were unable to 

distinguish the three outer layers from each other, while RCTD was unable to clearly distinguish 

the nerve layer from the glomerular layer. RCTD, cell2location, and spatialDWLS showed a blurry 

boundary between GCL and MCL/GL on top of the tissue section, while cell2location could not 

clearly identify the boundaries between MCL and GL.  

Careful examination of the cell type composition and corresponding cell type marker genes 

in different layers further confirm the accuracy of CARD deconvolution (Figure 3.3C - Figure 

3.3D). For example, CARD distinguished correctly the adjacent MCL and GL, with distinct 

enrichment of mitral/tufted cells and periglomerular cells in the two layers, respectively, despite 

the similarity between these two cell types; while others cannot (Figure S3.13, (Ma and Zhou 

2022)). We also observed that multiple cell types inferred by CARD show spatially co-localization   
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Figure 3.3 Analyzing the mouse olfactory bulb data. 

(A) Hematoxylin and eosin (H&E) staining of the olfactory bulb (top panel) displays four anatomic 

layers that are organized in an inside out fashion (bottom panel): the granule cell layer (GCL), the 

mitral cell layer (MCL), the glomerular layer (GL), and the nerve layer (ONL). (B) Left panel 

shows on each spatial location the dominant cell type inferred from four different deconvolution 

methods. The examined cell types include granule cells (GC), olfactory sensory neurons (OSNs), 

periglomerular cells (PGC) and mitral/tufted cells (M-TC). Compared deconvolution methods 

include MuSiC, RCTD, SPOTlight, cell2location, spatialDWLS, stereoscope and CARD. Right 

bottom panel displays the adjusted rand index (ARI; y-axis) and the Purity (y-axis), which quantify 

the similarity between the inferred dominant cell types from different methods (x-axis) and the 

anatomic layers annotated based on the H&E image. (C) Spatial scatter pie plot displays inferred 

cell type composition on each spatial location from different deconvolution methods. (D) Top 

panels display on each spatial location the proportion of each of the four cell types inferred by 

CARD. Bottom panels display the expression levels of four corresponding cell type specific 

marker genes. (E) Correlations in cell type proportion across spatial locations between pairs of cell 

types inferred by CARD. Color is scaled by the correlation value. (F) Accuracy of CARD 

imputation in the masking analysis across 10 replicates (n = 10). A fixed percentage of locations 

are masked as missing (x-axis) and CARD is used to impute the gene expression on the masked 

locations. Three different metrics (y-axis) are used to evaluate imputation accuracy in terms of the 

similarity between the imputed expression and true expression on masked locations: Pearson’s 

correlation, Spearman’s correlation and mean square error (MSE). Each boxplot ranges from the 

first and third quartiles with the median as the horizontal line while whiskers represent 1.5 times 

the interquartile range from the lower and upper bounds of the box. (G) CARD imputes gene 

expression for four marker genes on a fine grid set of spatial locations (number of grid points = 

500, 1,000, or 2,000), resulting in a refined spatial map of gene expression.  

patterns (Figure 3.3E).  

A key benefit of CARD is its ability to model the spatial correlation structure across spatial 

locations, which facilitates the imputation of cell type composition and gene expression on 

locations not measured in the original study. We performed location masking analysis for CARD 

and validated that the imputed expression levels are highly consistent with the truth regardless of 

the percentage of masked locations (Pearson’s correlation=0.44-0.56; Figure 3.3F, Figure S3.14). 

Imputation on new locations allows us to construct a refined spatial map of cell type composition 

or gene expression with arbitrarily high spatial resolution (details in Methods), which captures 

fine grained details of the layered structure in the olfactory bulb (Figure 3.3G, Figure S3.15 - 

Figure S3.16) and facilitates the identification of marker genes with spatial expression patterns 
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(Figure S3.17, (Ma and Zhou 2022)). In contrast, the fixed resolution enhancement by BayesSpace 

failed to capture the expected spatial expression pattern for a few marker genes at high resolution 

(Ma and Zhou 2022). We quantitatively compared the performance of CARD and BayesSpace for 

resolution enhancement by performing clustering analysis on the imputed expression data. We 

found that the clustering results based on CARD displayed a clear inside-out layered structure that 

resembles the anatomic organization of the olfactory bulb, more so than that obtained with the 

original scale data or by BayesSpace (Figure S3.18). CARD is also computationally efficient: 

CARD takes only 0.4 seconds to construct the refined expression map for all genes, is 5,816 times 

faster than BayesSpace, and represents a scalable solution for fine map reconstruction in much 

larger datasets.  

3.3.3 Human pancreatic ductal adenocarcinomas data 

The second data we examined is a human pancreatic ductal adenocarcinomas (PDAC) data 

from spatial transcriptomics (Moncada et al. 2020). For deconvolution, we first used a matched 

scRNA-seq data for the same patient obtained through inDrop (Moncada et al. 2020) (denoted as 

PDAC-A). The PDAC data contains multiple tissue regions (cancer, pancreatic, ductal, and stroma 

regions) annotated by histologists based on H&E staining (Moncada et al. 2020) (Figure 3.4A). 

Through deconvolution, CARD located various pancreatic and tumoral cell types into different 

tissue regions (Figure 3.4B). The PC1 of the estimated cell type composition matrix from CARD 

can clearly capture a gross regional segregation between cancer and non-cancer regions, between 

the ductal and stroma regions, and between the pancreatic and ductal regions. In contrast, none of 

the other methods were as effective in differentiating these regions (Figure S3.19 - Figure S3.20). 

The dominant cell types on each location from CARD also capture the segregation between cancer 

and non-cancer regions (Figure S3.21), with the neoplastic cells such as cancer clone A and clone 
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B cells highly enriched in the former (Wilcoxon test p-value = 1.9e-48, 1.1e-43 respectively, 

Figure 3.4D). CARD also reveals distinct distribution of two macrophage subpopulations between 

the cancer and non-cancer regions (Figure 3.4D), representing a key functional signature of the 

regional compartmentalization of the cancer tissue that were missed by the other methods (Figure 

S3.22) 

CARD further divides the cancer region into two sub-regions, a pattern missed by the other 

methods: an upper subregion dominated by cancer clone A cells with an enrichment of marker 

gene Tm4sf1, and a bottom subregion dominated by cancer clone B cells with an enrichment of 

marker gene S100a4 (Figure 3.4B - Figure 3.4C, Figure S3.23). S100A4 is a prognostic marker 

for early-stage pancreatic cancer and its spatial enrichment suggests that the bottom cancer 

subregion is likely an early cancer region. In contrast, Tm4sf1 is essential for PDAC migration and 

invasion (Zheng et al. 2015, Fu et al. 2020, Xu et al. 2020) and its spatial enrichment suggests that 

the upper cancer subregion is likely a late-stage cancer region with metastasis capability. Indeed, 

the upper cancer subregion is also detected by CARD to be enriched with fibroblast cells, along 

with fibroblast cell marker gene Cd248 (Figure 3.4C), a cell type known to be associated with 

advanced TNM stage (Zhang et al. 2017).  

CARD also localizes many other cell types into specific tissue regions, consistent with the 

expression pattern of the corresponding marker genes (Figure 3.4C). In contrast, none of the other 

methods capture the expected spatial localization of both ductal centroacinar and terminal ductal 

cells. In addition, acinar cells inferred by CARD are enriched in the normal pancreatic tissue 

region; but they are inferred by the other methods to be either absent in the pancreatic region or 

diffused outward from the pancreatic region to the stroma region and cancer region. Several cell 

types inferred by CARD are also co-localized spatially in PDAC (Figure 3.4F), such as those  
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Figure 3.4 Analyzing the pancreatic ductal adenocarcinoma (PDAC) data. 

(A) Hematoxylin and eosin (H&E) staining of the PDAC (left panel) displays four regions (right 

panel) annotated from the original publication (Moncada et al. 2020): Cancer, Pancreatic, Duct 

and stroma regions. (B) Spatial scatter pie plot displays inferred cell type composition on each 

spatial location from different deconvolution methods. Compared deconvolution methods include 

MuSiC, RCTD, SPOTlight, cell2location, spatialDWLS, stereoscope and CARD. (C) Top panels 

display on each spatial location the proportion of each of the cell types inferred by CARD. Bottom 

panels display the expression levels of corresponding cell type specific marker genes. (D) 

Comparisons of cell type proportions inferred by CARD in cancer region (n = 137) vs non-cancer 

region (n = 289) with p-value tested by two-sided Wilcoxon Rank Sum test. (E) Correlation 

between mean cell type proportions inferred by CARD and that in the matched scRNA-seq 

reference data. (F) Correlations in cell type proportion across spatial locations between pairs of 

cell types inferred by CARD. Color is scaled by the correlation value. (G) Accuracy of CARD 

imputation in the masking analysis across 10 replicates (n = 10). A fixed percentage of locations 

are masked as missing (x-axis), and CARD is used to impute the gene expression on the masked 

locations. Three different metrics (y-axis) are used to evaluate imputation accuracy in terms of the 

similarity between the imputed expression and true expression on masked locations: Pearson’s 

correlation, Spearman’s correlation and mean square error (MSE). (H) CARD imputes gene 

expression for four marker genes on a fine grid set of spatial locations (number of grid points = 

500, 1,000, or 2,000), resulting in a refined spatial map of gene expression. Each boxplot in (D) 

and (G) ranges from the first and third quartiles with the median as the horizontal line while 

whiskers represent 1.5 times the interquartile range from the lower and upper bounds of the box. 

between ductal high hypoxic cells and cancer cells and those between endothelial cells and 

fibroblast cells, supporting the role of the former in forming the hypoxic and nutrient-poor tumor 

microenvironment (TME) and the role of the later in pancreatic-cancer stroma interaction of the 

tumor microenvironment (Nielsen, Mortensen and Detlefsen 2016, Morvaridi et al. 2015). The 

mean cell type proportions inferred by CARD in the ST data are also highly correlated with that 

measured in the scRNA-seq dataset obtained on the same patient, more so than that obtained by 

the other methods (Figure 3.4E).  

Next, we examined the robustness of deconvolution by using unmatched scRNA-seq 

datasets (Table S3.2). Despite the platform and sample differences in the scRNA-seq references, 

we found that the estimated cell type compositions for the major cell types are consistent across 

different scRNA-seq references, with the highest consistency achieved by CARD (Figure S3.24). 
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Regardless of which unmatched scRNA-seq data was used, CARD shows superior performance 

than the other methods in capturing the gross segregation of cancer and non-cancer regions, 

identifying two distinct cancer subregions, accurately localizing cell types, and revealing a 

possible TME supporting tumor progression (Zheng et al. 2017a, Comito et al. 2020, Lambrechts 

et al. 2018, Junya et al. 2019) (Details see the ref (Ma and Zhou 2022)).  

Finally, we found that the imputed gene expression by CARD are highly consistent with 

the truth across a range of masking percentages (Pearson’s correlation=0.29-0.52; Figure 3.4G, 

Figure S3.25). Such consistency is higher when the matched scRNA-seq data from the same 

patient is used as the reference, as compared to using an unmatched scRNA-seq data (Figure 

S3.26). The high-resolution spatial map of cell type composition or gene expression obtained by 

CARD also reveals refined boundaries between different tissue subregions (Figure S3.27) and the 

spatial expression pattern of marker genes (Figure 3.4H, Figure S3.28). Besides marker genes, 

CARD also discovered multiple genes that display clear spatial expression pattern in the refined 

spatial map but not in the original map (Figure S3.29). In contrast, the high-resolution map of 

BayesSpace does not show a clear pattern of multiple known marker genes and additional genes 

(Ma and Zhou 2022). Clustering analysis on CARD imputed high resolution data also revealed 

clear segregation of the two cancer sub-regions, the normal pancreatic region, and the ductal 

region, more so than the original data or the refined data by BayesSpace (Figure S3.29). 

3.3.4 Mouse hippocampus data from multiple sources 

We analyzed two mouse hippocampus datasets: one directly on hippocampus measured 

using Slide-seq V2 (Stickels et al. 2021) and the other on a coronal brain section containing  

hippocampus measured using 10x Visium. We used the hippocampus scRNA-seq dataset by Drop-



 80 

seq (Cable et al. 2021, Saunders et al. 2018) for deconvoluting both datasets (Table S3.2). We 

only applied cell2location to the 10x Visium data but not the Slide-seq V2 data due to its heavy 

computational burden.  

The hippocampus primarily consists of three regions -- the CA1/CA2 region, the CA3 

region, and the dentate gyrus -- all visualizable by total UMI counts per location displayed on the 

tissue (Figure 3.5A). The cell type compositions inferred by CARD accurately depict the three 

anatomic structures of hippocampus, with the compositional PC1 capturing the curved shape of 

hippocampus accurately, more so than the other three methods (Figure 3.5A, Figure S3.31). The 

dominant cell type on each location inferred by CARD also matches the expectation (Figure 3.5B): 

CA1 cells are highly enriched in CA1; CA3 cells mainly localize in CA3; dentate cells reside in a 

C-shaped ring region of dentate gyrus; ependymal cells form an irregular and columnar shape and 

line the ventricles of the brain (Del Bigio 2009); while choroid cells reside right below the 

ependymal cells and locate in the choroid plexus (Ramachandran 2002) along with Cajal-Retzius 

cells (Meyer 2010) (Figure S3.32). In contrast, MuSiC is unable to localize the main cell types 

such as CA1 and CA3 cells correctly and thus unable to reveal the main structures of the 

hippocampus. SPOTlight detects an incorrectly diffused pattern of ependymal cells and incorrectly 

locates many CA3 cells to the CA1 region or outside hippocampus. RCTD, spatialDWLS, and 

stereoscope perform similarly, all locating CA3 cells incorrectly in CA1 (Figure 3.5B; (Ma and 

Zhou 2022)), with the CA1 cell marker gene enriched in locations dominated by CA3 cells inferred 

by these methods (Figure S3.33). Additionally, they all allocate different cell types to 

hippocampus structures that appear to be much wider than expected (Rodriques et al. 2019, 

Stickels et al. 2021, Hawrylycz et al. 2014b) (Figure 3.5A - Figure 3.5B). Careful examination of 

marker genes further confirms the accuracy of CARD deconvolution (Figure 3.5C). We quantified 
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the deconvolution performance of different methods by examining the expression levels of the 

marker genes on each of the three hippocampal structures inferred based on the estimated cell type 

composition by different methods. Quantifications again support more accurate deconvolution by 

CARD than the other methods (Figure 3.5D, Figure S3.34). 

We observed that multiple cell types inferred by CARD are co-localized together (Figure 

S3.35). The highest co-localization occurs between Slc17a6/Vglut2 neurons and entorhinal cells, 

highlighting the cell compositional architecture underlying the hippocampus-entorhinal cortex 

network (Wozny et al. 2018). The imputed gene expression by CARD are consistent with the truth 

across a range of masking percentages (Figure S3.36). Although the resolution of this dataset is 

already high, the refined spatial map of cell type composition by CARD again reveals refined 

boundaries between different subregions of hippocampus (Figure S3.37), with the refined gene 

expression recovers strong spatial pattern for various marker genes (Figure 3.5E, Figure S3.38) 

and additional genes (Figure S3.39). We examined the reliability of the refined spatial map by 

creating a low-resolution version of the Slide-seq V2 data and then applied CARD to construct a 

refined spatial expression map at the original Slide-seq V2 resolution. We found that the refined 

spatial map recovers a consistent and sometime stronger spatial pattern than the original Slide-seq 

V2 data (Ma and Zhou 2022), supporting the accuracy and effectiveness of refined spatial map 

construction. Here, we were unable to apply BayesSpace due to both its heavy computational 

burden and its required input of pixel coordinates that are not available from Slide-seq technologies. 

Finally, we examined the hippocampus region from the 10x Visium data. Again, CARD 

captures the key structures of the hippocampus (Figure 3.5F - Figure 3.5G). The estimated cell 

type compositions on CA1, CA3 and dentate gyrus from both CARD and MuSiC matched the 
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corresponding structures on the H&E image, while those from the other methods appear to also 

occupy regions outside the expected structure boundaries (Figure 3.5F, Figure S3.40), a pattern 

confirmed with quantifications (Figure S3.41). 
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Figure 3.5 Analyzing the hippocampus region in the Slide-seq V2 and 10x Visium Mouse 

Brain (Coronal) data. 

(A) The UMI counts of Slide-seq V2 data (right panel) displays the structure and the shape of 

hippocampus tissue, highly consistent with the image from Allen Reference Atlas (left panel) (B) 

The dominant cell type on each location inferred from four different deconvolution methods. 

Compared deconvolution methods include MuSiC, RCTD, SPOTlight, spatialDWLS, stereoscope 

and CARD. (C) Top panels display on each spatial location the proportion of each of the cell types 

inferred by CARD. Bottom panels display the expression levels of corresponding cell type specific 

marker genes. The examined cell types are CA1 cells, CA3 cells and dentate cells. (D) Bar plots 

display the comparisons of the mean gene expression level of marker genes in the major regions 

inferred by different deconvolution methods; (E) CARD imputes gene expression for four marker 

genes on a fine grid set of spatial locations, resulting in a refined spatial map of gene expression. 

(F) The proportion of each of the cell types on each location inferred by CARD in the 10x Visium 

dataset. (G) The expression levels of corresponding cell type specific marker genes in the 10x 

Visium dataset.  

3.3.5 Extension of CARD for reference-free deconvolution 

We further developed CARDfree, an extension of CARD for reference-free cell type 

deconvolution that does not require scRNA-seq reference data. The technical details of CARDfree 

is provided in the ref (Ma and Zhou 2022). CARDfree only requires users to input a list of gene 

names for previously known cell type markers, which determines the dimensionality of the input 

gene expression matrix. Compared to CARD, CARDfree yields generally similar cell type 

composition estimates in the real data, but likely with lower accuracy. For example, CARDfree 

captures the general tissue domain segregation pattern as CARD in both MOB and PDAC data, 

though it was unable to differentiate the two cancer sub-regions as CARD did (Figure S3.42). 

CARDfree does not perform as well as CARD in the high-resolution Slide-seq V2 data and did 

not identify the CA3 structure based on its estimated cell type proportions, as the Slide-seq V2 

data is highly sparse and thus could be benefited from reference-based deconvolution. However, 

in the hippocampus region of the Slide-seq V2 data, we did notice that CARDfree identified a 

region with a unique cell type composition ((Ma and Zhou 2022), CT15 colored in blue) that was 

not found by other deconvolution methods. This region appears to part of the entorhinal cortex, 
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which consists of endothelial tip cells that are highly related to angiogenesis in mouse brain 

(Wälchli et al. 2014). The results suggest that reference-free deconvolution may sometimes have 

added benefits.  

3.4 Discussion 

We have presented CARD for accurate and spatially informed deconvolution of spatial 

transcriptomics. CARD is computationally efficient: it is 0.8-7,761.8 times faster while using 

0.2%-109% of the physical memory as compared to the other deconvolution methods (Figure 

S3.43); it is 5,875-7,028 times faster and uses only 14%-17% of the physical memory as compared 

to BayesSpace in creating refined spatial maps (Figure S3.44 - Figure S3.45). We have 

demonstrated the benefits of CARD in both simulations and applications to four spatial 

transcriptomics datasets. 

We have primarily focused on examining the sequencing-based technologies that measure 

the average gene expression from a mixture of cells on each tissue location. Non-sequencing-based 

technologies, such as seqFISH (Lubeck et al. 2014) and MERFISH (Chen et al. 2015), mostly rely 

on single molecular fluorescent in situ hybridization (smFISH) and are directly of single cell 

resolution. However, it remains computationally challenging to detect the accurate boundaries 

between cells on the smFISH image data, especially when the cell density is high (Moffitt et al. 

2018, He et al. 2021, Moen et al. 2019). Consequently, the expression data measured on each 

“single cell” in smFISH may consist of transcripts from a mixture of neighboring cells. Therefore, 

CARD can also be applied to analyze these datasets. In a mouse cortex data from seqFISH+ (Eng 

et al. 2019), we found that the cell type compositions inferred by CARD clearly displayed a layered 

structure that resembled the laminar organization of the cortex, with each layer harboring a distinct 

composition of neuronal populations (Ma and Zhou 2022).  
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We have presented an extension of CARD, CARDfree, for reference-free deconvolution. 

CARDfree requires a post-processing step to correctly label the inferred cell types. Such post-

processing often requires cell type specific gene expression profiles and can be challenging to 

carry out accurately. For example, in PDAC, CARDfree infers cell type composition on each 

location for 20 inferred cell types. But it is not trivial to find the name for each inferred cell type: 

for instance, it is not easy to tell whether the inferred cell type #14 (CT14) corresponds to the 

ductal centroacinar cell or the endothelial cell, as markers for both cell types are enriched in 

locations with a high proportion of CT14 cells (Ma and Zhou 2022). Therefore, new computational 

algorithms are likely needed for labeling cell types inferred from reference-free deconvolution 

methods. We also present another extension of CARD (Ma and Zhou 2022) to facilitate the 

construction of single-cell resolution spatial transcriptomics from non-single-cell resolution spatial 

transcriptomics. Such extension requires knowing the spatial localization information for all single 

cells on the tissue, which remains challenging to obtain from non-single-cell resolution spatial 

transcriptomics. Because the spatial transcriptomics data itself does not contain information for 

inferring the single cell positions, H&E image segmentation is often required to identify single 

cells on the tissue and extract their locations. However, common software is not always accurate 

in inferring the location for single cells (Ma and Zhou 2022). In addition, aligning H&E image 

with spatial transcriptomics can be computationally challenging (Bergenstråhle, Larsson and 

Lundeberg 2020). Future efforts are needed to address these challenges.  

Additional extensions of CARD are possible. First, CARD models normalized spatial 

transcriptomes data and could be benefited from extensions for direct modeling of raw count data 

using an over-dispersed Poisson model (Sun et al. 2017, Sun et al. 2018). Second, we only explored 

the use of the Gaussian kernel (Sun, Zhu and Zhou 2020a) for modeling spatial correlation. 
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Exploring the use of other kernels such as the periodic kernels or incorporating histological image 

information such as image intensity level as additional coordinates (Hu et al. 2021, Fu et al. 2021), 

which can be readily done in CARD, may capture diverse and rich spatial correlation patterns in 

the future. Third, the spatial imputation feature of CARD facilitates not only the construction of a 

refined spatial map but also the selection of scRNA-seq references when multiple scRNA-seq 

resources are available. Specifically, we can evaluate through data masking the imputation 

accuracy resulted from pairing with different scRNA-seq references and select the scRNA-seq data 

with the best imputation accuracy for deconvolution. In PDAC, the matched scRNA-seq indeed 

produced the best imputation performance and would be selected as the optimal reference data for 

deconvolution.  

3.5 Methods 

3.5.1 CARD method overview 

We present an overview of CARD here, with its technical details provided in APPENDIX 

B.5. CARD is a deconvolution method for spatial transcriptomics studies with regional resolution. 

These studies perform transcriptomic profiling on multiple tissue locations, each of which contains 

multiple single cells. CARD aims to estimate the cell type composition on each tissue location 

while properly accounting for the spatial correlation among them. CARD requires both spatial 

transcriptomics data and a single cell RNA-seq (scRNA-seq) data as input. The scRNA-seq data 

serves as a reference and consists of K cell types with a set of G cell type informative genes. Cell 

types and informative genes in scRNA-seq can be obtained through standard analysis pipelines for 

clustering and informative gene identification (Soneson and Robinson 2018, Duò, Robinson and 

Soneson 2018). In scRNA-seq, we denote B as the G by K cell type specific expression matrix for 

the informative genes, where each element represents the mean expression level of an informative 
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gene in a specific cell type. The expression matrix B is commonly referred to as the reference basis 

matrix. In the spatial transcriptomics data, we denote X as the G by N gene expression matrix for 

the same set of informative genes measured on N spatial locations. We denote V as the N by K cell 

type composition matrix, where each row of V represents the proportions of the K cell types on 

each spatial location. Our objective is to estimate V given both X from the spatial transcriptomics 

data and B constructed from the scRNA-seq data. To do so, we consider a non-negative matrix 

factorization model to link the three matrices: 

                                                               𝑿 = 𝑩𝑽𝑻 + 𝑬,                                                                 (B.1) 

where each element in V is constrained to be non-negative; and 𝑬 is an G by N residual error matrix 

with each element independently and identically following a normal distribution 𝑬𝑔𝑖~𝑁(0, 𝜎𝑒
2). A 

detailed biological interpretation of equation (B.1) in the context of deconvolution is provided in 

APPENDIX B.5. 

The non-negative matrix factorization model in equation (B.1) has been applied for cell 

type deconvolution in bulk RNA-seq studies. However, this model is not directly applicable for 

deconvoluting spatial transcriptomics as it does not account for the spatial correlation structure in 

the cell type compositions across locations. Intuitively, cell type compositions on two neighboring 

locations of a tissue are likely to be similar to each other, more so than those on locations that are 

far away. Consequently, the cell type compositions on neighboring locations contain valuable 

information for inferring the cell type composition on the location of interest. The similarity in cell 

type compositions on neighboring locations effectively induces spatial correlation among rows of 

V in the above factorization model. Thus, modeling spatial correlation in V is relevant for spatial 

transcriptomics as it would allow us to borrow cell type composition information across spatial 

locations to enable accurate estimation of V. To accommodate the spatial correlation in V, we 
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specify a conditional autoregressive (CAR) (De Oliveira 2010, Besag 1974, Banerjee et al. 2014) 

modeling assumption on each column of V. Specifically, for the column/cell type k, we assume: 

                                       𝑽𝑖𝑘 = 𝒃𝑘+𝜙∑ 𝑾𝑖𝑗(𝑽𝑗𝑘−𝒃𝑘)
𝑛
𝑗=1,𝑗≠𝑖 +𝝐𝑖𝑘                                    (B.2) 

where 𝑽𝑖𝑘 represents the proportion of cell type k on the i-th location; 𝒃𝑘 is the k-th cell type 

specific intercept that represents the average cell type composition across locations; W is a N-by-

N non-negative weight matrix with each element 𝑾𝑖𝑗 specifying the weight used for inferring the 

cell type composition on the i-th location based on the cell type composition information on the j-

th location; 𝜙 is a spatial autocorrelation parameter that determines the strength of the spatial 

correlation in cell type composition; and 𝝐𝑖𝑘 is the residual error that follows a normal distribution 

𝝐𝑖𝑘~𝑁(0, 𝜎𝑖𝑘
2 ). The CAR modeling assumption on V effectively expresses the composition of the 

k-th cell type on the i-th location, 𝑽𝑖𝑘, as a weighted summation of the k-th cell type compositions 

on all other locations, 𝑽𝑗𝑘 (𝑗 ≠ 𝑖). Consequently, the CAR modeling assumption on V allows us 

to borrow information across locations to infer the cell type composition on the location of interest.  

We follow (Sun et al. 2020a) to express the weight matrix W in the form of a Gaussian 

kernel function constructed based on the Euclidean distance between pairs of spatial locations 

(details in APPENDIX B.5). The Gaussian kernel function has been widely used to model a range 

of correlation patterns that decay over distance across tissue locations in many other analytic tasks 

in spatial transcriptomics (Vanhatalo, Pietiläinen and Vehtari 2010, Rousset and Ferdy 2014). 

While we primarily focus on using a Gaussian kernel for W, our method and software can easily 

incorporate other types of kernels to capture diverse spatial correlation patterns encountered in 

different data sets. With the Gaussian kernel matrix W, we further obtain a row-standardized 

weight matrix �̃� through transformation �̃�𝑖𝑗 = 𝑾𝑖𝑗/𝑾𝑖+, with 𝑾𝑖+ = ∑ 𝑾𝑖𝑗
𝑛
𝑗=1 . Because the 
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weight matrix and the residual error variance need to satisfy the symmetric condition (Cressie 1992, 

Rue and Held 2005), we set 𝜎𝑖𝑘
2 = 𝝀𝑘/𝑾𝑖+ to ensure �̃�𝑖𝑗𝜎𝑗𝑘

2 = �̃�𝑗𝑖𝜎𝑖𝑘
2 , where 𝝀𝑘  is a scalar. 

With the above parameterization, we can follow the Brook’s Lemma (Brook 1964, Besag 1974) 

to obtain the joint distribution for the N-size column vector 𝑽𝑘 as  

                                                               𝑽𝑘~𝑀𝑉𝑁(𝒃𝑘𝟏𝑁,𝜮𝒌),                                                       (B.3)    

where 𝟏𝑁 is a N-vector of 1’s; 𝜮𝒌 (= 𝑰𝑁 − 𝜙�̃� )
−1
𝑴𝒌 is a positive definite covariance matrix 

with 𝑴𝒌 = 𝑑𝑖𝑎𝑔(𝜎1k
2 , … 𝜎𝑁𝑘

2 ); and MVN denotes a multivariate normal distribution (details in 

APPENDIX B.5).  

Equations (B.1) and (B.3) together define a factor model with a CAR modeling assumption 

on the latent factors to induce spatial correlation across rows of V. By modeling the spatial 

correlation in V, our model allows us to borrow cell type composition information across spatial 

locations for spatially informed cell type deconvolution. We developed a constrained optimization 

algorithm in the maximum likelihood framework to estimate the cell type composition matrix V, 

with non-negativity constraints on each of its elements (details in APPENDIX B.5). Our algorithm 

treats the hyper-parameters (𝒃𝑘, 𝛌k, 𝜙 and 𝜎𝑒
2) as unknown and infers these parameters based on 

the data at hand to ensure optimal deconvolution performance. Our algorithm has several 

computational advantages that make it highly computationally efficient. First, the modeling 

framework of CARD is in essence a linear factor model, expressing the mean gene expression 

profile in the spatial transcriptomics as a linear function of that from scRNA-seq. The linear factor 

modeling framework streamlines the inference procedure and facilitates scalable computation. 

Second, CARD makes use of the fast multiplicative updating rules (Lee and Seung 2000, Janecek 

and Tan 2011) for updating the nonnegative cell type composition matrix in each optimization 
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iteration. The multiplicative updating rules allow for algorithmic optimization without explicit 

inverse of the spatial covariance matrix, which is otherwise required for spatial deconvolution, and 

which incurs heavy computation burden (APPENDIX B.5). Third, CARD takes advantage of the 

modern computing architecture and explicitly expresses the most computationally intensive part 

of the algorithm in the form of large matrix operations instead of multiple scalar operations. For 

example, it updates the entire cell type composition matrix jointly at each optimization iteration 

instead of updating each element in the cell type composition matrix on each spatial location 

separately. Finally, while CARD is implemented in R, its core deconvolution algorithm is 

implemented with an efficient C++ code that is linked back to the main functions of CARD through 

Rcpp, ensuring scalable computation.  

3.5.2 Imputation and construction of high-resolution spatial maps for cell type composition and 

gene expression 

A key feature of CARD is its ability to model the spatial correlation structure in V. By 

modeling the spatial correlation in V, CARD can predict and impute the cell type compositions on 

new, unmeasured, spatial locations on the tissue. Imputing cell type compositions on new locations 

would allow us to obtain a refined cell type composition map of the tissue with a spatial resolution 

much higher than that measured in the original study. To enable imputation and construction of a 

refined cell type composition map, we first outlined the shape of the tissue by applying a two-

dimensional concave hull algorithm (Park and Oh 2012) on the existing locations. We then created 

an equally spaced grid within the tissue outline and set the number of grid points to exceed the 

number of spatial locations measured in the original study. We denote the cell type composition 

matrix on the original N spatial locations as V and denote the corresponding matrix on the 𝑵∗ new 

locations as 𝑽∗. Based on equation (B.3), the (𝑵+𝑵∗)-sized cell type composition vector for the 
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k-th cell type, (𝑽𝒌, 𝑽𝒌
∗ )𝑻 , follows a multivariate normal distribution 𝑴𝑽𝑵(𝒃𝒌𝟏𝑵+𝑵∗, 𝜮) . We 

partition the covariance matrix 𝜮 into [
𝜮𝒐𝒐 𝜮𝒐𝒏
𝜮𝒏𝒐 𝜮𝒏𝒏

], where o are the indices that correspond to the 

original locations while n are the indices that correspond to the new locations. We can then 

estimate 𝑽𝒌
∗  via its conditional mean  

                                            V̂k
∗ =  bk1N∗ + ΣnoΣoo

−1(Vk − bk1N),                                                  (B.4) 

where the parameters on the right-hand side of the equation are replaced by the corresponding 

estimates. The estimates �̂�𝑘
∗  on the new locations are almost always non-negative as they are 

effectively represented as a weighted summation of the non-negative cell type proportions on the 

original locations. To ensure scalable imputation, we used a sparse approximation of the 

covariance matrix 𝚺 by using only the nearest 10 neighbors for each location. With the imputed 

cell type compositions, we can further impute the gene expression levels on the new locations by 

multiplying the above conditional mean in equation (B.4) with the basis matrix to obtain B �̂�𝑘
∗ .  

3.5.3 Basis matrix construction 

We constructed the reference basis matrix B following the main ideas of MuSiC (Wang et 

al. 2019) using three detailed steps (details in APPENDIX B.5). (1) We selected genes that are 

expressed in both the scRNA-seq reference data and the spatial transcriptomic data. (2) We 

selected among them the candidate cell type informative genes with a mean expression level in a 

given cell type at least 1.25 log fold higher than its mean expression level across all remaining cell 

types. (3) We removed among them the outlier genes that show high expression heterogeneity 

within a cell type by calculating gene-specific expression dispersion (Ma and Zhou 2022). In 

particular, we calculated the expression dispersion as the variance to mean ratio for each gene in 

each cell type. We then obtained the gene-specific dispersion by averaging the estimated 
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expression dispersion across cell types. We finally removed the top 1% genes with the largest 

gene-specific dispersion values.   

3.5.4 Simulations and deconvolution analysis evaluation 

All simulations are described in the APPENDIX B.2. In each simulation replicate, we 

calculated the true cell type proportions on each spatial location as the number of cells in each cell 

type divided by the total number of cells on the location. We denote the true cell type composition 

matrix as V. After we obtained the estimated cell type composition matrix �̂� , we evaluated 

deconvolution performance by computing the root mean square error (RMSE) between �̂� and V 

through 

𝑅𝑀𝑆𝐸 = √
1

𝑁𝐾
∑∑(𝑽𝑖𝑘 −�̂�𝑖𝑘)

2
𝐾

𝑘=1

𝑁

𝑖=1

, 

where N=260 is the total number of spatial locations and K is the total number of cell types. Note 

that the above formula for RMSE calculation is based on all cell types (APPENDIX B.3).  

3.5.5 Compared methods  

We compared CARD with four deconvolution methods: (1) MuSiC (Wang et al. 2019) 

(version 0.1.1), (2) SPOTlight (Elosua-Bayes et al. 2021) (version 0.1.0), and (3) RCTD (Cable et 

al. 2021) (version 1.1.0), (4) cell2location (Kleshchevnikov et al. 2022) (version 0.07a), (5) 

spatialDWLS (Dong and Yuan 2021)(implemented in the R package Giotto, version 1.0.4), (6) 

stereoscope (Andersson et al. 2020)(version 0.2.0). For all methods, we followed the tutorial on 

the corresponding GitHub pages and used the recommended default parameter settings for 

deconvolution analysis. cell2location requires users to input additional parameters. For these 
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parameters, we set them to be close to what we used in the simulations and to be close to what we 

best know of in the real data applications. Specifically, in the simulations, we set “cells_per_spot” 

to be a random number from a uniform distribution U (8, 12) with an expected value of 10. We set 

“factors_per_spot” and “combs_per_spot” to be exactly the number of cell types available in the 

corresponding scRNA-seq reference. In the real data applications, we set “cells_per_spot” to be 

30 for the mouse olfactory spatial transcriptomics data and human pancreatic ductal 

adenocarcinoma data and set it to be 10 for the 10x Visium data. We set both the 

“factors_per_spot” and “combs_per_spot” to be 7 following the software tutorial.  

We also compared the high-resolution spatial map constructed by CARD with a recently 

developed method BayesSpace (version 1.1.4). Because BayesSpace only implements that 

neighborhood structure suitable for Spatial Transcriptomics (ST) and 10x Visium, we only 

evaluated its performance on the mouse olfactory spatial transcriptomics data and human 

pancreatic ductal adenocarcinoma (PDAC) data. We followed the tutorial on GitHub and used the 

recommended default parameter settings for resolution enhancement. Specifically, we set the 

required number of clusters qs based on their recommended pseudo-log-likelihood as the 

following: qs = 5 for mouse olfactory spatial transcriptomics data and qs = 8 for PDAC data. Note 

that BayesSpace is restricted in creating a neighborhood structure that has a fixed number of sub-

spots at each location in the original data (5 for Visium technology and 9 for ST technology). In 

order to compare the high-resolution spatial gene expression constructed by CARD and 

BayesSpace on the same set of sub-spots, we applied CARD to directly impute the gene expression 

on the sub-spots generated by BayesSpace. Afterwards, we performed PCA dimension reduction 

on the high-resolution data and applied the K-means algorithm analysis on the top 20 PCs to cluster 
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spatial locations into six clusters for the mouse olfactory data and eighteen clusters for the PDAC 

following the original studies.  

3.5.6 Real data analyses 

All real datasets used in the present study are described in the APPENDIX B.4. We first 

examined cell type composition similarity in these real datasets. Because we do not know the true 

cell type composition in these data, we used cell type marker genes as surrogates to examine the 

spatial distribution of cell types on the tissue (Ralston and Shaw 2008). We reasoned that, if the 

cell type composition is similar among neighboring locations, then we would also expect the cell 

type maker genes to show spatial correlation in their expression pattern on the tissue. Therefore, 

for each of the three spatial transcriptomics datasets examined in the present study, we looked at 

one marker at a time (from the same set of markers in real data applications) and examined its 

spatial autocorrelation pattern by carrying out spatial autocorrelation tests using Moran I (Li, 

Calder and Cressie 2007) and Geary’s C (Radeloff et al. 2000). Note that we were unable to carry 

out Moran’s I test (Bivand et al. 2011) and Geary’s C test (Bivand et al. 2011)on the large 

SlideseqV2 dataset due to heavy computational cost. Besides examining cell type marker genes, 

we also calculated correlation in the expression profile of the marker genes between neighboring 

locations (Ma and Zhou 2022). Intuitively, if the cell type composition is similar between 

neighboring locations, then the expression profile of marker genes will also be correlated between 

neighboring locations, more so than that between locations that are far away.  

Next, we applied different methods to deconvolute the above datasets. In each analysis, we 

supplied the same spatial transcriptomics data and the same scRNA-seq data as input for all 

methods (preprocessing details in APPENDIX B.4). After deconvolution, we followed 
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(Teschendorff et al. 2020) to assign the dominant cell type on each spatial location and examined 

the distribution of each cell type on the tissue. For the two datasets that contain a matched H&E 

image (MOB and PDAC), we compared the distribution of the dominant cell types inferred from 

spatial transcriptomics with the tissue structures annotated based on the H&E image. Specifically, 

we obtained tissue structure annotations based on the H&E image, overlayed spatial 

transcriptomics locations on top the H&E image, and manually annotated each measured location 

in spatial transcriptomics with the tissue structure annotations extracted from the H&E image. For 

the MOB dataset, we annotated four main structural layers in the olfactory bulb: the granule cell 

layer (GCL, which contains n = 67 spatial locations), the mitral cell layer (MCL, n = 75), the 

glomerular layer (GL, n =80), and the nerve layer (ONL, n = 55). For the PDAC dataset, we 

annotated four main structural regions on the cancer tissue: cancer region (n = 137), ductal region 

(n = 72), pancreatic region (n = 70), and stroma region (n = 147). In the MOB dataset, because 

each olfactory layer is dominated by one cell type, we directly compared the dominant cell type 

inferred from CARD with the layer annotations based on H&E image via adjusted rand index (ARI) 

and Purity, using the compare function in the igraph R package (v1.0.0) and purity function in the 

funtimes R packages (v8.1), respectively. In the PDAC dataset, because each tissue region is 

substantially more heterogenous than that in the MOB data and contains potentially multiple cell 

types, using ARI would penalize methods that detected fine tissue regions that were not detected 

in the original study. Therefore, we carefully examined the distribution of inferred cell types on 

each annotated tissue region based on the transcriptomic profile and existing biological literature.   

Because CARD directly models spatial correlation, CARD can be used to impute gene 

expression on unmeasured locations. To evaluate the accuracy of such imputation, we performed 

location masking analysis. Specifically, in each real data application, we randomly masked a fixed 



 96 

percentage of the spatial locations to be missing, used the unmasked spatial locations to perform 

CARD deconvolution, relied on the cell type composition estimates obtained on the unmasked 

locations to predict and impute the cell type composition on the masked locations, and further 

imputed the gene expression levels on the masked locations. We then compared the imputed gene 

expression level with the measured expression level on the masked locations using RMSE. RMSE 

serves as an indicator on how accurate CARD imputation works, which also reflects its 

deconvolution performance. The magnitude of RMSE can vary substantially across datasets 

depending on factors such as the sequencing read depth per location. In the analysis, we set the 

mask percentage to be either 1%, 2%, 5%, 10% or 20% for all datasets.  

3.5.7 Data and code availability 

This study made use of publicly available datasets.  These include the mouse olfactory bulb 

dataset (https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-

aaf2403/), human pancreatic ductal adenocarcinoma (PDAC) dataset 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672), mouse hippocampus Slide-

seqV2 dataset (https://singlecell.broadinstitute.org/single_cell/study/SCP948/robust-

decomposition-of-cell-type-mixtures-in-spatial-transcriptomics), and mouse brain (coronal 

section) 10x Visium (https://www.10xgenomics.com/resources/datasets/). For the scRNAseq 

references used in this study, they are all publicly available with details provided in supplementary 

tables 2-3. The CARD software package and source code have been deposited 

at www.xzlab.org/software.html. All scripts used to reproduce all the analysis are also available at 

the same website. 

https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/
https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672(
file:///C:/Users/catherinema/Library/Containers/com.microsoft.Word/Data/Library/Preferences/AutoRecovery/(https:/singlecell.broadinstitute.org/single_cell/study/SCP948/robust-decomposition-of-cell-type-mixtures-in-spatial-transcriptomics)
file:///C:/Users/catherinema/Library/Containers/com.microsoft.Word/Data/Library/Preferences/AutoRecovery/(https:/singlecell.broadinstitute.org/single_cell/study/SCP948/robust-decomposition-of-cell-type-mixtures-in-spatial-transcriptomics)
https://www.10xgenomics.com/resources/datasets/%5d.
http://www.xzlab.org/software.html
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3.6 Supplementary Figures 

 

Figure S3.1 Simulated cell type proportions.  

Simulated cell type proportions capture a wide variety of spatial patterns and display layer-

structural patterns across spatial locations. Here, as an example of one simulation replicate, data 

were simulated under different spatial correlation strength as represented by the proportion of 

noisy locations (pn, columns) with nc = 10. High pn corresponds to low spatial correlation. Each 

panel of the figure was plotted as a pie plot of cell type compositions with 6 cell types we used in 

the simulation.  
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Figure S3.2 Simulated data are realistic, preserving data features observed in the published 

spatial transcriptomics data.  

Specifically, as an example of one simulation replicate, the data was simulated under the following 

parameters setting: the number of cells on each spatial location (𝑛𝑐 = 10) and the spatial correlation 

strength as represented by the proportion of noisy locations (𝑝𝑛= 0). (A) Proportion of zero versus 

mean under log10 scale for both simulated data (blue) and published spatial transcriptomics data 

(pink); (B) Mean-variance plot under log10 scale for both simulated data (blue) and published 

spatial transcriptomics data (red). 

 

Figure S3.3 Comparison of deconvolution accuracy of different methods in simulations 

under the analysis scenario I. 

In the analysis scenario I, the same scRNAseq dataset used in simulations is used as the reference 

for deconvolution. Compared deconvolution methods (x-axis) include MuSiC (purple), RCTD 

(yellow), SPOTlight (orange), cell2location (green), spatialDWLS (blue), and stereoscope (blue-

gray). Simulations were performed under different spatial correlation strength as represented by 

the proportion of noisy locations (𝑝𝑛 ). High 𝑝𝑛  corresponds to low spatial correlation. We 

calculated the root mean square errors (RMSE) between the estimated cell type compositions and 

the true cell type compositions for each method to measure its deconvolution performance. We 

further contrasted RMSE of the other methods with respect to that of CARD by computing an 

RMSE difference. An RMSE difference (y-axis) below zero suggests that CARD performs better 

than other methods. Differences of RMSE across five simulation replicates (n = 5) were displayed 

in the form of box plots. Each boxplot ranges from the first and third quartiles with the median as 

the horizontal line while whiskers represent 1.5 times the interquartile range from the lower and 

upper bounds of the box. 
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Figure S3.4 Comparison of deconvolution accuracy of different methods in simulations 

under all simulation scenarios. 

In the analysis scenario I, the same scRNA-seq dataset used in simulations is used as the reference 

for deconvolution. In the analysis scenario II, the same scRNA-seq data but with one missing cell 

type (e.g., Neuron cells) is used as the reference for deconvolution. In the analysis scenario III, the 

same scRNA-seq data but with one additional cell type (e.g., Blood cells) is used as the reference 

for deconvolution. In the analysis scenario IV, the same scRNA-seq reference data but with miss-

classified cell type in the reference for deconvolution. In the analysis scenario V, the different 

scRNA-seq reference sequenced from a different platform but with similar cell types is used as the 

reference for deconvolution. Compared deconvolution methods (x-axis) include MuSiC (purple), 

RCTD (yellow), SPOTlight (orange), cell2location (green), spatialDWLS (blue), stereoscope 

(blue-gray), and CARD (red). Simulations were performed under different spatial correlation 

strength as represented by the proportion of noisy locations (𝑝𝑛). High 𝑝𝑛 corresponds to low 

spatial correlation. We calculated the root mean square errors (RMSE) between the estimated cell 

type compositions and the true cell type compositions for each method to measure its 

deconvolution performance. RMSE across five simulation replicates (n = 5) were displayed in the 

form of box plots. Each boxplot ranges from the first and third quartiles with the median as the 

horizontal line while whiskers represent 1.5 times the interquartile range from the lower and upper 

bounds of the box. 
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(A)                                                               (B) 

 

Figure S3.5 Deconvolution accuracy on detecting the dominant cell type at each spatial 

location for each method at Simulation Scenario I. 

Compared deconvolution methods (x-axis) include MuSiC (purple), RCTD (wheat), SPOTlight 

(orange), cell2location (green), spatialDWLS (skyblue), stereoscope (blue gray), and CARD (red). 

Here the percentage of noisy locations equals to 0 (𝑃𝑛 = 0). (A) Boxplots display for each cell 

type (n = 6) the AUC between the binary labeled dominant cell type inferred by each method and 

the true binary dominant cell type for each spatial location. Each boxplot ranges from the first and 

third quartiles with the median as the horizontal line while whiskers represent 1.5 times the 

interquartile range from the lower and upper bounds of the box. (B) Bar plots display for the ARI 

between inferred dominant cell type and the true dominant cell type for each spatial location. A 

higher AUC and ARI indicate a higher accuracy at detecting the dominant cell types. 
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Figure S3.6 Comparison of deconvolution accuracy of different methods in simulations 

under the analysis scenario II. 

In the analysis scenario II, the same scRNAseq dataset is used in simulations but missing one cell 

type (e.g., Neuron cells) is used as the reference for deconvolution. Compared deconvolution 

methods (x-axis) include MuSiC (purple), RCTD (yellow), SPOTlight (orange), cell2location 

(green), spatialDWLS (blue), and stereoscope (blue-gray). Simulations were performed under 

different spatial correlation strength as represented by the proportion of noisy locations (𝑝𝑛). High 

𝑝𝑛 corresponds to low spatial correlation. We calculated the root mean square errors (RMSE) 

between the estimated cell type compositions and the true cell type compositions for each method 

to measure its deconvolution performance. We further contrasted RMSE of the other methods with 

respect to that of CARD by computing an RMSE difference. An RMSE difference (y-axis) below 

zero suggests that CARD performs better than other methods. Differences of RMSE across five 

simulation replicates (n = 5) were displayed in the form of box plots. Each boxplot ranges from 

the first and third quartiles with the median as the horizontal line while whiskers represent 1.5 

times the interquartile range from the lower and upper bounds of the box. For results of other 

missing cell types, please see details in ref (Ma and Zhou 2022) 
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Figure S3.7 Comparison of deconvolution accuracy of different methods in simulations 

under the analysis scenario II. 

In the analysis scenario II, the same scRNAseq dataset used in simulations but missing one cell 

type (e.g., Astrocytes) is used as the reference for deconvolution. Compared deconvolution 

methods (x-axis) include MuSiC (purple), RCTD (yellow), SPOTlight (orange), cell2location 

(green), spatialDWLS (blue), and stereoscope (blue-gray). Simulations were performed under 

different spatial correlation strength as represented by the proportion of noisy locations (𝑝𝑛). High 

𝑝𝑛 corresponds to low spatial correlation. We calculated the root mean square errors (RMSE) 

between the estimated cell type compositions and the true cell type compositions for each method 

to measure its deconvolution performance. We further contrasted RMSE of the other methods with 

respect to that of CARD by computing an RMSE difference. An RMSE difference (y-axis) below 

zero suggests that CARD performs better than other methods. Differences of RMSE across five 

simulation replicates (n = 5) were displayed in the form of box plots. Each boxplot ranges from 

the first and third quartiles with the median as the horizontal line while whiskers represent 1.5 

times the interquartile range from the lower and upper bounds of the box. 
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Figure S3.8 Comparison of deconvolution accuracy of different methods in simulations 

under the analysis scenario IV 

In the analysis scenario IV, the same scRNA-seq data but with manually merged cell type included 

is used as the reference for deconvolution. Compared deconvolution methods (x-axis) include 

MuSiC (purple), RCTD (wheat), SPOTlight (orange), cell2location (green), spatialDWLS 

(skyblue), and stereoscope (blue gray). Simulations were performed under different spatial 

correlation strength as represented by the proportion of noisy locations (𝑝𝑛). High 𝑝𝑛 corresponds 

to low spatial correlation. We calculated the root mean square errors (RMSE) between the 

estimated cell type compositions and the true cell type compositions for each method to measure 

its deconvolution performance. RMSE difference with CARD were displayed across all five 

replicates (n = 5) in the format of boxplot when the two cell types underlying the merged one are 

(A) similar to each other (e.g., astrocytes and ependymal cells, with mean gene expression 

correlation between the two equaling 0.8); (B) or very different from each other (e.g., neurons and 

immune cells, with mean gene expression correlation between the two equaling 0.3). An RMSE 

difference (y-axis) below zero suggests that CARD performs better than other methods. 

Differences of RMSE across five simulation replicates (n = 5) were displayed in the form of box 

plots. In (A) and (B), each boxplot ranges from the first and third quartiles with the median as the 

horizontal line while whiskers represent 1.5 times the interquartile range from the lower and upper 

bounds of the box. 
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Figure S3.9 Comparison of deconvolution accuracy of different methods in simulations 

under the analysis scenario IV across all possible combinations of the merged cell types 

In the analysis scenario IV, the same scRNA-seq data but with manually merged cell type included 

is used as the reference for deconvolution. Compared deconvolution methods (x-axis) include 

MuSiC (purple), RCTD (wheat), SPOTlight (orange), cell2location (green), spatialDWLS 

(skyblue), and stereoscope (blue gray). Simulations were performed under different spatial 

correlation strength as represented by the proportion of noisy locations (pn). High pn corresponds 

to low spatial correlation. We calculated the root mean square errors (RMSE) between the 

estimated cell type compositions and the true cell type compositions for each method to measure 

its deconvolution performance. Boxplot displaying the contrasted RMSE of the other methods with 

respect to that of CARD by computing an RMSE difference. An RMSE difference (y-axis) below 

zero suggests that CARD performs better than other methods. Differences of RMSE across five 

simulation replicates (n = 5) were displayed in the form of box plots. Here, the RMSE difference 

is displayed across all cell type combinations underlying the merged one. Each boxplot ranges 

from the first and third quartiles with the median as the horizontal line while whiskers represent 

1.5 times the interquartile range from the lower and upper bounds of the box. 
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Figure S3.10 Comparison of deconvolution accuracy of different methods in simulations 

under the analysis scenario V. 

In the analysis scenario V, a similar scRNA-seq data but sequenced from different platform was 

used for deconvolution. Compared deconvolution methods (x-axis) include MuSiC (purple), 

RCTD (wheat), SPOTlight (orange), cell2location (green), spatialDWLS (skyblue), and 

stereoscope (blue gray). Simulations were performed under different spatial correlation strength 

as represented by the proportion of noisy locations (pn). High pn  corresponds to low spatial 

correlation. We calculated the root mean square errors (RMSE) between the estimated cell type 

compositions and the true cell type compositions for each method to measure its deconvolution 

performance. Boxplot displaying the contrasted RMSE of the other methods with respect to that 

of CARD by computing an RMSE difference. An RMSE difference (y-axis) below zero suggests 

that CARD performs better than other methods. Differences of RMSE across five simulation 

replicates (n = 5) were displayed in the form of boxplots. Each boxplot ranges from the first and 

third quartiles with the median as the horizontal line while whiskers represent 1.5 times the 

interquartile range from the lower and upper bounds of the box. 
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Figure S3.11 Comparison of deconvolution accuracy of different methods at the major cell 

type level (Scenario I) and at the sub-cell type level. 

Compared deconvolution methods (x-axis) include MuSiC (purple), RCTD (wheat), SPOTlight 

(orange), cell2location (green), spatialDWLS (skyblue), stereoscope (blue gray), and CARD (red). 

Simulations were performed under different spatial correlation strength as represented by the 

proportion of noisy locations (pn). High pn corresponds to low spatial correlation. We calculated 

the root mean square errors (RMSE) between the estimated cell type compositions and the true 

cell type compositions for each method to measure its deconvolution performance. Boxplot 

displaying the RMSE of each method versus the number of sub-cell types ranging from 0 (Main), 

2, 4, 6, to 8 across 5 replicates (n = 5). Each boxplot ranges from the first and third quartiles with 

the median as the horizontal line while whiskers represent 1.5 times the interquartile range from 

the lower and upper bounds of the box. 

pn = 0 pn = 0.2 pn = 0.4 pn = 0.6

M
u

S
iC

R
C

T
D

S
P

O
T

lig
h

t
c
e

ll2
lo

c
a
tio

n
s
p

a
tia

lD
W

L
S

s
te

re
o

s
c
o

p
e

C
A

R
D

M
ai
n

su
bC

lu
st
2

su
bC

lu
st
4

su
bC

lu
st
6

su
bC

lu
st
8

M
ai
n

su
bC

lu
st
2

su
bC

lu
st
4

su
bC

lu
st
6

su
bC

lu
st
8

M
ai
n

su
bC

lu
st
2

su
bC

lu
st
4

su
bC

lu
st
6

su
bC

lu
st
8

M
ai
n

su
bC

lu
st
2

su
bC

lu
st
4

su
bC

lu
st
6

su
bC

lu
st
8

0.05

0.06

0.07

0.08

0.09

0.04

0.06

0.08

0.1

0.2

0.3

0.4

0.5

0.04

0.06

0.08

0.10

0.1

0.2

0.04

0.06

0.08

0.10

0.12

0.05

0.06

0.07

0.08

R
M

S
E

Method MuSiC
RCTD

SPOTlight
cell2location

spatialDWLS
stereoscope

CARD



 107 

 

Figure S3.12 Scatterplot of the first principal component of the estimated cell type 

compositions matrix of mouse olfactory bulb ST data. 

Specifically, the first principal component of the estimated cell type compositions by CARD 

accurately depicts the expected layered structure of mouse olfactory bulb Spatial Transcriptomics 

data. Here, each dot represents one location and is colored by the first principal component 

correspondingly.  
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Figure S3.13 Scatter plot of cell type proportion distributions across spatial locations in the 

mouse olfactory bulb Spatial Transcriptomics data. 

Specifically, cell type proportions estimated by CARD can accurately depict the layered structure 

of mouse olfactory bulb. For example, the granule cells inferred by CARD are highly enriched in 

the granule layer while other methods show diffused pattern outward from the granule layer 

towards other layers. CARD also distinguished correctly the adjacent mitral cell layer and 

glomerular layer, with distinct enrichment of mitral/tufted cells and periglomerular cells in the two 

layers, respectively, despite the similarity between these two cell types. In contrast, other methods 

were unable to clearly distinguish the mitral cell layer or glomerular layer with the nerve layer. 

Here, for each cell type, the cell type proportion was scaled to 0-1 range. Color was shown to 

represent the 0-1 range of cell type proportions correspondingly. 

 

Figure S3.14 Accuracy of CARD imputation in the masking analysis in the mouse olfactory 

bulb data. 

A fixed percentage of locations are masked as missing (1%, 2%, 5%, 10%, and 20%) and CARD 

is used to impute the gene expression on the masked locations. Scatterplot displays the relationship 

between the estimated gene expression for the masked spot and the true gene expression. Here, 

each dot represents one masked spatial location in one simulation replicate setting.  
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Figure S3.15 The refined spatial map of cell type composition constructed by CARD. 

The refined spatial map of cell type composition captures fine grained details of the layered 

structure in the olfactory bulb with enhanced resolutions. The spatial pattern is shown for the 

distribution of granule cells (GC), olfactory sensory neurons (OSNs), mitral/tufted cells (M-TC), 

and periglomerular cells (PGC) at different resolution represented by the number of gridded spatial 

locations. CARD can generate an enhanced spatial pattern of cell type proportions, which are not 

shown obviously in the original dataset at lower resolution.  
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Figure S3.16 The refined spatial map of gene expression constructed by CARD. 

The refined spatial map of gene expression captures fine grained details of the layered structure in 

the olfactory bulb with enhanced resolutions. The spatial pattern is shown for granule cells (GC) 

marker gene: Penk, olfactory sensory neuron’s marker gene: S100a5, mitral/tufted cell marker 

gene: Cdhr1 and periglomerular cell’s marker gene: Apold1 at different resolution represented by 

the number of gridded spatial locations. CARD can generate an enhanced spatial pattern of 

previously known marker genes, which are not shown obviously in the original dataset at lower 

resolution.  
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Figure S3.17 The refined spatial map of gene expression constructed by CARD helps to 

reveal spatial patterns of genes. 

The refined spatial map of gene expression captures fine grained details of the layered structure in 

the olfactory bulb with enhanced resolutions. The spatial pattern is shown for the non-marker genes 

Myo16, Trak2, Mitf and Cnr1 at different resolution represented by the number of gridded spatial 

locations. CARD can generate an enhanced spatial pattern of lowly expressed genes, which are 

not shown obviously or differently in the original dataset at lower resolution.   
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Figure S3.18 Clustering results on the original mouse olfactory bulb ST data (n = 282), 

CARD and BayesSpace imputed data at a higher resolution (n = 2538). 

Here, we directly used CARD to impute gene expression on the fixed sub-spots created by 

BayesSpace. We then performed clustering analysis on the imputed data by either CARD or 

BayesSpace on the same set of sub-spots. Specifically, clustering analysis was performed by K-

means clustering algorithm on the first 20 PCs of all three data. The clustering results based on 

CARD displayed a clear inside-out layered structure that resembles the anatomic organization of 

the olfactory bulb, much more so than that obtained with the original scale data and that by 

BayesSpace. 

 

Figure S3.19 Scatterplot of the first principal component of the estimated cell type 

compositions matrix. 

Specifically, the first principal component of the estimated cell type compositions by CARD and 

cell2location clearly capture a gross regional segregation between cancer and non-cancer regions 

in human pancreatic ductal adenocarcinomas data. In contrast, for MuSiC, SPOTlight, and 

spatialDWLS, their PC1 shows almost completely random spatial pattern. Here, each dot 

represents one location and is colored by the first principal component correspondingly.  
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Figure S3.20 Boxplot of the first principal component score (PC1) of the estimated cell type 

proportions by CARD and other methods at different regions in the human PDAC dataset 

respectively. 

The two-sided Wilcoxon Rank Sum test was used to pair wisely test the difference between PC1 

score in different regions. Specifically, the PC1 score of CARD’s inferred cell type proportion (p-

value = 2.7e-05) significantly differentiate between the pancreatic and ductal regions, while 

cell2location cannot (p-value = 0.043 > Bonferroni corrected p-value threshold 0.05/6 =0.008). In 

contrast, none of the other methods were able to significantly differentiate between ductal and 

stroma regions or between pancreatic and ductal regions. Here, the sample size for each region is 

n = 137 for Cancer region, n = 147 for Stromal region, n = 70 for Pancreatic region while n = 72 

for Ductal Epithelium region. Each boxplot ranges from the first and third quartiles with the 

median as the horizontal line while whiskers represent 1.5 times the interquartile range from the 

lower and upper bounds of the box. 
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Figure S3.21 Spatial distribution of dominant cell type on each location based on the cell type 

proportions from each method. 

Specifically, the dominant cell types on each location from CARD deconvolution capture the 

segregation between cancer and non-cancer regions as well as distinguish two sub cancer regions 

that were missed by other methods. Here, each dot represents one spatial location colored by the 

dominant cell type. 
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Figure S3.22 Comparisons of cell type proportions in cancer region versus non-cancer 

region. 

For each cell type, a two-sided Wilcoxon Rank Sum test was conducted for each method’s 

deconvoluted cell type proportions to compare the cancer vs non-cancer region. Here, y axis 

represents the estimated proportion and x axis represents each method while color represents either 

cancer or non-cancer regions. CARD reveals distinct distribution of two macrophage 

subpopulations between the cancer (n = 137) and non-cancer regions (n = 289), which are missed 

by the other methods. Specifically, macrophage B is enriched in the non-caner region and such 

spatial enrichment pattern underlies its function as tissue resident macrophages (Zhu et al. 2017, 

Moncada et al. 2020). In contrast, macrophage A is enriched in both cancer and non-cancer 

regions, likely reflecting a high inflammatory state of this macrophage subpopulation (Moncada 

et al. 2020, Rőszer 2015). The distinct distribution of macrophage subpopulations detected by 

CARD represents a key functional signature of the regional compartmentalization of cancer 

tissues. Here, each boxplot ranges from the first and third quartiles with the median as the 

horizontal line while whiskers represent 1.5 times the interquartile range from the lower and upper 

bounds of the box. 
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Figure S3.23 Scatter plot of cell type proportion distributions across spatial locations in the 

human pancreatic ductal adenocarcinomas data. 

Specifically, cell type proportions estimated by CARD can accurately localize cell types into the 

biologically meaningful tissue region. For example, cancer clone A and cancer clone B cells 

inferred by CARD reside in different regions of cancer regions. Ductal centroacinar cells inferred 

by CARD are enriched in the ductal epithelium region and partially in the normal pancreatic tissue 

region, consistent with the spatial expression pattern of the marker gene Crisp3 and early literature 

. The terminal ductal cells inferred by CARD mainly reside around the ductal epithelium area and 

normal pancreatic tissue region, consistent with the expression pattern of the marker gene Tff3 and 

early literature7. In contrast, none of the other methods capture the expected spatial localization of 

both ductal centroacinar and terminal ductal cells. In addition, acinar cells inferred by CARD are 

mainly enriched in the normal pancreatic tissue region but are either absent in the pancreatic region 

or are diffused outward from the pancreatic region towards the stroma region and cancer region 

when inferred by the other methods. Here, for each cell type, the cell type proportion was scaled 

to 0-1 range. Color was shown to represent the 0-1 range of cell type proportions correspondingly. 
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Figure S3.24 CARD generated consistent deconvolution results across different scRNASeq 

references. 

Boxplot displaying the pairwise correlation of estimated cell type proportions from different 

scRNA-seq references (n = 10) for the human PDAC data. Each boxplot ranges from the first and 

third quartiles with the median as the horizontal line while whiskers represent 1.5 times the 

interquartile range from the lower and upper bounds of the box. The median correlation across all 

different scRNA-seq references for CARD is 0.64, higher than all other methods (the median 

correlation is 0.47 for MuSiC, 0.56 for RCTD, 0.52 for SPOTlight, 0.61 for cell2location, 0.61 for 

spatialDWLS, and 0.44 for stereoscope). Here, the cell type proportions are pair wisely compared 

between all scRNA-seq references, including acinar cells, cancer clone A cells/ductal 2 cells, 

ductal centroacinar cells/ductal 1 cells, endocrine cells, and endothelial cells. We focused on these 

cell types because they exist in all matched and unmatched scRNA-seq references. 

 

Figure S3.25 Accuracy of CARD imputation in the masking analysis in the human pancreatic 

ductal adenocarcinoma (PDAC) data. 

A fixed percentage of locations are masked as missing (1%, 2%, 5%, 10%, and 20%) and CARD 

is used to impute the gene expression on the masked locations. Scatterplot displays the Pearson’s 

correlation between the estimated gene expression for the masked spot and the true gene 

expression. Here, each dot represents one masked spatial location in one simulation replicate 

setting.  
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Figure S3.26 Accuracy of CARD imputation in the masking analysis across 10 replicates (n 

= 10) when using different scRNA-seq as references. 

A fixed percentage of locations are masked as missing (x-axis) and CARD is used to impute the 

gene expression on the masked locations. Three different metrics (y-axis) are used to evaluate 

imputation accuracy in terms of the similarity between the imputed expression and true expression 

on masked locations: Pearson’s correlation, Spearman’s correlation and mean square error (MSE). 

Using the scRNA-seq from the same patient displays the expected better performance in terms of 

prediction correlation and error and the external scRNA-seq dataset from the normal samples 

displays the worst performance. Here, each boxplot ranges from the first and third quartiles with 

the median as the horizontal line while whiskers represent 1.5 times the interquartile range from 

the lower and upper bounds of the box. 
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Figure S3.27 The refined spatial map of cell type composition constructed by CARD in the 

human pancreatic ductal adenocarcinoma (PDAC) tissue. 

The refined spatial map of cell type composition captures fine grained details of the regional 

structure of PDAC tissue with enhanced resolutions. The spatial pattern is shown for the 

distribution of cancer clone A cells, cancer clone B cells, ductal terminal cells, ductal high hypoxic 

cells, ductal antigen presenting cells, ductal centroacinar cells, fibroblast cells, acinar cells, 

microphage A cells and macrophage B cells at different resolution represented by the number of 

gridded spatial locations. CARD can generate an enhanced spatial pattern of cell type proportions, 

which are not shown obviously in the original dataset at lower resolution. 

 

Figure S3.28 The refined spatial map of gene expression constructed by CARD in the human 

pancreatic ductal adenocarcinoma (PDAC) tissue. 

The refined spatial map of gene expression captures fine grained details of the regional structure 

of PDAC tissue with enhanced resolutions. The spatial pattern is shown for cancer clone A cell 

marker gene TM4SF1, cancer clone B cell marker gene S100A4, ductal terminal cells marker gene 

TFF3, ductal high hypoxic cell marker gene APOL1, ductal centroacinar cell marker gene CRISP4 

and fibroblast cell marker gene CD248 at different resolution represented by the number of gridded 

spatial locations. CARD can generate an enhanced spatial pattern of previously known marker 

genes, which are not shown obviously in the original dataset at lower resolution.  
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Figure S3.29 The refined spatial map of gene expression constructed by CARD in the human 

pancreatic ductal adenocarcinoma (PDAC) tissue. 

The refined spatial map of gene expression captures fine grained details of the regional structure 

of PDAC tissue with enhanced resolutions. The spatial pattern is shown for non-marker genes 

CCDC80, IGFBP4, FN1, S100P, KLK1, GRN, C1QA, CD24, TM4SF4 at different resolution 

represented by the number of gridded spatial locations. CARD can generate an enhanced spatial 

pattern of new genes, which are not shown obviously or different in the original dataset at lower 

resolution.  
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Figure S3.30 Clustering results on the original human PDAC ST data (n = 428), CARD and 

BayesSpace imputed data at a higher resolution (n = 3852). 

Here, we directly used CARD to impute gene expression on the fixed sub-spots created by 

BayesSpace. We then performed clustering analysis on the imputed data by either CARD or 

BayesSpace on the same set of sub-spots. Specifically, clustering analysis was performed by K-

means clustering algorithm on the first 20 PCs of all three data. Clustering analysis on CARD 

imputed high resolution data also segregated the two cancer sub-regions, the normal pancreatic 

region, and the ductal region, more clearly than the original data and refined data by BayesSpace. 

 

Figure S3.31 Scatterplot of the first principal component of the estimated cell type 

compositions matrix. 

Specifically, the first principal component of the estimated cell type compositions by CARD 

clearly captures the curved shape of hippocampus accurately that is consistent with the UMI counts 

displayed in Figure 5A, more so than the other methods. Here, each dot represents one location 

and is colored by the first principal component correspondingly.  
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Figure S3.32 Scatter plot of cell type proportion distributions across spatial locations in the 

mouse hippocampus Slide-seq V2 data. 

Specifically, cell type proportions estimated by CARD can accurately localize cell types into the 

biologically meaningful tissue region. For example, CA1 cells are highly enriched in CA1; CA3 

cells mainly localize in CA3; dentate cells reside in a C-shaped ring region of dentate gyrus. Here, 

for each cell type, the cell type proportion was scaled to 0-1 range. Color was shown to represent 

the 0-1 range of cell type proportions correspondingly. 
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Figure S3.33 RCTD, spatialDWLS, stereoscope, and SPOTlight incorrectly locate CA3 cells 

into CA1 regions more so than CARD. 

The dot plot displays the gene expression of CA1 cells Wfs1 in their inferred CA3 spatial locations 

versus in the CARD inferred CA3 spatial locations. RCTD, spatialDWLS, and stereoscope 

perform similarly, all inferring CA3 cells incorrectly in CA1 region based on the spatial 

distribution of the inferred dominant cell type and the spatial distribution of the inferred CA3 cells, 

more so than CARD. Specifically, we quantify the gene expression of the marker of CA1 cells 

Wfs1 in the spatial locations that are dominated by CA3 cells inferred by each method. We expect 

that if the other methods incorrectly locate CA3 cells into CA1 regions more so than CARD, the 

marker gene expression of other methods’ inferred CA3 locations should be significantly higher 

than that inferred by CARD. Consistent with our expectation, we observed that the Wfs1 marker 

gene expression is statistically significantly higher in other methods’ inferred CA3 regions than 

CARD inferred CA3 regions, indicating that other methods incorrectly locate more CA3 cells in 

CA1 region, more so than CARD. Pairwise differences of the gene expression between CARD and 

other methods were assessed by two-sided Wilcoxon Rank-Sum test. 
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Figure S3.34 Comparisons of the specificity of inferred major regions in the Slide-seq V2 

mouse hippocampus data by different deconvolution methods. 

 (A) Bar plots display the comparisons of the mean gene expression level in the major regions 

inferred by different deconvolution methods (same as Figure 5D); (B) Boxplot displays the local 

inverse Simpson’s index (LISI) for each method (n = 41758) while pairwise differences of the 

LISI value between CARD and other methods were assessed by one-sided Wilcoxon Rank-Sum 

test; Each boxplot ranges from the first and third quartiles with the median as the horizontal line 

while whiskers represent 1.5 times the interquartile range from the lower and upper bounds of the 

box. (C) Gini index of marker genes in the major regions inferred by different deconvolution 

methods versus outside of the major region. We reasoned that a good deconvolution method would 

yield accurate cell type composition estimates and subsequently accurate tissue structures and 

would thus capture the expected structure specific expression pattern for the marker genes well. 

Therefore, for each marker gene, we calculated the three metrics on the inferred tissue structures 

from a given method to serve as quantifications for its deconvolution performance. The three 

metrics include: (1) mean gene expression in the tissue structure where the marker gene is expected 

to be enriched, where a high value is desirable; (2) local inverse Simpson’s index, where a lower 

value indicates a better segregation between the hippocampus structures; (3) Gini index for the 

marker gene within the specific tissue structure, where a lower Gini index indicates higher 

expression homogeneity within the structure. Here the marker gene for CA1 is Wfs1, for CA3 is 

Cpne4 and for dentate cells is C1ql2. 

 

Figure S3.35 Correlations in cell type proportion across spatial locations between pairs of 

cell types inferred by CARD in the mouse hippocampus Slide-seq V2 data. 

Color is scaled by the correlation value. 
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Figure S3.36 Accuracy of CARD imputation in the masking analysis across 10 replicates (n 

= 10) in the mouse hippocampus Slide-seq V2 data. 

A fixed percentage of locations are masked as missing (x-axis) and CARD is used to impute the 

gene expression on the masked locations. Three different metrics (y-axis) are used to evaluate 

imputation accuracy in terms of the similarity between the imputed expression and true expression 

on masked locations: Pearson’s correlation, Spearman’s correlation and mean square error (MSE). 

Here, each boxplot ranges from the first and third quartiles with the median as the horizontal line 

while whiskers represent 1.5 times the interquartile range from the lower and upper bounds of the 

box. 
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Figure S3.37 The refined spatial map of cell type composition constructed by CARD in the 

mouse hippocampus tissue. 

The refined spatial map of cell type composition captures fine grained details of the regional 

structure of mouse hippocampus tissue with enhanced resolutions. The spatial pattern is shown for 

the distribution of CA1 cells, CA3 cells and dentate cells at different resolution represented by the 

number of gridded spatial locations. CARD can generate an enhanced spatial pattern of cell type 

proportions, which are not shown obviously in the original dataset at lower resolution.  
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Figure S3.38  The refined spatial map of gene expression constructed by CARD in the mouse 

hippocampus tissue. 

The refined spatial map of gene expression captures fine grained details of the regional structure 

of mouse hippocampus tissue with enhanced resolutions. The spatial pattern is shown for CA1 cell 

marker gene Wfs1, CA3 cell marker gene Cpne4, and dentate cell marker gene C1ql2 at different 

resolution represented by the number of gridded spatial locations. CARD can generate an enhanced 

spatial pattern of previously known marker genes, which are not shown obviously in the original 

dataset at lower resolution. Here, color was scaled to 0-1 range by the specific marker gene 

expression. Due to the large sparsity of the original Slide-seq V2 data, we set the color for the zero 

expression as the lowest color in the color palette to visualize it clearly.  
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Figure S3.39 The refined spatial map of gene expression constructed by CARD in the mouse 

hippocampus tissue. 

The refined spatial map of gene expression captures fine grained details of the regional structure 

of mouse hippocampus tissue with enhanced resolutions. The spatial pattern is shown for the non-

marker genes at different resolutions represented by the number of gridded spatial locations. 

CARD can generate an enhanced spatial pattern of non- marker genes, which are not shown 

obviously or shown differently in the original dataset at lower resolution. Here, color was scaled 

to 0-1 range by the specific marker gene expression. Due to the large sparsity of the original Slide-

seq V2 data, we set the color for the zero expression as the lowest color in the color palette to 

visualize it clearly.  
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Figure S3.40 Scatter plot of cell type proportion distributions across spatial locations in the 

mouse hippocampus 10x Visium data when overlayed on top of H&E staining. 

Left panel displays the original H&E staining figure. Specifically, cell type proportions estimated 

by MuSiC, RCTD, SPOTlight, cell2location, spatialDWLS, and stereoscope correspondingly. 

Color was shown to represent the 0-1 range of cell type proportions correspondingly. 
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Figure S3.41 Specificity in the cell type proportion in each region compared with its 

corresponding boundary for all methods. 

The estimated cell type compositions on CA1, CA3 and dentate gyrus from both CARD and 

MuSiC matched the corresponding structures on the H&E image, while those from the other 

methods appear to also occupy regions outside the expected structure boundaries (details see 

Supplementary Figure 73). For quantification, we calculated the mean cell type proportion within 

each structure, the mean cell type proportion on the boundary locations right adjacent to each 

structure (as shown in Supplementary Figure 74) and contrasted the two mean values by computing 

a ratio to serve as the location specificity measurement for the cell types. Consistent with 

visualization, we found that both CARD and MuSiC generated higher location specificity for all 

region-specific cell types as compared to the other methods.  
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(A)  

 

(B)  

 

Figure S3.42 CARDfree generates comparable deconvolution results with CARD. 

 (A) when using known marker genes from 13 to deconvolute the mouse olfactory bulb spatial 

transcriptomics dataset. Spatial scatter pie plot displays inferred cell type composition on each 

spatial location from different deconvolution methods by CARDfree and CARD. The cell type 

CT1, CT2, CT3, CT4, and CT5 represent five clusters in the reference-free framework. (B) when 

using DE genes calculated from Seurat pipeline as the marker genes to deconvolute the human 

pancreatic ductal adenocarcinoma (PDAC) dataset. Spatial scatter pie plot displays inferred cell 

type composition on each spatial location from different deconvolution methods by CARDfree 

and CARD. The cell type CT1 to CT20 represents twenty clusters in the reference-free framework.  
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Figure S3.43 Computation time (minutes top panel) and peak memory usage (MB, bottom 

panel) for each deconvolution method on four real spatial transcriptomics datasets. 

Computation of CARD, MuSiC and RCTD was performed on a single core of an Intel(R) Xeon(R) 

CPU E5-2683 v3 2.00GHz processor while computation of cell2location was performed on the 

GTX 1080 GPU processor. For better visualization of the time difference between CARD and 

other methods, the GPU time for the cell2location and stereoscope are plotted here. Note that, 

GTX 1080 GPU processor provides a total of 9 TFLOPS of performance while Intel(R) Xeon(R) 

CPU E5-2683 v3 provide a total of 0.448 TFLOPS of performance per core. So, the CPU time for 

cell2location and stereoscope should be calculated as the GPU time of cell2location * 9 / 0.448, 

almost 20 times slower than the GPU time shown in the figure. CARD is computationally fast and 

efficient compared with other methods in four real data applications. Note that we did not apply 

cell2location to the Slide-seq V2 data due to its heavy computational burden.  
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Figure S3.44 Computation time (seconds) and peak memory usage (MB) for CARD on 

constructing a refined spatial map. 

Computation was performed on a single core of an Intel(R) Xeon(R) CPU E5-2683 v3 2.00GHz 

processor. grid = number of newly grided spatial locations. (A) Performance of CARD and 

BayesSpace on computational time (the first row) and peak memory usage (the second row) across 

different spatial-resolved transcriptomics. Here, the number of new locations for CARD is fixed 

to be 5000 while the number of refined locations for BayesSpace is dependent on the structure.  

 

Figure S3.45 Computation time (seconds) and peak memory usage (MB) for CARD on 

constructing a refined spatial map on different number of new locations (new grid). 

Computation was performed on a single core of an Intel Xeon L5420 2.50 GHz processor. grid = 

number of newly grided spatial locations. Performance of CARD on computational time (left 

panel) and peak memory usage (right panel) on the same datasets when the number of newly grided 

spatial locations = 1000, 5000, 10,000, 20,000, 40,000. Here, we used the largest dataset mouse 

hippocampus Slide-seq V2 data as an example.   
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3.7 Supplementary Tables 

Table S3.1 Results of Moran’s I and Geary’s C spatial statistical tests in real data 

applications.  

P-value was determined by the one-sided Moran’s I and one-sided Geary’s C test and was adjusted 

by Bonferroni procedure. 

Data set Protocol Year 
# 

Genes 
#Spots  

scRNAseq  

/Spatial  

Data 

Type 

H&E 

Staini

ng 

Mouse 

Olfactory 

Bulb 

(Replicate 12) 

ST 2016 16034 282 GSE121891 Spatial *Link1 

Human PDAC 

(PDAC-A) 

ST 

(Different 

version) 

2020 25753 428 
GSE111672 

Peng 
Spatial *Link2 

Mouse 

Hippocampus 

Slide-seqV2 

Slide-seqV2 2020 23265 53208 DropViZ Spatial NA 

Dataset Gene 

               Moran’s I            Geary’s C 

P-value 
Adjusted 

P-value 
P-value Adjusted P-value 

MOB 

 

  

Penk  5.149e-57 2.060e-56 7.314e-03 2.926e-02 

Apold1  2.261e-03 9.046e-03 2.019e-02 8.075e-02 

Cdhr1  1.593e-01 6.372e-01 9.329e-01 1.000e+00 

S100a5  1.770e-98 7.082e-98 2.138e-12 8.554e-12 

PDAC  

TM4SF1 3.002e-201 1.801e-200 2.068e-11 1.241e-10 

S100A4 2.244e-40 1.346e-39 8.798e-02 5.279e-01 

TFF3 1.627e-62 9.761e-62 1.313e-02 7.879e-02 

APOL1 5.824e-168 3.495e-167 8.428e-05 5.057e-04 

CRISP3 7.914e-48 4.748e-47 2.852e-05 1.711e-04 

CD248 1.192e-03 7.152e-03 8.081e-01 1.000e+00 

10X Visium 

Wfs1 <2.2e-308 <2.2e-308 7.452e-05 2.236e-04 

Cpne4 <2.2e-308 <2.2e-308 4.813e-06 1.444e-05 

C1ql2 <2.2e-308 <2.2e-308 8.273e-01 1.000e+00 
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Mouse 

Hippocampus 

10x Visium 

10x Visium 2020 21143 2698 DropViZ Spatial *Link3 

Mouse Brain 

Cortex 
seqFISH+ 2019 10000 523 GSE102827 Spatial NA 

Zeisel 
10x 

Chromium 
2018 27933 20585 

Simulation 

(Scenario 1 2 3 

4) 

scRN

Aseq 
NA 

GSE109447 

microwell-seq 

+ 

Drop-seq 

2019 32104 32684 
Simulation 

(Scenario 5) 

scRN

Aseq 
NA 

GSE121891 
10x 

Chromium 
2018 18560 21746 

Mouse 

Olfactory Bulb 

scRN

Aseq 
NA 

GSE111672 

(PDAC-A) 

 

inDrop 2020 19736 1926 Human PDAC 
scRN

Aseq 
NA 

GSE111672 

(PDAC-B) 

 

inDrop 2020 19736 1733 Human PDAC 
scRN

Aseq 
NA 

Peng 
10x 

Chromium 
2019 24005 57530 Human PDAC 

scRN

Aseq 
NA 

Peng_Normal 
10x 

Chromium 
2019 24005 15544 Human PDAC 

scRN

Aseq 
NA 

Peng_Tumor 
10x 

Chromium 
2019 24005 41986 Human PDAC 

scRN

Aseq 
NA 

DropViZ 

(RCTD 

processed) 

Drop-seq 2018 27953 1000 
Mouse 

Hippocampus 

scRN

Aseq 
NA 

GSE102827 inDrops 2017 25187 65539 
Mouse Brain 

Cortex 

scRN

Aseq 
NA 

Table S3.2 List of 5 spatially resolved transcriptomics datasets and 10 scRNA-seq datasets 

we used in our analysis.  

Specifically, the links are provided in ref (Ma and Zhou 2022) 
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Chapter 4 Accurate and Efficient Integrative Reference-Informed Spatial Domain 

Detection for Spatial Transcriptomics 

4.1 Abstract 

Spatially resolved transcriptomics (SRT) studies are becoming increasingly common and 

increasingly large, offering unprecedented opportunities to characterize the spatial and functional 

organization of complex tissues. Here, we introduce a computational method, IRIS, that 

characterizes the spatial organization of complex tissues through accurate and efficient detection 

of spatial domains. IRIS uniquely leverages the widespread availability of single-cell RNA-seq 

data for reference-informed spatial domain detection, integrates multiple SRT tissue slices jointly 

while explicitly considering correlation both within and across slices, produces biologically 

interpretable spatial domains, and benefits from multiple algorithmic innovations for highly 

scalable computation. We demonstrate the advantages of IRIS through in-depth analysis of four 

SRT datasets from different technologies across various tissues, species, and spatial resolutions. 

IRIS attains an unprecedented 58% ~ 1,083% accuracy gain over existing methods in a gold 

standard dataset with known ground truth. Furthermore, IRIS is 8.5 ~ 134.7 times faster than 

existing methods in moderate-sized datasets and is the only method applicable to large-scale SRT 

datasets, including the recent stereo-seq and 10x Xenium. As a result, IRIS uncovers the fine-scale 

structures of brain regions, reveals the spatial heterogeneity of distinct tumor microenvironments, 

and characterizes the structural changes of the seminiferous tubes in the testis associated with 

diabetes, all at a speed and accuracy unachievable by existing approaches. 
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4.2 Introduction 

Spatially resolved transcriptomics (SRT) are a set of recently developed technologies that 

enable the profiling of gene expression on a tissue with spatial localization information. These 

SRT technologies include both imaging-based approaches, which rely on either single molecular 

in situ hybridization (e.g., MERFISH (Chen et al. 2015, Vizgen 2021), seqFISH (Lubeck et al. 

2014), seqFISH+ (Lubeck et al. 2014), 10x Xenium (Janesick et al. 2022)) or in situ sequencing 

(e.g., STARmap (Wang et al. 2018a), FISSEQ (Lee et al. 2015a)), and next-generation sequencing 

based approaches, which include Spatial Transcriptomics (ST) (Ståhl et al. 2016), 10x Visium 

(10XGenomics), Slide-seq (Rodriques et al. 2019) (Stickels et al. 2021), Stereo-seq (Chen et al. 

2022), and Seq-Scope (Cho et al. 2021), to name a few. All together, these SRT technologies have 

provided unprecedented opportunities for investigating and characterizing the transcriptomic and 

cellular landscape of complex tissues (Tian et al. 2022).  

A major analytic task of SRT studies is to characterize the spatial organization of complex 

tissues in the form of spatial domain detection (Moses and Pachter 2022, Tian et al. 2022, Rao et 

al. 2021). Tissues are complex cellular ecosystems that consist of many spatially organized and 

functionally distinct anatomical domains and microenvironments, each characterized by unique 

local features with varying cell type compositions and transcriptomic heterogeneity. The spatial 

organization of tissues in the form of local domains facilitates how different cell types coordinate 

with each other in carrying out tissue functions in development, homeostasis, communication, 

repair, and signaling responses. Consequently, detecting spatial domains on the tissue in SRT 

studies can facilitate our understanding of the spatial and functional organization of a normal tissue 

and reveal how alterations in the tissue structure may underlie disease etiology. Several 

computational methods have been recently developed for detecting spatial domains in SRT (Hu et 
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al. 2021, Zhao et al. 2021, Fu et al. 2021, Dries et al. 2021, Moses and Pachter 2022, Palla et al. 

2022, Zhu et al. 2018, Tian et al. 2022, Rao et al. 2021, Li and Zhou 2022, Shang and Zhou 2022). 

Examples include the graph convolutional network method spaGCN (Hu et al. 2021), the Potts 

model based methods such as hidden Markov random field (HMRF) (Zhu et al. 2018),  BayesSpace 

(Zhao et al. 2021) and BASS (Li and Zhou 2022), the autoencoder based method SEDR (Fu et al. 

2021), and the hybrid deep learning and Bayesian modeling framework Maple (Allen et al. 2022). 

Unfortunately, almost all existing methods directly rely on transcriptomic heterogeneity to 

disentangle the spatial domains. However, transcriptomic heterogeneity across spatial domains is 

only a secondary feature of the spatial domains, as it is the direct consequence of the unique cell 

type composition underlying each spatial domain. Modeling the secondary feature of 

transcriptomic heterogeneity instead of the primarily feature of cell type composition for spatial 

domain detection is not ideal, as such approach makes it difficult to characterize the cellular 

landscape of the tissue, reduces the accuracy and interpretability of the detected spatial domains, 

and as will be shown here, often leads to the identification of biologically irrelevant structures. 

Here, we present an alternative strategy for detecting spatial domains in SRT studies. 

Specifically, we directly model the primary feature of cell type compositional heterogeneity across 

spatial locations and use it to segment the tissue into multiple biologically relevant spatial domains, 

each of which is now characterized by a distinct composition of cell types. This alternative strategy 

has four important benefits. First, it allows us to directly characterize the cellular landscape of the 

tissue and identify biologically interpretable spatial domains, thus facilitating the understanding of 

the cellular mechanism underlying tissue function. Second, it offers a framework for integrating 

cell type specific transcriptomic profiles (Biancalani et al. 2021, Moriel et al. 2021, Ma and Zhou 

2022, Li et al. 2023) obtained from readily available single-cell RNA-seq (scRNA-seq) data into 
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SRT. This enables us to leverage the vast amount of data gathered in scRNA-seq studies, which 

are almost always available for the tissue samples used in the SRT study, leading to potentially 

substantial accuracy gain for spatial domain detection. Third, by focusing on the primary feature 

of cell type composition, the alternative strategy naturally provides an anchoring point for 

integrating SRT data across multiple tissue slices or multiple samples that are commonly collected 

in recent SRT studies but not yet analyzable by most existing domain detection methods. In 

particular, because multiple slices from the same tissues often contain a similar set of spatial 

domains characterized by similar cell type compositions, anchoring them on the shared domain-

specific cell type composition allows us to borrow the similarity information in the spatial domain 

characteristics from multiple tissue slices to further enhance the performance of spatial domain 

detection. Finally, by transforming the task of spatial domain detection based on transcriptomic 

heterogeneity into a conceptually simpler task of characterizing domains based on domain-specific 

cell type compositions, our strategy also paves the way for various computationally efficient 

algorithms, making it feasible to detect spatial domains in very large-scale SRT datasets that are 

currently intractable for almost all existing domain detection methods.  

While the above alternative strategy is biologically intuitive, efficiently implementing it, 

however, proves to be non-trivial. As we will show below, a naive application of this alternative 

strategy, that first infers cell type compositions on the tissue and then conducts tissue segmentation 

via clustering on the inferred compositions, does not produce spatial domains as accurate as the 

current state-of-the-art methods. Consequently, to fully harness the potential of this alternative 

strategy, we have developed a novel computational method called the Integrative and Reference-

Informed tissue Segmentation (IRIS). IRIS is accurate, scalable, and robust for spatial domain 

detection. We demonstrate the advantages of IRIS by analyzing four SRT datasets from different 
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tissues and species that were sequenced using various techniques including 10x Visium, Slide-seq, 

Stereo-seq, and 10x Xenium that just came out months ago. Our results show that IRIS 

considerably surpassed the state-of-the-art methods for spatial domain detection with significantly 

greater computational efficiency. The unparalleled accuracy and computational gains delivered by 

IRIS make it an indispensable tool for integrated tissue segmentation in large-scale SRT datasets 

that are rapidly accumulating. 

4.3 Results 

4.3.1 Method overview 

IRIS is described in Methods, with its method schematic shown in Figure 4.1. Briefly, 

IRIS is a reference-informed integrative method for detecting spatial domains on multiple tissue 

slices from spatial transcriptomics with spot-level, single-cell level, or subcellular level 

resolutions. IRIS is based on the idea that each spatial domain on the tissue is characterized by a 

unique composition of cell types and that similar composition is observed for the same spatial 

domain across different slices of the same tissue (Stoltzfus et al. 2020, Bove et al. 2017). 

Consequently, IRIS integrates a reference scRNA-seq data to inform and characterize the cell type 

composition on the tissue of spatial transcriptomics for accurate and interpretable spatial domain 

detection. In the process, IRIS accommodates cell type compositional similarity across locations 

within the same slice and across different slices on the same domain to borrow information both 

within and between tissue slices for integrative and accurate spatial domain detection. Importantly, 

IRIS comes with an efficient optimization framework with multiple algebraic innovations for 

scalable computation and can easily handle multiple spatial transcriptomics datasets with millions 

of spatial locations and tens of thousands of genes. IRIS is implemented as an open-source R 

package, freely available at www.xzlab.org/software.html. 

http://www.xzlab.org/software.html
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Figure 4.1 Schematic overview of IRIS. 

IRIS is an accurate and efficient integrative reference-informed segmentation method for detecting 

spatial domains on multiple tissue slices across a range of SRT technologies. As it is shown in the 

left box, IRIS requires two types of input: a SRT data measured on multiple tissue slices with 

spatial localization information, and a scRNA-seq reference data measured on the same tissue with 

cell type specific gene expression information. With these two data inputs, IRIS builds upon the 

fact that multiple slices from the same tissues often contain a similar set of spatial domains 

characterized by similar cell type compositions and that neighboring locations within the same 

tissue usually share similar cell type compositions. In the process, IRIS accommodates cell type 

compositional similarity across locations within the same slice and across different slices on the 

same domain to borrow information both within and between tissue slices. By encouraging these 

two similarities, IRIS first updated the cell type compositions on each slice, then concatenate the 

cell type composition into a concatenated matrix, and then a K-means clustering algorithm is 

performed on the concatenated cell type composition matrix to update the spatial domains, then 

iteratively update the composition matrix and the spatial domain label to achieve optimal 

performance.  
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4.3.2 Human dorsolateral prefrontal cortex 10x Visium data 

To benchmark the performance of IRIS and other spatial domain detection methods, we 

first examined the gold standard DLPFC data by 10x Visium, which contains the ground truth 

spatial domains (Maynard et al. 2021, Pardo et al. 2022). Specifically, this data contains 12 tissue 

slices from three neurotypical adult donors, with transcriptomic measurements on 33,538 genes 

and 3,460 ~ 4,789 spatial locations. We obtained a scRNA-seq data from 10x Chromium on the 

post-mortem brain tissue with 44 cell types to serve as the reference (Mathys et al. 2019). Note 

that the scRNA-seq reference is from an external study with samples unmatched to the SRT data 

and with cell types and states potentially different from that in SRT. The DLPFC contains seven 

spatial domains that include six cortical layers and white matter. We used the domain annotations 

provided by the histologist in the original study as the ground truth and evaluated the accuracy of 

the spatial domains detected by different methods using adjusted Rand index (ARI) following 

(Zhao et al. 2021, Hu et al. 2021) (APPENDIX C.1). In particular, we compared IRIS with state-

of-the-art spatial domain detection methods that belong to three distinct categories (details in 

Methods): (1) methods that analyze a single slice one at a time (single-slice methods): spaGCN 

(with or without image), BayesSpace, and SEDR; (2) methods that first infer cell type 

compositions on the tissue and then conduct tissue segmentation via clustering on the inferred 

compositions (deconvolution-based methods): CARD_kmeans, RCTD_kmeans; and (3) methods 

that jointly analyze multiple slices (multi-slice methods): BASS, Maple, and BayesSpaceJoint. We 

first examined a simple setting where we analyzed tissue slices that come from the same donor, 

with similar tissue structures shared across slices. In the analysis, IRIS correctly detects the layered 

structures of the prefrontal cortex (Figure 4.2), with much higher accuracy than the other methods. 

Specifically, IRIS achieved a median ARI of 0.71 across slices, representing 58%-1,083% 
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accuracy gain compared to the other methods (0.45 for the second-best method spaGCN with H&E 

image; Figure 4.2B). In addition, IRIS clearly captures the sandwich-like structure of the cortical 

layers 1-3 that is missed by all the other methods and detects the deep layers 4-6, for which none 

of the other methods detect. Regardless of the pre-specified number of spatial domains, IRIS 

always performs the best and the comparative results remain consistent (Figure 4.2C). Note that 

the accuracy achieved by IRIS in this gold standard data has never been attained in any previous 

studies. 

Next, we evaluated more challenging analytic settings. First, we examined settings where 

there are missing or misclassified cell types (details in Methods) in the scRNA-seq reference. In 

this setting, IRIS remains superior compared to the other methods (median ARI = 0.66 across all 

settings), with a 47% -1,000% accuracy gain compared to the other methods, regardless of whether 

there are missing cell types or mis-classified cell types (Figure S4.1) in the scRNA-seq reference. 

Second, we analyzed tissue slices from different donors, where the tissue structures from different 

slices display distinct shapes. Here, IRIS again detects the spatial domains accurately (median ARI 

= 0.71), representing 51%-1,083% accuracy gain compared to the other methods (0.47 for the 

second-best method spaGCN without H&E image; Figure S4.2). The relative performance of 

different methods remains the same in both baseline and challenging settings in terms of ARI 

(Figure 4.2C, Figure S4.1 - Figure S4.2). 

We examined the layer specific marker genes to validate the detected spatial domains and 

provide additional evidence to further quantify the accuracy of different methods. We reasoned 

that a good spatial domain detection method would yield accurate tissue structures that captured 

the expected domain-specific expression pattern for the marker genes. Therefore, for each layer- 
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Figure 4.2 Analyzing the human DLPFC 10x Visium data. 

(A) Spatial domains detected by IRIS, spaGCN without HE, spaGCN with HE, BayesSpace, 

SEDR, CARD_kmeans, RCTD_kmeans, BASS, Maple, and BayesSpaceJoint. Results are shown 

in the baseline analysis setting where the tissue slices are from the same donor (denoted as same 

donor). Ground truth tissue regions of the human prefrontal cortex are obtained from the original 

DLPFC study (left panel). Clustering accuracy of different methods in recapitulating the true tissue 

domains is measured by ARI, with a higher ARI indicating higher accuracy. (B) Boxplots display 

the clustering accuracy measured in the format of ARI on the tissue slices applied in the baseline 

setting (same donor). Compared spatial domain detection methods (x-axis) include (1) single slice 

method: spaGCN without HE image (yellow), spaGCN with HE image (beige), BayesSpace 

(purple), and SEDR (green); (2) deconvolution-based method: CARD_kmeans (blue), 

RCTD_kmeans (tape); (3) multiple-slice methods: BASS (lake blue), Maple (grey), 

BayesSpaceJoint (matcha), and IRIS (red). (C) Clustering performance of different methods when 

varying the pre-specified number of spatial domains. The median ARI across all slices in either 

setting was calculated to measure spatial domain detection accuracy. (D) Lollipop plots (top) 

display the mean expression of seven important marker genes (y-axis) in each spatial domain 

identified by IRIS (x-axis). Solid arrow indicates the highest enrichment value. Bar plots (bottom) 

display the fold change of each marker gene in the expected domain versus other domains, where 

a higher value indicates higher domain detection accuracy. (E) Top enriched gene sets in the 

selected spatial domains detected by IRIS in gene set enrichment analysis. (F) Heatmap plot 

displays the estimated mean cell type proportion for each cell type in each spatial domain detected 

by IRIS. The color scale was normalized to 0-1 range. (G) Spatial scatter plot displays the spatial 

distribution of IRIS estimated cell type proportion for each cell type across spatial locations. For 

D - G, the results are shown for example slice 151509 in the baseline analysis.  

specific marker gene in turn, we first calculated its mean expression in the inferred spatial domain 

where the marker gene is expected to be enriched and then contrasted it to the mean expression in 

the other domains by calculating an enrichment fold change (Methods). In the analysis, we found 

that the layers identified by IRIS are enriched with known layer marker genes including PTN 

(Mentlein and Held‐Feindt 2002) (layer 1; spatial domain 0), MDGA1 (Maynard et al. 2021, 

Uchida et al. 2011) (layer 2; spatial domain 1), CARTPT (Maynard et al. 2021) (layer 3; spatial 

domain 2), PCP4 (Tang et al. 2015) (layer 4; spatial domain 3), SEMA3A (Chen et al. 2008) (layer 

5; spatial domain 4), CTGF (Zeng et al. 2012) (layer 6; spatial domain 5), CERS2 (Sampaio-

Baptista et al. 2020) (white matter; spatial domain 6) (Figure 4.2D). The enrichment pattern of the 

marker genes in the corresponding domains for IRIS is 16%-374% stronger than the other methods.  
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We carefully examined the spatial domains detected by IRIS and performed downstream 

analysis to characterize the transcriptomic and cellular landscape of the tissue domains (Methods). 

First, we carried out differential expression (DE) analysis to identify genes that are specifically 

expressed in different spatial domains. We identified a median of 188 DE genes across the seven 

domains, including both previously known layer-specific marker genes (i.e., CARTPT (Maynard 

et al. 2021), PCP4 (Tang et al. 2015)) and novel marker genes (i.e., APOE, NRGN, and PLP1 

(Tabata 2015)) (Figure S4.3). For example, APOE is an identified DE gene in spatial domain #0 

(layer 1) and encodes the apolipoprotein E that plays as a central role in lipid metabolism (Chung 

et al. 2016). PLP1 is an identified DE gene in spatial domain #6 (white matter) and is closely 

related to myelination occurring there (Ocklenburg et al. 2019). Second, we performed gene set 

enrichment analysis on the detected DE genes. We found that the detected DE genes are highly 

enriched in synapse signaling pathways, post-synapse signaling, and Alzheimer’s disease gene 

sets, all of which are hallmarks of brain functionality (Figure 4.2E, Figure S4.4). Third, we 

carefully examined the domain specific cell type compositions detected by IRIS. We found that a 

mixture of astrocyte subtypes, oligodendrocyte progenitor subtypes, and pericytes are highly 

colocalized in the spatial domain (#0) corresponding to the cortical layer 1 (Figure 4.2F) while 

different excitatory neuron subtypes are enriched in the spatial domains (# 1 to #4) corresponding 

to the cortical layers 2 to 5. In addition, we found that various oligodendrocyte subtypes are 

enriched in the white matter (#6) while inhibitory neuronal subtypes are mainly enriched in the 

deeper layers 4-5 (Swanson and Maffei 2019) (#3 to #4). Similar results are observed by examining 

the spatial distribution of the representative cell types (Figure 4.2G).  

4.3.3 Mouse spermatogenesis Slide-seq data 
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Next, we analyzed the mouse spermatogenesis Slide-seq data (Chen et al. 2021) collected 

on testis, which consists of well-defined tissue structures in the form of seminiferous tubes that 

can be easily visualized to evaluate method performance. This study sequenced six tissue slices, 

one from each of the three diabetic (ob/ob) mice and three wildtype (WT) mice, containing 23,515 

~ 24,450 genes and 27,194 ~ 42,776 spatial locations. We obtained the scRNA-seq reference from 

an external study by Drop-seq technology (Green et al. 2018) which measured gene expression on 

six batches of adult mice. We followed the original publication to primarily focus on the analysis 

of one slice from a WT mouse and one slice from an ob/ob mouse, with 81,982 spatial locations 

in total, to investigate the structural changes of the seminiferous tubes underlying diabetes-induced 

male infertility. Besides the primary analysis, we also performed joint analysis on three slices that 

come from either the three WT mice or the three diabetic mice as supplementary examples. 

Spermatogenesis is the biological process that involves five successive stages: 

spermatogonia (SPG), primary spermatocytes (SPC), secondary SPC, spermatids that include both 

round spermatids (RS) and elongating spermatids (ES), and spermatozoa (Linn et al. 2021), all 

organized by their spatial localization with respect to the seminiferous tubules (Figure 4.3A). In 

the analysis of the spermatogenesis data, we found that the spatial domains detected by IRIS 

accurately depict the expected structure of the seminiferous tubules in the testis (Figure 4.3B). 

Specifically, in the WT mouse (WT3_Puck7 slice), IRIS captured a spatial domain (#0) that is 

primarily located in the center of the seminiferous tubules where RS resides; a  domain (#2) that 

is located in the peripheral of the seminiferous tubules where ES resides; two domains (#3 & #4) 

that are colocalized with domain #2 and likely represent the primary and secondary SPC; and a 

domain (#1) that captures the interstitial space where spermatogonia, leydig cells, sertoli cells, 

endothelial cells, and macrophage cells all locate. In contrast, the spatial domains detected by 
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spaGCN, BayesSpace, and BayesSpaceJoint all display a chaotic pattern that does not resemble 

the known seminiferous tubular structures of the testis including RS and SPC. Both SEDR and 

BASS can capture the general structure of ES colocalized with SPC but were unable to identify 

the circular shaped RS domain and incorrectly detected an ES domain that is much smaller than 

expected (Figure 4.3B). The superior performance of IRIS also applies to the ob/ob mouse 

(Diabetes2_Puck10 slice), where only IRIS can accurately identify the position of the ES domain 

and capture its reduced size as compared to the WT mice, supporting disrupted spatial cellular 

architecture of the seminiferous tubules in diabetic mice (Alves et al. 2013, Chen et al. 2021, 

Ballester et al. 2004). Quantification by spatial CHAOS score (details see APPENDIX C.1) shows 

that the spatial domains detected by IRIS and BASS (median CHAOS = 0.014 for IRIS and 0.014 

for BASS) display better spatial continuity and compactness than the other methods (Figure 4.3C; 

0.015 for the second-best method SEDR), regardless of the pre-specified number of spatial 

domains (Figure 4.3C) and regardless of which combinations of slices (i.e., slices from all WT 

mice, or from all ob/ob mice) were used (Figure S4.5). 

We examined the expression pattern of several known spermatogenesis-related genes 

(Chen et al. 2021) to further validate and quantify the identified spatial domains by IRIS (Figure 

4.3D). We found that the ES and RS related domains (#2 and #0) are enriched with the 

corresponding marker genes including Prm1 (Ren et al. 2021), Tnp1 (Yan et al. 2010) for ES and 

Tekt2 (Lehtiniemi and Kotaja 2017), and Tex36 (Wang et al. 2022b) for RS. Two domains 

identified by IRIS, likely corresponding to the primary spermatocytes (#3) and secondary 

spermatocytes (#4), are enriched with the marker gene Mllt10 (ProteinAtlas) and Aurka (Nguyen 

and Schindler 2017), respectively. Specifically, gene Mllt10 was previously found to be highly ex- 
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Figure 4.3 Analyzing the mouse spermatogenesis Slide-seq data. 

(A) The diagram displays the biology process underlying spermatogenesis, which contains five 

successive stages: spermatogonia (SPG), primary spermatocytes (SPC), secondary spermatocytes 

(SPC), spermatids which include round spermatids (RS) and elongating spermatids (ES), and 

spermatozoa. (B) Spatial domains detected by IRIS, spaGCN, BayesSpace, SEDR, BASS, and 

BayesSpaceJoint in the integrative analysis of slices from wildtype and diabetes mice (denoted as 

“WT_Diabetes” analysis). (C) Boxplots display CHAOS values for different methods, which 

measure the spatial continuity and compactness of the detected spatial domains from different 

methods (left panel). Compared spatial domain detection methods (x-axis) include spaGCN 

(yellow), BayesSpace (purple), and SEDR (green), BASS (lake blue), BayesSpaceJoint (matcha), 

and IRIS (red). Line plots display CHAOS values when varying the pre-specified number of spatial 

domains. The median CHAOSs across all slices was used. (D) Scatter plots (top) display the spatial 

distribution of important spermatogenesis related marker genes. Lollipop plots (bottom) display 

the mean expression of important marker genes (y-axis) in each spatial domain identified by IRIS 

(x-axis). Solid arrow indicates the highest enrichment value. (E) Bar plots display the fold change 

of the marker gene expression in the expected domain versus other domains, where a higher value 

indicates better spatial domain detection accuracy. (F) Top enriched gene sets in selected spatial 

domains (e.g., #0 & #2) (G) Heatmap plot displays the estimated mean cell type proportion for 

each cell type in each spatial domain detected by IRIS. The color scale was normalized to 0-1 

range. (H) Spatial scatter plot displays the spatial distribution of IRIS estimated cell type 

proportion for each cell type across spatial locations. (I) Comparison of the spatial pattern of ES 

marker genes in the WT mice and ob/ob (diabetic) mice. (J) Bar plot displays the mean expression 

of ES marker genes in the ES domain (#2; the first four panels) and the mean expression of 

mitochondrial genes in domain #1 (the latter two panels) detected by IRIS in WT (olive) and ob/ob 

(pink) slices in the “WT_Diabetes” analysis. (K) Purity score of ES domain (top panel) and ES 

cells (bottom panel) in the WT (blue) and ob/ob (yellow) mice. For D – G, the results are shown 

for the example WT slice (WT3_Puck7) in the main analysis. 

-pressed in early spermatids and pachytene/diplotene spermatocytes and gene Aurka plays an 

important role in the secondary spermatocyte stage during the metaphase II in meiosis II (Nguyen 

and Schindler 2017). The domain #1 from IRIS is enriched with several mitochondrial genes and 

Sertoli cells marker genes (e.g., mt-Rnr2, and Clu (Zhang et al. 2015)), thus likely representing 

the germinal epithelium structure (Figure S4.7). Importantly, quantifications with marker gene 

enrichment again highlight the accuracy of IRIS, which achieved enrichment pattern 4%-225% 

stronger compared to the other methods (Figure 4.3E). 

We carefully examined the molecular and cellular signatures of the spatial domains 

detected by IRIS. First, we performed domain specific DE analysis. DE analysis identified a 
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median of 4,077 DE genes across five domains, revealing both known region-specific marker 

genes (e.g., Tekt2, Tex36, Tnp1, Prm1, Aurka, and Clu) and novel DE genes (e.g., Kif2b (Lin et al. 

2019), Sycp1 (Nabi et al. 2022), Gsg1 (Malcher et al. 2013), Lyar (Chen et al. 2021), and Ldhc 

(Tang, Kung and Goldberg 2008), Figure S4.7). For example, Kif2b, a kinesin family member 

gene that is involved in metaphase plate congression and chromosome segregation during meiosis 

(Lin et al. 2019), is identified as the RS domain (#0) specific gene. Ldhc, a testis specific gene that 

is involved in energy metabolism during the middle and later stages of spermatogenesis (Tang et 

al. 2008), is identified as the secondary spermatocyte domain (#4) specific gene. GSEA analysis 

further revealed that the domain specific DE genes are highly enriched in cilium cellular 

component related pathways, male gamete generation, and cell-cycle associated pathways (Figure 

4.3F, Figure S4.8). Next, we investigated the inferred cell type compositions in each detected 

domain and found that each domain is often characterized by domain specific cell types (Figure 

4.3G - Figure 4.3H, details in Methods). For example, the spatial domain #2 is dominated by ES 

cells; domain #0 is dominated by RS cells; domains #3 & #4 are dominated by spermatocytes; and 

domain #1 is composed of multiple cell types including sertoli cells, leydig cells, endothelial cells, 

macrophage cells, etc. The distinct cellular composition of the seminiferous tubules is clearly 

visualizable by the spatial distribution of different cell types (Figure 4.3H).  

Importantly, IRIS revealed critical changes in the spatial organization of testicular 

microenvironment under diabetic conditions. Specifically, the ES region (#2) is highly 

concentrated in the center of the seminiferous tubes in the WT but displays much diffused pattern 

in the ob/ob mice with frequent intermingling with the other spatial domains (Figure 4.3B, from 

top to the bottom). Purity analysis (details in Methods) revealed reduced ES domain purity and 

reduced ES cell type purity under diabetic conditions (Figure 4.3K), suggesting a loss of 
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ES/spermatozoon in the ob/ob testes (Ding et al. 2015, Chen et al. 2021). The structural change of 

the ES region under diabetic conditions is also accompanied by downregulation of ES marker 

genes such as Prm1, Prm2, Odf1, and Smcp (Figure 4.3I, Figure S4.9), with 30% - 59% reduction 

in expression levels after diabetes (Figure 4.3J). In addition, several mitochondrial genes (i.e., mt-

Rnr1, mt-Rnr2) are upregulated in the spatial domain #1 in the ob/ob mice, consistent with 

mitochondrial dysfunction in the pathogenesis of diabetes (Antonetti, Reynet and Kahn 1995, Aly 

2021, Al‑Kafaji, Sabry and Bakhiet 2016). 

4.3.4 High resolution mouse olfactory bulb Stereo-seq data 

We further applied IRIS to a subcellular resolution spatial transcriptomics data collected 

from a recent technology Stereo-seq (Chen et al. 2022). This data consists of gene expression 

measurements on 23,815 or 26,145 genes across 104,931 or 107,416 spatial locations on two 

adjacent mouse olfactory bulb tissue slices. For the reference, we used the scRNA-seq sequenced 

through 10x Genomics Chromium technology, consisting of 18 cell subpopulations (Tepe et al. 

2018). In this data, we were only able to apply IRIS as all the other methods failed to run due to 

heavy computational burden.  

The mouse olfactory bulb consists of multiple layered structures organized in an inside out 

fashion that include the subependymal–ependymal layer (SEL) (Nagayama et al. 2014), granule 

cell layer (GCL), internal plexiform layer (IPL), mitral cell layer (MCL), external plexiform layer 

(EPL), glomerular layer (GL), olfactory nerve layer (ONL), and meninges (Gudjohnsen et al. 

2015) (Figure 4.4A). IRIS accurately and clearly depicted the layered structure of the olfactory 

bulb (Figure 4.4B, Figure S4.10) regardless of the specified number of spatial domains (Figure 

4.4C). The identified layered structure is supported by the enrichment of known marker genes 

(Figure 4.4D - Figure 4.4E). For instance, the meninge marker gene Ptgds (DeSisto et al. 2020) 
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is enriched in the spatial domain #1. The ONL layer marker S100a5 (Tepe et al. 2018, Tan, Li and 

Xie 2015) is highly expressed in domain #2 (Figure 4.4D). The olfactory ensheathing cell (OEC) 

marker gene Mgst1 (Chen et al. 2021) is enriched in a peripheral sublayer of the ONL (#3). The 

periglomerular cells (PGCs) marker in GL, Apold1 (Li et al. 2021), is highly concentrated in 

domain #6. IRIS also differentiates the outer/superficial (#4) and inner/deep (#10) layer of EPL, 

as is evident by the distinct spatial patterns of Cbln4 (Nagayama et al. 2014) and Ly6g6e (Zeppilli 

et al. 2021). The MCL interneuron marker Vip (Wang et al. 2022a)  is highly enriched in domain 

#7. The retina IPL marker gene Slc17a7 is enriched in domain #5 (Johnson et al. 2007), suggesting 

that domain #5 is the IPL of the olfactory bulb that shares transcriptomic similarity with the IPL 

in the retina. IRIS also divides GCL into GCL-external (#9) and GCL-inner (#8) with distinct 

enrichment of the granule cell marker Tpbg and a new marker gene Penk (Hawrylycz et al. 2014a, 

Malvaut et al. 2017). Finally, Sox11 is a marker for immature neuron (Haslinger et al. 2009) and 

is enriched in the detected SEL (#0). Quantifications confirm these enrichment patterns (Figure 

4.4E).  

We performed additional analysis to further examine the molecular and cellular signatures 

of the spatial domains detected by IRIS. First, we performed domain specific DE analysis and 

identified a median of 1,376 genes across 11 domains. The identified DE genes include known 

marker genes (e.g., Sox11, Ptgds, S100a5, Ly6g6e, Slc17a7, Apold1, Vip, Tpbg, and Cbln4) and 

novel DE genes (e.g., Fabp7 (Young, Heinbockel and Gondré‐Lewis 2013), Clca3a1 (Gwon, Rhee 

and Sung 2018), Meis2 (Fujiwara and Cave 2016), Cck (Liu and Liu 2018, Sun et al. 2020b), 

Figure S4.11). For example, the identified ONL (#2) specific gene Fabp7 is heavily expressed in 

the ensheathing glial cells of the olfactory nerve, promoting the establishment and regenerative 

growth in sensory neurons in ONL (Young et al. 2013). The identified inner/deep EPL (#10)  
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Figure 4.4 Analyzing the mouse olfactory bulb stereo-seq subcellular data. 

(A) The structure of the mouse olfactory bulb (MOB) with the layers annotated based on both the 

Allen Brain Atlas and previous literature. The mouse olfactory bulb is organized in a layered 

structure and consists of subependymal–ependymal layer (SEL) (Nagayama et al. 2014), granule 

cell layer (GCL), internal plexiform layer (IPL), mitral cell layer (MCL), external plexiform layer 

(EPL), glomerular layer (GL), olfactory nerve layer (ONL), and meninges (Gudjohnsen et al. 

2015). The membrane surrounding the mouse olfactory bulb is called meninges. (B) Spatial 

domains detected by IRIS in both slices. (C) Barplots display CHAOS values on the tissue slices 

of MOB when varying the pre-specified number of spatial domains. The median CHAOSs across 

all slices in the analysis was used. (D) Scatter plots display the spatial distribution of important 

MOB related marker genes. (E) Lollipop plots display the mean expression of important marker 

genes (y-axis) in each spatial domain identified by IRIS (x-axis). The solid arrow indicates the 

highest enrichment in the corresponding domain. (F) Top enriched gene sets in selected spatial 

domains detected by IRIS (e.g., #2, #7) from the gene set enrichment analysis. (G) Heatmap plot 

displays the estimated mean cell type proportion for representative cell types in each spatial 

domain detected by IRIS. The color scale was normalized to 0-1 range. (H) Spatial scatter plot 

displays the spatial distribution of IRIS estimated cell type proportion for representative cell types 

across spatial locations. For D – H, the results are shown for example S1 slice in the main analysis. 

specific DE gene Cck is expressed preferentially in tufted cells mainly located in deep EPL (Liu 

and Liu 2018, Sun et al. 2020b). GSEA further revealed that the domain specific DE genes detected 

by IRIS are highly enriched in the olfactory receptor activity related pathway, sensory perception 

of smell pathway, and odorant binding pathway (Figure 4.4F, Figure S4.12), all related to the 

functional activation of the olfactory bulb. Next, we examined the cell type compositions inferred 

by IRIS and found that the spatial domains identified by IRIS consist of unique cell type 

characteristics (Figure 4.4FG - Figure 4.4H, Figure S4.13). For example, mitral cell subtypes are 

enriched in three adjacent layers EPL (#4 & #10), IPL (#5) and MCL (#7). The majority of the 

granule cell subpopulations (GC2, GC3, GC5, GC6) reside mainly in the GCL-inner (#8) while 

GC5 and GC6 are also located in the GCL-external (#9), implying the distinct functions of the two 

GCL sublayers (Figure 4.4G). Immature cells are only located in domain #0, supporting domain 

#0 being the SEL.  

4.3.5 High resolution human breast cancer 10x Xenium data 
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Finally, we applied IRIS to a high resolution spatial transcriptomics dataset generated by 

the most recent technology 10x Xenium (Janesick et al. 2022). This data consists of gene 

expression measurements on 313 genes across either 118,708 or 167,782 spatial locations on two 

adjacent human breast cancer tissue slices. For the reference, we used the scRNA-seq sequenced 

through 10x Genomics Chromium technology, consisting of 29 cell subpopulations (Wu et al. 

2021). In this data, again we were only able to apply IRIS as all the other methods failed to run 

due to heavy computational burden.  

Breast cancer is a heterogeneous disease with high intratumoral and intertumoral variation 

in histological and molecular features. In the 10x Xenium data, IRIS clearly identified four distinct 

tumor domains, including two ductal carcinoma in situ (DCIS) domains that represent non-

invasive forms of breast cancer (#10 & #16) and two invasive ductal carcinoma (IDC) domains 

(domain #5 & #8) (Figure 4.5A, Figure S4.14), along with multiple other domains that belong to 

part of tumor microenvironment (TME), including the immune-related regions (#0, #4, & #13), 

tumor stroma region (#1), and myoepithelial layer (#14). The spatial domains detected by IRIS are 

spatially smooth and compact, regardless of the pre-specified number of spatial domains (Figure 

4.5B). The spatial domains identified by IRIS are supported by the enrichment of known marker 

genes (Figure 4.5C - Figure 4.5D). For instance, TCIM (TC-1), a candidate breast cancer 

oncogene associated with 𝛽-catenin pathway that elevates the invasive behaviour of cancer cells 

(Su et al. 2013, Yang et al. 2007), is highly enriched in the IDC domains #5 & #8. FASN (Janesick 

et al. 2022), an invasive tumor marker gene, is highly enriched in the IDC domain #8. CEACAM6, 

which acts as a cell adhesion molecular with expression negatively correlated with cell 

differentiation (Han et al. 2008, Janesick et al. 2022), is highly enriched in the DCIS domains #10 

& #16. Besides the tumor domains, the multiple immune related domains detected by IRIS are also 
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distinguished from each other by their unique cellular compositions characterized by different 

marker genes (Figure 4.5D). For example, FGL2, a marker gene mainly expressed in macrophages 

and dendric cells, is highly enriched in the immune-related domain #0 but not tumor related 

domains (#5, #8, #10, & #16) (Feng et al. 2020, Yu et al. 2021a). In contrast, the tumor-infiltrating 

B cells marker gene BANK1 (Janesick et al. 2022) is enriched in the immune-related domain #4, 

while the lymphocyte marker gene IL7R (Janesick et al. 2022) is enriched in the immune-related 

domain #13. In addition, the stromal cell marker gene POSTN is enriched in domain #1 and the 

myoepithelial cell marker gene KRT6B is enriched in domain #14, supporting the complexity of 

cellular composition of the TME. Quantifications confirm these enrichment patterns. 

We performed additional analysis to examine the molecular and cellular signatures of the 

spatial domains detected by IRIS. First, we performed domain specific DE analysis and identified 

a median of 141 genes across 17 domains. The identified DE genes include known marker genes 

(e.g., TCIM, FASN, CEACAM6, FGL2, BANK1, IL7R, POSTN, and KRT6B) and novel DE genes 

(e.g., NDUFA4L2 (Yuan et al. 2021), ABCC11 (Toyoda and Ishikawa 2010), EPCAM (Soysal et 

al. 2013), CXCR4 (Mukherjee and Zhao 2013),  Figure S4.15). For example, the identified IDC 

(#5) specific gene NDUFA4L2 can promote trastuzumab resistance in HER2+ breast cancer, 

supporting it as a potential therapeutic target (Yuan et al. 2021). GSEA further revealed that the 

tumor related domain specific DE genes (#5, #8, #10, & #16) detected by IRIS are highly enriched 

in multiple tumor cell lines such as luminal-like breast cancer cell lines and HER2/ERBB2 breast 

cancer cell line; the immune-related domain specific DE genes (#0, #4, & #13) are highly enriched 

in immune cells pathways, lymphocyte activation pathway, monocyte macrophage cells, NK cell, 

T cells and immune response related pathways (Figure 4.5E, Figure S4.16); and the stromal 

domain specific DE genes (#1) are highly enriched in fibroblast cells, stem cells, stellate cells, and 
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Figure 4.5 Analyzing the human breast cancer 10x Xenium data. 

(A) Spatial domains detected by IRIS in both slices. (B) Barplots display the CHAOS values on 

both tissue slices when varying the pre-specified number of spatial domains. The median CHAOSs 

across all slices in the main analysis was used. (C) Scatter plots display the spatial distribution of 

important breast cancer related marker genes. (D) Lollipop plots display the mean expression of 

important marker genes (y-axis) in each spatial domain identified by IRIS (x-axis). Solid arrow 

indicates the highest enrichment value. (E) Top enriched gene sets in the selected spatial domains 

identified by IRIS (e.g., IDC domain #8, DCIS #16) in the gene set enrichment analysis. (F) 

Heatmap plot displays the estimated mean cell type proportion for representative cell types in each 

spatial domain detected by IRIS. Color scale was normalized to 0-1 range. (G) Heatmap plot 

displays the number of spatial locations that express the three hormone receptor marker genes 

(ERBB2, ESR2, and PGR) in each spatial domain detected by IRIS. (H) Bar plot displays the 

proportion of breast cancer subtypes based on the hormone receptor status in each spatial domain 

detected by IRIS. (I) Bar plot displays the percentage of spatial locations that have high expression 

(greater than median expression across all spatial locations) of two important tumor invasiveness 

marker gene AGR3 and CENPF in each spatial domain. For C – I, the results are shown for the 

example Rep1 slice in the main analysis. 

stromal cells related pathways. Next, we examined the cell type compositions inferred by IRIS and 

found that the spatial domains identified by IRIS consist of unique cell type characteristics (Figure 

4.5F, Figure S4.17). For example, cancer cell subpopulations (cycling, Her2, luminal like, basal) 

are highly enriched in tumor domains #5, #8, #10, and #16, with the latter two DCIS regions also 

enriched with myoepithelial, luminal progenitors, and mature luminal cells. The majority of 

immune cells (e.g., B cells, T cells, NK cells, macrophages, monocytes, cycling myeloid cells, 

dendric cells) are highly enriched in immune-related domains #13 and #4, though the enrichment 

is lower in the latter domain. And the cancer-associated fibroblast (CAF) subpopulations (Von 

Ahrens et al. 2017) are highly enriched in the stroma domain #1. 

Finally, we carefully examined the hormonal receptor status of the tumor regions to 

characterize the invasiveness and intratumor heterogeneity of the tissue (details in Methods). We 

found that the hormonal receptor ERBB2 is highly expressed in the IDC domains #8 and #5, more 

so than that in the DCIS domains #10 and #16, supporting the advanced metastasis-related 

properties (Yu and Hung 2000) of the IDC domains (Figure 4.5G). We also found that the 
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hormonal receptor ESR1 is mainly expressed in the IDC and DCIS regions while the hormonal 

receptor PGR is lowly expressed in all domains. Classification based on the expression of these 

three hormonal receptors thus confirmed that most regions are either ERBB2+ (HER2+) or double 

positive ERBB2+/ESR1+ (HER2+/ER+) (Figure 4.5H, Figure S4.18). The proportion of 

ERBB2+/ESR1+ breast cancer in DCIS regions (#10 & #16) is much higher than that in the IDC 

regions (#5 & #8). In addition, the proportion of triple negative breast cancer (TNBC) is higher in 

immune-related domains #0, #4, and #13, consistent with the fact that TNBC is associated with a 

high density of tumor-immune cells infiltration (Lv et al. 2021). Quantifications of the proportion 

of spatial locations in each domain that display a high expression of the tumor invasiveness marker 

genes (AGR3 and CENPF) further confirmed that domain #8 is more invasive than domains #5, 

#10 and #16 (Figure 4.5I, details in Methods). Specifically, AGR3 is associated with low 

histological grade breast tumors (Jian et al. 2020) and the proportion of spatial locations marked 

with high AGR3 expression is higher in the DCIS domains #16 and #10. In contrast, CENPF is 

associated with tumor aggressive features and poor prognosis of patients with breast cancer 

(O'Brien et al. 2007), and the proportion of spatial locations marked with high CENPF expression 

is higher in IDC domains #8 and #5.  

4.4 Discussion 

We have presented a new computational method, IRIS, for accurate and scalable spatial 

domain detection in SRT studies via integrated reference-informed segmentation. Different from 

existing methods (Hu et al. 2021, Zhao et al. 2021, Fu et al. 2021, Dries et al. 2021, Moses and 

Pachter 2022, Palla et al. 2022, Zhu et al. 2018, Tian et al. 2022, Rao et al. 2021, Li and Zhou 

2022, Shang and Zhou 2022), IRIS leverages the cell type specific gene expression information 

from scRNA-seq data to detect the spatial domains on multiple tissue sections in the SRT study, 
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while simultaneously accounting for both within and between tissue slice cell type compositional 

similarities. In addition, IRIS takes advantage of multiple algorithmic innovations to achieve 

scalable computation. In the moderate-sized datasets (i.e., 10x Visium human DLPFC, Slide-seq 

mouse spermatogenesis) with 3,460 ~ 88,884 spatial locations, IRIS is 8.5 - 134.7 times faster than 

the existing methods while using only 1.5% - 58.7% of the physical memory required by these 

methods. IRIS is also the only method that is scalable to the very recent large mouse MOB stereo-

seq and human breast cancer 10x Xenium datasets with 104,931-167,782 spatial locations and can 

finish analysis there in 26 ~ 28 minutes with 7.6 - 26.1 GB physical memory (Figure S4.19). We 

have demonstrated the benefits of IRIS through in-depth analysis of four SRT datasets generated 

from different technologies across distinct tissues and species. 

While IRIS represents the first attempt to integrate a reference scRNA-seq with the SRT 

study to detect spatial domains, scRNA-seq has been previously used in two other analytic settings 

in SRT studies (Li et al. 2022, Sun et al. 2022, Li et al. 2023, Mages et al. 2023). In particular, 

integrating scRNA-seq data with SRT has been shown to improve the prediction of the spatial 

distribution of transcripts (Shengquan et al. 2021, Nitzan et al. 2019, Cang and Nie 2020, Abdelaal 

et al. 2020, Lopez et al. 2019, Biancalani et al. 2021) and improve the estimation of cell type 

proportions across spatial locations on a single tissue slice (Ma and Zhou 2022, Cable et al. 2022, 

Kleshchevnikov et al. 2022, Andersson et al. 2020, Dong and Yuan 2021, Lopez et al. 2021). The 

results in the present study thus dovetail these recent findings and highlight the benefits of 

integrating reference scRNA-seq data to improve the analytics of SRT studies. Besides integrating 

scRNA-seq data, IRIS also provides a flexible framework for integrating information from 

neighboring spatial locations in each tissue slice as well as that from multiple tissue slices to 

enhance spatial domain detection in spatial transcriptomics. The flexible modeling framework of 
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IRIS in principle can be extended to performing other analytic tasks in SRT studies. For example, 

we can extend the current optimization framework of IRIS into a matrix tri-factorization to directly 

map the single cells from the scRNA-seq study onto each measured spatial location in the SRT 

data. Exploring the benefits of integrating scRNA-seq data with SRT and the integrative modeling 

of multiple SRT datasets in the future will likely yield fruitful results for many other SRT analytic 

tasks.  

We have performed a series of post-domain detection analyses to further validate and 

quantify the identified spatial domains by IRIS. One analysis task we performed was domain-

specific differential expression (DE) analysis. However, when the domains are not known as a 

priori but inferred from the same expression data, the clustering analysis will introduce a “selection 

bias” that would result in false discoveries. The DE results after the domain detection analysis 

might contain false signals with an enrichment of small DE p-values under the null. Indeed, our 

focus is to find biological evidence from domain-specific genes to support the domains detected 

by IRIS when there is no ground truth. Several methods have been proposed to address and correct 

the "selection bias" in DE analysis for scRNA-seq studies. For instance, Gao and Witten (Gao, 

Bien and Witten 2022) introduced a selective inference framework that tests for mean differences 

in clusters. Neufeld et al. (Neufeld et al. 2022) developed a count splitting framework to control 

the type I error in scRNA-seq DE p-values. Other methods (Vandenbon and Diez 2020, Missarova 

et al. 2023), such as singleCellHaystack (Vandenbon and Diez 2020), rely on a clustering-free 

framework to detect DE genes in an unbiased manner. Although these methods have been proposed 

and applied in the context of scRNA-seq studies, specific methods targeting the selection bias in 

SRT studies have not been extensively explored. It is crucial for future efforts to adapt and evaluate 
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the performance of these existing methods or develop novel approaches to correct the selection 

bias in domain-specific DE analysis within the spatial transcriptomics context. 

There are several important future extensions for IRIS. Firstly, IRIS accommodates the cell 

type compositional similarity across neighboring locations on each tissue slice through a graph 

Laplacian regularization, which is constructed based on an adjacency matrix. An important benefit 

of the adjacency matrix is that it can be easily formulated in a sparse form to facilitate computation. 

However, we note that our method and software can easily incorporate other types of similarity or 

kernel matrices such as the Gaussian kernels and the periodic kernels to capture the diverse and 

complex spatial correlation patterns that may be encountered across datasets. IRIS can also 

incorporate a weighted combination of multiple kernel matrices to further improve performance. 

Secondly, while we have primarily focused on using the K-means penalty function as part of the 

IRIS model for spatial domain detection, IRIS can be coupled with different clustering penalty 

functions such as those used in the Louvain or Leiden clustering algorithms to take advantage of 

their distinct benefits. Thirdly, while we have mainly focused on using the transcriptomics 

measurements from both scRNA-seq and SRT studies, IRIS’s modeling framework is general and 

can in principle be extended to integrate other data modalities such as histological images that are 

often collected alongside SRT. In particular, we can introduce an additional penalty term to 

encourage the similarity between domains in terms of image intensity levels and/or cell 

morphological features extracted from the images. We note, however, that such extension of IRIS 

requires both the segmentation of the image to identify cells on the tissue and aligning the cells 

segmented on the image with the SRT data, both of which remain technically challenging and 

likely require future methodological development. 
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4.5 Methods 

4.5.1 IRIS method overview 

We present an overview of IRIS here. IRIS is a reference-informed integrative 

computational method for spatial domain detection in spatial transcriptomics. A unique feature of 

IRIS is its ability to integrate cell type specific expression profiles from a reference scRNA-seq 

data to facilitate the mapping of spatial domains on the same tissue in spatial transcriptomics. In 

the process, IRIS integrates the spatial transcriptomic profiles from neighboring spatial locations 

on each single tissue slice as well as that across multiple tissue slices, facilitating accurate and 

consistent spatial domain detection across slices. Importantly, IRIS performs all these integrative 

analyses seamlessly in a joint modeling framework and incorporates an efficient iterative 

optimization algorithm for scalable computation. As a result, IRIS can accurately and rapidly 

detect spatial domains on complex tissues in large-scale spatial transcriptomics. 

IRIS requires two types of data input: a scRNA-seq reference dataset and a spatial 

transcriptomics dataset that measures the transcriptomic profiles of one or multiple tissue slices. 

The scRNA-seq reference data consists of K cell types with a set of G cell-type-informative genes, 

which can be selected based on (Ma and Zhou 2022). We follow (Wang et al. 2019, Ma and Zhou 

2022) to extract from the scRNA-seq data a reference basis matrix B, which is a G by K matrix 

that contains the mean expression level of the G cell type informative genes in the K annotated cell 

types. The spatial transcriptomics data, on the other hand, consists of T different tissue slices (𝑇 ≥

1). We denote 𝒀𝑡 as the G by 𝑁𝑡 gene expression matrix in slice t for the same set of G informative 

genes measured at 𝑁𝑡 spatial locations. We assume that there are total of R distinct spatial domains 

across tissue slices in spatial transcriptomics. We introduce an 𝑵𝑡 -vector of spatial domain 
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indicators 𝒄𝑡 to indicate the domain label for each spatial location on tissue slice t, where each 

element of 𝒄𝑡 takes values in {1, … , 𝑅} . 

Our goal is to detect the spatial domains on the tissue slices in spatial transcriptomics by 

inferring the spatial domain indicators 𝒄𝑡. Inferring 𝒄𝑡 requires knowing the cell type composition 

of each spatial location on the tissue slice, since every spatial domain is characterized by a unique 

composition of cell types. Therefore, to facilitate the inference of 𝒄𝑡, we introduce an 𝑁𝑡 by K cell 

type composition matrix 𝑷𝑡, where each row of 𝑷𝑡 represents either the proportions of the K cell 

types (for spot-level spatial transcriptomics) on or the contribution of the K cell types (for single-

cell or subcellular resolution spatial transcriptomics) to each spatial location on slice t. The 

composition matrix 𝑷𝑡 is not only key for inferring 𝒄𝑡 but also serves as an important link between 

the reference basis matrix B in scRNA-seq and the expression matrix 𝒀𝑡 in spatial transcriptomics, 

thus connecting the two distinct data types. In particular, each element of 𝒀𝑡, which describes the 

expression level of an informative gene at a spatial location, can be expressed as the product of the 

gene’s expression level in each cell type and the cell type compositions on the location. 

Consequently, we can infer 𝑷𝑡  by minimizing the difference between 𝒀𝑡  and 𝑩𝑷𝑡
𝑻  in terms of 

Euclidean distance, also known as the square of the Frobenius norm, through the following cost 

function: 

 min
0≤𝑽𝑡≤1
𝑡=1,2,…𝑇

∑ ||𝒀𝑡 − 𝑩𝑷𝑡
𝑇||

𝐹

2𝑇
𝑡=1 .(4.1) 

In the process, we constrain each element of 𝑷𝑡  to be non-negative and we accommodate the 

spatial correlation in the cell type composition among neighboring locations, which are commonly 

observed on each tissue slice, through the following penalty function: 

                                                            ∑ 𝑇𝑟(𝑷𝑡
𝑇𝑳𝑡𝑷𝑡)

𝑇
𝑡=1 ,                                                            (4.2) 
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where Tr (∙) denotes the trace of a matrix and 𝑳𝑡 is the graph Laplacian matrix for slice t, expressed 

as the difference between two matrices 𝑳𝑡 = 𝑫𝑡 − 𝑨𝑡. Here, 𝑨𝑡 is a 𝑁𝑡 by 𝑁𝑡 adjacency matrix its 

ij-th element is one if i-th and j-th locations on slice t are mutual neighbors, defined as being the k 

nearest neighbors of each other (default k=10); and is zero otherwise. 𝑫𝒕 is a diagonal matrix 

whose entries are column sums of 𝑨𝑡 . Minimizing each term 𝑇𝑟(𝑷𝑡
𝑇𝑳𝑡𝑷𝑡)  is equivalent to 

minimizing the summation of the weighted square of the Euclidean norm 
1

2
∑ ||𝑷𝑡𝑖

𝑇 −
𝑁𝑡
𝑖,𝑗=1

𝑷𝑡𝑗
𝑇 ||

2

2

𝑨𝑡𝑖𝑗 , where 𝑷𝑡𝑖
 is the i-th row of 𝑷𝑡  and 𝑨𝑡𝑖𝑗  is the ij-th element of 𝑨𝑡 . Therefore, 

minimizing the penalty function in equation (4.2) encourages similarity in the cell type 

composition in the neighboring locations on each slice, facilitating accurate and robust inference 

of 𝑷𝑡. Through modeling spatial correlations, the penalty function of equation (4.2) also allows us 

to effectively integrate the spatial transcriptomic profiles across neighboring spatial locations on 

each tissue slice.  

Besides connecting the spatial transcriptomics data with the reference scRNA-seq data, the 

cell type composition matrix 𝑷𝑡  also provides direct evidence for inferring the spatial domain 

indicators 𝒄𝑡. Specifically, we consider the following k-means cost function that connects 𝑷𝑡 to 

𝒄𝑡: 

∑ ∑ ||
1

𝑛𝑡𝑟
𝑷𝑡
𝑇𝒒𝑡𝑟 − 𝝁𝑟||

2

2

𝑅
𝑟=1

𝑇
𝑡=1 ,                                                        (4.3) 

where 𝒒𝑡𝑟 is an 𝑁𝑡-vector of indicator variables, 𝒒𝑡𝑟(𝑖) = {
1, 𝑖𝑓𝒄𝑡𝑖 = 𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, with each i‘th element 

being one when the corresponding location i belongs to the r-th spatial domain on tissue slice t and 



 167 

being zero otherwise; 𝑛𝑡𝑟  is the total number of locations in the spatial domain r on tissue slice t 

(i.e., 𝑛𝑡𝑟 = ∑ 𝒒𝑡𝑟(𝑖)𝑖 ); and 𝝁𝑟 is a K-vector of domain-specific cell type composition profile for 

the r-th spatial domain. Equation (4.3) directly relates the average cell type compositions for 

locations residing on the same spatial domain across tissue slices to the common cell type 

composition profile parameter 𝝁𝑟, thus encouraging similarity in the domain-specific cell type 

compositions across tissue slices. Encouraging such similarity allows us to borrow information 

across multiple slices for accurate and robust spatial domain inference.  

The above equations (4.1) - (4.3) characterize different aspects of the IRIS modeling 

framework. In particular, equation (4.1) enables the integration of the transcriptomic profiles 

between scRNA-seq and spatial transcriptomics data. Equation (4.2) encourages within-slice cell 

type compositional similarities among neighboring locations and allows for integrative 

transcriptomics analysis across locations on each tissue slice. Equation (4.3) models the 

consistency of cell type composition on the same spatial domain across slices, allowing for 

integrative transcriptomics analysis across multiple tissue slices. Importantly, we incorporate all 

three components together into a joint cost function:  

𝜙(𝑷𝑡) = ∑ ||𝒀𝑡 − 𝑩𝑷𝑡
𝑇||

2

2
+ 𝛽∑ ∑ ||

1

𝑛𝑡𝑟
𝑷𝑡
𝑇𝒒𝑡𝑟 − 𝝁𝑟||

2

+ 𝜆∑ 𝑇𝑟(𝑷𝑡
𝑇𝑳𝑡𝑷𝑡)

𝑇
𝑡=1

𝑅
𝑟=1

𝑇
𝑡=1

𝑇
𝑡=1         (4.4) 

where 𝛽 and 𝜆 determine the relative contribution of the three components. The scale of the two 

parameters 𝛽 and 𝜆 is determined by the dimensionality of the matrices in the three components, 

which are in turn determined by 𝑁𝑡, G and K. We set 𝛽 and 𝜆 to fixed values of 1000 and 2000 

throughout the present study, with robustness analysis provided in APPENDIX C.2.  
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In the joint model defined in equation (4.4), our primary parameters of interest are the 

spatial domain labels for the locations on every tissue slice, represented by 𝒄𝑡, for 𝑡 ∈ {1,…𝑇}. 

For model inference, we develop a constrained iterative optimization algorithm, which iteratively 

updates the spatial domain labels 𝒄𝑡, along with the secondary parameters that include the cell type 

composition matrix 𝑷𝑡 and the domain-specific cell type composition profile 𝝁𝒓. Importantly, the 

developed inference algorithm makes use of three critical innovations to ensure scalable 

computation. These innovations include recently developed fast multiplicative updating rules (Lee 

and Seung 2000, Janecek and Tan 2011), a sparse formulation of the graph Laplacian matrix, and 

an efficient K-means clustering algorithm. As a result, our algorithm is computationally scalable 

to large-scale spatial transcriptomics with millions of measured locations and tens of thousands of 

genes. We refer to our method as IRIS, which is implemented in an R package, with core 

algorithms written in efficient C++ code that is linked back to the package through Rcpp. The IRIS 

software is freely available at www.xzlab.org/software.html.   

4.5.2 Compared methods for spatial domain detection 

In the benchmarking human LIBD dataset, we compared the performance of IRIS with 8 

methods belonging to three categories: (1) single-slice based methods: spaGCN (version 1.2.5), 

BayesSpace (version 1.5.1), and SEDR (downloaded on 04/01/2022); (2) multi-slices based 

methods: BayesSpaceJoint, which is a variation of BayesSpace (version 1.5.1), BASS (version 

1.1.0.16), Maple (version 0.99.1); (3) deconvolution-based methods: CARD (version 1.0), and 

RCTD (version 1.1.0). Specifically, for the single slice based, and multi-slice based methods, we 

followed the tutorial on the corresponding GitHub pages and used the recommended default 

parameter settings for spatial domain detection. For spaGCN, because it can also incorporate 

histological information whenever available for domain detection, we applied it either with or 

http://www.xzlab.org/software.html
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without the histological image information for datasets where histological images are available 

and matched (e.g., the DLPFC data). For SEDR, we followed their tutorial and applied the Leiden 

clustering algorithm on the low-dimensional latent representation learned by SEDR for domain 

detection. For the deconvolution-based methods, we followed their tutorial to first perform the 

deconvolution, then we concatenate the cell type compositional matrix from different slices in the 

analysis as the concatenated matrix, finally we perform the K-means algorithm on the concatenated 

composition matrix to detect the spatial domains. We used the term “CARD_kmeans” and 

“RCTD_kmeans” to represent the deconvolution-based methods correspondingly. Due to the sub-

optimal performance of Maple and deconvolution-based methods, we only compare the other 

methods in the other five datasets.  

4.5.3 Real data analysis 

We applied IRIS to analyze four published spatial transcriptomics datasets collected by 

different techniques, with distinct spatial resolutions, and from multiple species and tissues. For 

each spatial transcriptomics data, we obtained an external scRNA-seq collected on the same type 

of tissue but with a different sequencing technology to serve as the reference. Details of 

preprocessing the data are in APPENDIX C.3. 

Spatial domain detection 

We compared the performance of IRIS with the other spatial domain detection methods on 

four real datasets. In each analysis, we supplied the same spatial transcriptomics data as input for 

all methods.  

In the DLPFC dataset by 10x Visium, we examined four settings in total: (1) baseline 

setting when the slices are from the same donor that share high similarity; (2) challenging setting 
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when we use a scRNA-seq reference with one missing cell type information at a time; (3) 

challenging setting when we use a scRNA-seq reference with mis-classified cell type information 

by randomly merging two cell types; (4) challenging setting when the slices are from different 

donors that share low similarity in structures (APPENDIX C.4). In each setting, we used the 

annotated tissue domains as ground truth and evaluated method performance by calculating the 

adjusted Rand index (ARI; details see APPENDIX C.1). In addition to using the ground truth, we 

also evaluated method performance using marker gene enrichment (details in the next section). 

For the marker gene enrichment quantification and other downstream analysis, we focus on slice 

151509 as the main example as the analysis results for other tissue slices are consistent. 

In the high-resolution mouse spermatogenesis data by Slide-seq, we set the number of 

spatial domains to be 5 and varied it from 4 to 10 to evaluate methods performance. While no 

histology image nor manual domain annotations were available for this data, the mice testes have 

well defined tissue architecture in the form of numerous seminiferous tubule structures. Therefore, 

we evaluated method performance by carefully examining the overall and fine-grained 

morphology of the tubule structures on the tissue. In addition to carefully examining the inferred 

tubule structures, we also evaluated method performance using the CHAOS as well as marker gene 

enrichment. For the marker gene enrichment quantification and other downstream analysis, we 

focus on the slice WT3_Puck7 as the main example as the analysis results for other tissue slices 

are consistent. 

For the sub-cellular mouse olfactory bulb data by Stereo-seq, we set the number of spatial 

domains to be 11 based on the domain knowledge of the MOB structure. We varied the number of 

spatial domains from 4 to 14 and we evaluated the performance of IRIS by calculating CHAOS as 
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well as marker gene enrichment. For the marker gene enrichment quantification and other 

downstream analysis, we focus on the slice S1 as the main example as the analysis results for the 

other tissue slice are consistent. Note that none of the other methods were scalable to this large 

data. 

For the high resolution human breast cancer data by 10x Xenium, we followed the original 

publication to set the number of spatial domains to be 17 (Janesick et al. 2022). We varied the 

number of spatial domains from 6 to 20 and we evaluated the performance of IRIS by calculating 

CHAOS as well as marker gene enrichment. For the marker gene enrichment quantification and 

other downstream analysis, we focus on the slice Rep1 as the main example as the analysis results 

for the other slice are consistent. Note that none of the other methods were scalable to this large 

data. 

Domain-specific marker gene quantification across different methods 

We quantified the performance of different domain detection methods by comparing the 

fold change of marker genes in their corresponding spatial domains in the first three datasets. (The 

two large datasets were excluded as the other methods cannot deal with them). We reasoned that 

a good spatial domain detection method would yield accurate tissue structures that capture the 

enrichment of domain-specific marker genes. Because the spatial domain labels inferred from 

different methods are arbitrary (i.e. domain #1 from one method does not necessarily corresponds 

to domain #1 from another methods), to ensure fair comparison, we first shuffled the domain labels 

of each method and mapped them onto a common label system, so that the same domain label 

from different methods corresponds to the same anatomic region (i.e. domain #1 from all methods 

now correspond to the same anatomic region). Specifically, for the DLPFC dataset where a ground 
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truth domain label is available, we manually mapped the inferred domain labels from different 

methods to the ground truth domains based on the proportion of the spatial locations in each 

domain that belong to a specific domain in the ground truth. For the other datasets where a ground 

truth domain label is unavailable, we mapped the domain labels from each of the other methods to 

the domain labels from IRIS. Specifically, for each method in turn, we first calculated a 

contingency table for the domain labels from the method and those from IRIS, where the ij-th 

element of the contingency table represents the number of spatial locations in the i-th domain of 

the method that are also inside the j-th domain of IRIS. Afterwards, we randomly shuffled the 

columns of the contingency table, obtained the shuffled contingency table that achieves the 

maximum trace, and kept the column names in this shuffled contingency table as the new domain 

labels for the given method. This way, we map the domain labels from each method onto the 

common IRIS domain label system. Note that the domain label mapping step does not change the 

spatial clustering results from different methods but simply shuffles and aligns the domain labels 

to facilitate comparison. Afterwards, with a corresponding set of spatial domain labels, we 

calculate the fold change of each marker gene in their expected spatial domain to evaluate the 

performance of different methods. For the human DLPFC dataset, we excluded the deconvolution-

based methods (i.e., CARD_kmeans, and RCTD_kmeans) and Maple, as these three methods 

cannot capture the layered structure of DLPFC tissue. For the Slide-seq mouse testis dataset, we 

only compared the BayesSpaceJoint, SEDR, and IRIS for marker gene enrichment, as spaGCN 

and BayesSpace could not capture any tubular structures in the testis at all.  

Differential expression (DE) and gene set enrichment analysis (GSEA) 
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For all the datasets, we performed DE analysis and GSEA analysis in a domain-specific 

fashion. Specifically, for each spatial domain in turn, we first conducted a Wilcoxon rank sum test 

by using Seurat (Argelaguet et al. 2021) with the function wilcoxauc (Argelaguet et al. 2021, 

Korsunsky et al. 2019). We declared a gene to be a significant domain-specific gene if its 

Benjamini-Hochberg adjusted p-value < 0.01 and log-fold change > 0 (details see Discussion). We 

performed GSEA analysis for each spatial domain using fgsea, a method for performing fast pre-

ranked GSEA. For the human datasets (i.e., human DLPFC and breast cancer data), we focused on 

testing all human gene sets downloaded using the R package msigdbr. For the mouse datasets (i.e., 

mouse spermatogenesis, brain, and MOB data), we focused on testing mouse ontology gene sets 

(C5) downloaded using the R package msigdbr. We declared significantly enriched gene sets based 

on a Benjamini-Hochberg adjusted p-value threshold of 0.05.  

Purity score analysis 

We calculated a purity score either at the domain level or at the cell type level to quantify 

the percentage of the elongating spermatids in the ES domain. We then compared the two types of 

purity scores calculated in the control seminiferous tubules (e.g., WT3_Puck7 slice) with those 

calculated in the diabetic seminiferous tubules (e.g., Diabetes_Puck10 slice). Specifically, for the 

domain-level purity score, we examined one spatial location on each slice at a time, obtained its 

three nearest neighbors, and calculated the percentage of its neighbors being in the ES domain 

(domain #2). We then averaged such a percentage across all locations in the same domain (ES) to 

obtain the domain-level purity score. The domain-level purity score captures the mean percentage 

of times a neighboring location of an ES domain location also belongs to the ES domain. For cell 

type level purity score, we examined one spatial location on each slice at a time, obtained its three 
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nearest neighbors and the inferred ES cell type proportion on these neighbors, and then averaged 

such proportion across all locations that belong to the ES domain to obtain the cell type level purity 

score. The cell type level purity score captures the mean percentage of the ES cell type in a 

neighboring location of an ES domain location.  

Human breast cancer subtype analysis 

We classified the human breast cancer 10x Xenium data into eight clinical subtypes based 

on the expression of three important hormone receptor marker genes: ESR1 (estrogen receptor), 

PGR (progesterone receptor), and ERBB2 (human epidermal growth factor receptor 2, a.k.a. 

HER2). Specifically, we first calculated the number of spatial locations in each spatial domain that 

are positive for the expression of the three marker genes separately. Afterwards, we divided the 

data into eight subtypes based on whether each of the three genes were expressed or not: Triple 

Negative, ER+/PR-/HER2-/, ER-/PR+/HER2-, ER-/PR-/HER2+, ER+/PR+/HER2-, ER+/PR-

/HER2+, ER-/PR+/HER2+, Triple Positive. We then calculated the percentage of the eight 

subtypes in each spatial domain detected by IRIS. In addition, we used two important tumor 

invasiveness marker genes AGR3 and CENPF to quantify the invasiveness of four tumor domains 

(two DCIS and two IDC domains). Specifically, for each domain in turn, we calculated the 

percentage of its spatial locations whose marker gene expression is higher than the median level 

across all locations. Such percentage serves as the evidence for whether the expression of AGR3 

or CENF is high in the spatial domain. 

4.5.4 Data and code availability  

The original public data used in this work can be accessed through the following 

links: Human dorsolateral prefrontal cortex (DLPFC) data by 10x Visium available at the link: 
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http://spatial.libd.org/spatialLIBD/, with human post-mortem brain snRNA-seq reference data 

available at Synapse (https://www.synapse.org/#!Synapse:syn18485175); mouse spermatogenesis 

data by Slide-seq is available at the link 

https://www.dropbox.com/s/ygzpj0d0oh67br0/Testis_Slideseq_Data.zip?dl=0, with the mouse 

testis scRNA-seq reference data available at GEO accession GSE112393; mouse olfactory bulb by 

Stereo-seq data is available at https://db.cngb.org/stomics/mosta/download/, with the mouse 

olfactory bulb scRNA-seq data available at GEO accession GSE121891; human breast cancer by 

10x Xenium data is available at https://www.10xgenomics.com/products/xenium-in-situ/preview-

dataset-human-breast, with the with the human breast cancer scRNA-seq reference data available 

at GSE accession GSE176078; The IRIS software package and source code have been deposited 

at www.xzlab.org/software.html. All scripts used to reproduce all the analysis are also available at 

the same website. 

4.6 Supplementary Figures 

 

http://spatial.libd.org/spatialLIBD/
https://www.synapse.org/#!Synapse:syn18485175
https://www.dropbox.com/s/ygzpj0d0oh67br0/Testis_Slideseq_Data.zip?dl=0
https://db.cngb.org/stomics/mosta/download/
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
http://www.xzlab.org/software.html
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Figure S4.1 Evaluation on the spatial domain detection methods in the human dorsolateral 

prefrontal cortex (DLPFC) 10x Visium data for challenging settings. 

The challenging settings include whether there are missing cell types or misclassified cell type 

in the scRNA-seq reference data. Boxplots display ARI (Adjusted Rand Index) values for different 

methods across all scenarios in each challenging setting. For example, in the missing cell type 

setting, we miss one cell type at a time in the scRNA-seq reference, and the boxplot for 

IRIS_missing calculates the median value of ARI across 44 missing cell type scenarios across 4 

slices. In the mis-classified cell type setting, we randomly merge two cell types at a time as the 

misclassified cell type in the scRNA-seq reference, and the boxplot for IRIS_misClassify calculate 

the median value of ARI across 946 mis-classified cell type scenarios across 4 slices. Compared 

spatial domain detection methods (x-axis) include (1) single slice method: spaGCN without HE 

image (yellow), spaGCN with HE image (beige), BayesSpace (purple), and SEDR (green); (2) 

deconvolution-based method: CARD_kmeans (blue), RCTD_kmeans (tape); (3) multiple-slice 

methods: BASS (lake blue), Maple (grey), BayesSpaceJoint (matcha), and IRIS_missing /  

IRIS_misClassify (red). Clustering accuracy of different methods in recapitulating the true tissue 

domains is measured by ARI, with a higher ARI indicating higher accuracy. IRIS again detects 

the spatial domains accurately in both challenging settings, more so than other methods. 

 

Figure S4.2 Evaluation on the spatial domain detection methods in the human dorsolateral 

prefrontal cortex (DLPFC) 10x Visium data for challenging settings. 

The challenging settings include the setting where the tissue slices are from different donors 

(denoted as diffStr). Compared spatial domain detection methods (x-axis) include (1) single slice 

method: spaGCN without HE image (yellow), spaGCN with HE image (beige), BayesSpace 

(purple), and SEDR (green); (2) deconvolution-based method: CARD_kmeans (blue), 

RCTD_kmeans (tape); (3) multiple-slice methods: BASS (lake blue), Maple (grey), 

BayesSpaceJoint (matcha), and IRIS (red). Clustering accuracy of different methods in 

recapitulating the true tissue domains is measured by ARI, with a higher ARI indicating higher 

accuracy. IRIS again detects the spatial domains accurately, more so than other methods. 
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Figure S4.3 Heatmap of expression pattern of the domain specific genes. 

Due to the limited space, we only display the top 15 selected domain specific genes. Yellow color 

represents a higher expression while purple color represents a lower expression. Here, the tissue 

slice is slice 151509 in the baseline same donor analysis. 



 178 

 

Figure S4.4 Gene set enrichment analysis on the domain-specific DE genes in the human 

DLPFC data. 

The top 10 enriched gene sets are shown for each of the seven detected spatial domains. Here, the 

tissue slice is slice 151509 in the baseline same donor analysis. 
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Figure S4.5 Evaluation on the robustness of different methods in different analysis settings. 

Specifically, we performed the analysis on the slices that are from WT & Diabetes both, only from 

WT mice, and only from diabetic mice. (A) Boxplots display CHAOS values for different methods, 

which measure the spatial continuity and compactness of the detected spatial domains from 

different methods, when the number of spatial domains is set to be 5. (B) Line plots display the 

CHAOS values when varying the number of spatial domains. The median CHAOSs across all 

slices in each analysis setting were used. In general, the relative performance of these methods 

remains the same across other settings. IRIS consistently outperforms other methods. 
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Figure S4.6 The spatial pattern of the domain #1 enriched mitochondrial genes and Sertoli 

cell marker genes in the WT mouse (WT3_Puck7) of the main analysis. 

(A) Scatter plots (top) display the spatial distribution of important spermatogenesis related marker 

genes. (B) Lollipop plots (bottom) display the mean expression of important marker genes (y-axis) 

in each spatial domain identified by IRIS (x-axis). Solid arrow indicates the highest enrichment 

value. Specifically, several mitochondrial genes and Sertoli cells marker gene (e.g., Clu (Zhang et 

al. 2015)) are enriched in spatial domain 1, suggesting it is the germinal epithelium structure. 
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Figure S4.7 Heatmap of expression pattern of the domain specific genes.  

Due to the limited space, we only display the top 15 selected domain specific genes. Yellow color 

represents a higher expression while purple color represents a lower expression. Here, the tissue 

slice is the slice WT3_Puck7 in the main analysis. 
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Figure S4.8 GSEA results on each spatial domain detected by IRIS in the mouse WT slice 

(WT3_Puck7) in the main analysis of the Slide-seq data. 

Here Top enriched gene sets in all spatial domains were displayed. 

 

Figure S4.9 Comparison of the spatial pattern of ES marker genes in the WT mice 

(WT3_Puck7) and ob/ob (diabetic, Diabetes2_Puck10) mouse. 

Scatter plot displays the spatial distribution of the marker genes. Specifically, the spatial 

arrangement of the spermatids was disrupted under the diabetic conditions.  
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Figure S4.10 Spatial domains identified by IRIS in the slice S1 in the main analysis of the 

mouse olfactory bulb stereo-seq data. 

This scatterplot displays the spatial domains separately. IRIS is capable of accurately and 

incisively depicting the layered structure of the mouse olfactory bulb. 
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Figure S4.11 Heatmap of expression pattern of the domain specific genes. 

Due to the limited space, we only display the top 5 selected domain specific genes. Yellow color 

represents a higher expression while purple color represents a lower expression. Here, the tissue 

slice is slice S1 in the main analysis. 
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Figure S4.12 GSEA analysis results of the slice S1 in the main analysis of the mouse olfactory 

bulb data. 
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Figure S4.13 Spatial scatter plot displays the spatial distribution of IRIS estimated cell type 

proportion across spatial locations in the slice S1 in the main analysis of the mouse olfactory 

bulb stereo-seq data. 

Specifically, cell type proportions estimated by IRIS can accurately depict the layered structure of 

mouse olfactory bulb. Here, for each cell type, the cell type proportion was scaled to 0-1 range. 

Color was shown to represent the 0-1 range of cell type proportions correspondingly. 
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Figure S4.14 Spatial domains identified by IRIS in the slice Rep1 in the main analysis of the 

human breast cancer 10x Xenium data. 

This scatterplot displays the spatial domains separately. IRIS is capable of accurately and 

incisively pinpointing the spatial locations of four distinct tumor domains (domain #5, #8, #10, 

and #16). 
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Figure S4.15 Heatmap of expression pattern of the domain specific genes in the human 

breast cancer 10x Xenium data. 

Due to the limited space, we only display the top 5 selected domain specific genes. Yellow color 

represents a higher expression while purple color represents a lower expression. Here, the tissue 

slice is slice Rep1 in the main analysis. 
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Figure S4.16 GSEA analysis results of the slice Rep1 in the human breast cancer 10x Xenium 

data. 

GSEA further revealed that the tumor related domain specific DE genes (domain #5, #8, #10, and 

#16) detected by IRIS are highly enriched in luminal-like breast cancer cell lines, and 

HER2/ERBB2 breast cancer cell line while immune-related domain specific DE genes (domain 

#0, #4, and #13) are highly enriched in immune cells pathways, lymphocyte activation pathway, 

monocyte macrophage cells, NK cell, T cells and immune response related pathways. 
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Figure S4.17 Spatial scatter plot displays the spatial distribution of IRIS estimated cell type 

proportion across spatial locations in the slice Rep1 of the human breast cancer 10x Xenium 

data. 

Specifically, IRIS correctly locates cancer related cell type proportions (e.g., cancer cycling cells, 

cancer Her2 cells, cancer luminal B cells, cancer basal cells, and cancer luminal A cells) in cancer 

domains while locating immune cells (e.g., B cells, NK cells, T cells) into immune related 

domains. Here, for each cell type, the cell type proportion was scaled to 0-1 range. Color was 

shown to represent the 0-1 range of cell type proportions correspondingly. 
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Figure S4.18 Breast cancer subtypes classified by the expression of hormonal receptors in 

each spatial location. 

Specifically, in the slice Rep1 of the human breast cancer 10x Xenium dataset, each spatial location 

can be classified based on the expression of three hormone receptors: estrogen receptor- 1(ER), 

progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2), breast cancer 

can be divided into eight different subtypes.  
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Figure S4.19 Computation time (minutes top panel) and (B) peak memory usage (MB, 

bottom panel) for spatial domain detection method on moderate-sized real spatial 

transcriptomics datasets. 

Computation of IRIS, spaGCN, BayesSpace, BayesSpace_Joint, and SEDR was performed on a 

single core of an Intel(R) Xeon(R) CPU E5-2683 v3 2.00GHz processor. IRIS is computationally 

fast and efficient compared with other methods in the moderate-sized 10x Visium human DLPFC, 

Slide-seq mouse spermatogenesis. IRIS is also the only method that is scalable to the large mouse 

MOB stereo-seq and human breast cancer 10x Xenium datasets and can finish analysis there in 26 

~ 28 minutes with 15.5-26.1 GB physical memory.  

 

Figure S4.20 Selection of the penalty parameters according to the performance of IRIS in 

baseline analysis of the human DLPFC dataset. 

ARI results when we varied the values of 𝝀 from and the values of 𝜷 from 10, 100, 500, 1000 to 

10000. Specifically, the median ARI across slices is robust to a wide range of the values of 𝜷 and 

a reasonable range of the values of 𝝀. 
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Chapter 5 Conclusion 

The dissertation has focused on developing efficient statistical methods and computational 

methods to address various analytical challenges in genomics and genetics. These challenges 

typically arise with the high-dimensional data generated by rapidly evolving sequencing 

techniques, e.g., single-cell RNA-seq (scRNA-seq), and spatially resolved transcriptomics (SRT). 

I presented iDEA for integrative differential expression (DE) and gene set enrichment (GSE) 

analysis for scRNA-seq data in chapter 2, CARD for spatially informed cell type deconvolution 

for SRT data in chapter 3, and IRIS for integrative and reference-informed spatial domain detection 

for multiple-slice SRT data in chapter 4. I have demonstrated these methods by showing results 

from extensive simulations and comprehensive real data applications. Together, the applications 

of these methods have advanced our understanding in cellular heterogeneity, tissue cell type 

composition and organization, and the underlying mechanisms of disease etiology. Below, I review 

these projects, discuss their limitations, and envision possible future directions. 

In Chapter 2, I have focused on performing joint differential expression and gene set 

enrichment analysis through a hierarchical Bayesian framework using DE summary statistics as 

input. By integrating these two important analyses, our method iDEA can improve the power and 

consistency of DE analysis and accuracy of GSE analysis. Specifically, we assume that the true 

DE effect size follows a mixture of two distributions depending on whether the gene is a DE gene 

or not. However, the distribution of effect sizes between up-regulated and down-regulated genes 

might be different while the enrichment effect of a gene set associated with the proportion of being 

up-regulated or down-regulated genes might also be different. For example, previous studies of 
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malignant cell transformation show that the majority of DE genes are down-regulated and relate 

to a diverse set of functions such as extracellular matrix production, cell adhesion, while a minority 

of the differentially expressed genes are up-regulated and highly enriched for cellular proliferation 

control related gene sets (Danielsson et al. 2013). As another example, a recent study has modeled 

the log fold change of genes using a mixture of three Gaussian distributions to capture the non-

DE, positive, and negative DE genes respectively and then perform the likelihood ratio test to test 

each gene set (Makrooni et al. 2022). Previous results have shown that analyzing up- and down- 

regulated genes separately can further improve the power than analyzing all the genes together 

(Makrooni et al. 2022, Hong et al. 2014). Therefore, extending iDEA’s modeling assumption to 

three component Gaussian mixtures may help improve the power of detecting both DE genes and 

enriched gene sets. This will also facilitate the interpretation of gene sets enriched in up- and down- 

regulated DE genes. While we have primarily focused on analyses comparing two different cell 

types in scRNA-seq data, an increasing number of scRNA-seq studies focus on replicated multi-

condition experiments to study population-specific changes in expression between conditions. 

Besides multi-condition scRNA-seq data, spatially resolved transcriptomics studies have identified 

several spatially expressed genes on tissue sections, which advances our understanding in the 

tissue organization. Therefore, exploring the utility of iDEA in multi-condition and spatial contexts 

might further provide novel biological insights in gene set enrichment patterns between different 

experimental conditions as well as spatial organization and structure. 

In Chapter 3, I propose a spatially informed cell type deconvolution method CARD for 

SRT studies. CARD incorporates the conditional autoregressive (CAR) modeling assumption into 

the non-negative matrix factorization framework to accurately estimate the cell type compositions 

and reconstruct a high-resolution map for each spatial location. The results of extensive 
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simulations and real data applications are a demonstration of both the advantages of integrating 

cell type specific expression from scRNA-seq data and spatial correlation structure into the 

deconvolution framework. Specifically, CARD makes use of a fast optimization algorithm for the 

inference of cell type composition matrix and only outputs the point estimate. However, this 

estimation procedure ignores the uncertainty in cell type composition across spatial locations. 

Although many deconvolution methods have been proposed in both bulk RNA-seq and spatial 

transcriptomics fields, only a few methods have been proposed for quantifying the uncertainty 

associated with cell type proportions in bulk RNA-seq data (Cai et al. 2022, Vellame et al. 2023) 

and no method has been proposed to address this challenge in spatial transcriptomics 

deconvolution analysis (Sun, Ma and Zou 2023). Lack of consideration of these uncertainties can 

lead to missed or false findings in downstream analysis, i.e., cell type specific differential 

expression analysis. Indeed, previous studies in bulk RNA-seq deconvolution have shown that 

considering uncertainty in cell type proportions improves the accuracy in detecting the cell type 

specific DE genes between the patients of Alzheimer’s disease and healthy controls (Cai et al. 

2022). Therefore, incorporating the uncertainty measure in SRT data deconvolution might further 

benefit the down-stream analysis, i.e., spatial domain specific DE analysis, high-resolution 

enhancement. Additionally, in Chapter 3, we have only investigated two versions of CARD: 

reference-based (the main version) and reference-free. In particular, the reference-based version 

uses the cell type specific gene expression profile predefined by scRNA-seq data while the 

reference-free version only requires the marker gene list for the deconvolution of SRT data. 

However, both technical and biological batch variation exist in gene expression between SRT 

scRNA-seq reference data. It could be beneficial to model the prior distribution of reference basis 

matrix to further improve the deconvolution accuracy.  
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In Chapter 4, I develop an integrative reference-informed spatial domain detection method 

IRIS for SRT studies. I have primarily focused on modeling the primary feature of cell type 

compositional heterogeneity across spatial locations while accounting for the spatial relationship 

within each tissue slice and cell type compositional similarity in the same domain across slices. 

However, joint alignment of multiple tissue slices to reconstruct a three-dimensional (3D) tissue 

structures remains a challenge. Effective reconstruction of 3D tissue (Wang et al. 2023) 

organization is necessary for identifying 3D spatial tissue domains, estimating 3D cell type 

proportion distributions, and further improve the interpretability of results as well as revealing 

underlying biological mechanisms. Besides 3D reconstruction, batch effects correction has 

become an important problem with the increasing scale of SRT datasets from multiple slices. 

Extension of IRIS into a spatial factor analysis model to learn the shared embeddings of expression 

across slices can provide the first step towards identifying DE genes between multiple conditions 

(Liu et al. 2023). In addition to integrative analysis of multiple transcriptomics data, effectively 

integrating other data modalities such as histological images accompanied with SRT data will help 

with the integrative spatial domain detection analysis. For example, we can learn a consensus 

between spatial domains inferred by transcriptomics and those inferred by cell morphological 

features extracted from the image. Future methodological development for efficiently integrating 

image information into IRIS modeling framework may further improve the domain detection 

accuracy of IRIS. Finally, SRT datasets represent only a fraction of the multi-dimensional 

information encoded within cells. There has been a growing interest in spatial multi-omics studies, 

including transcriptomics, proteomics, and epigenomics to obtain a comprehensive understanding 

of biological systems. Further extension of IRIS into a multi-omics integration will enhance our 

understanding of cellular heterogeneity, tissue function, and further unravel disease mechanisms.  
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In summary, throughout the dissertation, I have developed three statistical and 

computational methods to address different challenges including: DE genes and enriched gene set 

detection, cell type composition estimation and biologically interpretable spatial domain detection. 

These methods have allowed us to reveal cellular heterogeneity, to identify coordinated gene 

expression patterns, and to better understand the role of cell type composition as well as tissue 

structure in biological processes. By harnessing the power of these methods, we are not only 

advancing our fundamental knowledge of biology but also paving the way for precision medicine 

and personalized therapeutics. We believe that these developed methods will serve as valuable 

tools for researchers to continue shaping and driving future investigations in this exciting and 

rapidly evolving field. 
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Appendix A. Chapter 2 (iDEA) Supplementary Text. 

A.1 EM-MCMC Inference Algorithm. 

The iDEA model is described in detail in the Methods. Here, we describe the detailed 

algorithm for inference. As explained in the main text, our goal is to infer the posterior probability 

of 𝛾𝑗 = 1 as evidence for j-th gene being DE and test the null hypothesis 𝐻0:𝜏1 = 0 that DE genes 

are not enriched in the gene set. To achieve both goals, we develop an efficient expectation 

maximization (EM)-Markov chain Monte Carlo (MCMC) algorithm. To simplify notation, we 

denote 𝛃 as the p-vector of the underlying true effect sizes, or 𝛃 = (𝛽1, 𝛽2, ⋯ , 𝛽𝑝)
𝑇
. We denote 𝛄 

as the p-vector of the indicator variables, or 𝛄 = (𝛾1, 𝛾2,⋯ , 𝛾𝑝)
𝑇
. We denote 𝜎𝑒𝑗

2  as the variance 

of the marginal DE effect size estimate for j-th gene, or 𝜎𝑒𝑗
2 = se2(�̂�𝑗). We treat both 𝛃 and 𝛄 as 

missing data and write out the complete likelihood as 

logPr(�̂�, 𝛃, 𝛄|𝜏0, 𝜏1, 𝜎𝛽
2) = log{Pr(�̂�|𝛃, 𝛄) Pr(𝛃|𝛄, 𝜎β

2) Pr(𝛄|𝜏0, 𝜏1) Pr(𝜎β
2|𝑎β,𝑏β)} 

                                         = −
1

2
∑ 𝛾𝑗
𝑝
𝑗=1 (log (𝜎𝑒𝑗

2 ) +
(�̂�𝑗−𝛽𝑗)

2

𝜎𝑒𝑗
2 ) 

                                             −
1

2
∑ 𝛾𝑗 (log (𝜎𝑒𝑗

2 𝜎β
2) +

𝛽𝑗
2

𝜎𝑒𝑗
2 𝜎β

2)
𝑝
𝑗=1  

                                      +∑ 𝛾𝑗 log(𝜋𝑗) + (1 − 𝛾𝑗) log(1 − 𝜋𝑗)
𝑝
𝑗=1  

                                              −(𝑎β + 1) log(𝜎β
2) − 𝑏β𝜎β

−2,                                                        (A1) 
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where we have also ignored the constant terms in the above equation and 𝜋𝑗 =
exp(𝜏0+𝑎𝑗𝜏1)

1+exp(𝜏0+𝑎𝑗𝜏1)
. With 

the above complete likelihood, we can derive the expectation step (E-Step) and maximization step 

(M-Step) as follows.  

A.1.1 Expectation step (E-step) 

In the E-Step, we obtain the expectation of equation (A1) 

                                               𝑄 = 𝐸[logPr(�̂�, 𝛃, 𝚪|𝛕, 𝜎β
2)],                                                         (A2) 

which involves evaluating the expectations 𝐸(𝛾𝑗), 𝐸(𝛾𝑗𝛽𝑗) and 𝐸(𝛾𝑗𝛽𝑗
2). These expectations are 

obtained under the conditional distributions P(𝛽𝑗, 𝛾𝑗|�̂�, 𝜏0
(𝑡), 𝜏1

(𝑡), (𝜎(𝑡))
β

2
) , with 𝜏0

(𝑡)
, 𝜏1

(𝑡)
 and 

(𝜎(𝑡))
β

2
 being the estimates from the previous iteration t. These conditional distributions are 

unfortunately not available in analytic forms. Therefore, we use Markov Chain Monte Carlo 

(MCMC) to obtain these expectations. Specifically, we develop a Gibbs sampling to sample the 

posterior distributions for 𝛽𝑗  and 𝛾𝑗  in an alternate fashion. Afterwards, we use these posterior 

samples to evaluate the above expectations. To do so, we first integrate out 𝛽𝑗  from the complete 

likelihood and obtain the conditional distribution for 𝛾𝑗 as 

   Pr (𝛾𝑗 = 1|�̂�, 𝜏0
(𝑡)
, 𝜏1

(𝑡)
, (𝜎(𝑡))

β

2
) ∝ exp {

𝑚𝑗
2

2𝑠𝑗
2 + log(𝑠𝑗) − log (𝜎β

(𝑡)
) + log(𝜋𝑗

(𝑡)
)},                 (A3) 

Pr(𝛾𝑗 = 0|�̂�, 𝜏0
(𝑡)
, 𝜏1

(𝑡)
) ∝ 1 − 𝜋𝑗

(𝑡)
.                                                                                          (A4) 

Then posterior distribution of 𝛾𝑗 is,  

𝛾𝑗 ~ Bernoulli(
Pr(𝛾𝑗 = 1|�̂�, 𝜏0

(𝑡)
, 𝜏1

(𝑡)
, (𝜎(𝑡))

β

2
)

Pr(𝛾𝑗 = 1|�̂�, 𝜏0
(𝑡)
, 𝜏1

(𝑡)
, (𝜎(𝑡))

β

2
)+Pr(𝛾𝑗 = 0|�̂�, 𝜏0

(𝑡)
, 𝜏1

(𝑡)
, (𝜎(𝑡))

β

2
)

)                         (A5) 
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where 𝑚𝑗 =
�̂�𝑗

1+(𝜎
β
(𝑡)
)
−2

 and 𝑠𝑗

2 =
𝜎𝑒𝑗
2

1+(𝜎β
(𝑡)
)
−2

. Next, we recognize from the complete likelihood that 

the conditional distribution of 𝛽𝑗 given 𝛾𝑗 = 1 is normal: 

                                                      𝛽𝑗|𝛾𝑗 = 1 ∼ 𝑁(𝑚𝑗 , 𝑠𝑗
2)                                                          (A6) 

Certainly, 𝛽𝑗 = 0 if 𝛾𝑗 = 0.  

A.1.2 Maximization step (M-step) 

In the M-Step, we obtain the parameter estimates for 𝜏0, 𝜏1 and 𝜎β
2 that maximize the Q 

function obtained in the E-Step. For 𝜏0 and 𝜏1, we obtain the first derivatives of the Q function 

with respect to each parameter as 

𝜕𝑄

𝜕𝜏0
=∑ (𝐸(𝛾𝑗) − 𝜋𝑗)

𝑝

𝑗=1
, 

                                                      
𝜕𝑄

𝜕𝜏1
= ∑ 𝑎𝑗(𝐸(𝛾𝑗) − 𝜋𝑗)

𝑝
𝑗=1 .                                                  (A7) 

We also obtain the second derivatives as  

𝜕2𝑄

𝜕𝜏0
2 =∑ 𝜋𝑗(1 − 𝜋𝑗)

𝑝

𝑗=1
, 

𝜕2𝑄

𝜕𝜏0𝜕𝜏1
=∑ 𝑎𝑗𝜋𝑗(1 − 𝜋𝑗)

𝑝

𝑗=1
, 

                                                        
𝜕2𝑄

𝜕𝜏1
2 = ∑ 𝑎𝑗

2𝜋𝑗(1 − 𝜋𝑗)
𝑝
𝑗=1 .                                                  (A8) 

where 𝜋𝑗 is calculated as the expectation of the indicator variable 𝛾𝑗 E (𝛾𝑗|�̂�, 𝜏0
(𝑡)
, 𝜏1

(𝑡)
, (𝜎(𝑡))

β

2
) . 

And 𝜋𝑗 is used in the following Newton-Raphson algorithm to obtain the parameter estimate of 
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the intercept 𝜏0 and gene set coefficient  𝜏1. Afterwards, we use the Newton-Raphson algorithm 

for optimization and obtain estimates of 𝜏0
(𝑡+1)

 and 𝜏1
(𝑡+1)

. 

For 𝜎β
2, we obtain the first derivatives of the Q function with respect to 𝜎β

2 as 

𝜕𝑄

𝜕𝜎β
2 = 𝜎β

−4 (∑
𝐸(𝛾𝑗𝛽𝑗

2)

2𝜎𝑒𝑗
2

𝑝
𝑗=1 + 𝑏β) − 𝜎β

−2 (
∑ 𝐸(𝛾𝑗)
𝑝
𝑗=1

2
+ 𝑎β + 1), 

which leads to an analytical update for 𝜎β
2 as 

                                                   (𝜎β
(𝑡+1)

)
2

=

∑
𝐸(𝛾𝑗𝛽𝑗

2)

2𝜎𝑒𝑗
2

𝑝
𝑗=1 +𝑏β

∑ 𝐸(𝛾𝑗)
𝑝
𝑗=1

2
+𝑎β+1

.                                                     (A9) 

The EM-MCMC algorithm thus iterates between the E-step and the M-step until converge. 

The EM-MCMC algorithm allows us to directly obtain the parameter estimate 𝐸(𝛾𝑗), which is the 

posterior probability of j-th gene being a DE gene. This posterior probability is also commonly 

referred to as the posterior inclusion probability (PIP) in other settings. We use these posterior 

probabilities to serve as DE evidence. In addition, the EM-MCMC algorithm also provides an 

estimate for 𝜏1, which, when paired with its standard error computed in the following section, 

allows us to construct a Wald test to test the null hypothesis of no gene set enrichment 𝐻0: 𝜏1 = 0. 

A.2 Louis Method for p-value Computation. 

Here, we describe the details of the Louis method for computing the standard error of �̂�1. 

In the EM-MCMC algorithm described in the previous section, we can obtain the information 

matrix for (𝜏0, 𝜏1) based on the log complete likelihood log𝑃𝑟(�̂�, 𝛃, 𝛄|𝜏0, 𝜏1, 𝜎β
2) as described in 

equation (1). For completeness, we re-write the information matrix in the complete likelihood as 

a 2 by 2 matrix 
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                                                 𝐼𝑐 = ∑ �̂�𝑗(1 − �̂�𝑗) (
1 𝑎𝑗

𝑎𝑗 𝑎𝑗
2)

𝑝
𝑗=1 ,                                             (A10) 

where �̂�𝑗 =
exp(𝐴𝑗�̂�)

1+exp(𝐴𝑗�̂�)
 is computed based on the �̂� estimates from the last EM step and 𝑎𝑗 is the 

annotation for j-th gene. Our goal, however, is to obtain the information matrix for (𝜏0, 𝜏1) based 

on the marginal log likelihood log𝑃𝑟(�̂�|𝜏0, 𝜏1, 𝜎β
2), also known as the observed likelihood. Such 

marginal information matrix can be obtained based on the complete information matrix through 

an adjustment using the Louis method (Louis 1982, Oakes 1999). Specifically, with the posterior 

inclusion probably PIP𝑗 for j-th gene obtained from EM steps, we compute the information matrix 

in the incomplete likelihood as a 2 by 2 matrix 

                                                      𝐼𝑖𝑐 = ∑ PIP𝑗(1 − PIP𝑗) (
1 𝑎𝑗

𝑎𝑗 𝑎𝑗
2)

𝑝
𝑗=1 .                                 (A11) 

Finally, the observed information matrix 𝐼𝑜is adjusted by  

𝐼𝑜 = 𝐼𝑐 − 𝐼𝑖𝑐 

Once we compute the marginal information matrix, we can obtain the standard error se2(�̂�1) as 

the corresponding element in the inverse of the information matrix 𝐼𝑜.  

A.3 Application to an oral carcinoma bulk RNAseq dataset. 

 To illustrate the flexibility of the modeling framework in iDEA, we applied iDEA to analyze 

a publicly available bulk RNASeq dataset from Tuch et al (Tuch et al. 2010). The bulk RNAseq 

dataset consists of gene expression measurements for 10,540 genes on tumors and matched normal 

tissue from three patients with oral squamous cell carcinomas. We carried out both GSE analyses 

and DE analyses on comparing the matched tumor and normal pairs.  

We first applied iDEA and other GSE methods to detect significantly enriched gene sets 
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across our compiled database of 12,033 human gene sets. The p-values of the enriched gene sets 

from iDEA are shown in Figure S2.23A. We also constructed an empirical null p-value 

distribution by permuting the gene labels for each gene set 10 times. Consistent with both 

simulations and scRNA-seq data applications, we found that the p-values in the permuted data 

from iDEA (𝜆gc = 1.07), fGSEA (𝜆gc = 0.99), PAGE (𝜆gc = 0.98), and GSEA (𝜆gc = 0.99) are 

well behaved, while that from CAMERA show severe deflation (𝜆gc = 0.12)( Figure S2.23B). 

For each method, we relied on the empirical null distribution of p-values to compute power in 

detecting enriched gene sets based on a fixed empirical FDR. Consistent with both simulations and 

scRNA-seq data applications, iDEA displays higher power compared to the other GSE methods 

(Figure S2.23C). For example, at an empirical FDR of 5%, iDEA identified 2075 significantly 

enriched gene sets, which is 17%, 80%, 20% higher than fGSEA (1777), CAMERA (1154), and 

GSEA (1733) respectively. While PAGE (2079) also displays higher power in number of detecting 

the significant gene sets, the top gene sets identified by iDEA are most closely related to oral 

squamous cell carcinomas or tumor related pathways. For example, among the top 10 gene sets 

identified by iDEA, 7 are related to tumor pathways. As a comparison, 5 among the top 10 gene 

sets identified by PAGE are related to tumor pathways. Specifically, enriched gene sets identified 

by iDEA include the SMID_BREAST_CANCER_NORMAL_LIKE_UP (Shah and Mehta 2009), 

SWEET_LUNG_CANER_KRAS_DN (Daly et al. 2011) and relevant GO items such as 

GO:0031012 (extracellular matrix (Pickup, Mouw and Weaver 2014)), GO:0043292 (contractile 

fiber (Mazzoccoli et al. 2017)). In order to quantify the biological significance of gene sets 

identified by different GSE methods, we quantified the relevance between gene sets and oral 

squamous cell carcinomas in an unbiased way by searching the related literatures in PubMed 

(details in Methods). Indeed, in the top 50 enriched gene sets identified by different methods, 
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iDEA identified more gene sets relevant to oral squamous cell carcinomas (30) than fGSEA (23), 

CAMERA (30), PAGE (23), and GSEA (25). The higher number of detected enriched gene sets 

relevant to oral squamous cell carcinomas and cancer growth by iDEA provides convergent 

support for the higher power of iDEA for GSE analysis. 

Next, we applied iDEA for DE analysis to identify DE genes. Consistent with both 

simulations and scRNA-seq data applications, iDEA identified more DE genes than zingeR. For 

example, at an empirical FDR of 1%, iDEA identified 409 DE genes, while DESeq2 only identified 

1 (Figure S2.23D). The 50 selected important DE genes identified by iDEA clearly distinguishes 

the normal tissue and cancer tissue (Figure S2.23F). Importantly, using the key markers provided 

by the original study (Usoskin et al. 2015), iDEA identified 262 genes directly related to oral 

squamous cell carcinomas or important genes involved in common tumors; while zingeR only 

identified 1. The higher number of DE genes relevant to oral squamous cell carcinomas or common 

tumors detected by iDEA provides convergent support for its higher power for DE analysis. 

Important DE genes involved in Oral squamous cell carcinoma development that are detected by 

iDEA but missed by zingeR include CRNN (Salahshourifar et al. 2015), WNT10A (Uraguchi et al. 

2004), PTHLH (Lv et al. 2014), KRT6 (Harris et al. 2015), IGF1 (Zhi et al. 2014), PTGFR 

(Akiyama et al. 2013), TGFBR3 (Cheng et al. 2016). Among them, CRNN has been studied to be 

the potential prognostic marker of OSCC due to its downregulation in oral squamous cell 

carcinoma samples, WNT10A plays an important role in accelerating of the progression of 

carcinomas via activating EMTs and local invasiveness (Uraguchi et al. 2004), PTHLH is 

indispensable for the pathogenesis of oral squamous cell carcinoma by affecting cell proliferation 

and cell cycle (Lv et al. 2014). TGFBR3 is an important activator of GDF10, which is 
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downregulated during oral carcinogenesis and involved in the suppression of cell survival (Cheng 

et al. 2016). 

Further, we also evaluated the GC content and gene length effect. For all the genes in the 

dataset, we first calculated the GC content and gene length and then we create two gene sets 

corresponding to the levels of GC content and gene length. Specifically, for the GC content, we 

use the continuous value of GC content for each gene as the gene set. For the gene length, we 

created a binary gene set if gene length is higher than the average of the gene length, than this gene 

is in this gene set and annotated as 1 otherwise 0. Finally, by adding these two gene sets into iDEA, 

we calculated the p-values for these two gene set to represent the significance of GC content effect 

and gene length effect correspondingly. In the analyses, we did not observe obvious GC content 

effect (p-value = 0.31) and gene length effect (p-value = 0.08) in this dataset.  

A.4 Bayesian model averaging (BMA) approach. 

Besides performing DE analysis in iDEA in the real data based on a pre-selected gene set, 

we also developed a new strategy to aggregate DE evidence on a particular gene across all gene 

sets through Bayesian model averaging (BMA). Specifically, for the given gene, we denote its 

posterior inclusion probability (PIP) obtained using the gene set k as  PIP𝑘. The corresponding 

Bayes factor quantifying its DE evidence based on the gene set k is BF𝑘 = PIP𝑘/(1 − PIP𝑘). With 

equal prior weights on different gene sets, the average Bayes factor quantifying its DE evidence 

based on all K gene sets is thus ABF =
1

𝐾
∑ BF𝑘
𝐾
𝑘=1 , which can be converted back to a posterior 

inclusion probability as PIP = ABF/(1 + ABF). We found that PIPs computed this way is highly 

correlated with the PIPs computed based on the pre-selected gene set (Figure S2.24). We now 

provide both options for computing PIPs for quantifying DE evidence: biologists can choose to 

use pre-selected gene sets that are known to be relevant to the particular experiments, as is the case 
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for all the real data applications; alternatively, biologists also have the option of using the Bayesian 

model averaging when such prior knowledge is not available.  

A.5 Gene set overlap. 

Previously we followed most existing GSE approaches and accounted for test non-

independence due to gene set overlap through permutation. In addition, we also performed new 

analysis to further examine the issue of gene set overlap in the real data applications. We adopted 

the method proposed by Jiang and Gentleman (Jiang and Gentleman 2007) to examines pairs of 

gene sets one at a time. For each pair of gene set, Jiang’s method divides genes into three 

categories: one category of genes that are only in the first gene set, one category of genes that are 

only in the second gene set, and one category of genes that are common in both gene sets. 

Afterwards, Jiang’s method calculates three p-values, one for each category of genes. By 

computing p-values in each set, we can explicitly deconvolute the results in the presence of gene 

set overlap. Here, we mainly applied Jiang’s method to analyze the top 50 gene sets identified by 

iDEA in human embryonic data and mouse neuron cell data in order to further dissect particular 

set of genes that drive the enrichment signal (Note that we did not apply to all significant gene sets 

due to the heavy computational burden of Jiang’s method and the gene set overlap is moderate 

compare to the gene set size). Specifically, there are 1,225 pairwise combinations among top 50 

gene sets. For each real data we checked, we first construct the pairwise combinations of gene sets 

among top 50 significant gene sets identified by iDEA and for each pair, and then we filtered out 

gene set pairs which has less than 20 genes overlap (due to computational stability). For each pair 

which has larger than 20 genes in overlap, we calculated above mentioned three categories of p-

values. Then we checked the p-values of the category of genes that are common in both gene sets 

and the p-values of the category of genes that are unique in gene sets respectively. For example, 
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in the human embryonic data, 692 of the 1,225 gene set pairs have higher than 20 genes in overlap. 

For each of these 692 gene set pairs in turn, we calculated the three p-values as mentioned in the 

previous paragraph. Among the total 2,076 adjusted p-values (Bonferroni correction) we 

calculated, 1,397 of them are less than 0.05. We first look at the intersection part, 35 out of 692 

intersection sets have adjusted p-value is less than 0.05. For the disjoint parts, 1,362 out of 1,384 

are significant. This observation suggests that among the top 50 significant gene sets we identified, 

gene set specific genes are significantly enriched, suggesting that it is not the overlapped genes 

that drive the enrichment signal, and that gene set overlap does not appear to introduce excessive 

false signals. We further looked at the combination of the top first gene set GO:0001944 

(vasculature development) (Table 2.10). From the table, we observed that the significance of this 

gene set is induced by both the overlapping parts and non-overlapping parts. Following the same 

procedure, we also applied Jiang’s method to analyze the top 50 gene sets identified by iDEA in 

the mouse sensory neuron scRNA-seq data. 1,025 out of 1,225 gene set pairs have higher than 20 

genes in overlap. For each of these 1,025 gene set pairs in turn, we calculated the three p-values 

as mentioned in the previous paragraph. Among the total 3,075 adjusted p-values (Bonferroni 

correction) we calculated, 2,603 of them are less than 0.05. We first look at the intersection part, 

889 out of 1,025 intersection sets have adjusted p-value is less than 0.05. For the disjoint parts, 

1,714 out of 2,050 are significant. We further looked at the combination of the top first gene set 

GO:0044425 (obsolete membrane part) (Table 2.11). From the table, we observed that the 

significance of this gene set is induced by both the overlapping parts and non-overlapping parts.  

A.6 Cell type identification in the three scRNA-seq datasets. 

For all the real datasets we analyzed, one of our real data contains cell types that are known 

a priori and not inferred from the whole expression matrix, while the other two data contain cell 
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types that are extensively validated through approaches other than inferring based on the whole 

expression matrix. Specifically, for the human embryonic stem cell scRNAseq dataset, the cell 

types are obtained from fluorescence-activated cell sorting (FACS) analysis before mixing for 

scRNA-seq. FACS relies on known cell type markers and represents a somewhat unbiased strategy 

for cell type clustering (Baron et al. 2019). For the mouse neuronal scRNAseq dataset, the cell 

types are initially inferred through an iterative PCA-based procedure and are further validated by 

comparing the hierarchical relationship of the neuronal types with the known developmental origin 

of sensory neuron types, as well as by comparing neurons with distinct and characteristic soma 

sizes in their identified neuronal class. In addition, the inferred neuronal cell types are further 

confirmed by double and triple immunohistochemical staining (e.g., NP1 cell type by staining of 

PLXNC1). For the 10x Genomics PBMC scRNASeq dataset, the identity of cell types was inferred 

by aligning cluster-specific genes to known markers of distinct PBMC populations as well as 

comparing against the transcriptomes of the purified populations in PBMC subsets. Their approach 

has been found to be largely consistent with conventional marker-based methods and the major 

cell types reach to the expected ratios in PBMCs. We have also displayed t-SNE plot in Figure 

S2.16, which clearly shows distinct cell clusters. Because the cell types in these data are validated 

through various approaches, the DE analysis results are less likely influenced by the cell type 

inference step as compared to other data that are fully relying on the whole gene expression matrix 

for cell type inference.  
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Appendix B. Chapter 3 (CARD) Supplementary Text 

B.1 Description on compared deconvolution methods 

We compared CARD with six recently developed deconvolution methods such as RCTD 

(Cable et al. 2021), stereoscope (Andersson et al. 2020), SPOTlight (Elosua-Bayes et al. 2021), 

cell2location (Kleshchevnikov et al. 2022), and spatialDWLS (Dong and Yuan 2021). Specifically, 

RCTD directly models expression count data from spatial transcriptomics based on a Poisson 

factor analysis model, which extends the linear factor analysis models commonly used for bulk 

RNA-seq deconvolution. In the factor analysis model, RCTD introduces additional variance 

parameters to account for the different platform effects between scRNA-seq and spatial 

transcriptomics. Stereoscope uses a similar approach as RCTD but with a negative binomial model 

for modeling the observed count data.  Because of direct count modeling, RCTD and stereoscope 

are particularly suited for high resolution spatial transcriptomics that measures a couple of cells on 

each tissue location with relatively low sequencing depth per location. SPOTlight takes low-

dimensional components from both scRNA-seq and spatial transcriptomics as input. The low-

dimensional components of scRNA-seq are referred to as cell-type specific topic profiles in 

SPOTlight and are obtained through non-negative matrix factorization and aggregated across cells 

within each cell type. With the input of the low-dimensional components, SPOTlight relies on a 

nonnegative least squares estimation procedure commonly used in bulk RNA-seq deconvolution 

for spatial transcriptomics deconvolution21,22. cell2location models the expression count data 

with a negative binomial model and accounts for cell type composition variation across distinct 

tissue segments through incorporating the tissue segmentation information as a latent factor. 
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spatialDWLS extends the bulk RNA-seq deconvolution method DWLS to first identify the cell 

types existed on each spatial location through enrichment analysis and further estimate the cell 

type proportions using the inferred signature mean gene expression in scRNA-seq though a 

weighted least squares framework. 

B.2 Simulation Design 

B.2.1 Model-free simulation design 

We performed realistic simulations to evaluate the performance of CARD and compare it 

with other deconvolution approaches. To do so, we obtained two published datasets: a scRNA-seq 

data collected on the mouse nervous system (Zeisel et al. 2018)and a spatial transcriptomics data 

collected on the mouse olfactory bulb (Ståhl et al. 2016). We used the scRNA-seq data to construct 

the expression levels for 18,215 genes on 260 spatial locations that were measured in the spatial 

transcriptomics data. Specifically, in the scRNA-seq data, we obtained expression measurements 

for a total of 20,515 cells from six common cell types. These cell types include neurons (n=11,702), 

astrocytes (n=5,039), oligodendrocytes (n=1397), vascular cells (n=1162), immmune cells (1078), 

and ependymal cells (n = 15). Following (Andersson et al. 2020), we split the scRNA-seq data into 

two sets: one set  (50% cells, denoted as split1) was used to simulate the spatial transcriptomics 

count while the set (50% cells, denoted as split2) was used to evaluate the performance of 

deconvolution methods. In the spatial transcriptomics data, we obtained location information for 

260 spatial locations and followed (Svensson et al. 2018) to categorize these 260 locations into 

three main anatomic regions. The three anatomic regions include the granule cell layer (75 

locations), the mitral cell layer (140 locations), and the nerve layer (45 locations). In the 

simulations, we assumed that each anatomic region contains a dominant cell type. In particular, 

oligodendrocyte is the dominant cell type in the granule cell layer; astrocyte is the dominant cell 
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type in the nerve cell layer; and neuron is the dominant cell type in the mitral cell layer. For each 

anatomic region, we determined the number of cell types colocalized with the dominant cell type 

based on a uniform distribution U (0, 5). We randomly draw the proportions for each cell type 

from a Dirichlet distribution with the concentration parameter set to be 1.0 for all cell types in the 

region. We assigned the largest proportion to be the proportion of the dominant cell type, and 

randomly assigned the remaining proportions for the other cell types. In order to mimic the number 

of cells at each location observed by nuclear segmentation of the mouse brain histology images, 

we followed (Andersson et al. 2020) and fixed the total number of cells on each location to be 10. 

We then set the number of cells for each cell type on each location as 10 times the sampled cell 

type proportions (further rounded to the nearest integer). Afterwards, we randomly sampled the 

corresponding number of cells from the six cell types in the split1 scRNA-seq data without 

replacement to serve as the cells residing on the spatial location. We then summed the expression 

levels for each gene across the sampled cells as the expression level of the corresponding gene on 

the location.  

In the above procedure, we also added additional noise by setting a percentage of the spatial 

locations in each anatomic region to be noisy locations. We denote the percentage of noisy 

locations as 𝑝𝑛. On the noisy locations, rather than setting the dominant cell type for each layer, 

we randomly draw the cell type proportions from a Dirichlet distribution with the concentration 

parameter set to be 1.0 for all cell types without assigning a dominant cell type. We followed the 

same procedure described above to sample the spatial count data. Note that our simulation strategy 

does not match the CARD model and thus allows us to examine the robustness of CARD. In the 

simulations, we varied the percentage of noisy locations, 𝑝𝑛, to be either 0, 0.2, 0.4, or 0.6. These 

choices of 𝑝𝑛  cover a wide range of measurement noise that can be encountered in spatial 
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transcriptomics. We focused on the 𝑝𝑛 up to 0.6 because the spatial correlation pattern is almost 

completely gone at 0.6 (Figure S3.1), while the cell type composition in the simulated spatial data 

using 𝑝𝑛 = 0.8 or 1.0 is almost indistinguishable from the simulated data using 𝑃𝑛= 0.6 (Ma and 

Zhou 2022). Consequently, the deconvolution accuracy of different methods is also highly 

consistent when 𝑃𝑛 ranges from 0.6, 0.8 to 1.0 (Ma and Zhou 2022). Therefore, we examined a 

total of 4 simulation settings, each of which consisted of 5 simulation replicates. Note that we used 

multiple simulation replicates, instead of using one replicate as in previous deconvolution studies 

(Cable et al. 2021, Elosua-Bayes et al. 2021), in order to capture data variation and examine 

method robustness. Because some simulation replicates are easier to perform cell type 

deconvolution on while others are harder, the absolute value of RMSE for any method can vary 

substantially across replicates, even though the performance rank of different methods remains 

consistent across replicates. 

B.2.2 Simulation Analysis Scenarios 

We applied CARD along with other deconvolution methods (details in Methods) to analyze 

the simulated data. In the analysis, we examined five analysis scenarios: 

(1) Analysis scenario I: (the correct scRNA-seq reference): we applied the scRNA-seq 

reference data (split2) that contains all cell types to deconvolute the simulated spatial 

transcriptomics data.   

(2) Analysis scenario II: (missing one cell type in the reference): we applied the scRNA-seq 

reference data (split2) to deconvolute the simulated spatial transcriptomics data.  Different 

from scenario I, however, we removed one cell type in the reference during deconvolution 

to examine the robustness of deconvolution. 
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(3) Analysis scenario III: (one extra cell type in the reference): we applied the scRNA-seq 

reference data (split2) to deconvolute the simulated spatial transcriptomics data. Different 

from scenario I, however, we added a new cell type in the reference during deconvolution. 

Specifically, we examined adding one new cell type, the “blood cells”, which contains 

n=70 cells. 

(4) Analysis scenario IV: (miss classified cell type in the reference): we applied the scRNA-

seq reference data (split2) to deconvolute the simulated spatial transcriptomics data. 

Different from scenario I, however, we randomly merged two cell types into one cell type 

as the merge one in the reference during deconvolution. Because we have six cell types in 

the original simulations, we created 15 cell type misclassification settings, each consisting 

of five cell types: one merged cell type based on two out of the six cell types, along with 

the four remaining cell types. 

(5) Analysis scenario V: (a similar scRNA-seq reference from a different platform): we 

applied a scRNA-seq reference data from a different platform for deconvolution. 

Specifically, we obtained another scRNA-seq reference data (Mizrak et al. 2019) that was 

sequenced on a different platform microwell-seq + Drop-seq on the mouse brain 

(ventricular-subventricular zone). The new scRNA-seq data contains a similar set of cell 

types with similar expression patterns as the cell types in the old scRNA-seq data (Ma and 

Zhou 2022). For the new scRNA-seq data, we extracted six matched cell types from 

GSE109447 dataset for deconvolution: astrocytes (n=13765), neurons (n=3110), 

oligodendrocytes (n=7513), endothelial cells (n=1774), immune cells (specifically 

microglia cells, n = 5525), and ependymal cells (n = 997). 
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We also applied CARD and the other deconvolution methods in the simulation scenarios where 

the scRNA-seq reference is provided at different cell type resolutions. To do so, we first performed 

hierarchical clustering in the scRNA-seq data on each of the original six cell types that were used 

to simulate the spatial transcriptomics data. The hierarchical clustering separated each of the six 

cell types (except ependymal cells due to its low sample size, n = 7 in split1) into either 2, 4, 6, or 

8 sub cell types, resulting in a total of 10 to 40 sub cell types in the reference scRNA-seq data. We 

performed simulations using the original six major cell types but used the scRNA-seq data with 

different number of sub cell types to serve as the reference for deconvolution, thus creating the 

scenario of deconvolution with different/higher cell type resolutions (Ma and Zhou 2022). 

B.3 Evaluations on Simulations 

In all simulation’s scenarios, we evaluated the deconvolution accuracy by comparing the 

RMSE between the truth and estimated proportions. Specifically, for the scenarios I-III, we 

calculate the RMSE between �̂� and V using the above equation based on the cell types existing in 

the truth. For the scenario IV, we calculate the RMSE between �̂� and V, where the true proportion 

of the merged cell type on each spatial location is the summation of the proportions for the two 

underlying cell types that were merged. For the scenario V, we calculate the RMSE between �̂� 

and V based on the matched cell types. For each scenario in scenarios II, III, IV, and V, we also 

compared the results of CARD with the deconvolution of CARD when using the six cell types in 

the original scRNAseq data to evaluate the accuracy loss of CARD. Specifically, for both the 

simulation scenario II and III, the RMSE of the deconvolution of CARD when using the six cell 

types in the original scRNAseq data is calculated based on the cell types existing in the truth. For 

the scenario IV, the RMSE of the deconvolution of CARD when using the six cell types in the 

original scRNAseq data is that we used the original six cell types for deconvolution and obtained 
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the estimated proportion for the merged cell type as the summation of the estimated proportions 

for the two underling cell types, and the true proportion of the merged cell type on each spatial 

location is also the summation of the proportions for the two underlying cell types that were 

merged. We then compared the estimated cell type proportion with the underlying truth. For 

scenario V, the RMSE of the deconvolution of CARD when using the six cell types in the original 

scRNAseq data is calculated based on matched cell types (equal to the RMSE in scenario I). Then 

for the scenarios II-V, we calculated the percentage loss of the deconvolution accuracy of CARD 

by 
𝑅𝑀𝑆𝐸(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑆)−𝑅𝑀𝑆𝐸(𝑢𝑠𝑖𝑛𝑔𝑡ℎ𝑒𝑠𝑖𝑥𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒𝑠𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑐𝑅𝑁𝐴𝑠𝑒𝑞)

𝑅𝑀𝑆𝐸(𝑜𝑟𝑎𝑐𝑙𝑒𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑎𝑖𝑛𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑆)
∗ 100 , with the RMSE 

(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑆) represents the RMSE of CARD in a specific scenario S (S = II, III, IV or V) and the 

RMSE (𝑢𝑠𝑖𝑛𝑔𝑡ℎ𝑒𝑠𝑖𝑥𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒𝑠𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑐𝑅𝑁𝐴𝑠𝑒𝑞) is calculated based on the results of 

CARD when using the six cell types in the original scRNA-seq data. Thus, in this way, we can 

evaluate the percentage of accuracy loss due to the missing (scenario II), additional (scenario III), 

misclassified cell types (scenario IV) in the scRNAseq reference or the use of scRNAseq reference 

from a different platform (scenario V). 

For the calculation of the percentage of accuracy improvement over other methods, for 

example, when we compare CARD with a specific method (e.g., RCTD) in a specific setting, we 

calculate the accuracy improvement as by - 
𝑅𝑀𝑆𝐸(𝐶𝐴𝑅𝐷)−𝑅𝑀𝑆𝐸(𝑅𝐶𝑇𝐷)

𝑅𝑀𝑆𝐸(𝑅𝐶𝑇𝐷)
∗ 100. For the evaluation on 

the deconvolution performance on scRNA-seq references at different resolution, we treated the 

cell type composition for the six major cell types in the simulated spatial transcriptomics data as 

the underlying truth. After deconvolution with sub cell types, we summed the estimated 

proportions of the sub cell types for each major cell type to serve as the estimated cell type 

proportion. We then compared the estimated cell type proportion with the underlying truth for 

these six main cell types.  
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B.4 Details on Preprocessing Spatial Transcriptomics and scRNA-seq Datasets 

We performed four sets of deconvolution analyses on five published spatial transcriptomics 

datasets (Table S3.2). For each spatial transcriptomics data, we applied one or more scRNA-seq 

data to serve as the reference for deconvolution.  

B.4.1 Mouse Olfactory Spatial Transcriptomics Data  

We downloaded the mouse olfactory bulb spatial transcriptomics data (Ståhl et al. 2016) 

from the spatial transcriptomics research website (https://www.spatialresearch.org/). This data 

consists of gene expression measurements in the form of read counts that are collected on several 

spatial locations known as spots. We followed (Ståhl et al. 2016, Edsgärd, Johnsson and Sandberg 

2018) to focus on the MOB section #12, which contains 16,034 genes and 282 spatial locations. 

For deconvolution, we obtained the Tepe et al (Tepe et al. 2018) scRNA-seq data from Gene 

Expression Omnibus (GEO; accession number GSE121891) to serve as the reference. This 

scRNA-seq data was collected from the mouse olfactory bulb and contains 18,560 genes and 

12,801 cells. The cells have already been clustered into the following main cell types: granule cells 

(GC, n = 8,614), olfactory sensory neurons (OSNs, n = 1,200), periglomerular cells (PGC, n = 

1,693), mitral and tufted cells (M-TC, n = 1,133), and external plexiform layer interneurons (EPL-

IN, n = 161). In the data, we filtered out genes that have zero counts on all cells and filtered out 

cells that have zero counts on all genes. These filtering criteria led to a final set of 17,812 genes 

and 12,801 cells for analysis.  

B.4.2 Human Pancreatic Ductal Adenocarcinoma (PDAC) Data  

We downloaded the human pancreatic ductal adenocarcinoma (PDAC) data from GEO 

website (accession number GSE111672) (Moncada et al. 2020). This dataset consists of both 

spatial transcriptomics data and scRNA-seq data collected on the same tissue obtained using the 

https://www.spatialresearch.org/
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tufted-cell
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/interneurons
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inDrop technology. Following the original paper, we focused on the PDAC-A spatial 

transcriptomics data for the patient ID GSM3036911. In the analysis, we filtered out genes that 

have zero counts on all spatial locations and filtered out locations that have less than 100 total read 

counts. These filtering criteria led to a final set of 22,269 genes and 428 locations.  

Two scRNA-seq data are available in the same study: PDAC-A-inDrop, which is a matched 

data collected from the same patient GSM3036911; and PDAC-B-inDrop, which is an unmatched 

data collected from a different patient. PDAC-A-inDrop consists of 19,736 genes and 1,926 cells 

that were clustered into 20 cell types in the original study. PDAC-B-inDrop consists of 19,736 

genes and 1,733 cells that were clustered into 13 cell types in the original study. For both scRNA-

seq data, we filtered out genes that have zero counts on all cells and filtered out cells that have 

zero counts on all genes. These filtering criteria led to a final set of 16,381 genes and 1,926 cells 

for PDAC-B-inDrop and a final set of 15,919 genes and 1,733 cells for PDAC-B-inDrop. We 

performed deconvolution using either scRNA-seq data to serve as the reference. 

In addition to using the scRNA-seq data from the same study, we also obtained one external 

scRNA-seq data (10x Chromium) from Peng et al (Junya et al. 2019) (Genome Sequence Archive 

under project PRJCA001063). This data was collected from 11 control pancreas and 24 PDAC 

tumors and was sequenced using the 10x Chromium platform. The data contains 24,005 genes and 

57,530 cells from 10 cell types. We split the data into three subsets: the PengNormal data that 

consists of the 11 control samples; the PengTumor data that consists of the 24 PDAC tumors; and 

the Peng data that consists of all 35 samples. We used the same filtering criteria for quality control 

in each subset, leading to a final set of 23,886 genes and 57,530 cells for Peng, 21,151 genes and 

15,544 cells for Peng_normal, 23,527 genes and 41986 cells for Peng_tumor. We treated each of 

the three subsets as the reference to examine the robustness of deconvolution. 
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B.4.3 Mouse Hippocampus Slide-seqV2 Data and Mouse Brain 10x Visium Data 

We obtained the mouse hippocampus Slide-seqV2 dataset (Stickels et al. 2021) from 

the Broad Institute’s Single Cell Portal. This dataset consists of gene expression measurements in 

the form of read counts for 23,265 genes and 53,208 spatial locations. In the analysis, we filtered 

out genes that have zero counts on all locations and filtered out locations that have less than 100 

total read counts. We focused on the remaining set of 23,238 genes and 41,768 spatial locations 

for analysis.  

We obtained the mouse brain (coronal section) 10x Visium dataset from the 10x genomics 

website (https://www.10xgenomics.com/resources/datasets/). This dataset consists of gene 

expression measurements in the form of read counts on 21,143 genes and 2,698 spatial locations. 

We filtered out genes that have zero counts on all spatial locations and filtered out spatial locations 

that have less than 100 total read counts. We focused on the remaining set of 20,984 genes and 

2,698 spatial locations for analysis.  

For deconvoluting the above two spatial transcriptomics datasets, we obtained the DropViZ 

scRNA-seq dataset from the Broad Institute’s Single Cell Portal to serve as the reference. This 

dataset was collected from the mouse hippocampus using the Drop-seq technology and was used 

for cell type deconvolution in the RCTD paper. The dataset contains 27,953 genes and 15,095 cells 

from 17 cell types. We filtered out genes that have zero counts on all cells and filtered out cells 

that have zero counts on all genes. These filtering criteria led to a final set of 23,282 genes and 

15,095 cells.  

Finally, we created a low-resolution version of the Slide-seqV2 data to examine the 

performance of refined spatial map construction. Specifically, we created a binned Slide-seqV2 

data (10 𝜇𝑚) that match the feature size of 10x Visium data (55 𝜇𝑚) by following the github code 

https://singlecell.broadinstitute.org/single_cell/study/SCP948
https://www.10xgenomics.com/resources/datasets/
https://singlecell.broadinstitute.org/single_cell/study/SCP948
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provided by the original publication (Stickels et al. 2021) 

(https://github.com/rstickels/Slide_seqv2/blob/master/SlideseqV2_visium_comparison_submissi

on.ipynb). To do so, we first divided the area of the original Slide-seqV2 hippocampus data into 

equal-size bins based on the parameters provided in the github code. Afterwards, we aggregated 

the spatial locations that are in the same bin into new locations as our final binned spatial data, 

leading to a resolution that matches that of the 10x Visium dataset.  

B.5 Methodological Details of CARD 

B.5.1 The Gaussian kernel function 

Following the previous literatures (Svensson et al. 2018, Sun et al. 2020a), we used the 

Gaussian kernel function (a.k.a. squared exponential kernel function or radial basis kernel 

function) as our spatial kernel in the CAR model. The Gaussian kernel is in the form of 

                                                     𝐾𝐺(𝒔𝑖 , 𝒔𝑗) = 𝑒𝑥𝑝(−
||𝒔𝑖−𝒔𝑗||

𝟐

2𝜎2
)                                                  (B1) 

where ||𝒔𝑖 − 𝒔𝑗||
𝟐

is the Euclidean distance; and 𝜎 the length/scale parameter that effectively 

characterizes the size of the focal expression patterns. The Gaussian kernel function is infinitely 

differentiable. Because any reasonable values of 𝜎 gives out almost identical results, we simply 

fixed 𝜎 to be 0.1 throughout the study.   

B.5.2 Reference basis matrix and its relationship to spatial transcriptomics  

Here, we provide details on how we construct the reference basis matrix from the scRNA-

seq data, how the reference basis matrix is related to the spatial transcriptomics data, and how the 

equation (1) in the main text is derived. Our approach follows closely the previous bulk RNA-seq 
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deconvolution work in (Wang et al. 2019, Dong et al. 2020). To facilitate description, we first 

introduce the necessary notations as follows. 

Notations:  

g: gene index 

i: location index 

k: cell type index 

c: cell index  

𝐶𝑖𝑘:set of cells on location i that belong to cell type k  

𝐶𝑖:set of all cells on location i  

𝑛𝑖𝑘: number of cells on location i that belong to cell type k 

𝑛𝑖: number of total cells on location i  

𝑥𝑖𝑔: read counts for gene g on location i  

𝑥𝑖: total number of read counts on location i; 𝑥𝑖 =∑ 𝑥𝑖𝑔𝑔  

𝑥𝑖𝑔𝑐: read counts for gene g on location i contributed from cell c 

With the above notations, we can obtain the total read counts for gene g on location i (𝑥𝑖𝑔) as 

𝑥𝑖𝑔 = ∑ 𝑥𝑖𝑔𝑐
𝑐∈𝐶𝑖

 

                                                                        =∑ ∑ 𝑥𝑖𝑔𝑐𝑐∈𝐶𝑖𝑘𝑘  

                                                                        = ∑ 𝑛𝑖𝑘𝑘

∑ 𝑥𝑖𝑔𝑐𝑐∈𝐶𝑖𝑘

𝑛𝑖𝑘
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                                                                        =∑ 𝑛𝑖𝑘𝑩𝑖𝑔𝑘𝑘 .                                                                     (B2) 

We denote  𝑩𝑖𝑔𝑘 =
∑ 𝑥𝑖𝑔𝑐𝑐∈𝐶𝑖𝑘

𝑛𝑖𝑘
as the mean expression counts for gene g on location i that are 

contributed by cell type k. We denote 𝑦𝑖𝑔as the relative abundance of gene g on location i in the 

spatial transcriptomics data, defined as the ratio of reads mapped to gene g on location i out of the 

total read depth on the location. Thus, we have 

𝑦𝑖𝑔 =
𝑥𝑖𝑔

∑ 𝑥𝑖𝑔𝑔
 

                                                                         =
∑ 𝑛𝑖𝑘𝑩𝑖𝑔𝑘𝑘

∑ 𝑥𝑖𝑔𝑔
   

                                                                          =
∑ 𝑛𝑖𝑘𝑩𝑖𝑔𝑘𝑘

∑ 𝑥𝑖𝑔𝑛𝑖𝑔
∗ 𝑛𝑖.                                                          (B3) 

We denote 𝑷𝑖𝑘 =
𝑛𝑖𝑘

𝑛𝑖
as the proportion of read counts on location i that are contributed by cell type 

k. Consequently, the relative abundance 𝑦𝑖𝑔 can be expressed as 

𝑦𝑖𝑔 =∑𝑩𝑖𝑔𝑘𝑷𝑖𝑘 ∗

𝑘

𝑛𝑖
∑ 𝑥𝑖𝑔𝑔

 

                                                              = ∑ 𝑩𝑖𝑔𝑘𝑷𝑖𝑘 ∗𝑘
𝑛𝑖

𝑥𝑖
 

                                                              = ∑ 𝑩𝑖𝑔𝑘𝑷𝑖𝑘 ∗𝑘 𝑙𝑖
−1                                                       

                                                              = ∑ 𝑩𝑖𝑔𝑘𝑽𝑖𝑘𝑘 .                                                                 (B4)                                                                      

Above, 𝑙𝑖 =
𝑥𝑖

𝑛𝑖
 represents the average read counts per cell on location i. We denote V as the cell 

type composition matrix, with each element 𝑽𝑖𝑘 = 𝑷𝑖𝑘𝒍𝑖
−1. For the reference basis matrix B, we 

followed (Dong et al. 2020, Wang et al. 2019) and set 
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𝑩𝑖𝑔𝑘 =
∑ 𝑥𝑖𝑔𝑐𝑐∈𝐶𝑖𝑘

𝑛𝑖𝑘
 

                                                                       =
∑ 𝑥𝑖𝑔𝑐𝑐∈𝐶𝑖𝑘

∑ ∑ 𝑥𝑖𝑔′𝑐
𝐺
𝑔′=1𝑐∈𝐶𝑖𝑘

∑ ∑ 𝑥
𝑖𝑔′𝑐

𝐺
𝑔′=1𝑐∈𝐶𝑖𝑘

𝑛𝑖𝑘
 

                                                                       = 𝜃𝑖𝑔𝑘𝑆𝑖𝑘,                                                               (B5)                                                                           

where 𝜃𝑖𝑔𝑘 =
∑ 𝑥𝑖𝑔𝑐𝑐∈𝐶𝑖𝑘

∑ ∑ 𝑥𝑖𝑔′𝑐
𝐺
𝑔′=1𝑐∈𝐶𝑖𝑘

 is the relative abundance of gene g on location i for cell type k; and 

𝑆𝑖𝑘 =
∑ ∑ 𝑥

𝑖𝑔′𝑐
𝐺
𝑔′=1𝑐∈𝐶𝑖𝑘

𝑛𝑖𝑘
represents the average number of total read counts for cells of cell type k 

on location i. We assume that across all spatial locations, the relative abundance of gene g on 

location i for cell type k has the same mean 𝜃𝑔𝑘 as the scRNA-seq data. We also assume that the 

average number of total counts for cells of cell type k on location i has the same mean as the 

scRNA-seq data. Under these assumptions, we can use the available scRNA-seq dataset, which 

contains either one or multiple samples, to estimate 𝐵𝑔𝑘 = 𝜃𝑔𝑘𝑆𝑘. Here, 𝜃𝑔𝑘 is estimated from the 

scRNA-seq data as the mean relative abundance of gene g in cell type k and 𝑆𝑘 is estimated from 

the scRNA-seq data as the mean number of total read counts for cells of cell type k. Specifically, 

with J samples in the scRNA-seq reference data and with �̃�𝑗𝑔𝑐 denoting the observe read count for 

gene g in cell c in sample j, we have 𝜃𝑔𝑘 =

∑
∑ �̃�𝑗𝑔𝑐𝑐∈𝐶𝑗𝑘

∑ ∑ �̃�𝑗𝑔′𝑐
𝐺
𝑔′=1𝑐∈𝐶𝑗𝑘

𝐽
𝑗=1

𝐽
, 𝑆𝑘 =

∑
∑ ∑ �̃�𝑗𝑔′𝑐

𝐺
𝑔′=1𝑐∈𝐶𝑗𝑘

𝑛𝑗𝑘

𝐽
𝑗=1

𝐽
. With 

these estimates, we finalize the equation in (4) as:  

                                                                  𝑦𝑖𝑔 =∑ 𝑩𝑔𝑘𝑽𝑖𝑘𝑘 + 𝜖𝑔𝑖. 

In matrix format, this is our factor model introduced in the first equation in the main text: 
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                                                                    𝒀 = 𝑩𝑽 + 𝑬.                                                          (B6)                    

B.5.3 Statistical inference for CARD 

The CARD model is defined by equations (1) (2) in the main text, with details described 

in the Methods. We follow Brook’s Lemma to get the joint distribution for the N-size column 

vector 𝑽𝑘 as in equation (3) in the main text. Specifically, the Brook’s Lemma states that:  

Define the sample space Ω to be the set of all possible realizations x = (𝑥1, 𝑥2, … 𝑥𝑁) that Ω =

{𝐱:𝑷(𝐱) > 0}. Then for any two given realizations x and y ∈ Ω, 

𝑃(𝐱)

𝑃(𝐲)
=∏

𝑷(𝑥𝑖|𝑥1, … , 𝑥𝑖−1, 𝑦𝑖+1, … 𝑦𝑁)

𝑷(𝑦𝑖|𝑥1, … , 𝑥𝑖−1, 𝑦𝑖+1, … 𝑦𝑁)

𝑁

𝑖=1

 

Let 𝐱 = 𝐕k = (𝐕1k, 𝐕2k, … 𝐕Nk) and y = (𝒃𝑘, … , 𝒃𝑘) with each element equals to 𝒃𝑘, then we have:  

𝑷(𝐕k) =∏

exp (−
1

2𝜎𝑖𝑘
2 (𝑽𝑖𝑘 − 𝒃𝑘 − 𝜙∑ 𝑾𝑖𝑗(𝑽𝑗𝑘 − 𝒃𝑘) − 𝜙∑ 𝑾𝑖𝑗(𝒃𝑘 − 𝒃𝑘)𝑗>𝑖𝑗<𝑖 )

2
)

ex p (−
1

2𝜎𝑖𝑘
2 (𝒃𝑘 − 𝒃𝑘 − 𝜙∑ 𝑾𝑖𝑗(𝑽𝑗𝑘 − 𝒃𝑘) − 𝜙∑ 𝑾𝑖𝑗(𝒃𝑘 − 𝒃𝑘)𝑗>𝑖𝑗<𝑖 )

2
)
𝑷(y)

𝑁

𝑖=1

∝∏exp(−
1

2𝜎𝑖𝑘
2
(𝑽𝑖𝑘 − 𝒃𝑘)

2 +
1

𝜎𝑖𝑘
2
(𝑽𝑖𝑘 − 𝒃𝑘)𝜙∑𝑾𝑖𝑗(𝑽𝑗𝑘 − 𝒃𝑘)

𝑗<𝑖

)

𝑁

𝑖=1

∝ exp(−∑
1

2𝜎𝑖𝑘
2
(𝑽𝑖𝑘 − 𝒃𝑘)

2

𝑁

𝑖=1

+ 𝜙∑∑
1

2𝜎𝑖𝑘
2 2(𝑽𝑖𝑘 − 𝒃𝑘)𝑾𝑖𝑗(𝑽𝑗𝑘 − 𝒃𝑘)

𝑗<𝑖

𝑁

𝑖=1

) 

If 
𝑾𝑖𝑗

𝜎𝑖𝑘
2 =

𝑾𝑗𝑖

𝜎𝑗𝑘
2  and 𝑾𝑖𝑖 = 0, then we have  

𝑷(𝐕𝐤) ∝ exp(−∑
𝟏

2𝜎𝑖𝑘
2
(𝑽𝑖𝑘 − 𝒃𝑘)

2 +

𝑁

𝑖=1

𝜙∑∑
𝟏

2𝜎𝑖𝑘
2
(𝑽𝑖𝑘 − 𝒃𝑘)𝑾𝑖𝑗(𝑽𝑗𝑘 − 𝒃𝑘))

𝑁

𝑗=1

𝑁

𝑖=1

 

∝ exp(−
1

2
(𝑽𝑘 − 𝒃𝑘𝟏𝑁)

𝑇𝑴𝑘
−1(𝑽𝑘 − 𝒃𝑘𝟏𝑁) +

1

2
(𝑽𝑘 − 𝒃𝑘𝟏𝑁)

𝑇𝑀𝑘
−1𝜙𝑾(𝑽𝑘 − 𝒃𝑘𝟏𝑁) 
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         ∝ exp(−
1

2
(𝑽𝑘 − 𝒃𝑘𝟏𝑁)

𝑇(𝑴𝑘
−1(𝑰𝑁 − 𝜙𝑾))(𝑽𝑘 − 𝒃𝑘𝟏𝑁)),                                          (B7)   

where 𝟏𝑁 is a N-vector of 1’s and 𝑴𝑘 = 𝑑𝑖𝑎𝑔(𝜎1k
2 , … 𝜎𝑁𝑘

2 ) 

We have defined the row-standardized weight matrix �̃�𝑖𝑗 = 𝑾𝑖𝑗/𝑾𝑖+  that satisfy the 

symmetric condition �̃�𝑖𝑗𝜎𝑗𝑘
2 = �̃�𝑗𝑖𝜎𝑖𝑘

2  and 𝜎𝑖𝑘
2 = 𝝀k/𝑾𝑖+ in the main text. So, we replace the 𝑾 

matrix with the �̃�and we have 𝑷(𝐲) = 𝟏. We finally obtain the joint distribution of 𝑽𝑘, as what 

we described in the equation (3) in the main text.  

𝑽𝑘~𝑀𝑉𝑁(𝑏𝑘𝟏𝑁, 𝜮𝒌), 

where, 𝜮 = (𝑰𝑁 − 𝜙�̃�)
−1
𝑀𝑘 is a positive definite covariance matrix. 

The covariance matrix 𝜮 can be further reparametrized by: 

𝚺𝐤 = (𝑰𝒏 − 𝜙�̃�)
−1
𝑴𝒌 

                                                                 = (𝑰𝒏 − 𝜙�̃�)
−1
𝝀k𝐷

−1 

                                                                 = 𝝀 (k 𝑫− 𝜙𝑫�̃�)
−1

 

                                                                 = 𝝀k(𝑫 − 𝜙𝑾)−1,                                                       (B8) 

where, 𝑫 = 𝒅𝒊𝒂𝒈(𝑾1+,𝑾2+, … ,𝑾𝑁+).  

To simplify notation, we denote L = 𝑫− 𝜙𝑾. The CARD model defined in equations (B1) and 

(B3) in the main text contains several hyper-parameters including 𝒃𝑘, 𝝀k, 𝜙 and 𝜎𝑒
2. We specify 

priors on each of them and infer them based on the data at hand.  

For 𝜙, this is the spatial autocorrelation parameter in the CAR model and represents the 

property parameter that ensures the L matrix to be positive definite54. We followed previous 
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research55 and specified a discrete uniform distribution on 𝜙 by placing it equally on seven grid 

values as (0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99). These values lead to a wide range of spatial correlation 

structures modeled by the CAR model. We selected the 𝜙 value that achieves the highest log-

likelihood as the final estimate. For the cell type specific scaling factor 𝝀k , we specified a 

conjugate inverse-gamma distribution𝝀k ∼ 𝐼𝑛𝑣𝐺(𝛼, 𝛽). In the inverse-gamma distribution, we set 

the shape parameter 𝛼 = 1.0 and we followed 56–58 to set the scale parameter 𝛽 =
#𝑠𝑝𝑜𝑡𝑠

2.0
 to ensure 

its adaptivity in balancing the information from data and prior assumption, through which 

appropriate optimization for 𝝀𝑘 can be achieved. For the hyperparameters 𝒃k and 𝜎𝑒
2, we assigned 

the non-informative priors that are proportional to one.  

Our goal is to infer the cell type composition matrix V. To do so, we perform optimization 

based on the log likelihood in the following form with the grided value 𝜙: 

𝑙𝑜𝑔𝑃𝑟(𝑽, 𝝀k, 𝜎𝑒
2, 𝒃𝑘|𝑩, 𝑿, 𝜙, 𝛼, 𝛽) 

= −
𝐺∗𝑛

2
𝑙𝑜𝑔𝜎𝑒

2 −
1

2𝜎𝑒
2∑ (𝑿𝑖 − 𝑩𝑽𝑖

𝑇)𝑇(𝑿𝑖 −𝑩𝑽𝑖
𝑇)𝑖 −

∑ 𝑙𝑜𝑔(𝑑𝑒𝑡(𝝀k𝑳
−1))𝑘

2
  

−∑
1

2𝝀k
(𝑽𝑘 − 𝒃𝑘1𝒏)

𝑻𝑳(𝑽𝒌 − 𝒃𝑘1𝒏) −

𝑘

∑((𝛼 + 1)𝑙𝑜𝑔𝝀k + 𝛽𝝀k
−𝟏)

𝑘

 

= −
𝐺∗𝑛

2
𝑙𝑜𝑔𝜎𝑒

2 −
1

2𝜎𝑒
2 ||𝑿 − 𝑩𝑽𝑻||

2

+
𝑛

2
∑ 𝑙𝑜𝑔

1

𝝀k
𝑘  + 

𝑘

2
𝑙𝑜𝑔(𝑑𝑒𝑡(𝑳))  

−∑
1

2𝝀k
(𝑽𝑘 − 𝒃𝑘𝟏𝑛)

𝑻𝑳(𝑽𝑘 − 𝒃𝑘𝟏𝑛)𝑘 − ∑ ((𝛼 + 1)𝑙𝑜𝑔𝝀k + 𝛽𝝀k
−1)𝑘 .                                         (B9) 

We developed an iterative algorithm to perform constrained optimization with non-

negativity constraints on each element of V. The iterative algorithm iterates through V and the 

three hyper-parameters (𝒃𝑘, 𝝀k, and 𝜎𝑒
2) to minimize the negative log-likelihood in each iteration. 
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With the estimated cell type composition matrix V, we normalized it further to ensure that each 

row of V has a summation of one. We describe the detailed optimization algorithm for each set of 

parameters in the following subsections.  

B.5.3.1 Optimization for V 

Maximizing the above log-likelihood function 𝑙𝑜𝑔𝑃𝑟(𝑽, 𝝀k, 𝜎𝑒
2, 𝒃𝑘|𝑩, 𝑿, 𝜙, 𝛼, 𝛽)  is 

equivalent to minimizing the negative log-likelihood Q = −𝑙𝑜𝑔𝑃𝑟(𝑽, 𝝀k, 𝜎𝑒
2, 𝒃𝑘|𝑩,𝑿, 𝜙, 𝛼, 𝛽). To 

perform constrained optimization, we follow the common NMF framework (Lee and Seung 2000, 

Burred 2014, Cai et al. 2010) to derive a multiplicative learning role to ensure the non-negativity 

of  𝑽. Specifically, the negative log-likelihood Q is:  

𝑄 =
𝐺∗𝑛

2
𝑙𝑜𝑔𝜎𝑒

2 +
1

2𝜎𝑒
2 ||𝑿 − 𝑩𝑽𝑻||

2

−
𝑛

2
∑ 𝑙𝑜𝑔

1

𝝀k
−𝑘

𝑘

2
𝑙𝑜𝑔(𝑑𝑒𝑡(𝑳))  

+∑
1

2𝝀k
(𝑽𝑘 − 𝒃𝑘1𝒏)

𝑻𝑳(𝑽𝒌 − 𝒃𝑘1𝒏)

𝑘

+∑((𝛼 + 1)𝑙𝑜𝑔𝝀k + 𝛽𝝀k
−𝟏)

𝑘

 

=
𝐺 ∗ 𝑛

2
𝑙𝑜𝑔𝜎𝑒

2 +
𝟏

2𝜎𝑒2
ቌ𝑡𝑟 ൭𝑿 −∑𝑩𝑘𝑽𝑘

𝑇

𝑘

൱൭𝑿 −∑𝑩𝑘𝑽𝑘
𝑇

𝑘

൱

𝑇

ቍ

−
𝑛

2
∑𝑙𝑜𝑔

1

𝝀k
−

𝑘

𝐾

2
𝑙𝑜𝑔(𝑑𝑒𝑡(𝑳)) +∑

1

2𝝀k
(𝑽𝑘 − 𝒃𝑘1𝒏)

𝑻𝑳(𝑽𝑘 − 𝒃𝑘1𝒏)

𝑘

+∑((𝛼 + 1)𝑙𝑜𝑔𝝀k + 𝛽𝝀k
−𝟏)

𝑘

 

=
𝐺∗𝑛

2
𝑙𝑜𝑔𝜎𝑒

2 +
1

2𝜎𝑒
2 (𝑡𝑟(𝑿𝑿

𝑻) − 2𝑡𝑟(∑ 𝑩𝑘𝑽𝑘
𝑇𝑿𝑇

𝑘 )+𝑡𝑟((∑ 𝑩𝑘𝑽𝑘
𝑇)(∑ 𝑽𝑘𝑩𝑘

𝑇)𝒌𝑘 ) 

−
𝑛

2
∑ 𝑙𝑜𝑔

1

𝝀k
−𝑘

𝐾

2
𝑙𝑜𝑔(𝑑𝑒𝑡(𝑳)) + ∑

1

2𝝀k
(𝑽𝑘

𝑇𝑳𝑽𝑘 − 2𝒃𝑘𝑽𝑘
𝑇𝑳𝟏𝑛 + 𝒃𝑘

2𝟏𝑛
𝑇𝑳𝟏𝑛)𝑘 + ∑ ((𝛼 +𝑘

1)𝑙𝑜𝑔𝝀k + 𝛽𝝀k
−𝟏)                                                                                                                          (B10)     
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When we ignore the constants in the above equation, we can obtain the Q with respect to the 

column vector 𝑉𝑘 as 

𝑄𝑘 ∝
𝟏

𝟐𝜎𝑒2
(−2𝑡𝑟(∑𝑩𝑘𝑽𝑘

𝑇𝑿𝑇

𝑘

) + 𝑡𝑟(൭∑𝑩𝑘𝑽𝑘
𝑇)(∑𝑽𝑘𝑩𝑘

𝑇)

𝒌𝑘

൱

+∑
1

2𝝀k
(𝑽𝑘

𝑇𝑳𝑽𝑘 − 2𝒃𝑘𝑽𝑘
𝑇𝑳𝟏𝑛)

𝑘

 

∝
𝟏

𝟐𝜎𝑒
2 (−2𝑡𝑟(𝑿

𝑇𝑩𝑘𝑽𝑘
𝑇) + 𝑡𝑟(𝑩𝑘𝑽𝑘

𝑇𝑽𝑘𝑩𝑘
𝑇 + 2𝑩𝑘𝑽𝑘

𝑇 ∑ 𝑽𝑗𝑩𝑗
𝑇

𝑗≠𝑘 )) +
1

2𝝀k
(𝑽𝑘

𝑇𝑳𝑽𝑘 −

2𝒃𝑘𝑽𝑘
𝑇𝑳𝟏𝑛)(B11) 

We can obtain the partial derivative of Q with respect to the column vector 𝑽𝒌 as 

∇𝑣𝑘𝑄𝑘 =
𝜕𝑄𝑘

𝜕𝑽𝑘
= 

1

2𝜎𝑒
2 (−2𝑿

𝑇𝑩𝑘 + 2𝑽𝑘𝑩𝑘
𝑇𝑩𝑘 + 2∑ 𝑽𝑗𝑩𝑗

𝑇
𝑗≠𝑘 𝑩𝑘) +

1

2𝝀k
2𝑳𝑽𝑘 −

1

𝝀k
𝒃𝑘𝑳𝟏𝑛      (B12)   

We substitute 𝑳 = 𝑫 − 𝜙𝑾 and simplify the above equation as 

 ∇𝑣𝑘𝑄𝑘 =−
1

𝜎𝑒
2𝑿

𝑇𝑩𝑘 +
1

𝜎𝑒
2 (𝑽𝑘𝑩𝑘

𝑇𝑩𝑘 +∑ 𝑽𝑗𝑩𝑗
𝑇

𝑗≠𝑘 𝑩𝑘) +
1

𝝀k
{(𝑫 − 𝜙𝑾)𝑽𝑘 − 𝒃𝑘(𝑫 − 𝜙𝑾)𝟏𝑛} 

=−
1

𝜎𝑒2
𝑿𝑇𝑩𝑘 −

1

𝝀k
(𝜙𝑾𝑽𝑘 + 𝒃𝑘𝑫𝟏𝑛) +

1

𝜎𝑒2
(𝑽𝑘𝑩𝑘

𝑇𝑩𝑘 +∑𝑽𝑗𝑩𝑗
𝑇

𝑗≠𝑘

𝑩𝑘) +
1

𝝀k
(𝑫𝑽𝑘

+ 𝜙𝒃𝑘𝑾𝟏𝑛) 

= ∇𝑣𝑘
+ 𝑄𝑘 − ∇𝑣𝑘

− 𝑄𝑘                              

where ∇𝑣𝑘
+ 𝑄𝑘 =

1

𝜎𝑒
2 (𝑽𝑘𝑩𝑘

𝑇𝑩𝑘 + ∑ 𝑽𝑗𝑩𝑗
𝑇

𝑗≠𝑘 𝑩𝑘) +
1

𝝀k
(𝑫𝑽𝑘 + 𝜙𝒃𝑘𝑾𝟏n)  represents the positive 

terms in the gradient and ∇𝑣𝑘
− 𝑄𝑘 =

1

𝜎𝑒
2𝑿

𝑇𝑩𝑘 +
1

𝝀k
(𝜙𝑾𝑽𝑘 + 𝒃𝑘𝑫𝟏n) represents the negative terms 

in the gradient. Following (Lee and Seung 2000, Burred 2014, Lee, Seung and Saul 2002), we 

have the following updating rules where 
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𝑽𝑘 ← 𝑽𝑘 ∘ 
∇𝑣𝑘
− 𝑄𝑘

∇𝑣𝑘
+ 𝑸𝑘

                                                   (B13) 

Hence, element wisely, the equation (13) leads to the following updating rule:  

 

                                  𝑽𝑗𝑘 ← 𝑽𝑗𝑘
(𝝀k𝑿

𝑇𝑩𝑘+𝜎𝑒
2(𝜙𝑾𝑽𝑘+𝒃𝑘𝑫𝟏𝑛))𝒋

(𝝀k(𝑽𝑘𝑩𝑘
𝑇𝑩𝑘+∑ 𝑽𝑗𝑩𝑗

𝑇
𝑗≠𝑘 𝑩𝑘)+𝜎𝑒

2(𝑫𝑽𝑘+𝜙𝒃𝑘𝑾𝟏𝑛))𝒋
                     (B14) 

Thus, for each cell type k, we use the equation (14) to update the cell type composition across 

spatial locations.    

B.5.3.2 Optimization for 𝑏𝑘 

We take the partial derivative of complete loglikelihood with respect to 𝑏𝑘 and set it to be zero. 

We can obtain a closed form update for 𝒃𝒌 as 

𝜕𝑙𝑜𝑔𝑃(𝒃𝑘)

𝜕𝒃𝑘
= 

1

𝜎𝐿𝑘
2 𝑽𝑘

𝑇𝑳𝟏𝑛 −
1

𝜎𝐿𝑘
2 𝑏𝑘𝟏𝑛

𝑻𝑳𝟏𝑛 = 0 

                                                 → 𝑏𝑘 = 𝑽𝑘
𝑇𝑳𝟏𝑛(𝟏𝑛

𝑇𝑳𝟏𝑛)
−𝟏                                                          (B15) 

B.5.3.3 Optimization for 𝜆𝑘 

We take the partial derivative of complete loglikelihood with respect to 𝝀𝑘 and set it to be zero. 

We can obtain a closed form update for 𝝀𝑘 as 

      𝑙𝑜𝑔𝑃(𝝀𝑘) ∝
𝑛

2
𝑙𝑜𝑔

1

𝝀𝑘
 −

1

2𝝀𝑘
(𝑽𝑘 − 𝒃𝑘1𝒏)

𝑇𝑳(𝑽𝑘 − 𝒃𝑘1𝒏) − (𝛼 + 1)𝑙𝑜𝑔𝝀𝑘 − 𝛽𝝀𝑘
−𝟏 

∝ −(
𝑛

2
+ 𝛼 + 1) 𝑙𝑜𝑔𝝀𝑘 − (

(𝑽𝑘 − 𝒃𝑘𝟏𝑛)
𝑇𝑳(𝑽𝑘 − 𝒃𝑘𝟏𝑛)

2
+ 𝛽)𝝀𝑘

−𝟏 

𝜕𝑙𝑜𝑔𝑃(𝝀𝑘)

𝜕𝝀𝑘
= −

(
𝑛
2 + 𝛼 + 1)

𝝀𝑘
+

1

𝝀𝑘
2 (

(𝑽𝑘 − 𝒃𝑘𝟏𝑛)
𝑻𝑳(𝑽𝑘 − 𝒃𝑘𝟏𝑛)

2
+ 𝛽) 
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                                                       → 𝝀�̂� =
(𝑽𝑘−𝒃𝑘𝟏𝑛)

𝑻
𝑳(𝑽𝑘−𝒃𝑘𝟏𝑛)

2
+𝛽

(
𝑛

2
+𝛼+1)

        (B16) 

B.5.3.4 Optimization for 𝜎𝑒
2 

We take the partial derivative of complete loglikelihood with respect to 𝜎𝑒
2 and set it to be zero. 

We can obtain a closed form update for 𝜎𝑒
2 as 

𝜕𝑙𝑜𝑔𝑃(𝜎𝑒
2)

𝜕𝜎𝑒2
= −

𝐺 ∗ 𝑛

2𝜎𝑒2
+
||𝑿 − 𝑩𝑽𝑻||

2

2𝜎𝑒4
= 0 

                                                              → 𝜎𝑒2̂ =
||𝑿−𝑩𝑽𝑻||

2

𝐺∗𝑛
                                                           (B17) 
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Appendix C. Chapter 4 (IRIS) Supplementary Text 

C.1 Evaluations in Real Data Sets 

In the human DLPFC dataset, because we have the ground truth label, we directly 

compared identified spatial domains by each method with the ground truth via adjusted rand index 

(ARI) by using the compare function in the igraph R package (v1.0.0). Specifically, the details of 

calculating ARI is provided in ref (Ma and Zhou 2022) 

In the remaining datasets, we evaluated the performance of different methods by 

calculating the spatial CHAOS score as there was no ground truth available for these data. 

Specifically, to calculate the spatial chaos in each slice t, we first constructed a one-nearest-

neighbor (1NN) graph for each spatial locations in each domain r. We then specified the edge 

weight between spot I and j by the following:  

𝑬𝑡𝑟𝑖𝑗 = {
𝑒𝑖𝑗 ,𝑖𝑓𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑎𝑛𝑑𝑗𝑎𝑟𝑒𝑜𝑛𝑒 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where, 𝑒𝑖𝑗 is the Euclidean distance and the spatial CHAOS was calculated as the mean of the edge 

weight across spatial domains:  

𝐶𝐻𝐴𝑂𝑆 = 
∑ ∑ 𝑬𝑡𝑟𝑖𝑗𝑖,𝑗
𝑅
𝑟=1

𝑁𝑡
. 

where𝑁𝑡 is the total number of spatial locations in slice t; R is the total number of spatial domains; 

𝑖, 𝑗belongs to all the i-th, and j-th spatial locations belonging to spatial domain r in slice t. 

C.2 Robustness and sensitivity analysis  

C.2.1 Selection of the penalty parameters 𝜷 and 𝝀 
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 Following previous studies, we fixed the penalty parameters 𝛽 = 1000 and 𝜆 = 2000 for 

all datasets. Such choice is robust when varying the number of spatial domains in all real datasets. 

In addition, we evaluated different choices of 𝛽 and 𝜆 in the human DLPFC dataset where the 

ground truth spatial domains are known. We found that IRIS is generally robust for a reasonable 

range of 𝛽 and 𝜆 in the baseline setting analysis (Figure S4.20).  

C.2.2 Algorithmic innovations to ensure scalability of IRIS 

IRIS iteratively updates the spatial domain labels and cell type compositions for all tissue 

slices to ensure optimal clustering performance. IRIS also relies on several algorithmic innovations 

to make it highly computationally efficient. First, the modeling framework of IRIS is in essence 

based on a non-negative matrix factorization (NMF) model, expressing the mean gene expression 

profile in the spatial transcriptomics as a linear function of that from scRNA-seq. The NMF 

modeling framework streamlines the inference procedure and facilitates scalable computation. 

Second, IRIS detects spatial domains based on the concatenated cell type composition matrix, 

which represents a low-dimensional sub-space with enriched signals for the noisy high-

dimensional gene expression data. Because of this, the preprocessing steps of IRIS are relatively 

simple and do not contain a dimension reduction step. Third, IRIS makes use of the fast 

multiplicative updating rules (Lee and Seung 2000, Janecek and Tan 2011) for updating the 

nonnegative cell type composition matrix in a supervised fashion. The multiplicative updating 

rules allow for algorithmic optimization without explicit inverse of the graph Laplacian matrix, 

which incurs heavy computation burden. Fourth, IRIS relies on the computationally efficient K-

means clustering algorithms for updating the spatial domain labels in each optimization iteration. 

Fifth, IRIS takes advantage of the sparse matrix computation properties when constructing the 

graph Laplacian matrix, which induces a local geometric structure to further reduce the 
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computational cost. Finally, while IRIS is implemented in R, its core deconvolution algorithm is 

implemented with an efficient C++ code that is linked back to the main functions of IRIS through 

Rcpp, ensuring scalable computation.  

C.3 Spatial Transcriptomics and Single-cell RNA-seq Datasets. 

We applied IRIS to analyze four published spatial transcriptomics datasets collected by 

different techniques, with distinct spatial resolutions, and from multiple species and tissues. For 

each spatial transcriptomics data, we obtained an external scRNA-seq collected on the same type 

of tissue but with a different sequencing technology to serve as the reference. 

Human prefrontal cortex (DLPFC) data by 10x Visium 

We downloaded human prefrontal cortex (DLPFC) data (Maynard et al. 2021) generated 

by 10x Visium from the spatialLIBD website (http://spatial.libd.org/spatialLIBD/). This study 

sequenced 12 brain tissue slices measured on 33,538 genes and 3,460 ~ 4,789 spatial locations 

from three donors. Each tissue slice contains seven spatial domains including six cortical layers 

and white matter. We obtained the domain annotations for each measured spatial location from the 

original study and used them as the ground truth to evaluate the accuracy of different methods on 

spatial domain detection. For quality control, for each tissue slice in turn, we retained genes with 

non-zero expression on at least five spots. We filtered spots that was labeled “discarded” from the 

original study and retained spots that have a minimum of 100 UMIs following (Cable et al. 2022, 

Ma and Zhou 2022). These filtering criteria led to a final set of 17,151 genes and 3,454 ~ 4,730 

spatial locations across the 12 tissue slices for analysis. Besides the spatial transcriptomics, we 

also obtained a single nuclear RNA-seq (snRNA-seq) data sequenced by 10x Chromium 

technology on human post-mortem brain to serve as the reference (Mathys et al. 2019). 

http://spatial.libd.org/spatialLIBD/


 234 

Because the DLPFC data contains known spatial domain annotations, we examined the 

data extensively and performed two types of analyses by either analyzing consecutive tissue slices 

from the same donor (e.g., on samples 151507-151510) or analyzing inconsecutive tissue slices 

from different donors (e.g., samples 151509, 151671, and 151675). The latter analyses represent a 

more challenging scenario than the former as the spatial domains on different slices can be of 

different shape.  

High-resolution mouse spermatogenesis data by Slide-seq 

We obtained the mouse spermatogenesis data by Slide-seq (Chen et al. 2021) from the link 

provided in the original paper 

(https://www.dropbox.com/s/ygzpj0d0oh67br0/Testis_Slideseq_Data.zip?dl=0&file_subpath=%

2FData). This study consists of gene expression measurements on 23,515 ~ 24,450 genes and 

27,194 ~ 42,776 spatial locations on testicular tissues harvested from six adult male mice with 3-

10 months of age. One tissue slice is collected for each mouse. Among the six mice, three are 

leptin-deficient diabetic mice and three are matching wild-type (WT) mice. For quality control, 

for each tissue slice in turn, we retained genes with non-zero expression on at least five spots. We 

retained spots that have a minimum of 100 UMIs following (Cable et al. 2022, Ma and Zhou 2022). 

These filtering criteria led to a final set of 18,865 ~ 19,457 genes and 25,377 ~ 42,776 spatial 

locations across all six tissue slices for analysis. Besides the spatial transcriptomics, we also 

obtained a scRNA-seq data sequenced from Drop-seq on six batches of 7- to 9-week-old adult 

male mice to serve as the reference (Green et al. 2018). In the spermatogenesis data, we performed 

four analyses: we either analyzed two tissue slices of either diabetic mouse and WT mouse (dataset 

WT3_Puck7 and dataset Diabetes2_Puck10) following the original paper; or analyzed all three 

https://www.dropbox.com/s/ygzpj0d0oh67br0/Testis_Slideseq_Data.zip?dl=0&file_subpath=%2FData
https://www.dropbox.com/s/ygzpj0d0oh67br0/Testis_Slideseq_Data.zip?dl=0&file_subpath=%2FData
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tissue slices of the WT mice (dataset WT1_T3, WT2_Puck24, and WT3_Puck7) or that of the 

diabetic mice (dataset Diabetes1_T4, and Diabetes2_Puck10, Diabetes3_Puck11).  

Sub-cellular resolution mouse olfactory bulb (MOB) data by Stereo-seq 

We downloaded the sub-cellular mouse olfactory bulb from the MOSTA website 

(https://db.cngb.org/stomics/mosta/download.html). This study consists of gene expression 

measurements on 23,815 ~ 26,145 genes and 104,931 ~ 107,416 spatial locations from two 

adjacent mouse olfactory bulb sections. For quality control, for each tissue slice in turn, we retained 

genes with non-zero expression on at least five spots. We retained spots that have a minimum of 

100 UMIs following (Cable et al. 2022, Ma and Zhou 2022). These filtering criteria led to a final 

set of 23,815 ~ 26,145 genes and 103,610 ~ 106,770 spatial locations across six tissue slices for 

analysis. Besides the spatial transcriptomics, we also obtained a scRNA-seq data sequenced by 

10x Chromium on mouse olfactory bulb from six mice models to serve as the reference (Tepe et 

al. 2018). In the MOB data, we analyzed the two sections together (Mouse_olfa_S1 data and 

Mouse_olfa_S2) 

High-resolution human breast cancer data by 10x Xenium 

We downloaded the high-resolution human breast cancer data from 10x Genomics website 

(https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast). This 

study consists of gene expression measurements on 313 genes and 118,708 ~ 167,782 spatial 

locations from two adjacent human breast cancer slices. For quality control, for each tissue slice 

in turn, we retained genes with non-zero expression on at least five spots. We retained spots that 

have a minimum of 100 UMIs following (Cable et al. 2022, Ma and Zhou 2022). These filtering 

criteria led to a final set of 313 genes and 90,424 ~ 124,945 spatial locations across the two tissue 

slices for analysis. Besides the spatial transcriptomics, we also obtained a scRNA-seq data 

https://db.cngb.org/stomics/mosta/download.html
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
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sequenced by 10x Chromium from 26 breast cancer patients to serve as the reference (Wu et al. 

2021). In the human breast cancer data, we analyzed the two tissue slices together (Rep1 and Rep2) 

C.4 Challenging settings for the evaluation on the benchmark DLPFC dataset 

In the DLPFC dataset by 10x Visium, we examined four settings in total: (1) baseline 

setting when the slices are from the same donor that share high similarity; (2) challenging setting 

when we use a scRNA-seq reference with one missing cell type information at a time; (3) 

challenging setting when we use a scRNA-seq reference with mis-classified cell type information 

by randomly merging two cell types; (4) challenging setting when the slices are from different 

donors that share low similarity in structures. For each setting, we applied IRIS with the input of 

multiple slices spatial transcriptomics and scRNA-seq reference data. Specifically, for the baseline 

setting (1), when the slices are from the same donors and challenging setting when the slices are 

from different donors, we use the scRNA-seq data from 10x Chromium on the post-mortem brain 

tissue with 44 cell types to serve as the reference (Mathys et al. 2019). For the challenging setting 

(2) when there is a missing cell type in the scRNA-seq data, we remove one cell type in the scRNA-

seq reference at a time. Therefore, it consists of 44 scenarios in total as there are 44 cell types in 

the complete scRNA-seq reference. (3) When there is mis-classified cell type in the scRNA-seq 

data, we randomly merge two cell types among the 44 cell types to create an artificially mis-

classified cell type. Therefore, it consists of 946 scenarios in total as there are 946 pair-wise 

combinations. 
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