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ABSTRACT

The scale of modern datasets, with more and more variables measured on more and more

observations, presents many statistical challenges, but also opportunities to discover and

exploit the rich structure that is often present in the data. In neuroimaging studies, multiple

kinds of brain imaging are conducted on the same participant, with each modality of imaging

having its own further structure, and many associated phenotypic measurements taken on

the participants. Understanding the complicated and noisy underlying relationships between

all of these measurements holds promise for scientific and treatment breakthroughs in the

long term, and requires sophisticated methods designed to uncover this structure. This

thesis presents three projects on learning structure in high-dimensional datasets motivated

by applications in neuroimaging.

The first project considers the setting where many networks are observed on a common

node set: each observation comprises edge weights, covariates observed at each node, and a

response. In our neuroimaging application, the edge weights correspond to functional con-

nectivity between brain regions, node covariates encode task activations at each brain region,

and performance on a behavioral task is the response. The goal is to use the edge weights and

node covariates to predict the response and to identify a parsimonious and interpretable set

of predictive features. We propose an approach that uses feature groups defined according to

a community structure believed to exist in the network (naturally occurring in neuroimaging

applications). We propose two schemes for forming feature groups where each group incor-

porates both edge weights and node covariates, and derive optimization algorithms for both

using an overlapping group LASSO penalty. Empirical results on synthetic data show that

our method, relative to competing approaches, has similar or improved prediction error along

with superior support recovery, enabling a more interpretable and potentially a more accu-

rate understanding of the underlying process. We also apply the method to neuroimaging

data.

The second project focuses on inference for structure learned using Canonical Correlation

Analysis (CCA). CCA is a method for analyzing a sample of pairs of random vectors; it

learns a sequence of paired linear transformations of the original variables that are maxi-

mally correlated within pairs while uncorrelated across pairs. CCA outputs both canonical
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correlations as well as the canonical directions which define the transformations. While

inference for canonical correlations is well developed, conducting inference for canonical di-

rections is more challenging and not well-studied, but is key to interpretability. We propose

a computational bootstrap method for inference on CCA direction (combootcca). We con-

duct thorough simulation studies that range from simple and well-controlled to complex but

realistic and validate the statistical properties of combootcca while comparing it to several

competitors. We also apply the combootcca method to a brain imaging dataset and discover

linked patterns in brain connectivity and behavioral scores.

The third project proposes a new method for matrix CCA (matcca), which works with

pairs of random matrices rather than pairs of random vectors, motivated by a neuroimaging

application where the brain imaging data takes the form of a high-dimensional covariance

matrix. Our matcca method uses a nuclear norm penalty that encourages the canonical

directions associated with the matrix-variate data to have low rank structure when arranged

into a matrix. Results from both synthetic and neuroimaging data show that matcca is very

effective at recovering low rank signals even in noisy cases with few observations.
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CHAPTER 1

Introduction

Modern scientific datasets are growing ever larger and larger in the big data era. While

much statistical theory has been developed for the asymptotic regime wherein the number

of observations N and/or the number of predictors p grow, the reality is that this growth

is generally not smooth or uniform in p: expanding the number of features used during

data collection is not tantamount to drawing balls from an urn. Instead, new features are

often acquired in blocks (e.g., adding microarray data to a study adds many new features

all of a similar type), and they often have partial overlap with old features. As a result,

while modern datasets have intimidating scale, they also come with rich structure, which,

if carefully exploited, can help us to find signal even from relatively few noisy observations.

Moreover, aligning statistical analyses to structure allows us to take advantage of ongoing

advances in scientific understanding of complex phenomena. In some sense, we wish to

partially automate the “step” of the analysis wherein the statistician presents the results to

the scientist and asks if what they have found seems plausible.

This kind of structure is certainly present in neuroimaging studies, which serves as the

motivating application throughout this dissertation, where multiple kinds of brain imaging

are typically acquired on the same participants. This multimodal data offers non-redundant

views into the brain (Uludağ and Roebroeck, 2014), and while it is of course possible to

analyze each view separately, we require sophisticated methods in order to discover and

exploit the potentially rich structure that exists within individual modalities as well as those

that links these different views.

In Chapter 2, we assume the presence of structure based on a neuroscientifically plausible

hypothesis, and we use this structure to guide feature selection. Of note, Chapter 2 is

adapted from Kessler et al. (2022) and reflects joint work with both the advisor and a former

postdoc. In Chapter 3, we make minimal assumptions about the form of the structure and

instead use Canonical Correlation Analysis (CCA), a classic statistical tool, in order to

discover structure that relates one random vector to another (and vice versa). However,

because CCA will essentially always find something apparently interesting, we develop and
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validate a computational bootstrap approach in order to subject our discovered structure to

inference. In Chapter 4, in order to make more direct use of the structure in our data, we

extend CCA from the vector-variate to the matrix-variate setting. In so doing, we are able

to use matrix-specific penalties in order to guide our discoveries.

Although the three projects in this dissertation all involve the use of structure in large,

complex datasets encountered in the course of human neuroimaging research, each has a

distinct statistical goal related to different common themes in statistics. In Chapter 2, the

goal is interpretable prediction: we want to predict a score or label after observing a weighted

network and associated node covariates; in Chapter 3, the goal is inference: after performing

CCA, we want to conduct inference on our canonical directions; in Chapter 4, the goal is

estimation: we want to exploit low-rank structure in matrix-variate data in order to obtain

better estimates of the canonical directions when the sample is small or the signal is weak.

Finally, in Chapter 5, we conclude by summarizing our contributions and then outlining

several new lines of work related to the projects presented.
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CHAPTER 2

Predicting Responses from Weighted

Networks with Node Covariates in an

Application to Neuroimaging

2.1 Introduction

Predicting a response such as a psychiatric disease status from brain scans of a given indi-

vidual is an increasingly common task in human neuroimaging; see Calhoun et al. (2017);

Arbabshirani et al. (2017); Burgos and Colliot (2020) for some reviews. While earlier work

in neuroimaging, especially in functional magnetic resonance imaging (fMRI), focused on

brain activation in response to particular tasks, the use of “resting state” imaging has be-

come increasingly popular as a means of characterizing brain patterns and understanding

differences across individuals and populations. Neuroimaging studies increasingly aim to

predict individual phenotypes from the resting state functional connectivity (Khosla et al.,

2019). In addition to functional connectivity measurements, many of these studies also ac-

quire spatially-localized brain characteristics (e.g., activation in response to a cognitive task)

on the same participants. The simultaneous use of multiple modalities obtained from brain

imaging, e.g., both connectivity and activation during a task, offers an opportunity for better

prediction and deeper understanding in how various characteristics of the brain affect the

phenotype (Calhoun and Sui, 2016).

This task is an instance of a general statistical problem: modeling or predicting a response

y as a function of one or more network-valued predictors. In general, a network contains

information about connections (edges) between units of observation (nodes), and may also

have additional information on the nodes available (node covariates). In the neuroimaging

application above, the nodes are locations in the brain, and the edges correspond to con-

nectivity between these locations. Typical neuroimaging networks are undirected, and edge

weights represent the strength of connectivity, though this can vary with imaging modality.
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The nodes can be “labeled” by mapping every participant’s brain onto a common anatomical

atlas (e.g., Power et al., 2011), also known as a parcellation, with the result that the networks

can be aligned with each other and observed on a common node set. Node covariates may

take the form of measurements such as activation in response to a cognitive task or gray

matter volume, and the response y is a participant-level variable such as a cognitive task

score or disease status.

In human neuroimaging, available parcellations of the brain often provide not only a

common atlas for nodes but also a partition into “brain systems,” which we may think of

as network communities. These communities may be based on domain knowledge or result

from a prior data analysis involving some type of community detection algorithm (Yeo et al.,

2011; Power et al., 2011). Obtaining results at the level of these brain systems rather than

individual nodes aids interpretability and comparisons across studies, and helps to balance

power and spatial specificity (Noble et al., 2022).

Currently popular methods in the field, such as connectome predictive modeling (Shen

et al., 2017) and Brain Basis Set modeling (Sripada et al., 2019), tend to vectorize edge

weights and use them as a “bag of features” (Chung et al., 2021) to feed into conventional

supervised learning algorithms. These approaches do not account for community structure

that may be present and offer only ad hoc interpretation at that level of resolution. Further,

these methods typically do not accommodate node covariates. Domain-agnostic approaches

for variable selection, such as the LASSO (Tibshirani, 1996), similarly disregard the network

structure of the data, but can still be used as a predictive performance benchmark for the

new, more interpretable methods we aim to develop here.

Our goal in this work is to develop methods that can predict the response accurately

from edge weights and node covariates while providing interpretation at the level of network

communities. We call such methods “network-aware,” in contrast to the “bag of features”

methods discussed above. We do this by imposing structured penalties that reflect commu-

nities, proposing two different grouping schemes depending on the mechanism believed to

be involved, and deriving an efficient algorithm based on overlapping group LASSO to ob-

tain interpretable group-sparse solutions. We call this method NetCov, for prediction from

networks with node covariates. This approach is in contrast to methods that first aggre-

gate connectivity among communities (e.g., Yu et al., 2019), which may miss more nuanced

patterns when the signal within a community is heterogeneous.

Some examples of previous uses of a group LASSO penalty in neuroimaging include

Shimizu et al. (2015), which used both group and sparse group LASSO (SGL) with voxels

grouped based on brain region in the classification of depression using task fMRI. Relión et al.

(2019) proposed a prediction framework that uses an SGL penalty where each node of the
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network has all of its incident edge weights grouped together (resulting in overlapping groups)

and applied this to a Schizophrenia dataset. Richie-Halford et al. (2021) also proposed an

SGL-based method intended for use with diffusion-weighted magnetic resonance imaging

(dMRI) where voxel-level features are grouped based on tissue tract. To the best of our

knowledge, NetCov is the first method to (a) construct groups that include both edge weights

and node covariates, thus naturally spanning multiple imaging modalities, and (b) leverage

community information in the construction of groups.

While our goal is to predict a response y given an observed network, a related line of

work approaches the converse problem and aims to characterize networks given an observed

response. For example, Tang et al. (2017) proposed a method for testing the hypothesis that

two networks are drawn from the same distribution and applied it to neural connectome

graphs. Ginestet et al. (2017) obtained a central limit theorem for networks which enabled

the construction of Wald-like hypothesis tests for samples of networks analogous to classical

one- and two-sample tests and then illustrated the method on functional connectivity data.

Xia et al. (2020) introduced a “Multi-scale network regression” model in which edge weights

are predicted using phenotypes in a penalized model. Another more recent instance of work

that assesses how networks change given a response is Kim et al. (2023), which modeled edge

weights using a mixed-effects framework with a network-aware variance structure.

The remainder of the paper is organized as follows. In Section 2.2, we propose our

model and describe the two feature grouping schemes. The fitting algorithm is presented

in Section 2.3. Numerical experiments assessing our approach and comparing it to other

methods are presented in Section 2.4. We then apply the approach to data from a large

human neuroimaging study in Section 2.5, and conclude with a discussion of limitations and

future work in Section 2.6.

2.2 The NetCov Model and Network-Aware Penalties

We start by fixing notation. Let N be the number of observations (e.g., participants, in the

neuroimaging context), and let the data collected for each participant i = 1, . . . , N be the

triple
(
A(i), X(i), y(i)

)
. Here A(i) is the n×n signed and weighted adjacency matrix associated

with the i-th observation, on a common set of nodes labeled 1, . . . , n, with A
(i)
kl representing

the weight of the edge from node k to node l for participant i. The matrix X(i) ∈ Rn×d

contains node covariates for participant i, with the k-th row corresponding to the covariates

of node k. The response variable y(i) for participant i may be real-valued or categorical.

Finally, let c : {1, . . . , n} → {1, . . . , K} be the map that assigns each node k, k = 1, . . . , n to

one of K possible communities. We assume this map is known (or learned previously) and
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will use it to construct feature groups.

Importantly, the response y(i), edge weights A(i), and node covariatesX(i) are all observed,

and while we expect there may be correlations among them, they are not inferred one from

the other. The class of matrices A(i) may be further restricted based on the application at

hand. For instance, in all our examples, the networks are undirected, and so the A(i) are

symmetric matrices.

2.2.1 Prediction Model

We use a standard generalized linear model for relating the response y to the predictors

(A,X), since we aim for interpretable parameters. We assume that conditional on (A,X),

y follows a distribution amenable to generalized linear modeling (McCullagh and Nelder,

1998) and satisfies

E [y] = g−1 {µ+ Trace (β⊺
AA) + Trace (β⊺

XX)} ,

where g−1 is the inverse of the link function g, and µ ∈ R, βA ∈ Rn×n, and βX ∈ Rn×d are

(unknown) coefficients. The choice of g will depend on the setting: for continuous y we may

use the identity link function, and for binary y letting g−1(t) = 1
1+exp(−t)

yields a logistic

regression model. Note that if the networks have no self-loops or are undirected, many of

the entries of A are either redundant or of no interest, and we can remove these terms from

the model by constraining the corresponding entries of βA to also be zero.

It will often be notationally convenient to use Z(i) ∈ Rp to denote an appropriately

vectorized version of
(
A(i), X(i)

)
and to let β ∈ Rp, be an analogously vectorized version of

(βA, βX). The dimension p depends on the number of non-redundant entries; for instance,

if the networks are undirected with no self-loops, then p = n(n − 1)/2 + dn. If we write

Z ∈ RN×p for the matrix with Z(i) as the i-th row, we can write

E [y] = g−1 (µ+ Zβ) ,

which substantially simplifies subsequent derivations.

2.2.2 Feature Groups

Feature groups are at the core of our method and its goal to provide interpretable network-

aware solutions. Suppose, without loss of generality, that the nodes are ordered such that

community assignments are contiguous and non-decreasing, i.e., i < j =⇒ c(i) ≤ c(j).

Recall that coefficients corresponding to the node covariates are held in the matrix βX ∈
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Rn×d. Since each row corresponds to coefficients associated with a distinct node, and each

node is assigned to a community, we can partition the predictors in X(i) into K “blocks,”

where each block comprises the covariates associated with the nodes in a specific community.

Let Gk
X = {i : c(i) = k} denote a given block. Recall that coefficients corresponding to edge

weights are held in the matrix βA ∈ Rn×n. We can partition βA into “cells,” where each cell

corresponds to coefficients associated with edges linking nodes belonging to a specific pair

of communities. If the network is directed, there will be K2 cells, whereas if it is undirected

there will be K(K + 1)/2 cells. Let Gk,k′

A = {(i, j) : c(i) = k and c(j) = k′} denote a given

cell. An example of this partitioning scheme is depicted in Fig. 2.1.

βA βX

n

n

n

d

G1
X

G2
X

G3
X

G1,1
A

G2,1
A

G3,1
A

G2,2
A

G3,2
A G3,3

A

Figure 2.1: Feature groups for undirected networks with K = 3. Network cells are on the
left and node blocks are on the right.

Blocks and cells form natural grouping units for nodal and edge covariates, respectively,

and the question is how to combine them. We propose two different feature grouping schemes:

Node-Based Groups (NBG) and Edge-Based Groups (EBG). These two schemes are moti-

vated principally by the neuroscientific notion of “lesion network mapping” (Fox, 2018),

and are schematically illustrated in Fig. 2.2. In the first scenario (NBG), an aberration

caused by a disease, trauma, etc., affects a brain system, corresponding to say commu-

nity k. This affects the block Gk
X and also affects its connectivity with other brain sys-

tems, so G1,k
A , G2,k

A , . . . , GK,k
A are affected too. Formally, the K feature groups under NBG,

G =
{
G1, G2, . . . , GK

}
, are given by

Gk = Gk
X ∪

K⋃
j=1

Gj,k
A .

In the second scenario (EBG), the aberration affects edges instead of nodes, disrupting

connectivity between two systems, say k and k′, affecting Gk,k′

A . This in turn affects covariates
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Figure 2.2: The neuroimaging motivation for grouping. Circled groups of nodes represent
brain systems, lines represent connectivity between systems. Black is normal, red is abnor-
mal, and a lightning bolt indicates a disease or injury. Left (NBG): a disease affects a system
and therefore its connections to other systems also become abnormal. Right (EBG): a disease
affects connectivity between two systems, and the systems themselves become abnormal.

within both systems, i.e., Gk
X and Gk′

X . Formally, the K(K + 1)/2 groups under EBG,

G =
{
Gk,k′ : 1 ≤ k ≤ k′ ≤ K

}
, are given by

Gk,k′ = Gk,k′

A ∪Gk
X ∪Gk′

X .

To sum up, an NBG group corresponds to one community, including its nodes and all edges

it is involved in, while an EBG group corresponds to a connection between two communities,

including the nodes of both communities and edges between them. Note that under both

NBG and EBG, each feature appears in at least one group, but the groups overlap. In

either case, a given group comprises coefficients associated with both edge weights and node

covariates. The stated definitions for undirected networks can be readily extended to directed

settings. The corresponding groupings of the coefficients of β are illustrated, for K = 3, in

Fig. 2.3 for NBG and Fig. 2.4 for EBG.

2.3 An Algorithm for Fitting NetCov

Recall that Z ∈ RN×p is a design matrix with row vectors corresponding to the appropriate

vectorization of
(
A(i), X(i)

)
(where the dimension p will vary depending on the number

of nodes, node covariates, whether the network is directed, etc), µ ∈ R is an intercept,

and β ∈ Rp gives regression coefficients corresponding to the columns of Z. We write

βG to denote the subvector of β containing coefficients corresponding to features in group

G. Similarly, ZG denotes the submatrix formed by the columns of the design matrix Z

corresponding to group G.
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Figure 2.3: The NBG feature groups for K = 3. The panels, from left to right, show features
associated with communities 1, 2, and 3. Yellow stars correspond to node covariates, and
blue diamonds to edge weights.

2.3.1 The Objective Function

We fit NetCov following a standard approach of minimizing a penalized loss function,

Q(µ,β | Z,y) = 1

n
L(µ,β | Z,y) + Ω(β), (2.1)

where L is a loss function measuring the fit to training data and Ω is a regularization

penalty, which we use to encourage group sparsity. We use deviance as the loss function,

which depends on the assumed distribution of the response. For example, for linear models

(i.e., with the identity link function), we use the least squares loss function given by

1

2

N∑
i=1

(
y(i) − µ− β⊺Z(i)

)2
.

For a binary response y ∈ {0, 1}, we use the logistic regression loss

−2
N∑
i=1

[
y(i)
(
µ+ β⊺Z(i)

)
− log

{
1 + exp

(
µ+ β⊺Z(i)

)}]
.

We assume that each predictor has been standardized to have mean 0 and variance 1,

and a continuous response y is also standardized to have mean 0 and variance 1. The means

and variances are learned from the training data only and are then used to normalize the

test data, which, as a result, may not have exactly mean 0 and variance 1. There is another

important and less trivial standardization step, discussed further in Section 2.3.2.

Recall that G denotes the collection of groups, where G ∈ G is a set of indices for a given

group of variables, and the structure of G is determined by the mechanism we are looking
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Figure 2.4: The EBG feature groups for K = 3. Each panel shows one group corresponding
to a connection between communities k1 and k2, with 1 ≤ k1 ≤ k2 ≤ 3. Yellow stars
correspond to node covariates, and blue diamonds to edge weights.

to find. We assume that the coefficients β are group-sparse, i.e., that only a small subset

of feature groups are “active,” that is, contain non-zero coefficients. The union of all active

groups gives the active set of coefficients. This assumption is both pragmatic and principled:

the number of the edge features is O(n2) which for all but very small networks puts us in a

high-dimensional regime where some regularization is necessary. At the same time, selecting

features in groups yields interpretability at the level of communities (brain systems, in our

application), rather than at the level of individual edges and/or nodes. This is a desirable

property for many applications, and especially so for neuroimaging, where domain knowledge

generally exists at a resolution more compatible with large communities than specific brain

coordinates, and where individual measurements are noisy and unreliable.

To select features in groups, we will employ the group LASSO penalty, which under ap-

propriate conditions enjoys similar or superior theoretical properties relative to the standard

LASSO (Nardi and Rinaldo, 2008; Huang and Zhang, 2010). The group penalty we use is of

the form introduced by Yuan and Lin (2006),

Ω(β) = λ
∑
G∈G

√
|G|∥βG∥2, (2.2)
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where λ is a tuning parameter and |G| is the cardinality of group G. Because the 2-norm is

non-differentiable at 0, this penalty yields a loosely analogous geometry to the LASSO with

critical points at solutions that are group-sparse, whereas the classical LASSO (Tibshirani,

1996) does not encourage group-sparse solutions.

In our setting, there is an additional complication: our feature groups overlap, as can

be easily seen in Figs. 2.3 and 2.4. Optimization of an objective with penalty Eq. (2.2)

has an undesirable property for our application: the critical points correspond to solutions

where “inactive” groups have all coefficients set to 0. This means that we have a set of

inactive groups GI ⊆ G such that ∀G ∈ GI ,βG = 0, and a given feature can only be active

if all of the groups in which it participates are active. In some circumstances, this may

be a desirable property, for example as in Relión et al. (2019). However, the neuroimaging

setting we consider calls for exactly the opposite: related nodes and edges are affected jointly.

This problem is discussed in Jacob et al. (2009); Obozinski et al. (2011), and we follow

their approach of duplicating variables to render the groups non-overlapping, then using the

standard group LASSO formulation on the expanded variable set. That is, we construct, via

concatenation, Z⋆ =
[
ZG : G ∈ G

]
and β⋆ =

[
β⊺

G : G ∈ G
]⊺
, and then minimize Q(µ,β⋆ |

Z⋆,y). For the purpose of visualization and interpretation, we can map an estimate of β⋆

back to the dimension of β through summation: e.g., suppose that the i-th coordinate of β

appears in two groups and thus corresponds to coordinates j and j′ of β⋆; then we can find

(β)i = (β⋆)j + (β⋆)j′ .

2.3.2 Standardizing within Groups

It is standard practice when fitting the LASSO to standardize the columns of the design

matrix Z to have mean 0 and variance 1, since otherwise their coefficients are not on the

same scale and cannot be sensibly combined into one penalty. For the group LASSO, Simon

and Tibshirani (2012) argue that the appropriate normalization involves not only centering

and rescaling columns, but orthonormalizing the columns corresponding to each group, ZG.

As discussed further in Breheny and Huang (2015), this orthonormalization yields a more

straightforward and efficient algorithm, and is tantamount to penalizing the contribution

of each group to the linear predictor. This approach is called the “groupwise prediction

penalty” in Bühlmann and van de Geer (2011).

This can be accomplished in practice by computing the SVD of each Z⋆
G = UGΣGV

T
G ,

where we limit the decomposition to singular vectors corresponding to nonzero singular

values. We then construct a new design matrix comprising orthonormalized groups as Z̃⋆ =[
UG : G ∈ G

]
, and we use this quantity when minimizing Eq. (2.1) in β̃

⋆
. Note that groups

11



of less than full column rank will have their penalty in Eq. (2.2) scaled based on the number

of columns of their corresponding UG, i.e., the rank of ZG. After obtaining an optimal β̃
⋆
,

it is possible to invert both the orthonormalization and variable duplication to arrive at a

solution that is parameterized by β, which we use for both prediction and interpretation.

See Breheny and Huang (2015); Zeng and Breheny (2016) for more details.

2.3.3 Implementation and Parameter Tuning

Efficient algorithms for solving the non-overlapping standardized group LASSO penalty in

the context of both linear and logistic regression are presented in Breheny and Huang (2015)

and available in the grpreg package in R (R Core Team, 2023). To use this approach in

the overlapping case, we use the grpregOverlap (Zeng and Breheny, 2016) package: it

manages variable duplication and depends heavily on grpreg. Unfortunately, as of this

writing, this package is no longer available from CRAN, but it is available from Github at

https://github.com/YaohuiZeng/grpregOverlap; this version incorporates a number of

improvements and fixes that we contributed in the course of our present work.

In practice, the tuning parameter λ needs to be learned from the data. Following standard

practice, we use cross-validation on training data to choose λ, for both NetCov and the

regular LASSO, which we use as a baseline comparison. We adopt an approach based on

the default settings for glmnet (Friedman et al., 2010b). First, we identify the data-driven

quantity λmax, the smallest value of λ for which the selected model is fully sparse. Then,

we set λmin = 0.05λmax and create a logarithmically-spaced grid of candidate values for λ

between λmin and λmax. We then conduct ten-fold cross-validation at each of the values along

this grid, and compute the average out-of-sample deviances. Let λ⋆ be the value of λ from

the grid that minimizes the mean deviance. We then set λ̂ to the largest value in the grid

that has the out-of-sample deviance within one standard error of that corresponding to λ⋆.

Finally, we refit the model to the full training set with λ = λ̂.

2.4 Numerical Experiments

We conduct numerical experiments in a variety of settings to assess the performance of our

procedure and to compare with competing strategies. Generating simulated data involves

generating or specifying the covariates A(i), X(i), specifying the coefficients β, and drawing

the response y from an appropriate model. In our first set of simulations in Section 2.4.1

the design matrix is synthetic, which allows us to vary more parameters and explore their

influence on performance. In Sections 2.4.2 and 2.4.3, we fix the design to correspond to
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covariates from a human neuroimaging study.

To set coefficients β, we vary (i) NBG vs EBG group structure, (ii) number of active

feature groups (either 1 or 5), and (iii) the magnitude of active features (i.e., controlling the

signal-to-noise ratio [SNR]). We simulate all these scenarios for both continuous and binary

responses. For simplicity, we only consider undirected networks with no self-loops and keep

the number of nodal covariates d = 1. However, all results can be readily extended beyond

these settings.

All simulations include both a training set used for both parameter tuning and model

fitting and a test set used to assess out-of-sample performance. While there are 8 unique

combinations of group structure, number of active groups, and response (continuous versus

binary), we smoothly vary the SNR across 20 levels; this leads to 160 unique settings for each

experiment. We repeat each experiment 10 times for each setting and average the results.

Because we conduct a total of nearly 10,000 experiments; we conduct our simulations on a

high performance computing system with the extremely useful R package batchtools (Lang

et al., 2017).

As a baseline comparison to our method, we include regular LASSO as implemented

in the glmnet (Friedman et al., 2010b) package. For both NetCov and LASSO, the tuning

parameter is chosen by cross-validation as described in Section 2.3.3. For the simulations, we

do not include other potential competing methods developed specifically for neuroimaging,

such as Brain Basis Sets (Sripada et al., 2019) because they do not perform feature selection.

Since our primary goal is interpretation obtained from variable selection, we look at

support recovery as a measure of performance, computing both recall and precision for β,

where recall is defined as
TP

TP+FN
,

and precision is defined as
TP

TP+FP
,

where TP denotes the number of true nonzero coefficients that are in the estimated support,

FP denotes the number of true zero coefficients that are in the estimated support, and FN

denotes the number of true nonzero coefficients that are not in the estimated support.

We also assess out-of-sample prediction performance using out-of-sample classification

accuracy for binary responses and using the correlation between our predictions ŷ and the

observed values in the test set, for the ease of comparison with the neuroimaging literature,

which uses this measure (e.g., Sripada et al. (2020); Hsu et al. (2018)). We plot these metrics
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against SNR for linear models and against Bayes Error (BE) for logistic models, given by

SNR = σ−2VarZ (Zβ) (2.3)

and

BE = EZ

[
min

(
logit−1 (Zβ) , 1− logit−1 (Zβ)

)]
. (2.4)

In all of our simulations with continuous responses, we set the error variance σ2 = 1. When

working with semi-synthetic data, where the design is based on real data, as discussed

in Section 2.4.2, we compute the expectation and variance with respect to the empirical

distribution of the training data.

2.4.1 Experiment I: Fully Synthetic Data

In this experiment, we generate fully synthetic designs
(
A(i), X(i)

)N
i=1

. We set the number

of observations N = 1000 and the number of communities K = 10, with 5 nodes each for a

total of n = 50 nodes. These are on the order of what is expected in neuroimaging settings,

albeit on the low end, to accommodate running a large number of simulations. All unique

entries of A(i) and X(i) are drawn independently from a standard normal distribution.

We specify β by first fixing its support and then setting all nonzero entries to the same

constant α, which will be varied to control SNR. We form feature groups according to either

the NBG or EBG scheme as described in Section 2.2.2. We then select either one or five

groups to be active and take their union to be the active feature set. For NBG, the selected

groups are
{
G(1)

}
or
{
G(1), G(2), G(3), G(4), G(5)

}
. For EBG, the selected groups are

{
G(1,1)

}
or
{
G(1,1), G(3,1), G(3,2), G(4,4), G(6,5)

}
. For EBG, we chose these five to include both diagonal

and off-diagonal cells and to vary the amount of overlap. We always set the intercept µ = 0.

Finally, we draw each y(i) according to either a linear model y(i) = Z(i)β + ϵ(i), where each

ϵ(i) is an independent standard normal, or a logistic model, where each y(i) is an independent

Bernoulli random variable with success probability logit−1
(
Z(i)β

)
. For each realization,

the training and the test set have the same design matrix Z and β, and differ only in their

responses y, which are drawn independently. NetCov is fit with the true group structure,

since we treat it as known.

Results in Fig. 2.5 show that, as expected, support recovery generally improves with

increasing SNR, and NetCov yields superior support recovery, especially on recall in low and

intermediate SNR regimes. NetCov is also generally superior to the LASSO on precision,

although in high SNR settings the pattern is sometimes decreasing. While this at first

may seem surprising, this is a result of the parameter tuning process. Both NetCov and

14



Figure 2.5: Support recovery in Experiment I: recall and precision as a function of nonzero
coefficient magnitude α for NetCov (red) and LASSO (blue). Each of the four columns
corresponds to either continuous or binary response and either 1 or 5 active groups. Each of
the four rows corresponds to either EBG or NBG and either support recovery or precision
for β.

LASSO incur bias due to the use of penalization. There is a tendency for cross-validation to

choose a small value of λ in order to reduce this bias, but this comes at the cost of selecting

inactive features which harms precision (but not recall). In Appendix A.1, the receiver

operating characteristic curves that characterize behavior along the entire λ path show that

NetCov:EBG generally dominates the LASSO. See also Wang et al. (2020a) for a discussion

of circumstances in which growing signal strength does not yield improved support recovery,

chiefly due to effect size heterogeneity.

Out-of-sample prediction performance in the continuous and binary cases is shown in

Fig. 2.6. Consistent with the improved support recovery, out-of-sample prediction for Net-

Cov is generally superior to the LASSO. This suggests that when the additional structure

imposed by NetCov is present in the data, NetCov will yield not only superior support recov-

ery and interpretability relative to the LASSO, but also improved out-of-sample prediction

performance. This improvement comes at a cost of trading off additional flexibility of the

LASSO, which is an advantage in less structured models.
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Figure 2.6: Out-of-sample prediction performance in Experiment I as a function of problem
difficulty (SNR for continuous response and Bayes error for binary) for NetCov (red) and
LASSO (blue). Note the horizontal scale is different in every panel

2.4.2 Experiment II: Semi-Synthetic Data

In this experiment, we use data from the neuroimaging application as the design matrix; see

Section 2.5 for more details regarding this dataset. We have 785 observations in the training

set and 96 observations in the test set. Each network in the sample has 236 nodes, and

each node is assigned to one of 13 communities. The names of these communities and the

number of nodes in each are given in Table 2.1. In addition to signed, weighted edges in the

adjacency matrices, we also have a single continuous covariate associated with each node.

The edge weights represent functional connectivity in resting state fMRI and the covariate

is measured during a working memory task-based fMRI session; see Section 2.5 for details.

Like in Experiment I, these networks are undirected without self-loops.

In order to keep the intercept at 0 as in Experiment I, we center the columns of the

training design matrix and subtract these column means from the test design matrix. In

all other respects, this experiment is identical to Experiment I in Section 2.4.1, where we

specify the support of β to involve either one or five groups under either the EBG of NBG

schemes. This semi-synthetic experiment involves real-world data with unknown dependence

structure for A and X, but we draw responses y from our model with known β, which allows
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Brain System Name Number of Nodes
Sensomotor Hand 30

Sensomotor Mouth 5
Cingulo-Opercular Task Control 14

Auditory 13
Default Mode 58

Memory 5
Visual 31

Frontoparietal Task Control 25
Salience 18

Subcortical 13
Ventral Attention 9
Dorsal Attention 11

Cerebellar 4

Table 2.1: Systems (communities) in the Power parcellation and number of nodes in each
(Power et al., 2011).

us to assess support recovery and other performance metrics.

In Fig. 2.7 we see the results for support recovery of β. Somewhat surprisingly, NetCov

does not show a consistent improvement over LASSO, and while at least for EBG, recall

increases appreciably with growing signal strength, precision remains poor. Performance of

NBG is strikingly poor. This pattern is present in both the continuous and binary response

cases. We believe that this is due to the presence of very large groups (especially for NBG),

which are in turn due to the cardinality of communities as presented in Table 2.1. The failure

of NetCov to perform accurate support recovery limits its competitiveness for prediction in

both the continuous and binary cases is depicted in Fig. 2.8. To overcome these challenges, we

modify our parcellation to avoid the problems described above when we conduct Experiment

III, described below in Section 2.4.3.

2.4.3 Experiment III: Semi-Synthetic Data with Smaller Commu-

nities

As seen in Experiment II above, the parcellation from our application is problematic for

NetCov, especially for NBG. This is because most of the feature groups have more predic-

tors than there are observations. For NBG, this is true for all groups—the NBG group

based on the smallest community, with 4 nodes, has
(
4
2

)
+ 4× 232 + 4 = 938 predictors, and

Ntrain = 785—and the orthonormalization discussed in Section 2.3.2 results in all of the fea-

ture groups being functionally identical. For EBG, there are 11 groups with more predictors
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Figure 2.7: Support recovery in Experiment II: recall and precision as a function of nonzero
coefficient magnitude α for NetCov (red) and LASSO (blue). Each of the four columns
corresponds to either continuous or binary response and either 1 or 5 active groups. Each of
the four rows corresponds to either EBG or NBG and either support recovery or precision
for β.

than observations, and so selecting any of these is problematic. The covariance structure

within the groups is nontrivial, and this is problematic for some of our larger groups because

of the way the penalty Eq. (2.2) accounts for group sizes.

As a simple remedy, in this experiment we randomly break up the large communities

into smaller pieces until we arrive at a parcellation that has 50 communities where 15 of

the communities have 4 nodes, 34 communities have 5 nodes, and a single community has

6 nodes. This modification does not change the overall covariance structure of Z, but it

does change the intra-group covariance structure and also puts all groups on roughly equal

footing in terms of size. We repeat the procedure described in Section 2.4.2 but with these

new community assignments.

Support recovery with this new parcellation is depicted in Fig. 2.9. As we see, this new

parcellation generally restores the enhanced performance of NetCov for EBG, especially for

recall at low signal strength regimes. NetCov’s EBG variant generally outperforms or is

comparable to the LASSO with respect to out-of-sample performance for both continuous

and binary responses as seen in Fig. 2.10. NBG remains limited, unless the sample size
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Figure 2.8: Out-of-sample prediction performance in Experiment II of NetCov (red) and
LASSO (blue), as a function of problem difficulty (SNR for continuous response; Bayes error
for binary). Note that the horizontal scale is different in every panel.

is very large relative to the number of features or we add another penalty to encourage

within-group sparsity.

2.5 Application to Neuroimaging Data

We demonstrate the utility of our method by applying it to a subset of data from the Human

Connectome Project (HCP; Van Essen et al., 2013) obtained and processed by the lab of our

collaborator (see Acknowledgments). In brief, each participant contributes an observation(
A(i), X(i), y(i)

)
which comprises functional connectivity from resting state data, activation

during a working memory task, and a variety of behavioral measures, respectively. There

are 881 participants that have complete data for all the measures we consider. We partition

these into a training set of size 785 participants and a test set of size 96. This particular

training/test split corresponds to the partitions used in Sripada et al. (2019), which was

constructed to avoid any twins or sets of familially related individuals appearing in both the

training and test sets. We describe each component of the observations in more detail below.

For A(i) and X(i), spatial locations of nodes as well as their community assignments were

defined according to the “Power parcellation” (Power et al., 2011), mentioned earlier in the
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Figure 2.9: Support recovery (as measured by recall and precision) in Experiment III by
NetCov (red) and LASSO (blue) as a function of nonzero coefficient magnitude α. Each
of the four columns corresponds to either continuous or binary response and either 1 or 5
active groups. Each of the four rows corresponds to either EBG or NBG and either support
recovery or precision for β.

text. This yields 264 nodes assigned to 14 communities. Since our grouping scheme assumes

that the nodes in a given system are meaningfully related, we removed all nodes that were

assigned the “unknown” community label. This left 236 nodes divided into 13 communities.

The putative brain systems corresponding to the communities, and the number of nodes in

each, are given in Table 2.1.

The connectivity data is a subset of that used in Sripada et al. (2019), which describes

the processing pipeline in detail. In brief, resting state fMRI data was obtained for each

participant in 4 different sessions (two back-to-back sessions per day across two days), from

which connectivity measures A(i) are extracted. During a resting state fMRI scanning session,

the participant’s brain activity is indirectly measured at many thousands of voxels in the

brain while they lie passively in the scanner. Each of the 236 nodes corresponds to a set of

voxels. As part of a comprehensive preprocessing pipeline, average time courses are extracted

for all voxels in the same node. Each entry of A(i) is taken to be the correlation between the

average time series at two of these nodes, Fisher transformed to the real line, for the i-th

participant.
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Figure 2.10: Out-of-sample prediction performance in Experiment III by NetCov (red) and
LASSO (blue), as a function of problem difficulty (SNR for continuous response and Bayes
error for binary). Note the horizontal scale is different in each panel.

We form X(i) by obtaining a single node covariate (d = 1) for each of the 236 nodes

from brain activity during the “N-back” task (Barch et al., 2013), which is designed to

measure working memory. This data is a superset1 of that used in Panigrahi et al. (2023a),

which describes the data further. During the “N-back” task, participants view a sequence

of images that are presented in blocks. Each block corresponds to a condition. In the 0-

back condition, participants are asked to judge whether each presented item is the same

as what they saw at the beginning of the block. During the 2-back condition, participants

indicate whether each item is the same as what they saw two trials previous. Of course,

the 2-back condition is more demanding with respect to working memory. In an attempt to

isolate brain activity specific to working memory, activation during the 0-back condition is

subtracted from activation during the 2-back condition. This removes activity common to

both conditions (e.g., visual processing, motor activity to push a button, etc.). This 2-back

minus 0-back contrast was computed by our collaborator using in-house processing scripts

that use SPM12. These contrasts were initially computed at the voxel level, but averaged

values were extracted for each of the 236 nodes using the MarsBar utility (Brett et al., 2002).

For y(i), we separately consider various phenotypes provided by our collaborator. Several

1In their analysis, Panigrahi et al. (2023a) used only data from the 785 participants in our training set.
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of the responses reflect performance during tasks from the NIH Toolbox (Hodes et al., 2013),

namely the (i) pattern comparison processing speed test (Processing Speed), (ii) flanker in-

hibitory control and attention test (Flanker), and (iii) list sorting working memory test (List

Sorting), as well as (iv) performance on the Penn Progressive Matrices task (PMAT) (Bilker

et al., 2012). Other responses capture the five facets of the NEO personality assessment (Mc-

Crae and Costa, 2004): (v) openness to experience (NEO: O), (vi) conscientiousness (NEO:

C), (vii) extraversion (NEO: E), (viii) agreeableness (NEO: A), and (ix) neuroticism (NEO:

N). We also considered (x) accuracy on the “N-back” task described above (Working Mem-

ory). Finally, we considered (xi) a measure of general cognitive ability (GCA) obtained from

factor analysis described in Sripada et al. (2020). All candidate responses are continuous, so

we use a linear model for the response, i.e.,

y(i) = Z(i)β + ϵ(i).

In addition to covariates of interest, there are several nuisance covariates. These are age

(conventionally represented by a linear and a quadratic term), handedness, gender, brain

size, which multiband reconstruction algorithm was used, and movement of the head during

resting state scan (“meanFD”) along with its square. We control for these by first fitting a

regression model to the training data that includes only the nuisance covariates and predicts

the brain features and phenotypes. Using the coefficients learned in the training data, we

then subtract the nuisance-predicted values from both the training and test data and use

this corrected data for all downstream tasks.

While we can assess out-of-sample performance on the test set, we cannot assess support

recovery directly as we did in our simulation studies, since the true β is unknown. As

in the simulations, we assess performance by computing the correlation coefficient between

predicted and observed responses on the test data, in order to facilitate comparisons with

the neuroimaging literature, which frequently uses this measure.

We compare our approach with both the conventional LASSO as well as connectome pre-

dictive modeling (CPM). CPM is a popular and relatively simple technique for predicting

scalar responses using brain connectivity data. In brief (see Shen et al., 2017, for a more

detailed explanation), it is a three-step procedure that involves marginal feature selection,

feature aggregation, and then estimation of a regression model. The first step consists of

correlating screening between edge weights of the connectome and the response y. Next, all

edges that pass screening are aggregated into two summary measures, by summing together

those that are positively correlated with the response, and those that are negatively corre-

lated. In the last step, a simple regression model is fit with these two summary measures as
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predictors. While there are a number of variations (involving, e.g., robust regression), we opt

for this simple pipeline and use p < 0.01 as the threshold for feature selection. One notewor-

thy limitation of CPM, in contrast to NetCov, is that it operates only on edge weights and

does not make use of node covariates. For NetCov and LASSO, we use the same approach

as in Section 2.4, including cross-validation on the training data to select λ̂.

Figure 2.11: Out-of-sample correlation for selected phenotypes in application to human
neuroimaging data.

We show results for selected phenotypes in Fig. 2.11. Tuning of λ yields poor performance

for other phenotypes, and we present these results in Appendix A.2. For the original Power

parcellation community assignments, NetCov is reasonably competitive with, although typ-

ically slightly worse than, the LASSO. When we use the modified Power parcellation com-

munity assignments as described in Section 2.4.3, this small difference disappears. Good

predictive performance of the LASSO is expected since it imposes less structure on the

estimated coefficients, at the cost of less interpretability.

We present the estimated coefficients for βA and βX associated with GCA in Fig. 2.12 and

present results for other phenotypes in Appendix A.2 for both NetCov (with EBG grouping)

and the LASSO. The edges used by CPM for GCA are given in Fig. 2.13. These figures

illustrate the degree to which NetCov yields more interpretable solutions, implicating only a

small number of brain systems through both edge weights and node covariates. In contrast,

non-zero LASSO coefficients are scattered across brain systems and moreover appear not
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Figure 2.12: Visualization of β coefficients with GCA as response. Coefficients from NetCov
with EBG are presented at left (βX) and on the lower triangle (βA). Coefficients from LASSO
are presented at right (βX) and on the upper triangle (βA). Solid lines depict boundaries of
the Power parcellation.

to include any edges. Of particular note, some of the systems that NetCov selects (e.g.,

Cingulo-Opercular Task Control and Dorsal Attention), are consistent with previous reports

in the literature that studied the neural basis of general intelligence, closely related to our

GCA factor (Duncan et al., 2000; Tong et al., 2022).

2.6 Summary and Discussion

We have introduced NetCov, a method for prediction from samples of weighted networks

and node covariates, which offers a novel way to discover relevant brain systems when both

edge and node covariates are present. We proposed two approaches, node-based and edge-

based (NBG and EBG), depending on what we believe is central to the mechanism of the

underlying model, and implemented both through constructing appropriate group penalties.

As we saw in simulations, when the assumptions underlying these grouping schemes are met,

NetCov yields both superior predictive performance and better support recovery. In our

application to human neuroimaging data, NetCov offers comparable predictive performance

to the LASSO but dramatically enhances interpretability of findings.

24



There are some settings that present challenges for NetCov. As demonstrated in Exper-

iment II in Section 2.4.2, large groups with more features than observations can be prob-

lematic, especially for NBG, and as the number of nodes n grows, the size of NBG groups

can grow as fast as O(n2). EBG suffers less from this and this issue can be addressed by

the use of smaller communities, but constructing them of course needs to be application-

specific. This challenge, faced by the group LASSO generally, is discussed in Bühlmann

and van de Geer (2011, page 250, see citations within), where one proposed remedy is to

use the smoothed group LASSO instead. An alternative approach which may preserve in-

terpretability while overcoming these limitations, is the use of “bi-level” selection methods

(Huang et al., 2009; Breheny and Huang, 2009; Breheny, 2015) or the sparse group LASSO

(Friedman et al., 2010a; Cai et al., 2019). These methods select both feature groups and

smaller subsets of features within each group; examples of this approach include Relión et al.

(2019); Richie-Halford et al. (2021). Another alternative is the ridged group LASSO (Simon

and Tibshirani, 2012), which performs selection at the group level and scales the penalty

applied to standardized groups on their “effective degrees of freedom.”

Future work in the neuroimaging setting includes application of this method to other

datasets, especially where the outcome is a binary indicator of a degenerative disease process,

since this is one of the chief motivations for both the NBG and EBG schemes. In addition,

there are numerous alternative candidates for node covariates, including structural measures

like gray matter volume or surface measures like cortical thickness. Finally, there are also

other candidate edge weights, including those obtained from diffusion weighted imaging

(DWI) which is believed to capture anatomical, rather than functional, features of brain

connectivity. If multiple types of edge weights were present, both NBG and EBG could be

extended to accommodate their simultaneous use.

While the selection of interpretable feature groups is a useful step on the path to a better

understanding of complex phenomena, NetCov does not directly provide inference. Although

data splitting can be employed, wherein a subset of features is selected in training data, and

then an appropriately restricted model is fit in test data with conventional inferential tests,

recent results from post-selection inference for the group LASSO enable inferential tests at

the level of feature groups (Yang et al., 2016) as well as individual coefficients within feature

groups (Panigrahi et al., 2023a). These methods could be developed for NetCov to perform

inference in addition to variable selection.
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Figure 2.13: Edges selected by CPM, colored by the sign of their association with GCA.
Solid lines depict boundaries of the Power parcellation.
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CHAPTER 3

Computational Inference for Directions in

Canonical Correlation Analysis

3.1 Introduction

Canonical Correlation Analysis (CCA) is a classical technique (Hotelling, 1935) for identify-

ing linear relationships among two sets of variables. Informally, it learns a linear transforma-

tion for each set of variables such that the transformed variables are maximally correlated

with one another. CCA has seen a recent resurgence of interest with the growing popularity

of multi-modal datasets, which have two (or more) sets of variables collected on the same

individual. For example, brain imaging studies often capture various brain-related metrics

as well as phenotypic and behavioral measures on the same individuals, and it is natural

to ask how these are related; see, e.g., Wang et al. (2020b) for a review of CCA in neu-

roscience applications. In many of these applications, at least one of the two datasets is

high-dimensional, i.e., with more variables than observations. In those settings, data reduc-

tion can be applied upstream (e.g., with principal components analysis (PCA) as in Smith

et al., 2015; Goyal et al., 2022) to render the problem low-dimensional, or regularized forms

of CCA which seek sparsity can be used (Witten et al., 2009; Xia et al., 2018).

In order to build intuition for CCA, it is useful to view it as a generalization of regression.

Consider the classical regression model

Y = Xβ + ϵ,

where Y ∈ RN , X ∈ RN×p, ϵ ∈ RN . We can obtain an estimator β̂ by solving an optimization

problem, with the classic least squares estimator given by

β̂OLS = argmin
β
∥Y −Xβ∥22. (3.1)
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However, we can obtain a closely related estimator by solving a different optimization prob-

lem:

β̂CCA = argmax
β

Corr (Xβ, Y ) , (3.2)

s.t. Var (Xβ) = 1,

where the constraint serves only to make the solution unique by requiring that the predictions

have unit variance. The estimators obtained from (3.1) and (3.2) will satisfy β̂OLS ∝ β̂CCA,

i.e., we will have found the direction in Rp of our regression coefficients. Now suppose we

measure q different responses for each observation, so that Y ∈ RN×q is now a matrix rather

than a vector, with q > 1. A natural analogue to the problem in (3.2) is the following

optimization problem: (
β̂CCA, γ̂CCA

)
= argmax

β,γ
Corr (Xβ, Y γ) , (3.3)

s.t. Var (Xβ) = Var (Y γ) = 1,

where again the constraint serves to make the solution unique up to sign flipping. The

solution to this problem gives exactly the two sets of canonical directions defined by CCA.

Despite its long history in the statistical literature, CCA is generally deployed as an

exploratory tool, without a readily available set of tools for inference. Indeed, in a recent

review of CCA aimed at neuroscientists (Wang et al., 2020b), CCA is categorized as a

method focused on estimation (in contrast to prediction or inference); the authors go on

to emphasize that if inference does occur, it is often constrained to testing a global null

corresponding to no correlation between the datasets. While exploratory analysis is useful,

there is growing appreciation in applications that the discoveries of CCA analyses may be

illusory (Dinga et al., 2019). The development of valid inferential tools for this setting is

vital in order to appropriately characterize uncertainty so that truly interesting phenomena

may be distinguished from optimistic over-fitting.

A natural starting point is to assess whether the estimated correlation among the canonical

variates is significantly different from zero. While parametric tests for this hypothesis have

been developed (For a review, see §11.3.6 of Muirhead, 1982), in practice they are sensitive

to violations of assumptions (Winkler et al., 2020), and so non-parametric approaches have

become more popular, e.g., as used in Witten et al. (2009). While the use of permutation-

based procedures to assess the canonical correlations is quite common in the neuroimaging

literature, recent work (Winkler et al., 2020) shows that a simple permutation procedure
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yields inflated Type I for all canonical correlations beyond the first; they also introduce

a more nuanced permutation procedure that addresses this issue and also allows for the

incorporation of nuisance covariates. Inference for the canonical correlations in the high

dimensional setting remains an active research area, too (McKeague and Zhang, 2022).

If the hypothesis of zero canonical correlations can be rejected, the next natural question

to ask is which variables have significant coefficients in the canonical directions; as in regres-

sion, one may only be interested in inference on individual coefficients if the F -test rejects

the global null of all coefficients being zero. However, inference on canonical directions re-

mains an elusive goal in CCA. For example, Rosa et al. (2015) applied sparse, non-negative

CCA to pairs of brain images obtained via arterial spin labeling under different pharmaco-

logical challenges, and performed a permutation-based procedure to assess the significance

of the canonical correlations, but the authors acknowledge that they are unable to perform

inference at the level of individual features. Indeed, a recent review of CCA intended for

neuroscientists (Zhuang et al., 2020) concludes by acknowledging that, at the time of writing,

inferential tools are only available for the canonical correlations rather than the canonical

directions, and that the development of inference for directions at the level of individual

features would benefit future neuroscience research.

The importance of developing these tools is highlighted in a recent paper that studies the

stability of CCA (Helmer et al., 2020). In this work, the authors consider the sampling error

of the estimated CCA directions, but rather than considering individual coordinates, they

focus on the angle between an estimated direction and the true direction. While stability in

this sense is important if a canonical direction is to be interpreted holistically, it does not

afford inference at the level of individual coefficients. Indeed, there may be cases where an

overall canonical direction is “unstable,” but a small number of coordinates of interest can

be reliably differentiated from 0. The authors provide guidance for what sort of stability can

be expected as the ratio of samples to features varies. While Helmer et al. (2020)’s approach

is generally numerical and relies on the generation of synthetic data, recent theoretical de-

velopments in Bykhovskaya and Gorin (2023) echo these empirical findings, characterizing

limiting angles between true and estimated canonical variates in terms of these ratios.

In the absence of rigorous statistical tests, practitioners have developed ad hoc methods

to characterize uncertainty about canonical directions. These assessments generally involve

some form of resampling, such as bootstrap or permutation tests, and the statistical prop-

erties of these approaches have not been well studied. These procedures do not not always

take the form of hypothesis testing. For example, Alnæs et al. (2020); Linke et al. (2021)

performed CCA to obtain canonical directions, but subjected the resultant directions to ICA

to aid interpretability (Miller et al., 2016). They then used a resampling procedure in order
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to assess the stability of their final results, but they do not perform inference for individual

coordinates of the canonical directions. In other cases, variants of the bootstrap are used

in order to construct confidence intervals for individual coordinates of the directions (Xia

et al., 2018). One shortcoming of these approaches is that their statistical properties (e.g.,

control of Type I error) are not well-studied.

In this work, we help to fill this gap and provide concrete guidance regarding statistical

inference for canonical directions. We propose a method, combootcca, and provide evidence

for its validity. We also review several other approaches based on our review of the literature

and compare their performance to combootcca empirically in terms of coverage, statistical

validity (control of Type I error), and power (control of Type II error), in a variety of

simulation studies that range from simple but carefully controlled to complex but realistic.

We then illustrate our recommended methodology in an application to neuroimaging data.

3.1.1 CCA: Population Model and Estimation

Let x ∈ Rp and y ∈ Rq be random vectors with covariances Σx and Σy, respectively, and

let Σxy = Cov (x, y) denote their cross-covariance. Informally, the initial goal of CCA is to

identify a pair of vectors β ∈ Rp, γ ∈ Rq such that x⊺β is maximally correlated with y⊺γ. In

order to fix the scale of β and γ, we require that β⊺Σxβ = γ⊺Σyγ = 1, i.e., the transformed

variables have unit variance. We can then proceed to find additional pairs of vectors subject

to an orthogonality constraint. Formally, CCA involves solving the following sequence of

optimization problems for k = 1, 2, . . . , K, where K is the rank of Σxy:

(βk, γk) = argmax
(bk,gk)

b⊺kΣxygk,

s.t. b⊺kΣxbl = g⊺kΣygl = I (k = l) .

(3.4)

We shall refer to β1, β2, . . . , βK and γ1, γ2, . . . , γK as the canonical directions associated with

x and y, respectively. It is often convenient to gather the canonical directions into a matrix,

writing

B =
[
β1 β2 . . . βK

]
∈ Rp×K ,

Γ =
[
γ1 γ2 . . . γK

]
∈ Rq×K ,
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which permits us to rewrite the constraint in (3.4) as B⊺ΣxB = Γ⊺ΣyΓ = IK . We refer to

the transformed variables as the canonical variates and denote them by

c =
[
c1 c2 . . . cK

]⊺
=
[
x⊺β1 x⊺β2 . . . x⊺βK

]⊺
∈ RK ,

d =
[
d1 d2 . . . dK

]⊺
=
[
y⊺γ1 y⊺γ2 . . . y⊺γK

]⊺
∈ RK .

The correlations between the canonical variates are the canonical correlations and are de-

noted by

ρ =
[
ρ1 ρ2 . . . ρK

]⊺
∈ [0, 1]K , R = diag(ρ),

where R ∈ RK×K is a diagonal matrix with Rk,k = ρk.

If the population cross-covariance Σxy is known and the covariances Σx and Σy are known

and non-singular, then all of the components of the CCA solution can be obtained as follows

as presented in Muirhead (1982). First, perform the singular value decomposition

Σ−1/2
x ΣxyΣ

−1/2
y = USV ⊺.

The diagonal entries of S are the canonical correlations, i.e., R = S. The canonical directions

can be obtained as B = Σ
−1/2
x U and Γ = Σ

−1/2
y V . This formulation will be especially conve-

nient for our numerical studies discussed in Section 3.3, as for a fixed generative covariance

structure we can recover the true CCA solution.

In practice, we observe the data matrices X ∈ RN×p and Y ∈ RN×q, where N is the num-

ber of observations, from which we construct CCA estimators B̂, Γ̂, and ρ̂. Without loss of

generality, suppose that both X and Y have been column-centered. There are many options

available for estimating the covariance matrices (Fan et al., 2016); classical CCA is based

on the empirical covariances, which are the maximum likelihood estimators. Replacing the

covariances Σx,Σy, and Σxy with their estimated counterparts Σ̂x, Σ̂y, and Σ̂xy an estimated

CCA solution can be obtained using the SVD approach described above, but a more popular

approach (also used by R’s cancor function) is due to Björck and Golub (1973) and is briefly

summarized in Golub and Van Loan (2013, p. 331). In our notation, it first performs (thin)

QR decompositions

X = QXRX , Y = QYRY ,

followed by the SVD decomposition

Q⊺
XQY = USV ⊺.
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Object Dimension Description
x p Random Vector
y q Random Vector
X N × p Data matrix
Y N × q Data matrix
ρ K Canonical Correlations (vector)
R K ×K Canonical Correlations (diagonal matrix)
B p×K Canonical Directions
Γ q ×K Canonical Directions

Table 3.1: CCA notation.

The estimated canonical correlations are given by the diagonal of S, and the estimated

canonical directions can be obtained as B̂ = R−1
X U and Γ̂ = R−1

Y V . Because of the special

form of RX and RY , it is not necessary to explicitly invert them, and the canonical directions

can instead be found by back-solving. However, we must note that this approach satisfies a

related, but distinct, constraint from that presented in (3.4): the resulting canonical variates

are empirically uncorrelated with one another, but rather than having unit variance, they

have unit norm, which we can see by observing

∥Xβ̂k∥22 = ∥QXRX β̂k∥22 = ∥QXRXR
−1
X Uek∥22 = e⊺kU

⊺Q⊺
XQXUek = 1,

with an analogous result for Γ̂. Recalling that we assume X and Y are column-centered,

the empirical variance of these canonical variates will be (N − 1)−1. This is problematic for

inference on the canonical directions, but can be readily remedied by multiplying B̂ and Γ̂ by
√
N − 1, which will set the canonical variates’ empirical variance to 1 and put the estimated

canonical directions on a scale free of N .

3.1.2 Inverting the CCA Model

Given the population covariance matrix and assuming that both Σx and Σy are non-singular,

there is a straightforward mapping from the covariance Σ to the CCA solution R,B,Γ as

given in Section 3.1.1. However, in some settings (for example, Simulation III discussed

in Section 3.3.4), it is more convenient to directly specify the CCA parameters (R,B,Γ).

Unfortunately, these parameters do not typically uniquely identify Σ, but given a set of

CCA parameters R,B,Γ, one can define a covariance matrix Σ to match them. Assume that

both B and Γ have full column rank and that the diagonal of R is a descending sequence of

unique and strictly positive canonical correlations. Without loss of generality, assume that

p ≥ q = K. Recall that the covariances Σx and Σy satisfy B⊺ΣxB = Γ⊺ΣyΓ = IK . Since Γ
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is a square matrix of full column rank, we can just solve for Σy = (Γ−1)
⊺
Γ−1. If p = q, we

can do the same for B, but if p > q, then B is a rectangular matrix with full column rank,

so let B+ denote the Moore-Penrose inverse of B, satisfying B+B = IK . Then we can find a

solution Σx = (B+)
⊺
B+. However, Σx is a p× p square matrix of rank at most K < p. This

rank deficiency may be undesirable, and so in simulation studies we remedy this by inflating

the trailing eigenvalues of Σx to make it full rank. Specifically, we replace the (K + 1)th

through pth eigenvalues of Σx by linearly interpolating between the Kth eigenvalue and 0

(without including the endpoints). This Σx has full rank and will still satisfy B⊺ΣxB = IK .

Following Chen et al. (2013), we can take Σxy = ΣxBRΓ⊺Σy and Σyx = Σ⊺
xy. Finally, we can

assemble Σ as

Σ =

[
Σx Σxy

Σyx Σy

]
.

3.1.3 Inference for CCA

In practice, inference for both the correlations ρ and the directionsB and Γ may be of interest.

Inferential tools for the correlations ρ are relatively better developed, especially when the

number of observations N exceeds both p and q. Hotelling’s classic 1936 paper discusses

two different tests for “complete independence” which are equivalent to testing ρ1 = 0 (and

therefore all subsequent canonical correlations as well). Anderson’s 2003 textbook, in Section

12.4.1, reviews approaches to inference both on ρ globally and on its individual elements.

Inference for ρ in the high-dimensional case is an area of current research, see for example

McKeague and Zhang (2022).

Permutation tests are also a popular approach for testing ρ, applied byWitten et al. (2009)

and appearing in subsequent applied work, e.g., Alnæs et al. (2020). Recently, Winkler et al.

(2020) carefully studied the use of permutation tests for the canonical correlations, noting

the practical difficulties of parametric inference, demonstrating shortcomings of permutation

tests as typically applied and proposing a remedy.

Inference for the canonical directions, however, has received less recent attention in the

statistical literature. Anderson (1999) reviews several decades of work on the limiting distri-

butions of the estimated canonical directions, finds faults with all past results, and derives

the limiting distribution of B̂ and Γ̂ when x and y are jointly normal and p = q. The latter

is an especially significant limitation for the neuroimaging applications we have in mind.

Laha et al. (2021) developed asymptotically exact inference for the first canonical direc-

tion and its associated correlation in the high-dimensional setting under the assumption of

sparsity. Their approach is based on a debiasing argument that yields an asymptotically

normal distribution. However, their method is unable to provide results for any canonical
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directions except for the first, and moreover it is not clear that their method is applicable in

low-dimensional settings with moderate N . We will compare our proposal to this approach

in simulations.

Recently, the permutation method of Winkler et al. (2020), originally proposed for canon-

ical correlations, was extended to perform inference on the canonical loadings (Zhang et al.,

2022). The canonical loadings are related to the canonical directions but are not the same:

they are the correlations between the original variables and the canonical variates. This

approach optionally obtains a permutation distribution corresponding to the maximal ab-

solute value over all coordinates for each direction, resulting in “built-in” family-wise error

control, if desired, achieved by comparing the empirical values to the distribution of the

maxima. However, this may be more stringent control than necessary and result in the loss

of power. In addition, it only tests whether a given coordinate is nonzero and does not

provide confidence intervals, which limits interpretability of this inference approach.

3.2 Bootstrap Inference for CCA

In the absence of analytical tools for inference, practitioners of CCA often apply bootstrap to

characterize the uncertainty in CCA estimates, especially the canonical directions. While at a

high level applying bootstrap sounds straightforward, it has been implemented in a variety of

ad hoc ways in practice, without any clarity about the relative merits of different approaches.

Next, we discuss two important aspects of designing a reliable bootstrap algorithm for CCA

and compare multiple alternatives for each. In Section 3.3.5, we will demonstrate the em-

pirical consequences of these choices, and show that they can have substantial impacts on

the statistical properties of the procedure. Our newly proposed algorithm for bootstrapping

CCA, informed by these results, is stated formally at the end of this section. We call it

combootcca (COMputational BOOTstrap for CCA).

3.2.1 Alignment of Bootstrap Replicates

One significant hurdle when using resampling-based methods with CCA is the issue of align-

ment. There is a fundamental sign ambiguity in CCA, just like with any estimated direction,

since Corr (X⊺β, Y ⊺γ) = Corr (X⊺ (−β) , Y ⊺ (−γ)). When considering a single CCA solution,

this ambiguity is of little consequence, but when multiple bootstrap realizations are drawn,

there is a need to “align” the estimates obtained from the resampled data so that they can

be meaningfully combined and compared to the estimate obtained from original data. In

addition to sign ambiguity, the canonical directions may change order, especially if the as-
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sociated canonical correlations are not well separated, or be rotated in some way. Without

alignment, all of these can substantially inflate our estimates of variance, leading to con-

servative inference with little power. On the other hand, a “strict” alignment strategy may

lead to underestimating variance and result in invalid inference, so a balance is needed.

The general goal of alignment is to learn and apply, for each resampled estimate(
R̃⋆, B̃⋆, Γ̃⋆

)
, a transformation f to obtain an aligned version

(
R̂⋆, B̂⋆, Γ̂⋆

)
. We will learn

f by comparing
(
R̃⋆, B̃⋆, Γ̃⋆

)
to
(
R̂, B̂, Γ̂

)
, where the latter is a “reference” solution which

typically corresponds to the values estimated on the full data. While the canonical correla-

tions are invariant to the scale of the predictors, the canonical directions are not. Because

our original variables may be on different scales which may unduly influence alignment,

prior to learning f we multiply1 the rows of B̂, Γ̂, B̂⋆, and Γ̂⋆ by the standard deviations of

their corresponding samples, which transforms the canonical direction matrices to what they

would have been if all variables had been standardized prior to CCA and prevents coordi-

nates corresponding to variables with low empirical variance from dominating the alignment.

We consider several possible alignment strategies, described below. The empirical results on

the significant impact of alignment on statistical validity will be presented in Section 3.3.5.

Identity (no alignment). This alignment “strategy” is included for baseline assessment

of the need for alignment. Here f is the identity operator, and given that it does not even

correct for the sign ambiguity, we expect it to perform poorly.

Sign Flip. This alignment strategy deals with sign ambiguity by flipping the signs of

canonical directions and has been used in practice (e.g., in McIntosh, 2021; Nakua et al.,

2023). That is, the transformation f right-multiplies matrices B and Γ by a signature matrix

H (i.e., a diagonal matrix with entries in ±1). To decide which directions need to be flipped,

we construct the similarity matrix GB by calculating pairwise cosine similarity between the

columns of the matrices B̂ and B̃⋆ (after they have been standardized as described above),

where the cosine similarity between a vector u and v is u⊺v ∥u∥−1
2 ∥v∥

−1
2 . We similarly obtain

GΓ as the pairwise cosine similarities between the columns of the standardized matrices Γ̂

and Γ̃⋆. Finally, we average them together and obtain G = 1
2
(GB +GΓ). We then construct

H by setting Hk,k = sign (Gk,k), i.e., if the averaged cosine similarity is negative, we flip

the sign, and if it is positive, we do not. The aligned solution is given by
(
R̂⋆, B̂⋆, Γ̂⋆

)
=

1At first glance, division may seem more appropriate, but if we increase the variance associated with say
the first coordinate of x, then its associated canonical direction coordinate must decrease to offset this, so
the remedy is indeed to multiply the canonical directions (which is then tantamount to having divided the
variables in the first place).
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(
R̃⋆, B̃⋆H, Γ̃⋆H

)
.

Assignment via Weighted Hungarian Algorithm. This alignment strategy is allowed

to both change the ordering as well as the associated signs of the directions. Thus, we find

a transformation matrix T that can be written as the product of a permutation matrix P

and a signature matrix H. To the best of our knowledge, this approach is novel and has

not been considered in the literature. We treat alignment as an assignment problem, where

the task is to optimally assign the columns of
(
R̃⋆, B̃⋆, Γ̃⋆

)
to the columns of

(
R̂, B̂, Γ̂

)
while allowing sign flipping. After adjusting for scaling as described above, we construct the

similarity matrix G based on the cosine similarity in the same manner that we did for the

“Sign Flip” alignment strategy. In order to incorporate information about the (empirical)

canonical correlations into the alignment strategy, we weight the matrix of cosine similarities

by the square roots of the canonical correlations. That is, we construct Gw = (R̂)
1
2G(R̃⋆)

1
2 .

We then take the entry-wise absolute value to obtain GwPos = abs (Gw). Then, we find a

permutation matrix P that maximizes trace (GwPosP ) by using the Hungarian Algorithm

(Kuhn, 1955) as implemented in the R package RcppHungarian (Silverman, 2022). We then

apply this permutation to the original matrix and extract the signs of the diagonal entries

as diag (H) = sign (diag (GwP )). Our transformation can then be written as T = PH, and

our aligned solution for this bootstrap realization is
(
R̂⋆, B̂⋆, Γ̂⋆

)
=
(
R̃⋆P, B̃⋆T, Γ̃⋆T

)
. This

is the approach that is used in combootcca, our recommended approach that is described in

Section 3.2.3, and it is an integral part of Algorithm 1.

Rotation via Procrustes. This alignment strategy involves finding orthogonal matrices

that can be applied to the directions of B̃⋆ and Γ̃⋆, respectively. Since CCA is symmetric,

we learn separate transformations for B̃⋆ and Γ̃⋆, although in principle one could learn the

transformation for B̃⋆ and apply it to both B̃⋆ and Γ̃⋆, or vice versa. Formally, we find

TB = argmin
Q:Q⊺Q=I

∥∥∥B̂ − B̃⋆Q
∥∥∥
F
.

The solution to this problem is well-known (Schönemann, 1966), and a concise treatment

is given in Golub and Van Loan (2013, p. 328): take the singular value decomposition(
B̃⋆
)⊺

B̂ = USV ⊺, and the optimal solution is given by TB = UV ⊺; an analogous approach

can be used to find TΓ. Once we have obtained the orthogonal matrices TB and TΓ, we align

through right multiplication, i.e., taking
(
B̂⋆, Γ̂⋆

)
=
(
B̃⋆TB, Γ̃

⋆TΓ

)
. At first glance, this

may suggest that it will serve to rotate the canonical directions, but this will generally not

be the case. While it is generally true that left multiplication by an orthogonal matrix will
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apply a rotation to the columns of a given matrix, right multiplication by an orthogonal

matrix will not generally perform a rotation of the columns. Instead, it will apply a rotation

to the rows. In the special case where the matrix being transformed is itself orthogonal,

then this will also effect a rotation of the columns, but in CCA, the canonical directions

are generally not orthogonal matrices. Recall that the population quantities and related

estimates satisfy B⊺ΣxB = Γ⊺ΣyΓ = IK , i.e., they have orthonormal columns with respect

to the inner product induced by Σx and Σy, respectively. B (or Γ) will be orthogonal in the

usual sense only in the special case that Σx (or Σy) is equal to I. One additional consequence

is that the matrix of canonical correlations will generally no longer be diagonal, i.e., R̃⋆TB

or R̃⋆TΓ may have non-zero entries that are not on the diagonal. There are examples in

the literature where it seems a Procrustes alignment is used. For example, Xia et al. (2018)

describes a matching procedure and cites Mǐsić et al. (2016), which in turn refers to McIntosh

and Lobaugh (2004), which proposes a Procrustes alignment. Notably, Xia et al. (2018) uses

a version of sparse CCA (Witten et al., 2009) which assumes that the covariances Σx and

Σy are identity, in which case the associated directions are orthogonal.

The preceding strategies have been described in an order that proceeds from the least to

most strict alignment. In general, if we are too “gentle” with our alignment, we will sacrifice

power, as much of our apparent variability will simply be due to ambiguities that arise due

to poor alignment. On the other hand, if we are too strict, we will sacrifice control of Type I

error as we will underestimate variance. A balance must be struck, and as we shall see later,

the weighted Hungarian approach appears to do just this.

3.2.2 Constructing Confidence Intervals from the Bootstrap Dis-

tribution

There are multiple options available for how to construct confidence intervals from (aligned)

bootstrap replicates. One option is the so-called “normal bootstrap.” In this approach, one

assumes that the distribution of the estimator is normally distributed and centered at its

true value. Then a confidence interval centered at the estimate can be constructed using

the variance of the bootstrap replicates and the quantiles of the normal distribution. This

approach was used to construct confidence intervals for the coefficients in Nakua et al. (2023);

Mǐsić et al. (2016); Kebets et al. (2019) (the latter two analyses used Partial Least Squares

[PLS], a method closely related to CCA). It is also the approach offered by the RGCCA package

(Girka et al., 2023) (but which does not offer options regarding alignment strategy).

An alternative is the so-called “percentile” bootstrap (Efron and Tibshirani, 1993), which

directly uses quantiles of the empirical distribution of the bootstrapped replicates in order to
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construct a confidence interval, without relying on normality. As a consequence, this interval

is not guaranteed to be centered at the original estimate. As we shall see, this approach will

generally perform better as it does not explicitly assume that the initial estimator is an

unbiased proxy for the truth, nor does it make strong assumptions about the normality of

the sampling distribution. Although a fairly common approach in general, it does not seem

popular in CCA applications.

3.2.3 The Combootcca Algorithm

Based on the careful investigation of the different options discussed above and empirical com-

parisons between them in Section 3.3.5, we present our final algorithm for a computational

bootstrap approach to inference for CCA directions (combootcca). To the best of our knowl-

edge, this is a novel algorithm which has not been previously considered in the literature

for inference on CCA directions. We present this approach in Algorithm 1. In brief, given

data matrices X ∈ RN×p and Y ∈ RN×q, we first fit the CCA model using the approach de-

scribed in Section 3.1.1 and obtain estimates
(
R̂, B̂, Γ̂

)
. These quantities will subsequently

be used as a “reference solution” for alignment. Then we draw bootstrap samples from the

rows of the data matrices (with replacement), to obtain X⋆ and Y ⋆, and the corresponding

bootstrapped CCA estimates
(
R̃⋆, B̃⋆, Γ̃⋆

)
. Then, we align the solutions using the weighted

Hungarian strategy described above to obtain
(
R̂⋆, B̂⋆, Γ̂⋆

)
=
(
R̃⋆P, B̃⋆T, Γ̃⋆T

)
. We record

the values, and we repeat the procedure nBoots times (we use 1 × 104 repetitions for all

results presented below), each time drawing a new sample with replacement (X⋆, Y ⋆). To

obtain 1 − α level confidence intervals for (βi)j or (γi)j, we find the empirical α
2
and 1 − α

2

quantiles of the bootstrapped estimates at that coordinate and set these as the end points of

our confidence intervals. We use the boot package (Davison and Hinkley, 1997; Canty and

Ripley, 2022) along with custom alignment code to carry out the above procedure.

3.3 Empirical Results on Synthetic Data

In this section, we apply combootcca and several alternative methods described in Section

3.3.1 below to three different simulation settings, with data drawn from different generative

models. Since in simulations we have the ground truth available, we will compare the different

confidence intervals on coverage, length, and rejection rate if used to test the hypothesis of

a parameter being equal to zero (rejected if zero is not in the interval). The confidence level

is fixed at 95% in all cases.

All of our synthetic data will be drawn from a multivariate normal distribution with
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Algorithm 1 The combootcca algorithm for confidence intervals for CCA directions.

Require: X ∈ RN×p, Y ∈ RN×q, α ∈ (0, 1), nBoots ∈ N
K ←Minimum(p, q)(
R̂, B̂, Γ̂

)
= CCA(X, Y )

B̂⋆ ← 0p×K×nBoots

Γ̂⋆ ← 0q×K×nBoots

for k ← 1, nBoots do
(X⋆, Y ⋆)← Resample with Replacement(X, Y )(
R̃⋆, B̃⋆, Γ̃⋆

)
← CCA(X⋆, Y ⋆)

GB ← CosineSim(B̂, B̃⋆) ▷ Compute column-wise cosine similarity
GΓ ← CosineSim(Γ̂, Γ̃⋆)
G← 1

2
(GB +GΓ) ▷ Average cosine similarity for B and Γ

Gw ← (R̂)
1
2G(R̃⋆)

1
2 ▷ Weight by canonical correlations

GwPos ← abs (Gw) ▷ Take entry-wise absolute value
P ← Hungarian(GwPos) ▷ Permutation P maximizes trace (GwPosP )
H ← SignDiag(GwP ) ▷ H reflects any negative cosine similarities
B̂⋆[:, :, k]← B̃⋆PH
Γ̂⋆[:, :, k]← Γ̃⋆PH

end for
B̂⋆

Lower ← 0p×K

B̂⋆
Upper ← 0p×K

for i← 1, p do
for j ← 1, K do

B̂⋆
Lower [i, j]← Quantile(α

2
, B̂⋆[i, j, :])

B̂⋆
Upper [i, j]← Quantile(1− α

2
, B̂⋆[i, j, :])

end for
end for
Γ̂⋆
Lower ← 0q×K

Γ̂⋆
Upper ← 0q×K

for i← 1, q do
for j ← 1, K do

Γ̂⋆
Lower [i, j]← Quantile(α

2
, Γ̂⋆[i, j, :])

Γ̂⋆
Upper [i, j]← Quantile(1− α

2
, Γ̂⋆[i, j, :])

end for
end for
return B̂⋆

Lower, B̂
⋆
Upper, Γ̂

⋆
Lower, Γ̂

⋆
Upper
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means µx = 0p and µy = 0q, and the (joint) covariance Σ given by

Σ =

[
Σx Σxy

Σyx Σy

]
.

When determining coverage, we have to confront the fundamental sign ambiguity of CCA.

Suppose the true canonical correlations ρ are all distinct and that we know the “true”

canonical directions (B,Γ). Any pair (BH,ΓH), where H is a signature matrix, also qualify

as the “true” canonical directions. This ambiguity can lead to low coverage if not accounted

for, so when evaluating coverage, we maximize it over all such signature matrices H (sign

flips). The sign ambiguity is of no consequence when evaluating rejection rate, since that

depends only on whether the interval contains zero. Note that we do not allow for reordering

of directions when considering coverage, length, or rejection decisions.

3.3.1 Alternative Confidence Intervals for Canonical Directions

We next present several methods for obtaining confidence intervals corresponding to the

elements of the canonical directions.

Asymptotic confidence intervals. Anderson (1999) derived the asymptotic distribu-

tion of the canonical directions in the case where x and y are jointly multivariate normal,

p = q and ρ1 > ρ2 > . . . > ρp > 0. We shall later see empirically this result does not gener-

alize to the setting p ̸= q. The key result is a limiting normal distribution for the entries of

B̂ and Γ̂ which can be used to construct asymptotic confidence intervals for each entry. For

B̂, this takes the form of
√
n
(
B̂ij −Bij

)
d→ N

(
0, σ2

Bij

)
,

where

σ2
Bij

=
1

2
B2

ij +
(
1− ρ2j

) p∑
k=1
k ̸=j

ρ2k + ρ2j − 2ρ2kρ
2
j(

ρ2j − ρ2k
)2 B2

ik,

and analogous results can be obtained for the elements of Γ̂. In practice, estimates have to

be substituted for parameters in the expression for variance in order to obtain asymptotic

confidence intervals. Extending Anderson’s results to the case p ̸= q is non-trivial and is

outside the scope of this work.

Regression-based confidence intervals. Given the intimate connection between regres-

sion and CCA discussed in Section 3.1, it is natural to consider adapting tools from regression
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to provide inference for CCA. Recall the estimation strategy discussed in Section 3.1.1. Sup-

pose that we have already obtained the estimated directions Γ̂, and want to obtain estimates

of the directions B̂ using regression. First, suppose without loss of generality that all columns

of data matrices below have been centered. Let

β̃k = argmin
β
∥Y γ̂k −Xβ∥22 .

This is the ordinary least squares estimator, which as we noted in Section 3.1 maximizes the

correlation between Y γ̂k andXβ, and thus is a solution to the (unconstrained) CCA problem.

In order to satisfy the constraint that β̃⊺
kΣ̂xβ̃ = 1, we can simply rescale and obtain β̂k =

β̃k

(
β̃⊺
kΣ̂xβ̃

)−1/2

, which will coincide with the solution we would have obtained with regular

CCA; similar results can be obtained for Γ̂ by symmetry. This least squares formulation

of CCA was noted in Gao et al. (2017). Because we will depend upon the distribution of

the regression-based estimators, we need them to be independent of the estimated directions

which we treat fixed. To accomplish this, we propose to use this approach with sample

splitting. First, partition the observations into two disjoint sets X1, Y1 and X2, Y2 and

perform CCA on (X1, Y1) to obtain estimated directions B̂1, Γ̂1. Next, in the held out-data

fix Γ̂ = Γ̂1 and use the above procedure to obtain B̂2, then fix B̂ = B̂1 and use the above

procedure to obtain Γ̂2. Because they were obtained using regression, conditional on Γ̂1, the

entries of B̂2 will each follow a (scaled) t-distribution, which we use to construct confidence

intervals, e.g., (
β̂k

)
i
± t

(α/2)
N/2−qσ̂k (X

⊺
2X2)

−1
i,i ,

where t
(α/2)
N/2−q is the α/2th quantile of the t distribution with N/2 − q degrees of freedom,

and σ̂k is the square root of the estimated error variance in the kth regression model after

rescaling. By symmetry, analogous confidence intervals can be obtained for Γ.

Debiased (Sparse) CCA Recent work by Laha et al. (2021) introduces a method for ob-

taining asymptotically exact inference for canonical directions in a high-dimensional regime.

It works with sparse CCA, although to make a direct comparison in our setting we have

to take the regularization parameter λ = 0, which may be outside the scope of their

theoretical results. This approach relies on the characterization of the first canonical di-

rections as the unique maximizers (modulo sign flipping) of a smooth function and uses

a one-step correction to de-bias the (regularized) estimators; this de-biasing step is care-

fully accounted for in obtaining a limiting distribution. One limitation of this approach,

however, is that it only provides results for the leading canonical directions (β1 and γ1),
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and does not offer any inference for subsequent canonical directions. We use the func-

tion give SCCA with default settings, available from the authors’ package on GitHub at

https://github.com/nilanjanalaha/de.bias.CCA, to obtain estimates of the variances

and use these to construct confidence intervals. This function requires that we provide an

estimate of the canonical directions: in their example, they use the result of the sparse CCA

method of Mai and Zhang (2019), but since we do not require sparsity we simply use the

(rescaled) estimates from R’s cancor function.

3.3.2 Simulation I: Synthetic Data with One Canonical Correla-

tion

In our first simulation study, we consider the setting where there is a single non-zero canonical

correlation, i.e., K = 1. We vary (p, q) ∈ {(10, 10), (100, 10)}, and ρ1 ∈ {0.9, 0.5, 0.2}. In

line with the simulation studies of Laha et al. (2021), we construct a sparse precision matrix

for both x and y and then invert it to obtain (dense) covariance matrices Σx,Σy. The sparse

precision matrix takes the initial form Ωi,j = 1{i=j} +0.5 · 1{|i−j|=1} +0.4 · 1{|i−j|=2}. We then

apply a modification to Ω to make specification of the canonical directions in Simulation II

simpler. Specifically, for the Ω associated with x we place 0’s everywhere but the diagonal

in the floor (p) and floor (p) + 1 rows and columns, and we make an analogous modification

of the Ω associated with y. This has the effect of breaking the marginal dependence between

the first half of the coordinates and the latter half of the coordinates, and without this it

is difficult to specify subsequent canonical directions (as we do in Simulation II, see Section

3.3.3) without running afoul of the orthogonality constraints. In Appendix B.1, we also show

results when identity covariance matrices are used instead, and we obtain results similar to

those presented below.

We consider both a “dense” and a “sparse” regime for the canonical directions. In the

dense regime, the canonical directions are proportional to

β̌1 =
[
1⊺
p/2 0⊺

p/2

]⊺
γ̌1 =

[
1⊺
q/2 0⊺

q/2

]⊺
,

whereas in the sparse regime they are proportional to

β̌1 =
[
1⊺
2 0⊺

p−2

]⊺
γ̌1 =

[
1⊺
2 0⊺

q−2

]⊺
,
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i.e., in the dense regime the first half of the coordinates are nonzero, whereas in the sparse

regime only the first two coordinates are nonzero. In both cases, we then normalize to obtain

β1 =
(
β̌⊺
1Σxβ̌1

)−1/2
β̌1 and γ1 = (γ̌⊺

1Σyγ̌1)
−1/2 γ̌1. We fix N = 1000. In line with Chen et al.

(2013), we construct the cross-covariance as Σxy = ρ1Σxβ1γ
⊺
1Σy. We draw 1000 replicates

for each setting for each of the methods, except for that of Laha et al. (2021), which is

appreciably slower than the others, where we instead use 100 replications. Since there are

only two possible values for coordinates in our setup, for simplicity we examine statistical

properties associated with the confidence intervals at just two coordinates for each vector:

the last coordinate ((β1)p and (γ1)q) which is always zero, and the first coordinate ((β1)1 and

(γ1)1), which is always non-zero.

Figure 3.1: Coverage rates in simulation I for p = q = 10. The horizontal line indicates
nominal 95% coverage.

We plot coverage and lengths of intervals at these representative coordinates for p = q =

10 in Figures 3.1 and 3.2, while coverage and lengths for p = 100, q = 10 are depicted in

Figures 3.3 and 3.4, respectively. With balanced dimensions p = q = 10, the methods gen-

erally perform well, although all but the asymptotic approach fall short in their coverage

of signals when ρ1 is small. Notably, the asymptotic, regression, and combootcca methods

attain nominal coverage of null coordinates, which is tantamount to valid control of Type I

error, whereas the method of Laha et al. (2021) does not achieve Type I error control when

ρ1 = 0.2. The good performance of the asymptotic approach was expected since the p = q
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Figure 3.2: Lengths of confidence intervals in simulation I for p = q = 10.

Figure 3.3: Coverage rates in simulation I for p = 100, q = 10. The horizontal line indicates
nominal 95% coverage.
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Figure 3.4: Lengths of confidence intervals in simulation I for p = 100, q = 10.

regime satisfies its assumptions. The pattern for the high-dimensional case where p = 100

and q = 10 is generally similar but with some differences. Since p ̸= q, the theoretical justifi-

cation for the asymptotic approach fails, and indeed the coverage for the high-dimensional β1

is poor. This provides empirical evidence that the theoretical results developed in Anderson

(1999) are indeed not applicable beyond the setting they were obtained for. Interestingly,

the asymptotic method does appear to provide generally nominal coverage tests for the en-

tries of the low-dimensional γ1, The method of Laha et al. (2021) continues to struggle with

coverage of null coordinates except when ρ = 0.9; interestingly this is worse for coverage

of the low-dimensional γ1. The sub-nominal coverage of combootcca for signals when ρ1 is

small is exacerbated, especially in the sparse regime and for β1.

In general, it appears that achieving nominal coverage for a non-null coordinate is gen-

erally more challenging than for a null coordinate, and that this difficulty is greater when

the canonical correlation ρ1 is smaller. A heuristic explanation for this is as follows. While

β̂1 is a consistent estimator for β1, it is not necessarily unbiased. Because β̂1 must satisfy

β̂⊺
1 Σ̂xβ̂1 = 1, this is approximately a constraint on the norm of β̂1. Thus, if the direction is

perfectly estimated, the leading coordinates of β̂1 will approach their true value, but if the

direction is misestimated (as is more likely with small ρ1 and larger dimensions), then there

will be mass in other coordinates which will shrink the true non-zero coordinates towards

45



0, and our confidence intervals will reflect this. Moreover, we expect that this bias will be

exacerbated in the sparse regime, when most coordinates are in fact zero.

Figure 3.5: Bias in simulation I: the proportion of confidence intervals that failed to cover
non-null signals that are “conservative” (the true value is greater in magnitude than any
value in the confidence interval).

In order to investigate this, we examined confidence intervals that failed to cover a non-

zero signal, checking whether the (absolute value of) the upper bound of the interval was less

than (the absolute value of) the truth. If so, we considered that confidence interval “conser-

vative.” Figure 3.5 depicts the proportion of non-covering intervals that were conservative,

and indeed shows that when ρ1 is small, and especially in the sparse regime, the intervals

from all methods are generally conservative, meaning that when they fail to cover the true

non-zero value, it is likely because the estimate was shrunk towards zero.

Even confidence intervals that fail to achieve nominal coverage can lead to correct inference

when the question is whether a given coordinate is equal to zero. Type I error for this

hypothesis test is simply 1 minus coverage of at null coordinates (already depicted in Figures

3.1 and 3.3), and in Figure 3.6, we show the power of the test, i.e., the proportion of times

confidence intervals for non-zero signals do not contain 0. Here we see that combootcca is

generally the most powerful method among the three that achieve nominal control of Type

I error.
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Figure 3.6: Power (correct rejection rates) in simulation I.

3.3.3 Simulation II: Synthetic Data with Two Canonical Correla-

tions

Simulation II is similar to Simulation I in all respects except that we fix ρ1 = 0.9 and

introduce a second nonzero canonical correlation. We again consider both a dense and

sparse regime, where the first canonical directions are the same as in Section 3.3.2, and the

second canonical directions in the dense regime are proportional to

β̌1 =
[
0⊺
p/2 1⊺

p/2

]⊺
γ̌1 =

[
0⊺
q/2 1⊺

q/2

]⊺
,

and in the sparse regime to

β̌1 =
[
0⊺
2 1⊺

p−2

]⊺
γ̌1 =

[
0⊺
2 1⊺

q−2

]⊺
.

Canonical directions are subsequently normalized with respect to their associated covari-

ances. Thanks to the structure of the covariance, these new directions satisfy β⊺
1Σxβ2 =

γ⊺
1Σyγ2 = 0. We fix ρ1 = 0.9 and vary ρ2 ∈ {0.8, 0.5, 0.2}. As in Simulation I, we examine
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statistical properties associated with the confidence intervals for the first canonical direc-

tions at the last coordinates (β1)p and (γ1)q (always zero) and at the first coordinates (β1)1
and (γ1)1 (always non-zero). We also consider statistical properties for the second canonical

directions at the first coordinates (β2)1 and (γ2)1 (always zero) and and the last coordinates

(β2)p and (γ2)q (always non-zero). The method of Laha et al. (2021) is only applicable to

the first canonical directions; it gives no results for the second canonical direction. As with

Simulation I, in Appendix B.2 we repeated this experiment with identity covariances for Σx

and Σy, and we found a generally similar pattern of results to those presented below.

Figure 3.7: Coverage rates for first canonical directions in simulation II for p = q = 10. The
horizontal line indicates nominal 95% coverage.

We first evaluate how coverage for the first canonical direction (with ρ1 fixed at 0.9)

varies when the strength of the second canonical correlation varies. Coverage is shown in

Figure 3.7 for p = q = 10 and in Figure 3.8 for p = 100, q = 10, with corresponding lengths

shown in Figures 3.9 and 3.10. Results are generally similar to Simulation I when ρ1 was

set to 0.9, although both the method of Laha et al. (2021) and regression-based method

have poor coverage of null coordinates (i.e., inflated Type I error) when ρ2 is large, which

suggests that a narrower gap between the canonical correlations is especially detrimental

for this method. For regression, we conjecture that in this setting, the initial estimate of

the canonical directions is more likely to be inaccurate, and because the regression method

effectively performs inference conditional on this value, it provides “valid” inference but for
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Figure 3.8: Coverage rates for first canonical directions in simulation II for p = 100, q = 10.
The horizontal line indicates nominal 95% coverage.

the wrong quantity. Examining the lengths makes clear that the combootcca and asymptotic

methods are appropriately sensitive to this small gap in the canonical correlations and make

their confidence intervals wider than the other methods.

We repeat the investigation of bias in confidence intervals described in Section 3.3.2 and

arrive at a similar conclusion: sparse signals yield more conservative (biased) intervals, which

can harm coverage while retaining good power. These results are depicted in Figures 3.11

and 3.12. All methods have very good power for the first canonical direction, which is

unsurprising as it is associated with a large canonical correlation (ρ1 = 0.9).

Next, we examine coverage of the second canonical direction as ρ2 varies. Coverage is

depicted in Figure 3.13 for p = q = 10 and in Figure 3.14 for p = 100, q = 10, with associated

lengths depicted in Figures 3.15 and 3.16. Recall that the method of Laha et al. (2021) is only

applicable for the first canonical directions, so it offers no results here. The only method with

nominal coverage of null coordinates (and thus valid control of Type I error) is combootcca;

the asymptotic approach works for p = q but fails when p ̸= q. When the signal is dense,

combootcca has nominal coverage of signal coordinates when p = q, and when p ̸= q it

approaches nominal coverage for signal coordinates except when ρ2 = 0.2. When the signal

is sparse and p ̸= q, combootcca again suffers from poor coverage of signal coordinates, and

we see in Figure 3.17 that this again reflects overly conservative (in magnitude) confidence
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Figure 3.9: Lengths of confidence intervals for first canonical directions in simulation II for
p = q = 10.

intervals, but that combootcca still has non-trivial power as depicted in Figure 3.18.

3.3.4 Simulation III: Data-Based Simulation

While Simulation I and II were useful for studying the behavior of various methods in

simple settings, Simulation III offers a more realistic setting. Rather than specifying Σx,Σy

along with ρ,B, and Γ a priori, we instead specify them based on our neuroimaging data

set as described in Section 3.4. Specifically, we take the estimated covariance Σ̂ for our

processed and cleaned data, i.e., the empirical covariances of X2 and Y2, as well as their

cross-covariance. Using the empirical covariance as the ground truth, we solve the population

version of CCA as described in Section 3.1.1, and we arrive at corresponding values for ρ,B,

and Γ. However, the directions are fully dense with variable magnitudes, and so modifications

are necessary in order to carefully study the empirical statistical properties of confidence

intervals. Specifically, we modify the last coordinate of one of β1, β2, γ1, or γ2. We set it to

take one of the following three values: (i) 0 (in which case it corresponds to a true null),

(ii) the mean of the absolute values of the other entries of the direction, (iii) the max of the

absolute values of the other entries of the direction. In both cases (ii) and (iii), we preserve

the sign of the coordinate. After this modification, we need to reconstruct the generative
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Figure 3.10: Lengths of confidence intervals for first canonical directions in simulation II for
p = 100, q = 10.

covariance Σ, since it will no longer correspond to this modified solution. We invert the

CCA model as described in Section 3.1.2 to recover a Σ that fits the desired CCA solution,

and then we generate data from it. Our choice of Σ requires that we leave (p, q) fixed at

(250, 11) (to correspond to the application), and we similarly set N = 2969 to correspond to

the application.

We present coverage for all methods in Figure 3.19 with associated lengths in Figure 3.20.

When considering only the first direction, only combootcca attains nominal coverage in all

settings, while the asymptotic method does so for the low-dimensional γ1. The method of

Laha et al. (2021) has coverage close to (but short of) nominal for β1, but poor coverage for

γ1, and offers no results for the second directions β2 and γ2. When examining results for the

second canonical directions β2 and γ2, combootcca has nominal (or near nominal) coverage

for null and moderate signal, but falls short of nominal coverage when the signal is set to its

maximum. This is consistent with our earlier simulation studies where confidence intervals

for coordinates with large values are conservatively biased, which can be confirmed in Figure

3.21. In Figure 3.22, we show the power for each method. Although not the most powerful

method, combootcca is unique in that it had nominal Type I error control, but still enjoys

non-trivial power, especially in the presence of coordinates with large values.
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Figure 3.11: Bias in simulation II for first canonical directions: the proportion of confidence
intervals that failed to cover non-null signals that are “conservative” (the true value is greater
in magnitude than any value in the confidence interval).

3.3.5 Comparison of Bootstrap Strategies

In Section 3.2, we outlined different alignment strategies for the bootstrap as well as two

approaches to constructing confidence intervals. Here, we provide empirical evidence to

justify our choices in the combootcca method, namely, performing alignment with a weighted

Hungarian algorithm and using percentile bootstrap.

Figure 3.23 shows coverage rates in the setting of Simulation I (see Section 3.3.2) for all

four alignment strategies considered as well as the two different types of confidence intervals.

We can easily see that the bootstrap that uses the normal approximation (in rows 1 and 3)

generally fails to achieve nominal coverage when ρ is small, regardless of alignment strategy.

This is a particularly noteworthy observation, given the popularity of this type of bootstrap

in the applied literature. Coverage is generally better for the percentile-based bootstrap,

although as we have seen in the preceding sections, its coverage is poor when the signal is

sparse and ρ1 is small, however this generally reflects a conservative bias in the intervals that

still leaves non-trivial power. Considering alignment strategies, the Procrustes-based align-

ment fails to achieve nominal coverage in many settings for both the normal-approximation

and percentile bootstrap; this is consistent with our characterization of it as an overly ag-
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Figure 3.12: Power (correct rejection rates) for first canonical directions in simulation II.

Figure 3.13: Coverage rates for second canonical directions in simulation II for p = q = 10.
The horizontal line indicates nominal 95% coverage.
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Figure 3.14: Coverage rates for second canonical directions in simulation II for p = 100, q =
10. The horizontal line indicates nominal 95% coverage.

gressive alignment strategy. In order to choose between the remaining alignment strategies,

we consider power as presented in Figure 3.24. We have already eliminated the normal-

approximation bootstrap from consideration due to its poor coverage, and when using the

percentile-based bootstrap we see that the weighted Hungarian alignment has the best power.

In order to verify that this recommendation is not specific to our toy simulation study,

we also study the choice of alignment strategy and type of confidence interval in the more

realistic setting of Simulation III (see Section 3.3.4). In Figure 3.25, we can again see that the

normal approximation is problematic for coverage, and that Procrustes-based alignment can

yield very poor coverage, especially for the smaller dimensional γ1 and γ2. Turning to power

as depicted in Figure 3.26, the weighted Hungarian alignment coupled with percentile-based

bootstraps remains the winning combination.

3.4 Application to ABCD Dataset

We apply our methods to data taken from the ABCD study (Casey et al., 2018) processed

by the lab of our collaborator, Dr. Chandra Sripada. We work with an initial corpus of 5937

individuals who have complete data on (i) usable resting state fMRI data, (ii) behavioral

performance scores on 11 tasks, and (iii) nuisance covariates. This same subset of the ABCD
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Figure 3.15: Lengths of confidence intervals for second canonical directions in simulation II
for p = q = 10.

data was analyzed in Sripada et al. (2021), which describes the data and processing in more

detail. Interestingly, our analysis which aims to tie behavioral tests to biological measure-

ments, is very much in the spirit of Hotelling’s seminal which introduced CCA (Hotelling,

1936), which suggested on its first page that with CCA, “the scores on a number of mental

tests may be compared with physical measurements on the same persons.”

The initial data matrix X̃ ∈ R5937×(4182 ) holds functional connectivity data. Each row

corresponds to a vectorized correlation matrix taken pairwise over time between 418 parcels

in the brain according to the parcellation of Gordon et al. (2016). The initial data matrix

Ỹ ∈ R5937×11 holds behavior scores for the same participants on a corpus of 11 tasks taken

from the neurocognition assessment from the ABCD study and described in more detail

in Luciana et al. (2018). In brief, seven of the tasks are taken from the NIH Toolbox

(Hodes et al., 2013): (i) Picture Vocabulary (Vocabulary), (ii) Oral Reading Recognition

(Reading), (iii) Pattern Comparison Processing Speed (Processing Speed), (iv) List Sorting

Working Memory (Working Memory), (v) Picture Sequence Memory (Episodic Memory).

(vi) Flanker Inhibitory Control & Attention (Flanker), and (vii) Dimensional Change Card

Sort (Card Sort). From the Rey Auditory Verbal Learning Test, we use performance in both

the (viii) Short Delay (Memory: Short Delay) and (ix) Long Delay (Memory: Long Delay)

conditions. Finally, we also used performance in the following tasks: (x) Matrix Reasoning,
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Figure 3.16: Lengths of confidence intervals for second canonical directions in simulation II
for p = 100, q = 10.

and (xi) Little Man Task (Spatial Rotation).

We corrected for six nuisance covariates for each participant, namely age, age2, sex,

meanFD, meanFD2, and race/ethnicity. MeanFD is a summary measure of how much the

participant moved their head during the resting state scanning session. After adding an

intercept column of ones and dummy-coding categorical nuisance covariates, we obtained the

nuisance matrix W ∈ R5937×10. Before performing CCA, we first remove variation associated

with the nuisance covariates and then reduce the dimension of the neuroimaging data. We

randomly partitioned our data into two roughly equally-sized sets,

X̃ =

[
X̃1

X̃2

]
, Ỹ =

[
Ỹ1

Ỹ2

]
, W =

[
W1

W2

]
.

Using the training data (X̃1, Ỹ1, W̃1) , we regress the variables of interest on the nuisance

covariates, obtaining the coefficients

ÂX = (W ⊺
1W1)

−1W ⊺
1X1, ÂY = (W ⊺

1W1)
−1W ⊺

1 Y1.

We then remove the contributions of nuisance covariates using the coefficients learned in the
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Figure 3.17: Bias in simulation II for second canonical directions: the proportion of confi-
dence intervals that failed to cover non-null signals that are “conservative” (the true value
is greater in magnitude than any value in the confidence interval).

training data by setting

X̌1 = X1 −W1ÂX , X̌2 = X2 −W2ÂX ,

Y̌1 = Y1 −W1ÂY , Y̌2 = Y2 −W2ÂY .

Next, we reduced the dimension of the neuroimaging data matrix X̌ using PCA. This is a

common processing step upstream of CCA in the neuroimaging literature (see e.g., Helmer

et al. (2020); Fernandez-Cabello et al. (2022)). We learned the PCA transformation on the

training data: because X̌1 was already column-centered (since an intercept was included in

the nuisance matrix W1), we performed PCA via SVD and decomposed X̌1 = USV ⊺. Based

on input from our collaborators, we retained the leading 250 principal components and trun-

cated V accordingly. Then, we projected the held-out, but nuisance-corrected neuroimaging

data onto this basis with X2 = X̌2V[:,1:250]. The phenotypic data is already low-dimensional,

so we simply set Y2 = Y̌2. As a final preprocessing step, we standardized the columns of X2

and Y2 to have mean 0 and variance 1.

We then perform CCA on X2 and Y2. We use R’s cancor function (which uses QR decom-

position internally), but we rescale the canonical directions as discussed in Section 3.1.1. In
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Figure 3.18: Power (correct rejection rates) for second canonical directions in simulation II.

Figure 3.19: Coverage rates in simulation III.
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Figure 3.20: Lengths of confidence intervals in simulation III.

Figure 3.27 we plot the canonical correlations. Although inference for ρ is not the main focus

of the present manuscript, for completeness we report the results of inference on ρ obtained

from the yacca package’s F.test.cca function (Butts, 2022). As depicted in Figure 3.27, we

find that three canonical correlations are significantly nonzero at α = 0.05, and we will there-

fore restrict our attention to inference on first three canonical directions. Notably, the first

canonical correlation is well-separated from the rest, but subsequent canonical correlations

are not.

We perform inference on the canonical directions using the combootcca method. Figure

3.28 shows point estimates and associated confidence intervals for the first three directions of

Γ. Here, interpretability is aided by the data standardization, as all of the variables are on the

same scale. The intervals for the first direction are markedly shorter than for the subsequent

directions; this is consistent with greater uncertainty due to the poor separation of canonical

correlations beyond the first. While there is a fundamental sign ambiguity in CCA, the

relative signs of the directions can be meaningfully interpreted. For example, in the first

direction, the confidence intervals for Vocabulary, Reading, Working Memory, and Matrix

Reasoning do not include 0 and all have the same sign. The fact that these four tasks appear

in a single canonical direction is noteworthy: the Vocabulary and Reading tests are classic

hallmarks of “crystallized intelligence,” whereas Working Memory and Matrix Reasoning are
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Figure 3.21: Bias in simulation III. The proportion of confidence intervals that failed to
cover non-null signals that are “conservative” (the true value is greater in magnitude than
any value in the confidence interval).

considered strong indicators of “fluid intelligence,” and there is disagreement as to whether

these are really two distinct capacities or if they reflect a single general ability. Indeed,

Panigrahi et al. (2023b) deployed a multi-task learning approach with the same data but

restricted their behavioral measures to these four tasks in an investigation of the shared

versus distinct neural bases for these two types of cognitive abilities. Our results can also

be compared with those obtained from an independent CCA analysis of the ABCD data in

Goyal et al. (2022), where their post-hoc analysis of their second canonical variate implicates

many of the same tasks that we identified.

Figure 3.29 shows confidence intervals for the first three directions of B. Notably, the

first direction has a number of coordinates that are significantly nonzero, whereas there is

just one for the second direction and none for the third direction. This parallels our findings

in Simulation III (Section 3.3.4), wherein we saw that combootcca had non-trivial power

for the leading direction of B but little power for the second direction, perhaps due to the

poor separation of the second canonical correlation from subsequent canonical correlations.

Recall that the coordinates of B correspond to PCA scores from the higher-dimensional

brain imaging data: while they are not directly interpretable, it is possible to invert the

data reduction step. If we wish to recover the canonical directions in the original feature
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Figure 3.22: Power (correct rejection rates) in simulation III.

Figure 3.23: Comparison of coverage rates for different types of bootstraps and alignment
strategies in the setting of simulation I.
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Figure 3.24: Comparison of power (correct rejection rates) for different types of bootstraps
and alignment strategies in the setting of simulation I.

space, we can compute B̌ = V[1:250]D
−1/2B̂, where D is a diagonal matrix with the empirical

variances of X2 (the adjustment by D is necessary to invert the standardization we applied

as a preprocessing step). Alternately, we can set to 0 any entries of B̂ whose corresponding

confidence intervals included 0, and construct an analogous quantity with this thresholded

version of B̂. These reconstructed directions can be reshaped into matrix form and organized

according to the assignment of parcels to putative brain systems in the parcellation of Gordon

et al. (2016). Figures 3.30, 3.31, and 3.32 depict β̌1, β̌2, and β̌3, respectively, whereas Figures

3.33 and 3.34 show the analogous quantities obtained after thresholding β̂1 and β̂2 (there are

no significantly non-zero coordinates in β̂3, so we do not depict it). Of particular interest

given the tasks associated with the first direction, we note that when examining the brain

features associated with β̂1 in Figures 3.30 and 3.33, there qualitatively appears to be far

more mass in edges linking the Default, FrontoParietal, Dorsal Attention, Salience, Cingulo-

Opercular, Cingulo-Parietal, and Ventral Attention systems. These systems were situated

by Margulies et al. (2016) near the beginning of a gradient that transitions from transmodal

to sensory cortices. This pattern, coupled with the behavioral variables implicated in γ1,

suggest that our leading pair of canonical directions may indeed reflect shared structure in

both brain and behavior that undergird important and general cognitive ability.
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Figure 3.25: Comparison of coverage rates for different types of bootstraps and alignment
strategies in the setting of simulation III.

3.5 Discussion

In this work, we have considered the problem of inference for the directions obtained from

CCA. While much statistical work has focused on inference for the canonical correlations, the

canonical directions in the classical setting have received less treatment, except for Anderson

(1999)’s treatment of the p = q fixed, N → ∞ case. In the absence of clear guidance from

the statistical literature, practitioners often either ignore this part of the analysis, or use a

variety of heuristic resampling methods. Recent methodological work from applied groups

(e.g., Helmer et al. (2020); McIntosh (2021)) has focused on characterizing the “stability”

or “reproducibility” of the canonical directions. While this is informative, it is not the same

as performing statistical inference on the canonical directions, and often involves arriving at

global conclusions (e.g., “this vector is unstable”) based on the angles between canonical di-

rections under resampling as opposed to local inference (e.g., “this coordinate is significantly

nonzero”). While this line of work has generally approached the issue numerically, very re-

cent work in the statistical literature (Bykhovskaya and Gorin, 2023) has provided theoretical

results in a similar vein in the setting where p, q, and N all grow together. That framework,

too, still has a global rather than local focus: in the example application, the authors obtain

an estimate of the angle between estimated canonical variates and true canonical variates,
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Figure 3.26: Comparison of power (correct rejection rates) for different types of bootstraps
and alignment strategies in the setting of simulation III.

remark that it is low, and then present point estimates for the canonical directions. While

these are useful studies, ultimately our goal is to go one step further and use the charac-

terization of stability in order to deliver inference. While this is indeed what is attempted

in practice, our carefully designed simulation studies, which range from tightly controlled to

highly realistic settings, allow us to evaluate how well various methods perform with regard

to statistical inference with known and non-trivial ground truth. In addition, in contrast to

most applications, we carefully consider a number of design choices for bootstrap-based ap-

proaches and their relative consequences, merits, and pitfalls. This is especially useful since

various applied papers often arrive at different procedures which may have consequences for

coverage as well as both Type I and Type II error control. Moreover, our use of a data-based

simulation study, wherein we assess the statistical properties of our procedures on synthetic

data designed to closely mimic our eventual application with realistic levels of signal, is a

useful example of how a statistical method can be evaluated prior to its application on a

given data set.

Based on our simulation studies, we specifically recommend the use of percentile-based

bootstraps with the weighted Hungarian algorithm alignment as performed in combootcca,

which overall delivers the best combination of coverage, error control, and power. The

recent approach of Laha et al. (2021), originally developed for sparse CCA, seems to be a
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Figure 3.27: Results for ABCD: canonical correlations.

promising alternative, although its control of Type I error is not sufficiently consistent for

us to recommend its use in low dimensional settings.

While combootcca has good Type I and II error control, the simulation studies show it

can fail to achieve nominal coverage of coordinates with large magnitude, especially when

the true direction is sparse. We conjectured that this was due to bias in the estimator which

was exacerbated by the bootstrap, and we saw empirical evidence for this in Figures 3.5,

3.11, 3.17, and 3.21. It may be possible to mitigate this bias by estimating and correcting

for it. This could be done with the use of a double bootstrap (Davison and Hinkley, 1997, p.

103) or related procedures such as bias-corrected and accelerated intervals (BCa; Efron and

Tibshirani, 1993, p. 184), although this of course comes at additional computational cost

and requires further study.

One noteworthy limitation of the approaches we have presented is that we do not correct

for multiple comparisons. While this is common in the applied literature, where confidence

intervals for the canonical directions are generally considered descriptive and not corrected

(e.g., Mǐsić et al., 2016). this is an important caveat that should be kept in mind particularly

with respect to our findings from the ABCD data. While control of the family-wise error

rate could be achieved with Bonferroni correction, this may be rather conservative and

decrease power, which in some settings is already limited. An alternative would be to

65



Figure 3.28: Results for ABCD: point estimates and confidence intervals for first three
canonical directions of Γ.
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Figure 3.29: Results for ABCD: confidence intervals for first three canonical directions of B.

instead control the false discovery rate (FDR; Benjamini and Hochberg, 1995). While the

classical procedure is valid for independent tests and those that are positively dependent

(Benjamini and Yekutieli, 2001), it is not immediately clear what sort of dependence might

exist among tests for the elements of B and Γ. However, because combootcca already uses

a resampling-based procedure, it may be possible to estimate the dependence and to adjust

accordingly, as in Yekutieli and Benjamini (1999). We are not selective in terms of which

confidence intervals we report for a given direction; thus we should not suffer from decreased

coverage rates due to selective reporting (Benjamini and Yekutieli, 2005), but future work

may be needed to account for the potentially sequential nature of inference, wherein a subset

of canonical directions are selected for further scrutiny based on hypothesis tests applied to

the canonical correlations. This could be viewed as testing hypotheses on a tree, and so the

approach of Bogomolov et al. (2021) may be applicable.

Future work includes additional theoretical analysis. Given the use of the singular value

decomposition in CCA as discussed in Section 3.1.1, recent results in Agterberg et al. (2022)

concerning the limiting distribution of entries of singular vectors may be of use for this

analysis. In addition, our simulation studies suggest that when p > q but q ≪ N , the results

of Anderson (1999) may still give the correct limiting distribution for Γ̂. This appears to be

in line with theoretical results in Fine (2003), which revisited the work of Anderson (1999)

67



Figure 3.30: Brain connectivity features recovered from first canonical direction β1.

from an operator- and tensor-focused perspective, but appears to offer results for only the

lower dimensional direction. This approach to inference would be of particular utility: the

coordinates of the lower-dimensional directions, which often correspond to phenotype, are

often of primary interest, and asymptotic confidence intervals are vastly faster to compute

than the bootstrap. Nonetheless, given the widespread use of resampling-based strategies

in the applied literature, our contribution of combootcca along with demonstration of the

pitfalls of related strategies is still valuable.
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Figure 3.31: Brain connectivity features recovered from second canonical direction β2.

Another direction for future work involves developing forms of matrix CCA, which would

be more closely tailored to our neuroimaging application. Recall thatX is the matrix of brain

connectivity, but the structure of this matrix is ignored when it is vectorized and reduced

using PCA as part of preprocessing. While this transformation is reversible for the purposes

of visualization (e.g., Figure 3.33), our methods do not take advantage of this rich structure.

There are thus opportunities to develop variants of CCA that involve structure-enforcing

penalties (e.g., similar to that of Relión et al. (2019); Kessler et al. (2022)). In Chapter 4,
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Figure 3.32: Brain connectivity features recovered from third canonical direction β3.
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Figure 3.33: Brain connectivity features recovered from first canonical direction β1 using
only significantly nonzero coordinates.
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Figure 3.34: Brain connectivity features recovered from second canonical direction β2 using
only significantly nonzero coordinates.
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we present work in this direction when seeking low rank structure.
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CHAPTER 4

Matrix-Variate Canonical Correlation

Analysis

4.1 Introduction

Canonical Correlation Analysis (CCA) is a classical technique (Hotelling, 1935) that has

seen a surge of recent interest in both the applied (Wang et al., 2020b) and theoretical

(Bykhovskaya and Gorin, 2023; Gao et al., 2017) literature. In brief, CCA is a method

applicable to pairs of random vectors, say x and y: it identifies a pair of linear forms (one for

each vector) such that when applied to the random vector, the newly transformed random

variables, or “canonical variates,” are maximally correlated with one another. Additional

pairs of linear forms can then be obtained subject to orthogonality constraints.

Many modern applications involve high dimensional data. In the setting where the number

of observations exceeds the dimension of either random vector, then the classic approach for

estimating canonical directions is no longer applicable. This challenge has sparked interest

in regularized forms of CCA, such as ridge CCA (Vinod, 1976) and sparse CCA (Witten

et al., 2009). While these methods are generally applicable, more specialized methods can

be developed for data with particular structure. One recent example is group regularized

CCA (GRCAA; Tuzhilina et al., 2021); GRCCA is applicable when the coordinates of the

random vectors can be organized into groups based on some a priori knowledge.

In this work, we are motivated by the application from Chapter 3 wherein our samples

natively take the form of correlation matrices for each participant in a neuroimaging study.

There, we vectorized these matrices and reduced the dimension using PCA, but here we aim

to work with the matrices directly and to exploit this structure. More generally, consider the

setting where one or both of the random vectors are replaced with random matrices, as may

occur with image data or correlation matrices obtained from functional connectivity studies

in neuroimaging as discussed above. In other words, we consider matrix-variate CCA. Let

X ∈ Rp1×p2 and Y ∈ Rq1×q2 be random matrices. We can apply CCA in this setting by
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identifying each matrix with its vectorized analog and performing conventional CCA, i.e.,

by solving the objective function

β1, γ1 = argmax
b,g

Corr (vec(X )⊺ vec(b), vec(Y⊺ vec(g))

s.t. Var (vec(X )⊺ vec(b)) = Var (vec(Y)⊺ vec(g)) = 1.

where vec (·) denotes the vectorization of its argument. While valid, this approach fails to

exploit any matrix-specific structure that may be present in our original data.

Motivated by the application of CCA to image data, a literature has developed focused

on two-dimensional CCA (2D-CCA) (Lee and Choi, 2007). In this setting, the images are

represented by matrices, and the goal is to tailor the approach to the image while avoiding

the explicit vectorization discussed above. The objective function for 2D-CCA is

argmax
ℓx,rx,ℓy ,ry

cov
(
ℓ⊺xX rx, ℓ⊺yYry,

)
s.t. Var (ℓ⊺xX rx) =

(
ℓ⊺yYry

)
= 1.

In words, this approach learns “left” and “right” transforms for both X and Y . Together,

the left and right transformations reduce the matrix to a vector: applying the left transform

returns a vector, and then applying the right transform returns a scalar. Lee and Choi (2007)

propose an algorithm that alternates between finding left and right transforms respectively:

when one is held fixed, the problem reduces to classic vector-variate CCA. For image data,

this approach has vastly reduced computational cost relative to the vectorized approach, and

it often recovers better canonical directions in the sense of achieving improved performance

on downstream tasks, e.g., classification (Lee and Choi, 2007)

The canonical directions themselves are implicit in this formulation, but can be made

explicit by observing

ℓ⊺xX rx = tr (ℓ⊺xX rx)

= tr (rxℓ
⊺
xX )

= tr ((ℓxr
⊺
x)

⊺X )

= vec (ℓxr
⊺
x)

⊺ vec (X )

= vec (B)⊺ vec (X )

= β⊺ vec (X ) ,

where B = ℓxr
⊺
x, and β = vec (B). Since B is the outer product of two vectors, it has
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rank at most 1, and an analogous result follows by symmetry for Γ. This rank constraint

on the (implicit) canonical directions does not seem to have been originally recognized in

the 2D-CCA literature, although it was noted recently in Chen et al. (2021). However, this

insight helps to explain why 2D-CCA is much more computationally efficient: there are

p1 + p2 + q1 + q2 free parameters in 2D-CCA (corresponding to lx, rx, ly, and ry), whereas

vectorized CCA has p1 × p2 × q1 × q2 free parameters (since all of the entries of B and Γ

are free). Moreover, if the interesting signal in the images is low rank, then this constraint

may make it easier to recover the signal in otherwise high dimensional settings. However,

there are some shortcomings to this approach. First, it does not readily generalize to other

rank constraints, e.g., there is no immediate way to modify the algorithm to obtain implicit

canonical directions of rank say 2. Indeed, if the left and right transforms are taken to be

say matrices with 2 columns, then the “trick” no longer works: applying the left transform

will then give nontrivial matrices rather than vectors, which precludes the application of

the classic CCA approach that the 2D-CCA algorithm requires. Second, the alternating

algorithm is mostly heuristic and thus can be sensitive to initialization.

In order to overcome these shortcomings, we propose a more general approach for matrix-

variate CCA that we call matcca (MATrix CCA). Our objective can be written more explic-

itly as

β1, γ1 = argmax
b,g

Corr (tr(X ⊺b), tr(Y⊺g))

s.t. Var (tr (Y⊺g)) = Var (tr (X ⊺b)) = 1

and rank (b) ≤ KX , rank (g) ≤ KY .

If we take Kx = Ky = 1, then this coincides with the 2D-CCA objective, although writing

it this way will help to suggest an alternative algorithmic approach. As we shall see later,

we will not directly enforce this rank constraint but instead use its convex relaxation: the

nuclear norm (Fazel et al., 2001).

Both Safayani et al. (2018) and Chen et al. (2021) study 2D-CCA and consider its ex-

tension to the tensor setting. However, it does not appear that their formulations allow for

both more than 1 canonical direction and canonical directions with rank greater than 1.

Indeed, when 2D-CCA was initially introduced, there is ambiguity as to how the solution

actually corresponds to CCA. For example, when using the algorithm presented in Lee and

Choi (2007), if d1 and d2 are both greater than 1, then each matrix will have a corresponding

canonical variate matrix of size d1×d2. In conventional CCA, there is a pairwise correlation

among the canonical variates, but it is not clear how this can be understood when the vector

of canonical variates becomes instead a matrix.
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Given the intimate connection between CCA and regression discussed in Section 3.1, it

is natural to seek analogs of this approach in the regression literature. Regularized matrix-

variate regression was proposed in Zhou and Li (2014). In their setting, y(i) is a scalar and

they compare the solution of

min
B

n−1

N∑
i=1

(
y(i) − tr

(
B⊺X (i)

))2
+ λ ∥vec(B)∥1 , (4.1)

with

min
B

n−1

N∑
i=1

(
y(i) − tr

(
B⊺X (i)

))2
+ λ ∥B∥⋆ , (4.2)

where

∥X∥⋆ =
K∑
k=1

σk(X ),

and σk(X ) gives the kth singular value of the matrix X . Equation (4.1) is tantamount to

vectorizing the matrix X and applying LASSO regularization (Tibshirani, 1996), whereas

Equation (4.2) involves a relaxation of a rank constraint which had previously been consid-

ered for matrix completion (Cai et al., 2010). Zhou and Li (2014) demonstrate in simulation

studies that when the true signal is low rank, (4.2) has superior performance to (4.1). They

also consider a family of closely related penalty functions, all of which operate on the vector

of singular values, but in our work we will restrict our attention to the nuclear norm, which

corresponds to the LASSO penalty applied to the singular values. The approach that we

will propose in Section 4.2 can be understood as the CCA-generalization of the regularized

matrix regression approach of Zhou and Li (2014).

There is precedent for the use of low rank promoting penalties in the neuroimaging lit-

erature. Brzyski et al. (2020) proposed penalizing scalar-on-matrix regression with both a

LASSO (ℓ1) and nuclear norm and applied this method to predict language test scores using

functional brain connectivity networks. However, to the best of our knowledge the penal-

ized CCA formulation that we present in Section 4.2 is novel in and of itself and also in its

application to neuroimaging data.

In our methodological development, we will depend heavily on work by Mai and Zhang

(2019), wherein they reformulate classical CCA as a constrained quadratic optimization

problem, and then use this formulation to introduce penalization. Their approach was

designed to recover sparse solutions for vector-variate CCA. Here, we review their approach

in the vector case and then in Section 4.2, we show how we extend it to work with matrix-

variate data. In their work, they show that in the low dimensional setting (i.e., both p and

77



q smaller than N) the CCA objective, i.e.,(
β̂CCA
k , γ̂CCA

k

)
= argmax

(bk,gk)

g⊺kΣ̂Y Xbk,

s.t. b⊺kΣ̂xbl = g⊺kΣ̂ygl = I (k = l)

can be rewritten as the solution of a constrained quadratic optimization problem

(
β̂CCA
k , γ̂CCA

k

)
= argmin

(bk,gk)

{
1

2n

n∑
i=1

(Y ⊺
i gk −X⊺

i bk)
2 + g⊺k

(∑
i<k

ρ̂lΣ̂Y Y γ̂l · b⊺l Σ̂XX

)
bk

}
s.t. b⊺kΣ̂XXbk = g⊺kΣ̂Y Y gk = 1.

While there are still constraints that control the scaling of γ̂ and β̂, the orthogonality con-

straints have been absorbed into the second term. This new formulation is useful, as in the

high dimensional case, we can add a penalty to encourage sparsity and obtain

(
β̂CCA
k , γ̂CCA

k

)
= argmin

(gk,bk)

{
1

2n

n∑
i=1

(Y ⊺
i gk −X⊺

i bk)
2 + g⊺k

(∑
i<k

ρ̂lΣ̂Y Y γ̂l · b⊺l Σ̂XX

)
bk

+ λX ∥bk∥1 + λY ∥gk∥1
}

s.t. b⊺kΣ̂xbk = g⊺kΣ̂ygk = 1.

Mai and Zhang (2019) suggest solving this optimization problem using an alternating al-

gorithm, i.e., fix gk and optimize in βk, then fix βk and optimize in gk, and so on, until

convergence. They prove that for a fixed gk, the optimal βk is given by the solution to a

LASSO penalized regression problem, and conversely that for a fixed βk, the optimal gk is

given by the solution to a LASSO penalized regression problem.

4.2 Methods

In order to introduce nuclear norm penalization for matrix-CCA, we employ the framework of

Mai and Zhang (2019). As the authors note, their approach can be generalized by replacing

the LASSO penalties with another pair of penalties, say PX and PY , in which case the
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objective is

(
β̂CCA
k , γ̂CCA

k

)
= argmin

(bk,gk)

{
1

2n

n∑
i=1

(Y ⊺
i gk −X⊺

i bk)
2 + g⊺k

(∑
i<k

ρ̂lΣ̂Y Y γ̂l · b⊺l Σ̂XX

)
bk

+ PX (bk) + PY (gk)

}
s.t. b⊺kΣ̂xbk = g⊺kΣ̂ygk = 1.

So long as the penalties are positively homogeneous (i.e., for any C > 0, PY (Cw) = CPY (w)

for arbitrary w ∈ Rq and PX(Cv) = CPX(v) for arbitrary v ∈ Rp), then the alternating

updates can be given by the solution to penalized regression problems. While Mai and Zhang

(2019) discuss a variety penalties to encourage structured sparsity with vector-variate data

(e.g., group lasso (Yuan and Lin, 2006), fused lasso (Tibshirani et al., 2005)), we propose to

instead consider penalties appropriate for matrix-variate data. In particular, for X ∈ Rp1×p2 ,

define

PX(X ) = λX ∥X∥⋆ ,

and define PY analogously. As a norm, PX is absolutely homogeneous, and thus is also

positively homogeneous and satisfies the condition of Mai and Zhang (2019)’s Lemma 3;

thus, our alternating updates can be given by the solution to a nuclear norm penalized

regression problem. An alternating algorithm is then given by the following. Suppose that

we have already recovered k − 1 canonical pairs and associated canonical correlations given

by

Γ̂k−1 = (γ̂1, . . . , γ̂k−1) , B̂k−1 =
(
β̂1, . . . , β̂k−1

)
, Rk−1 = diag (ρ̂1, . . . , ρ̂k−1) .

First, we compute Ωk = In − 1
n
Y Γk−1Rk−1Bk−1X

⊺. This matrix will serve to remove varia-

tion explained by the preceding canonical pairs. Next, initialize
{
γ̂
(0)
k , β̂

(0)
k

}
. The iterative

updates then take the form

Ỹ
(m)
k = Ω⊺

kY γ̂
(m)
k

β̆k = argmin
bk

{
1

2n
∥Ỹ (m)

k −Xbk∥22 + PX (bk)

}
β̂
(m)
k =

{
β̆
(m)⊺
k Σ̂XX β̆

(m)
k

}−1/2

· β̆(m)
k

X̃
(m)
k = Ω⊺

kXβ̂
(m)
k

γ̆k = argmin
gk

{
1

2n
∥X̃(m)

k − Y gk∥22 + PX (gk)

}
γ̂
(m)
k =

{
γ̆
(m)⊺
k Σ̂Y Y γ̆

(m)
k

}−1/2

· γ̆(m)
k ,

(4.3)
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after whichm is incremented and we repeat until convergence, returning the estimators β̂k, γ̂k

for k = 1, . . . , K, with K being specified by the user.

Because the algorithm is iterative and also has an outer loop over the canonical pairs, we

may need to solve these inner problems many times. This computational burden is further

compounded by the need to tune parameters with cross validation. When using the LASSO

penalty, we can use the glmnet package (Friedman et al., 2010b) in R, which has been highly

optimized to solve LASSO penalized regression very quickly, although because it is only used

to solve an “inner” problem we cannot directly use its cross-validation functionality. In our

setting, where X is a matrix and PX is the nuclear norm penalty, we need to repeatedly

solve the optimization problem

θ⋆ = argmin
θ

{
1

N

N∑
i=1

(
y(i) − tr

(
mat(θ)⊺X(i)

))2}
+ λ ∥mat(θ)∥⋆ , (4.4)

where mat(θ) ∈ Rp1×p2 . Surprisingly, we were unable to find an R package that imple-

ments nuclear norm penalized trace regression, so we implement our own solver following

the contractive Peaceman-Rachford splitting method (PRSM) (Eckstein and Bertsekas, 1992)

adapted for nuclear norm penalized regression as described in Fan et al. (2017). Letting Y

be the vector of y(i)’s and constructing X by vectorizing each X (i), transposing it, and then

stacking them together, the updates are

θk+1
1 = (2X⊺X/N + βI)−1

(
βθ

(k)
2 + ρ(k) + 2X⊺Y/N

)
ρ(k+1/2) = ρ(k) − αβ

(
θ
(k+1)
1 − θ

(k)
2

)
θ
(k+1)
2 = vec

(
Sλ/β

(
mat

(
θ1 − ρ(k+1/2)

)))
ρ(k+1) = ρ(k+1/2) − αβ

(
θ
(k+1)
1 − θ

(k+1)
2

)
.

(4.5)

We set the tuning parameters to α = 0.9 and β = 1 in line with Fan et al. (2017). Sλ/β (·)
is the singular value soft-thresholding function, i.e., if Z ∈ Rm×n with rank r and singular

value decomposition Z = UΛV ⊺, then

Sτ (Z) = U diag [(λ1 − τ)+, (λ2 − τ)+, . . . , (λr − τ)+]V
⊺,

where (z)+ = max(z, 0); in words, it applies the soft-thresholding operator to the singular

values of its argument and then reconstructs the matrix. We terminate when
∥∥θk1 − θk2

∥∥
2
is

suitably small and return θk2 . Thus, (4.5) offers a way to solve the nuclear norm-penalized

regression (NNR) problem in (4.4), and by plugging this in to the iterative penalized CCA
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solver (4.3), we have our algorithm for matcca.

In order to improve the speed of our implementation, we note that the matrix inverse in

the first line of (4.5) does not vary with k. Rather than explicitly computing the inverse,

which may be unstable, we instead perform Cholesky factorization and obtain

2X⊺X/N + βI = LL⊺.

With these factors in hand, each time we need to find θk+1
1 , we can instead evaluate

θk+1
1 = (LL⊺)−1 (2X⊺X/N + βI = LL⊺)

= (L⊺)−1 L−1 (2X⊺X/N + βI) ,

Because L is lower triangular, the last line can be evaluated quickly by backsolving first

against L, and then that result can be used to quickly forward solve against L⊺. This

approach is much faster than solving the system of equations each time, and it is more

numerically stable than finding the inverse explicitly. However, the cost (in both compu-

tational and memory complexity) of evaluating X⊺X is high, since it has O(p21p
2
2) entries,

and with large matrices X this becomes intractable. As discussed in Section 4.5, future

works includes algorithmic improvements to facilitate solving against this very large matrix

without explicitly computing it.

An R package implementing the LASSO penalized SCCA approach of Mai and Zhang

(2019) is available from the author’s website. However, the software in its current state

cannot be applied in our setting. First, it is hard-coded to use glmnet for its iterative

updates, which precludes the use of other penalization schemes. In the course of the present

work, we have extended this software to handle more arbitrary penalization strategies, and

we have also fixed several bugs and made other improvements.

We tune the parameters associated with the penalty using cross-validation. When only a

single canonical pair is sought, a natural choice would be the parameter that offers the best

averaged canonical correlation on held out data when using the learned directions. However,

when retrieving more than a single pair, this metric doesn’t take into account performance

of canonical directions beyond the first. While in theory one could tune the parameters to

different values for each direction, this can very quickly explode in terms of computational

complexity, so we require that all directions have the same tuning parameter, although

distinct parameters can be chosen for x and y, which may especially be appropriate if they

are different types of objects (e.g., x is a vectorized matrix whereas y is a simple vector). In

order to consider canonical correlations beyond the first, when performing cross-validation

we learn the directions on training data and then evaluate all the empirical correlations in
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hold-out data. From this we obtain a matrix of correlations: we take its entry-wise square

(so that the entries are non-negative and can be interpreted like the R2 of a regression) and

then take its trace to sum across canonical directions. We choose the values of the tuning

parameters that maximizes this metric.

4.3 Numerical Results

We consider the performance of our method in a variety of synthetic settings, where we

consider matrix-scalar, matrix-vector, and matrix-matrix CCA. In each case, for the part of

the optimization problem involving a matrix, we use our algorithm with either the LASSO

penalty, implemented in glmnet (Friedman et al., 2010b), or with the nuclear norm penalized

regression (NNR) approach as described in Section 4.2. We tune all parameters using 5-fold

cross-validation using the procedure described earlier. We then fit CCA to the entire data

using the selected parameter.

For notational simplicity in this section we describe everything in terms of vector CCA,

but be aware that many of these “vectors” will, in some of our simulations, be flattened

matrices. In each of our simulations, we draw our data from a factor model based on Bach

and Jordan (2005). This involves first drawing N -many replicates of z ∼ NK (0, IK) (K will

vary across the simulations), which corresponds to the latent signal shared by x and y. Then

we gather these into the matrix

Z =


z⊺1

z⊺2

. . .

z⊺N

 .

The matrices Wx ∈ Rp×K and Wy ∈ Rq×K govern how this shared signal manifests in our

data, and conditioning on Z we draw data matrices

X = ZW ⊺
x + EX

Y = ZW ⊺
y + EY ,

where EX ∈ RN×p and EY ∈ RN×q are matrices with entry-wise independent normal random

variables. As a proxy for signal-to-noise ratio (SNR), we vary the standard deviation of the

entries of EX and EY in our experiments.

In this simulation setup, the kth column of Wx is proportional to the true canonical

direction βk, and the kth column of Wy is proportional to the true canonical direction γk.

Accordingly, in each simulation we assess our methods by computing the absolute value of
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the cosine similarity between the kth estimated direction and the kth column of either Wx

or Wy, where the cosine similarity of two vectors u and v is defined as u⊺v ∥u∥−1
2 ∥v∥

−1
2 . We

repeat each simulation setting 100 times for each SNR level, and we summarize the cosine

similarity with the mean and plot this and its 95% confidence interval (based on the empirical

standard errors) in each simulation study. In all of our simulation studies, we fix N = 100

whereas Wx always has 400 rows (and thus X has 400 columns). Thus, regularization is

necessary in order to obtain a solution.

4.3.1 Scalar-Matrix CCA

In our first simulation, X ∈ R20×20 is a random matrix, whereas y ∈ R1 is a random scalar.

This is essentially a regression problem, but because regression can be understood as a special

case of CCA where K = 1, we can still deploy the tools that we developed to work in the

CCA setting.

Wx comprises a single column, but this column corresponds to a vectorized matrix. We

construct the corresponding matrix mat (Wx) ∈ R20×20, with mat (Wx)[1:5,1:5] = 1 and 0’s

elsewhere. This corresponds to a signal that is both sparse, as only 25 of the 400 entries are

nonzero, and low rank, as it can be written as the outer product of two simple vectors of

1’s and 0’s. Since y is a scalar, Wy is trivially fixed at 1. While we will use both LASSO

and NNR to penalize the updates associated with X , we impose no penalties on the updates

associated with y since its solution is trivial. We then draw Z,X, and Y in the manner

described earlier. Since the estimated direction associated γ is trivial (as it is ±1), we only

consider the cosine similarity of β̂1 with Wx, which we plot in Figure 4.1 as a function of the

standard deviation of the noise. Unsurprisingly, both LASSO and NNR perform better in

lower noise settings, although NNR consistently out-performs LASSO across the noise range

until both methods essentially revert to random guessing in the presence of high noise. This

performance is especially noteworthy, since the structure of the signal is both sparse (which

is good for LASSO) and low rank (which is good for NNR).

4.3.2 Vector-Matrix CCA

In this simulation, X ∈ R20×20 is again a random matrix, but now y ∈ R2 is a random vector,

and K = 2. We consider two different sub-settings in this simulation study. In the first,

Wy =

[
1 0

0 0.5

]
,
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Figure 4.1: Cosine similarity for matrix-scalar setting.

in which case each of the coordinates of y are merely proxies for the two latent variables. In

order to keep the canonical directions distinct, however, we make the second coordinate a

weaker proxy for the second latent variable. In the second setting, we let

Wy =

[
1 0.5

1 −0.5

]
,

in which case the coordinates of y correspond to orthogonal linear functions of the latent

vector. While we will use both LASSO and NNR to penalize the updates associated with

X , we impose no penalties on the updates associated with Y since it is a low-dimensional

vector.

The signal in X is the same in both cases. Since K = 2, Wx now has two columns. We set

the first column the same as in the first simulation study, i.e., with mat ((Wx)1)[1:5,1:5] = 1

and 0’s elsewhere, while we set the second column as mat ((Wx)2)[15:20,15:20] = 0.5 and 0’s

elsewhere, The first signal is a sparse, low-rank signal at the top left of the matrix, whereas

the second is a sparse, low-rank signal at the bottom right of the matrix, and as was the case

with Wy, we attenuate the signal associated with the second direction to allow for separation.

In Figure 4.2, we show the cosine similarities for the estimates β̂1, β̂2, γ̂1, and γ̂2 when

Wy is diagonal (the first case); Figure 4.3 shows analogous results for the case where Wy
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involves mixing the latent variables in each coordinate of y. As expected, estimation quality

decreases with growing noise magnitude. However, regardless of the structure of Wy, NNR

consistently out-performs LASSO for estimating both directions β1 and β2, although both

methods do better on β1 than β2 which is reasonable as β1 is a stronger signal. There is

not an appreciable difference between the two methods when it comes to estimating γ1 or γ2

although γ2 is typically harder.

Figure 4.2: Cosine similarity for matrix-vector setting with diagonal Wy.

4.3.3 Matrix-Matrix CCA

In this setting, both X ∈ R20×20 and Y ∈ R20×20 are random matrices. We keep K = 2, and

construct WX the same as we did in the previous simulation, i.e., the first signal is a block at

the top left of the matrix and the second signal is a block at the bottom right of the matrix.

We construct WY , which has 2 columns, similarly, with with mat ((WY)1)[1:5,15:20] = 1 and 0’s

elsewhere, while we set the second column as mat ((WY)2)[15:20,1:5] = 0.5 and 0’s elsewhere.

In other words, WY has its first signal in the top right of the matrix and its second signal

in a block at the bottom left. Figure 4.4 shows the cosine similarities for the estimates of

β1, β2, γ1, and γ2. We expected this setting to be the most challenging, since both X and

Y have effectively 400 coordinates each, but to our surprise nuclear norm regularized CCA

actually performs best in this setting, with cosine similarity approaching 1 when noise is
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Figure 4.3: Cosine similarity for matrix-vector setting with mixing Wy.

low for both the first and second canonical directions. The signal is still reasonably sparse,

and so when the noise is weak LASSO regularized CCA still has decent performance, but

nuclear norm regularized CCA appears to markedly out-perform it, especially for the second

canonical directions β2 and γ2, where LASSO regularized CCA’s performance tapers off

quickly with growing noise.

4.4 Application to Neuroimaging Data

We apply matcca to a subset of data taken from the ABCD study (Casey et al., 2018) that

was graciously processed by our collaborator, Dr. Chandra Sripada, and his research group.

This data is closely related to that discussed in Section 3.4, although without the data

reduction step. For clarity of presentation, we briefly recap the salient details of this data,

highlighting the distinctions in its use here relative to that in Section 3.4. We start with a

dataset comprising 5937 participants with complete data, i.e., (i) good quality resting state

fMRI data, (ii) behavioral scores for 11 tasks, and (iii) nuisance covariates. From the resting

state fMRI data, functional connectivity matrices were obtained, which reflect the correlation

over time of various regions of interest (ROIs) in the brain, where these regions are defined

according to the parcellation of Gordon et al. (2016). There are 418 ROIs in this parcellation,
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Figure 4.4: Cosine similarity for matrix-matrix setting.

in which case each X (i) ∈ R418×418. Unfortunately, our attempts to apply matcca to this data

were unsuccessful due to the size of the matrices involved (but see discussion in Section 4.5

regarding ongoing work to address this). To overcome this, we instead restrict our attention

to a smaller sub-block of this matrix. The parcellation of Gordon et al. (2016) assigns each

node to one of several distinct “brain systems,” and we extract the submatrix correspond

to connections among ROIs labeled as belonging to the FrontoParietal system. There are

24 nodes in this system, so each X (i) ∈ R24×24, which is more in line with the size of the

data we considered in our simulation studies. This is still computationally demanding and

parameter tuning required an overnight run on a powerful server.

For y, we take participant performance on 11 behavioral tasks from the ABCD study’s

neurocognition assessment (Luciana et al., 2018). This includes seven tasks from the NIH

Toolbox (Hodes et al., 2013): (i) Picture Vocabulary (Vocabulary), (ii) Oral Reading Recog-

nition (Reading), (iii) Pattern Comparison Processing Speed (Processing Speed), (iv) List

Sorting Working Memory (Working Memory), (v) Picture Sequence Memory (Episodic Mem-

ory). (vi) Flanker Inhibitory Control & Attention (Flanker), and (vii) Dimensional Change

Card Sort (Card Sort); the two conditions of the Rey Auditory Verbal Learning Test, (viii)

Short Delay (Memory: Short Delay) and (ix) Long Delay (Memory: Long Delay); and per-

formance on the (x) Matrix Reasoning Task, and (xi) Little Man Task (Spatial Rotation).
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In order to avoid nuisance covariates from driving shared variation in X and y, we use

regression to remove unwanted variation. In order to avoid leakage, we partition our data into

two sets, fit nuisance regression models on the first set, and then remove these effects from

the second set. The nuisance covariates we consider are (i) participant age, (ii) the square of

age, (iii) participant sex, (iv) meanFD, (v) the square of meanFD, (vi) race/ethnicity, where

meanFD is a summary measure of how much the participant moved their head during the

resting state scanning session. We then use this second set of nuisance-corrected data for all

subsequent analytic tasks.

We further split this second set of data into a training and a test set, each of which now

comprise roughly one fourth of our original sample. We will use this training data to learn

canonical directions and then, at the very end, evaluate correlation in the held-out data

when using the learned directions. Before we can apply our penalized CCA methods with

both LASSO regularization and nuclear norm regularization, we need to have some notion of

a useful range of penalization tuning parameters from which to select using cross validation.

To arrive at an initial guess, we first fit conventional (unpenalized) CCA to the training data.

We project y onto its first estimated canonical direction γ̂1 and use this an approximation

of the first canonical variate. We then use glmnet to fit a LASSO penalized regression

that predicts this canonical variate using the functional connectivity data. In the process,

glmnet constructs a grid of sensible λ values. We retain the smallest and largest values

and linearly interpolate between them to obtain a grid of 10 candidate values that we will

use when tuning matcca as well as LASSO penalized λ. Using this grid, we then use cross-

validation separately with both the LASSO and nuclear norm penalized forms of CCA to

select the optimal value of λ based on 5-fold cross-validation. For both models, we initialize

the directions using the SVD of the empirical cross-covariance, and we recover two canonical

pairs. Because each y(i) ∈ R11 is already low-dimensional, we apply no regularization to

the canonical directions γ̂1 or γ̂2 associated with y. We then fit both LASSO and nuclear

norm penalized CCA to the training set, where each method uses the value of the tuning

parameter selected by cross-validation, again using SVD-based initialization and recovering

two canonical pairs.

We depict the canonical directions associated with y in Figure 4.5; we can observe that

both LASSO and nuclear norm penalized CCA have recovered very similar (although not

numerically identical) directions associated with the phenotypes. Moreover, even though

we did not encourage sparsity, some of the coefficients in the first direction are very small,

whereas they have large values in the second direction (this is especially true of the Episodic

Memory task). Interestingly, these canonical directions bear some resemblance to those

recovered in Section 3.4, although there are clear differences. While these two analyses rely
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on data from the same source, this is still notable as the present analysis uses a relatively

small slice of the correlation matrix. We visualize the two canonical directions associated with

X in Figures 4.6. The nuclear norm regularized CCA has recovered canonical directions that

are symmetric, although as a consequence of its regularization it has put non-zero mass on

the diagonal (which carries no predictive signal since it has a constant value in the data). The

directions recovered by the LASSO, however, are not symmetric: this is likely a consequence

of instability in the selection path given the very poor conditioning induced by having the

same variables present twice (due to the symmetry of the connectivity submatrix). We assess

the correlation of the canonical directions both in the training data and on the held-out data.

These correlations are given in Table 4.1. While out-of-sample performance is modest, the

correlations are nonetheless significantly different from 0 with p < .05 when evaluated with

a t-test as in cor.test. Note that because the correlations are being considered in held-out

data, this inferential approach is reasonable, whereas testing the in-sample performance in

this manner would not be appropriate.

Figure 4.5: First and second estimated canonical directions associated with y in ABCD data
for LASSO and nuclear norm regularized CCA.

We may observe that the general pattern of results for both LASSO and nuclear norm

regularized CCA are quite similar. This appears to be a consequence of the cross-validation

procedure choosing a very small value of λ for both methods. In Figures 4.7 and 4.8, we

plot the singular values associated with the directions for X . We can observe that the
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LASSO In-Sample
β1 β2

γ1 0.447 0.017
γ2 0.033 0.444

LASSO Out-Of-Sample
β1 β2

γ1 0.079 0.002
γ2 -0.019 0.067

Nuclear Norm In-Sample
β1 β2

γ1 0.445 0.017
γ2 0.0029 0.444

Nuclear Norm Out-Of-Sample
β1 β2

γ1 0.078 0.003
γ2 -0.020 0.066

Table 4.1: Correlation of canonical variates in training and test data using LASSO and
nuclear norm regularized CCA.
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Figure 4.6: First and second estimated canonical directions associated with X in ABCD
data for LASSO and nuclear norm regularized CCA.

nuclear norm penalty only truncates a few of the trailing singular values, which results in a

matrix that is still approximately full rank. In this setting, the dimension of our problem,

even when vectorized, is appreciably smaller than the number of observations, and so it is

not terribly surprising that the optimal approach is to employ very little regularization and

instead provide estimates that are quite close to what we would obtain with no penalization.

Since the N is large in this sample, it underscores the importance of further optimizing our

algorithm so that it can be run on the entire connectivity matrix, in which case regularization

will be vital as we will be in a high-dimensional setting.

4.5 Discussion

In this work we introduced a matrix-variate formulation of CCA. Our method, matcca, ex-

ploits matrix-variate data by seeking low-rank structure in the canonical directions (when

they are considered as matrices). Using simulation studies, we demonstrated that this ap-

proach can effectively recover shared low-rank signal in a variety of settings even when the

number of observations is relatively low and the noise is non-trivial. Of particular note,

we demonstrated that our method out-performed LASSO penalized CCA, even though in

our simulation settings the shared signal is low rank and sparse. However, this is not the
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Figure 4.7: Singular values of first estimated canonical direction associated with X in ABCD
Data for LASSO and nuclear norm regularized CCA.

only kind of structure that we might seek with matrix-variate data. In the neuroimaging

setting where participant-specific networks are extracted, previous work has sought different

kinds of structure, e.g., row/column sparse in Relión et al. (2019), community-block sparse

in Kessler et al. (2022), low rank and sparse in Brzyski et al. (2020). Our framework can

be readily extended to incorporate penalties corresponding to this structure, but successful

implementation will depend heavily on the efficiency with which penalized regression can be

fit. Since optimization problems involving the penalty must be solved many, many times

(possibly hundreds of thousands of times), it is vital that these routines are fast, and so

approximate solutions or further relaxations may be necessary.

Our matrix-variate CCA formulation is really a special case of an even more general

formulation of CCA that can accommodate tensors and other increasingly complex objects.

Formally, letX, Y be random objects in two possibly distinct finite-dimensional inner product

spaces V and W , with inner products denoted by ⟨·, ·⟩V and ⟨·, ·⟩W . We can then write the

CCA objective for finding the first canonical pair as

(β1, γ1) = argmax
b,g

Corr (⟨X, b⟩V , ⟨Y, g⟩W )

s.t. Var ⟨X, b⟩V = Var ⟨Y, g⟩W = 1.
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Figure 4.8: Singular values of second estimated canonical direction associated with X in
ABCD data for LASSO and nuclear norm regularized CCA.

Subsequent canonical pairs can be found by maximizing the same objective subject to an

induced orthogonality requirement, i.e.,

β2 : Corr (⟨X, b1⟩V , ⟨X, b2⟩V ) = 0

γ2 : Corr (⟨Y, g1⟩W , ⟨Y, g2⟩W ) = 0,

and so on for later pairs. When V = Rp and W = Rq with the usual Euclidean inner

product, then we recover classical CCA. When V = Rp1×p2 and W = Rq1×q2 with the

Frobenius inner product, then we obtain matrix-variate CCA. This formulation, coupled

with Mai and Zhang (2019)’s reformulation of CCA as a constrained quadratic optimization

problem with optional penalties, provides a powerful and flexible framework for developing

CCA for complex types of data wherein penalties tailored to the structure and complexity

of the data can be exploited. While at first glance this may appear to simply be a proposal

for the expanded use of kernel CCA (Akaho, 2007), this framework is distinct in that it aims

to make the directions explicit and to enable them to be penalized.

Future work in this area includes improvements to the efficiency of our implementation

with a particular eye to the nuclear norm penalized regression approach. As currently im-

plemented, its complexity precludes its application to matrices with a large number of rows
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or columns. Improvements to initialization may also help to reduce the number of iterations

necessary to converge. As mentioned, we initialize our canonical directions based on the

SVD of the empirical cross-covariance, but this is a decomposition that treats the data as

vectors. While this is a fair choice when comparing matcca to LASSO regularized CCA, an

initialization strategy that takes into account the structure of the data may provide a better

starting point. One particular option is to initialize using a variant of SVD architected for

collections of images, such as the Population Value Decomposition method of Crainiceanu

et al. (2011).

One shortcoming of our approach to penalized CCA is that the resultant canonical variates

are no longer uncorrelated (or equivalently, the canonical directions are no longer orthogonal

with respect to the inner product induced by the covariances). This challenge is not specific

to matcca but affects LASSO regularized CCA when implemented using the approach of Mai

and Zhang (2019). This can be addressed by the introduction of an additional tuning param-

eter which will penalize non-orthogonality, allowing the analyst to trade-off (i) maximizing

correlation, (ii) satisfying the penalty, and (iii) maintaining orthogonality of the canonical

variates.
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CHAPTER 5

Conclusion and Future Directions

Motivated by the opportunity to leverage structure in order to learn about the brain, this

dissertation has presented three distinct projects with different statistical goals. First, in

Chapter 2, we used neuroscientifically-plausible structure to guide learning in a prediction

task. We proposed NetCov as a method to predict a label or score using network edge

weights and node covariates, and showed that it enjoyed attractive support recovery proper-

ties relative to competitors in simulations and that in an application, it was competitive with

other approaches while offering superior interpretability. Then, in Chapter 3, we focused on

inference for discovered structure where we introduced combootcca: a resampling-based ap-

proach for inference on the canonical directions in CCA. In simulation studies, we showed

that combootcca’s unique alignment strategy coupled with percentile-based bootstrapped

confidence intervals offers the best statistical properties of all methods considered. Finally,

in Chapter 4, we pursued estimation and developed matcca as a matrix-variate extension

of CCA in order to exploit low-rank structure. In simulation studies, matcca was very ef-

fective at recovering low-rank signals in noisy settings with relatively few observations, and

moreover it out-performed the LASSO even though the signal was sparse.

These projects reflect just a few of the opportunities to exploit structure in statistical

learning. Below, we outline several future directions inspired by this work.

Selective-Inference for Structural Learning One of the challenges with exploiting

structure in statistical learning is how to retain statistical validity in downstream tasks. Al-

though it does not appear in this dissertation, we were inspired by the overlapping group

LASSO problem at the heart of NetCov in Chapter 2 to tackle post-selective inference for

the group LASSO, and we contributed to Panigrahi et al. (2023a). Related selective infer-

ence problems emerge from Chapter 3: it is possible to reformulate the regression approach

to CCA as inference for a selected target (which may deviate from the “true” canonical

direction), and it may be possible to show that in some satisfactorily conditional sense, it

exhibits appropriate statistical properties. Another problem is the sequential and nested
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nature of the inferential procedure. For example, in Section 3.4, we conducted testing on the

canonical correlations, rejected H0 for the first three, and then performed inference on only

these canonical directions. In the extreme case where one screens potentially thousands of

canonical directions, finds a subset that seem to exhibit signal, and then performs follow-up

analyses, we can imagine that the subsequent inference will not be valid without further ad-

justment. The low rank structure that we sought in Chapter 4 poses a particularly interesting

challenge for selective-inference. The “conditional” approach to selective inference that we

deployed in Panigrahi et al. (2023a) hinges on the characterization of a tractable selection

event with non-trivial probability. When the “selection event” corresponds to the identifi-

cation of a subspace, as is the case with low rank approximations, we are confronted with

a continuous selection space, and so conditional approaches are not immediately applicable.

These are all open problems that we hope to pursue in future work.

Object-Oriented CCA The matcca approach is just one instance of a more general

approach to CCA that we outline in Section 4.5. In the spirit of Marron and Dryden (2021),

through thoughtful consideration of appropriate inner product spaces, we can conceivably

develop CCA extensions for a variety of data types. Although (weighted) networks were the

motivation for our development of matrix-variate CCA in the first place, other inner products

may be more sensible, especially for more complex networks as may be obtained from event

data. While this approach has close ties to kernel CCA (Akaho, 2007), the framework

we deployed in Chapter 4 is distinct in that we want to characterize and understand the

directions, and in particular penalize them to exploit various types of structure. Matrix-

variate CCA with the nuclear norm penalty is then just one instance of a broader class of

“Object Oriented” CCA methods which could be tailored for different types of data. Of

course, each application will require careful consideration and development of appropriate

penalties.

Multi-Scale Inference Another type of structure inherent in many datasets, including

neuroimaging, is the resolution. Although not in this thesis, we have contributed to work

(Kim et al., 2023) where we are able to test hypotheses about differential brain connectivity

at the level of the mean of a network cell and also at the level of individual edges. A

natural extension of that work in the spirit of what we have presented here would be to

develop an omnibus test that is sensitive not just to homogeneous changes in the mean, but

to heterogeneous changes, too. In the predictive setting, this could also take the form of

bi-level feature selection, which we discuss in Section 2.6
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APPENDIX A

Appendix for Chapter 2

A.1 ROC Curves

There is what might at first seem to be a surprising phenomenon present in our numerical

experiments most visible in the “5 active groups” panels of Fig. 2.5: as the magnitude of

non-zero entries of β grows, recall climbs steadily toward 1, but precision climbs and then

falls. As discussed in the text, this behavior is a consequence of parameter tuning which

selects the value of λ that minimizes prediction risk rather than support recovery. To further

understand this, we conduct a small simulation study where we explore the behavior of the

EBG variant of NetCov and the LASSO in this setting. We obtain three realizations of data

where β follows the EBG grouping scheme, there are 5 active groups, and where we set α

(the magnitude of active entries) to 0.01, 0.04, and 0.2, respectively; all other simulation

parameters were fixed per the regime of Experiment I as described in Section 2.4.1. We

fit both the LASSO and the NetCov method with the EBG grouping scheme to each of

these realizations along a λ path as described in Section 2.3.3 (note that the values of λ

along these paths for NetCov: EBG and LASSO will be distinct). For a fixed value λ̃ along

this path, we can obtain an estimated active set for both the LASSO and NetCov: EBG.

By comparing the estimated active set to the true active set, we compute both the True

Positive Rate (True Positives divided by the sum of True and False Positives) and the False

Positive Rate (False Positives divided by the sum of True and False Positives). We connect

these points to obtain six receiver operating characteristic curves for the three different levels

of signal strength times the two different models. This is depicted in Fig. A.1. Fixing α

and comparing the two fitting methods, we see that the curve corresponding to NetCov:

EBG is generally above or equal to the LASSO curve. The apparently poor precision of the

NetCov: EBG method in the high SNR regime (as may be especially evidence with 5 active

groups as seen in Fig. 2.5) may seem odd given its apparently “perfect” ROC curve, but

cross validation chooses λ̂ somewhere along the curve where the True Positive Rate is 1, but
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where the False Positive Rate is nonzero. In other words, there exists a value of λ that would

give perfect support recovery, but cross validation does not choose it. This appears to be a

symptom of tuning λ to minimize prediction error, and this leads to a too-small value of λ̂

in order to avoid bias encountered from shrinking large predictors but this comes at the cost

of selecting several inactive predictors.

Figure A.1: False positive and true positive rates along the λ path. We depict receiver
operating characteristic curves for the LASSO and NetCov: EBG model at varying levels
of signal intensity. Data is drawn according to the setting of Experiment I as described in
Section 2.4.1 with the EBG grouping scheme and 5 active groups.

A.2 Additional Neuroimaging Results

In the main text, for brevity we presented out-of-sample correlation for a subset of the pheno-

types in Fig. 2.11. In Fig. A.2, we present the out-of-sample correlations for all phenotypes.

We present the estimated coefficients for βA and βX from both NetCov (EBG grouping)

and LASSO associated with PMAT and Working Memory in Figs. A.3 and A.4. In Figs. A.5

and A.6, we depict edges selected by CPM for PMAT and Working Memory.

98



Figure A.2: Out-of-sample correlation for all phenotypes in application to human neuroimag-
ing data.
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Figure A.3: Visualization of β coefficients with PMAT as response. Coefficients from NetCov
with EBG are presented at left (βX) and on the lower triangle (βA). Coefficients from LASSO
are presented at right (βX) and on the upper triangle (βA). Solid lines depict boundaries of
the Power parcellation.
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Figure A.4: Visualization of β coefficients with Working Memory as response. Coefficients
from NetCov with EBG are presented at left (βX) and on the lower triangle (βA). Coefficients
from LASSO are presented at right (βX) and on the upper triangle (βA). Solid lines depict
boundaries of the Power parcellation.
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Figure A.5: Edges selected by CPM, colored by the sign of their association with PMAT.
Solid lines depict boundaries of the Power parcellation.
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Figure A.6: Edges selected by CPM, colored by the sign of their association with Working
Memory. Solid lines depict boundaries of the Power parcellation.
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APPENDIX B

Appendix for Chapter 3

B.1 Simulation I with Identity Covariances

We repeat the procedures for Simulations I (described in Section 3.3.2), but with identity

covariance matrices for both x and y, i.e., Σx = Ip and Σy = Iq. Results analogous to those

in Section 3.3.2, which constructed and inverted sparse precision matrices to define Σx and

Σy, are given below in Figures B.1 through B.6. In general, the results are similar, although

the challenge of covering non-zero coordinates due to conservative bias appears moderately

attenuated.

Figure B.1: Coverage rates in simulation I for p = q = 10. The horizontal line indicates
nominal 95% coverage.
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Figure B.2: Lengths of confidence intervals in simulation I for p = q = 10.

Figure B.3: Coverage rates in simulation I for p = 100, q = 10. The horizontal line indicates
nominal 95% coverage.
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Figure B.4: Lengths of confidence intervals in simulation I for p = 100, q = 10.

B.2 Simulation II with Identity Covariances

We repeat the procedures for Simulations I (described in Section 3.3.3), but with identity

covariance matrices for both x and y, i.e., Σx = Ip and Σy = Iq. Results analogous to those in

Section 3.3.3, which constructed and inverted sparse precision matrices to define Σx and Σy,

are given below in Figures B.7 through B.18. As was the case when we repeated Simulation

I with identity covariance matrices in Section B.1, the pattern of results are quite similar,

and again we observe that under-coverage of non-zero coordinates appears less severe.
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Figure B.5: Bias in simulation I: the proportion of confidence intervals that failed to cover
non-null signals that are “conservative” (the true value is greater in magnitude than any
value in the confidence interval).

Figure B.6: Power (correct rejection rates) in simulation I.
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Figure B.7: Coverage rates for first canonical directions in simulation II for p = q = 10. The
horizontal line indicates nominal 95% coverage.

Figure B.8: Coverage rates for first canonical directions in simulation II for p = 100, q = 10.
The horizontal line indicates nominal 95% coverage.
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Figure B.9: Lengths of confidence intervals for first canonical directions in simulation II for
p = q = 10.

Figure B.10: Lengths of confidence intervals for first canonical directions in simulation II for
p = 100, q = 10.
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Figure B.11: Bias in simulation II for first canonical directions: the proportion of confidence
intervals that failed to cover non-null signals that are “conservative” (the true value is greater
in magnitude than any value in the confidence interval).

Figure B.12: Power (correct rejection rates) for first canonical directions in simulation II.
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Figure B.13: Coverage rates for second canonical directions in simulation II for p = q = 10.
The horizontal line indicates nominal 95% coverage.

Figure B.14: Coverage rates for second canonical directions in simulation II for p = 100, q =
10. The horizontal line indicates nominal 95% coverage.
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Figure B.15: Lengths of confidence intervals for second canonical directions in simulation II
for p = q = 10.

Figure B.16: Lengths of confidence intervals for second canonical directions in simulation II
for p = 100, q = 10.
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Figure B.17: Bias in simulation II for second canonical directions: the proportion of confi-
dence intervals that failed to cover non-null signals that are “conservative” (the true value
is greater in magnitude than any value in the confidence interval).

Figure B.18: Power (correct rejection rates) for second canonical directions in simulation II.
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