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ABSTRACT

A classic theorem of Gabriel states that, for a finite type Dynkin diagram G, the indecom-

posable representations of any quiver orienting G are in bijection with reflecting hyperplanes

of the associated Coxeter group W . This is the starting point for a rich web of connec-

tions between the representation theory of algebras and the combinatorics and geometry of

Coxeter groups.

Recent work of Iyama, Reading, Reiten, and Thomas constructs a similar correspondence

between brick modules of the preprojective algebra ΠG for a finite type Dynkin diagram G

and a combinatorially useful partition of the hyperplanes into cones called shards. A paper

of the author, Speyer, and Thomas generalizes this beyond finite type Dynkin diagrams

by defining a class of bricks of ΠG called shard modules which correspond to shards for

arbitrary diagrams G. Although harder to understand than in the finite type case, shard

modules provide a potential categorical tool for studying infinite Coxeter groups and cluster

algebras.

In this thesis, we study how the relative position of shards affects the properties of their

associated shard modules. We generalize beyond finite type a result of Iyama, Reading,

Reiten, and Thomas showing that, when three shards meet in a certain configuration, their

shard modules fit into a short exact sequence. We pay specific attention to “stretched”

families of graphs obtained by inserting a path into a fixed diagram, describing recurring

structure in the shards as the path grows. We use this structure to generalize patterns

appearing in the shard modules for the An and Dn families of diagrams to any family of

diagrams with tails.
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CHAPTER I

Introduction

I.1: What this thesis is about, in 3 paragraphs

The principal objects of study of this thesis are quiver representations. A quiver is a

diagram with points called vertices connected by arrows1. A representation of that quiver

assigns to each arrow a simple rule for transforming data at its starting vertex into data at

its end. For example, the quiver • → • has a representation

k2 ( 3 2 )−−−→ k

which expresses the rule “given two coordinates x and y, evaluate the combination 3x+2y”.

For a special class of quiver representations called shard modules, the different ways

they can behave are classified by shards, a highly symmetrical arrangement of wedges in

space. The simplest example of this is shown in Figure 1. One can think of the arrangement of

shards as a kind of “map” of the shard modules (in the cartographic rather than mathematical

sense), with each shard the realm of a different type of behavior. The question that motivates

this thesis is: how does a shard module’s location on this map inform the details of its inner

workings, and its relationships with its neighbors? This turns out to be much easier to

understand than actual geopolitics, but it’s still pretty tough.

In this thesis, we show that whenever shards meet in a configuration like the one in

Figure 1, the modules associated to the shards on the left and right can each be obtained

by combining together the modules associated to the two shards cutting through. We also

study what the arrangement of shards looks like in the particular case of a quiver with a

long tail, such as the one shown here:

1It’s called a quiver because it’s full of arrows. It took the author 2 years to get this pun, and we point
it out now to prevent the reader experiencing a similar fate.
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Figure 1: The shard modules of the quiver • ⇄ •, and the shards they correspond to. In
a sense, the goal of this entire thesis is to generalize the patterns in this picture to more
complicated contexts.

Finally, we put these things together and show that, for a shard module with a tail, we

can make some precise statements about how the arrows along the tail behave based on

where its shard is.

I.2: The backstory: quiver representations, root systems, and shard

modules

I.2.1: Quiver representations

Let k be any field. Throughout this thesis, vector spaces are assumed to be finite-dimensional

over k unless stated otherwise. In particular, when we refer to the category of modules over

a k-algebra, we mean finite-dimensional modules.

The story behind this thesis traces back to a 1972 theorem of Gabriel [Gab72]. In turn,

that result stems from a basic theorem of linear algebra.

Theorem I.1. Let f : V → W be a linear map of vector spaces. Then we can choose bases
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for V and W such that the matrix of f with respect to those bases has the block form(
I 0

0 0

)

where I is an identity matrix.

Essentially, this theorem describes the fundamentally different ways a map between two

otherwise unrelated vector spaces can behave. In particular, it shows that, up to changes of

coordinates on either side, a map’s only distinguishing feature is its rank — the size of the

identity matrix appearing in this block form.

There are a couple of natural directions for generalizing this theorem. On one hand, we

could place extra structure on the vector spaces involved. For example, if V and W both

have inner products and we restrict ourselves to choosing orthonormal bases, the different

ways linear maps can behave are instead classified by singular value decomposition. On the

other hand, we could consider multiple maps between plain vector spaces. For example, in

a configuration such as

U
f−→ V

g−→ W

is it possible to choose bases of U , V , and W such that the maps f and g simultaneously

assume some sort of nice canonical form? Is there a statistic like rank that fully describes

such a pair of maps up to changes of coordinates?

In order to answer this question, we introduce the language of quiver representations. A

quiver Q consists of a finite set Q0 of vertices and a finite set Q1 of arrows, where each

arrow a joins two vertices, its source s(a) and its target t(a). Then a representation M

of a quiver over a field k assigns a k-vector space Mi to each vertex i and to each arrow a

assigns a linear map Ms(a) →Mt(a). In this language, a map between unrelated vector spaces

is a representation of • → •, while a chain of 2 linear maps U
f−→ V

g−→ W is a representation

of • → • → •.
Quiver representations are a useful framework for linear algebra problems because they

form a category. A morphism φ : M → N of two representations of the same quiver is a

collection of linear maps φi : Mi → Ni for each vertex i which are compatible with the maps

along the arrows. Specifically, we require that, for each arrow a, the square

Ms(a) Mt(a)

Ns(a) Nt(a)

M(a)

φs(a) φt(a)

N(a)

commutes.
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In particular, we can rephrase Theorem I.1 in this language. Choosing bases of V and W

is equivalent to choosing isomorphisms φ1 : V
∼−→ kr and φ2 : W

∼−→ ks. When we say that a

linear map f : V → W is given by a matrix A in this basis, that means that the diagram

V W

kr ks

f

φ1 φ2

A

commutes. By definition, this means that V
f−→ W and kr A−→ ks are isomorphic. So Theorem

I.1 becomes:

Theorem I.2. Every representation of • → • is isomorphic to one of the form

kr ( I 0
0 0 )−−−→ ks

for an identity matrix I.

From this perspective, there is a clear generalizing question:

Question I.3. For which quivers can we classify their representations up to isomorphism?

In any classification question like this, it’s useful to have a way of breaking objects down

into simpler pieces. For quiver representations, this is done with direct sum: given two

representations M and N of a quiver, the direct sum M ⊕N associates to each vertex i the

space Mi⊕Ni and to each arrow a the direct sum map M(a)⊕N(a), which we can view as

a block matrix
(

M(a) 0
0 N(a)

)
.

In particular, the representation

kr id−→ kr

can be viewed as a direct sum of r copies of k
1−→ k, and more generally, any representation

of the form

kr ( I 0
0 0 )−−−→ ks

can be obtained by summing copies of k
1−→ k, k → 0, and 0 → k (as summing with the

latter two pads out the matrix with zero columns and rows). This makes our classification

a little more elegant.

Theorem I.4. Every representation of • → • is isomorphic to a direct sum of copies of

k
1−→ k, k → 0, and 0→ k.
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Finally, just as it’s often useful to have an operation of decomposition, it’s useful to study

the atomic objects which can’t be decomposed further. Accordingly, we say a representation

is indecomposable if it is not isomorphic to a direct sum of two nonzero representations.

For example, the three representations appearing in Theorem I.4 are indecomposable. In the

case of k → 0 or 0 → k, this is just because the vector space k is indecomposable. In the

case of k
1−→ k, the only nontrivial direct sum that has the correct dimension at each vertex

is (k → 0) ⊕ (0 → k) ∼= k
0−→ k, and this is not isomorphic to k

1−→ k because rescaling the

domain and codomain of a zero map cannot produce a nonzero map.

On the other hand, Theorem I.4 says that every other module can be decomposed into

these three, so we arrive at one last rephrasing of the theorem we started with:

Theorem I.5. The indecomposable representations of • → •, up to isomorphism, are k
1−→ k,

k → 0, and 0→ k.

And our motivating question becomes:

Question I.6. For which quivers can we classify the indecomposable representations up to

isomorphism?

In particular, some desirable features of the theorem we started with hinge on the quiver

• → • having finitely many (namely 3) indecomposable representations. We say that Q is

of finite representation type. For example, in this perspective the all-important statistic

of rank just measures how many copies of k
1−→ k appear in the decomposition of a repre-

sentation; in general, if a quiver is of finite representation type, then any representation can

be boiled down to a finite list of nonnegative integers this way. So we’d like to know which

quivers have this property. This is the question that Gabriel’s theorem answers.

Theorem I.7 ([Gab72]). A quiver is of finite representation type if and only if, ignoring the

direction of its arrows, it is a disjoint union of the following graphs:

An · · ·

Dn · · ·

E6

E7

E8

5



Figure 2: The reflection symmetries of a cube, illustrated here by the planes they fix, generate
a Coxeter group. In fact, just the reflections over the three planes in color up front suffice
to generate the group.

This classification has two features of immediate interest. The first is that the property

of finite representation type is independent of the orientation of arrows in the quiver. The

second is this particular list of graphs, which is far from unique to this situation: they are the

simply laced finite type Dynkin diagrams, which appear in contexts ranging from Lie

theory to cluster algebras to singularities of algebraic surfaces. In particular, these diagrams

are also involved in the classification of finite Coxeter groups, whose connection to quiver

representations runs much deeper. We now introduce their side of the story.

I.2.2: Coxeter groups and root systems

A Coxeter group is essentially a group generated by reflections. By a reflection, we mean

a linear transformation s : V → V which is an involution (s2 = 1) and fixes a hyperplane

(a codimension-1 subspace) pointwise. Classic motivational examples include the symmetry

groups of regular polytopes; each symmetry group is generated by reflection symmetries,

which can be visualized in terms of the planes of symmetry they fix, as shown in Figure 2.

In general, we can define a Coxeter group using a Cartan matrix. This is an n × n

matrix A such that:

� Aii = 2 for all i;

� Aij ≤ 0 for all i ̸= j;

� Aij = 0 if and only if Aji = 0;
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� either AijAji = 4 cos2(π/m) for some integer m, or AijAji ≥ 4.

For applications to representation theory, one generally also assumes that the entries of A

are integers, in which case we say that the matrix is crystallographic.

Given a Cartan matrix, we set up a vector space V with a distinguished basis α1, . . . , αn,

and we define linear transformations s1, . . . , sn : V → V in terms of this basis by

si(αj) = αj − Aijαi

These are the reflections which generate the Coxeter group W . For example, in the case of

the symmetry group of a regular polytope, we have an underlying inner product (−,−), and
each reflection will have the form

s(x) = x− 2
(α, x)

(α, α)
α

for a vector α normal to the hyperplane of symmetry. If we look at the arrangement of all

hyperplanes of symmetry, just the reflections over hyperplanes bounding a single region of

this arrangement (as shown in Figure 2) will suffice to generate the group. In this case, we

choose the αi to be normal vectors to these hyperplanes pointing toward the region, and the

Cartan matrix is defined by

Aij = 2
(αi, αj)

(αi, αi)

In general, we can heuristically think of the Aij as tracking the angles between the generating

reflections.

Of course, our generating reflections may generate additional reflections — for any w ∈
W , wsiw

−1 is also a reflection. We keep track of all the reflections using a root system: we

declare the basis elements α1, . . . , αn to be simple roots, and then say that a root is any

element of the form wαi for w ∈ W . It turns out that any root is either a nonnegative or

nonpositive linear combination of simple roots, and in the former case we say it is a positive

root. In the case of the symmetry group of a polytope, just as the αi are normal vectors to

the hyperplanes fixed by our generating reflections, the root system consists of two normal

vectors (a positive root and a negative root) for every reflection.

The classification of finite root systems (which correspond to finite Coxeter groups) is of

particular interest. For this purpose, we typically visualize the data of a Cartan matrix in

the more compact form of a Dynkin diagram. For an n× n matrix, the Dynkin diagram

is a graph with vertices labeled 1, . . . , n. If Aij = Aji ̸= 0, we draw −Aij edges between

vertices i and j, and if Aij ̸= Aji ̸= 0 for i < j we draw a single edge and label it with the

pair (−Aij,−Aji). An example (in the case of the cube) is shown in Figure 3.
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 2 −2 0
−1 2 −1
0 −1 2


1 2 3

(2, 1)

Figure 3: On the left is a Cartan matrix for the symmetry group of the cube. On the right
is its Dynkin diagram.

With this notation, we can state the classification.

Theorem I.8 ([Hum72]). The finite crystallographic root systems are exactly those associ-

ated to the following Dynkin diagrams (and disjoint unions of them):

An · · ·

Bn · · ·
(1, 2)

Cn · · ·
(2, 1)

Dn · · ·

E6

E7

E8

F4

(1, 2)

G2

(1, 3)

If we restrict our focus to the unlabeled diagrams on this list — which correspond to

symmetric Cartan matrices — we see exactly the same list as the one appearing in Gabriel’s

theorem! In fact, not only can we use root systems to classify the quivers of finite type,

we can also use them to classify the indecomposable representations themselves, as we now

explain.

If M is a representation of a quiver Q, we define the dimension vector dimM :=

(dimMi)i∈Q0 . If we forget the orientation of Q and view it as a Dynkin diagram, its vertices

can be identified with the simple roots of the root system, and we can write the dimension

vector as
∑n

i=1(dimMi)αi. We now state the second part of Gabriel’s theorem.
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Figure 4: The three positive roots of the symmetry group of a triangle.

Theorem I.9 ([Gab72]). Suppose a quiver Q is of finite representation type. Then the map

M 7→ dimM gives a bijection between isomorphism classes of indecomposable representations

and positive roots of the root system whose Dynkin graph is the undirected graph underlying

Q.

For example, the symmetry group of a triangle has Dynkin diagram and three

positive roots normal to its three lines of symmetry, as shown in Figure 4. In the basis of

simple roots, these are α1, α2, and α1+α2 — which corresponds to the three indecomposable

representations of • → •: k → 0, 0→ k, and k
1−→ k.

At first glance, quiver representations and root systems appear unrelated. The key con-

nection between them is a powerful collection of operations called reflection functors,

which transform representations into new ones while, on the level of dimension vectors,

acting by reflections.

Thus, not only do root systems play a critical role in the classification of quiver repre-

sentations, quiver representations “categorify” root systems — all the information of a root

system is there in the dimension vectors, together with rich additional structure provided by

representation theory.

Once it’s clear how close the connection between these two fields is, a new line of inquiry

emerges: are there other structures appearing in the context of Coxeter groups which have

counterparts in the world of quiver representations, or vice versa?

I.2.3: The preprojective algebra

One way to refine this correspondence involves bringing the orientation of quivers into the

picture. As noted above, both parts of Gabriel’s theorem are independent of orientation.

Thus, if we pick a specific quiver and use its representations to study the appropriate root

system, we’re making a seemingly arbitrary choice, and the results may not tell us the full
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V1

V2

V3 V4

a

a∗

b

b∗

c∗

c

a∗a = b∗b = −cc∗ = −aa∗ − bb∗ + c∗c = 0

Figure 5: Starting from the quiver on the left, modules over the preprojective algebra are
given by representations of the form on the right obeying the relations shown.

story.

A more natural approach is to somehow consider all orientations at once. Starting with a

quiver Q, for every arrow s(a)
a−→ t(a) we add a reverse arrow t(a)

a∗−→ s(a), creating a double

quiver Q. We then define a module over the preprojective algebra or ΠQ-module to

be a representation M of the double quiver which satisfies the relation∑
arrows

i
a−→·

M(a∗)M(a) =
∑
arrows

·
a−→i

M(a)M(a∗) for each vertex i

An example of this is shown in Figure 5.

We’ll be able to say a little more about why we impose this relation in Section V.2.2.

For the moment, we note that this does unify all the different orientations we could have

chosen in the following two ways. First, the category of modules we get is independent of

the orientation we started with: starting with a different orientation merely flips some signs

in the defining relations and produces an equivalent category. We could (and will) just as

well talk about ΠG-modules for an undirected graph G. Second, if we pick any quiver Q′

obtained by orienting the arrows of Q differently and any representation M of Q′, we can

realize M as a ΠQ-module: we attach the maps of M to the appropriate arrows in the double

quiver Q, and have all the other arrows of Q act by 0. This is illustrated in Figure 6. The

resulting representation certainly satisfies the above relations, because each individual term

is 0 in this case. (However, there will be modules besides these ones, which are not tied to

a specific orientation.)

The preprojective algebra has appeared in several other contexts in which it turns out

to be the “correct” orientation-agnostic variation on the representation theory of quivers. It

was introduced as an actual algebra ΠQ by Gel’fand and Ponomarev [GP79], who showed
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k k k
1 1 ⇒ k k k

1 1

00

k k k
1 1 ⇒ k k k

1 0

10

Figure 6: A representation of any orientation of a quiver can be realized as a module over
the preprojective algebra, as shown in two examples here.

that it breaks down as a direct sum of the important class of preprojective representations

of the quiver Q. It has since been useful in category-theoretic constructions of concepts from

Lie theory. Lusztig used ΠG-modules to construct a well-behaved basis (called the “canonical

basis”) of part of the universal enveloping algebra of the Lie algebra associated to G [Lus91].

Geiß, Leclerc, and Schröer similarly used ΠG-modules to construct cluster algebras [GLS06].

The connection between Coxeter groups and quiver representations also has a parallel for

preprojective algebras. It hinges not on a classification of all indecomposable modules, but

instead an important subclass. We say that a module is a brick if any nonzero endomorphism

is invertible. Bricks are indecomposable, because any decomposable module M ⊕N admits

a noninvertible endomorphism M ⊕N →M →M ⊕N ; however, being a brick is a stronger

condition.

Just as indecomposable representations of a quiver correspond to roots of a root system,

bricks of a preprojective algebra correspond to a more refined structure on the side of Coxeter

groups called shards.

I.2.4: Shards

To define shards, it helps to switch from the discussion of root systems to a dual picture.

Recall that V is the vector space spanned by the simple roots, on which we originally defined

the action of a Coxeter group W . Then there is also an action on the dual space V ∗: letting

⟨−,−⟩ : V ∗ × V → k be the natural pairing, this action is defined by

⟨wx, v⟩ = ⟨x,w−1v⟩ w ∈ W,x ∈ V ∗, v ∈ V

Each root β ∈ V corresponds to a hyperplane β⊥ := {x ∈ V ∗ | ⟨x, β⟩ = 0} ⊂ V ∗, and just

like roots, these hyperplanes correspond to reflections. Specifically, consider the action of

the reflection wsiw
−1 on V ∗: we have

⟨wsiw−1x, v⟩ = ⟨x,wsiw−1v⟩ = ⟨x,w(w−1v − cαi)⟩ = ⟨x, v⟩ − c⟨x,wαi⟩
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for some number c depending on v, and so wsiw
−1x = x exactly when ⟨x,wαi⟩ = 0. This

shows that the hyperplane (wαi)
⊥ is the subset fixed pointwise by wsiw

−1, playing the same

role as a plane of symmetry in the polytope example. Taken together, these hyperplanes

form the reflecting hyperplane arrangement.

The shards are then defined by breaking these hyperplanes into convex cones. We

roughly outline this process here and refer the reader to Chapter III for details:

� First, let D ⊂ V ∗ be the set

D = {x ∈ V ∗ | ⟨αi, x⟩ ≥ 0, 1 ≤ i ≤ n}

This is a single region (a component of the complement of the reflecting hyperplane

arrangement), with the hyperplanes α⊥i as walls.

� Then, given any two reflecting hyperplanes, consider the collection of all reflecting hy-

perplanes which contain their intersection, which we call a rank 2 subarrangement.

This will be a symmetrical arrangement of hyperplanes meeting in a codimension-2

subspace:

� From the rank 2 subarrangement, we select the two adjacent hyperplanes which contain

the region D between them2, and which we call the fundamental hyperplanes:

� Finally, we break all of the non-fundamental hyperplanes along this codimension-2

intersection, replacing each one by half-planes on either side of the intersection:

2Such hyperplanes exist even if the subarrangement is infinite. For this, we refer to Proposition III.7 in
Chapter III and [RS11, Theorem 2.7(i) and Proposition 2.11].
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D

Figure 7: The stereographic projection of the shards of a tetrahedron’s planes of symmetry.
Note that, wherever 3 planes meet, the one furthest from the distinguished region D is
broken.

D

When we do this for every rank 2 subarrangement, most hyperplanes will be subdivided

multiple times, partitioning each one into a collection of convex cones. We refer to the

resulting cones as shards.

For example, Figure 7 illustrates how the planes of symmetry of a tetrahedron are par-

titioned into shards. To make the picture two-dimensional, we intersect the planes with a

sphere (turning them into great circles) and stereographically project them onto the plane,

obtaining circles and lines. Some planes remain intact, while the bottom circle is broken into

4 shards.

Shards were originally introduced by Nathan Reading to study the lattice structure of

weak ordering on the Coxeter group [Rea03], but they turn out to also classify bricks of

preprojective algebras. Recall that Gabriel’s Theorem uses the dimension vector of an in-

decomposable representation M to obtain a positive root, which in the dual picture we can

identify with the hyperplane (dimM)⊥. We can similarly associate shards to bricks, but

since a hyperplane has multiple shards, we need to record a little more information.

Specifically, we also need to consider the brick’s submodules. Given a module M , we

13



define the stability domain Stab(M) ⊂ V ∗ to be

Stab(M) := {θ ∈ V ∗ | ⟨θ, dimM⟩ = 0 and ⟨θ, dimN⟩ ≥ 0 for all N ↪→M}

Then there is a classification very much like Gabriel’s theorem.

Theorem I.10 ([Tho18, Theorem 6]). Suppose a quiver Q is of finite representation type.

Then the map M 7→ Stab(M) gives a bijection between isomorphism classes of bricks of the

preprojective algebra associated to Q and shards of the reflecting hyperplane arrangement

associated to the Dynkin diagram underlying Q.

I.2.5: Shard modules

To reach the context of this thesis, we turn to a further question that has been lurking in

the background of the whole discussion above: what can we say about quivers that aren’t of

finite representation type? The story here is far murkier. Most quivers have “wild” repre-

sentation categories [KJ16, Chapter 7], meaning that fully classifying their indecomposable

representations is effectively impossible3. However, there are still strong connections with

Coxeter groups. In particular, the dimension vectors of indecomposable representations need

no longer be roots — but if we limit our focus to representations which do have this property,

one consequence of a theorem of Victor Kac gives the same bijection as Gabriel’s theorem.

Theorem I.11 ([Kac80, Theorem 2]). For any symmetric Cartan matrix, any orientation

Q of its Dynkin diagram, and any root β of its root system, there is an indecomposable

representation M with dimM = β which is unique up to isomorphism.

In a recent paper with David Speyer and Hugh Thomas [DST23], we obtain a similar

result generalizing the preprojective situation. There, we likewise restrict from the class of

bricks to a class of shard modules. A shard module of a preprojective algebra is a brick

M which additionally satisfies two conditions:

� Its dimension vector dimM is a root, as we supposed in stating Kac’s theorem above.

This turns out to equate to the categorical property that Ext1(M,M) = 0.

� Its stability domain Stab(M) has dimension n−1, where n is the number of vertices of

the underlying quiver. Since the stability domain is contained in (dimM)⊥, a subspace

of dimension n− 1, this is just saying that its dimension is as large as possible.

3More specifically, for a fixed wild quiver Q, any module category over a finite-dimensional algebra A
admits a functor to the category of representations of Q which realizes A’s indecomposable modules as a
subclass of those of Q. As a result, a classification of representations of Q would enable the classification of
representations of any finite-dimensional algebra, which isn’t realistic.
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G:

str4(G):

Figure 8: An example of stretching a Dynkin diagram.

Once again, we have a correspondence.

Theorem I.12 ([DST23, Theorem 5.7]). Let A be any symmetric Cartan matrix with Dynkin

diagram G. The map M 7→ Stab(M) gives a bijection between isomorphism classes of shard

modules of the preprojective algebra of G and shards of the reflecting hyperplane arrangement

associated to G.

The hope behind realizing shards with representation theory this way is that it should

provide new tools for working with the weak ordering on Coxeter groups and cluster algebras,

both of which become dramatically more complicated outside the finite type case. But in

this thesis, we consider a more immediate question: what do these shard modules look like

up close?

I.3: The themes and structure of this thesis

By the previous theorem, we know that every shard K corresponds to a unique shard module

M(K) with K as its stability domain. The basic motivating question here is: how does the

convex geometry of K and its position within the larger arrangement of shards affect the

properties of M(K)? We’re interested both in the internal structure of M(K) (i.e., what are

the maps constituting it?) and its behavior in the category of ΠG-modules.

A specific setting we’re interested in analyzing, both as a tractable starting point and as

a natural generalization of the finite type case, is families of stretched Dynkin diagrams.

Given an arbitrary Dynkin diagram G, together with a fixed vertex j and a partition of its

neighbors into a left side and a right side, we define a stretched diagram strm(G) by replacing

j with a path of m edges, hooking its left and right ends up to j’s left and right neighbors.

This is shown in Figure 8.

To such a stretched diagram we can also associate a stretched Cartan matrix strm(A)

and root system strm(Φ). In doing this, we aim to mimic the infinite families of finite root
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systems An, Bn, Cn, and Dn shown in Theorem I.8, each of which can be obtained with this

construction.

Several other sources have studied stretching Dynkin diagrams in this way. Among

them, Richard Hepworth [Hep16] proved homological stability for families of Coxeter groups

obtained by appending a tail onto an arbitrary Dynkin diagram; Victor Reiner [Rei95] com-

puted generating functions for combinatorial statistics in any family of Coxeter groups ob-

tained through stretching; and Chen-Krause [CK11] and Hochenegger-Kalck-Ploog [HKP19]

studied relationships between categories of quiver representations (which they called, re-

spectively, “expansion” and “An-insertion”) which correspond to stretching the underlying

quiver. The special cases of An, Bn, Cn, and Dn and their behavior as n → ∞ have been

studied in too many contexts to cite; what’s special about the level of generality provided

by stretching is that it does not require the resulting Coxeter groups to be finite.

Part of the appeal of this construction in our case is that the shards and shard modules

of the An root systems are especially easy to describe. Thus, one goal is to find patterns

in the shards and shard modules of strm(G) and its preprojective algebra, persisting across

different values of m, which somehow exhibit behavior analogous to the type A family.

We now preview what’s to come in the rest of this thesis.

I.3.1: Results on root systems and shards

In Chapter II, we introduce the basic theory of Coxeter groups and root systems, starting

with finite root systems and then explaining how they motivate the infinite case.

In Chapter III, we discuss more of the motivation behind shards and formally define

them. In particular, we bring in a useful recursive formula for computing shards, which

relates the shards of a hyperplane β⊥ to the shards of siβ
⊥ for a reflection si. This will

enable arguments by induction which form the backbone of the rest of the thesis.

Chapter IV studies the operation of stretching and its interaction with shards purely

combinatorially, featuring results that originally appeared in [Dan21]. We first show how to

relate the root systems strm(Φ) for different values of m: if stretching replaces the vertex

j with vertices j0, . . . , jm, then every root β ∈ Φ has a counterpart strm(β) ∈ strm(Φ)

obtained by replacing αj with αj0 + . . . + αjm . We then proceed to our main goal of the

section, showing that for a root β ∈ Φ and sufficiently large m, the shards of strm(β)
⊥ admit

a uniform description independent of m:

Theorem I.13 (Theorem IV.13). Let β ∈ Φ be a positive root. Then there exist:

� a nonnegative integer r;

� two lists of linear forms f1, . . . , fs and g1, . . . , gt

16



such that for m sufficiently large, the shards of strm(β)
⊥ are cut out by its intersections with

the hyperplanes

fu = 0 1 ≤ u ≤ s

gu − xr − xr+1 − . . .− xv = 0 1 ≤ u ≤ t, r + 1 ≤ v ≤ m− r − 1

where xv := ⟨−, αv⟩.

In particular, this has an enumerative consequence:

Corollary I.14 (Corollary IV.20). The number of shards of strm(β)
⊥ is a linear combination

of exponential functions of m.

We draw parallels to the case of An, where the hyperplane (α1 + . . . + αn)
⊥ has 2n−1

shards.

We make particular note of the case that all of j’s neighbors are on the left, in which case

strm(G) is obtained by just appending a tail onto j. In this case we can make a stronger

statement. Suppose that the vertices of the tail are grouped into c+ 1 blocks, with the pth

block containing mp + 1 vertices for 0 ≤ p ≤ c. Let m denote the tuple (m0,m1, . . . ,mp),

and for any root β ∈ strc(Φ) define the root strm(β) by replacing αjp with the sum of the

simple roots associated to the pth block. For example, if c = 2 and m = (2, 1, 2),

strm(5αj0 + 3αj1 + 2αj2) = 5(αj0 + αj1 + αj2) + 3(αj3 + αj4) + 2(αj5 + αj6 + αj7).

In this case, we can describe the arrangement of shards quite explicitly.

Theorem I.15 (Theorem IV.25). Let β = strm(β) for some β ∈ strc(Φ). Then the shards

of β⊥ are cut out by its intersections with

� hyperplanes of the form strm(γ)
⊥, where γ⊥ likewise cuts β

⊥
, together with

� a list of hyperplanes (γr
pp′)
⊥ (to be defined in Chapter IV), indexed by 0 ≤ p ≤ p′ ≤ c

and 1 ≤ r ≤ mp, which depends only on the tuple m.

Finally, as an aside, we analyze the root poset of a stretched root system from the same

perspective. This is an ordering of positive roots where we say that β < siβ if, expressing

both roots in the basis of simple roots, applying si to β increases one of its coefficients. For

a given root β, we study the downsets ↓ strm(β), consisting of all roots below strm(β) in

this poset. Effectively, the downset encapsulates all minimal-length expressions of strm(β)

in terms of starting from a simple root and applying generating reflections. We obtain a

characterization of this downset which is uniform in m.
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Key to this characterization is the notion of a stretching class, a collection of roots in⊔
m strm(Φ) which matches a pattern. For example, starting from the diagram

1

2

3

4

5

6

there is a stretching class denoted

2
2
2

7∗ 4∗ 2
1

1

which consists of all roots, across all stretches of the root system, of the form

2α1 + 2α2 + 2α3 + 7(α40 + . . .+ α4(p−1)) + 4(α4p + . . .+ α4(m−1)) + 2α4m + α5 + α6.

In general, we specify a stretching class by allowing some consecutive subset of coefficients

along the stretched path to repeat any number of times, as with 7 and 4 here.

Theorem I.16 (Theorem IV.30). For a root β, there is a finite list of stretching classes

such that, for all sufficiently large m, the downset ↓strm(β) consists of precisely the roots of

strm(Φ) belonging to these stretching classes.

This will also have an enumerative consequence:

Corollary I.17 (Theorem IV.35). For sufficiently large m, the size of the downset ↓strm(β)
is a polynomial in m.

Again, we draw parallels to the case of An, which has n(n+ 1)/2 positive roots.

I.3.2: Results on quiver representations

In Chapter V, we move on to the representation-theoretic background. We formally introduce

the category of quiver representations and the preprojective algebra, and cite some important

homological properties of the latter. We also introduce reflection functors, operations on ΠG-

modules which are of fundamental importance to the connection with Coxeter groups, as

they act on dimension vectors by reflections.

In Chapter VI, we introduce some basic facts about bricks and stability domains and

discuss the correspondence between bricks and shards given by Theorems I.10 and I.12.

We describe the details of this correspondence for the An Dynkin diagrams, as this is an
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Figure 9: Above are the inequalities defining a shard of the A4 reflecting hyperplane ar-
rangement. Below is the corresponding shard module (with maps acting by 0 omitted). The
color-coding shows the correspondence between inequality directions and arrow directions.

important motivational example for later results: specifically, we note that each shard of

the hyperplane (α1 + . . .+ αn)
⊥ is determined by its position relative to n− 1 independent

hyperplanes, which can be specified by a list of n− 1 signs, and in the associated brick these

signs correspond to the orientations of arrows with nonzero maps. This correspondence is

illustrated in Figure 9.

We also show in this chapter that the second part of the definition of a shard module (a

stability domain of full dimension) is necessary, by exhibiting a brick whose dimension vector

is a real root but whose stability domain is too small to be a shard. This is a substantial

obstacle preventing Theorem I.12 from being as nice as it could be.

Finally, we explicitly describe all the shard modules of the preprojective algebra associ-

ated to a cycle graph, which is in some ways the nicest Dynkin diagram which isn’t finite

type. We do this by constructing a “covering functor” through which we lift modules over

the preprojective algebra of the cycle to modules over the preprojective algebra of a path —

the type A case, which is well-understood.

Chapter VII features our core result relating shard modules of any preprojective algebra

based on the relative positions of their shards, generalizing a theorem of Iyama-Reading-

Reiten-Thomas [IRRT18, Proposition 4.3] which was specific to the finite type case. In

essence, whenever a shard is sliced at one of its walls (the codimension-1 cones forming its

boundary) by two other shards, the three associated shard modules fit into a short exact

sequence. More specifically:

Theorem I.18 (Theorem VII.9). Let β be a root, let K be a shard of β⊥, and choose a wall

of the cone K. Let γ⊥1 and γ⊥2 be the fundamental hyperplanes cutting β⊥ into shards along

that wall, with γ1 and γ2 positive roots, and suppose β = c1γ1+ c2γ2. Assume without loss of

generality that K lies on the positive side of γ⊥1 . Let L1 and L2 be the shards of γ⊥1 and γ⊥2 ,

respectively, which meet K at that wall, and let M(L1), M(L2), and M(K) be the associated
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Figure 10: The configuration of shards considered in Theorem I.18, in which case there is a
short exact sequence relating M(L1), M(K), and M(L2).

shard modules. Then there is an exact sequence

0→M(L1)
⊕c1 →M(K)→M(L2)

⊕c2 → 0.

At the end of this chapter, we show that M(K) is in some sense the generic extension of

M(L2)
⊕c2 by M(L1)

⊕c1 .

Theorem I.19 (Theorem VII.17). The Aut(M(L2)
⊕c2)op × Aut(M(L1)

⊕c1)-orbit in

Ext1(M(L2)
⊕c2 ,M(L1)

⊕c1) of the short exact sequence in Theorem I.18 is Zariski-open, and

in particular dense.

This suggests an alternative way of reasoning recursively with shard modules — while

the other arguments in this thesis typically rely on inductive proofs relating β to siβ for a

generating reflection si, these theorems allow us to start with a shard module and, by picking

one of its shard’s walls, express it as a generic extension of smaller shard modules.

Finally, in Chapter VIII, we put this new recursive tool to use alongside the results on

stretching from Chapter IV, to show how the placement of a shard is reflected in its shard

module in the case of a diagram with a tail.

As before, we construct strm(G) by appending a tail of m edges to a diagram G, and for

a tuple m = (m0, . . . ,mc) we turn a root β ∈ strc(Φ) into a root strm(β) by repeating its

pth tail coefficient across a block of mp + 1 vertices. Theorem I.15 gives a description of the

shards of strm(β)
⊥ in terms of the shards of β

⊥
and a fixed list of additional hyperplanes

(γr
pp′)
⊥. Our goal in this chapter is to show one more instance of “type A behavior” in

the relationship between a shard K and shard module M(K). The full result is somewhat

technical to state in words, but we give a rough statement here along with an illustration

and a numerical consequence.
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1
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3

40 41 42

40 41 42

40 41 42

50 51 52

x41 + x42 ≥ 0
x42 ≤ 0

x41 + x42 + x50 + x51 + x52 ≥ 0
x42 + x50 + x51 + x52 ≥ 0

x51 + x52 ≤ 0
x52 ≤ 0

Figure 11: Above is a shard module with dimension vector α1 + α2 + α3 + 3(α40 + α41 +
α42)+ (α50+α51+α52). Below it are inequalities describing the position of its shard relative
to the hyperplanes (γr

pp′)
⊥ appearing in Theorem I.15. By selecting a basis of each vector

space, we can depict the module by the picture at the bottom, showing the effect of each
map on each basis element. Theorem I.20 says that the signs of the inequalities correspond
to the directions of certain arrows in this picture, as color-coded here.

Theorem I.20 (Theorem VIII.5, roughly). In the situation above, a shard module M(K)

admits a filtration whose subquotients supported on the tail can be identified with ΠAn-modules

which correspond to the signs of ⟨−, γr
pp′⟩ on K in the same fashion as in Figure 9.

We can visualize this result by using the filtration to pick a basis of the vector space

at each vertex and representing each map with arrows denoting where each basis element

is sent. In this case, the subquotients described in Theorem I.20 appear as “layers” in the

diagram. This is shown in Figure 11.

While this filtration is far from a complete description of the module’s structure, it does

have concrete consequences for the maps assigned to the arrows. For example, if we focus on

a specific arrow and look at the ranks of the maps each subquotient assigns to that arrow,

the rank of the map assigned by the full module is bounded below by their sum.
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Corollary I.21 (Corollary VIII.9). Suppose that the rth edge in the pth block joins tail

vertices jq and jq+1. Let K be a shard, and let M(K) be its shard module. Let β(jp) be the

coefficient of αjp in β. Then

rank(M(K)(jq → jq+1)) ≥
∑
p′≥p

⟨−,γr
pp′ ⟩≥0 on K

β(jp′)− β(jp′+1)

rank(M(K)(jq+1 → jq)) ≥
∑
p′≥p

⟨−,γr
pp′ ⟩≤0 on K

β(jp′)− β(jp′+1)

Finally, we briefly explain why the methods of this chapter fail to apply to the general

case of stretching (inserting a path between two portions of the graph, rather than just

tacking on a tail).

At the end of the thesis is an appendix discussing how to adapt these results to the

setting of non-symmetric Cartan matrices. All of the connections discussed above only work

as stated for symmetric Cartan matrices, because for a non-symmetric Cartan matrix the

Dynkin diagram carries the additional structure of edge labels, which have no counterpart

in the definition of quiver representations or ΠG-modules. Since part of the underlying

motivation here is to use representation theory to address questions about root systems

and related objects, this inability to incorporate a large swath of root systems (including

the Bn, Cn, F4, and G2 finite systems) is awkward. Fortunately, it has long been known

that this theory can be adapted to non-symmetric Cartan matrices by replacing quivers

with the slightly more general notion of species: a representation of a species is like a

quiver representation, but with vector spaces over different fields at different vertices. In the

appendix, we introduce the basic language of species and associated preprojective algebras,

and describe the small changes needed to make the results of this thesis work in that context.
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CHAPTER II

Coxeter Groups and Root Systems

II.1: Finite Coxeter groups

This thesis is fundamentally concerned with questions about infinite Coxeter groups. How-

ever, it will be useful to start with an introduction to the theory of finite Coxeter groups,

both to motivate the definitions in the infinite case and to introduce everything that will go

wrong once we move to the infinite setting. Our principal reference for this section’s results

is [Hum90].

II.1.1: Reflections

Let V be a real vector space with a positive definite inner product (−,−) : V × V → R.

Definition II.1. Let β ∈ V be any nonzero vector. The reflection by β is the linear

transformation sβ : V → V defined by

sβ(v) = v − 2
(v, β)

(β, β)
β

It is straightforward to check that sβ is orthogonal and fixes the points of the per-

pendicular hyperplane β⊥. Additionally, any orthogonal linear transformation that fixes a

hyperplane is of the form above.

Definition II.2. A finite Coxeter group is a finite subgroup of O(V ) generated by re-

flections.

Two classic examples motivate this — and, in their own ways, serve as building blocks

for the general theory of Coxeter groups:

� Let Dihm be the dihedral group of symmetries of an m-gon. If we consider two adjacent

planes of symmetry of the m-gon, as shown in Figure 12, and let s1 and s2 be the
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s1 s2

Figure 12: The reflections s1 and s2 generate the symmetry group of a hexagon.

reflections over them, then s1 and s2 generate the whole group, subject to the following

relations:

s21 = 1

s22 = 1

(s1s2)
m = 1

� Let Sn be the symmetric group on n letters, and let si for 1 ≤ i ≤ n − 1 be the

transposition swapping i and i + 1. These transpositions generate the group, subject

to the following relations:

s2i = 1

sisj = sjsi if |i− j| ≥ 2

sisi+1si = si+1sisi+1

Now consider the action of Sn on Rn given by permuting coordinates:

w · (x1, . . . , xn) = (xw−1(1), . . . , xw−1(n))

In this context, the transpositions act by reflections: si fixes the points of the hyper-

plane xi = xi+1 and preserves the dot product. So this action realizes Sn as a Coxeter

group.
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Figure 13: The A2 root system, which consists of 6 vectors. Reflecting γ by β produces
another vector in the system. The associated Coxeter group is Dih3, the dihedral group of
symmetries of a triangle.

II.1.2: Finite root systems

The first step towards systematically studying Coxeter groups is to consider all of their

elements which act by reflections, rather than just a set of generators. The key observation

here is that the set of vectors representing reflections is itself closed under the action of the

group:

Proposition II.3 ([Hum90, Proposition 1.2]). If W is a finite Coxeter group and w ∈ W ,

then swβ belongs to W whenever sβ does.

Thus in order to classify the different possible arrangements of reflections in a Coxeter

group, we axiomatize this closure with the notion of a root system.

Definition II.4. A finite root system is a finite set Φ of vectors called roots which satisfy

the following properties:

� For each β ∈ Φ, Φ also contains −β, but no other multiple of β.

� For any β, γ ∈ Φ, sβ(γ) ∈ Φ.

This definition is illustrated in Figure 13.

Any finite Coxeter group can be associated to a finite root system, and vice versa.

Proposition II.5 ([Hum90, Section 1.2]). (a) Given any finite root system Φ, the reflec-

tions sβ for β ∈ Φ generate a finite Coxeter group.

(b) For any finite Coxeter group W , there exists a finite root system such that W is obtained

from the construction in part (a).

It is worth noting that a Coxeter group can be associated to multiple different root

systems, because rescaling vectors does not change the reflections they induce. So a root

system contains a little more information than a Coxeter group, and for our purposes it will

be a slightly more useful notion.
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Examples.

� The dihedral group Dihm has as a root system a wheel of 2m evenly spaced unit vectors,

perpendicular to the planes of symmetry of the m-gon. Figure 13 illustrates this for

m = 3. If m is even, we can allow the roots to have two different lengths, as long as

they alternate in length around the wheel; this is illustrated for m = 6 in Figure 15.

� Under the action of the symmetric group Sn introduced above, the elements which act

by reflection are exactly the transpositions, with the transposition that swaps i and j

fixing the hyperplane xi = xj. Perpendicular to this hyperplane are the vectors ei− ej

and ej − ei, where ei denotes the ith standard basis vector. It is straightforward to

verify that acting on the vector ei − ej with an element of Sn produces another vector

of that form. Thus the vectors ei − ej for all 1 ≤ i ̸= j ≤ n form a root system for Sn.

II.1.3: Compactly describing root systems: positive and simple roots

While root systems allow us to look at the reflections in Coxeter groups without privileging

a particular generating set, having a generating set is often useful. In particular, it elimi-

nates the redundancy arising from symmetry and allows us to describe a root system more

compactly. In this section, we’ll outline a systematic way of obtaining such a generating set

for a root system Φ.

The first bit of redundancy to deal with is that every reflection is represented by two

roots, pointing in opposite directions. In order to pick out one representative from each pair,

choose a vector v ∈ V which is not orthogonal to any root of Φ. Define sets of positive

roots Φ+ and negative roots Φ− by

Φ+ := {β ∈ Φ | (v, β) > 0}

Φ− := {β ∈ Φ | (v, β) < 0}

Because we chose v to avoid pairing to 0 with any root, we have Φ = Φ+⊔Φ−, and Φ− = −Φ+.

From among the positive roots, we then pick a subset which is fundamental.

Theorem II.6 ([Hum90, Theorem 1.3]). Given a partition Φ = Φ+ ⊔ Φ− as above, there

exists a unique collection ∆ of roots such that:

(a) The roots of ∆ form a basis of span(Φ).

(b) Any root in Φ+ is a linear combination of roots from ∆ with nonnegative coefficients.

Definition II.7. The elements of ∆ in the context of Theorem II.6 are called simple roots.
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Figure 14: The root system associated to the dihedral group of a hexagon, Dih6. The
positive roots are defined to be lying on one side of the dashed line. Each positive root is a
nonnegative linear combination of the simple roots (in orange), lying in the cone that they
generate.

We now identify simple roots in our two running examples:

� For the root system of Dihm, any sequence of m consecutive roots around the wheel

can be realized as the positive roots by choosing an appropriate v. Then the simple

roots are the two roots at either end of this sequence. This is illustrated in Figure 14.

� For the root system of Sn, we choose v = (1, 2, . . . , n). Then (v, ej − ei) > 0 precisely

when j > i, which defines a set of positive roots. The simple roots are then those of

the form ei+1 − ei: we can write any positive root ej − ei as

ej − ei = (ej − ej−1) + (ej−1 − ej−2) + . . .+ (ei+1 − ei).

While different choices of vector v will lead to different definitions of positive and simple

roots, the choice ends up not mattering: any choice of positive and simple roots can be

obtained from any other through the action of the Coxeter group ([Hum90, Theorem 1.4]).

So from here on, for any given root system Φ, we will assume that we’ve fixed a particular

Φ+ and consequent ∆.

II.1.4: Generators and relations

The collection of simple roots is fundamental in two key ways. First, by definition, they

form a basis for the space spanned by the roots, and in what follows we will generally find

it helpful to express all roots in the basis of simple roots. However, they also give us a set

of generators for the Coxeter group.

Theorem II.8 ([Hum90, Theorem 1.5]). Let W be a finite Coxeter group with associated

root system Φ. Then the reflections sα for simple roots α ∈ ∆ generate W .
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We call the reflections associated to simple roots simple reflections.

The relations between these generators also admit a simple description. Because our

group is finite, for any two simple roots αi, αj ∈ ∆, the product sαi
sαj

must have finite

order, and we denote this order by mij. It turns out that these relations, together with the

fact that reflections have order 2, are enough.

Theorem II.9 ([Hum90, Theorem 1.9]). Let α1, . . . , αn be simple roots for a finite Coxeter

group W , and let mij be the order of sαi
sαj

. Then

W ∼= ⟨s1, . . . , sn | s2i = (sisj)
mij = 1, 1 ≤ i, j ≤ n⟩

In what follows, if a list of simple roots α1, . . . , αn is understood, we will write si for sαi
.

It is straightforward to read off the numbers mij from the geometry of the root system

using the following lemma.

Lemma II.10. The angle between the roots αi, αj ∈ ∆ is π − π
mij

.

Proof. Consider the subgroup Wij := ⟨si, sj⟩ ⊂ W . Note that α⊥i ∩ α⊥j is a codimension-2

subspace fixed pointwise by Wij, and so Wij acts on the 2-dimensional space V/(α⊥i ∩ α⊥j ).

However, if two reflections acting on R2 generate a finite group, it must be a dihedral group.

The product of two reflections generating Dihm has order m, so in this case Wij
∼= Dihmij

.

Now, we can get a root system for Wij as a subset of Φ, consisting of the roots associated

to reflections in Wij; these roots will be orthogonal to α⊥i ∩ α⊥j , and thus lie in span(αi, αj).

We can likewise choose a set of positive roots for Wij to be those which lie in Φ+. Because

αi and αj are simple in Φ, every positive root in Wij is expressible as a nonnegative linear

combination of αi and αj, so αi and αj are also simple roots for Wij. On the other hand, we

know what simple roots look like in Dihmij
(as shown in Figure 14) and can conclude that

the angle between them is π − π
mij

.

Corollary II.11. For αi, αj, and mij as above,

(αi, αj)

∥αi∥∥αj∥
= − cos

(
π

mij

)
.

II.1.5: Cartan matrices and Dynkin diagrams

The previous section shows that we can recover a Coxeter group and its root system from

its simple roots and the angles between them. There are two common ways of recording this

information: as a matrix, and as a decorated graph.
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Definition II.12. The Cartan matrix of a root system Φ with simple roots α1, . . . , αn is

the n× n matrix A with

Aij = 2
(αi, αj)

(αj, αj)

These matrix entries are chosen such that sj(αi) = αi − Aijαj.

For applications to representation theory, we often restrict to the case that the entries

Aij are integers. In this case, we say the root system is crystallographic. This imposes

meaningful limitations on the types of Coxeter groups we can consider.

Lemma II.13. If W admits a crystallographic Cartan matrix, then mij ∈ {2, 3, 4, 6} for all
i ̸= j.

Proof. Let θij be the angle between the simple roots αi and αj. We have

AijAji = 4
(αi, αj)

2

(αi, αi)(αj, αj)
= 4 cos2(θij)

The crystallographic assumption implies that this is an integer; on the other hand, Lemma

II.10 implies that θij has the form π − π
mij

. Together, these two conditions force mij to be

in the given set.

In what follows, we will assume root systems are crystallographic unless stated otherwise.

Examples.

� Consider Dih6, the dihedral group of a hexagon. A root system consisting of unit

vectors, as shown in Figure 14, is not crystallographic, as we have

2(α1, α2)

(α1, α1)
=

2(α1, α2)

(α2, α2)
= 2(α1, α2) = −2 cos(

π

6
) = −

√
3.

However, we can scale every other root by a factor of
√
3, producing the system shown

in Figure 15. Now (α1, α1) = 1, but (α2, α2) = 3. This is a crystallographic root

system, because we now have

2(α1, α2)

(α1, α1)
= 2(α1, α2) = 2

−3
2

= −3

2(α1, α2)

(α2, α2)
=

2

3
(α1, α2) = −1
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Figure 15: A crystallographic root system for Dih6.

This root system has the Cartan matrix(
2 −1
−3 2

)
.

� On the other hand, the root system for Sn we used above, given by αi := ei+1 − ei for

1 ≤ i ≤ n− 1, is crystallographic. If |i− j| ≥ 2, we simply have (αi, αj) = 0. On the

other hand,

2
(αi, αi+1)

(αi+1, αi+1)
= 2
−1
2

= −1.

This root system has the Cartan matrix

2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1
0 0 0 · · · −1 2


.

Ultimately, we want to connect root systems to quivers, so it will be useful to represent

these matrices by graphs.

Definition II.14. The Dynkin diagram of a root system with an n× n Cartan matrix A

is a graph with labeled edges, defined as follows:

� The vertices are 1, 2, . . . , n.
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� If Aij = Aji ̸= 0, we draw −Aij unlabeled edges between i and j.

� If Aij ̸= Aji and i < j, we draw an edge between i and j and label it with the ordered

pair (−Aij,−Aji). (In drawing Dynkin diagrams, we will orient any such edge so that

the vertex i is on the left.)

This is a less commonly used notation for Dynkin diagrams, based on the definition from

[Kac80] (for example, it differs slightly from [Hum72]). This will avoid confusion later on.

Examples.

� The root system for Dih6 in Figure 15 has Dynkin diagram

(1, 3)

� The root system for Sn has Dynkin diagram

· · ·

In addition to giving us a convenient way to represent root systems, Dynkin diagrams

enable a systematic notation for the roots themselves. By construction, the vertices of the

Dynkin diagram correspond to the simple roots. Since the simple roots form a basis of the

space spanned by the roots, every root is expressible as a unique linear combination of simple

roots. Thus we can denote a root by labeling the vertices of the Dynkin diagram with the

coefficients of this expression. If Φ is crystallographic, these labels will be integers, and by

Theorem II.6, the labels will either be entirely nonnegative or entirely nonpositive.

Example. Recall from above that the root system we chose for Sn has simple roots of the

form αi = ei+1 − ei, and any other positive root is of the form

ej − ei = (ej − ej−1) + (ej−1 − ej−2) + . . .+ (ei+1 − ei) = αj−1 + αj−2 + . . .+ αi

Representing these roots as labelings of the Dynkin diagram, they all have the form

0 · · · 0 1 · · · 1 0 · · · 0

labeling a consecutive string of vertices with 1’s.

Definition II.15. The support of a root is the subset of the vertices of the Dynkin diagram

(or the subdiagram induced by this subset) which are assigned nonzero coefficients by this

notation.
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We will take this to be our default notation for portraying roots, and in particular we

will refer to the “coefficients” of a root, meaning its coefficients in this notation. Similarly,

we may refer to applying si as reflecting at vertex i.

Example. Consider the D4 diagram

1

2
3 4

Then we can write any combination of simple roots c1α1 + c2α2 + c3α3 + c4α4 as

c1

c2

c3 c4

When we apply s3, reflecting at vertex 3, to any simple root, we get

s3(αi) = αi − Ai3α3 =

αi + α3 i = 1, 2, 4

−α3 i = 3

Thus when we apply s3 to a general linear combination as above, we get

s3(c1α1 + c2α2 + c3α3 + c4α4) = c1α1 + c2α2 + (c1 + c2 + c4 − c3)α3 + c4α4

When we view this on the diagram, we see that this reflection can be summarized as “subtract

the coefficient at vertex 3 from the sum of its neighbors.” More generally, unwinding the

definition of reflection like this implies:

Proposition II.16. Suppose vertex j of a Dynkin diagram is adjacent to vertices i1, . . . , iℓ.

For a root β, let β(i) be the αi-coefficient of β. Then

sj(β)(i) =


(∑ℓ

p=1−Aipjβ(ip)
)
− β(j) i = j

β(i) otherwise

II.1.6: Classification

With a compact notation in hand, we can state the classification of finite crystallographic

root systems.
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An · · ·

Bn · · ·
(1, 2)

Cn · · ·
(2, 1)

Dn · · ·

E6

E7

E8

F4

(1, 2)

G2

(1, 3)

Figure 16: The Dynkin diagrams of finite crystallographic root systems.

Theorem II.17 ([Hum72, Theorem 11.4]). The finite crystallographic root systems are ex-

actly those associated to the Dynkin diagrams shown in Figure 16 (and disjoint unions of

these diagrams).

The diagrams on the list in Figure 16 are often simply called the Dynkin diagrams,

but we will follow the convention of [Kac80] that any labeled graph of this kind is a Dynkin

diagram. Thus we will also talk about the Dynkin diagrams of infinite root systems once they

are introduced below. We call the diagrams in Figure 16 finite type Dynkin diagrams.

Each diagram has a number of vertices given by its subscript. In particular, the root

system we attach to the symmetric group Sn is called An−1, because there are only n − 1

simple generators.

By Lemma II.13, the only dihedral groups which admit crystallographic root systems are

Dihm for m = 2, 3, 4, 6. Dih3 has root system A2, while Dih4 has root system B2 = C2. Dih6

has root system G2. Dih2 has as its Dynkin diagram two unconnected vertices (representing

two commuting reflections); we typically denote this A1 × A1.

II.1.7: The reflecting hyperplane arrangement and its regions

Just as significant as the roots β whose reflections generate the Coxeter group are the per-

pendicular hyperplanes β⊥ fixed by these reflections, which we call reflecting hyperplanes.
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Figure 17: Once we select a base region D, its translations by the action of W are in bijection
with the elements of W . Here, s1, s2, and s3 act by reflection over the red, green, and blue
planes, respectively.

The arrangement of these hyperplanes encodes important information about the group.

Consider the region

D := {v ∈ V | (v, αi) ≥ 0 ∀αi ∈ ∆}

� For Dihn, this is a wedge enclosed by two adjacent planes of symmetry.

� For Sn with our preceding choice of simple roots, we have

D = {(v1, . . . , vn) | v1 ≤ v2 ≤ · · · ≤ vn}.

Theorem II.18 ([Hum90, Theorem 1.12]). D is a fundamental domain for the action of W

on V : every W -orbit in V contains exactly one point in D. Additionally, any point in the

interior of D has trivial stabilizer.

Corollary II.19. The map w 7→ wD gives a bijection between the Coxeter group and the

regions of the arrangement of reflecting hyperplanes.

This correspondence is illustrated in Figure 17.

II.1.8: The weak order

The distinguished set of generators of a Coxeter group allows us to analyze elements in terms

of how they can be expressed using those generators. In particular, the group admits a few

natural orderings based on how many generators it takes to express a particular element.

Definition II.20. An element w ∈ W can be written as a product of generators si1si2 · · · siℓ .
The length of w, denoted ℓ(w), is the smallest possible value of ℓ (that is, the smallest
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possible length of such an expression.) Any such expression of minimal length is a reduced

expression for w.

Definition II.21. Let w,w′ ∈ W be any two elements of a Coxeter group. We say that

w ≤ w′ in the right weak order if we can write

w′ = wsi1 · · · sik

such that

ℓ(wsi1 · · · sij) = ℓ(w) + j for all 1 ≤ j ≤ k

In other words, for w′ to be greater than w in the right weak order means we can obtain

w′ from w by multiplying on the right by a sequence of simple reflections, each of which

increases length. We can also define a left weak order using left multiplication instead,

but in what follows we’ll just use weak order to refer to right weak order.

One key property of the weak order on a finite Coxeter group is that it is a lattice: any

pair of elements w, v have a unique least upper bound or join w ∨ v and a unique greatest

lower bound or meet w ∧ v [BB05, Section 3.2].

The weak order also manifests itself geometrically in the arrangement of reflecting hyper-

planes. Specifically, we can define a poset on the regions of the arrangement which, under

the bijection from Corollary II.19, corresponds to weak order.

Definition II.22 ([Rea16b, Definition 1.13]). Given a hyperplane arrangement with a dis-

tinguished base region D, for any other region R, let S(R) be the set of hyperplanes which

separate R from D. Then the poset of regions is the partial order on regions of the

arrangement where Q ≤ R if S(Q) ⊂ S(R).

This poset has the base region as its unique minimal element, and crossing hyperplanes

away from the base region corresponds to moving up in the poset.

Theorem II.23 ([Rea16a, Theorem 3.1]). The bijection from Corollary II.19 gives an iso-

morphism between the poset of regions and the weak order.

II.2: Infinite Coxeter groups and root systems

On the path to finite Coxeter groups, we started with a group concretely generated by

reflections, attached a root system to it, and then produced a Cartan matrix, a Dynkin

diagram, and a presentation by generators and relations. The infinite setting can be built

up in reverse: we start with a group presentation, Dynkin diagram, or Cartan matrix, and
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use that information to construct an infinite root system and define an action of the group

by reflections. Our principal reference for this section is [Kac80], with some results from

[BB05].

Definition II.24. A Coxeter group of rank n is a group defined by generators and

relations of the form

⟨s1, . . . , sn | (sisj)mij = 1⟩

where:

� mii = 1 (so each generator has order 2)

� For i ̸= j, mij ∈ {2, 3, . . . ,∞}. (If mij =∞, we simply omit that relation, so sisj has

infinite order.)

In what follows, we fix a Coxeter group W with rank n and defining data mij. Our first

task is to turn this abstract definition by generators and relations into an action on a space,

mimicking the original example of reflection groups.

Definition II.25. Given the data defining a Coxeter group W as above, a Cartan matrix

for the group is an n× n matrix A such that:

� Aii = 2 for all i.

� Aij ≤ 0 for i ̸= j, with equality if and only if mij = 2.

� If 3 ≤ mij <∞, AijAji = 4 cos2(π/mij).

� If mij =∞, AijAji ≥ 4.

We attach a Dynkin diagram to a Cartan matrix in the same manner as above.

Now let V be a real vector space with basis α1, . . . , αn. Define linear maps φi : V → R
for 1 ≤ i ≤ n by φi(αj) = Aij.

Definition II.26. The simple reflections are linear transformations s1, . . . , sn : V → V

defined by

si(β) = β − φi(β)αi

Theorem II.27 ([BB05, Theorem 4.2.7]). W admits a faithful action on V through which

the generators act by simple reflections.

Definition II.28. The simple roots of a Cartan matrix are the basis vectors α1, . . . , αn,

and we denote by ∆ the set of simple roots. In general, the roots are elements of the form

wαi for w ∈ W . We call the collection of all roots the root system of A, and denote it by

Φ.
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What we call “roots”, representation-theoretic contexts such as [Kac80] often refer to as

real roots, alongside an additional set of imaginary roots. As our focus is almost entirely

on the real roots, we will assume that all roots are real unless stated otherwise.

While the theory of infinite root systems can be built up in great generality, in the context

of preprojective algebras we’ll want to impose a couple of additional conditions. As above,

we say that a Cartan matrix is crystallographic if its entries are integers. Additionally:

Definition II.29. A Cartan matrix is symmetrizable if there exist integers d1, . . . , dn such

that diAij = djAij for all i, j.

If the Cartan matrix is symmetrizable, we can define the simple reflections using a bilinear

form which will be useful later. Having fixed d1, . . . , dn, we can define a symmetric bilinear

form (−,−) : V × V → R by (αi, αj) := diAij = djAji. Then define α∨i := αi/di. We have

(α∨i , αj) = Aij, and thus can write

si(β) = β − (α∨i , β)αi.

Importantly, this pairing is preserved by the action of the group: (wβ,wγ) = (β, γ) for all

w ∈ W .

Going forward, we will assume Cartan matrices are crystallographic and symmetrizable

unless stated otherwise, and use parentheses to denote the bilinear form just defined.

Finally, just as simple roots correspond to simple reflections, all other roots correspond

to other reflections. Given β = wαi ∈ Φ, let β∨ = 2β/(β, β), so that (β∨, β) = 2. Note also

that (β, β) = (αi, αi) = 2di, so β∨ = wα∨i . Then we define

sβ(γ) := wsiw
−1(γ) = w(w−1γ − (α∨i , w

−1γ)αi) = γ − (wα∨i , γ)β = γ − (β∨, γ)β

II.2.1: The reflecting hyperplane arrangement and the weak order in the infinite

case

The fundamental difference between finite and infinite Coxeter groups is that the pairing

(−,−) may not be positive definite, and thus may not induce an inner product on the

underlying space. Indeed, a Coxeter group is finite precisely when this pairing is positive

definite [Hum90, Theorem 6.4].

This has consequences for how we define the arrangement of reflecting hyperplanes.

While, in the finite case, roots β were associated to hyperplanes β⊥ in the same space

using the inner product, to get similar geometric properties here we need to think of these

hyperplanes as lying in the dual space V ∗.
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We denote with angle brackets the natural pairing ⟨−,−⟩ : V ∗×V → R given by ⟨f, β⟩ =
f(β). Then we define the contragredient action of W on V ∗ such that ⟨wf,wβ⟩ = ⟨f, β⟩
for any w ∈ W ; equivalently, we can say wf = f ◦ w−1.

Proposition II.30. The subset of V ∗ fixed by si is precisely the hyperplane α⊥i := {x |
⟨x, αi⟩ = 0.

Proof. We have

(sif)(β) = f(siβ) = f(β − (α∨i , β)αi) = f(β)− (α∨i , β)f(αi)

This is equal to f(β) for all β if and only if f(αi) = 0.

Thus we define a reflecting hyperplane arrangement in V ∗ consisting of the hyperplanes

β⊥ for β ∈ Φ, and single out a base region D defined by

D := {x ∈ V ∗ | ⟨x, αi⟩ ≥ 0 ∀αi ∈ ∆}

This shares some properties with the arrangement in the finite case, but with one key dif-

ference: W no longer acts transitively on the regions of the arrangement. Instead, let

T =
⋃

w∈W wD be the set of all points we can reach by starting from the base region and

acting with W . We call this the Tits cone. As long as we restrict ourselves to the Tits

cone, we have results just like the finite case.

Theorem II.31. [Hum90, Theorem 5.13] D is a fundamental domain for the action of W

on T : every W -orbit in T contains exactly one point in D. Additionally, any point in the

interior of D has trivial stabilizer.

Corollary II.32. The map w 7→ wD gives a bijection between the Coxeter group and the

regions of the arrangement of reflecting hyperplanes which lie in T .

We can also define the (right) weak order on an infinite Coxeter group just as we do for

a finite one, and it has the same relationship to the regions of the Tits cone as in Theorem

II.23. However, it’s no longer a lattice: unlike a finite Coxeter group, an infinite one does not

have a largest element, and it’s possible that two elements may have no mutual upper bound

at all. Nonetheless, the weak order is still a complete meet-semilattice: any collection of

elements has a greatest lower bound [BB05, Theorem 3.2.1].
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CHAPTER III

Shards

To fully detail the relationship between preprojective algebras and root systems, we will

work with a partition of the reflecting hyperplanes into cones called shards. In this section,

we briefly describe the original motivation for shards, define them, and detail a few tools

for working with them. Our most important tool will be a recursive method for calculating

shards, relating the shards of β⊥ to those of siβ
⊥ for a generating reflection si.

III.1: Motivation: lattice quotients of the weak order

Recall from the previous section that the weak order on a finite Coxeter group forms a

lattice: any pair of elements w, v have a unique least upper bound or join w ∨ v and a

unique greatest lower bound or meet w ∧ v [BB05, Section 3.2]. Shards were introduced by

Nathan Reading in order to study this structure.

One interesting aspect of the weak order as a lattice is that other combinatorially im-

portant lattices can be realized as quotient lattices. We now give an example briefly

explaining what this means.

Consider the collection Tn of unambiguous parenthesizations of n elements: expressions

such as

((•(••))•)

in which each pair of parentheses encloses exactly two things (which can either be • or another
expression in parentheses). There is a partial order on Tn called the Tamari lattice which

captures the additional structure of the associative rule: there is a cover relation x ⋖ y in

this order whenever y is obtained from x by a replacement (◦◦)◦ → ◦(◦◦). For example, we

have

(((••)•)•)⋖ ((•(••))•)⋖ (•((••)•))

The Tamari lattice is the transitive closure of this relation, which turns out to be a lattice.

There is a map τ from permutations of n− 1 letters to parenthesizations of n elements.
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We denote a permutation w by the one-line notation w(1)w(2) · · ·w(n− 1). We then define

τ with the following recursive formula:

� τ(∅) = •;

� for a sequence c with last element cℓ, let c< be the subsequence of elements < cℓ and

let c> be the subsequence of elements > cℓ. Then τ(c) = (τ(c<)τ(c>))

For example,

τ(2413) = (τ(21)τ(4))

= ((τ(∅)τ(2))(τ(∅)τ(∅)))

= ((•(τ(∅)τ(∅)))(••))

= ((•(••))(••))

The key result is that we can think of τ as a quotient map.

Proposition III.1 ([BW97, Section 9], [Rea06]). Consider Sn−1 as a lattice with the weak

order. Then τ : Sn−1 → Tn is a surjective lattice homomorphism from permutations to

parenthesizations; that is,

τ(x ∨ y) = τ(x) ∨ τ(y)

τ(x ∧ y) = τ(x) ∧ τ(y)

We can thus view the fibers of τ as a lattice congruence on the weak order: an

equivalence relation compatible with the join and meet operations. Figure 18 shows this in

a small case. The map τ : S3 → T4 sends two permutations to the same parenthesization:

we can think of those elements as being equivalent modulo a lattice congruence, and we can

view T4 as the quotient of S3 by this congruence.

What’s special about the weak order in this context is that it can also be described as

an ordering of the regions of a hyperplane arrangement (Theorem II.23). This gives us a

different way of looking at lattice congruences. A congruence will identify elements together,

and if we think of those elements as regions, this amounts to removing the walls between

regions to merge them, as illustrated in Figure 19.

One problem of interest in the lattice theory of the weak order is to classify all its lattice

congruences. Not every equivalence relation is a lattice congruence: sometimes, identifying

two elements will force us to identify a different pair elsewhere. So in the hyperplane picture,

we need to know which chunks of the reflecting hyperplanes can be removed in a way that

respects the lattice structure. These chunks are shards.
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213 132

231 312

321

(((••)•)•)

((•(••))•)

((••)(••))

(•((••)•))

(•(•(••)))

Figure 18: On the left, the weak order on the symmetric group S3; on the right, the Tamari
lattice T4 ordering parenthesizations of 4 elements. The map τ : S3 → T4 identifies the boxed
elements of S3 — thus realizing the Tamari lattice as a lattice quotient of the weak order.

Figure 19: The identification shown in Figure 18 can be viewed as removing a wall from the
reflecting hyperplane arrangement of S3, merging two adjacent regions.
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III.2: Rank 2 subsystems

The picture in Figure 19, illustrating the situation in 2 dimensions, is in some ways a template

for the definition of shards in general.

Let Φ be a root system of rank n, let V be the space containing its roots, and let α1, . . . , αn

be the simple roots.

Definition III.2. A subset R ⊂ Φ is a rank 2 subsystem if span(R) is 2-dimensional and

R = Φ ∩ span(R).

Along with roots, we’re interested in the corresponding reflecting hyperplanes, so we

make a dual definition.

Definition III.3. Given a collection of hyperplanes H in V ∗ and a subset S ⊂ H, let
⋂

S

be the intersection of the hyperplanes in S. Then S is a rank 2 subarrangement if
⋂

S

has codimension 2 in V ∗ and S = {H ∈ H | H ⊃
⋂
S}.

For any subset R ⊂ Φ, let R∗ ⊂ H be the collection of hyperplanes dual to the roots in

R. Unpacking and dualizing the definitions, it is straightforward to check:

Proposition III.4. A subset S ⊂ H is a rank 2 subarrangement if and only if it is R∗ for

a rank 2 subsystem R.

Within each rank 2 subystem, we will highlight the roots which play the same role as

simple roots do in the full system.

Definition III.5. The fundamental roots of a rank 2 subsystem R are roots γ1, γ2 such

that any positive root β ∈ Φ+ ∩R is a nonnegative linear combination of γ1 and γ2.

Exactly 2 fundamental roots exist [RS11, Theorem 2.7(i) and Proposition 2.11]. They

can be visualized as lying on the edges of the cone generated by the positive roots in R.

Again, there is also a dual picture.

Definition III.6. Let D be the base region of the full reflecting hyperplane arrangement

(as defined in Section II.2.1). Let R∗ be a rank 2 subarrangement, and let D′ be the region

of R∗ which contains D. Then the fundamental hyperplanes of R∗ are those containing

the walls of D′.

Proposition III.7. The fundamental hyperplanes of R∗ are dual to the fundamental roots

of R.
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D

Figure 20: To produce shards, for each rank 2 subarrangement, we break all the non-
fundamental hyperplanes.

Proof. By definition, D consists of the points which pair nonnegatively with the simple

roots of Φ, and thus with all the positive roots. Then D′, as the region of R∗ containing

D, consists of the points which pair nonnegatively with the positive roots in R. Say γ1 and

γ2 are the fundamental roots of R. Then a point pairs nonnegatively with γ1 and γ2 if and

only if it pairs nonnegatively with all positive roots in R, since they are nonnegative linear

combinations of γ1 and γ2. Thus D′ consists of points lying on the positive side of γ⊥1 and

γ⊥2 , and those hyperplanes contain the walls.

Given any two roots β1, β2 with β2 ̸= ±β1, we denote the unique rank 2 subsystem

containing them by R(β1, β2).

III.3: Shards

Having defined fundamental roots, we can now define shards. The basic idea is as follows: for

each rank 2 subarrangement of hyperplanes, break all non-fundamental hyperplanes along

the subarrangement’s intersection, as shown in Figure 20. For a rank 2 subsystem R, let R⊥

denote the intersection of the hyperplanes in R∗.

Definition III.8. A rank 2 subsystem R cuts a reflecting hyperplane β⊥ if β ∈ R, but β

is not fundamental in R. In this case, we say that R⊥ is a fracture of β⊥. We will also say

that a root γ or hyperplane γ⊥ cuts β⊥ if the rank 2 subsystem R(β, γ) does.

If β ∈ R, then R⊥ ⊂ β⊥. Since R⊥ is codimension 2 in the whole of V ∗, it is codimension

1 in β⊥. Thus, we can think of the collection of fractures of β⊥ as a hyperplane arrangement

within β⊥.

Definition III.9. The shard arrangement is the arrangement of fractures in β⊥. The

shards of β⊥ are the closures of the regions of this arrangement.
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D

Figure 21: The stereographic projection of the shards of the A3 root system. Note that,
wherever 3 planes meet, the one furthest from D is broken.

We recall the example of the A3 root system from the introduction: Figure 21 illustrates

the division of its reflecting hyperplanes into shards. To render this in 2 dimensions, we

intersect the arrangement with a sphere centered at the origin, then stereographically project

that sphere to the plane. Thus lines and circles both represent planes in this arrangement.

We now revisit the motivational question from the beginning of this chapter to explain

how shards answer it.

Proposition III.10 ([Rea16b, Proposition 8.3]). In any lattice congruence of the weak order

on a finite Coxeter group, equivalence classes can be identified with maximal cones of a fan

obtained by removing shards from the reflecting hyperplane arrangement.

In other words, a lattice congruence can’t just remove arbitrary walls between regions —

it must remove shards, each of which may consist of multiple walls.

We’d also like to know which collections of shards can be removed to produce a lattice

congruence. Fortunately, there is also a simply stated geometric criterion for this.

Definition III.11 ([Rea16b, Definition 7.16]). The shard digraph is a directed graph

whose vertices are shards of the reflecting hyperplane arrangement, with an edge K1 → K2

if the hyperplane containingK1 cuts the hyperplane containingK2 andK1∩K2 has dimension

n− 2.

The relations implied by this digraph tell us exactly which shards’ removal forces the

removal of other shards.
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Theorem III.12 ([Rea16b, Theorem 7.18]). There exists a congruence on the weak order

on a finite Coxeter group removing a collection K of shards if and only if, when K1 ∈ K and

K1 → K2 in the shard digraph, K2 ∈ K.

In the case of an infinite Coxeter group, where the weak order does not always admit

joins, it seems likely that a similar result should hold, but the particulars have not been

worked out yet.

III.4: Positive expressions

The material of this section originally appeared in a slightly different form in [DST23].

Shards also admit a recursive description which is highly useful for inductive arguments.

Specifically, we express a root in terms of starting from a simple root and applying simple

reflections, and examine how these reflections affect the breakdown of a hyperplane into

shards. Of key importance are the expressions which use as few reflections as possible.

Definition III.13. A positive expression for β ∈ Φ+ is an expression

β = siℓ · · · si2si1(αi0)

such that for all 1 ≤ j ≤ ℓ,

sijsij−1
· · · si1(αi0)− sij−1

· · · si1(αi0) ∈ R>0αij

In other words, at each step in evaluating the expression, a coefficient increases.

Definition III.14. The depth of a positive root β is the smallest ℓ such that there exists

an expression β = siℓ · · · si1(αi0)

Lemma III.15 ([BB05, Lemma 4.6.2]). For a simple reflection si and a root β ∈ Φ+−{αi},

depth(siβ) =


depth(β)− 1 siβ − β ∈ R<0αi

depth(β) siβ = β

depth(β) + 1 siβ − β ∈ R>0αi

Corollary III.16. An expression β = siℓ · · · si1(αi0) is of minimal length among such ex-

pressions if and only if it is a positive expression.

Proof. If the expression is positive, then by repeatedly applying Lemma III.15 we can con-

clude that depth(β) = ℓ, so ℓ is minimal. Conversely, if the expression were not positive,
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there would be some index j such that sijsij−1
· · · si1(αi0) − sij−1

· · · si1(αi0) ∈ R≤0αi. But

then Lemma III.15 implies that depth(sijsij−1
· · · si1(αi0)) < j, and so there exists a shorter

expression for β.

Corollary III.17. Any positive root has a positive expression.

Constructing such an expression means repeatedly finding a vertex of β at which we can

reflect such that the coefficient there decreases and doing so; the corollary guarantees that

we can always find such a vertex.

We now explain how to determine shards of the hyperplane β⊥ from a positive expression

for β. The first step is to understand how applying a single simple reflection affects the

fractures of a hyperplane.

Lemma III.18. Let R be a rank 2 subsystem with fundamental roots γ1 and γ2. Suppose

αi /∈ R. Then the fundamental roots of siR are siγ1 and siγ2.

Proof. First, note that si permutes the set of positive roots other than αi. In particular,

since neither R nor siR contains αi, applying si sends the positive roots of one subsystem to

those of the other. Then if β is a positive root in siR, siβ is a positive root in R, expressible

as a nonnegative linear combination c1γ1 + c2γ2; thus β = c1siγ1 + c2siγ2, a nonnegative

linear combination. This shows that siγ1 and siγ2 are fundamental in siR.

Lemma III.19 ([DST23, Corollary 2.16]). Let β be any positive root, and si a reflection

such that β ̸= αi.

� If siβ − β ∈ R>0αi, then the rank 2 subsystems which cut siβ are

{siR | R cutting β} ∪ {R(αi, β)}

� If siβ − β ∈ R<0αi, then the rank 2 subsystems which cut siβ are a subset of {siR |
R cutting β}.

Proof. Suppose that siβ − β ∈ R>0αi, and let R be any rank 2 subsystem containing β but

not αi. By Lemma III.18, R cuts β⊥ if and ony if siR cuts (siβ)
⊥.

Then note that, by assumption, siβ is a nonnegative linear combination of β and αi.

Since these are all positive roots, siβ cannot be fundamental in R(siβ, αi), so (siβ)
⊥ is cut

by that system. Putting this and the previous statement together gives the claimed list of

fractures.

Finally, suppose that siβ − β ∈ R<0αi. Then si(siβ) − siβ ∈ R>0αi By exchanging the

roles of β and siβ, we can apply the first part of the lemma to conclude that the fractures of
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β⊥ are obtained from the fractures of (siβ)
⊥ as detailed above. The lemma’s second claim

follows.

We now apply this lemma recursively to a positive expression. We can frame the result

in two ways: as a list of the subsystems which cut β⊥, or as a list of the shards.

Definition III.20. Given an expression of the form siℓ · · · si1(αi0), its truncation at sij ,

for 1 ≤ j ≤ ℓ, is the root

siℓ · · · sij+1
(αij).

Theorem III.21 ([DST23, Proposition 2.14]). Let β be a positive root with an expression

β = siℓ · · · si1(αi0). (Note that this expression need not be positive.) Then every rank 2

subsystem which cuts β⊥ is of the form R(β, τ), where τ is some truncation of the given

expression for β. If the given expression is positive, then every such R(β, τ) cuts β⊥.

Proof. We induct on ℓ, the length of the expression used. The base case ℓ = 0 is vacu-

ous: there are no truncations and αi0 , being a simple root, is fundamental in every rank 2

subsystem containing it.

So suppose we know the theorem for expressions of length ℓ−1. Let β′ = siℓ−1
· · · si1(αi0),

so that β = siℓβ
′.

Then every rank 2 subsystem which cuts (β′)⊥ is of the form R(β′, τ) for some truncation

τ of siℓ−1
· · · si1(αi0). Lemma III.19 then shows that every rank 2 subsytem which cuts β is

either of the form siℓR(β′, τ) = R(β, siℓτ), or R(β, αiℓ). Both siℓτ and αiℓ are truncations of

the expression for β, as desired.

Now suppose that the expression for β is positive, from which it follows that the expression

for β′ is also positive. Then for every truncation τ of the expression for β′, R(β′, τ) cuts β′.

We also know that siℓβ
′ − β′ ∈ R>0αiℓ , so by Lemma III.19, each subsytem siℓR(β′, τ) =

R(β, siℓτ) cuts β, as well as R(β, αiℓ). The roots siℓτ and αiℓ are all the truncations of our

expression for β.

When our expression for β is positive, there is an alternative way to choose representatives

of the cutting subsystems, which will be useful later.

Definition III.22. Given an expression of the form siℓ · · · si1(αi0), its omission at sij , for

1 ≤ j ≤ ℓ, is the root

siℓ · · · sij+1
sij−1

· · · si1(αi0)

Proposition III.23. Let β = siℓ · · · si1(αi0) be a positive expression. Let τ be the truncation

of this expression at sij , and let µ be the omission. Then

R(β, τ) = R(β, µ) = R(τ, µ)
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Proof. By the definition of the reflection sij , there is a constant c such that

sijsij−1
· · · si1(αi0) = sij−1

· · · si1(αi0) + cαij

Applying siℓ · · · sij+1
to both sides then implies

β = µ+ cτ

The assumption that our expression is positive further implies that c ̸= 0. Thus all three

roots lie in the same rank 2 subsystem and no two of them are linearly dependent, from

which the result follows.

Finally, we note that although the truncations of a positive expression produce all the

rank 2 subsystems cutting a hyperplane, different truncations may induce the same rank 2

subsystem. Trivial examples come from the rank 2 root systems B2 or G2: each contains

roots of depth greater than 1, but only has one rank 2 subsystem (its entirety).

We now rephrase Theorem III.21 in terms of shards.

Definition III.24. Given a convex cone K ⊂ V ∗, define

σ+(K) = si(K ∩ {x ∈ V ∗ | ⟨x, αi⟩ ≥ 0})

σ−(K) = si(K ∩ {x ∈ V ∗ | ⟨x, αi⟩ ≤ 0})

Theorem III.25 ([DST23, Theorem 3.6]). Let β = siℓ · · · si1(αi0). Then the shards of β⊥

are precisely the cones of the form σ±iℓ · · ·σ
±
i1
(α⊥i0) which have dimension n − 1 (where the

superscript signs can be chosen independently).

Proof. We again proceed by induction on ℓ. The base case ℓ = 0 is again vacuous. So let

β′ = siℓ−1
· · · si1(αi0).

From Lemma III.19, we know that the fractures of β⊥ come from applying siℓ to the

fractures of (β′)⊥ and adding β⊥ ∩α⊥iℓ . Thus the shards of β
⊥ can be obtained from those of

(β′)⊥ by applying siℓ and then further dividing each shard with the plane α⊥iℓ . This amounts

to applying σ+
iℓ
and σ−iℓ to each shard of (β′)⊥ and taking the full-dimensional cones which

result. Describing the shards of (β′)⊥ using the induction hypothesis, we get our result.

These two theorems will be essential for our discussion of shards in the following chapters.

Example. We use this characterization of fractures to compute the shards of the An root

systems. Recall from Section II.1.5 that every root of An has the form αi,j := αi + αi+1 +
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. . . + αj for i ≤ j. A positive expression for this root is given by sjsj−1 · · · si+1(αi). The

truncations of this expression then give the roots αk,j for i < k ≤ j.

In particular, all of these roots are linearly independent. Thus the arrangement formed

by the intersections of the α⊥k,j with α⊥i,j produces 2j−i shards: the shard a point x belongs

to is determined by the signs of ⟨x, αk,j⟩ for i < k ≤ j, which are independent of each other.

(In general, the shard arrangement will be more complicated than this.)

III.5: The root poset

Positive expressions for roots are closely analogous to reduced expressions for elements in

the Coxeter group — both are expressions using a minimal number of generators. Reduced

expressions for a group element w correspond to saturated chains from 1 to w in the weak

order — ascending such a chain corresponds to iteratively multiplying by generators such

that the expression obtained at each step is reduced. Similarly, it’s interesting to consider

an ordering of the set of positive roots in which saturated chains correspond to positive

expressions.

Definition III.26. The root poset is a partial ordering of Φ+ in which γ ≤ β if β =

siℓ · · · si1(γ) such that depth(sij · · · si1(γ)) = depth(γ) + j for all 1 ≤ j ≤ ℓ.

It follows from Lemma III.15 that the cover relations in this poset are of the form β⋖siβ,

where siβ − β ∈ R>0αi.

Example. Figure 22 shows the root poset of the A3 root system. There are 4 different

positive expressions for the root α1+α2+α3, which correspond to the 4 different paths from

the top down to the bottom of the poset:

s3s2(α1) = s3s2(α2) = s1s3(α2) = s1s2(α3)

We note that there are two different structures called the “root poset”. A more commonly

used definition [Arm09, Definition 5.1.1] defines γ ≤ β if β − γ is a nonnegative linear

combination of simple roots. If γ ≤ β in our root poset, then that is also the case in this

other root poset, but the two are rarely equivalent. We will not consider this other poset

relation in this thesis.
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Figure 22: The root poset of A3. Each cover is labeled with the simple reflection that induces
it.
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CHAPTER IV

Uniformity of Stretched Root Systems, Root Posets,

and Shards

The material of this chapter originally appeared in [Dan21].

In this chapter, we study the operation of stretching a Dynkin diagram G to obtain a

new diagram strm(G) by replacing a vertex with a path of m+1 vertices. Alongside this, we

get an operation of stretching on roots: if β is a root of the root system of G, then strm(β) is

a root of the root system of strm(G), obtained by repeating the coefficient at the stretched

vertex along all vertices of the resulting path.

Here we show three patterns which apply to the whole family of diagrams strm(G) and

roots strm(β). First, we show that the depth of the root strm(β) is linear in m. Secondly,

we give a description of the shards of strm(β)
⊥ for all sufficiently large m. (In the case that

we are appending a tail to the graph, rather than inserting a path in the middle, the shards

are much simpler, and we work out this case in more explicit detail.) Finally, we describe

all the roots which lie below strm(β) in the root poset for sufficiently large m.

In [Dan21], these properties were referred to as “stability”, inspired by the similar ter-

minology in representation stability, but as this thesis features a different, unrelated notion

also called stability, we instead refer to this chapter’s phenomena as “uniformity”. We’re

pretty sure no one has ever used this term for anything else.

IV.1: Stretching diagrams

Definition IV.1. Let G be a Dynkin diagram, j a vertex of G, and Lj ⊔ Rj a partition of

the neighbors of j into two subsets. We call j an elastic vertex, Lj and Rj its left and

right neighbors respectively, and the tuple (j, Lj, Rj) elastic data.

Then the m-stretched diagram strm(G) is obtained by:

� replacing the vertex j with vertices j0, . . . , jm;
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G :

· · ·
· · ·

· · ·

· · ·

Lj

j
Rj

strm(G) :

· · ·
· · ·

· · ·
· · ·

· · ·

m+ 1 vertices

Figure 23: Above, we specify elastic data for G. Below, we illustrate the resulting family of
stretched diagrams strm(G).

� replacing the edges between j and Lj with correspondingly labeled edges between j0

and Lj;

� replacing the edges between j and Rj with correspondingly labeled edges between jm

and Rj;

� and inserting unlabeled edges between jp and jp+1 for 0 ≤ p < m.

We call the subdiagram induced by j0, . . . , jm the stretched path. This construction is

illustrated in Figure 23.

There is a natural way to attach a Cartan matrix to the stretched diagram.

Definition IV.2. Let A be a Cartan matrix for the Coxeter diagram G. Then the m-

stretched Cartan matrix, strm(A), has rows and columns indexed by the vertices of

strm(G), with

strn(A)ik =



Aik i, k /∈ {j0, . . . , jm}

Ajk (i = j0 and k ∈ Lj) or (i = jm and k ∈ Rj)

Aij (k = j0 and i ∈ Lj) or (k = jm and i ∈ Rj)

2 i = k = jp

−1 i = jp, k = jp±1

0 otherwise

If Φ is the root system associated to A, then the m-stretched root system, strm(Φ), is

the root system associated to strm(A).
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Figure 24: Stretching a root from Φ to produce a root in strm(Φ).

In what follows, assume that we have fixed a diagram G, an associated Cartan matrix A

and root system Φ, and elastic data (j, Lj, Rj) for G.

One way of relating the different stretches of a root system is to embed strm′(Φ) ↪→
strm(Φ) for m

′ < m. There is a natural way of doing this.

Definition IV.3. Let β be an integer-valued function on the vertices of G. Then strm(β)

is the function on strm(G) with value β(j) at all the vertices jp on the stretched path and

with the same values as β elsewhere. This construction is illustrated in Figure 24.

For this to give an embedding of Φ into strm(Φ), we would need to know that when β is

a root, strm(β) is as well. This turns out to be true.

Proposition IV.4. Let β ∈ Φ. Then strm(β) ∈ strm(Φ).

Proof. It will suffice to assume β is positive. We proceed by induction on depth(β). First

consider the base case that β is simple: either strm(β) is also simple, or it has value 1 on

the stretched path and 0 elsewhere, and this is straightforward to obtain by reflections of a

simple root.

Now consider any positive root β. If it is possible to reflect at a vertex other than j and

decrease the value there, obtaining a root of lesser depth β′, then we can perform the same

operation to strm(β) and get strm(β
′). By the induction hypothesis, strm(β

′) is a root, so

strm(β) is too.

Otherwise, we can reflect at j and decrease the value there to get β′ := sj(β). Then

strm(β
′) = sj0sj1 · · · sjmsjm−1 · · · sj1sj0(strm(β))

= sjmsjm−1 · · · sj0sj1 · · · sjm−1sjm(strm(β)).

By the induction hypothesis, strm(β
′) is a root, so strm(β) is too.

As an aside, we note that a reverse version of Proposition IV.4 also holds: roots with

repeated coefficients can be squished to give roots of a smaller diagram.
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Proposition IV.5. Let β be any integer-valued function on the vertices of G such that

str1(β) is a root of str1(Φ). Then β is a root of Φ.

Proof. We assume without loss of generality that str1(β) is positive. Let β̃ := str1(β), and

define roots {α̃i | i ∈ G} in str1(Φ) by

α̃i :=

αi i ̸= j

αj0 + αj1 i = j

Then β̃ is a nonnegative linear combination of these.

We proceed by induction on depth(β̃). The base case is when β̃ = α̃i, which is trivial.

Now suppose β̃ is different from these. We have (β̃∨, β̃) = 2 > 0. Thus, writing out β̃∨ as a

nonnegative linear combination of roots α̃i, at least one of the pairings (α̃i, β̃) is positive.

If (α̃i, β̃) > 0 for some i ̸= j, then si(β̃)− β̃ = −(α̃i, β̃)α̃i is a negative multiple of α̃i, and

so si(β̃) < β̃ in the root poset. We still have si(β̃)(j0) = si(β̃)(j1), and so by the induction

hypothesis there exists a root β′ ∈ Φ such that str1(β
′) = si(β̃). But then si(β

′) = β, so β

is a root.

On the other hand, if (α̃j, β̃) > 0, then sj0sj1sj0(β̃) = β̃ − (α̃j, β̃)α̃j has two coefficients

which are smaller than those of β̃, so in applying sj0sj1sj0 we must have gone down in the

root poset at least twice and up at most once, implying depth(sj0sj1sj0(β̃)) < depth(β̃). As

above, by the induction hypothesis there is some β′ ∈ Φ such that str1(β
′) = sj0sj1sj0(β̃),

and direct computation shows that sj(β
′) = β, implying β is also a root.

IV.2: Stretching and positive expressions

If we start with a positive expression for β and iterate the argument in Proposition IV.4, we

get an expression for strm(β) in terms of simple reflections applied to a simple root, but it

may no longer be a positive expression. We examine when this happens, and obtain a result

on the depth of stretched roots in the process.

Consider a positive root β such that sj(β) < β in the root poset. Let b be the coefficient at

j. Let i1, . . . , iℓ be the left neighbors of j, with coefficients a1, . . . , aℓ, and let k1, . . . , kr be the

right neighbors, with coefficients c1, . . . , cr. Let SL :=
∑

q−Ajiqaq and SR :=
∑

s−Ajkscs.

Then to assume sj(β) < β means SL + SR − b < b. In particular, at least one of SL and SR

must be less than b. The situation then splits into three cases:

(1) both SL and SR are less than b.

(2) one of SL and SR is equal to b.
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(3) one of SL and SR is greater than b.

This trichotomy classifies the different possible relationships between sj(β) and β in the root

poset.

Lemma IV.6. (1) In Case 1, strm(sj(β)) < strm(β), and

depth(strm(β)) = depth(strm(sj(β))) + (2m+ 1).

(2) In Case 2 above, strm(sj(β)) < strm(β), and

depth(strm(β)) = depth(strm(sj(β))) + (m+ 1).

(3) In Case 3, strm(sj(β)) and strm(β) are incomparable, and

depth(strm(β)) = depth(strm(sj(β))) + 1.

Proof. Suppose without loss of generality that SL < b. We know from the proof of Proposi-

tion IV.4 that

strm(sj(β)) = sj0sj1 · · · sjmsjm−1 · · · sj1sj0(strm(β))

If SL ≥ b, we instead use the expression

strm(sj(β)) = sjmsjm−1 · · · sj0sj1 · · · sjm−1sjm(strm(β))

We then check, in each case of the trichotomy, whether each of these simple reflections steps

up or down in the root poset, and use the fact that the poset is graded by depth. Let

b′ := SL+SR−b be the coefficient at j in sj(β). Then Figure 25 shows the result of applying

each reflection in turn.

(1) If SL, SR < b, then b′ = SL+SR−b is less than both. Thus at each of the 2m+1 steps in

Figure 25, a coefficient decreases. So strm(sj(β)) < strm(β) and depth(strm(sj(β))) =

depth(strm(β))− (2m+ 1).

(2) Assuming SL < b, this case happens when SR = b, in which case b′ = SL. In particular,

after we apply sjm halfway through Figure 25, we have already reached strm(sj(β)) after

m + 1 steps. At each of those steps a coefficient decreases, so strm(sj(β)) < strm(β)

and depth(strm(sj(β))) = depth(strm(β))− (m+ 1).
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a1...
aℓ

b b · · · b b
c1...
crsj0

a1...
aℓ

SL b · · · b b
c1...
crsj1

a1...
aℓ

SL SL · · · b b
c1...
crsj2

...

sjm−1
a1...
aℓ

SL SL · · · SL b
c1...
crsjm

a1...
aℓ

SL SL · · · SL b′
c1...
crsjm−1

a1...
aℓ

SL SL · · · b′ b′
c1...
crsjm−2

...

sj0
a1...
aℓ

b′ b′ · · · b′ b′
c1...
cr

Figure 25: The sequence of roots appearing at each step of the expression strm(sj(β)) =
sj0sj1 · · · sjmsjm−1 · · · sj1sj0(strm(β)).
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(3) Assuming SL < b, this case happens when SR > b, in which case b′ > SL < b.

Thus the first m + 1 steps in Figure 25 decrease coefficients, while the remaining m

increase coefficients. Thus depth(strm(sj(β))) = depth(strm(β)) − 1. In particular, if

strm(sj(β)) were comparable to strm(β), it would be covered by strm(β), but since they

differ in more than one coefficient this is not possible.

This gives us our first numerical result on stretching a root:

Theorem IV.7. For any positive root β, there exists an integer t such that depth(strm(β)) =

tm+ depth(β).

Proof. By induction on depth(β). For any simple root based away from vertex j, the

stretched root’s depth is 1 (so t = 0), while for the simple root αj it is m+ 1 (so t = 1).

Then suppose we have a cover si(β)⋖ β in the root poset, such that depth(strm(si(β)))

= t′m+ depth(si(β)). If i ̸= j, then strm(si(β))⋖ strm(β) is still a cover, and so

depth(strm(β)) = t′m+ depth(si(β)) + 1 = t′m+ depth(β).

If i = j, then Lemma IV.6 implies

depth(strm(β)) = t′m+ depth(sj(β)) + cm+ 1 = (t′ + c)m+ depth(β),

where c = 0, 1, or 2.

Definition IV.8. The depth growth rate of β is this integer t.

We end this section by looking in more detail at examples of stretching the roots in a

cover relation.

In case (1), since strm(β) and strm(sj(β)) are comparable, we can consider the interval

between them in the root poset. Figure 26 shows a cover relation exhibiting case (1), together

with the interval between their 3-stretched versions. This reveals a bit of type A behavior.

If we consider the root poset as an order relation on all roots, rather than just positive roots,

this interval is the Am root poset.

In case (2), strm(β) and strm(sj(β)) are still comparable, but now the interval between

them is just the chain forming the top half of Figure 25: each reflection in that chain is the

only one we can make while decreasing a coefficient on the stretched path.

In case (3), although strm(β) and strm(sj(β)) are incomparable, we can situate them in

a sideways version of the interval in Figure 26, accounting for the fact that reflections which

go down in the root poset in case (2) may go up in case (3). This is illustrated in Figure 27.
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4444

3444 4442

3344 3442 4422

3334 3342 3422 4222

3331 3312 3122 1222

3311 3112 1122

3111 1112

1111

Figure 26: A cover exhibiting case (1) of Lemma IV.6 and the interval between the 3-
stretched roots. Roots on the right are represented by their values on the stretched path.
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5555

5556

3555

5566

3556

3355

5666

3566

3356

3335

4666

3466

3346

3334

4466

3446

3344

4446

3444

4444

Figure 27: A cover exhibiting case (3) of Lemma IV.6 and the analog of the interval shown
in Figure 26.

In all cases, we see the effect of stretching on depth stated in Lemma IV.6.

IV.3: Shards of stretched roots

For any construction associated to roots, we can look for a uniform description of what

happens when we apply the construction to strm(β) for sufficiently large m. In the context

of this thesis, a natural such construction is the arrangement of shards of strm(β)
⊥.

Our best tool for computing shards is Theorem III.21, realizing fractures as truncations

of a positive expression. Thus we’d like to systematically write positive expressions for the

stretches strm(β). As observed in the previous section, we can almost accomplish this by

starting with a positive expression for β and replacing each instance of sj with an appropriate

sequence of reflections along the stretched path, but the resulting expression may not be
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positive.

However, we can avoid this obstruction by stretching a small amount first and then

choosing a positive expression.

Definition IV.9. Let G be a Coxeter diagram with elastic data (j, Lj, Rj) and let jp be

a vertex on the stretched path of strm0(G). Then the elastic data induced by jp for

strm0(G) is

(j0, Lj, {j1}) if p = 0

(ji, {jp−1}, {jp+1}) if 0 < p < m0

(xm0 , {jm0−1}, Rj) if p = m0

Recall that, in the previous section, we described a trichotomy of situations in which we

reflect at the elastic vertex. In particular, say that a reflection applied to a root β ∈ Φ at

the elastic vertex j is a type (2) reflection if one of the sums SL or SR is equal to β(j).

Lemma IV.10. For any positive root β, there exists some m0, a vertex jp on the stretched

path of strm0(G), and a positive expression for strm0(β) such that every reflection at the

vertex jp is type (2) with respect to the elastic data induced by jp.

We refer to such a positive expression as a type (2) expression.

Example. Consider the following diagram.

1

2

3

4

5

6

We let 4 be the elastic vertex, with its left and right neighbors on the left and right as shown.

We label the stretched diagram like so:

1

2

3

40 41 · · · 4m

5

6

Then we claim the following root β does not admit a type (2) expression:

3

3

3

7

1

1
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0
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0
s2s3s40

1
1
1

1 0
0

0
s41

1
1
1

1 1
0

0
s6s5

1
1
1

1 1
1

1
s41

1
1
1

1 2
1

1
s40s1s2s3s40

3
3
3

7 2
1

1
s41

3
3
3

7 7
1

1

Figure 28: A type (2) expression, where vertex 41 (the right center one) is the elastic vertex.
Note that whenever we reflect at vertex 41, its coefficient is equal to the sum of the coefficients
on one side.

Reflecting anywhere other than vertex 4 increases a coefficient, so any positive expression

must conclude with applying a reflection at vertex 4. Because SL = 3+ 3+ 3 > 7, the cover

s4(β)⋖ β in the root poset falls under type (3) in the above trichotomy.

But now suppose we stretch the root once, and let 41 be the new elastic vertex. Then

we claim that the expression

s41s40s1s2s3s40s41s6s5s41s3s2s40(α1)

is a type (2) expression. This is illustrated in Figure 28.

Proof of Lemma IV.10. We proceed by induction on the coefficient at j. In the base case
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β(j) = 0, choosing m0 = 0 and any positive expression works vacuously.

Now consider a root β ∈ Φ with β(j) > 0. Recall that a positive expression for a root is

equivalent to a saturated chain in the root poset from that root down to a simple root. So

begin constructing a chain down from β in the root poset. Suppose that, having reached the

root β′, we reflect at j for the first time.

Suppose first that this reflection is type (2). Using the induction hypothesis, we obtain

some stretch strm0(sj(β
′)) and a type (2) expression for this root with respect to some jp.

We now use the following lemma:

Lemma IV.11. If there exists a chain from β down to γ in the root poset for which every

reflection at the elastic vertex is type (2), then for any stretch factor m and vertex jp on the

stretched path, there is a chain from strm(β) down to strm(γ) for which every reflection at

jp is type (2).

Proof. Given the assumed chain, we can obtain a chain from strm(β) down to strm(γ) by

replacing every reflection at j with either sj0sj1 · · · sjm or sjmsjm−1 · · · sj0 , as shown in the

proof of Lemma IV.6 and the top half of Figure 25. Figure 25 also illustrates that each

reflection on the stretched path is type (2).

In this case, we can apply the lemma to our chain from β down to β′ and get a chain

from strm0(β) down to strm0(sj(β
′)) in which every reflection at jp is type (2). Splicing this

with the type (2) expression for strm0(sj(β
′)) gives us a type (2) expression for strm0(β).

Now suppose instead that the reflection sj applied to β′ is not type (2). Assume without

loss of generality that SL < β(j). Then the reflection sj0 applied to str1(β
′) is type (2). By

the induction hypothesis, there is some m0 and a type (2) expression for strm0(sj0(str1(β
′)))

with respect to some j0p. Then by the above lemma, we can turn the chain from str1(β)

down to sj0(str1(β
′)) into a chain from strm0+1(β) down to strm0(sj0(str1(β

′))), which we

can splice with a type (2) expression for strm0(sj0(str1(β
′))) to get a type (2) expression for

strm0+1(β).

Once we have a type (2) expression for strm0(β) with respect to the elastic data induced

by jp, we can get a positive expression for any strm0+m(β) = strm0+m(β) by replacing each

instance of sjp with an appropriate choice of sjp0sjp1 · · · sjpm or sjpmsjp(m−1)
· · · sjp0 , as in part

(1) of Lemma IV.6. If our expression starts with the simple root αjp , we also must replace

it with sjp0 · · · sjp(m−1)
(αjpm). In particular, the proof of Theorem IV.7 implies:

Proposition IV.12. The number of reflections at the elastic vertex in a type (2) expression

for β, plus 1 if the simple root it starts at is αj, is the depth growth rate of β.
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Thus we can write down positive expressions for stretched roots in a systematic way, and

from that describe their fractures in a systematic way.

To enable cleaner formulas and highlight the analogy with the type A root systems, we

write the roots of strm(Φ) in a different basis, still indexed by the vertices of G. We define

γi :=

αi i /∈ {j0, . . . , jm}∑p
q=0 αjq i = jp

or, inversely,

αi =

γi i /∈ {j1, . . . , jm}

γjp − γjp−1 i = jp, p ≥ 1

This choice of basis echoes the interpretation of the type A Coxeter groups as symmetric

groups, with root systems consisting of roots of the form ei+1−ei, as shown in Section II.1.3.

In particular, the simple reflections sjp should act on the γ-basis in a manner resembling

transpositions. We have

(IV.3.1) sj0(γi) =



γi + γj0 i ∈ Lj

−γj0 i = j0

γi − γj0 i = jp, p ≥ 1

γi otherwise.

For 1 ≤ p ≤ m− 1, we have

(IV.3.2) sjp(γi) =


γjp i = jp−1

γjp−1 i = jp

γi otherwise

Finally, we have

(IV.3.3) sjm(γi) =



γi + γjm − γjm−1 i ∈ Rj

γjm i = jm−1

γjm−1 i = jm

γi otherwise
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Thus, away from the ends of the path, the sjp act by transpositions on our γ-basis.

With this property in mind, we examine the fractures of strm(β)
⊥ in the γ-basis.

Theorem IV.13. Let β be a positive root with a type (2) expression. Then there exist:

� a nonnegative integer r;

� two lists of formal linear combinations f1, . . . , fs and g1, . . . , gt (where t is the depth

growth rate of β) of the following terms:

γi for i a vertex of G other than j,

γj0 , γj1 , . . . , γjr ,

γjm−r , γjm−r+1 , . . . , γjm ;

such that for m ≥ 2r, the fractures of strm(β)
⊥ are precisely its intersections with the

hyperplanes

{(fu)⊥ | 1 ≤ u ≤ s} ∪ {(gu − γjv)
⊥ | 1 ≤ u ≤ t, r + 1 ≤ v ≤ m− r − 1}.

In what follows, we say that a linear form is unsupported at a variable γjp if its coefficient

of γjp is 0. Thus, we require the forms fu and gu to be unsupported at γjp for r < p < m− r.

Example. We illustrate what this theorem states for the example introduced earlier in

this section. Consider the root str3(β):

3

3

3

7 7 7 7

1

1

Using the type (2) expression from that previous example, but replacing each instance of

s41 with an appropriate choice of s43s42s41 or s41s42s43, we get a positive expression for this

root:

(s43s42s41)s40s1s2s3s40(s41s42s43)s6s5(s43s42s41)s3s2s40(α1)

By Theorem III.21, the truncations of this expression give roots γ such that R(γ, str3(β))

cuts str3(β)
⊥. The statement of Theorem IV.13 is that these roots take two different forms.

On one side are the roots which assign the same coefficient to every vertex on the stretched
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path.

3α1 + 2α2 + 2α3 + 6α40 + 6α41 + 6α42 + 6α43 + α5 + α6

α1 + α3 + α40 + α41 + α42 + α43

α1 + α2 + α40 + α41 + α42 + α43

α1 + α2 + α3 + 3α40 + 3α41 + 3α42 + 3α43 + α5

α1 + α2 + α3 + 3α40 + 3α41 + 3α42 + 3α43 + α6

α1 + α2 + α3 + 2α40 + 2α41 + 2α42 + 2α43

α3 + α40 + α41 + α42 + α43

α2 + α40 + α41 + α42 + α43

α1 + α40 + α41 + α42 + α43

α40 + α41 + α42 + α43

When we rewrite these roots in the γ-basis, they are unsupported at γ40, γ41, and γ42. These

are the forms fu in the theorem statement:

f1 = 3γ1 + 2γ2 + 2γ3 + 6γ43 + γ5 + γ6

f2 = γ1 + γ3 + γ43

f3 = γ1 + γ2 + γ43

f4 = γ1 + γ2 + γ3 + 3γ43 + γ5

f5 = γ1 + γ2 + γ3 + 3γ43 + γ6

f6 = γ1 + γ2 + γ3 + 2γ43

f7 = γ3 + γ43

f8 = γ2 + γ43

f9 = γ1 + γ43

f10 = γ43
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The remaining roots, which aren’t constant on the stretched path, fall into three neat families.

α1 + α2 + α3 + 3α40 + 4α41 + 4α42 + 4α43 + α5 + α6

α1 + α2 + α3 + 3α40 + 3α41 + 4α42 + 4α43 + α5 + α6

α1 + α2 + α3 + 3α40 + 3α41 + 3α42 + 4α43 + α5 + α6

α1 + α2 + α3 + 3α40 + 3α41 + 3α42 + 2α43

α1 + α2 + α3 + 3α40 + 3α41 + 2α42 + 2α43

α1 + α2 + α3 + 3α40 + 2α41 + 2α42 + 2α43

α41 + α42 + α43

α42 + α43

α43

Again, once we write things in the γ-basis (and flip the signs of some roots, which doesn’t

change the hyperplanes they define), these are the roots defined using the forms gu from the

theorem statement:

g1 − γ4v = γ1 + γ2 + γ3 + 4γ43 + γ5 + γ6 − γ4v v = 0, 1, 2

g2 − γ4v = −(γ1 + γ2 + γ3 + 2γ43)− γ4v v = 0, 1, 2

g3 − γ4v = γ43 − γ4v v = 0, 1, 2

If we instead consider strm(β) for some larger m, the list of cutting roots can be described

in almost the same way — we just replace γ43 with γ4m and let v range from 0 to m− 1.

Proof of Theorem IV.13. We proceed by induction on the length of our type (2) expression.

For simple roots, the proposition is vacuously true. Now suppose that the last reflection

applied in our type (2) expression for β is si, and let β′ = siβ. Based on our above discussion

of how to obtain a reduced expression for strm(β), we have strm(β) = si strm(β
′) (if i ̸= j) or

sj0sj1 · · · sjm strm(β
′) or sjmsjm−1 · · · sj0(β′) (if i = j). Our induction hypothesis is that the

fractures of strm(β
′)⊥ admit a uniform description given by some integer r′ and linear forms

f ′u and g′u as in the theorem. Then we must show that after applying si, sj0sj1 · · · sjm , or
sjmsjm−1 · · · sj0 to strm(β

′), there exist r, {fu}, and {gu} which describe the list of fractures

of the resulting hyperplane in the same way.

First, suppose that i is a vertex off the stretched path. By Lemma III.19, the fractures

of strm(β)
⊥ are its intersections with sif

′⊥
u and si(g

′
u − γjv)

⊥, together with α⊥i .

Because each linear form f ′u is unsupported at γjp for all r′ < p < m − r′, the same is

true of sif
′
u, so we can choose fu = sif

′
u for 1 ≤ u ≤ s.
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Additionally, for 0 ≤ p ≤ m− 1, we have

si(γjp) =

γjp + γi i ∈ Lj

γjp i /∈ Lj

Thus we can set gu = sig
′
u or gu = sig

′
u − γi for 1 ≤ u ≤ t, so that si(g

′
u − γjv) = gu − γjv .

Finally, we note that we can define fs+1 = αi = γi, which is also unsupported on the

stretched path, incorporating the one additional fracture α⊥i into our description.

In particular, note that stepping from strm(β
′) to strm(β) in this way doesn’t increment

the number t of collections of fractures of the form (gu − γjv)
⊥, which is consistent with the

number of reflections at j in the original expression (and thus, by Proposition IV.12, the

depth growth rate) staying the same.

Thus it remains to show that applying sj0 · · · sjm or sjm · · · sj0 also preserves the uniform

description of the fractures.

In the former case, by repeated application of Lemma III.19, the fractures of strm(β)
⊥ are

its intersections with sj0 · · · sjmf ′
⊥
u and sj0 · · · sjm(g′u − γjv)

⊥, together with the hyperplanes

α⊥j0 = γ⊥j0

sj0(αj1)
⊥ = γ⊥j1
...

sj0sj1 · · · sjm−1(αjm)
⊥ = γ⊥jm

By combining equations IV.3.1, IV.3.2, and IV.3.3, we note that

sj0sj1 · · · sjm(γi) =



γi + γj0 i ∈ Lj

γjp+1 − γj0 i = jp, 0 ≤ p ≤ m− 1

−γj0 i = jm

γi + γjm i ∈ Rj

γi otherwise

Let fu = sj0 · · · sjmf ′u for 1 ≤ u ≤ s. Then, since f ′u is unsupported at γp for r
′ < p < m− r′,

each fu is unsupported at γp for r′ + 1 < p < m− r′ + 1. Accordingly, let r = r′ + 1.

Similarly, we can choose gu for 1 ≤ u ≤ t such that sj0 · · · sjm(g′u − γjv) = gu − γjv+1 ,

where gu is unsupported at γp for r < p < m − r. Because of our new choice of r, some

fractures defined by (gu − γjv) are no longer supported at γp for r < p < m− r and can be
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added to the list of f ’s.

Finally, let gt+1 = 0; then the additional fractures γ⊥j0 , γ
⊥
j1
, . . . γ⊥jm can either be added to

the list of f ’s or are defined by (gt+1 − γjv)
⊥ for r < v < m− r.

Altogether, this shows that the fractures of strm(β)
⊥ can be described in the manner given

in the theorem. In particular, stepping from strm(β
′) to strm(β) in this way increments the

number t of collections of fractures of the form (gu − γjv)
⊥ by 1, which is consistent with

the number of reflections at j in the original expression (and thus, by Proposition IV.12, the

depth growth rate) going up by 1 from β′ to β.

The case of applying sjm · · · sj0 is similar. The fractures of strm(β)
⊥ are its intersections

with sjm · · · sj0f ′u
⊥ and sjm · · · sj0(g′u − γjv)

⊥, together with the hyperplanes

α⊥jm = (γjm − γjm−1)
⊥

sjm(αjm−1)
⊥ = (γjm − γjm−2)

⊥

...

sjmsjm−1 · · · sj2(αj1)
⊥ = (γjm − γj0)

⊥

sjmsjm−1 · · · sj1(αj0)
⊥ = γ⊥jm

By combining equations IV.3.1, IV.3.2, and IV.3.3, we note that

sjmsjm−1 · · · sj0(γi) =



γi + γjm i ∈ Lj

−γjm i = j0

γjp−1 − γjm i = jp, 1 ≤ p ≤ m

γi + γjm − γjm−1 i ∈ Rj

γi otherwise

Let fu = sjm · · · sj0f ′u for 1 ≤ u ≤ s. Then, since f ′u is unsupported at γp for r
′ < p < m− r′,

each fu is unsupported at γp for r′ − 1 < p < m− r′ − 1. Accordingly, let r = r′ + 1.

Similarly, we can choose gu for 1 ≤ u ≤ t such that sjm · · · sj0(g′u − γjv) = gu − γjv−1 ,

where gu is unsupported at γp for r < p < m − r. Because of our new choice of r, some

fractures defined by (gu − γjv) are no longer supported at γp for r < p < m− r and can be

added to the list of f ’s.

Finally, let gt+1 = γjm ; then the remaining fractures can either be added to the list of f ’s

or are defined by (gt+1 − γjv)
⊥ for r < v < m− r.

Again, this shows that the fractures of strm(β)
⊥ can be described in the manner given

in the theorem. And again, stepping from strm(β
′) to strm(β) in this way increments the
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number t of collections of fractures of the form (gu− γjv)
⊥ by 1, which is consistent with the

depth growth rate going up by 1 from β′ to β.

Combining this result with Lemma IV.10, we draw a conclusion for arbitrary roots:

Corollary IV.14. Let β be any positive root. Then for sufficiently large n, the fractures of

strn(α)
⊥ admit a uniform description as in Theorem IV.13.

From this uniform description of shard arrangements, we can in particular consider how

the number of shards depends on the stretch factor, which emphasizes the analogy with

shards in type A. More specifically, we describe the characteristic polynomial, which is

somewhat like a q-analog of this enumeration, because why not?

Definition IV.15 ([Sta12, Section 3.7]). Let P be any poset. The Möbius function

µ : P × P → Z is recursively defined by

µ(x, x) = 1

µ(x, y) = 0 if x ̸< y

µ(x, y) = −
∑

x≤z<y

µ(x, z) if x < y

Definition IV.16 ([Ath96]). Let A be a finite collection of hyperplanes through the origin

in Rn. Let LA be the collection of subspaces obtained by intersecting subsets of these hyper-

planes, partially ordered by reverse inclusion. We include the intersection of 0 hyperplanes,

which is all of Rn and which we denote 0̂; this is the minimal element of LA. Then let µ be

the Möbius function of LA.

The characteristic polynomial of A is

χA(q) :=
∑
x∈LA

µ(0̂, x)qdim(x)

The characteristic polynomial connects back to more concrete measurements on hyper-

plane arrangements in a couple of key ways.

Lemma IV.17 ([Ath96, Theorem 1.1]). A hyperplane arrangement A in Rn has (−1)nχA(−1)
regions.

Lemma IV.18 ([Ath96, Theorem 2.2]). Let A be a hyperplane arrangement defined over

the integers. Then for q any sufficiently large prime, χA(q) is the number of points in the

complement of A over Fq.
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Thus, the question of counting shards of strm(β)
⊥ can be subsumed in calculating the

characteristic polynomial of its shard arrangement. Here, we show how it admits a descrip-

tion uniform in m.

Theorem IV.19. Suppose the positive root β has depth growth rate t. Let χm(q) be the

characteristic polynomial of the shard arrangement of strm(β). Then there exist polynomials

p1(q), . . . , pt(q) and an integer e such that

χn(q) =
t∑

k=1

pk(q)(q − k)m−e

Proof. By Lemma IV.18, to show χn(q) has the claimed form, it will suffice to show that the

point counts over Fq eventually do.

Choosing a point in the complement of the hyperplanes in Theorem IV.13 amounts to:

� choosing all the coordinates except γjr+1 , . . . , γjm−r−1 such that f1, . . . , fs are nonzero;

� plugging these coordinates into g1, . . . , gt and choosing the coordinates γjr+1 , . . . , γjm−r−1

independently, each subject to the condition that they are different from all the values

of the g’s, which excludes at most t values.

To count these points, consider the subarrangement formed by the f ’s. We stratify its

complement according to the number of distinct values assumed by the g’s. Each stratum

is built up from the hyperplanes (fu)
⊥ and (gu1 − gu2)

⊥ through complementation, union,

and intersection, and so we can repeatedly use Lemma IV.18 to conclude that the number of

points in the kth stratum over Fq is given by a polynomial pk(q) for large primes q. Then we

independently choose m− 2r variables avoiding k values, which can be done in (q − k)m−2r

ways. Combining these observations gives the claimed form for χn(q).

Corollary IV.20. Let n be the number of vertices of G. Then for sufficiently large m, the

number of shards of strm(β)
⊥ is

(−1)n−e−1
t∑

k=1

pk(−1)(k + 1)m−e

In particular, it is O((t+ 1)m).

Proof. This follows directly from Theorem IV.19 and Lemma IV.17.
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strm(G) :

· · ·
· · ·

· · ·
· · ·

m+ 1 vertices

4

Figure 29: Stretching in the case Rx = ∅. The vertices in the box form the tail, and all
other vertices form the body.

Example. In our running example of the root β given by

3

3

3

7

1

1

our type (2) expression for str1(β) included 3 reflections at the elastic vertex. Thus by

Proposition IV.12, the depth growth rate is 3. Corollary IV.20 then implies that, for m

sufficiently large that Theorem IV.13 applies, the number of shards of strm(β)
⊥ is a linear

combination of 2m, 3m, and 4m. We can work out this expression just by computing the

number of shards for 3 such values of m and solving for the coefficients, from which we

conclude that strm(β)
⊥ has

462 · 4m − 172 · 3m

shards.

This exponential growth in the number of shards can be seen as a generalization of the

behavior in type A — recall that that top root of An has 2n−1 shards. The key generalization

here is that the base of this exponential expression is linked to the depth growth rate of the

original root.

IV.4: Shards of roots with a tail

We now restrict our attention to the case that Rj = ∅ — in other words, the case in which

we append a tail to the Coxeter diagram, as illustrated in Figure 29. In this case, we can

describe shards of stretched roots more precisely.

In this context, we will refer to the stretched path of strm(G) as the tail, and the vertices

off the stretched path (not including j0) as the body. We will be classifying roots based on

which piece(s) they have nonzero coefficients in, so we make a definition:

Definition IV.21. The support of a root β is the subset of the vertices of its Coxeter

diagram where it has nonzero coefficients. Say β is supported at a vertex i if i is in β’s

support.
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When our diagram has a tail, it imposes inequalities on the roots.

Lemma IV.22. If β is any root of strm(G), then either:

(1) β is only supported on the tail (and thus can be identified with a root of the Am root

system), or

(2) the sequence of coefficients β(j0), β(j1), . . . , β(jm) is nonincreasing.

Proof. We proceed by induction on depth. The base case consists of the simple roots, for

which the proposition is clear one way or the other.

Now suppose β′ is a root satisfying the proposition, and β = si(β
′) has a greater coefficient

at i. If β′ is in case (1) and i is in the tail, then β is also in case (1). If β′ is in case (1) but i

is in the body, then β′ must be supported at j0 in order for β to have greater depth. Since β′

can be identified with a root of Am, its coefficients on the tail (and thus also those of β) must

consist of some number of 1’s followed by some number of 0’s, so they are nonincreasing.

Now suppose β′ is in case (2). If i is in the body, nothing changes on the tail and the

proposition is also true of β. If i = j0, β differs from β′ only in having a larger coefficient at

x0, and the lemma holds. Finally, suppose i = jp for p ≥ 1. Then we have

β′(jp+1) ≥ β′(jp) ≥ β′(jp−1)

and so

β(jp) = β′(jp+1) + β′(jp−1)− β′(jp) ≤ β′(jp+1) = β(jp+1)

and

β(jp) = β′(jp−1) + β′(jp+1)− β′(jp) ≥ β′(jp−1) = β(jp−1).

Because we’ll be able to obtain much more explicit results on shards in this case, we

can work in slightly greater generality: rather than only considering roots with constant

coefficient on the entire stretched path, we can allow them to have multiple blocks of repeated

coefficients.

To that end, fix a stretch factor c, and let β be a root of strc(Φ). Then let m =

(m0, . . . ,mc) be any tuple of nonnegative integers, and let m := m0+ . . .+mc+ c. We define

strm(β) to be the root of strm(Φ) obtained by stretching β at each vertex on the tail, by a

factor of mp at vertex jp. See Figure 30.

Definition IV.23. Given m as above, a root β of strm(Φ) is blocky if it has the form

strm(β). It is strictly blocky if all coefficients of β on the tail of strc(Φ) are distinct.
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1 3
1
1

5 3 2

β

1 3
1
1

5 5 5 3 3 2 2 2

strm(β)

Figure 30: An instance of stretching a root at multiple points on the tail. Here c = 2
and m = (2, 1, 2). The resulting root is strictly blocky for this choice of m, because the
coefficients 5, 3, and 2 are all distinct.

1 3
1
1

5 3 2

β

1 3
1
1

5 3 2 0 0 0 0 0

ι7(β)

Figure 31: The operation ι7 embeds str2(Φ) into str7(Φ) by padding the tail with zeroes.
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1 3
1
1

5 3 2 0 0 0 0 0

reflect at vertices 3,4,5,6,7

1 3
1
1

5 3 2 2 2 2 2 2

reflect at vertices 2,3,4

1 3
1
1

5 3 3 3 3 2 2 2

reflect at vertices 1,2

1 3
1
1

5 5 5 3 3 2 2 2

Figure 32: The sequence of reflections described in Lemma IV.24. At each step, we reflect
at the boxed vertices from left to right.

Let qp := m0+ . . .+mp+p for 0 ≤ p ≤ c. Additionally, define q−1 = −1. Note that jqp is

the last of the block of vertices obtained from stretching the pth vertex of strc(G). In what

follows, we refer to the simple reflections sj,p := sjp and simple roots αj,p := αjp to avoid

triply nesting subscripts.

Lemma IV.24.

strm(β) = (sj,q0sj,q0−1 · · · sj,1)(sj,q1sj,q1−1 · · · sj,2) · · · (sj,qcsj,qc−1 · · · sj,c+1)(ιm(β))

Additionally, if strm(β) is strictly blocky, then applying these reflections increases a coefficient

at each step. In particular, if we replace ιm(β) with one of its positive expressions (which we

can identify with a positive expression for β), we get a positive expression for strm(β).

Proof. Both statements follow from direct calculation. The procedure of applying these

reflections is illustrated in Figure 32.

Theorem IV.25. Let β = strm(β) for some β ∈ strc(Φ). The rank 2 subsystems which cut

β⊥ are R(β, γ), where γ belongs to one of the following sets:

� roots of the form strm(γ), where γ cuts β
⊥
.
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� some subset of the roots of the form

γr
pp′ := αj,qp−1+r+1 + αj,qp−1+r+2 + . . .+ αj,qp′

for 0 ≤ p ≤ p′ ≤ c, 1 ≤ r ≤ mp. If β is strictly blocky, all of these roots work.

This classification of fractures is illustrated in Figures 33 and 34, for the example of the

root introduced in Figure 30.

Proof. Lemma IV.24 shows that β admits the expression

strm(β) = (sj,q0sj,q0−1 · · · sj,1)(sj,q1sj,q1−1 · · · sj,2) · · · (sj,qcsj,qc−1 · · · sj,c+1)(ιm(β))

We can obtain a list including all the γ for which R(β, γ) cuts β⊥ by replacing ιm(β)

with a positive expression for β and truncating the full expression, by Theorem III.21. The

two different bullet points in the statement of the corollary come from whether we truncate

within the positive expression for ιm(β) or in the portion shown in Lemma IV.24.

In the first case, having chosen a particular reflection in the positive expression for β,

let γ be the truncation there, so that γ cuts β. Then by Lemma IV.24, truncating the

expression for β at the corresponding point produces the root strm(γ) = γ. The fundamental

roots of R(β, γ) are obtained by stretching the fundamental roots of R(β, γ), so β⊥ is not a

fundamental hyperplane and is cut.

The second case considers a truncation of the form

strm(β) = (sj,q0sj,q0−1 · · · sj,1)(sj,q1sj,q1−1 · · · sj,2) · · · sj,qp′sj,qp′−1 · · · sj,q+1(αj,q)

for any 0 ≤ p′ ≤ c and p′+1 ≤ q ≤ qp′ . Let p be the smallest index such that q ≤ qp+(p′−p);
note that our constraints on q force 0 ≤ p ≤ p′. Then let r = q − (qp−1 + p′ − (p − 1)). By

assumption, qp−1 + (p′ − (p − 1)) < q ≤ qp + (p′ − p), so 0 < r ≤ mp. Then we claim that

this truncation is equal to γr
pp′ .

We can verify this by carefully working through the blocks of reflections defining the

truncation. In this argument, we will be working entirely with reflections and roots supported

on the tail, where the roots are quite simple. Every such root has the form

αj,x + αj,x+1 + . . .+ αj,y.

Applying sj,x−1 or sj,y+1 to this root adds αj,x−1 or αj,y+1, respectively, while applying sj,x

or sj,y removes αj,x or αj,y respectively. All other simple reflections have no effect.
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1 2
1
0

3 3 3 2 2 1 1 1

0 1
1
0

2 2 2 1 1 1 1 1

1 1
0
0

1 1 1 1 1 1 1 1

0 0
0
0

0 0 0 0 0 1 1 1

0 1
0
0

1 1 1 1 1 1 1 1

0 0
0
0

1 1 1 1 1 1 1 1

0 1
0
0

1 1 1 1 1 0 0 0

0 0
0
0

1 1 1 1 1 0 0 0

1 1
0
0

1 1 1 0 0 0 0 0

0 1
0
0

1 1 1 0 0 0 0 0

0 0
0
0

1 1 1 0 0 0 0 0

Figure 33: The first part of the list of roots produced by Theorem IV.25, where β is the root

appearing in Figure 30. These are obtained by stretching the roots cutting β
⊥
.
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0 0
0
0

0 1 1 0 0 0 0 0

0 0
0
0

0 0 1 0 0 0 0 0

0 0
0
0

0 1 1 1 1 0 0 0

0 0
0
0

0 0 1 1 1 0 0 0

0 0
0
0

0 0 0 0 1 0 0 0

0 0
0
0

0 1 1 1 1 1 1 1

0 0
0
0

0 0 1 1 1 1 1 1

0 0
0
0

0 0 0 0 1 1 1 1

0 0
0
0

0 0 0 0 0 0 1 1

0 0
0
0

0 0 0 0 0 0 0 1

Figure 34: The second part of the list of roots produced by Theorem IV.25, where β is the
root appearing in Figure 30. These are the roots which do not arise from stretching, which
are supported only on the tail; the support of each is bolded. This list depends only on the
tuple of stretch factors m.
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With these rules in mind, we first compute

sj,qp′sj,qp′−1 · · · sj,q+1(αj,q) = αj,q + αj,q+1 + . . .+ αj,qp′
.

Then, we apply the block of reflections sj,qp′−1
sj,qp′−1−1 · · · sj,p′ . If q > qp′−1 + 1, then these

reflections are all too far to the left have an effect. On the other hand, if p′ < q ≤ qp′−1 + 1,

these reflections have no effect until we apply sq−1, producing αj,q−1 + . . .+ αj,qp′
, at which

point they continue to have no effect.

Similarly, we then apply the block of reflections sj,qp′−2
sj,qp′−2−1 · · · sj,p′−1. If q − 1 >

qp′−2 + 1 (in particular, if q > qp′−1 + 1), the reflections are all too far to the left to have an

effect. But if q − 1 ≤ qp′−2 + 1 (that is, q ≤ qp′−2 + 2), the reflection sq−2 will add αj,q−2 to

our root and then the others will have no effect.

In general, when we apply our ath block of reflections, we check whether q ≤ qp′−a + a.

If it is not, we know that all remaining reflections are too far to the left to have any effect.

If it is, then applying that ath block will augment the intermediate root obtained thus far

by adding support at one more vertex on its left end. If p is the smallest index such that

q ≤ qp + (p′ − p), then we will perform (p′ − p) such augmentations. The result is

αj,q−(p′−p) + αj,q−(p′−p)+1 + . . .+ αj,qp′
.

which is exactly γr
pp′ for the chosen values of p, p′, and r.

IV.5: Downsets in stretched root posets

We conclude this section by returning to the general case of stretching (allowing Rj ̸= ∅
again) and descibing how stretching affects a different structure: the root poset. Although

the material of this section isn’t directly relevant to the discussion of shards or representation

theory elsewhere in this thesis, it is still a window into how stretching affects root systems

and positive expressions.

Again, an underlying goal here is to find analogs of the behavior of the type A root posets

in the general setting of stretching. Usually, the root system strm(Φ) will be infinite, so in

order to carve out finite pieces of interest, we consider downsets defined by stretched roots.

Definition IV.26. For a positive root β, the downset generated by β is

↓β := {γ ∈ Φ+ | γ ≤ β}

In the An root poset, there is a unique maximal root α1 + . . .+ αn, which can be viewed
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as strn−1(α1), the stretch of the unique positive root of A1. The rest of the root poset is then

the downset generated by this root. Accordingly, for general root systems with elastic data,

we consider downsets ↓strm(β). We’ll prove the following result:

Theorem IV.27. Let β be a positive root. Then there is a polynomial p(m) such that

# ↓strm(β) = p(m)

for sufficiently large m.

We’ll do this by constructing a single, finitely specified structure which describes ↓strm(β)
for all sufficiently large m.

Example. Consider the Dn root systems. Each of these also has a unique maximal root,

given by stretching the maximal root β for D4:

1

1
2 · · · 2 1

Thus the entire root poset for Dn is of the form ↓strn−4(β).
The roots of Dn for any n fit a finite list of patterns. For example, anything of the form

1

1
2 · · · 2 1 · · · 1 1

is a root. We can compactly describe the roots of this form with the notation

1

1
2∗ 1∗ 1

using an asterisk on a coefficient to mean that it can repeat any nonzero number of times.

(We distinguish the rightmost vertex because it is not part of the stretched path.) Then we

can write down a list of expressions like this which describe the roots of every Dn, show in

Figure 35.

In general, however, describing downsets is not quite as simple as allowing values to

repeat freely on the stretched path. For example, the downset of the top root in Figure 36

contains roots of the form on the left but not those of the form on the right, as suggested by

Figure 27.

Thus, to describe downsets using patterns as in Figure 35, we need our patterns to allow

for some values at the ends of the stretched path to not repeat.
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1

1
2∗ 1

1

1
2∗ 1∗ 0/1

0/1

0/1
1∗ 0/1

0/1

0/1
1∗ 0∗ 0

0

0
0∗ 1∗ 0/1

0

0
0∗ 1

0

0
0∗ 1∗ 0∗ 0

1

0
0∗ 0

0

1
0∗ 0

Figure 35: The roots of Dn are precisely the combinations of simple roots which fit these
patterns.

1
1
1

5 · · · 5
3

3

in downset not in downset

1
1
1

3 · · · 3 4
3

3

1
1
1

3 · · · 3 4 4
3

3

Figure 36: The downset of the top root contains roots of the form on the left, but not those
of the form on the right.

Definition IV.28. Let β be a integer-valued function on the vertices of some stretch of

G, together with a marking of some consecutive vertices on the stretched path by asterisks,

subject to the constraint that no adjacent asterisked values are the same.

Then the stretching class determined by β consists of all functions in
⊔

m Rstrm(G) which

assume the non-asterisked values at the prescribed places, and which assume the asterisked

values along the stretched path in the prescribed order, each repeated any nonzero number

of times.

Note that Propositions IV.4 and IV.5 imply that if one element of a stretching class is a

root, they all are, so we can also think of stretching classes as subsets of
⊔

m strm(Φ).

As we denote individual roots by Greek letters, we denote stretching classes by barred

Greek letters, such as β. We denote the set of roots in β defined on a specific stretch

strm(G) by β[m]. We emphasize that, despite this name and notation, stretching classes are

not equivalence classes, since they can intersect nontrivially.

Example Start with D4 and let β be the stretching class
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3
3
3

9 9∗ 7∗ 2∗
1

1

class left neighbor

left endpoint

internal vertex

right endpoint

class right neighbors

Figure 37: An example of the terminology we use with stretching classes.

1

1
2∗ 1∗ 1

Then β[3] consists of 3 roots for str3(D4) = D7:

1

1
2 1 1 1 1

1

1
2 2 1 1 1

1

1
2 2 2 1 1

In what follows we will consider how applying a reflection to a root affects the stretching

classes it belongs to. To do this, we need to distinguish whether this reflection is happening

on or off the path of repeatable values marked by asterisks, or at the path’s ends.

We will freely talk about the vertices and coefficients of a stretching class, by which we

mean the vertices and coefficients in the defining notation. In this language, we define the

left endpoint of a stretching class to be the leftmost vertex with an asterisk, and define

the right endpoint to be the rightmost such vertex. The internal vertices will be the

other vertices with asterisks. The class left neighbors will be the neighbors to the left of

the left endpoint, and we define the class right neighbors similarly. (Note that these may

differ from Lj and Rj, since in general not every vertex on the stretched path will have an

asterisk. If the set of class left/right neighbors is not Lj/Rj, it will consist of a single other

vertex on the path.) We illustrate these terms in Figure 37.

We may also talk about reflecting at a vertex of a stretching class, which amounts to

applying that reflection to the defining notation as if it were an ordinary root on strm(G),

ignoring the asterisks.
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(1)
1
1
1

3∗ 4
3

3

1
1
1

3∗ 4
1

3

(2)
8
6
6

20∗ 23∗ 12∗
6

6

8
6
6

20∗ 9∗ 12∗
6

6

(3)
1
3
3

7∗
1

3

1
3
3

7∗ 4∗
1

3

(4)

2
2
2

9∗ 11∗
6

5

2
2
2

8∗ 11∗
6

5
2
2
2

6∗ 5∗ 8∗
5

5

2
2
2

6∗ 5∗ 7
5

5

Figure 38: The four operations we can perform on stretching classes which correspond to
reflections on their roots.

Finally, let jℓ be the left endpoint and let i1, . . . , ik be the class left neighbors. Then the

weighted left sum of β is
∑

q−Ajℓiqβ(iq). Note that if jℓ = j0, this is the quantity SL

from section IV.2, and otherwise it is β(jℓ−1). We likewise define the weighted right sum.

Now fix a positive root β. We iteratively construct a directed graph P whose vertices

represent stretching classes which, for sufficiently large m, describe ↓ strm(β). First, define

a stretching class β∗ by placing an asterisk on the value of β at j, so that β∗ consists of the

stretches of β. We make β∗ a vertex of P .

Then in each step of constructing P , for each of its vertices γ, we add arrows γ → γ′,

where γ′ can be obtained from γ by the following operations:

(1) Reflect at a vertex without an asterisk, such that its coefficient decreases.

(2) Reflect at an internal vertex, such that its coefficient decreases.

(3) If the weighted left (right) sum is less than the coefficient of the left (right) endpoint,

insert that sum with an asterisk as the new left (right) endpoint.

(4) If there is more than one vertex with an asterisk, reflect at the left/right endpoint such

that the coefficient there decreases. If the new coefficient on the left/right endpoint is

greater than or equal to the asterisked coefficient next to it, remove the asterisk from

the left/right endpoint.

Figure 38 shows examples of these operations.
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In each case, we don’t add the arrow if the operation results in a negative coefficient.

This allows for the construction of P to eventually stop, and we now show this happens.

Lemma IV.29. P is finite and acyclic.

Proof. We track the following tuple of numbers associated to a stretching class in lexico-

graphic order, from most to least significant:

� The sum of the weighted left and right sums.

� The sum of the coefficients at the left and right endpoints.

� The sum of all the coefficients.

We check that the operations used to define P can only decrease this tuple.

(1,2) Operations 1 and 2 don’t lengthen the diagram, and they decrease one of the coeffi-

cients. Then either the first quantity decreases, or the first two stay the same while

the third decreases.

(3) This operation leaves the class left/right neighbors untouched, but decreases the coef-

ficient at either the left or right endpoint, so it keeps the first quantity the same while

decreasing the second.

(4) If the reflected coefficient on the left endpoint is greater than or equal to the asterisked

coefficient next to it, then it must also be less than the weighted left sum, or else the

reflection would not have decreased it. By removing the left endpoint’s asterisk, we

make it the sole class left neighbor, and so we have decreased the weighted left sum.

On the other hand, if we don’t remove the left endpoint’s asterisk, then the sum of

the weighted left and right sums stays the same while the sum of the left and right

endpoints’ coefficients decreases.

Thus P has no oriented cycles and (since we require every vertex to have all nonnegative

coefficients) no infinite paths. Since each vertex has only finitely many arrows emanating

from it, we also know P is finite.

Now we show the main result of this section.

Theorem IV.30. Let the graph P be constructed from a root β as above. Let m0 be the

smallest value such that every stretching class in P with a single asterisk has an element

defined on strm0(G). Then for m ≥ m0 + 1,

↓strm(β) =
⋃
γ∈P

γ[m]
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We present each direction of containment as a separate lemma.

Lemma IV.31. Let β, P,m0 be as above, and m ≥ m0 + 1. Then

↓strm(β) ⊂
⋃
γ∈P

γ[m]

Proof. Certainly strm(β) is in the latter set, because the first element we added to P in

defining it was the stretching class consisting of all strm(β). We then show that, for any

cover relation δ′ ⋖ δ in the root poset, if δ ∈
⋃

γ∈P γ[m], then so is δ′. Let δ be a stretching

class in P which contains δ. We claim that δ′ belongs either to a stretching class obtained

by applying to δ one of the operations used to define P , or to δ itself.

We proceed by cases. Say that a coefficient of δ is repeatable if it is represented by an

asterisked vertex in δ, and say that a repeatable coefficient is alone if it is the only coefficient

of δ represented by that vertex (i.e., both of its neighbors in δ are different).

(0) If δ′ is obtained from δ by reflecting at a repeatable coefficient which is not alone, and

it is not the furthest left or furthest right repeatable coefficient, then the reflection

there changes the quantities of repeated coefficients but not which ones appear:

· · · a b b · · ·

· · · a a b · · ·

Thus δ′ is also in δ.

(1) If δ′ is obtained from δ by reflecting at a non-repeatable coefficient, then δ′ belongs to

a stretching class obtained by applying operation 1 above.

(2) If we reflect at an alone coefficient other than the furthest left or furthest right repeat-

able coefficient, then δ′ lies in the stretching class obtained by applying operation 2

above.

(3) If we reflect at the furthest left or furthest right repeatable coefficient and it is not

alone, then δ′ lies in the stretching class obtained by applying operation 3.

(4) If we reflect at the furthest left or furthest right repeatable coefficent and it is alone,

then because m ≥ m0 + 1, δ must have more than one coefficient with an asterisk.

Then δ′ lies in the stretching class obtained by applying operation 4.
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Lemma IV.32. Let β, P be as above. Then⋃
γ∈P

γ[m] ⊂↓strm(β)

In particular, this second containment is true for all m.

Proof. We know that strm(β) is the sole member of β∗[m], and it is in ↓ strm(β). Then we

will show that, for each arrow γ → δ of P and δ ∈ δ[m], there is some γ ∈ γ such that δ ≤ γ.

We check this for each of the four operations:

(1) If δ is obtained from γ by a reflection at a non-asterisked vertex, then any root in δ

is obtained from one in γ with the same amount of each asterisked coefficient, just by

performing that reflection.

(2) Suppose δ is obtained from γ by a reflection at an internal vertex where δ has coefficient

b, and let δ ∈ δ[m]. If b is alone in δ, then reflecting there will bring us up to a root

in γ. Otherwise, we know that some neighbor of b∗ in δ must have a coefficient b′ > b,

or else b could not be smaller than the value of γ at the same vertex. By repeatedly

reflecting at the instances of b which neighbor instances of b′, we decrease the number

of repetitions of b while moving up in the root poset:

· · · b b′ b′ b′ · · ·

· · · b b b′ b′ · · ·

· · · b b b b′ · · ·

Thus we reduce to the case that b is alone.

(3) Suppose that δ is obtained from γ by inserting the weighted (without loss of generality)

left sum, which we call b, as the new left endpoint, and let δ ∈ δ[m]. As in case (2), if

b is alone on the left end of the stretched path, reflecting there moves back up to an

element of γ, while if b is not alone, the next coefficient to the right on the path will

be larger, and we can move up the root poset to a case where b is alone.
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(4) Suppose that δ is obtained from γ by reflecting at the (without loss of generality) left

endpoint, resulting in the value b. Let a be the weighted left sum, and let c be the

asterisked coefficient immediately to the right of b.

If c ≤ b, then by the definition of operation (4), b has no asterisk, so any δ ∈ δ[m]

has only one instance of b preceding c. Reflecting there returns us to a root in γ. If

c > b, b may appear multiple times in δ; however, since c > b, we can apply the same

reasoning as in cases (2) and (3) to move up the root poset to an element of δ[m] with

only one instance of b, whereupon we fall back to the previous reasoning.

Thus we can describe ↓ strm(β) for sufficiently large m. We now derive the consequence

that # ↓strm(β) is eventually polynomial in m.

First, we must deal with redundancy between our stretching classes, since they may

nontrivally overlap. Fortunately, those overlaps are also stretching classes.

Lemma IV.33. The intersection of two stretching classes is either empty, a single root, or

a stretching class.

Proof. If the classes assume different values off the stretched path, then their intersection is

empty. Thus it suffices to consider only the requirements the classes impose on the stretched

path and assume they agree elsewhere. It will clarify matters to introduce a slightly different

notation. For a symbol a and positive integer n, let a≥n denote the set of words consisting

of at least n copies of a and let an denote the singleton set containing the word consisting

of exactly n copies of a. Then for multiple symbols a1, . . . , ak and integers n1, . . . , nk, we

denote by

a
(≥)n1

1 a
(≥)n2

2 · · · a(≥)nk

k

the set of all words obtained by concatenating words from these sets.

In particular, by collapsing together repeated values, we see that the sequences of values

which a stretching class allows to appear on the stretched path are described by an expression

of the form

an1
1 · · · anr

r a
≥nr+1

r+1 a≥1r+2 · · · a
≥1
s−1a

≥ns
s a

ns+1

s+1 · · · a
nk
k

in which no consecutive ai’s are the same.

For the sets defined by two such expressions to intersect nontrivially, their ai values

must be the same. In this case, we can find their intersection by computing it for each ai
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individually. We have

am ∩ am
′
=

am m = m′

∅ m ̸= m′

a≥m ∩ am
′
=

am
′

m ≤ m′

∅ m > m′

a≥m ∩ a≥m
′
= a≥max{m,m′}

Using these rules, one can check that intersecting two sets of the above form produces the

empty set, a singleton (if no a≥m terms remain), or another set of that form.

The final step is to compute the size of a single stretching class, which is a straightforward

counting problem.

Lemma IV.34. Suppose β is a stretching class defined on strc(G) with ℓ asterisked vertices.

Then

|β[m]| =
(
m− c+ ℓ− 1

ℓ− 1

)
Example We return to the example following Definition IV.28, which featured a stretching

class β defined on str1(D4) with 2 asterisked vertices:

1

1
2 · · · 2 1 · · · 1 1

An element of this class on a particular strm(D4) is determined by where its coefficients

switch from 2 to 1, and there are m =
(
m−1+2−1

2−1

)
ways of doing this.

Combining Theorem IV.30 with the last two lemmas and the inclusion-exclusion principle

allows us to conclude:

Theorem IV.35. Let α, P,m0 be as above. Let ℓ be the largest value such that there is a

stretching class in P with ℓ asterisked vertices. Then there is a polynomial p(m) of degree

ℓ− 1 such that | ↓strm(α)| = p(m) for m ≥ m0 + 1.

Again, this loosely generalizes the behavior seen in finite type, where the sizes of the An

and Dn root systems (each of which can be realized as the downset of a single maximal,

stretched root) are given by quadratic polynomials. However, in more complicated infinite

type situations, it it easy for polynomials of higher degree to appear.
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CHAPTER V

Quiver Representations and Preprojective Algebras

We now review basic facts about quiver representations and Gabriel’s theorem from the

introduction and formally define the preprojective algebra. We additionally introduce two

important tools for working with the preprojective algebra which connect it to a root system:

reflection functors, which act on the dimension vectors of modules by reflections, and the

Crawley-Boevey identity, which relates the dimensions of certain Hom-spaces to the bilinear

pairing (, ) on the space containing the roots.

V.1: Quiver representations and path algebras

Definition V.1. A quiver Q consists of

� a finite set Q0 of vertices;

� a finite set Q1 of arrows, where each a is associated to two vertices, its source s(a)

and target t(a).

Definition V.2. Let k be a field. A representation M of a quiver Q over k consists of:

� a k-vector space Mi for each vertex i ∈ Q0, and

� linear maps M(a) : Ms(a) →Mt(a) for each edge a ∈ Q1.

For example, a representation of the quiver • → • is simply a linear map between two

vector spaces.

Representations of a quiver also naturally form a category. We define a morphism be-

tween representations by maps on the level of vertices which are compatible with the maps

corresponding to the arrows.

Definition V.3. Let M and N be representations of a quiver Q. Then a morphism

φ : M → N consists of maps φi : Mi → Ni for each vertex i ∈ Q0 such that, for each arrow

a ∈ Q1, the square
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•

•

•
s(a)

•
t(a)

a
C

C

C2 C

( 1
0 )

( 0
1 )

( 1 1 )

Figure 39: On the left is a quiver, where we have marked an edge a and its source and target.
On the right is a particular representation of that quiver over C.

Ms(a) Mt(a)

Ns(a) Nt(a)

M(a)

φs(a) φt(a)

N(a)

commutes.

This definition gives us a category Repk(Q) of representations of Q over k.

V.1.1: Path algebras

At first, the notion of a quiver representation appears quite different from other notions

of “representation”. However, the category of representations of a quiver turns out to be

equivalent to the category of modules over a certain algebra called the path algebra. This

allows us to use preexisting tools of module theory to study quiver representations.

All modules will be left modules unless stated otherwise.

Definition V.4. Let Q be a quiver. A path in Q is a sequence of arrows aℓ · · · a2a1 such that

t(ai) = s(ai+1) for all i. We define the source and target of a path by s(aℓ · · · a2a1) = s(a1)

and t(aℓ · · · a2a1) = t(aℓ). A path can be empty, in which case it associated to staying put

at a vertex. We write ei for the empty path at vertex i, and say that s(ei) = t(ei) = i.

Definition V.5. The path algebra kQ consists of formal k-linear combinations of paths

in Q, together with a multiplication on paths defined by concatenation:

(bm · · · b1)(aℓ · · · a1) :=

bm · · · b1aℓ · · · a1 t(aℓ) = s(b1)

0 otherwise

In particular,

eip =

p t(p) = i

0 otherwise
pei =

p s(p) = i

0 otherwise

It follows that the identity element of kQ is
∑

i∈Q0
ei.
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Now we describe the equivalence between kQ-modules and representations of Q over k.

First, given a kQ-module M , we must construct a representation of Q. We associate to

vertex i the vector space eiM . Now let a be any arrow. We note that, because a = et(a)a

as a path, multiplication by a maps es(a)M into et(a)M , and in this way we define the maps

associated to the arrows of the quiver.

Conversely, given a representation M of Q, we construct a kQ-module. Let V :=⊕
i∈Q0

Mi. Then we define a path aℓ · · · a1 to act on V by sending every summand other

than Ms(a1) to 0 and mapping Ms(a1) into Mt(aℓ) with the composition M(aℓ) · · ·M(a1).

Given a morphism φ of quiver representations, we define a map between the associated

kQ-modules by
⊕

i∈Q0
φi. And given a map φ between kQ-modules, we define a map between

representations of Q by restricting φ to each of the spaces eiM .

Theorem V.6 ([DW17]). The above construction defines an equivalence between kQ-mod

and Repk(Q).

Because of this equivalence, in what follows we will treat quiver representations and

modules over the path algebra interchangeably.

This equivalence shows us that Repk(Q) is a well-behaved abelian category, with notions

of quotients, subobjects, kernels, cokernels, and direct sums. When we translate these notions

into the language of quiver representations, they’re generally described by applying the

notion to each vertex separately in a way that’s compatible with the arrows.

Examples.

� A subrepresentation N ⊂ M is a collection of subspaces Ni ⊂ Mi which are mapped

into each other by the maps associated to the arrows.

Consider the representation of • → • given by k
id−→ k. This has 0→ k as a subrepre-

sentation, because the diagram

0 k

k k

id

id

vacuously commutes. On the other hand, k → 0 is not a subrepresentation, because

k 0

k k

id

id

89



does not commute. In general, if a subrepresentation contains a subspace, it must

also contain everything “downstream” from that subspace – everything resulting from

applying arrow maps.

� A direct sum of representations M ⊕M ′ associates to each vertex the space Mi ⊕M ′
i

and to each arrow the map M(a)⊕M ′(a).

On the level of matrices, this can be viewed as constructing a block diagonal matrix

for each arrow, built up from the matrices of the constituent representations’ arrows.

For example, the direct sum (k
id−→ k)⊕ (k

id−→ k)⊕ (k → 0) is given by

k3 ( 1 0 0
0 1 0 )−−−−→ k2

V.1.2: Indecomposables and Gabriel’s theorem

The notion of direct sum is particularly useful for classifying representations: we can use it

to break them down into pieces. From this perspective, the important representations are

those which can’t be broken down any further.

Definition V.7. A representation M is indecomposable if it is not isomorphic to a direct

sum of two nonzero representations.

In addition to knowing what the indivisible pieces with respect to the direct sum operation

are, we need to know that we can express everything else in terms of those pieces.

Theorem V.8 (Krull-Remak-Schmidt [DW17, Theorem 1.7.4]). Every representation of a

quiver is isomorphic to a direct sum of indecomposable representations, and this decomposi-

tion is unique up to isomorphism and reordering of terms.

We now recall from the introduction the definition of dimension vector and the statement

of Gabriel’s theorem.

Definition V.9. Let Q be a quiver and let M be a representation over k. Let V be a

vector space over R with a distinguished basis (αi)i∈Q0 indexed by the vertices of Q. The

dimension vector of M , denoted dimM , is the vector
∑

i∈Q0
(dimk Mi)αi ∈ V .

Theorem V.10 ([Gab72]). � A quiver is of finite representation type if and only if,

ignoring orientation, it is one of the simply laced finite type Dynkin diagrams (An, Dn,

E6, E7, or E8) or a disjoint union of same.

� In this case, the map M 7→ dimM gives a bijection between isomorphism classes of

indecomposable representations and positive roots of the associated root system, where

αi is the simple root associated to vertex i.
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An · · ·

Dn · · ·

E6

E7

E8

Figure 40: The simply laced finite type Dynkin diagrams. Gabriel’s theorem states that the
quivers of finite representation type are exactly those obtained by orienting these and taking
disjoint unions.

V.2: Preprojective algebras

As noted in the introduction, an interesting aspect of Gabriel’s theorem is that the connection

between a root system and representations of a quiver does not depend on that quiver’s

orientation. The fullest picture of this connection will come from somehow considering all

of the quiver’s orientations at once.

We accomplish this by constructing a particular algebra associated to a Dynkin diagram

called the preprojective algebra which, for any orientation Q of that diagram, has kQ has a

quotient.

Definition V.11. Let G be a graph. Construct a double quiver G by replacing each edge

with a pair of arrows going opposite directions, and for any arrow a let a∗ be its reversed

partner. Choose a map sgn : G1 → {±1} such that sgn(a∗) = − sgn(a). The preprojective

algebra ΠG is the quotient of the path algebra kG/⟨c⟩, where ⟨c⟩ is the two-sided ideal

generated by

c :=
∑
a∈G1

sgn(a)a∗a

While this definition includes an arbitrary choice of sgn, different choices will produce

isomorphic algebras [Kü17, Lemma 4.9].

The above is the most concise form of the defining relation, but we can clarify it a bit by

noting that each term a∗a or aa∗ is a path which begins and ends at the same vertex, and

we can isolate all the terms which begin and end at i by multiplying eicei. Quotienting out
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by c is then equivalent to quotienting out by all the eicei. We have

eicei =
∑
a∈G1
s(a)=i

sgn(a)a∗a

Modules over ΠG can be identified with kG-modules on which the elements of ⟨c⟩ act by 0.

Thus we can view modules over ΠG as representations of G in which certain combinations

of maps are zero. Specifically, our expression for eicei shows that, for each vertex, we want

a signed sum of the “out-and-back” maps originating from that vertex to be 0.

Examples.

� Let G be the D4 Dynkin diagram.

Suppose we define the sgn map on the double quiver to send rightward arrows to +1

and leftward arrows to −1. Then a ΠD4-module can be viewed as a representation

V1

V2

V3 V4

a

a∗

b

b∗

c∗

c

subject to the relations

a∗a = b∗b = −cc∗ = −aa∗ − bb∗ + c∗c = 0

� For any graph G, we can define the following modules:

Definition V.12. Let Si be the ΠG-module which assigns a 1-dimensional space to

vertex i and 0 spaces elsewhere (so that all maps are 0). This is the simple module

at i.

These are simple objects in the category of ΠG-modules, and will play an important

role throughout the rest of the thesis.
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k

k
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( 1
0 )

( 0 1 )

( 1
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( 0 −1 )

( 0
1 )

( 0 0 )

1

2

3

3
4

−1

Figure 41: On the left is a ΠD4-module which is not a representation of any orientation of
D4. On the right is an exploded view.

� Suppose Q is a quiver with underlying undirected graph G, and let M be a represen-

tation of Q. We can view M as a representation of the double quiver G by assigning

the maps of Q to their corresponding arrows in G and assigning 0 maps to all other ar-

rows. This satisfies the relation defining the preprojective algebra: for any two paired

opposite arrows in G, one of them will act by 0, and so each term in the relation will

individually be 0. Thus the category of ΠG-modules includes all representations of any

orientation of G. On the other hand, there exist ΠG-modules which can’t be realized

in this way, such as the example in Figure 41.

Usually, the ΠG-modules we consider will be representable in a suitable basis by fairly

sparse matrices with entries 0, 1, and −1. In this case, we can visualize the representation

more clearly by tracking the individual basis elements, in a format we call the exploded

view. We construct a directed graph with vertices corresponding to basis elements of the

spaces constituting the representation, labeling each basis element of Vi by i. Then if one of

the maps of the representation sends v to c1w1 + c2w2 + . . . + crwr, we draw arrows from v

to w1, . . . , wr, labeling the arrow to wj by cj if cj ̸= 1. This is illustrated in Figure 41.

V.2.1: Duality

As is usual in math, we’d prefer to make half as many arguments, and a duality operation

on ΠG-mod allows us to do this. Define a contravariant functor D : ΠG-mod→ ΠG-mod by

DM := HomΠG
(M,k)

which we equip with the structure of a ΠG-module by defining, for any arrow a ∈ G1,

af(m) := f(a∗m)
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As a quiver representation, DM is obtained from M by setting (DM)i := M∗
i and letting

DM(a) be the adjoint map M(a∗)∗. There is a natural isomorphism D(DM) ∼= M , so

D is a duality of categories. In particular, D establishes bijections between injections and

surjections, between projective and injective objects, etc. which we will use freely in what

follows.

V.2.2: Reflection functors

Two crucial tools illuminate the connection between preprojective algebras and Coxeter

groups. First, to each vertex i of G we associate a pair of reflection functors Σ±i :

ΠG-mod → ΠG-mod which, on the level of dimension vectors, mostly act by reflections.

These were originally introduced by Baumann and Kamnitzer in [BK12], based on similar

functors defined for path algebras by Bernstein, Gelfand, and Ponomarev in [BGP73].

Given a ΠG-moduleM , we consider the direct sum over the vertices adjacent to i (multiply

counting vertices with multiple edges to i).

M∂i :=
⊕
arrows

j
a−→i

Mj

We then define a map M(i, in) : M∂i → Mi by combining the maps sgn(a)M(a) : Mj → Mi

for each arrow j
a−→ i, and a map M(i, out) : Mi → M∂i by combining the maps M(a∗) :

Mi → Mj for each such arrow. Crucially, the relation defining the preprojective algebra is

equivalent to the composition M(i, in) ◦M(i, out) being 0. (So from one perspective, the

preprojective algebra is defined the way it is because that’s precisely what we need to make

the tools of this section work.)

Then we define a new module Σ+
i (M), first on vertices by

Σ+
i (M)j :=

ker(M(i, in)) j = i

Mj j ̸= i

To define the maps associated to arrows pointing in and out of a, it’s equivalent to define

Σ+
i (M)(i, in) and Σ+

i (M)(i, out):

� We say Σ+
i (M)(i, out) : ker(M(i, in)) → M∂i is simply the inclusion of the kernel, so

the individual maps out of i are given by projection to the summands of M∂i.

� Then note that, because M(i, in)◦M(i, out) = 0, the composition M(i, out)◦M(i, in) :

M∂i →M∂i takes values in ker(M(i, in)). So we take this to be Σ+
i (M)(i, in).
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Finally, any arrow not incident to i is assigned the same map by Σ+
i (M) as it was assigned

by M .

The definition of Σ−i (M) is dual, in the sense that Σ−i (M) := DΣ+
i (DM). Explictly, we

can define it on vertices by

Σ−i (M)j :=

coker(M(i, out)) j = i

Mj j ̸= i

And to define the maps pointing in and out of i:

� We say Σ−i (M)(i, in) : M∂i → coker(M(i, out)) is the quotient map to the cokernel, so

the individual maps into i are given by applying this map to the summands of M∂i.

� Because M(i, in) ◦M(i, out) = 0, the composition M(i, out) ◦M(i, in) : M∂i → M∂i

factors through a map coker(M(i, out))→M∂i. So we take this to be Σ−i (M)(i, out).

We can tersely summarize these definitions by insisting that the following diagram com-

mutes:

Σ−i (M)i := coker(M(i, out))

Mi M∂i Mi M∂i Mi

Σ+
i (M)i := ker(M(i, in))

Σ−
i (M)(i,out)

M(i,out) M(i,in)

Σ−
i (M)(i,in)

Σ+
i (M)(i,in)

M(i,out) M(i,in)

Σ+
i (M)(i,out)

Here the upper left and lower right arrows are the natural projection and inclusion, respec-

tively. The dotted arrows factor M(i, in) (respectively, M(i, out)) through coker(M(i, out))

(respectively, ker(M(i, in))), and their existence follows from M(i, in) ◦M(i, out) = 0. In

particular, we can also define natural maps Σ−i (M)
f−
i−→M

f+
i−→ Σ+

i (M) by the dotted arrows

at vertex i (and identity maps elsewhere).

We can also verify from this diagram that the relation defining the preprojective algebra

is still satisfied by Σ+
i (M) and Σ−i (M). We have Σ±i (M)(i, out) ◦Σ±i (M)(i, in) = M(i, out) ◦

M(i, in), which shows that for any arrow j
a−→ i, the map attached to a∗a is unchanged. We

can also check directly from definitions that Σ±i (M)(i, in) ◦ Σ±i (M)(i, out) = 0.

We’d like reflection functors to “reflect” in the following senses: they should undo each

other, and, since we can interpret dimension vectors as belonging to the space spanned by

simple roots, they should act as reflections on the level of dimension vectors. These aren’t

quite true, but they are once we restrict attention to a subcategory.
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Recall that Si is the simple representation from Definition V.12. Let NoQuoti be the full

subcategory of ΠG-mod consisting of modules which do not have Si as a quotient module,

and let NoSubi be the full subcategory of modules which do not have Si as a submodule.

Note by unwinding definitions that M ∈ NoQuoti is equivalent to M(i, in) being surjective,

while M ∈ NoSubi is equivalent to M(i, out) being injective.

Proposition V.13 ([BK12, Proposition 2.5]). (1) The functors Σ+
i : NoQuoti → NoSubi

and Σ−i : NoSubi → NoQuoti are inverse equivalences of categories.

(2) For M ∈ NoQuoti, we have dimΣ+
i (M) = si(dimM).

(3) For M ∈ NoSubi, we have dimΣ−i (M) = si(dimM).

We briefly note why (2) (and, dually, (3)) are true: since M ∈ NoQuoti means that

M(i, in) is surjective, the dimension of Σ+
i (M)i := ker(M(i, in)) is given by subtracting the

dimension of Mi from the dimensions of neighboring spaces. This is exactly reflection at

vertex i.

Finally, while membership in NoQuoti implies nice properties of Σ+
i , it also has a conse-

quence for Σ−i .

Lemma V.14. (1) For M ∈ NoQuoti, the map f−i : Σ−i (M) → M defined using the

dashed arrows in the above diagram is surjective.

(2) For M ∈ NoSubi, the map f+
i : M → Σ+

i (M) is injective.

Proof. (1) Since M ∈ NoQuoti, the map M(i, in) : M∂i → Mi is surjective. Adding this

information to the above commutative diagram, we get

Σ−i (M)i

M∂i Mi M∂i

Σ−
i (M)(i,out)

(f−
i )i

M(i,in)

Σ−
i (M)(i,in)

M(i,out)

Looking at the left triangle, we see that (f−i )i is also surjective. Since the map f−i is

given by isomorphisms at every vertex other than i, it is surjective overall.

(2) This proceeds dually to the proof of part (1).

If a module is in both NoQuoti and NoSubi, these maps complete to exact sequences,

which will form the base case of a much more general result in Chapter VII.
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Lemma V.15. If M ∈ NoQuoti ∩ NoSubi, then:

(1) There is an exact sequence

0→ S
⊕−(αi,dimM)
i

g−→ Σ−i (M)
f−
i−→M → 0

and the map g is universal in the following sense: given any map h : Si → Σ−i (M),

there is a unique map h : Si → S
⊕−(αi,dimM)
i such that h = g ◦ h.

(2) There is an exact sequence

0→M
f+
i−→ Σ+

i (M)
g−→ S

⊕−(αi,dimM)
i → 0

and the map g is universal in the following sense: given any map h : Σ+
i (M) → Si,

there is a unique map h : S
⊕−(αi,dimM)
i → Si such that h = h ◦ g.

Proof. (1) By the previous lemma, since M ∈ NoQuoti, we know f−i is surjective. Then

since M ∈ NoSubi, we know by Proposition V.13(3) that

dimΣ−i (M) = (dimM)− (αi, dimM)αi

so the kernel of this map has dimension vector −(αi, dimM)αi, which forces it to be

S
⊕−(αi,dimM)
i .

Then consider an arbitrary h : Si → Σ−i (M). Because M ∈ NoSubi, the composition

f−i ◦ h must be 0. The claimed universality then follows from the universal property

of kernel.

(2) This proceeds dually to the proof of part (1).

We end this section by noting that, although we gave an ad hoc definition of reflection

functors above, they can also be described in terms of common module operations. Let

Ii ⊂ ΠG be the annihilator of Si. Since any path other than the stationary path ei will

pass through some other vertex and act by 0 on Si, Ii is just the space spanned by paths

other than ei, which we can also realize as the two-sided ideal ΠG(1 − ei)ΠG. Note that Ii

may be an infinite-dimensional ΠG-module; this requires caution under the hood in some

homological proofs but does not meaningfully affect anything we do here.

Lemma V.16 ([BK12, Remark 2.4(iii)]). The functors Σ+
i (−) and Σ−i (−) are naturally

isomorphic to HomΠG
(Ii,−) and Ii ⊗ΠG

−, respectively.
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One nice feature of this lemma is that it allows us to simply describe the derived functors

of Σ+
i and Σ−i — they are ExtjΠG

(Ii,−) and TorΠG
j (Ii,−). In the next section, we’ll say a

little more about the properties of these functors.

V.2.3: Crawley-Boevey’s identity and other homological properties

The second tool for connecting preprojective algebras with Coxeter groups comes from their

homological properties. In what follows, all Hom and Ext functors are computed in the

category of ΠG-modules unless stated otherwise.

Proposition V.17 ([CB00, Lemma 1]). For any M,N ∈ ΠG-mod,

dimk Hom(M,N)− dimk Ext
1(M,N) + dimk Hom(N,M) = (dimM, dimN)

where (−,−) is the symmetric bilinear form associated to the Cartan matrix of G.

Closely related is one of the few ways in which the preprojective algebras of infinite-type

Dynkin diagrams are actually better -behaved than in the finite type case:

Proposition V.18 ([BIRS09, Proposition II.1.3(c)]). Suppose G is not one of the finite

type Dynkin diagrams. Then for any two ΠG-modules M,N and i ∈ {0, 1, 2}, we have an

isomorphism of vector spaces

Exti(M,N)∗ ∼= Ext2−i(N,M)

We say that in this case the category of ΠG-modules is 2-Calabi-Yau. We won’t need

the full force of this property in this thesis, and will be satisfied with the following weaker

fact which holds for all preprojective algebras:

Proposition V.19. For any ΠG-modules M and N , there is an injective map Ext2(M,N) ↪→
Hom(N,M)∗.

Proof (sketch). The proof of Proposition V.17 in [CB00] involves constructing the start of a

projective resolution

P2 → P1 → P0 →M → 0

and then showing that the cokernel of the map Hom(P1, N)→ Hom(P2, N) is isomorphic to

Hom(N,M)∗. The homology of Hom(P•, N) in degree 2, which computes Ext2(M,N), is a

submodule of this.

Based on the properties above, we’ll use the following facts about reflection functors.
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Lemma V.20. (1) Σ+
i is left exact and Σ−i is right exact.

(2) If M ∈ NoQuoti, then Ext1(Ii,M) = 0; if M ∈ NoSubi, then Tor1(Ii,M) = 0.

(3) As long as i is not an isolated vertex of G, Ext1(Ii, Si) ∼= Tor1(Ii, Si) ∼= Si.

Proof. (1) This is the case for all functors defined by Hom and ⊗ as the reflection functors

are.

(2) We can apply Hom(−,M) to the exact sequence

0→ Ii → ΠG → Si → 0

and get an exact sequence

Ext1(ΠG,M)→ Ext1(Ii,M)→ Ext2(Si,M)→ Ext2(ΠG,M).

Because ΠG is projective, the end terms are 0, so Ext1(Ii,M) ∼= Ext2(Si,M).

Now suppose M ∈ NoQuoti. By Proposition V.19, Ext2(Si,M) ⊂ Hom(M,Si)
∗ = 0.

The second half of the result follows from duality, by applying the first half to DM .

(3) Choose an arrow j
a−→ i, and consider the ΠG-module Ma which assigns 1-dimensional

spaces to j and i, the identity map to a, and 0 spaces and maps elsewhere. Likewise

define Ma∗ using i
a∗−→ j. We have a short exact sequence

0→ Si →Ma → Sj → 0

Applying Σ+
i , we get a sequence

0→ 0→ Sj →Ma∗ → Ext1(Ii, Si)→ Ext1(Ii,Ma)

By (2), the last term is 0, which implies the result for Ext1. To see the result for Tor1,

instead apply Σ−i to 0→ Sj →Ma∗ → Si → 0.
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CHAPTER VI

Shard Modules

In the previous chapter, we introduced Gabriel’s theorem, which gives a correspondence

between indecomposable representations of a finite type quiver and reflecting hyperplanes

of the corresponding root system. In this chapter, we refine this correspondence to one

involving the preprojective algebra on one side and shards on the other. It’s not realistic

to classify all indecomposable modules of the preprojective algebra even for most finite type

Dynkin diagrams, so we need to limit our focus to a more specific class of modules: we start

by introducing the class of bricks, which suffices for the finite type case, and then add a

couple technical conditions to the general case which define the class of shard modules. At

the end of the chapter, we demonstrate this correspondence in the case of the A
(1)
n Dynkin

diagrams, which are in some ways the simplest diagrams which are not finite type.

VI.1: Stability and bricks

VI.1.1: Stability

Throughout this chapter, G is a Dynkin diagram with n vertices, Φ is the associated root

system, and V is a vector space containing both roots of Φ and dimension vectors of ΠG-

modules, as in the setting of Gabriel’s theorem. We will identify V ∼= Rn using the basis of

simple roots, and likewise identify V ∗ ∼= Rn using the dual basis.

Definition VI.1. Let θ ∈ V ∗. A ΠG-module M is θ-semistable if:

� ⟨θ, dimM⟩ = 0, and

� ⟨θ, dimN⟩ ≥ 0 for all N ⊂M

We could equivalently replace the second condition by requiring ⟨θ, dimN⟩ ≤ 0 for all

M ↠ N .
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Example. We consider the quiver representation M := k
1−→ k as a ΠA2-module by letting

the leftward arrow act by 0. M has dimension vector α1 + α2, and its only proper subrepre-

sentation is 0→ k, which has dimension vector α2. Thus, for θ = (θ1, θ2), M is θ-semistable

if and only if θ1 + θ2 = 0 and θ2 ≥ 0.

This concept of stability was introduced by King [Kin94], originally in the context of

constructing moduli spaces of representations up to isomorphism. King’s intent was to

consider, for a fixed θ, the collection of θ-semistable modules, and construct an appropriate

moduli space classifying them.

However, it turns out to also be interesting to fix a module M and consider the set of all

weights θ for which it is semistable. We refer to this as the stability domain of M , and

denote it by Stab(M). For example, the ray of points (θ1, θ2) satisfying the two properties

in the above example is the stability domain of the module considered there.

In general, although M may have infinitely many non-isomorphic submodules, they will

only have finitely many dimension vectors among them. So Stab(M) is defined by one linear

equation and a finite list of linear inequalities, and it is a polyhedral convex cone.

VI.1.2: Bricks

Definition VI.2. An object M in a k-linear category is a brick if End(M) is a division

algebra.

A brick is indecomposable, because any decomposable module M1⊕M2 admits a nonin-

vertible endomorphism given by projection to a summand. However, not all indecomposable

modules are bricks.

Example. We consider ΠA3 (with sgn(a) = 1 for the rightward arrows). Let M be the

following module:

k k2 k
( 1
0 ) ( 0 1 )

( 1
0 )( 0 1 )

We can also visualize M with an exploded view:

1
2

2
3

We claim that M is indecomposable. It cannot have a simple module Si as a summand,

because this would consist of a 1-dimensional subspace at some vertex which is annihilated
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by all arrows, which does not happen. Instead, a nontrivial decomposition would need to

consist of modules with dimension vectors (1, 1, 0) and (0, 1, 1). But if this were the case,

the images of the two inward-pointing arrows would be distinct, a contradiction.

On the other hand, M is not a brick. This is easiest to see in the exploded view. M has

S2 as both a quotient (the quotient by the submodule spanned by the top 3 basis elements

in the picture) and a submodule (spanned by the top basis element):

1
2

2
3

S2 as a quotient

1
2

2
3

S2 as a submodule

Putting these together, we get a map M ↠ S2 ↪→M which is nonzero but not invertible.

Despite this discrepancy, from the perspective of stability, bricks are the fundamental

building blocks of interest in the following sense:

Proposition VI.3. Let M be a ΠG-module and let φ : M →M be an endomorphism. Then

Stab(M) = Stab(ker(φ)) ∩ Stab(im(φ))

Proof. First, suppose that M is θ-semistable. The exact sequence

0→ ker(φ)→M → im(φ)→ 0

implies that

⟨θ, dimM⟩ = ⟨θ, dimker(φ)⟩+ ⟨θ, dim im(φ)⟩

By the definition of semistability, the left side is 0 while the terms on the right are both

nonnegative, and thus also 0. Additionally, any submodule N of ker(φ) or im(φ) is also

a submodule of M , implying ⟨θ, dimN⟩ ≥ 0. This shows that ker(φ) and im(φ) are both

θ-semistable.

Conversely, suppose ker(φ) and im(φ) are both θ-semistable. Then both terms on the

right of the above equation are 0, so ⟨θ, dimM⟩ = 0 as well. If N ⊂ M is any submodule,

we have an exact sequence

0→ N ∩ ker(φ)→ N → φ(N)→ 0

which implies that

⟨θ, dimN⟩ = ⟨θ, dim(N ∩ ker(φ))⟩+ ⟨θ, dimφ(N)⟩.
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The assumption that ker(φ) and im(φ) are θ-semistable implies that both terms on the

right are nonnegative, so the left side is also nonnegative. This shows that M is also θ-

semistable.

In particular, since any nonbrick admits an endomorphism with nontrivial kernel and

image, its stability domain can be expressed in terms of those smaller modules. Thus we’re

primarily interested in the stability domains of bricks.

VI.2: Bricks and shards: the finite type case

The bricks of ΠG admit a classification similar to the classification of indecomposables of the

path algebra given by Gabriel’s theorem. Now, instead of positive roots being on the other

side, we use shards.

Theorem VI.4 ([Tho18, Theorems 5 and 6]). Let G be a simply laced finite type Dynkin

diagram: An, Dn, E6, E7, or E8. Then the operation Stab(−) gives a bijection between

bricks of ΠG and shards of the reflecting hyperplane arrangement associated to G.

Examples. Let G = • − •. Then ΠG has four bricks:

k → 0 0→ k k
1

⇄
0
k k

0

⇄
1
k

The stability domains of these bricks are, respectively,

{(x1, x2) | x1 = 0}

{(x1, x2) | x2 = 0}

{(x1, x2) | x1 + x2 = 0 and x2 ≥ 0}

{(x1, x2) | x1 + x2 = 0 and x1 ≥ 0}

These are exactly the shards of the A2 reflecting hyperplane arrangement. We can see this

in the plot in Figure 42. Note that this plot is viewed in the basis of simple roots, obscuring

the symmetry of the A2 root system, but a suitable change of coordinates will restore the

symmetry.

More generally, let G be the An diagram. Consider the unique root α1,n supported on all

vertices:

1 1 · · · 1
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D

Figure 42: On the left, the stability domains of bricks of ΠA2 . The base region D used to
define shards is shaded. Note that the domains are plotted in the basis of simple roots,
obscuring the symmetry of the A2 root system; a suitable change of coordinates produces
the more typical picture on the right.

Then choose any tuple a ∈ {+,−}n−1, which we use to define a ΠAn-module Ma with

dimension vector α1,n. We assign a 1-dimensional space to each vertex, and for each edge

we pick one arrow to act by the identity and one to act by 0. If the jth sign in a is +, we

pick the rightward of the arrows along the jth edge to be the nonzero map, and if the sign

is −, we pick the leftward arrow. For example, the ΠA4-module M−++ is given by

k
0

⇄
1
k

1

⇄
0
k

1

⇄
0
k.

which we typically depict by omitting the zero maps:

k ← k → k → k

This is a brick: an endomorphism amounts to multiplication by a scalar at each vertex, and

the requirement of commuting with the arrows implies that all these scalars are the same.

It’s also straightforward to compute the stability domains of these modules. Pick any

edge: then if its nonzero map points left, the spaces to the left of the arrow form a submodule,

while if the nonzero map points right, the spaces to the right of the arrow form a submodule:

k k k k k k k k k k k k

Thus, for (x1, . . . , xn) ∈ Stab(Ma), we must have

x1 + x2 + . . .+ xi ≥ 0 if ai = −

xi+1 + xi+2 + . . .+ xn ≥ 0 if ai = +
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Finally, we note that, combined with the condition x1+ . . .+xn = 0, the former inequality is

equivalent to xi+1+xi+2+ . . .+xn ≤ 0. While Ma has other submodules, it’s straightforward

to check that any further inequalities they impose on the stability domains are implied by

these ones.

But now we recall from the example following Theorem III.25 that this list of inequalities

is exactly of the form required to specify a shard of the hyperplane α⊥1,n. Thus each of these

stability domains is a shard. In particular, since there are 2n−1 choices of tuple a, and 2n−1

shards of α⊥1,n, by Theorem VI.4 this is a complete list of bricks of dimension α1,n.

One point to emphasize is that, in this case, there is a more fine-grained correspondence

between the signs of linear inequalities defining a shard and the orientations of arrows defining

the associated brick, both of them summarized by the sign vector a. While the behavior of

the An case is unusually nice in this regard, it will serve as a model for our study of the

structure of bricks in Chapter VIII.

VI.3: Shard modules

It would be great if we could generalize Theorem VI.4 to graphs beyond the finite type

Dynkin diagrams. However, there is a simple reason why the correspondence fails. Consider

the example of the A
(1)
1 diagram

• •

The root system is easy to describe — labeling the vertices 1 and 2, each root is obtained by

applying an alternating sequence of s1 and s2 to α1 or α2. Direct computation then shows

that each root has the form nα1 + (n± 1)α2.

On the other hand, we can specify a representation of Π
A

(1)
1

by giving a representation of

the quiver •⇒ • and defining the backward maps to be 0. The representation

k
1

⇒
0
k

is certainly a brick.

However, its dimension vector α1 + α2 is not a positive root! In particular, its stability

domain must lie in the hyperplane x1 + x2 = 0: this is not part of the reflecting hyperplane

arrangement of A
(1)
1 , and can’t contain a shard.

So in order to establish a correspondence like Theorem VI.4, we need to restrict the class

of modules we’re looking at. As the above example shows, one necessary condition is that

the dimension vector is a root.
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Definition VI.5. A real brick1 is a brick of ΠG whose dimension vector is a root of Φ.

This definition looks somewhat contrived as-is, but real bricks admit both a useful recur-

sive description and a natural categorical one.

First, we can build up real bricks using reflection functors. Recall that, while reflection

functors can be defined for arbitrary ΠG-modules, they give equivalences NoQuoti ↔ NoSubi.

Thus we’ll usually want to ensure that the input to the reflection functor Σ+
i (respectively,

Σ−i ) is in NoQuoti (respectively, NoSubi)
2

Definition VI.6. An expression

Σ±ℓ
iℓ
· · ·Σ±1

i1
(M)

is well-behaved if, for 1 ≤ r ≤ ℓ,

Σ
±r−1

r−1 · · ·Σ±1
i1
(M) ∈

NoQuotir ±ir = +

NoSubir ±ir = −

Such expressions have nice properites which follow from repeated application of Propo-

sition V.13. And it turns out that they give another way to describe real bricks.

Proposition VI.7 ([DST23, Theorem 5.1]). Let β be a positive root and let siℓ · · · si1(αi0)

be a positive expression for β. The bricks with dimension vector β are precisely the modules

given by well-behaved expressions Σ±ℓ
iℓ
· · ·Σ±1

i1
(Si0).

We refer to [DST23] for the proof, but we note here why such an expression gives a

brick with dimension vector β. By Proposition V.13(2) and (3), the reflection functors all

act on the dimension vector by reflections, so the dimension vector of the full expression is

siℓ · · · si1(αi0) = β. And by Proposition V.13(1), the reflection functors can all be treated as

equivalences of categories, so

End(Σ±ℓ
iℓ
· · ·Σ±1

i1
(Si0))

∼= End(Si0)
∼= k

This last observation is important to the following chapter, so we frame it as a lemma.

Lemma VI.8. If M is a real brick, then End(M) ∼= k.

In general, if k is not algebraically closed, the endomorphism ring of a brick could be

some other division algebra over k.

1Not to be confused with the building material, which we refer to as an actual physical literal brick.
2[DST23] deals with this by simply defining Σ+

i and Σ−
i to take inputs in NoQuoti and NoSubi, respec-

tively, and declaring them to be ill-defined otherwise. However, at one point later we will want to apply a
reflection functor to a module outside of the appropriate subcategory.
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On the other hand, part of what makes real bricks interesting is that they admit a

description that isn’t obviously combinatorial.

Proposition VI.9 ([DST23, Proposition 4.14]). A brick B is real if and only if Ext1(B,B) =

0 (in which case the brick is also called rigid).

Again, we explain the “only if” half of this statement and refer to [DST23] for the other

half. Let B be a real brick, which by Proposition VI.7 has the form Σ±ℓ
iℓ
· · ·Σ±1

i1
(Si0). By

Crawley-Boevey’s identity (Proposition V.17), we know that

2 dimk Hom(B,B)− dimk Ext
1(B,B) = (dimB, dimB)

On one hand, Hom(B,B) ∼= k by Lemma VI.8. On the other hand, since dimB is a root,

(dimB, dimB) = 2. Inserting these values on both sides of the identity implies Ext1(B,B) =

0.

A second simple necessary condition for the stability domain of a brick to be a shard is

that the stability domain must be big enough. By their definition as regions of a hyperplane

arrangement in an (n − 1)-dimensional space, shards are cones of dimension n − 1. The

stability domains of the modules we consider are also cones in an (n− 1)-dimensional space,

but in principle, the inequalities defining a stability domain could cut it down to a smaller

dimension. Thus we impose one more condition on bricks.

Definition VI.10. A shard module is a real brick with stability domain of dimension

n− 1.

VI.4: Shard modules and shards: the general case

Having imposed two straightforwardly necessary conditions on bricks to define the class of

shard modules, it turns out that those conditions are all we need to generalize Theorem VI.4:

Theorem VI.11 ([DST23, Theorem 5.7]). The operation Stab(−) gives a bijection between

shard modules of ΠG and shards of the reflecting hyperplane arrangement associated to G.

The key step in proving this theorem is to observe how reflection functors affect stability

domains. The answer lies in the operations

σ+
i (K) = si(K ∩ {x ∈ V ∗ | ⟨x, αi⟩ ≥ 0})

σ−i (K) = si(K ∩ {x ∈ V ∗ | ⟨x, αi⟩ ≤ 0})
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which we previously defined in order to state Theorem III.25. The most general form of this

relationship is expressed by the following lemma (and a dual counterpart), which we will use

later.

Lemma VI.12 ([DST23, Lemma 5.6]). Let β and β′ be positive roots with β = siβ
′. Let B′

be a brick of dimension β′ in NoQuoti. Then

σ+
i (Stab(B

′)) = Stab(Σ+
i B
′) ∩ {θ : ⟨θ, αi⟩ ≤ 0}

In the context of a positive expression, this statement becomes cleaner:

Lemma VI.13 ([DST23, Proposition 5.4]). In the context of the previous lemma, suppose

further that β − β′ ∈ R>0αi. Then

σ+
i (Stab(B

′)) = Stab(Σ+
i B
′)

Proof. The assumption β− siβ ∈ R>0 is equivalent to saying (α∨i , β) > 0, and thus (αi, β) >

0.

Now let B = Σ+
i (B

′). By Proposition V.17,

dimk Hom(Si, B)− dimk Ext
1(Si, B) + dimk Hom(B, Si) > 0

On the other hand, a module in the image of Σ+
i must be in NoSubi, so the first term is 0. It

follows that Hom(B, Si) ̸= 0, so B has Si as a quotient. In particular, any point θ in Stab(B)

must satisfy ⟨θ, αi⟩ ≤ 0. Thus the right side of Lemma VI.12 reduces to Stab(B).

Inductively applying this lemma and the dual statement for Σ−i , we can conclude:

Theorem VI.14 ([DST23, Theorem 5.3]). Let β be a positive root with positive expression

siℓ · · · si1(αi0). Let B = Σ±ℓ
iℓ
· · ·Σ±1

i1
(Si0) be a well-behaved expression giving a real brick.

Then Stab(B) = σ±ℓ
iℓ
· · ·σ±1

i1
(α⊥i0).

This shows how stability domains produce shards; the other important aspect of the

theorem is that every shard is a stability domain.

Theorem VI.15. Let K = σ±ℓ
iℓ
· · ·σ±1

i1
(α⊥i0) be a shard defined using a positive expression

as above. Then Σ±ℓ
iℓ
· · ·Σ±1

i1
(Si0) is a well-behaved expression for the unique shard module B

with stability domain K.

Proof. We show that the expression is well-behaved by induction on ℓ. The base case of

ℓ = 0 is vacuous.
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Suppose that±ℓ = −; the case of±ℓ = + proceeds similarly. By the induction hypothesis,

B′ := Σ
±ℓ−1

iℓ−1
· · ·Σ±1

i1
(Si0) is a well-behaved expression, so it remains to show that B′ ∈

NoSubiℓ . Suppose instead that B′ has Siℓ as a submodule; then ⟨−, αiℓ⟩ ≥ 0 on Stab(B′) =

σ
±ℓ−1

iℓ−1
· · · σ±1

i1
(α⊥i0). However, when we apply σ−iℓ to Stab(B′), we first intersect it with {θ |

⟨θ, αiℓ⟩ ≤ 0}, which in this case would restrict it to α⊥iℓ , reducing its dimension. This implies

that σ±ℓ
iℓ
· · · σ±1

i1
(α⊥i0) is not a shard, a contradiction.

It then follows from Theorem VI.14 that B has stability domain K.

VI.5: Not every real brick is a shard module

The condition of being a real brick ended up equating to the nice algebraic property of

rigidity. We don’t know whether the requirement that shard modules have stability domains

of maximal dimension has a similar characterization — at this time it seems to be as contrived

as it looks on first glance.

However, it’s surprisingly difficult to find an example of a real brick which doesn’t fulfill

the condition on its stability domain. For a while, it was an open question whether such

modules existed, and much of the work towards this thesis was done with an eye towards

the possibility of proving that they don’t.

Nonetheless, there are real bricks which aren’t shard modules. The smallest one we could

find is a ΠG-module, where G is the following graph:

1
2
3

4 5 6

Here the orientations represent the arrows a for which we set sgn(a) = 1 in defining ΠG.

The brick in question is given by

B := Σ−1 Σ
+
2 Σ

+
4 Σ

+
3 Σ
−
5 Σ
−
4 Σ
−
1 Σ

+
2 Σ

+
4 Σ

+
5 (S6).

and has dimension vector (3, 3, 2, 4, 2, 1). An exploded view of the brick is shown in Figure

43.

In Figure 44, we illustrate four submodules of this brick (by highlighting the basis ele-

ments spanning each one).
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Figure 43: The exploded view of a real brick which is not a shard module.

These submodules have dimension vectors

(1, 2, 1, 2, 1, 1)

(1, 2, 1, 2, 1, 0)

(3, 1, 2, 4, 2, 1)

(1, 0, 0, 0, 0, 0)

which satisfy the equation

2 · (1, 2, 1, 2, 1, 1) + 2 · (1, 2, 1, 2, 1, 0) + (3, 1, 2, 4, 2, 1) + 2 · (1, 0, 0, 0, 0, 0) = 3 · (3, 3, 2, 4, 2, 1)

In particular, if θ ∈ Stab(B), it must pair nonnegatively with each of the vectors on the left

side of this equation — but it also must pair to 0 with the right side, which is a multiple of

dim(B). This implies that θ must pair to 0 with all four of the above vectors, cutting down

the dimension of Stab(B) and preventing B from being a shard module.

This brick was found through a computer search using SageMath code documented at

[Dan]. The strategy is to find a sequence of signs ±1, . . . ,±ℓ such that the expression

Σ±ℓ
iℓ
· · ·Σ±1

i1
(Si0)

is well-behaved, but the corresponding cone

σ±ℓ
iℓ
· · ·σ±1

i1
(α⊥i0)

is not a shard.

We conduct this search by:
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Figure 44: Four submodules of the module in Figure 43. Each picture depicts a submodule
because it’s closed under following arrows.

� producing a list of all tuples of signs which represent shards;

� for each one, flipping one sign at a time and checking whether the resulting tuple gives

a well-behaved expression for a brick;

� if it does, checking whether it also appears in the list of shards.

VI.6: Shard modules of A
(1)
n−1

The affine type A root system A
(1)
n−1 has an n-cycle as its Dynkin diagram:

· · ·

We conclude this chapter with a classification of the real bricks of the corresponding

preprojective algebras (which turn out to all be shard modules). To our knowledge, this

classficiation has not yet been documented.
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We label the vertices 0 through n − 1 in cyclic order. Because the Dynkin diagram is a

cycle, we can pull off a unique trick relating it to the finite type A case discussed at the end

of Section VI.2.

Let A∞ be an infinite path, with vertices indexed by Z. We can define a preprojective

algebra ΠA∞ just as we did for finite graphs; while this algebra is a horrible beast, we

restrict our attention to the category (ΠA∞-mod)b of finite-dimensional modules with finite

support. Any such module can be viewed as a ΠAm-module for some m, and (ΠA∞-mod)b can

thus be viewed as a direct limit of the categories ΠAm-mod using all the natural inclusions

ΠAm′ -mod→ ΠAm-mod for m′ < m.

Then, thinking of A
(1)
n−1 as a circle, and A∞ as a line, our key tool is a sort of covering

map:

Definition VI.16. The covering functor π : (ΠA∞-mod)b → Π
A

(1)
n−1

-mod is defined on

objects by

π(M)i :=
⊕

j≡i(mod n)

Mj

π(M)(i± 1← i) :=
⊕

j≡i(mod n)

M(j ± 1← j)

and on morphisms by

π(f : M → N)i =
⊕

j≡i(mod n)

fj

The key property of this functor is that it interacts nicely with reflection functors.

Lemma VI.17.

Σ±i (π(M)) ∼= π(· · ·Σ±i−nΣ±i Σ±i+n · · ·M)

Note that the expression on the right is well-defined because M is only supported at

finitely many vertices, so only finitely many of the reflection functors have any effect.

Proof. It follows straightforwardly from definitions that

π(M)(i, in) =
⊕

j≡i(mod n)

M(j, in)

and thus

Σ+
i (π(M))i = ker(π(M)(i, in)) =

⊕
j≡i(mod n)

ker(M(j, in)) =
⊕

j≡i(mod n)

Σ+
j (M)j
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This is the same space that we get by applying Σ+
j to M for all j ≡ i(mod n) and then

applying π; importantly, the order in which we apply these functors doesn’t matter, since no

two choices of j label adjacent vertices, and a reflection functor only affects a single vertex

and the maps incident to it.

Checking that the maps between vertices are affected in the same way by π, and that Σ−i
behaves the same way, is similar.

Lemma VI.18. If π(M) ∈ NoQuoti (respectively, NoSubi), then M ∈ NoQuotj (respec-

tively, NoSubj) for all j ≡ i(mod n).

Proof. Contrapositively, given a nonzero map Sj → M or M → Sj, its image under the

functor π is clearly also nonzero.

Proposition VI.19. Any real brick M of Π
A

(1)
n−1

is isomorphic to π(M̃) for some real brick

M̃ in (ΠA∞-mod)b.

Proof. By Proposition VI.7, M can be obtained from a well-behaved sequence of reflection

functors applied to some simple module Si. By lifting Si ∈ Π
A

(1)
n−1

-mod to Si ∈ (ΠA∞-mod)b

and repeatedly applying Lemma VI.17, we can obtain some M̃ ∈ (ΠA∞-mod)b with M ∼=
π(M̃) which also results from a sequence of reflection functors applied to Si. By repeatedly

applying Lemma VI.18, we can further conclude that this sequence is well-behaved. Thus

we can apply Proposition VI.7 in the other direction to conclude that M̃ is a real brick.

This is a powerful observation because, following the example in Section VI.2, we know

exactly what a real brick of ΠAm looks like: a sequence of 1-dimensional spaces and, for each

edge, a choice of orientation specifying which arrow along that edge is nonzero. Applying

the covering functor π to such a representation gives us a way to depict any real brick of

Π
(1)
n−1 in exploded view, as shown in Figure 45.

We now need to check which exploded views of the form in Figure 45 actually denote real

bricks. The first task is to determine the roots. Throughout what follows, we will use the

cyclic symmetry of the A
(1)
n−1 diagram to make statements “up to rotation”. We also note

that any reflection or reflection functor at a vertex will take into account its two neighbors

in cyclic order.

Lemma VI.20. The positive roots of the A
(1)
1 are, up to rotation, exactly the vectors of the

form

cα0 + cα1 + . . .+ cαj−1 + (c+ 1)αj + . . .+ (c+ 1)αn−1

for c ≥ 0, where the coefficients c and (c+ 1) both appear at least once.
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j · · · (n− 1)

0 1 2 · · · (n− 1)

0 1 2 · · · (n− 1)

0 1 2 · · · (n− 1)

Figure 45: Any real brick of Π
A

(1)
1

has, up to rotation, an exploded view that looks like this. A

priori, the start and end points and the orientations of arrows can be chosen independently.
However, this may not produce a brick: here, the boxed sections show the module B := 1← 2
arising as both a quotient (top) and a submodule (bottom), and so there is a noninvertible
endomorphism M ↠ B ↪→M .

Proof. It is straightforward to calculate that applying any reflection to a vector of this form

produces another vector of this form (though one must take care to distinguish between the

case where the coefficients c and (c + 1) both appear at least twice and the case where one

of them appears only once).

Then we can show by induction on depth that every root has this form. Certainly any

simple root αi does, with c = 0; given any other root β and a reflection si which decreases

a coefficient, siβ has this form by the induction hypothesis, so β does as well.

Similarly, we can show that every vector of this form is a root by induction on the sum

of the coefficients. The base case of coefficients summing to 1 clearly gives a simple root.

Given a vector of this form, let i be an index such that αi has coefficient (c+1) but one of its

neighbors has coefficient c; then applying si decreases the coefficient there, producing a root

by the induction hypothesis, and implying the vector we started with was also a root.

Now given a root, rotated to have the form above, we refer to the edges (n − 1) ↔ 0

and (j − 1) ↔ j, connecting vertices with coefficient c to those with coefficient c + 1, as

interface edges. Abusing terminology slightly, we also use this term to refer to all arrows

in the exploded view corresponding to the maps along these edges.

Theorem VI.21. A module with the exploded view in Figure 45 is a brick if and only if:

(1) all interface edges are oriented away from the larger coefficients, in which case

• if any arrow along a non-interface edge between i and i+1 is oriented i← (i+1),

all following arrows between those two vertices are also oriented that way, OR

(2) all interface edges are oriented toward the larger coefficients, in which case
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2 3

0 1 2 3

0 1 2 3
not a brick

2 3

0 1 2 3

0 1 2 3
not a brick

2 3

0 1 2 3

0 1 2 3
a brick

Figure 46: Some exploded forms which do and don’t meet the conditions of Theorem VI.21.
In the first picture, three of the interface edges are oriented away from the larger coefficients,
but the boxed edge is not. In the second case, the interface edges are consistently oriented,
but the boxed arrow 2 → 3 switches back to pointing right after the previous arrow 2 ← 3
points left. The third picture is valid.

• if any arrow along a non-interface edge between i and i+1 is oriented i→ (i+1),

all following arrows between those two vertices are also oriented that way.

This result is illustrated in Figure 46.

Proof. Analogously to the previous result, we proceed by induction on the depth of the

dimension vector as a root. The base case consists of the simple modules Si, which are

bricks and vacuously satisfy the required conditions.

Now consider a module M with a form fulfilling condition (1). (If M instead satisfies

condition (2), the dual DM , which has all arrows reversed, satisfies condition (1), so we can

assume this without loss of generality.)

First, we claim that either M ∈ NoSubj or M ∈ NoQuotj, where the index j is as in

Lemma VI.20. Condition (1) implies that all arrows between j − 1 and j in the exploded

view point left, which means that the kernel of the map Mj → Mj−1 is spanned by the
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j j + 1

j − 1 j j + 1

j − 1 j j + 1
...

...
...

j j + 1

j − 1 j j + 1

j − 1 j j + 1
...

...
...

Figure 47: At vertex j, an exploded view satisfying condition (1) must either have the form
on the left, in which caseM ∈ NoSubj, or the form on the right, in which caseM ∈ NoQuotj.

M Σ−j (M)

0 k k 0 0 k

k k k k k k

k k k k k k

Figure 48: The effect of reflection functors applied to the center vertex of A3.

top instance of j. If the top arrow between j and j + 1 points right, it means that the

map Mj → Mj+1 is nonzero on this top basis element, implying that kerM(j, out) = 0 and

M ∈ NoSubj. But if the top arrow between j and j + 1 points left, the second part of

condition (1) implies that all arrows between j and j+1 point left; this means that the map

Mj+1 → Mj is the identity, and imM(j, in) = Mj, so M ∈ NoQuotj. These two cases are

illustrated in Figure 47.

Thus it is well-behaved to compute one of Σ−j (M) or Σ+
j (M). By Lemma VI.17, we can

just apply Σ− or Σ+ separately at each vertex labeled j in the exploded view. The possible

outcomes at each vertex are documented in Figure 48. When we do this, we see that the

result has a lesser jth coefficient and still satifies either condition (1) or condition (2), as

shown in Figure 49. Thus by the induction hypothesis, it is a brick. Applying the inverse

reflection functor, by Proposition VI.7, we see that M is also a brick.

Conversely, suppose that M is a real brick. By Proposition VI.7, it has the form

Σ±i (M
′), where M ′ is a real brick with lesser dimension vector. By rotation and the in-

duction hypothesis, we can assume without loss of generality that M ′ has dimension vector

cα0 + . . . + cαj + (c + 1)αj+1 + . . . + (c + 1)αn−1 and satisfies condition (1). In this setup,

the only vertices i at which the reflection si will increase a coefficient are 0 and j. We can

assume without loss of generality that i = j; if i = 0, we can reverse the ordering of the

vertices (“reflecting” the picture of A
(1)
n−1) and rotate back into the form of Lemma VI.20.

Then we claim that M = Σ±j (M
′) also satisfies condition (1). This proceeds along the

same lines as the converse direction, and essentially amounts to reading Figure 49 from right
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j j + 1

j − 1 j j + 1

j − 1 j j + 1
...

...
...

Σ−j

j + 1

j − 1 j j + 1

j − 1 j j + 1
...

...
...

n− 1 0

n− 2 n− 1 0
...

...
...

n− 2 n− 1 0

n− 2 n− 1

Σ−n−1

0

n− 2 n− 1 0
...

...
...

n− 2 n− 1 0

n− 2

j j + 1

j − 1 j j + 1

j − 1 j j + 1
...

...
...

Σ+
j

j + 1

j − 1 j j + 1

j − 1 j j + 1
...

...
...

Figure 49: If a module satisfies condition (1) and lies in NoSubj, then applying Σ−j produces
another module satisfying condition (1) (shown for j ̸= n − 1 above and j = n − 1 in
the middle). If the module instead lies in NoQuotj, applying Σ+

j produces another module
satisfying condition (1) (below).
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to left.

Thus we have classified the real bricks of A
(1)
n−1 by exploding them.

Finally, we note that these real bricks are all shard modules. One can explicitly work out

the stability domains of these bricks, but that would be unenlightening to describe in detail

here. We settle for showing that the number of real bricks is equal to the number of shards,

alluding to but not proving the bijection underlying this equality.

The first step is to enumerate shards, which means the zeroth step is to describe shards.

Lemma VI.22. Consider the expression

sn−1sn−2 · · · s1s0sn−1sn−2 · · · sh+1(αh),

consisting of ℓ reflections applied to a simple root in cyclic order, ending with sn−1. Then

this expression is positive, and produces the root

cα0 + . . .+ cαj−1 + (c+ 1)αj + . . .+ (c+ 1)αn−1

where c = ⌊ℓ/(n− 1)⌋ and j = (n− 1)− ℓ (mod n− 1).

Proof. By induction on ℓ. The base case ℓ = 0 is just αn−1, as required. Then suppose the

expression of length ℓ produces a root of the expected form. Note that we can step from the

expression of length ℓ to the one of length ℓ+ 1 by applying s0 and then shifting all indices

back one step in cyclic order. If ℓ ̸≡ n− 2 (mod n− 1), so j ≥ 2, this produces the root

cα0 + . . .+ cαj−2 + (c+ 1)αj−1 + . . .+ (c+ 1)αn−1

increasing a coefficient and producing the required value. If ℓ ≡ n (mod n − 1), so j = 1,

this produces the root

(c+ 1)α0 + . . .+ (c+ 1)αn−2 + (c+ 2)αn−1

increasing a coefficient and producing the required value.

Lemma VI.23. The fractures of β⊥, where

β := cα0 + . . .+ cαj−1 + (c+ 1)αj + . . .+ (c+ 1)αn−1

are its intersections with the hyperplanes dual to

γ
(b)
i := αi + αi+1 + . . .+ αn−1 + bδ
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where 1 ≤ i ≤ n− 1, δ = α0 + . . .+ αn−1, and 0 ≤ b ≤ c− 1, or b = c if i ≥ j + 1.

Proof. The preceding lemma gives us a positive expression for β. By Theorem III.21, the

truncations of this expression will give a list of roots which induce the fractures of β⊥.

However, note that the truncations of this expression also have the form appearing in the

lemma. It follows that these truncations are exactly the roots of the form

bα0 + . . .+ bαi−1 + (b+ 1)αi + . . .+ (b+ 1)αn−1

with lesser depth than β, which is exactly the claimed list.

Once we have a list of roots inducing fractures, we can specify a shard of a root β⊥ by a

list of signs, indicating whether it pairs positively or negatively with these roots.

Proposition VI.24. Let the roots β and γ
(b)
i be as in the previous lemma. Then a shard K

of β⊥ is specified by any choice of signs for ⟨−, γ(b)
i ⟩ such that

(1) ⟨−, γ(b)
j ⟩ ≥ 0 for all b, and

• if ⟨−, γ(b0)
i ⟩ ≥ 0 for some i ̸= j, then ⟨−, γb

i ⟩ ≥ 0 for all b ≥ b0, OR

(2) ⟨−, γ(b)
j ⟩ ≤ 0 for all b, and

• if ⟨−, γ(b0)
i ⟩ ≤ 0 for some i ̸= j, then ⟨−, γb

i ⟩ ≤ 0 for all b ≥ b0

If c = 0, the top-level choice becomes irrelevant.

Proof. First, note that γ
(b)
j = β− (c− b)δ. Thus, on β⊥, the sign of ⟨−, γ(b)

j ⟩ is equal to that

of ⟨−,−δ⟩ for all b.
On the other hand, the roots γ

(0)
i for i ̸= j and δ are independent mod β, so for any list

of real numbers we can find a point of β⊥ at which the forms ⟨−, γ(0)
i ⟩ for i ̸= j and ⟨−, δ⟩

assume those values.

Suppose that ⟨−, δ⟩ ≥ 0 on K. Then

⟨−, γ(0)
i ⟩ ≤ ⟨−, γ

(1)
i ⟩ ≤ · · · ≤ ⟨−, γ

(c)
i ⟩

on K. In particular, if ⟨−, γ(b0)
i ⟩ ≥ 0 on K for some index b0, then we must also have

⟨−, γ(b)
i ⟩ ≥ 0 for all b ≥ b0; however, because we can realize any combination of values of

⟨−, γ(0)
i ⟩ for i ̸= j and ⟨−, δ⟩, we can choose the value of b at which the sign switches from

negative to positive.

119



This produces exactly the shards described by part (1) of the proposition. Part (2) covers

the case that ⟨−, δ⟩ ≤ 0 on K instead.

Finally, note that if c = 0, then the only γ
(b)
i cutting β⊥ have i ≥ j + 1 and b = 0. In

particular, γ
(b)
j does not cut β⊥ for any b, justifying the last statement in the proposition.

At this point, note that the data required to specify a shard closely relates to the data

required to specify a real brick, as described in Theorem VI.21 — fixing the signs of in-

equalities in the former setting corresponds to fixing the directions of arrows in the latter.

Although we only mention the enumerative consequences here, we’ll investigate phenomena

like this in more detail in chapter VIII.

Corollary VI.25. The root

β = cα0 + . . .+ cαj−1 + (c+ 1)αj + . . .+ (c+ 1)αn−1

has 2(c+ 1)j−1(c+ 2)n−1−j shards if c ≥ 1, or 2n−1−j shards if c = 0.

Proof. In order to define a shard in accordance with Proposition VI.24, we must pick whether

⟨−, γ(b)
j ⟩ is ≥ 0 or ≤ 0 for all b. In the former case, we then choose for each i ̸= j the smallest

b such that ⟨−, γ(b)
i ⟩ ≥ 0; there are c+ 1 options for this if i < j, and c+ 2 options if i > j.

The latter case is the same with inequalities reversed. If c = 0, we do not count the two

cases separately.

Lemma VI.26. Π
A

(1)
n−1

has 2(c+ 1)j−1(c+ 2)n−1−j real bricks of dimension vector

β = cα0 + . . .+ cαj−1 + (c+ 1)αj + . . .+ (c+ 1)αn−1.

Proof. In the case c = 0, this reduces to the type A classification, so we assume c ≥ 1.

By Theorem VI.21, to define a real brick we must first pick whether the interface edges

point away from or towards the larger coefficient. In the former case, we then choose, for

each pair (i−1, i) with 1 ≤ i ≤ n−1 and i ̸= j, the earliest arrow (i−1)← i in the exploded

view which points right to left; there are c + 1 options for this if i < j and c + 2 options if

i > j. The latter case is the same with arrow directions reversed.

Corollary VI.27. Every real brick of Π
A

(1)
n−1

is a shard module.

Proof. If this were not the case, there would be more real bricks than there are shards, but

the counts agree.

120



CHAPTER VII

Short Exact Sequences of Shard Modules

Now that we have a correspondence between shard modules and shards for any root system,

it’s natural to try to refine this correspondence by considering what relationships between

shards tell us about relationships between their corresponding shard modules. A useful

starting point for this is a result of Iyama, Reading, Reiten, and Thomas [IRRT18] for finite

type preprojective algebras: when shards meet in a certain configuration, there exists a short

exact sequence relating the corresponding bricks. In this chapter, we introduce this result in

its original context, explain how it connects to the context of shards, and then generalize it

to shard modules for any preprojective algebra.

Throughout this section:

� A is a crystallographic symmetrizable Cartan matrix, of size n× n.

� G is its Coxeter diagram.

� Φ is the associated root system, with simple roots α1, . . . , αn.

� W is the associated Coxeter group, with generators s1, . . . , sn.

� Given any two roots β1, β2 ∈ Φ with β1 ̸= ±β2, the rank 2 subsystem containing them

is denoted R(β1, β2).

Additionally, following Theorems VI.4 and VI.11, given a shard K, we let M(K) be the

unique shard module with stability domain K.

VII.1: The finite type case

The source [IRRT18] for the result which motivates this section discusses the same classifi-

cation of bricks as [Tho18], but rather than using the concept of shards, it refers to other

aspects of the lattice theory of Coxeter groups. We state their result in its original form,
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then explain how to translate it into the language of shards. In this section, G is assumed

to be one of the simply laced Dynkin diagrams An, Dn, E6, E7, or E8.

Specifically, for any cover relation w ⋖ wsh in the weak order, one can define a corre-

sponding layer module. Suppose that si1 · · · siℓ is a positive expression for w, and recall

the ideals Ii := ΠG(1 − ei)ΠG which appeared in Section V.2.2. Then the layer module is

the quotient

(Ii1 · · · Iiℓ)/(Ii1 · · · IiℓIh)

Theorem VII.1 ([IRRT18, Proposition 4.3]). For an interval in weak order of the form

w

wsi wsj

wsisj wsjsi

wsisjsi

X Y

E F

Y X

(0) The layer modules X, Y , E, and F are as shown.

(1) There exist short exact sequences

0→ X → E → Y → 0

0→ Y → F → X → 0

(2) Ext1(X, Y ) and Ext1(Y,X) are 1-dimensional, spanned by these extensions.

In this case, [IRRT18] calls the modules E and F a doubleton.

The layer modules are bricks [IRRT18, Theorem 1.2], and it is with layer modules that

[Tho18] makes the connection between bricks and shards, specifically using the following

result:

Theorem VII.2 ([Tho18, Proof of Theorem 6]). Let D be the base region of the reflecting

hyperplane arrangement. For any cover w ⋖ wsj in the weak order, let B(w ⋖ wsj) be the

layer module. Then − Stab(B(w ⋖ wsj)) contains1 the wall separating wD and wsjD; in

particular, it is the shard containing that wall.

1The definition of stability in [Tho18] uses an inequality going the other way, which accounts for the
negative sign here.
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The six elements in the statement of Theorem VII.1 correspond to 6 regions in the

reflecting hyperplane arrangement, and so the modules X, Y , E, and F in the theorem are

the shard modules corresponding to the negations of the shards which separate these regions.

Thus we can restate the theorem in the following way.

Theorem VII.3. Suppose a hyperplane β⊥ is cut by a rank 2 subsystem with fundamental

roots γ1 and γ2. Let L1 and L2 be shards of γ⊥1 and γ⊥2 , respectively, whose intersection has

codimension 2. Since β⊥ is cut by this subsystem, there exist two shards KE and KF of β⊥

whose intersection with L1 ∩ L2 is codimension 2. Suppose wihout loss of generality that

⟨γ1,−⟩ ≥ 0 on KE. Then:

(1) There exist short exact sequences

0→M(L1)→M(KE)→M(L2)→ 0

0→M(L2)→M(KF )→M(L1)→ 0

(2) Ext1(M(L2),M(L1)) and Ext1(M(L1),M(L2)) are 1-dimensional, spanned by these

extensions.

Proof. If we choose a generic point in the intersection −(KE ∩KF ∩ L1 ∩ L2) and examine

how a small neighborhood of that point meets the reflecting hyperplane arrangement and

its shards, we see that it touches 6 regions arranged like so:

These six regions will then correspond to an interval of 6 elements as in Proposition VII.1.

We claim that, in this interval, C1 is the least element (which will show that our figure is

oriented in the same way as the figure in VII.1).

Recall from the context of Theorem II.23 that for a region C, S(C) denotes the set of

hyperplanes separating C from the base region D, and that the ordering of regions is defined

by C ≤ C ′ if S(C) ⊂ S(C ′).

By assumption, KE lies on the positive side of γ⊥1 (by which we mean that its points pair

nonnegatively with γ1). By definition, D does as well. Thus γ⊥1 separates −KE and D. As

a result, it also separates regions C2, C3, and C6 from D.
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On the other hand, −KF lies on the positive side of γ⊥1 . Because γ1 and γ2 are fundamen-

tal in this rank 2 subsystem, β is a positive linear combination of them. For any x ∈ −KF ,

⟨x, β⟩ = 0 but ⟨x, γ1⟩ ≥ 0, so ⟨x, γ2⟩ ≤ 0. Thus γ⊥2 separates −KF , and thus the regions C4,

C5, and C6, from D. It follows that C1, as the only region here not separated from D by γ⊥1

or γ⊥2 , is the least element in this interval.

We can now apply Theorem VII.1 to this situation. Note that by Theorem VII.2, the

roles of X, Y , E, and F are played by M(L1), M(L2), M(KE), and M(KF ) respectively.

VII.2: Fundamental shards

In generalizing Theorem VII.3 to the infinite setting, we’d like to apply it to the task of

systematically breaking down a shard module as follows. Suppose we’re given a shard K,

and we pick some wall of K (i.e., one of its facets — an (n − 2)-dimensional cone). That

wall exists because the hyperplane containing K is cut by a rank 2 subsystem R there: in

other words, the wall is K ∩R⊥, and we say that the wall is sliced by R. If we select from

each of the fundamental hyperplanes of R its shard which meets K, we’ll be in the situation

of Theorem VII.3 and can realize M(K) as an extension of smaller shard modules.

However, if we try to frame this as an algorithm which takes a shard and one of its walls

as input and spits out a short exact sequence, we run into a small issue: a priori, each

fundamental hyperplane could have multiple shards meeting K, introducing an arbitrary

choice.

It turns out that this doesn’t happen. In this section, we will prove:

Theorem VII.4. Let β be a root, R a rank 2 subsystem cutting β⊥, and γ1 and γ2 the

fundamental roots of R. Let K ⊂ β⊥ be a shard with a wall sliced by R. Then for i = 1, 2

there exists a unique shard Li ⊂ γ⊥i such that Li ⊃ K ∩R⊥.

Without loss of generality, we’ll prove the case i = 1. The strategy here is to show that,

for any fracture of γ⊥1 , there is a fracture of β⊥ which meets the subspace R⊥ in the same

way. In particular, if two different shards of γ⊥1 met K ∩ R⊥, any fracture separating them

would correspond to a fracture of β⊥ passing through K, a contradiction since K is a shard

of β⊥. We now explain the details of this approach.

The key step is the following lemma.

Lemma VII.5. Let β,R, γ1, γ2 be as in Theorem VII.4. Let T be a rank 2 subsystem cutting

γ⊥1 . Then there exists a rank 2 subsystem S cutting β⊥, such that

span(R, S) = span(R, T )
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Proof. We proceed by induction on the depth of β. The base case of depth 0 is vacuous,

since then β is a simple root and is fundamental in any rank 2 subsystem. We proceed to

the inductive step.

Let β = siℓ · · · si1(αi0) be a positive expression for β. By Theorem III.21, there is a trun-

cation τ = siℓ · · · sij+1
(αij) such that R = R(β, τ). Letting µ = siℓ · · · sij+1

sij−1
· · · si1(αi0) be

the corresponding omission, we additionally know by Proposition III.23 that R = R(β, µ).

The proof now splits into three cases.

(a) First, suppose τ = γ1. By Theorem III.21, T = R(τ, τ ′) for some truncation τ ′ =

siℓ · · · sik+1
(αik) of the expression defining τ . But then τ ′ is also a truncation of our

original positive expression for β, so S = R(β, τ ′) cuts β⊥ and has the required property.

(b) Next, suppose µ = γ1. By Theorem III.21, T = R(µ, τ ′) for some truncation τ ′ of the

expression defining µ. This will take the form

siℓ · · · sik+1
(αik)

or

siℓ · · · sij+1
sij−1

· · · sik+1
(αik)

depending on whether k > j or k < j.

In the former case, we can take S = R(β, τ ′) for the same reason as in the previous

case. In the latter case, let

τ ′′ = siℓ · · · sij+1
sijsij−1

· · · sik+1
(αik)

This is a truncation of the positive expression for β, so R(β, τ ′′) cuts β. Then let

S = R(β, τ ′′). By the definition of sij we have

sijsij−1
· · · sik+1

(αik) = sij−1
· · · sik+1

(αik) + cαij

for some constant c. Applying siℓ · · · sij+1
to both sides implies

τ ′′ = τ ′ + cτ

and thus

span(R, S) = span(β, τ, τ ′′) = span(β, τ, τ ′) = span(β, µ, τ ′) = span(R, T ).
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(c) Suppose neither τ nor µ is γ1, and additionally τ ̸= γ2. Then τ is not fundamental in

R. Since τ has lesser depth than β, we can apply the induction hypothesis to find a

rank 2 subsystem Tτ cutting τ⊥ such that span(R, Tτ ) = span(R, T ). But then we can

apply the reasoning of part (a) (which works even if τ is not fundamental) to find a

rank 2 subsystem S cutting β⊥ such that span(R, S) = span(R, Tτ ).

(d) Finally, suppose neither τ nor µ is γ1 but τ = γ2. Then µ ̸= γ2 (since we know τ and

µ generate a rank 2 subsystem) and so it is not fundamental in R. Again, µ has lesser

depth than β, so we can apply the induction hypothesis to find a rank 2 subsystem Tµ

cutting µ⊥ such that span(R, Tµ) = span(R, T ). Then we can apply the reasoning of

part (b) (which, again, works even if µ is not fundamental) to find a rank 2 subsystem

S cutting β⊥ such that span(R, S) = span(R, Tµ).

Now we can prove Theorem VII.4.

Proof. Let F = K ∩ R⊥ be the wall under consideration. We first claim that there exists a

shard L1 of γ
⊥
1 containing F . Specifically, we show that for any rank 2 subsystem T cutting

γ⊥1 , F lies entirely on one side of the fracture T⊥. By Lemma VII.5, there exists a rank 2

subsystem S cutting β⊥ such that span(R, S) = span(R, T ). Then K lies on one side of S⊥,

and so F = K ∩ R⊥ lies on one side of R⊥ ∩ S⊥ = R⊥ ∩ T⊥. Since F doesn’t cross any

fractures of γ⊥1 , it must be contained in a shard L1.

Then we show that L1 is unique in this regard. If there were some other shard L′1 also

containing F , then F would be contained in the fracture separating L1 and L′1, which is a

subspace of dimension n− 2. However, F is a cone of dimension n− 2, so the only possible

such subspace is the span of F , which is R⊥. This cannot be a fracture of γ⊥1 because, by

definition, γ1 is fundamental in R.

Definition VII.6. In the setting of Theorem VII.4, we say that L1 and L2 are the funda-

mental shards meeting K at the wall R⊥.

We note that the relationship between a shard and the fundamental shards at a wall can

be recast in terms of the shard digraph, which was defined in Section III.3. The main result

of this section becomes:

Corollary VII.7. Let K be any shard. For each wall of K, there are exactly two arrows

out of K in the shard digraph, pointing to the fundamental shards meeting K at that wall.

Finally, we state a lemma on the positioning of fundamental shards which will be useful

in what follows.
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Lemma VII.8. Let L1 and L2 be the fundamental shards of γ⊥1 and γ⊥2 meeting K at a wall

R⊥. Then L1 contains points on both sides of γ⊥2 .

Proof. This can be seen in Figure 50. More precisely, if L1 lay entirely to one side of γ⊥2 ,

then the cone L1∩R⊥ ⊂ γ⊥2 would belong to the boundary of L1, so it would lie in a fracture

of γ⊥1 . But since L1 ∩R⊥ contains the wall K ∩R⊥, it has dimension n− 2, and its span is

all of R⊥, which must thus fracture γ⊥1 . This contradicts that γ1 is fundamental in R.

VII.3: The doubleton short exact sequence

This section is dedicated to proving the following generalization of Theorem VII.3 beyond

finite type.

Theorem VII.9. Let β be a root and let K be a shard of β⊥. Let R be a rank 2 subsystem

slicing a wall of K, and let γ1 and γ2 be the fundamental roots of R. Without loss of

generality, suppose ⟨−, γ1⟩ ≥ 0 on K. Let c1, c2 be constants such that β = c1γ1 + c2γ2. Let

L1 and L2 be the fundamental shards of γ⊥1 and γ⊥2 , respectively, meeting K at R. Then:

(1) There exists a short exact sequence

0→M(L1)
⊕c1 f−→M(K)

g−→M(L2)
⊕c2 → 0

(2) dimHom(M(K),M(L1)) = dimHom(M(L2),M(K)) = 0,

dimHom(M(L1),M(K)) = c1, and dimHom(M(K),M(L2)) = c2.

There is a useful characterization of the maps in this sequence. We view f as a row

vector of c1 component maps fi : M(L1) → M(K), and likewise view g as a column vector

of c2 component maps gi : M(K)→M(L2).

Corollary VII.10. For any exact sequence of the form in Theorem VII.9, the compo-

nents of f are a basis of Hom(M(L1),M(K)) and the components of g are a basis of

Hom(M(K),M(L2)).

Proof. Because the number of components of f equals the dimension of Hom(M(L1),M(K)),

it suffices to show they are linearly independent. If not, there would be a relation
∑c1

i=1 aifi =

0. But then for any element m ∈M(L1), the element (a1m, . . . , ac1m) would be sent to 0 by

f , contradicting that f is injective. The proof for g proceeds dually.
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Figure 50: Theorem VII.9 states that, whenever three shards meet in this configuration,
there is a short exact sequence relating M(L1), M(K), and M(L2).

The setting in which the theorem applies is shown in Figure 50. Following the language

of [IRRT18], we call this sequence the doubleton sequence or doubleton extension of

M(L2)
⊕c2 by M(L1)

⊕c1 .

Throughout this proof, we let β = siℓ · · · si1(αi0) be a positive expression for β. Then by

Theorem III.25, we can choose signs such that K = σ±ℓ
iℓ
· · ·σ±1

i1
(α⊥i0). This will be a proof by

induction, and in preparation for this we additionally define

β′ := siℓβ = siℓ−1
· · · si1(αi0)

K ′ := σ
±ℓ−1

iℓ−1
· · ·σ±1

i1
(α⊥i0)

R′ := siℓR

By Theorem III.21, there is some truncation τ = siℓ · · · sij+1
(αij) such that R = R(β, τ).

Let j be the smallest index for which this happens. Then we proceed by induction on ℓ− j.

VII.3.1: The base case

We first treat the base case of j = ℓ. This is the case that R = R(β, αiℓ), and no truncation

besides the one at siℓ lies in R. To prove the theorem in this case, we need to compute the

fundamental roots and shards.

Lemma VII.11. In the case j = ℓ:

(1) The fundamental roots of R(β, αiℓ) are αiℓ and β′.

(2) The fundamental shards meeting K at the wall R⊥ are α⊥iℓ and K ′.

Proof. (1) A simple root is always fundamental in any rank 2 subsystem, so αiℓ is funda-

mental. Suppose for a contradiction that β′ is not. Then (β′)⊥ is cut by αiℓ , so by The-

orem III.21 there is some truncation τ ′ = siℓ−1
· · · sij+1

(αij) such that αiℓ ∈ R(β′, τ ′).
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But then, applying siℓ , we see that siℓτ
′ is a truncation of the expression for β, at

an index smaller than ℓ, such that αiℓ ∈ R(β, siℓτ
′). This contradicts the assumption

j = ℓ.

(2) Because α⊥iℓ is the only shard of α⊥iℓ , it certainly meets K. Note that R⊥ ⊂ α⊥iℓ , so it is

fixed pointwise by siℓ . Thus we have

K ∩R⊥ = σ±ℓ
iℓ
(K ′ ∩R⊥) ⊂ siℓ(K

′ ∩R⊥) = K ′ ∩R⊥

which implies K ′ is the fundamental shard of (β′)⊥ meeting K.

We can now state what Theorem VII.9 says in this case. Suppose without loss of gener-

ality that K = σ+
iℓ
(K ′). (The case of K = σ−iℓ (K

′) proceeds dually.) Then ⟨−, αiℓ⟩ ≤ 0 on

K, so we have L1 = K ′ and L2 = α⊥iℓ . Additionally, by the definition of reflection

β′ = siℓ(β) = β − (αiℓ , β)αiℓ

so we set c1 = 1, c2 = (αiℓ , β). To finish the base case, we thus need to show:

Lemma VII.12. In the context of this section,

(1) There exists a short exact sequence

0→M(K ′)
f−→M(K)

g−→ S
⊕(αiℓ

,β)

iℓ
→ 0

(2) dimHom(M(K),M(K ′)) = dimHom(Siℓ ,M(K)) = 0,

dimHom(M(K ′),M(K)) = 1, and dimHom(M(K), Siℓ) = (αiℓ , β).

Proof. (1) Because K = σ+
iℓ
(K ′), it follows from Theorem VI.15 that M(K) = Σ+

iℓ
(M(K ′))

and that this expression is well-behaved, so M(K ′) ∈ NoQuotiℓ . Then the result will

follow from Lemma V.15 if we show that M(K ′) is also in NoSubiℓ . If M(K ′) had Siℓ

as a submodule, it would impose ⟨−, αiℓ⟩ ≥ 0 on the stability domain K ′. However,

this would imply that K ′ lies entirely on one side of α⊥iℓ , contradicting Lemma VII.8.

(2) If there were a nonzero map M(K) → M(K ′), we could compose it with the map

M(K ′) ↪→M(K) to get a noninvertible endomorphism of M(K), contradicting that it

is a brick, so dimHom(M(K),M(K ′)) = 0.

Any output of Σ+
iℓ
lies in NoSubiℓ , so since M(K) = Σ+

iℓ
(M(K ′)), we have

dimHom(Siℓ ,M(K)) = 0.
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Applying Hom(M(K ′),−) to the sequence from part (1) gives an exact sequence

0→ Hom(M(K ′),M(K ′))→ Hom(M(K ′),M(K))→ Hom(M(K ′), Siℓ).

Since M(K ′) ∈ NoQuotiℓ , the last term is 0, and since M(K ′) is a real brick, the first

term is 1-dimensional by Lemma VI.8. Thus dimHom(M(K ′),M(K)) = 1.

Finally, viewing the map g : M(K) → S
⊕(αi,β)
iℓ

from part (1) as a collection of (αi, β)

component maps M(K)→ Siℓ , we claim that these form a basis for Hom(M(K), Siℓ).

By part (2) of Lemma V.15, for any map h : M(K) → Siℓ , there is a unique map

h : S
⊕(αiℓ

,β)

iℓ
→ Siℓ such that h ◦ g = h. Because Hom(Siℓ , Siℓ)

∼= k, this is equivalent

to realizing h as a unique linear combination of the components of g.

VII.3.2: Preparing for the inductive step

We now move on to the inductive step of the proof, so suppose that ℓ > j. Our goal here

is to reduce to considering the shard K ′. We first claim that K ′ has a wall sliced by R′.

Because j < ℓ, we can take the truncation τ ′ = siℓ−1
· · · sij+1

(αij) and write R′ = R(β′, τ ′).

Thus R′ cuts (β′)⊥ by Theorem III.21. To see that K ′ ∩ (R′)⊥ is actually a wall of K ′, we

show that it has dimension n− 2. We have

K ∩R⊥ = σ±ℓ
iℓ
(K ′ ∩ (R′)⊥) ⊂ siℓ(K

′ ∩ (R′)⊥)

and since the left side has dimension n− 2, the right side does as well.

Next, we note that in the context of the shard K ′ and its wall sliced by R′, the quantity

ℓ− j is smaller. The quantity j has not changed: as observed above, truncating the positive

expression at index j produces a root τ ′ such that R′ = R(β′, τ ′), and if any truncation at

a smaller index produced a root in R′, the corresponding truncation of the expression for β

would produce a root in R, contradicting the original definition of j. However, the depth ℓ

has gone down. This means that, by the induction hypothesis, Theorem VII.9 applies to the

shard K ′ and its wall sliced by R′.

However, the particulars of getting from here back to a statement about K and R are

slightly different depending on whether R contains the simple root αiℓ . We thus divide this

step into two cases.
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VII.3.3: Inductive step, case 1: R does not contain αiℓ

We first state exactly what the induction hypothesis tells us in this case. The key fact special

to this case is that, by Lemma III.18, γ′1 := siℓ(γ1) and γ′2 := siℓ(γ2) are the fundamental

roots of R′. In particular, β′ = c1γ
′
1 + c2γ

′
2. Let L′1 and L′2 be the fundamental shards of

(γ′1)
⊥ and (γ′2)

⊥, respectively, which meet K ′ at the wall sliced by R′. Finally, just as K lies

on the positive side of γ⊥1 , we claim that K ′ lies on the positive side of (γ′1)
⊥: if instead it lay

on the negative side, since K ⊂ siℓ(K
′) we would have ⟨θ, γ1⟩ = ⟨siℓθ, γ′1⟩ ≤ 0 for any θ ∈ K,

a contradiction. Putting this together, the induction hypothesis gives an exact sequence

0→M(L′1)
⊕c1 →M(K ′)→M(L′2)

⊕c2 → 0

Then we claim that applying Σ±ℓ
iℓ

to this sequence produces the sequence in Theorem VII.9.

We need to check that each term of this sequence is sent to the appropriate term of the new

sequence, and that the sequence remains exact afterwards. Assume without loss of generality

that ±ℓ = +; the other case proceeds dually.

Lemma VII.13. For L′1 and L′2 as defined in this section, M(L′1) and M(L′2) both lie in

NoQuotiℓ.

Proof. If M(L′1) instead has Siℓ as a quotient, then its stability domain L′1 satisfies the

constraint ⟨−, αiℓ⟩ ≤ 0. Thus it will suffice to show that both L′1 and L′2 contain points

where ⟨−, αiℓ⟩ > 0. By definition, L′1 and L′2 both contain K ′ ∩ (R′)⊥, so in turn it will

suffice to show that this wall contains such points. If it didn’t, we would have

K ∩R⊥ = σ+
iℓ
(K ′ ∩ (R′)⊥) = siℓ(K

′ ∩ {θ | ⟨−, αiℓ⟩ ≥ 0} ∩ (R′)⊥) ⊂ α⊥iℓ ∩R⊥

But since R doesn’t contain αiℓ , the right side has dimension n−3, contradicting that K∩R⊥

is a wall of K.

Lemma VII.14. For L′1 and L′2 as defined in this section, Σ+
iℓ
(M(L′1))

∼= M(L1) and

Σ+
iℓ
(M(L′2))

∼= M(L2).

Proof. We focus on L′1; the case of L
′
2 is identical. We first show that Σ+

iℓ
(M(L′1)) is a shard

module. Then, we show that its stability domain is L1, at which point Theorem VI.11 will

imply that it is actually M(L1).

As observed in our discussion of Proposition VI.7, applying Σ+
iℓ
to a real brick in NoQuotiℓ

produces another real brick. Thus Σ+
iℓ
(M(L′1)) is a real brick. Then we check that its stability
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domain has dimension n− 1, so that it is a shard module. By Lemma VI.12,

Stab(Σ+
iℓ
(M(L′1))) ⊃ σ+

iℓ
(Stab(M(L′1))) = σ+

iℓ
(L′1)

As shown in the previous lemma, L′1 contains points with ⟨−, αiℓ⟩ > 0, so its dimension does

not go down when we intersect it with {θ | ⟨θ, αiℓ⟩ ≥ 0}. Thus σ+
iℓ
(L′1) is also a cone of

dimension n− 1.

Finally, we note that since L′1 ⊃ K ′ ∩ (R′)⊥,

Stab(Σ+
iℓ
(M(L′1))) ⊃ σ+

iℓ
(L′1) ⊃ σ+

iℓ
(K ′ ∩ (R′)⊥) = K ∩R⊥

Thus Stab(Σ+
iℓ
(M(L′1))), which we now know must be a shard of γ⊥1 , is the fundamental

shard meeting K at the wall R, namely L1.

Now that we know Σ+
iℓ
will send the terms of our sequence where they’re supposed to go,

we complete this case of the inductive step.

Lemma VII.15. In the context of this section:

(1) There exists a short exact sequence

0→M(L1)
⊕c1 →M(K)→M(L2)

⊕c2 → 0

(2) dimHom(M(K),M(L1)) = dimHom(M(L2),M(K)) = 0,

dimHom(M(L1),M(K)) = c1, and dimHom(M(K),M(L2)) = c2.

Proof. (1) By Lemma VII.14, applying Σ+
iℓ
to the exact sequence given by the induction

hypothesis produces the sequence

0→M(L1)
⊕c1 →M(K)→M(L2)

⊕c2 → Ext1(Iiℓ ,M(L′1)
⊕c1).

By Lemma V.20, this last term is 0.

(2) By the induction hypothesis and the fact that β′ = c1γ
′
1 + c2γ

′
2, we have

dimHom(M(K ′),M(L′1)) = 0

dimHom(M(L′2),M(K ′)) = 0

dimHom(M(L′1),M(K ′)) = c1

dimHom(M(K ′),M(L′2)) = c2
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Figure 51: The situation of step 2 of the induction. K and K ′ are both cut by R, but lie on
opposite sides of it.

Because Σ+
iℓ
acts as an equivalence of categories on NoQuotiℓ , applying it doesn’t change

any of these dimensions.

VII.3.4: Inductive step, case 2: R contains αiℓ

The key factor differentiating this case from the previous one is that the subsystems R and

R′ := siℓR are now the same. This is clearest in the dual picture: R⊥ ⊂ α⊥iℓ , so it is fixed

pointwise by siℓ . In particular, the wall K ∩ R⊥ is also a wall of K ′. In contrast with

the previous case, when we apply the induction hypothesis to K ′, we will use the same

fundamental roots and shards.

As before, we treat the case that ±ℓ = +, and the other case proceeds dually. Since αiℓ

is a simple root, it is fundamental in any rank 2 subsystem that contains it, including R,

and α⊥iℓ is a single shard. Since K = σ+
iℓ
(K ′), we have ⟨−, αiℓ⟩ ≤ 0 on K, so αiℓ = γ2. The

situation is illustrated in Figure 51.

BecauseK ′ meets the same wall asK, the induction hypothesis will give an exact sequence

relating it to M(L1) and M(L2) = Siℓ . However, because K = σ+
iℓ
(K ′) = siℓ(K

′ ∩ {θ |
⟨θ, αiℓ⟩}), we have ⟨−, αiℓ⟩ ≥ 0 on K ′. Additionally,

β′ = siℓ(β) = siℓ(c1γ1 + c2αiℓ) = c1γ1 + (c2 − c1(γ1, αiℓ)αiℓ

Accordingly, we let c′1 = c2 − c1(γ1, αiℓ) and c′2 = c1.

Thus, by the induction hypothesis, there is an exact sequence

0→ S
⊕c′1
iℓ
→M(K ′)→M(L1)

⊕c′2 → 0
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We now complete the inductive step.

Lemma VII.16. In the context of this section:

(1) There exists a short exact sequence

0→M(L1)
⊕c1 →M(K)→ S⊕c2iℓ

→ 0

(2) dimHom(M(K),M(L1)) = dimHom(Siℓ ,M(K)) = 0,

dimHom(M(L1),M(K)) = c1, and dimHom(M(K), Siℓ) = c2.

Proof. (1) Applying Σ+
iℓ
to the exact sequence given by the induction hypothesis produces

the sequence

0→ Σ+
iℓ
(Siℓ)

⊕c′1 →M(K)→ Σ+
iℓ
(M(L1))

⊕c′2 → Ext1(Iiℓ , Siℓ)
⊕c′1 → Ext1(Iiℓ ,M(K ′)).

Direct calculation shows that Σ+
iℓ
(Siℓ) = 0, while Lemma V.20 shows that the last two

terms are S
⊕c′1
iℓ

and 0 (because M(K ′) ∈ NoQuotiℓ). Thus this reduces to a short exact

sequence

0→M(K)
j−→ Σ+

iℓ
(M(L1))

⊕c′2 h−→ S
⊕c′1
iℓ
→ 0.

Next, we observe that M(L1) ∈ NoQuotiℓ ∩ NoSubiℓ . If it had Siℓ as a quotient, it

would impose ⟨−, αiℓ⟩ ≥ 0 on the stability domain L1. Likewise, if it had Siℓ as a

submodule, it would impose ⟨−, αiℓ⟩ ≤ 0. In either case, this would contradict Lemma

VII.8. Then by Lemma V.15, there is another exact sequence

0→M(L1)
f ′′
−→ Σ+

iℓ
(M(L1))

g′′−→ S
⊕−(αi,γ1)
iℓ

→ 0

By part (2) of Lemma V.15, there is a unique map h : S
⊕−c′2(αi,γ1)
iℓ

→ S
⊕c′1
iℓ

such that

the following diagram commutes:

0 M(L1)
⊕c′2 Σ+

iℓ
(M(L1))

⊕c′2 S
⊕−c′2(αiℓ

,γ1)

iℓ
0

0 M(K) Σ+
iℓ
(M(L1))

⊕c′2 S
⊕c′1
iℓ

0

f ′′ g′′

∃! h

j h

In turn, this implies that h ◦ f ′′ = h ◦ g′′ ◦ f ′′ = 0, so f ′′ factors through a map

f : M(L1)
⊕c′2 → ker(h) ∼= M(K). Since c′2 = c1, this is the first map of the desired

sequence; since f ′′ is injective, so is f .
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Then since β = c1γ1 + c2αiℓ , the cokernel of f has dimension c2αiℓ , so it must be S⊕c2iℓ
.

This produces the desired sequence.

(2) Applying Hom(−, Siℓ) to the sequence we just obtained gives the sequence

0→ Hom(Siℓ , Siℓ)
⊕c2 → Hom(M(K), Siℓ)→ Hom(M(L1), Siℓ)

⊕c1 = 0

because M(L1) ∈ NoQuotiℓ , as previously observed. Thus dimHom(M(K), Siℓ) = c2.

Likewise, applying Hom(M(L1),−) to the sequence gives the sequence

0→ Hom(M(L1),M(L1))
⊕c1 → Hom(M(L1),M(K))→ Hom(M(L1), Siℓ)

⊕c2 = 0

and so, because M(L1) is a real brick,

dimHom(M(L1),M(K)) = c1 dimHom(M(L1),M(L1)) = c1

by Lemma VI.8.

We know that Hom(Siℓ ,M(K)) = 0 because M(K) is an output of Σ+
iℓ
, and thus in

NoSubiℓ .

Finally, suppose there exists a nonzero homomorphism φ : M(K) → M(L1). Let

ι : M(L1) → M(L1)
⊕c1 be any inclusion map. Then the composition f ◦ ι ◦ φ :

M(K)→ M(K) would be a nonzero endomorphism of M(K). But because it factors

through a smaller submodule, it cannot be invertible, contradicting that M(K) is a

brick.

Having finished both cases of the induction, the proof of Theorem VII.9 is complete.

VII.4: M(K) is the generic extension of M(L2)
⊕c2 by M(L1)

⊕c1

We recall now that there was a second part to Theorem VII.3: in that case, not only

do M(KE), M(L1), and M(L2) slot into an exact sequence, but that extension spans

Ext1(M(L2),M(L1)), which is only 1-dimensional. In particular, this means that M(KE) is

the only module arising as a non-split extension of M(L2) by M(L1).

In our more general setting of Theorem VII.9, we can’t have exactly the same prop-

erty: we’d like to make a statement about Ext1(M(L2)
⊕c2 ,M(L1)

⊕c1), whose dimension is

necessarily divisible by c1c2. The appropriate generalization turns out to be that M(K) is
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somehow the generic extension of M(L2)
⊕c2 by M(L1)

⊕c1 . In this section, we make this

precise.

First, note that by the functoriality of Ext, there is an action of Aut(M(L2)
⊕c2)op ×

Aut(M(L1)
⊕c1) on Ext1(M(L2)

⊕c2 ,M(L1)
⊕c1). Because M(L1) and M(L2) are real bricks,

we can identify their endomorphism rings with k by Lemma VI.8, recasting this as an action

of GLc2(k)
op ×GLc1(k). To clean up notation, we write GLci := GLci(k) in what follows.

Precisely, given an extension 0 → M(L1)
⊕c1 → N → M(L2)

⊕c2 → 0 and an element

h2 ∈ Aut(M(L2)
⊕c2) ∼= GLc2 , acting by h2 gives the extension obtained by pullback:

0 M(L1)
⊕c1 N ×M(L2)⊕c2 M(L2)

⊕c2 M(L2)
⊕c2 0

0 M(L1)
⊕c1 N M(L2)

⊕c2 0

h2

f g

However, it is straightforward to verify from either the universal property or explicit

construction that this pullback square can be realized by

0 M(L1)
⊕c1 N M(L2)

⊕c2 0

0 M(L1)
⊕c1 N M(L2)

⊕c2 0

f h−1
2 ◦g

h2

f g

Dually, we can show that acting by an element h1 ∈ Aut(M(L1)
⊕c1) ∼= GLc1 produces

the sequence

0→M(L1)
⊕c1 f◦h−1

1−−−→ N
g−→M(L2)

⊕c2 → 0.

From our perspective, applying this action to the doubleton short exact sequence just

produces a different instance of the sequence — it’s changing the bases of M(L1)
⊕c1 and

M(L2)
⊕c2 , rather than altering their relationship with M(K). Thus our claim that the

doubleton extension is generic becomes the following theorem.

Theorem VII.17. Viewing Ext1(M(L2)
⊕c2 ,M(L1)

⊕c1) as affine space, the GLop
c2
×GLc1-

orbit of the doubleton exact sequence is Zariski-open.

Proof. Our strategy is to use orbit-stabilizer reasoning to show that the orbit has the same

dimension as the full Ext space. In the setting of algebraic geometry, the role of the orbit-

stabilizer theorem is played by a couple of facts from the theory of algebraic groups.

Proposition VII.18 ([Mil17, Proposition 5.23]). Let G be an algebraic group and H an

algebraic subgroup. Then

dimG = dimH + dimG/H.
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Proposition VII.19 ([Mil17, Propositions 7.12 and 7.17]). Let G ×X → X be the action

of a smooth algebraic group on a separated scheme X over k. For any k-valued point x of

X, let Gx be its stabilizer and Ox its orbit. Then the quotient G/Gx exists, and the map

g 7→ gx induces an immersion G/Gx → X, with image Ox. In particular, Ox is open in a

closed subscheme.

We first claim that the stabilizer of the doubleton extension is 1-dimensional. An element

(h1, h2) ∈ GLop
c1
×GLop

c2
is in the stabilizer when there exists an automorphism j : M(K)→

M(K) such that the following diagram commutes:

0 M(L1)
⊕c1 M(K) M(L2)

⊕c2 0

0 M(L1)
⊕c1 M(K) M(L2)

⊕c2 0

f g

j

f◦h−1
1 h−1

2 ◦g

However, M(K) is a real brick, so by Lemma VI.8, j must act by scalar multiplication by

some a ∈ k×. Since af = fa = f ◦h−11 and f is injective, we know that h−11 is multiplication

by a; likewise, since ga = ag = h−12 ◦ g and g is surjective, h−12 is multiplication by a. It

follows that the stabilizer is isomorphic to k×, and thus 1-dimensional.

We also note that dim(GLop
c2
×GLc1) = c21 + c22. So by Proposition VII.18, the quotient

by the stabilizer has dimension c21+c22−1. By Proposition VII.19, the orbit of the doubleton

extension is open in a closed subscheme of this dimension.

Now we claim that

dimExt1(M(L2)
⊕c2 ,M(L1)

⊕c1) = c21 + c22 − 1.

We first observe that

Hom(M(L1),M(L2)) = Hom(M(L2),M(L1)) = 0.

To see that Hom(M(L1),M(L2)) = 0, we apply Hom(M(L1),−) to the doubleton sequence

to get the exact sequence

0→ Hom(M(L1),M(L1)
⊕c1)→ Hom(M(L1),M(K))→ Hom(M(L1),M(L2)

⊕c2)

→ Ext1(M(L1),M(L1)
⊕c1) = 0

where the last term is 0 by Proposition VI.9. Then since M(L1) is a real brick, the first

nonzero term has dimension c1 by Lemma VI.8, and by Theorem VII.9(a), the second term

also has dimension c1. It follows that the third term is 0.
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To see that Hom(M(L2),M(L1)) = 0, note that any nonzero mapM(L2)→M(L1) could

be composed with the injective f : M(L1)→M(K) to give a nonzero map M(L2)→M(K),

contradicting Theorem VII.9(a).

It follows from Proposition V.17 that

(c2γ2, c1γ1) = (dimM(L2)
⊕c2 , dimM(L1)

⊕c1) = − dimExt1(M(L2)
⊕c2 ,M(L1)

⊕c1)

On the other hand, because β, γ1, and γ2 are all roots, we have

2 = (β, β) = (c1γ1 + c2γ2, c1γ1 + c2γ2)

= c21(γ1, γ1) + 2(c2γ2, c1γ1) + c22(γ2, γ2) = 2c21 + 2c22 + 2(c2γ2, c1γ1)

and thus

(c2γ2, c1γ1) = 1− c21 − c22.

Putting these last two statements together gives the claimed dimension for Ext1.

In particular, the orbit of the doubleton extension is open in a closed subscheme of

dimension equal to the affine space it lies in, which can only be the entire space; thus it must

be Zariski-open.
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CHAPTER VIII

Filtrations of Shard Modules with Tails

In Section VI.2, we saw the classification of bricks of type A and how they correspond to

shards. The key takeaway there was that each shard can be expressed by a sign vector

— recording, for each fracture, which side the shard lies on — while each brick can be

expressed by an orientation of the type A diagram, and signs in one context correspond to

arrow directions in the other.

A key motivation behind this thesis has been the question of whether we can observe this

behavior in other families of diagrams. In Chapter IV, we tackled this question on the side

of shards, finding a uniform description of the shards within any stretched family.

In this chapter, we consider the other side of the story. In the case of a diagram with a

tail, we show that a shard module’s structure along the tail reflects how its shard is described

in the framework of Chapter IV. Our methods don’t always work for more general stretched

diagrams, with Lj and Rj both nonempty: in the last part of the chapter, we explain what

we’d like to say in this situation and what goes wrong.

VIII.1: Motivation: shard modules in types A and D

We first recall the classification of bricks of ΠAn from Section VI.2. Let αi,j denote the root

αi + αi+1 + . . .+ αj for 1 ≤ i < j ≤ n.

For fixed i and j, let a : {i, . . . , j − 1} → {+,−} be a sign vector, and define a module

Ma to have dimension vector αi,j, with a nonzero map (Ma)h → (Ma)h+1 if a(h) = + and a

nonzero map (Ma)h+1 → (Ma)h if a(h) = −.

Proposition VIII.1. Ma is the shard module associated to the shard defined by

⟨−, αi,j⟩ = 0

⟨−, αh,j⟩

≥ 0 if a(h− 1) = +

≤ 0 if a(h− 1) = −
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Figure 52: The correspondence described in Proposition VIII.1, for the module M−−+. The
orientation of an arrow corresponds to the sign of the inequality of the same color.

This result, and in particular the correspondence between signs and orientations, is illus-

trated in Figure 52.

The other simply laced finite type family is type D. The bricks of ΠDn were classified

by Asai in [Asa22]. The classification is somewhat complex and is phrased in the language

of weak ordering rather than the language of shards, so we do not reproduce it in full here;

however, the way he formats bricks reveals important similarities to the type A case.

Asai labels the vertices of the Dn diagram by

1

−1
2 3 · · · (n− 1)

He then represents bricks in exploded form as built up from two layers, like so:

1 2 3 4 5 6 7 8

−1 2 3 4 5 6

Note that the portion of the module supported on the tail divides into two layers which

can be viewed as type A bricks, and the arrows between these two layers (at least, beyond

vertex 2) all point in the same direction. One way to summarize this observation is that

the brick admits a filtration: the layer which the arrows point towards can be realized as a

submodule, and the quotient by that submodule contains the other layer:

1 2 3 4 5 6 7 8

−1 2 3 4 5 6

The similarity to the type A case is illuminated further when we examine the stability

domains of type D bricks, which will be shards. Consider, for example, the root of D6
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Figure 53: A shard module of ΠD6 is shown alongside the inequalities defining its stability
domain. Again, there is a neat correspondence between orientations of arrows and signs of
inequalities.

1

1
2 2 2 1

This has a reduced expression

s4s3s2s5s4s3s−1s1(α2)

whose truncations are the roots

α4 α4 + α5

α3 + α4 α3 + α4 + α5

α2 + α3 + α4 α2 + α3 + α4 + α5

α1 + α2 + α3 + α4 α−1 + α2 + α3 + α4

When we line up an example brick alongside the inequalities defining its stability domain

in terms of these truncations, we again see that the signs of the inequalities line up with

orientations of arrows in the two layers, as illustrated in Figure 53.

This is the pattern we’ll pursue in the rest of this chapter: given a shard module for a

diagram with a tail, we’ll construct a filtration by modules resembling the bricks of An. The

orientations of the nonzero maps within the subquotients of our filtration will correspond to

certain inequalities defining the shard.
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VIII.2: The general result

Our general result will apply to preprojective algebras of diagrams with a tail. We briefly

recall the definitions and results we need from Section IV.4. We start with a diagram G

associated to a root system Φ, choose an elastic vertex j, and pick elastic data such that

Rj = ∅. We fix a stretch factor c and a tuple m = (m0, . . . ,mc) of nonnegative integers,

letting m := m0 + . . . + mc + c. In this setup, for any root β ∈ strc(Φ), we define a root

strm(β) ∈ strm(Φ) by stretching the coefficient at jp by a factor of mp for all 0 ≤ p ≤ c. We

then let qp := m0 + . . . + mp + p for any 0 ≤ p ≤ c; then jqp is the last vertex in the pth

stretched block.

Definition VIII.2. Given m as above, a root β of strm(Φ) is blocky if it has the form

strm(β). It is strictly blocky if all coefficients of β on the tail of strc(G) are distinct.

The key result of Section IV.4 was a description of the fractures of hyperplanes defined

by blocky roots.

Theorem VIII.3. Let β = strm(β) for some β ∈ strc(Φ). The rank 2 subsystems which cut

β⊥ are R(β, γ), where γ belongs to one of the following sets:

� roots of the form strm(γ), where γ cuts β
⊥
.

� some subset of the roots of the form

γr
pp′ := αj,qp−1+r+1 + αj,qp−1+r+2 + . . .+ αj,qp′

(αj,q := αjq)

for 0 ≤ p ≤ p′ ≤ c, 1 ≤ r ≤ mp. If β is strictly blocky, all of these roots work.

Definition VIII.4. The stretched fractures of β⊥ are the fractures induced by the roots

in the first bullet point above. The tail roots are the roots γr
pp′ described by the second

bullet point, and the tail fractures of β⊥ are the fractures induced by these roots.

We now prepare to state the theorem which is the main objective of this chapter, by

defining Πstrm(G)-modules resembling the bricks of type A. Fix some p, 0 ≤ p ≤ c. Let

a : {qp−1 +1, qp−1 +2, . . . , qp− 1} → {+,−} be an assignment of signs to each edge between

vertices in the pth block. Then define the Πstrm(G)-module Mp,a to have 1-dimensional spaces

at the vertices jqp−1+1, . . . , jqp , 0-dimensional spaces elsewhere, and nonzero maps Mp,a(jq)→
Mp,a(jq+1) if a(q) = + and Mp,a(jq) ← Mp,a(jq+1) if a(q) = −. A couple of examples are

shown in Figure 54.
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· · ·
· · ·
· · ·

0
0
0

k k k k 0 0 0 0 0

M0,−++

· · ·
· · ·
· · ·

0
0
0

0 0 0 0 k k k 0 0

M1,+−

Figure 54: Here, m = (3, 2, 1), resulting in blocks of 4, 3, and 2 vertices. Two examples of
Mp,a in this setting are shown.

Theorem VIII.5. Let β = strm(β) be a blocky root and let K be a shard of β⊥. Then the

associated shard module M(K) admits a filtration with the following properties:

(1) The subquotients of the filtration are either simple modules at vertices in the body, or

modules of the form Mp,a.

(2) For each pair of block indices 0 ≤ p ≤ p′ ≤ c, the list of subquotients has β(jp′)−β(jp′+1)

copies of Mp,a, where

a(qp−1 + r) =

+ ⟨−, γr
pp′⟩ ≥ 0 on K

− ⟨−, γr
pp′⟩ ≤ 0 on K

1 ≤ r ≤ mp

and we define β(jc+1) = 0.

(3) Let K be the unique shard of β
⊥

such that, for each fracture γ⊥ of β
⊥
, the sign of

⟨−, γ⟩ on K matches the sign of ⟨−, strm(γ)⟩ on K. Then there exists a filtration of

M(K) by simple modules, whose subquotients are obtained from the subquotients of the

filtration of M(K) in order by replacing Mp,a with Sp.

VIII.2.1: An example of Theorem VIII.5

The statement of this theorem is quite complicated, so before moving on to a proof we

illustrate what it’s saying pictorially. We let G be the diagram

1
2
3

4 5

and stretch it with stretch factors m = (2, 2) to get the diagram G, with its vertices labeled

like so:
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1
2
3

40 41 42 50 51 52

We then focus on the blocky dimension vector

1
1
1

3 3 3 1 1 1

and specify a particular shard K. By Theorem VIII.3, a shard is determined by two sets of

inequalities. First, we specify its position relative to the stretched fractures.

x2 + x3 + 2(x40 + x41 + x42) + (x50 + x51 + x52) ≥ 0

(x40 + x41 + x42) + (x50 + x51 + x52) ≤ 0

x2 + (x40 + x41 + x42) ≤ 0

x3 + (x40 + x41 + x42) ≥ 0

(x40 + x41 + x42) ≤ 0

Secondly, and more importantly for our purposes, we specify its position relative to the tail

fractures:

⟨−, γ1
01⟩ = x41 + x42 + x50 + x51 + x52 ≥ 0

⟨−, γ2
01⟩ = x42 + x50 + x51 + x52 ≥ 0

⟨−, γ1
11⟩ = x51 + x52 ≤ 0

⟨−, γ2
11⟩ = x52 ≤ 0

⟨−, γ1
00⟩ = x41 + x42 ≥ 0

⟨−, γ2
00⟩ = x42 ≤ 0

The theorem’s claim is that the associated shard module admits a filtration whose subquo-

tients capture exactly the information provided by this second set of inequalities. So we

next describe how to use this information to construct the associated graded module of this

filtration.

First, we stack boxes above the edges in the visualization of the dimension vector. Over

every tail edge between two vertices with the same coefficient, we stack a number of boxes

equal to that coefficient. We additionally introduce a horizontal break across the whole grid

at the top of each stack, as shown here.
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1

1

1

3 3 3 1 1 1

The stack over the pth block will be broken into c − p components this way, and the ith

component from the top (indexed starting from 0) will be β(jp+i)− β(jp+i+1) boxes tall. In

this example, the components over the block of 3s have heights 3 − 1 = 2 and 1 − 0 = 1.

This quantity is the multiplicity appearing in part (2) of the theorem statement.

We then fill each component of the stack of boxes with signs determined by the second

set of inequalities above:

1

1

1

3 3 3 1 1 1

+ +

+ −

− −

x41 + x42 ≥ 0
x42 ≤ 0

x41 + x42 + x50 + x51 + x52 ≥ 0
x42 + x50 + x51 + x52 ≥ 0

x51 + x52 ≤ 0
x52 ≤ 0

The ith component over the pth block is associated with the roots γr
p(p+i) for 1 ≤ r ≤ mp,

and we fill it from left to right with + and − according as these roots pair positively or

negatively with the points of K.

Finally, we fill the boxes over the pth block with copies of Mp,a, where the sign vector a is

determined by the signs we just put in. We additionally include simple modules at the body

vertices in the quantities necessary to produce the dimension vector. The theorem claims

that this is an exploded view of the associated graded module of a filtration of the shard

module.
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1

2

3

40 41 42

40 41 42

40 41 42

50 51 52

x41 + x42 ≥ 0
x42 ≤ 0

x41 + x42 + x50 + x51 + x52 ≥ 0
x42 + x50 + x51 + x52 ≥ 0

x51 + x52 ≤ 0
x52 ≤ 0

To see that that is the case here, here is an exploded view of the entire shard module.

1

2

3

40 41 42

40 41 42

40 41 42

50 51 52

This module has a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂M7 = M(K)

with subquotients

M1/M0 = S3

M2/M1 = M0,+−

M3/M2 = S2

M4/M3 = S1

M5/M4 = M1,−−

M6/M5 = M0,++

M7/M6 = M0,+−.

We can verify this by first noting that S3 is a submodule (since there are no arrows out
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of the vertex labeled 3) and quotienting out (removing the vertex); then noting that the top

copy of M0,+− is a submodule of what remains, and quotienting that out; and so on.

Finally, we illustrate part (3) of the theorem. We turn our attention to the first list

of inequalities defining K, the stretched ones, and collapse each stretched block down to a

single vertex to obtain a list of inequalities defining a shard K of the root system of G.

x2 + x3 + 2x4 + x5 ≥ 0

x4 + x5 ≤ 0

x2 + x4 ≤ 0

x3 + x4 ≥ 0

x4 ≤ 0

The resulting shard module turns out to be

1

2

3

4

4

4

5

Part (3) of the theorem states that this module has a filtration whose subquotients appear

in the order obtained by replacing M0,+− and M0,++ with S4 and M1,−− with S5 in the list of

subquotients of our above filtration. In this case, that order is S3, S4, S2, S1, S5, S4, S4. Such

a filtration indeed exists here: we can verify this in the exploded view by finding a vertex

labeled 3 which is a sink (which determines an S3 submodule), removing it, finding a vertex

labeled 4 which is a sink, and so on.

However, we note that the relationship between M(K) and M(K) stated in part (3) of

the theorem is not as strong as it might initially appear. In this example, the mapM(K)50 →
M(K)42 between the two blocks of M(K) is zero, while the map M(K)5 →M(K)4 between

the corresponding vertices in M(K) is not. (If it were, the relation defining the preprojective

algebra wouldn’t be satisfied.) Thus we can’t obtain M(K) from M(K) simply by replacing

the spaces at vertices 4 and 5 with representations of ΠA3 and leaving everything else intact;

there are additional discrepancies between the two representations.
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VIII.2.2: Proof of Theorem VIII.5

Our strategy for proving this theorem revolves around the doubleton extension sequence

developed in the previous chapter. Starting from the shard K, we select a wall and use

it to express M(K) as an extension of simpler shard modules. We then use this process

inductively to build a filtration, with the following basic fact: given a short exact sequence

0→ N1
ι−→M

π−→ N2 → 0

and filtrations

0 = N
(0)
1 ⊂ N

(1)
1 ⊂ · · · ⊂ N

(h)
1 = N1

0 = N
(0)
2 ⊂ N

(1)
2 ⊂ · · · ⊂ N

(ℓ)
2 = N2

we obtain a filtration

0 = N
(0)
1 ⊂ N

(1)
1 ⊂ · · · ⊂ N

(h)
1 = π−1(N

(0)
2 ) ⊂ π−1(N

(1)
2 ) · · · ⊂ π−1(N

(ℓ)
2 ) = M

whose subquotients are exactly those of the two filtrations we started with, put together.

With these tools in place, the result will come together fairly quickly. The one thing we

need to be careful about is that this process — specifically, the step of selecting a wall of

our shard — respects the stretched structure underlying everything. This will be taken care

of by the following lemma.

Lemma VIII.6. Suppose β = strm(β) for some β ∈ strc(Φ), and that β is supported at

some vertex other that the tail vertices j0, . . . , jm. Let K be a shard of β⊥. Then K has a

wall contained in a stretched fracture.

The key steps in proving this are a basic fact about hyperplane arrangements and an

observation about the span of the subsystems cutting a root.

Lemma VIII.7. Let V be a real vector space, V ∗ the dual space, and γ1, . . . , γa ∈ V a

collection of vectors. Let R ⊂ V ∗ be a region of the arrangement of hyperplanes γ⊥1 , . . . , γ
⊥
a .

Let γ⊥i1 , . . . , γ
⊥
ib
be the subset of these hyperplanes which contain the walls of R. Then

span(γi1 , . . . , γib) = span(γ1, . . . , γa)

Proof. Let K =
⋂a

i=1 γ
⊥
i , and let KR =

⋂b
j=1 γ

⊥
ij
. Note that KR ⊂ R. Suppose for a

contradiction that

span(γi1 , . . . , γib) ⊊ span(γ1, . . . , γa).
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Then, dually, K ⊊ KR. Choose some point x ∈ KR − K. Then there exists some γi such

that ⟨x, γi⟩ ≠ 0. Then ⟨x, γi⟩ and ⟨−x, γi⟩ have different signs. But since x,−x ∈ KR ⊂ R,

and either ⟨−, γi⟩ ≥ 0 or ⟨−, γi⟩ ≤ 0 on R, this is a contradiction.

Lemma VIII.8. Let β be a root, and let I be the set of vertices in its support. Suppose

R1, . . . , Rℓ are the rank 2 subsystems cutting β⊥. Then

span(R1 ∪ · · · ∪Rℓ) = span({αi}i∈I)

Proof. Let β = siℓ · · · si1(αi0) be a positive expression, and let γk = siℓ · · · sik+1
(αik) be the

truncation of this expression for each 0 ≤ k ≤ ℓ. (Note that γ0 = β.) By Theorem III.21,

the left side of the desired equation is equal to span(γ0, γ1, . . . , γℓ).

Because applying sik in the course of evaluating the positive expression will cause the

coefficient at vertex ik to increase without changing the others, the support I of β is precisely

the set {i0, i1, . . . , iℓ}. The truncated expression for γk may no longer be positive, but for

similar reasons the support of γk is contained in the set {ik, ik+1, . . . , iℓ}. It follows that

span(γ0, γ1, . . . , γℓ) ⊂ span({αi}i∈I)

Now consider the set A of indices 1 ≤ k ≤ ℓ such that ik is the leftmost appearance of the

vertex ik in the positive expression for β. (For example, we always have ℓ ∈ A and ℓ−1 ∈ A;

we have ℓ − 2 ∈ A exactly when iℓ−2 ̸= iℓ; and so on.) This set has one element for each

vertex in I, corresponding to that vertex’s leftmost appearance. For k ∈ A, we know that

the support of γik contains the vertex ik, since the expression γik = siℓ · · · sik+1
(αik) does not

feature any reflections at ik and thus retains a coefficient of 1 there.

Now write each γk for k ∈ A as a linear combination of the simple roots αik for k ∈ A,

arranged in ascending order by k, and construct a matrix whose columns are the resulting

vector representations of γk in ascending order by k. It follows from the above observations

on support that this matrix is lower triangular with 1’s along the diagonal. (For example,

γℓ = αiℓ , while γℓ−1 = αiℓ−1
+ cαiℓ for some coefficient c, and so on.) Thus its columns span

the space span({αik}k∈A) = span({αi}i∈I), from which it follows that

span(γ0, γ1, . . . , γℓ) ⊃ span({αi}i∈I)

Proof of Lemma VIII.6. Suppose for a contradiction that β⊥ has some shard without any

walls contained in stretched fractures. By Theorem VIII.3, every wall of that shard is
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contained in γ⊥ for γ a tail root. Then by Lemma VIII.7 applied to the arrangement of

fractures in β⊥, it follows that the span in V/ span(β) of all rank 2 subsystems cutting β⊥

is contained in the span of all tail roots in V/ span(β).

However, it would then follow from Lemma VIII.8 that, letting I be the support of β,

span({αi}i∈I) is contained in the span of the tail roots together with β. This is only possible if

the support of β consists of the tail vertices j1, . . . , jm together with at most one additional

vertex. In turn, this is only possible if that additional vertex is j0: because each root is

built up from a simple root by increasing coefficients at vertices adjacent to vertices with

nonzero coefficients, the support of a root must induce a connected subgraph of strm(G).

This contradicts our assumption that β is supported off the tail.

Proof of Theorem VIII.5. We proceed by induction on the total dimension of M(K). For

the base case, we suppose that β is not supported on the body. A brick supported only on

the tail can be identified with a brick of ΠAn for some n. In this case, the result follows from

Proposition VIII.1.

So consider an arbitrary β = strm(β). By Lemma VIII.6, K has a wall sliced by a

stretched fracture. Let R be the associated rank 2 subsystem cutting β⊥, let δ1, δ2 be its

fundamental roots, and suppose β = c1δ1 + c2δ2. Let L1 and L2 be the fundamental shards

of δ1 and δ2, respectively, meeting K. By Theorem VII.9, there exists a short exact sequence

0→M(L1)
⊕c1 →M(K)→M(L2)

⊕c2 → 0

(up to switching L1 and L2).

We chose our wall such that there exist roots δ1, δ2 of G with δi = str(δi). So by the

induction hypothesis, M(L1) and M(L2) admit filtrations with the desired properties.

We can splice c1 copies of the filtration of M(L1) and c2 copies of the filtration of M(L2)

together to obtain a filtration of M(K). To finish the proof, we must show that this filtration

also has the properties stated in the theorem.

First, given any 0 ≤ p ≤ p′ ≤ c and 1 ≤ r ≤ mp, suppose ⟨−, γr
pp′⟩ ≥ 0 on K. Then we

claim there are points of L1 and L2 at which ⟨−, γr
pp′⟩ > 0. Indeed, K intersects L1 and L2

in a codimension-2 cone. If ⟨−, γr
pp′⟩ vanished at every point in their intersection, it would

imply γr
pp′ was in the rank 2 subsystem R(δ1, δ2), a contradiction since γr

pp′ is not blocky

while δ1 and δ2 are. Thus there must be some point in the intersection K ∩ L1 ∩ L2 where

⟨−, γr
pp′⟩ is nonzero, and thus positive.

In particular, the sign sequence a which the theorem statement attaches to our choice of

p and p′ is the same for K as it is for L1 and L2. We additionally know by the induction

hypothesis that this choice of p and p′ accounts for δi(jp′) − δi(jp′+1) copies of Mp,a in the
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filtration of M(Li), for i = 1, 2. Thus when we combine the filtrations to get one for M(K),

this accounts for

c1(δ1(jp′)− δ1(jp′+1)) + c2(δ2(jp′)− δ2(jp′+1)) = β(jp′)− β(jp′+1)

copies of Mp,a, which verifies property (2).

Now, let K be the shard of β defined in property (3). We can likewise define shards L1

and L2 of δ1 and δ2 such that, for each fracture ε of δi, the sign of ⟨−, ε⟩ on Li matches the

sign of ⟨−, strm(ε)⟩ on Li. The roots δ1 and δ2 are still fundamental in the rank 2 subsystem

they span, and this subsystem still defines a wall of K, so we also have a short exact sequence

0→M(L1)
⊕c1 →MK →M(L2)

⊕c2 → 0

By the induction hypothesis, M(L1) and M(L2) admit filtrations by simples which are

compatible with the filtrations used above, as dictated by property (3), and by concatenating

these filtrations together we get a filtration of M(K) which is compatible with the filtration

of M(K) we constructed above. This verifies property (3).

VIII.2.3: A corollary on rank

To show that the existence of this filtration does imply something substantial, we use it to

obtain a concrete numerical fact about the maps along the tail of the shard module M(K).

Corollary VIII.9. Let β = strm(β) be a blocky root and let K be a shard of β⊥. Choose

0 ≤ p ≤ c and 1 ≤ r ≤ mp. Then

rank(M(K)(jqp+r → jqp+r+1)) ≥
∑
p′≥p

⟨−,γr
pp′ ⟩≥0 on K

β(jp′)− β(jp′+1)

rank(M(K)(jqp+r+1 → jqp+r)) ≥
∑
p′≥p

⟨−,γr
pp′ ⟩≤0 on K

β(jp′)− β(jp′+1)

This follows directly from combining the filtration from Theorem VIII.5 with the following

lemma:

Lemma VIII.10. Let A be a k-algebra, M a finite-length A-module, and 0 = M0 ⊂ M1 ⊂
· · · ⊂ Mℓ = M a filtration. For an element a ∈ A and module N , let a|N : N → N be
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multiplication by a. Then

rank(a|M) ≥
ℓ∑

i=1

rank(a|Mi/Mi−1
)

Proof. Given k-bases of Mi/Mi−1 for 1 ≤ i ≤ ℓ, we combine them into a basis of M by lifting

the basis of Mi/Mi−1 to Mi. In the resulting basis, the action of a on M can be viewed as a

block upper triangular matrix:

a|M =



a|M1/M0 ∗ ∗ · · · ∗
0 a|M2/M1 ∗ · · · ∗
0 0 a|M3/M2 · · · ∗
...

...
...

. . .
...

0 0 0 · · · a|Mℓ/Mℓ−1


If we select, from each matrix along the diagonal, a collection of linearly independent

columns, then extend each of these columns to the corresponding columns of the full matrix,

they remain linearly independent. Thus the rank of the full matrix is bounded below by the

sum of the ranks of the matrices on the diagonal.

For our purposes, we take the element a to be the edge (jqp+r → jqp+r+1) or (jqp+r+1 →
jqp+r) in the preprojective algebra.

VIII.3: Why this proof doesn’t work for stretching with Rj ̸= ∅

In Chapter IV we described shards in the general context of stretching, not just a diagram

with a tail. In that context, recall from Theorem IV.13 that (up to adjusting where the

stretched path starts and ends) the fractures of a stretched root β fall into two forms:

the fractures f⊥u , where fu is also a stretched root, and the fractures (gu − γv)
⊥, where

γv = αj0 + . . . + αjv and v is allowed to vary through the vertices of the stretched path

independently of u. The original hope for this project was that, just as in the tail situation,

a shard module M(K) of dimension β should admit a filtration by modules Ma for sign

vectors a determined by the position of K relative to the hyperplanes (gu − γv)
⊥. (These

are defined the same way as the modules Mp,a, but for simplicity we only consider the case

that the stretched path is a single block, so p = 0.) In fact, such a theorem almost works,

and we know exactly what it should say; the only difference is the multiplicity factor that

was given by β(jp′)− β(jp′+1) above.
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Definition VIII.11. Let β be a root of any root system and let R be a rank 2 subsystem

containing β. Let γ1, γ2 be the fundamental roots of R, and let β = c1γ1 + c2γ2. The

multiplicity of R with respect to β is

mult(β,R) := c1 + c2 − 1.

Conjecture VIII.12. Let β = strm(β) and let K be a shard of β⊥. Then the associated

shard module M(K) admits a filtration with the following properties:

(1) The subquotients of the filtration are either simple modules at vertices in the body, or

modules of the form Ma.

(2) For each of the forms gu, the list of subquotients has mult(β,R(β, gu−γv)) (a quantity

independent of v) copies of Ma, where

a(v) =

+ ⟨−, gu − γv⟩ ≥ 0 on K

− ⟨−, gu − γv⟩ ≤ 0 on K

Indeed, one can verify that this statement is true in the case of the stretched family A
(1)
n ,

following the classification in Section VI.6.

The fatal flaw with attempting to apply our above proof is that Lemma VIII.6 may no

longer hold: there can exist shards of β⊥, for β a stretched root, which do not have a wall

defined by a stretched root. This obstructs the approach of breaking down a shard module

as an extension of smaller ones in a way that respects the stretched structure. The simplest

example we have of this occurs for the diagram

1 2 3 4 5

and the root

6 16 16 16 13

Calculations in SageMath show that this root has a shard given by

σ+
4 σ

+
3 σ

+
2 σ
−
3 σ

+
4 σ
−
5 σ

+
1 σ
−
4 σ
−
3 σ
−
2 σ

+
3 σ

+
4 σ

+
5 (α

⊥
1 )

153



whose walls are dual to the roots

α1 + 3α2 + 2α3 + 2α4 + 2α5

α2 + α3

α2

α4

none of which assign the same coefficient to vertices 2, 3, and 4.

Curiously, however, the shard module associated to this shard does actually satisfy Con-

jecture VIII.12. Thus, it is still an open question whether an alternate proof strategy could

be used to construct filtrations for the general stretched case.
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APPENDIX

Nonsymmetric Cartan Matrices and Species

In this appendix, we discuss the framework which can be used to generalize the results of

this thesis to root systems with non-symmetric (but symmetrizable) Cartan matrices. In

this case, the Dynkin diagram is decorated with edge labels, and in the language of quiver

representations and preprojective algebras we don’t have a way to incorporate those. This

is solved by the introduction of species, which are like quivers but with this extra data;

a representation of a species is like a quiver representation, but with vector spaces over

potentially different fields.

A.1: Species

Since Gabriel’s theorem shows such a neat connection between quiver representations and

the An, Dn, and En Dynkin diagrams, it’s natural to wonder there is a variation of the notion

of a quiver representation for which the other finite root systems — Bn, Cn, F4, and G2 —

play a similar role.

Recall that in the finite case, for a Cartan matrix to be symmetric means that the simple

roots satisfy

2
(αi, αj)

(αi, αi)
= 2

(αj, αi)

(αj, αj)

for all i ̸= j, which in turn implies that they all have the same length.

Thus symmetrizable Cartan matrices correspond to root systems with simple roots of

varying lengths. In order to express this nonuniformity on the side of representation theory,

Dlab and Ringel considered representations of quivers in which the vector spaces at different

vertices can be defined with respect to different ground fields.

Definition A.1 ([DR75]). Let k be a field. A k-species is specified by:

� A finite index set I.

� A collection of fields Ki for i ∈ I which are finite-dimensional extensions of k.
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� For each pair i, j ∈ I, a Kj-Ki-bimodule E(j ← i).

A representation M of this k-species is specified by:

� For each i ∈ I, a Ki-vector space Mi.

� For each pair i, j ∈ I, a map jφi : E(j ← i)⊗Ki
Mi →Mj

k-species are natural generalizations of quivers if we think of the Ki as vertices and

E(j ← i) as the collection of arrows from Ki to Kj; indeed, quivers can be identified with

species in which all of the Ki are the same.

To be precise, suppose Q is a quiver and choose a field k. Then we can define a species

with index setQ0,Ki = k for all i ∈ Q0, and E(j ← i) the space of formal linear combinations

of arrows from i to j. Representations of this species are the same thing as representations

of Q over k: if there are r arrows i→ j, then E(j ← i) ∼= kr, and jφi can be identified with

a map V ⊕ri → Vj which records the action of all these arrows at once.

There is also an analog of the path algebra for k-species. Given a k-species as above, we

define the tensor algebra T to be

T :=
⊕
i∈I

Ki ⊕
⊕

sequences
i1,i2,...,im∈I

E(im ← im−1)⊗Kim−1
E(im−1 ← im−2)⊗Kim−2

· · · ⊗Ki2
E(i2 ← i1)

Thinking of each E(j ← i) as the “space of edges” from i to j as above, each summand in

the right sum can be thought of as the “space of paths” going through the indices i1,i2,. . . ,

im in order, while each summand Ki in the left sum is the space spanned by the “stationary

path” at i. Accordingly, we define multiplication in this algebra by concatenating tensors

with compatible endpoints (ab := a⊗ b), just like how multiplication in the path algebra is

defined by concatenating paths. As before, the category of representations of a species is

equivalent to the category of left modules over T , and so it behaves like any other module

category.

Now we make precise the bridge back to root systems. To a quiver, we associated an

unlabeled Dynkin diagram simply by forgetting its orientation. We associate a general

Dynkin diagram to a species as follows1:

� The vertices are labeled by the index set I;

1This differs slightly from how Dlab and Ringel associate a diagram to a species in [DR75]; however, their
result still holds using this definition, and it is more consistent with later work such as [DX03].
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� Choose an arbitrary ordering of I, and suppose i < j ∈ I. If E(j ← i) or E(i← j) is

nonzero, we draw an edge between i and j, and label it with

(dimKi
E(j ← i) + dimKi

E(i← j), dimKj
E(j ← i) + dimKj

E(i← j))

Example. Consider an R-species with I = {1, 2}, K1 = C, K2 = R, E(2← 1) = C, and
E(1 ← 2) = 0. Then a representation is given by an R-linear map f : V1 → V2, where V1

is a C-vector space and V2 is an R-vector space. Because E(2← 1) is 1-dimensional over C
but 2-dimensional over R, this species corresponds to the Dynkin diagram

(1, 2)

The last ingredient we need to generalize Gabriel’s theorem is a definition of dimension

vector:

Definition A.2. Let (Ki, E(j ← i))i,j∈I be a k-species and let M be a representation of

it. Let V be a vector space over R with a distinguished basis (αi)i∈Q0 indexed by I. The

dimension vector of M , denoted dimM , is the vector
∑

i∈I(dimKi
Mi)αi ∈ V .

Theorem A.3. [DR75] A k-species has finitely many indecomposable representations if and

only if the associated Dynkin diagram is a disjoint union of finite type diagrams. In this

case, the map M 7→ dimM gives a bijection between isomorphism classes of indecomposable

representations and positive roots of the associated root system, where αi is the simple root

associated to vertex i.

Example. The example species immediately above corresponds to the B2 Dynkin diagram,

which denotes a root system for Dih4. Thus we expect it to have 4 indecomposable repre-

sentations, since a square has 4 lines of symmetry. These are C → 0, 0 → R, C Re−→ R, and
C (Re,Im)−−−−→ R2.

A.2: Preprojective algebras of species

The material of this section originally appeared in [DST23].

As in section A.1, it’s good to have an analog of the preprojective algebra associated

to general Dynkin diagrams rather than just unlabeled graphs. Such an analog is provided

by Julian Külshammer’s recent theory of pro-species. Here, we introduce Külshammer’s

general definition of the preprojective algebra associated to a species and then explain how

to apply it to our situation. The foundational paper [Kü17] provides most of the tools we
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need, with the exception of an analog of Proposition V.17, which is proven in the appendix

of [DST23].

Starting from a k-species2, Külshammer constructs a double species with isomorphisms

of Ki-Kj-bimodules E(i ← j) ∼= HomKi
(E(j ← i), Ki) ∼= HomKj

(E(j ← i), Kj). This is

equivalent to specifying a Ki-linear map ⟨−,−⟩i : E(i ← j) ⊗Kj
E(j ← i) → Ki and a

Kj-linear map ⟨−,−⟩j : E(j ← i)⊗Ki
E(i← j)→ Kj.

Then for each pair of indices j ← i, we choose a Ki-basis e1, . . . , er of E(j ← i) and

let f1, . . . , fr be the dual Ki basis of E(i ← j) under the pairing ⟨−,−⟩i. We define the

Casimir element

cj←i←j :=
r∑

t=1

et ⊗ ft ∈ E(j ← i)⊗Ki
E(i← j)

which is independent of the chosen basis.

Finally, we define a function sgn : {(j ← i) | i ̸= j ∈ I} → {±1} such that sgn(i← j) =

− sgn(j ← i), as in the definition of the original preprojective algebra. The preprojective

algebra of this setup is the quotient of the tensor algebra of the double species by the

two-sided ideal generated by

c :=
∑
i ̸=j∈I

sgn(j ← i)cj←i←j

As with the original preprojective algebra, note that ejcej (where ej is the idempotent in

the tensor algebra associated to index j) is the sum of just the terms indexed by a specific

j, representing the paths going out of and back to a specific vertex. Quotienting out by c is

equivalent to quotienting out by each of these separately.

Now let A be a crystallographic Cartan matrix of rank n. Here it is also important that

we assume A is symmetrizable, meaning that there are positive integers d1, . . . , dn such that

diAij = djAji for any i and j. We will construct a preprojective algebra as above with

reflection functors and a Crawley-Boevey identity linking it to the root system of A.

Starting with the symmetrizing integers di, let L = LCM(d1, . . . , dn) and let dij =

LCM(di, dj) for any pair i, j. Let k(L)/k be a Galois field extension with Galois group

cyclic of order L, so that there exists a unique intermediate field k(d) of degree d over k for

all d | L. As seen in the example of species above, for L = 2 we could let k(L)/k = C/R,
while for general L, we could let k(L)/k = FpL/Fp for some prime p.

2Külshammer actually works with pro-species of algebras, for which the fields Ki are allowed to be
finite-dimensional algebras and the bimodules E(j ← i) are only required to be projective on either side.
We will not need this level of generality.
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Let Γ be the quiver with vertices 1, . . . , n and −diAij/dij arrows i → j. This quantity

is symmetrical in i and j, so we can choose a bijection a ↔ a∗ between arrows i → j and

j → i such that (a∗)∗ = a. Then let E(j ← i) be a k(dij)-vector space with a basis given by

arrows i→ j, and let ⟨−,−⟩ij : E(j ← i)×E(i← j)→ k(dij) be the k(dij)-bilinear pairing

for which a 7→ a∗ sends each basis to its dual.

We have field trace maps trk(di) : k(dij)→ k(di) and trk(dj) : k(dij)→ k(dj); thus we can

define the requisite pairings

⟨−,−⟩i := trk(di)(⟨−,−⟩ji) : E(i← j)⊗k(dj) E(j ← i)→ k(di)

⟨−,−⟩j := trk(dj)(⟨−,−⟩ij) : E(j ← i)⊗k(di) E(i← j)→ k(dj)

Next, we work out the Casimir elements corresponding to these pairings. For any pair i ̸= j,

let bij1 , . . . , b
ij
r be a k(di)-basis of k(dij), and let (bij1 )

∗, . . . , (bijr )
∗ be the dual basis under the

trace pairing (b, b′) 7→ trk(di)(bb
′). Then we have

cj←i←j =
∑
j

a−→i

∑
t

(bijt )
∗a∗ ⊗ abijt

Thus the preprojective algebra is the tensor algebra of the species we’ve constructed, quo-

tiented by the relations∑
i ̸=j

sgn(j ← i)
∑
j

a−→i

∑
t

(bijt )
∗a∗ ⊗ abijt = 0 for each fixed j ∈ I

Example. Following our example of species, consider the B2 Cartan matrix
(

2 −1
−2 2

)
. This

is symmetrized by d1 = 2, d2 = 1, so we choose k = k(d2) = R, k(d1) = C, and E(2← 1) ∼=
E(1← 2) ∼= C.

A representation of the preprojective algebra is given by a C-vector space M1 and an

R-vector space M2, together with an R-linear map f : C⊗C M1
∼= M1 →M2 and a C-linear

map g : C ⊗R M2 → M1 (which we can identify with an R-linear map M2 → M1). These

maps must satisfy the relations

fg = 0

1

2
gf − i

2
gfi = 0

Külshammer also defines reflection functors for preprojective algebras of species. This

follows the same setup as before; we just need to update the definitions of M∂i, M(i, in), and
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M(i, out) to this new context. We define

M∂i :=
⊕
j ̸=i

E(i← j)⊗k(dj) Mj.

We define the map M(i, in) : M∂i → Mi on the jth summand to be sgn(i ← j)Mi←j. To

define the map M(i, out) : Mi → M∂i, we note that the duality between E(j ← i) and

E(i← j), together with tensor-hom adjunction, gives a natural isomorphism

(−)∨ : Homk(dj)(E(j ← i)⊗k(di) Mi,Mj)
∼−→ Homk(di)(Mi, E(i← j)⊗k(dj) Mj)

Thus we define M(i, out) to map into the jth summand of M∂i by M∨
j←i.

With these definitions in place, we can define reflection functors using the same com-

mutative diagrams as in Section V.2.2. The results of that section still hold [Kü17, Section

5]. Proposition V.17, Proposition V.19, and Lemma V.20 also generalize to this context,

following from [DST23, Appendix].

A.3: The aspects of the thesis which change when we’re working

with species

With one exception, the results of this thesis also apply to preprojective algebras of species.

For the most part, what needs to be changed involves recognizing that the role of the ground

field k is now played by a collection of extension fields k(di) associated to the different

vertices. We summarize the differences in this section.

In what follows, for any root β we define dβ := (β,β)
2

. In particular, we have dαi
=

(αi,αi)
2

= di
(α∨

i ,αi)

2
= di by definition. Thus, given any expression β = siℓ · · · si1(αi0), because

the pairing (−,−) is preserved by the group action, we have dβ = di0 .

A.3.1: Chapter VI

In Section VI.3, we observed that, since any real brick can be obtained by applying reflection

functors to a simple module, the endomorphism ring of a real brick must be k. In this context

we need to be a little more careful. Suppose that our real brick is given by

M := Σ±ℓ
iℓ
· · ·Σ±1

i1
(Si0)

Then the same argument implies that its endomorphism ring is isomorphic to End(Si0)
∼=

k(di0) = k(ddimM).
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Similarly, a factor of dβ appears on both sides of the argument following Proposition

VI.9: for a real brick B, we have

2 dimk Hom(B,B)− dimk Ext
1(B,B) = (dimB, dimB)

and both 2 dimk Hom(B,B) and (dimB, dimB) now equal 2dβ.

A.3.2: Chapter VII

In this chapter, we need to be careful with statements about the dimensions of vector spaces,

since it is no longer clear which fields those dimensions are taken over. However, with the

appropriate dimensions taken into account, the proofs are the same.

The correct statement of Theorem VII.9 becomes:

Theorem A.4. Let β be a root and let K be a shard of β⊥. Let R be a rank 2 subsystem

slicing a wall of K, and let γ1 and γ2 be the fundamental roots of R. Without loss of

generality, suppose ⟨−, γ1⟩ ≥ 0 on K. Let c1, c2 be constants such that β = c1γ1 + c2γ2. Let

L1 and L2 be the fundamental shards of γ⊥1 and γ⊥2 , respectively, meeting K at R. Then:

(1) There exists a short exact sequence

0→M(L1)
⊕c1 f−→M(K)

g−→M(L2)
⊕c2 → 0

(2) dimk Hom(M(K),M(L1)) = dimk Hom(M(L2),M(K)) = 0,

dimk Hom(M(L1),M(K)) = dγ1c1, and dimk Hom(M(K),M(L2)) = dγ2c2.

Here the only change is in the dimensions in part (2).

We then note that the space Homk(M(L1),M(K)) inherits an End(M(L1))-module struc-

ture, and thus is a k(dγ1)-vector space. Likewise, Homk(M(K),M(L2)) is a k(dγ2)-vector

space. So the correct statement of Corollary VII.10 becomes:

Corollary A.5. For any exact sequence of the form in Theorem A.4, the components of f

are a k(dγ1)-basis of Homk(M(L1),M(K)), and the components of g are a k(dγ2)-basis of

Homk(M(K),M(L2)).

Finally, we haven’t worked out the details of Theorem VII.17, the genericity of the

doubleton sequence, in this context. Although it seems plausible that a similar result should

hold, the algebro-geometric complications of mixing multiple fields together seemed too far

afield from the focus of this thesis.
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