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ABSTRACT

The High Temperature Reactor (HTR) is one of the six Generation IV advanced reactor designs.
HTRs have become more and more attractive for power generation applications among both com-
mercial companies and research institutes because of its intrinsically safety and modular design
features. For several reasons, the modeling and simulation of HTRs can be much more challeng-
ing than traditional Light Water Reactors which rely primarily on deterministic methods to analyze
the coupled neutronic and temperature fluid fields. In the research here, hybrid methods combining
stochastic Monte Carlo methods and deterministic methods were applied to HTR simulations. In
particular, Monte Carlo methods are an attractive alternative to overcome the complexities in the
modelling and analysis of the considerable heterogeneity of small modular reactors such as the
HTR which use TRISO fuel. In the research here, the Monte Carlo code Serpent was used for
few-group neutron cross section generation and the deterministic codes AGREE and SAM were
used for neutronics and thermo-fluids transient simulation using the cross sections generated by
Serpent.

The stochastic nature of Monte Carlo processes has the potential to introduce additional statis-
tical uncertainties. Quantifying this uncertainty was a principal focus of the research performed
here. In order to quantify the uncertainties introduced from Monte Carlo cross section generation,
two different methods were investigated, including an analytic perturbation-based method and a
stochastic probabilistic method using the industry standard code Dakota. The ultimate objective
was to quantify the uncertainty for a model of an advanced HTR, the Kairos Power FHR (KP-FHR)
which is a novel advanced reactor technology that leverages TRISO fuel in pebble form combined
with a low-pressure fluoride salt coolant. However, the research methods developed here were first
demonstrated using an experimental HTR reactor, the HTR-10, which became an international
IAEA benchmark and is currently used world-wide to validate computer codes used in the safety
analysis of small modular advanced HTRs such as the FHR. Specifically, the four benchmark prob-
lems of the HTR-10 were modeled. Good agreement of the deterministic and probabilistic was
demonstrated which provided confidence in then applying the stochastic methods to the FHR for
both steady-statue and coupled neutron and temperature fluid field transient analysis. Parametric
studies were also performed to investigate the factors that may affect the uncertainty quantification.
The results for the FHR equilibrium core problem showed that the uncertainty of the keff and local
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power introduced from the Monte Carlo generated cross section was small if sufficient number of
histories were used to generate the neutron cross sections in Serpent. However, the uncertainty of
some important safety parameters, e.g. the region-wise reactivity coefficients, was very large if in-
sufficient numbers of histories were used. A ramp reactivity insertion simulated using the industry
standard SAM code with coefficients generated through Serpent/AGREE. Despite the uncertainty
of some neutronics parameters being larger, the uncertainty of the important thermo-fluids param-
eters, such as the maximum coolant and fuel temperature, was still small. For this phase of the
research the Dakota code was also coupled with the SAM code to propagate the uncertainties of
Serpent/AGREE.

The results of this research demonstrated the use of innovative uncertainty quantification meth-
ods and results which provide guidance to reactor analysts on the numbers of histories necessary
to minimize the contribution of the uncertainty introduced from Monte Carlo into the prediction of
HTR reactor safety performance.
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CHAPTER 1

Introduction

1.1 Motivation

The High Temperature Reactor (HTR) is a class of thermal reactors, in which the core contains
high temperature coolant and solid fuel. There are several types of HTR designs. Based on the
different states of the coolant used, these reactors can be classified into two categories: one uses
gas coolant, such as helium gas or carbon dioxide gas; the other uses liquid coolant, such as
fluoride salt. Both categories of HTRs use TRi-structural ISOtropic (TRISO) particle as the fuel,
despite that some designs are based on the graphite pebble-bed, while other designs are based on
the prismatic graphite blocks. Many of HTRs are designed with passively safe features that require
best-estimate plus uncertainty analysis of reactor performance [2].

Fig. 1.1 shows the primary and secondary loop of a High Temperature Gas Reactor (HTGR)
reactor, which is a typical design for the pebble-bed based HTR reactors. The HTGR operates
at significantly higher temperatures compared to traditional water-cooled reactors. HTGRs use
helium gas as the coolant to transfer heat from the nuclear fuel to the power generation system.
The high operating temperatures of HTGRs offer several advantages, including increased thermal
efficiency and the potential for more diverse applications.

Fig. 1.2 shows the system design of an Fluoride-salt-cooled High-temperature Reactor (FHR)
reactor. The FHR is another typical design that is based on liquid coolant and pebble-bed core. The
fluoride salt coolants are usually eutectic mixtures of liquid fluoride salts such as LiF and BeF2.
The fluoride salts have some good properties, including the relatively low neutron absorption cross
section, high power density capacity, high heat transfer efficiency, high boiling temperature, low
operation pressure and low chemical reactivity with water and air [3][4], which motivates the
economic and intrinsically safe design of FHRs.

The pebble-bed based design attracts a lot of interest for its improved passive safety character-
istics at high temperature and the convenience to recycling the fuel during operation. However,
there are several challenges associated with pebble-bed reactor modeling. First, the TRISO par-
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Fig. 1.1: A pebble-bed HTGR design
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Fig. 1.2: The system design of the Mk1 FHR reactor[1]

ticles inside the pebble and the pebbles inside the core cause a double heterogenous effect in the
neutronic analyses. Second, since the pebbles are mixed and recirculated in the core during oper-
ation, the depletion calculation becomes a challege because the composition of adjacent pebbles
could be very different. Besides, traditional subchannel method for the thermal-hysraulics analysis
becomes not suitable due to the random distribution of the pebbles in the core.

To overcome the above difficulties, a combined stochastic and deterministic method becomes
more and more popular for advanced reactor studies. These so-called “hybrid” methods usually
use the continuous energy (CE) Monte Carlo (MC) neutron transport code to generate few-group
cross sections, and the cross sections are then applied to a deterministic code for the core analyses.
The hybrid methods take advantage of the complex materials and geometries modeling capability
of the stochastic codes, as well as the efficient reactor kinetics solver of the deterministic codes.

However, the stochastic nature of Monte Carlo processes has the potential to introduce addi-
tional statistical uncertainties in the overall uncertainty in the prediction of the core behavior. The
work performed in this thesis is not to provide a comprehensive uncertainty analysis of the HTR.
Rather, the principal objective of the research proposed here is to quantify the additional uncer-
tainty introduced by the use of Monte Carlo multi-group cross sections into the analysis of the
HTR. An overarching objective of the work here is the development of modeling guidance and
procedures to minimize the contribution of the uncertainty in multi-group cross sections generated
by Monte Carlo methods to the overall uncertainty in deterministic calculations.
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1.2 Review of Previous Work

1.2.1 HTR Simulation Methods

Thanks to the development of reactor physics, multi-physics coupling, Computational Fluid Dy-
namics (CFD), and other reactor and system simulation softwares, there have been significant
advancements in pebble-bed based reactor simulations in recent years.

A range of computer codes, including reactor physics, thermal-hydraulics, fuel performance and
CFD, have been developed for Department of Energy (DOE)’s Nuclear Energy Advanced Model-
ing and Simulation (NEAMS) program, many of which have the capability to simulate pebble-bed
based HTR reactors. Pronghorn is a multidimensional, coarse-mesh, Thermal-Hydraulics (TH)
code for advanced reactors[5][6]. It utilizes a multi-scale modeling approach to simulate the
pebble-bed based reactors. The multi-scale modeling approach includes three length scales: the
macro-scale for the entire reactor core, the meso-scale for a single pebble and the micro-scale for a
single Coated Fuel Particle (CFP). SAM is a system-level simulation tool for advanced reactors[7].
It models the pebble-bed reactors with multiple PBCoreChannel components with spherical heat
structures. SAM has been applied to the modeling and simulation of the PB-HTGR and PB-FHR
reactors[8] [9]. There are also codes developed for the reactor physics and thermal-hydraulics
analysis of pebble-bed based reactors which use the Graphics Processing Unit (GPU) to accelerate
the simulations, such as Nek5000[10], Cardinal[11] and Project Chrono[12].

1.2.2 UQ Methods

Over the years there has been considerable research related to the quantification of uncertain-
ties in nuclear reactor analysis methods for both existing light water and advanced reactors. In
2013, efforts were initiated by both the Nuclear Energy Agency (NEA) of the Organisation for
Economic Co-operation and Development (OECD) Uncertainty Analysis in Modelling (UAM)
and the International Atomic Energy Agency (IAEA) to address uncertainty quantification for the
HTGR [13]. The uncertainty analysis of HTRs (High Temperature Reactor) was divided into sev-
eral phases for both the pebble-bed and prismatic HTRs [14]. The essential principles and methods
proposed to assess the uncertainty in the HTR were similar in several ways to those used for LWRs
(Light Water Reactor) [15]. However, the complexity of the modeling required for HTR analysis
can potentially introduce additional uncertainties. Specifically, the traditional “two-step” method
used for LWR analysis can be less effective for modeling the HTR core. This is primarily because
of the high leakage and the significant spatial variations in the neutron spectrum in the core. Several
researchers have demonstrated the advantages of using full core Monte Carlo methods to gener-
ate homogenized multi-group cross sections for the small reactors such as the HTR. These cross
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sections are then be used in deterministic core simulators for steady-state depletion and transient
safety analysis.

In recent years, there have been several studies performed to quantify the uncertainty propa-
gation of nuclear data and neutronics parameters to the transient and safety analysis. The work
of [16] [17] investigated the impact of nuclear data uncertainties, thermal-physical properties, re-
activity coefficients and operational conditions on the transient behaviors of the ABR-1000 reac-
tor. The work employed the PERSENT code based on the COMMARA-2.0 covariance matrix to
quantify the uncertainty propagation from nuclear data to the reactivity coefficients and employed
the SAS4A/SASSYS-1 and Dakota code to stochastically propagate the neutronics and thermal-
hydraulics uncertainties to the Unprotected Loss Of Flow (ULOF) transient analysis. Similar work
was also performed by [18] on the Salt-cooled Fast Reactor (SFR) to assist in establishing the pri-
ority of future research and development. The approach was also used to validate the best-estimate
tools against the experimental measurements of SFR transients Fast Flux Test Facility (FFTF) Loss
of Flow Without Scram (LOFWOS) Test #13 by [19].

1.3 Thesis Outline

The detailed structure of this thesis has been shown in the table of contents. At the end of each
chapter from Chapter 2 to Chapter 5, a summary is also provided to review the work and summarize
the conclusions of each chapter. Therefore, the outline here will only focus on the connections
between each chapter.

Chapter 1 introduces the HTGR and FHR as two types of HTR reactors and the difficulties in the
modeling because of the double-heterogeneity feature of their pebble-bed based core. This leads
to the use of Monte Carlo-deterministic hybrid methods for overcoming the modeling difficulties.
The first chapter aims to give a big picture of the work in this thesis. Chapter 2 follows Chapter
1, giving a detailed description of the hybrid methods. The feasibility of the hybrid methods
is demonstrated by applying it on the HTR-10 benchmark and gFHR benchmark. The focusing
reactor in this thesis is the FHR. The reason for demonstrating the methods on the HTR-10 reactor
is that the HTR-10 is a constructed and experimented reactor and its benchmark problems are
well-established, while FHR is still a reactor under design.

Chapter 3 addresses that the Monte Carlo cross section generation in the hybrid methods will
introduce additional uncertainty to the subsequent simulations. To understand how the Monte Carlo
uncertainty propagate into subsequent simulations, it leads to the two uncertainty quantification
methods — the analytical method and the stochastic method. The reason to develop two different
categories of methods is to validate the results between each other. After some parametric studies
and comparisons between the two methods on a simple demonstration problem, the stochastic
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problem is chosen for its universality and extendibility.
Chapter 4 and Chapter 5 are the practical applications of the stochastic uncertainty quantifica-

tion method, one for the steady-state simulations and the other for the transient simulations. There
are some issues related to the AGREE/SAM simulations or related to the uncertainty quantifica-
tions, which are also discussed in the chapters.

Finally, based on the results obtained in Chapter 4 and Chapter 5, Chapter 6 summarizes the
work performed in this thesis, presents the conclusions, and discusses potential work for future
investigation.
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CHAPTER 2

Computational Methods

2.1 Monte Carlo-Deterministic Hybrid Methods

2.1.1 Introduction

The principal goal of simulating a nuclear reactor core is to solve for the neutron multiplication
factor keff and the neutron flux distribution of the core. The methods to achieve the goal can be
classified into to categories: one is the stochastic Monte Carlo method, which samples the average
neutron behaviour by simulating a large amount of neutrons; the other is the deterministic method,
which is aimed to establish and solve the neutron transport equation.

In the past few decades, many computer codes have been successfully developed in each of the
two categories of methods. The Monte Carlo method is regarded as the gold standard of the reactor
core simulation, which can resolve the neutron transport in the reactor core accurately with min-
imal simplifications and approximations by stochastically simulating a large number of neutron
particles. There are many neutron transport computer codes developed based on the Monte Carlo
methods, including the MCNP code developed by Los Alamos National Laboratory (LANL)[20],
the OpenMC code developed by Massachusetts Institute of Technology (MIT)[21], the Serpent
code developed by VTT Technical Research Centre of Finland[22], the RMC code developed by
Tsinghua University[23], etc. The deterministic method aims to solve the Boltzmann neutron
transport equation by discretizing the space-angle-energy phase space and transforming the equa-
tion into numerically solvable algebra equations. There are many deterministic codes developed
based on different discretizing methods. For example, the MPACT code developed by the Univer-
sity of Michigan is based on the Methods of Characteristics (MOC) method[24]; the HELIOS code
developed by Studsvik Scandpower is based on two-dimensional collision probabilities transport
lattice physics analysis[25]; the AGREE code developed by the University of Michigan is based on
solving the 3-D neutron diffusion equation[26]. The two methods and the computer codes based
on them are widely used for the conceptual design, safety analysis and commercially licensing all
kinds of reactors. However, there are still some limitations of both methods.
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The Monte Carlo method usually requires significant computational workload and large mem-
ory, especially for the whole core simulation and deep penetration problems[27][28]. For the
deterministic code, because of the simplifications and approximations in the core modeling and in
the neutron transport equation solving, the accuracy of the solution decreases, especially for the
reactor cores with complex geometries and for the resonance self-shielding calculations[29].

Because of above limitations of the Monte Carlo method and deterministic method, the hy-
brid method that combines the advantages of both methods has been more and more attractive
for the advanced reactor simulations with more complex geomtries than traditional LWR lattice
geometries over the recent years. The hybrid method employs the Monte Carlo code to generate
homogenized few-group cross sections and then the cross sections are fed into the deterministic
code for neutronics or multi-physics coupled simulations.

2.1.2 Methodology

The modeling methods used in this research to perform core simulation is depicted in Fig. 2.1.
The Monte Carlo code Serpent was used to generate nodal homogenized few-group cross sections
which were then converted to cross section data for the Advance Gas Reactor Evaluator (AGREE)
code using the cross section converter code GenPMAXS. The neutron diffusion code AGREE was
employed as the core simulator and performed both neutronics and thermal-fluids coupled calcu-
lations to produce the core power distribution for both steady-state keff and transient simulations.

The full core Serpent keff eigenvalue and power distribution results are used as reference for
AGREE results. Previous methods used to analyze the HTR relied on a “two-step” in which cross
sections were generated using a small “lattice” model with approximate boundary conditions. One
example is the work performed by Argonne National Laboratory (ANL) using DRAGON as lattice
transport code and DIF3D as nodal diffusion code. In these studies, significant errors were reported
using the two-step method which are minimized by using a full core Monte-Carlo model of the core
to generate cross sections, such as in the research performed here.

2.2 AGREE Code: Neutronics and Thermo-fluids

2.2.1 AGREE Thermo-Fluids

The AGREE was developed for the U.S. NRC as a thermo-fluids code to solve the steady state
and time dependent mass, momentum, and energy equations in three-dimensions for High Tem-
perature Gas Cooled reactor analyses. AGREE has two separate versions, one for Pebble Bed type
reactor applications and another for Prismatic “block type” reactors in which the fuel is stationary
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Fig. 2.1: Calculational Methods for High Temperature Reactor Modeling

throughout its burnup cycle. The pebble bed version of AGREE was recently updated to provide
functionality for the FHR designed by Kairos Power as well as for the helium cooled HTR designed
by X-Energy.

AGREE solves porous media mass, momentum and energy equations in 3D cylindrical geom-
etry, as shown in Fig. 2.2. Due to presence of heat source in the solid (pebble) part of the porous
media, the two-equation model for the energy balance is used. Since the convective term in the mo-
mentum equation is much smaller compared to the porous resistance, AGREE neglects that term
which reduces mass and momentum equation into a pressure equation which can be solved easily
by assuming ideal gas or the use of equation of state for gases. Overall AGREE solves three field
equations. A pressure equation where the pressure distribution of the system is solved and mass
distribution is back-calculated. Two energy equations are solved; one for the gas (fluid) where
gas temperature distribution is calculated and one for the solid where solid (pebbles and solid
structures) temperature distribution along with the fuel and kernel temperature are calculated.

2.2.2 AGREE Neutronics

As noted above, the “two-step” few-group, homogenized method for solving the neutron transport
equation in the reactor core has been used successfully for the analysis of most all large LWRs
[30][31][32]. However, the methods have not been as accurate for reactor cores that are not as
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Fig. 2.2: AGREE cylindrical control volume

optically thick and which are not scattering-dominant system which is the case for some of the
smaller advanced reactor concepts which have significant neutron leakage. The research here fo-
cused on the HTR which is one of the six type reactor designs that were proposed in the Generation
IV Forum (GIF) in 2002 [33]. The neutronic modeling of the HTR using the few group homog-
enized diffusion approximation has several challenges because the additional complexity of the
double heterogeneity in modeling pebbles with TRISO fuel [34].

The Monte Carlo Code Serpent directly accounts for the double heterogeneity and together
with the deterministic core simulator AGREE are capable of providing computationally efficient
and sufficient accuracy for an application such as the HTR. The Serpent Monte Carlo code is a
continuous-energy Monte Carlo particle code [35] which has been enabled to generate homoge-
nized cross sections for use in nodal diffusion calculations [36][22]. Although a large number of
particle histories can be required to minimize the statistical uncertainty and provide accurate multi-
group data, Monte Carlo methods are attractive for cross section generation calculations since they
are able to solve arbitrary and complicated three-dimensional problems with minimal physics ap-
proximations. This is particularly attractive for modeling the HTR with complex physics such as
the double heterogeneity introduced by the TRISO fuel form.

Serpent has unique capabilities with regards to the modeling of pebble bed reactors. Serpent
can not only model the random pebble distribution, it can also model the random TRISO distri-
bution inside the pebbles. This modeling is done explicitly in which the location of each pebble
is generated using an automated dispersion routine. Serpent only requires a file with the position
of each pebble’s center point. Serpent uses this information to explicitly represent the location of
pebbles in the core without applying any homogenization.

For the analysis of the HTR in this work, Serpent was used for preparation of the multi-group
homogenized cross sections as well as to provide a detailed calculation without energy, angular, or
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spatial discretization error that could be used as a reference to assess the accuracy of the AGREE
calculation. The version of Serpent used in this work is 2.1.31.

2.3 Validation of Methods: The HTR-10 Benchmark

The HTR-10 Reactor was completed in 1999 and began operation in China in 2001 [37][38].
Several experiments were designed as part of an international IAEA benchmark [39] [40]. The
benchmarks were performed with AGREE using cross sections generated with SERPENT for the
AGREE core simulator and results will be summarized here and more details are provided in
the Appendix. The primary system of the HTR-10 is shown in Fig. 2.3 and some of the design
characteristics again summarized in Table 4.1.

Fig. 2.3: HTR-10 primary system (left) and reactor horizontal cross section (right)

The benchmarks performed here are listed in Table 2.1 and details are provided in [39].

2.3.1 HTR-10 Modeling with Serpent-AGREE

The modeling of the HTR-10 was performed with Serpent-AGREE using the initially critical model
of HTR-10 [41]. The initial Serpent model used the same nodalization as a MCNP model previ-
ously developed [39][40]. From this model, more comprehensive nodal division was developed
for Serpent which was then used as the reference and to generate nodal cross sections for AGREE.
Fig. 2.4 shows the nodal division model used in Serpent and AGREE.

Using this nodal division, the Serpent model was generated. In this model, the pebble position
is random, which is different from hexagonal-closed-packing in the MCNP model. All control
rods are modelled explicitly. Nodal cross sections are generated base on the nodal division from
Fig. 2.5. The Serpent model for initially critical HTR-10 core is shown in Fig. 2.6.
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Fig. 2.4: MCNP model for initially critical HTR-10 core

Fig. 2.5: Nodal division of the HTR-10 core for Serpent-AGREE model
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Table 2.1: The HTR-10 benchmarks

Number Name Description

B1
Initial Critical-
ity Benchmark

Loading height for initial core for first criticality (keff = 1)
with no CR insertion. This problem involved calculating
the amount of loading (given in loading height) for the first
core criticality without control rods being inserted.

B4
Control Rod
Worth

This problem includes calculating the reactivity worth of
the ten fully inserted control rods (B41) under helium atmo-
sphere and core temperature of 20◦C for a loading height of
123.86 cm and 17000 pebbles, and the differential worth of
one control rod (B42), the other rods are in withdrawn po-
sition.

B2
Temperature
Coefficient
Benchmark

This problem involved calculating the effective multiplica-
tion factor of the full core at 20◦C, 120◦C, and 250◦C with-
out any control rods being inserted.

B3
Control Rod
Worths for full
core

This problem involved calculating the reactivity worth of
ten fully inserted control rods and one fully inserted control
rod for the full core.

Fig. 2.6: Serpent model for initially critical HTR-10 core
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2.3.2 HTR-10 Benchmarks

The detailed specifications of the four HTR-10 benchmark cases listed in Table 2.1 are presented in
this section. Benchmark B1 and B4 are based on the initial critical core and measured experimental
data, while benchmark B2 and B3 are based on the fully loaded initial core and code to code
comparison.

The following modeling discretization and conditions were used for the initial validation of
AGREE-XE using HTR-10:

1. Initial Critical Core Case: All 20 channels have their own cross sections, 40 azimuthal cross
sections generated for Ring 10 of the core region. There are 924 cross section sets in total
for this model. Stream option 3 is applied without DDDC. Both 8-group cross section and
14-group cross section are used. Both cross sections are generated with 200,000 neutrons
per cycle.

2. Control Rod Worth Case: All 20 channels have their own cross sections, 40 azimuthal cross
sections generated for Ring 10 of the core region.

3. Temperature Coefficient Case: All 20 channels have their own cross sections, 40 azimuthal
cross sections generated for Ring 10 of the core region.

2.3.2.1 Benchmark B1: Initial Critical Core

Fig. 2.7 shows the AGREE model of the initially critical HTR-10 core.

Fig. 2.7: AGREE model for initially critical HTR-10 core
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The results of HTR-10 V&V (Verification and Validation) consist of eigenvalue comparison for
the minimum critical core between continuous energy Serpent, and AGREE with Serpent nodal
cross sections results for initially critical core are shown in Table 2.2. Linear interpolation of
the above results in a critical height of 124.33 cm predicted by Serpent, which is 1.37 cm or
1.03% higher than the height found experimentally, and a critical height of 122.93 cm predicted by
AGREE, which is 0.13 cm or 0.11% lower than the experimental height. The Institute of Nuclear
Energy Technology (INET) computed the height of initial criticality with MCNP and VSOP, and
they determined the critical loading height to be 122.87 cm and 122.56 cm, respectively, so the
results found by Serpent and AGREE have similar accuracy to results found by other benchmark
participants [39].

Table 2.2: keff at various loading heights

Height [cm] Serpent keff (std = 10 pcm) AGREE keff (8-Group, 360◦)

112.06 0.95949 0.96305
118.06 0.98003 0.97770
124.06 0.99921 1.00519
130.06 1.01694 1.02358
136.06 1.03328 1.04333

2.3.2.2 Benchmark B4: Single Rod Withdrawal Experiment

This case involved the following simulation:
• One rod inserted, all other rods withdrawn
• Helium atmosphere
• 20 ◦C (293.15 K)
• Loading height of 126 cm
• Worth calculated when lower end of rod is at axial positions: 394.2 cm, 383.618 cm, 334.918

cm, 331.318 cm, 282.618 cm, 279.018 cm, and 230.318 cm
The configuration of the control rods is shown in Fig. 2.8. Experimental results indicate that

the integral worth of one typical rod in helium atmosphere is 1.4693% .
For the reactivity worth of the ten control rods for the initial critical core (B41), the results and

the comparison to the reference are listed in Table 2.3. According to [39], the experimental rod
worth was 1469 pcm, which means the Serpent result in Table 2.3 is 211 pcm off the experimental
data. It also shows that the agreement between Serpent and AGREE worths is very strong.

For the differential rod worth of one control rod case (B42), Fig. 2.9 shows the results of the
simulation reported by China in [39] with comparisons to experimental data.
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Fig. 2.8: The configuration of the control rods for Benchmark B4

Table 2.3: HTR-10 benchmark B41 rod worth results

Case ARO keff ARI keff Worth [pcm]
Difference
from experi-
mental [pcm]

Serpent 0.996800 0.981000 1616 146
AGREE 4G 1.012370 0.995934 1630 161
AGREE 8G 1.002424 0.986122 1649 180

AGREE 14G 1.001299 0.984953 1657 188

Fig. 2.9: Control rod worth curve for a single rod in Benchmark B4
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2.3.2.3 Test B2: Temperature Coefficient Benchmark

For this case, the keff at different temperatures was calculated for the HTR-10 full core. Based on
the TECDOC [39], the final conditions of the full core are

• Helium atmosphere
• Average loading height of 180.12 cm

• All control rods in fully withdrawn position
• keff calculated for 3 temperatures: 20◦C, 120◦C and 250◦C

• Assumed isothermal temperature coefficient (all materials at same temperature)
Since no experimental results were provided for this case, all results are compared to the ref-

erence VSOP results. Reference MCNP results were not provided. The results from this problem
found by Serpent and AGREE along with the VSOP reference results are shown in Table 2.4 below.

Table 2.4: HTR-10 full core keff at various temperatures

Average Average
Case keff keff keff difference difference

at 20◦C at 120◦C at 250◦C from Serpent from INET VSOP
[pcm] [pcm]

Serpent 1.138230 1.127120 1.109200 N/A 140
Reference VSOP 1.135779 1.126158 1.111115 N/A N/A

AGREE 4G 1.156645 1.144379 1.125527 1348 1385
AGREE 8G 1.145529 1.136234 1.117798 655 692

AGREE 14G 1.146983 1.135400 1.116970 648 685

As expected, as the number of energy groups increases, the agreement between the
keff calculated by Serpent and AGREE improves as well. The minimum average difference be-
tween Serpent and AGREE is 648 pcm, and this occurs for the 14g case. Additionally, for more
energy groups, the agreement between the reference VSOP results and the AGREE results also
improves; for 14g, the average keff difference between AGREE and the reference VSOP results is
685 pcm compared to 1385 pcm for the 4g case. However, the Serpent keff values are much closer
to the reference VSOP keff values than all of the AGREE results.

2.3.2.4 Test B3: Full Core Control Rod Worth Results

For this case, the control rod worth was calculated for the HTR-10 full core. The core conditions
for this case are

• Helium atmosphere
• Loading height of 180.12 cm
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• 27,000 pebbles in the core region
The results are listed in Table 2.5. According to [39], the Chinese MCNP result was 1343 pcm

using nuclear data library ENDF/B-V. It shows the results in Table 2.5 agree well with the Chinese
MCNP result. It also shows that the agreement between Serpent and AGREE worths is very strong.

Table 2.5: HTR-10 benchmark B3 rod worth results

Case ARO keff ARI keff Worth [pcm]
Difference from
experimental
[pcm]

Serpent 1.136410 1.120300 1265 78
AGREE 4G 1.155052 1.138383 1268 75
AGREE 8G 1.146411 1.129690 1291 52

AGREE 14G 1.145377 1.128738 1278 56

The agreement between the worths determined by Serpent and AGREE and the reference worth
is much better for the full core than for the initial core; the maximum difference in worths is only
78 pcm, and the 14g, 360◦ AGREE case only has a difference of 56 pcm from the reference worth.
Since the main difference between the geometry in this case and the initial core is the core loading
height, and therefore the size of the helium cavity above the fuel region, this result suggests that
such a large cavity in the initial core could be causing calculation errors. However, it should be
noted that the difference between the keff calculated by Serpent and AGREE is higher than for the
initial core case, suggesting that cross section generation is not most optimized for the full core
case.

2.4 Validation of Methods: The gFHR Benchmark

2.4.1 gFHR Modeling with Serpent-AGREE

The gFHR benchmark model developed by KAIROS is a cylindrical core surrounded by graphite
reflectors at the top, bottom and all sides. The core is contained in the core barrel. There is a
downcomer between the core barrel and the reactor vessel. The active core is randomly packed
with fuel pebbles and the packing fraction is 60% of the volume. The radius of the pebbles is 2.0
cm, including a central graphite core of 1.38 cm in radius, a fuel annulus of 0.42 cm in thickness
and a shell of 0.20 cm in thickness.There are 9022 TRISO particles dispersed randomly in the
fuel annulus per pebble. The design of the TRISOs is the same as in the AGR-5/6/7 program
[42]. The outer radius of the TRISO particles is 0.0425 cm. The fuel is made of 19.55 wt%
enriched UC1.5O0.5. The coolant is flibe (Li2BeF4), in which the 7Li is enriched at 99.995%.
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The more detailed gFHR model specifications including the geometrical dimensions and material
compositions can be found in the benchmark publication [43].

The gFHR core is discretized in to 19 radial regions and 28 axial regions for homogenized cross
section generation, in which case the size of homogenized region is about 3∼4 times of neutron
transport mean free path (λtr). This is depicted by Fig. 2.10. The 19 radial regions include 12
fuel regions, 6 reflector regions and 1 region for the barrel, downcomer and vessel. The 28 axial
regions include 4 top reflector regions, 4 bottom reflector regions and 20 fuel regions.

Figure 2.10: Axial (left) and radial (right) cross section views of the gFHR model

2.4.2 gFHR Benchmarks

2.4.2.1 Serpent Results

In the benchmark, the gFHR core is discretized into 4 radial × 10 axial zones for burnup cal-
culation. The fuel compositions at equilibrium are given for the 40 zones [44]. The benchmark
reference eigenvalue [43] of the equilibrium core was calculated using Serpent 2 for randomized
pebble-bed with ENDF/B-VII.I library (with TSL library off). In this paper, OpenMC code [21] is
employed to generate the random positions for the TRISOs and the pebbles. The eigenvalue result
is shown in Table 2.6. When turning off the thermal scattering library (TSL), the keff = 1.01272,
which agrees well with the benchmark reference value. The difference caused by the TSL library
is 158 pcm in our Serpent 2 calculation, which means that the effect of thermal scattering is not
negligible.
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Table 2.6: Eigenvalue result of the gFHR equilibrium core

Benchmark (ref.) Serpent 2 TSL off keff (Diff) Serpent 2 TSL on keff (Diff)

1.01443±0.000233 1.01272±0.000049 (171 pcm) 1.01114±0.000047 (329 pcm)

2.4.2.2 AGREE Results

An AGREE model was developed using the cross sections generated by Serpent 2. The reference
temperature of all other materials is set to 900 K. All five of the few-group structures were tested.
To assure that the cross sections achieve the same level of statistics for the different group struc-
tures, the number of histories used for the Monte Carlo simulation are set to be proportional to
G2, where G is the number of energy groups. The results are shown in Table 2.7. As shown in
the Table 2.7, the 7-group, 14-group(b) and 23-group structures achieve good agreement between
Serpent 2 and AGREE.

Table 2.7: Eigenvalue comparison between Serpent 2 and AGREE

Group Serpent 2 keff AGREE keff Difference (pcm)

2 1.01309±0.000290 1.02150 +841
4(a) 1.01316±0.000140 1.02023 +707

7 1.01294±0.000083 1.01560 +266
14(b) 1.01303±0.000042 1.01718 +415

23 1.01304±0.000026 1.01742 +437

2.5 Summary

In this chapter, the Monte Carlo-deterministic hybrid method is introduced to overcome the diffi-
culties in modeling the HTR reactors due to their double-heterogeneity feature in the core and fuel
structure. The Monte Carlo code Serpent 2 is employed to generate homogenized cross sections,
which are then used in deterministic code AGREE for neutronics simulations based on the neutron
diffusion equation.

The hybrid methods are applied to HTR-10 benchmark problems and the gFHR benchmark
problems for validation purpose. Various energy group structures are tested and it shows that when
increasing the number of energy groups, the agreement between the AGREE results and Serpent
results can be improved.
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CHAPTER 3

Development of Uncertainty Analysis Methods and
Application to the HTR

The uncertainty estimation of the predicted reactor performance parameters has important implica-
tions in determining the reactor design margins and evaluating the overall plant safety performance.
The uncertainties are inevitably present because of the inaccuracies in the evaluated nuclear data
due to the measurement processes and the different corrections made to the microscopic cross sec-
tions. In assessing design penalties and establishing a nuclear data improvement program, it is
necessary to characterize uncertainties in the nuclear data set. As noted in the introduction, the
research here was to quantify the additional uncertainty that is introduced in the core calculation
by the Monte Carlo method used in the Serpent/AGREE core analysis methodology.

The methodology for computing the uncertainties of the performance parameters is discussed
in this Chapter. Statistical uncertainty data is generated by the Serpent Monte Carlo code. The
uncertainties of the safety performance parameters for the gFHR is discussed in Chapter 4, and the
proposed methods to minimize the uncertainty of the Monte Carlo data is presented in Chapter 5.

3.1 Comparison and Assessment of UQ Methods for Monte
Carlo Cross Sections

A comparison and assessment of two different methods for quantifying the uncertainty in Monte
Carlo cross sections was performed using case B1 of the HTR-10 Benchmark.

3.1.1 Energy Group Structure

Five different few-group structures were tested for Monte Carlo cross section generation and were
used for multi-group neutron diffusion simulation. For all the five cases, a same number of 200,000
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particles and 500/100 active/inactive cycles were run during the few-group cross section genera-
tion. The lower boundaries of the five few-group structures are listed in Table 3.2. The keff results
obtained from Serpent and AGREE are listed in Table 3.1. It shows that when increasing the
number of energy groups, the difference between Serpent and AGREE keff becomes smaller.

Table 3.1: HTR-10 benchmark B1 keff results for various group structures

Group Serpent AGREE diff [pcm] AGREE run time [s]

2G 0.99941±0.00010 1.02980 3039 472
4G 0.99908±0.00010 1.01499 1591 860
8G 0.99921±0.00010 1.00519 598 5538

14G 0.99901±0.00011 1.00396 495 18230
23G 0.99914±0.00010 1.00061 147 45118

Fig. 3.1 shows the five few-group structures superimposed on the plot of microscopic cross
sections. In Fig. 3.1, the graphite elastic scattering cross section, the U-235 fission cross section
and the U-238 capture cross section are plotted, which are the three significant cross sections in a
HTR reactor. It shows that when the number of energy groups is increased, a better resolution in
the thermal energy range can be achieved.
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Fig. 3.1: Few group structures for HTR-10 benchmarks
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Table 3.2: Lower boundaries of the five few-group structures used in HTR-10 benchmark B1
homogenized cross section generation (unit: eV)
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3.1.2 MC Statistical Error of Few-group Cross Section

The standard deviation of the Monte Carlo code generated few-group cross section is the statisti-
cal uncertainty of the few-group cross section data in AGREE code. Fig. 3.2 shows the average
uncertainty of the fission cross sections in 60 fuel regions for different energy group structures. It
shows that when increasing the number of groups, the uncertainty of the cross section becomes
larger. Besides, the uncertainty in a smaller energy interval is usually larger than the uncertainty
in a larger energy interval. For the uncertainty of other cross sections, such as absorption cross
section and scattering cross section, similar behaviours can be observed. Therefore, to achieve the
same level of uncertainty for a energy group structure containing more groups, more Monte Carlo
simulation histories are required.
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Fig. 3.2: Averaged uncertainty of Σf for 2-group, 8-group and 23-group

In the Monte Carlo simulation, the standard deviation of a statistical quantity is proportional to
1√
N

, where N is the number of simulation histories. Fig. 3.3 shows the averaged standard deviation
of the 23-group fission cross section when different number of neutrons were simulated to generate
the cross sections. For all the cases, a same number of 500/100 active/inactive cycles were run.
So the total number of Monte Carlo simulation histories is proportional to the number of neutrons.
The L-1 and L-2 norms of Σf uncertainties are plotted in Fig. 3.4. The x-axis y-axis in Fig. 3.4
are in logarithmic scale, and it clearly shows that the uncertainty of Σf is proportional to 1√

N
as

predicted.
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3.2 Analytical and Stochastic Uncertainty Analysis Methods

3.2.1 Analytical Methods: Conventional Perturbation Theory

Conventional perturbation theory (CPT) provides a practical method for determining the uncertain-
ties of computed performance parameters. This section will briefly outline the CPT formularization
and a practical solution scheme that was used in the AGREE code.

3.2.1.1 CPT Derivation

The fundamental mode neutron diffusion equation with multi-group approximation for a steady
state system is

Bϕ = 0 , (3.1)

where

Bϕ = Mϕ− λFϕ

= ∇ ·Dg∇ϕg − Σg
rϕ

g +
∑
g′ ̸=g

Σg
′→g

s ϕg
′

+ λχg
∑
g′

νΣg
′

f ϕ
g
′

. (3.2)

The fundamental mode adjoint flux is calculated from the equation

B∗ϕ∗ = 0 , (3.3)

where B∗ is the adjoint operator of B. The full expression of B∗ is

B∗ϕ∗ = M∗ϕ∗ − λ∗F ∗ϕ∗

= ∇ ·Dg∇ϕ∗,g − Σg
rϕ

∗,g +
∑
g′ ̸=g

Σg→g
′

s ϕ∗,g′ + λ∗νΣg
f

∑
g′

χg
′

ϕ∗,g′ , (3.4)

where ϕ∗ in Eq. (3.3) and Eq. (3.4) is called adjoint flux, which represents the “importance” of
neutrons in the reactor.

It can be shown that λ = λ∗, which are the eigenvalues of the neutron diffusion equation and
the adjoint equation. The sensitivity and uncertainty of the eigenvalue λ can be determined using
perturbation methods.
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First, consider the unperturbed neutron diffusion equation and its adjoint equation

M0ϕ0 = λ0F0ϕ0 ; (3.5)

M∗
0ϕ

∗
0 = λ0F

∗
0 ϕ

∗
0 . (3.6)

And the neutron diffusion equation for the perturbed system is

Mϕ = λFϕ . (3.7)

Then multiply Eq. (3.6) and Eq. (3.7) by ϕ and ϕ∗
0, respectively, prior to the inner product (or

integration in continuous energy case). This gives

⟨ϕ,M∗
0ϕ

∗
0⟩ = λ0⟨ϕ, F ∗

0 ϕ
∗
0⟩ ; (3.8)

⟨ϕ∗
0,Mϕ⟩ = λ⟨ϕ∗

0, Fϕ⟩ , (3.9)

where ⟨·, ·⟩ means inner product operation of the two vectors.
According to the property of adjoint operators, Eq. (3.8) is equivalent to

⟨ϕ∗
0,M0ϕ⟩ = λ0⟨ϕ∗

0, F0ϕ⟩ . (3.10)

Subtracting Eq. (3.9) from Eq. (3.10) and using the relation

M = M0 +∆M ; (3.11)

F = F0 +∆F , (3.12)

yields the conventional perturbation formula for the eigenvalue increments:

∆λ = λ− λ0 =
⟨ϕ∗

0, (∆M − λ0∆F )ϕ⟩
⟨ϕ∗

0, Fϕ⟩
. (3.13)

Usually the neutron multiplication factor keff =
1
λ

is preferred. So the conventional perturbation
formula for the uncertainty of keff is

∆keff =
⟨ϕ∗

0, (
1

keff,0
∆F −∆M)ϕ⟩

⟨ϕ∗
0, Fϕ⟩

× k2
eff,0 . (3.14)

In practice, when the perturbation is very small, the neutron flux of the perturbed system ϕ does
not change much compared to the neutron flux of the unperturbed system ϕ0. Therefore, Eq. 3.14
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can be approximately calculated by

∆keff ≈
⟨ϕ∗

0, (
1

keff,0
∆F −∆M)ϕ0⟩

⟨ϕ∗
0, Fϕ0⟩

× k2
eff,0 . (3.15)

With Eq. 3.15, the neutron diffusion equation and its adjoint equation will be solved only for
the unperturbed system to obtain ϕ0 and ϕ∗

0. The operator ∆F and ∆M , which are only related to
at most seven terms in a 3-D discretization or five terms in a 2-D discretization, can be obtained
without solving the perturbed system (See Appendix D). Since solving the neutron diffusion equa-
tion is the dominate computational burden in the AGREE simulation, using Eq. 3.15 rather than
Eq. 3.14 can save the run time significantly when computing the ∆keff .

3.2.1.2 Calculation Scheme

Based on Eq. (3.15), a calculation scheme for calculating the uncertainty of keff due to Monte
Carlo (MC) cross section uncertainties was implemented using the AGREE code. The calculation
scheme is shown in Fig. 3.5.

Fig. 3.5: Calculation scheme for calculating the uncertainty of keff using analytical methods

First, the original unperturbed problem is calculated using AGREE. The unperturbed neutron
diffusion operator M0 and F0, the eigenvalue λ0, neutron flux ϕ0 and adjoint neutron flux ϕ∗

0 are
obtained during this step.

Second, perturbed the cross section data based on the standard deviation of the MC generated
cross section. In this step, the neutron diffusion equation system is set up but not solved, since only
the operators M and F are needed.

28



Based on above two steps, all the components in Eq. (3.15) are obtained. And then the uncer-
tainty of keff can be calculated.

3.2.2 Stochastic Methods: Random Sampling

The uncertainties of interested parameters due to the uncertainties of the MC generated cross sec-
tions can also be determinted by randomly sampling, which is the stochastic methods. This section
will outline the solution scheme of stochastic methods and demonstrate the scheme with a simple
example problem.

3.2.2.1 Introduction to Dakota Code

Dakota is a toolkit for optimization, uncertainty quantification and model calibration developed by
Sandia National Laboratory (SNL). The Dakota toolkit serves as a versatile and extensible inter-
face, facilitating seamless interaction between simulation codes and iterative analysis methods. It
encompasses a wide array of algorithms, including gradient and nongradient-based optimization,
uncertainty quantification with sampling, reliability, and stochastic expansion techniques, param-
eter estimation using nonlinear least squares methods, and sensitivity/variance analysis employing
design of experiments and parameter study approaches. These capabilities can be used indepen-
dently or integrated into advanced strategies like surrogate-based optimization, mixed-integer non-
linear programming, and optimization under uncertainty. Embracing an object-oriented design phi-
losophy to abstract essential components, Dakota offers a flexible and adaptable problem-solving
environment for analyzing computational models on high-performance computers[45].

3.2.2.2 Calculation Scheme

The stochastic methods based on random sampling is very straightforwad. The calculation scheme
is shown in Fig. 3.6.

First, a set of cross section samples are generated by Dakota, assuming that the cross section
data follow the normal distribution, i.e.,

Σx,i,g ∼ N (Σx,i,g,∆
2
Σx,i,g

) (3.16)

where x, i, g represents cross section type, homogenized region ID and energy group ID, respec-
tively. Σx,i,g and ∆Σx,i,g

, both generated by Serpent code, are the nominal value and standard
deviation of the cross section Σx,i,g, respectively.

Second, a set of AGREE cases are performed based on cross section set generated in the first
step. Since the cross section data used for AGREE code are stored in PMAX files, the input
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Fig. 3.6: Calculation scheme for calculating the uncertainty of keff using stochastic methods

processor generates a set of PMAX files and AGREE input files for the set of cross section samples.
Next, the set of AGREE cases is performed and the output processor is used to extract the

results of interest which are written in a specific format file to be read by the Dakota code. Dakota
fits the set of output parameters in specified distributions, providing the mean values and standard
deviations of the output parameters. In this section, the output parameter of interest is the keff which
is assumed to follow a normal distribution

keff ∼ N (keff,∆
2
keff
) . (3.17)

3.3 Results Comparison for a Demonstration Problem

In this section, a simplified gFHR fresh core benchmark model is developed to make code-code
validation between the analytical method and the stochastic method.

3.3.1 Description of the Demonstration Problem

An example problem was developed by simplifying the gFHR fresh core benchmark model. The
purpose of the problem was to simplify the comparison of the deterministic CPT and stochastic
DAKOTA methods for estimating the uncertainty. The geometry of the demonstration problem is
shown in Fig. 3.7. The active core region is a cylinder with a radius of 1.2 m and a height of
3.1 m. The thicknesses of the radial reflector and the axial reflector are both 60 cm. The gFHR
fresh core is divided into 3 radial regions and 5 axial regions, among which there are 2 radial fuel
regions and 3 axial fuel regions. The enrichment of the fuel in the gFHR fresh core is 19.95%. The

30



compositions of the materials are obtained from [46].

Fig. 3.7: Serpent geometry model for the simplified gFHR fresh core

Homogenized cross section data were generated for the 3×5 regions using Serpent 2 Monte
Carlo code. 100,000 neutrons were simulated for 50 inactive cycles and 100 active cycles. Five
few-group structures were used to generate multi-group cross sections. The lower boundaries of
the five few-group structures are listed in Table 3.3.

The few-group cross sections generated by Serpent 2 were used in the AGREE code. The coarse
mesh for the AGREE neutron diffusion model is shown in Fig. 3.8.

Fig. 3.8: AGREE geometry model for the simplified gFHR fresh core

The keff results calculated by Serpent and AGREE are listed in Table 3.4. It shows that when
increasing the number of energy groups from 2 to 23, the difference between Serpent and AGREE

31



Table 3.3: Lower boundaries of the five few-group structures used in gFHR homogenized cross
section generation (unit: eV)
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keff decreases from about 1000 pcm to about 200 pcm, which shows the similar behavior to the
results of HTR-10 benchmark B1 (Table 3.2).

Table 3.4: Simplified gFHR keff results for various group structures

Group Serpent AGREE diff [pcm]

2G 1.31416±0.00019 1.32364 948
4G 1.31392±0.00020 1.32394 1002
7G 1.31377±0.00019 1.31779 402

14G 1.31418±0.00020 1.31727 495
23G 1.31321±0.00019 1.31512 191

3.3.2 Correlations between the Cross Section Data

In the two methods developed in Section 3.2, the cross sections are assumed to be independent to
each other. All the cross section data are perturbed independently and thus the total uncertainty of
keff is assumed to be the L-2 norm of all the contributions. However, the independence of the cross
section data is unknown since the covariances between the cross section data are not reported in
Serpent’s results. Nevertheless, the uncertainty of keff can be bounded by the L-1 norm of all the
contributions (See Appendix B).

However, the homogenized cross sections generated from Monte Carlo code are generally cor-
related. Because the change of a certain cross section Σx may affect the flux distribution that used
to collapse another cross section Σy, the cross section Σx and Σy are correlated through the flux
distribution. Usually, the correlation between two cross sections in the same region is strong, while
the correlation between two cross sections in different regions is weak. Based on this, a “region
independent estimation” of the keff uncertainty can be proposed as:

∆keff ⩽

√√√√ Nr∑
i

(∑
x,g

∆
Σg

x,i

keff

)2

. (3.18)

Table 3.5 summarizes the three estimations proposed above. For many cases, the correlations
between the cross sections are weak and the cross section data can be treated as independent
variables. In this research, the L-2 norm estimation will be applied for the uncertainty propagation
results of most cases.
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Table 3.5: Three estimations of the uncertainty of keff

Estimation Assumption

L-1 norm All cross sections are strongly correlated
Region independent Cross sections in the same region are strongly correlated

L-2 norm Correlations between all cross sections are very weak

3.3.3 Comparison of the ∆keff Results for the UQ Methods

Using the analytical and stochastic UQ analysis methods and the calculation schemes discussed
in Section 3.2, the uncertainty of keff from AGREE was obtained using a deterministic CPT and
a stochastic method. The contributions from fission spectrum (χ), fission cross section (νΣf ),
transport cross section (Σtr), absorption cross sections were considered when calculating the un-
certainty of keff . The results for different group structures are listed in Table 3.6. All the three
estimations of the uncertainty are provided.

Table 3.6: The uncertainty of keff contributed from MC cross section uncertainties results obtained
by CPT analytical methods and by Dakota stochastic methods

Group AGREE keff
CPT ∆keff (pcm) Dakota ∆keff (pcm)

L-2 L-1 Region-indep. L-2 L-1 Region-indep.

2G 1.32364 49.0 246.8 102.8 47.5 221.5 92.2
4G 1.32394 60.2 391.1 161.0 61.0 394.6 159.9
7G 1.31779 60.5 444.5 187.4 61.0 417.4 175.3
14G 1.31727 68.0 596.1 254.3 67.4 588.4 248.4
23G 1.31512 61.1 755.6 308.2 64.0 777.2 319.3

By comparing the ∆keff obtained from CPT and Dakota, it can be observed that the differ-
ences between them are minimal, which demonstrates good agreement between the analytical and
stochastic methods.

The Monte Carlo standard deviations of keff reported by Serpent are around 20 pcm, which is
about 1/3 of the ∆keff calculated by CPT and Dakota (L-2 norm). This is because the Monte Carlo
code appears to underestimate the uncertainty of keff .

To study the contributions to the total ∆keff from each individual cross section data, the the
contributions were estracted for each core region. Fig. 3.9 to Fig. 3.13 illustrate the contributions
from cross section data errors of each region and each energy group to the total ∆keff .

The principal data presented in the figures is summarized in Table 3.7. It can be observed that
the main contribution to ∆keff comes from ∆νΣf

and ∆Σab
. The contribution from ∆χ and ∆Σtr is

negligible. The contribution from ∆Σs is generally small.
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Fig. 3.9: keff uncertainty contributed from ∆Σs , 4-group case
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Fig. 3.10: keff uncertainty contributed from ∆νΣf
, 4-group case

Table 3.7: Summary of ∆keff sources for the 4-group case

Cross section type
Max (pcm) L-2 norm (pcm) percentage (%)

CPT Dakota CPT Dakota CPT Dakota

∆χ 0.0 0.0 0.1 0.0 0.0 0.0
∆νΣf

17.4 17.8 43.8 44.7 52.9 53.1
∆Σtr 0.2 0.2 0.5 0.3 0.0 0.0
∆Σab

15.5 15.8 39.7 40.2 43.5 43.4
∆Σs 6.8 6.9 11.4 11.6 3.6 3.5
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Fig. 3.11: keff uncertainty contributed from ∆Σtr , 4-group case
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Fig. 3.12: keff uncertainty contributed from ∆Σab
, 4-group case
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Fig. 3.13: keff uncertainty contributed from ∆Σs , 4-group case

For the contribution from ∆νΣf
and ∆Σab

, the fuel regions contribute more than the reflector
regions and the thermal groups contribute more than the fast groups.

3.3.4 Factors Affecting Uncertainty

3.3.4.1 Number of Groups

In this demonstration problem, five different energy group structures were used. The relation
between the total ∆keff and the number of groups is plotted in Fig. 3.14. By comparing the results
of different group structures in Table 3.6, it shows that if the total number of neutron histories
in Serpent calculation remains unchanged, the L-2 norm estimated total uncertainty of AGREE
keff due to the uncertainty of MC cross section data remain essentially unchanged, regardless of
the number of energy groups used for generating the cross section data.

According to Fig. 3.2, when the total number of neutron histories is fixed in Monte Carlo cal-
culations, the uncertainty of MC generated cross sections becomes larger as increasing the number
of groups. The reason is that when increasing the number of groups, the energy interval becomes
smaller, which results a smaller number of statistics in the energy bin. But since the energy bin is
narrower, the larger cross section error will not increase the contribution to the uncertainty of keff .
That is the reason why the L-2 norm estimated uncertainty of keff is insensitive to the number of
groups as long as the total number of neutron histories is fixed.

For the L-1 norm estimation and the region-independent estimation, the uncertainty of
keff increases when the number of groups increases. It is because the larger number of groups
is used in cross section generation, the more cross section data are generated and the correlations
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Fig. 3.14: Relation between keff uncertainty and the number of groups

between them are more significantly overestimated.

3.3.4.2 Number of Neutron Histories
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Fig. 3.15: Relation between keff uncertainty and the number of neutron histories

When generating cross sections from Monte Corlo calculation, increasing the number of neu-
tron histories can reduce the uncertainty of the cross sections, as shown in Fig. 3.3. In this demon-
stration problem, the relation between the keff uncertainty and the number of neutron histories was
investigated. The 4-group energy structure was used for this study.
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The uncertainty of keff was calculated from CPT methods. When increasing the number of
neutron histories from 100,000 to 2,300,000 for 100 cycles, the total uncertainty of keff is reduced
from 60.2 pcm to 13.4 pcm. The results are plotted in Fig. 3.15. The x-axis and y-axis are in
logarithmic scale. It shows that the uncertainty of keff is inversely proportional to the square root
of the number of neutron histories, i.e., ∆keff ∝

1√
N

.

3.3.4.3 Mesh Refinement in Neutron Diffusion Calculation

When using AGREE to perform the neutronics simulation, there are usually two layer of meshes
for the spatial discretization. The coarse mesh is used to set up the reactor core geometry. A finer
mesh is built in the coarse mesh to accurately predict the flux distribution[47]. Although the cross
section data is only applied on the coarse mesh level, conducting a study to learn the effect of mesh
refinement on the uncertainty calculation is necessary.

Fig. 3.16: Mesh refinement for the simplified gFHR core AGREE model

In the simplified gFHR core case, the coarse mesh is the 3× 5 mesh as shown in Fig. 3.8. The
mesh refinement effect is studied by refine the coarse mesh by 2 × 2, 4 × 4 and 8 × 8. This is
depicted in Fig. 3.16.

The uncertainty calculations are performed with Dakota random sampling methods. The en-
ergy structure used for the study is the 7-group structure. The keff results and the uncertainties in
different mesh refinement cases are list in Table 3.8. It shows that when refining the neutronics
mesh, the keff result becomes closer to the Serpent keff (1.31377). However, the uncertainty of
keff remains nearly the same. It means that the uncertainty of keff due to the uncertainty of cross
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section data does not depend on the mesh refinement in AGREE and is not a primary consideration
when calculating the uncertainty of keff .

Table 3.8: keff and keff uncertainty with different mesh refinements

Mesh refinement keff ∆keff (pcm)

1× 1 1.29955 61.0
2× 2 1.30035 59.2
4× 4 1.31005 59.1
8× 8 1.31579 59.9

In other words, the uncertainty of keff due to the uncertainty of cross section data only depends
on the coarse mesh. In practice, the coarse mesh is usually the same as the homogenized cross
section generation mesh. Therefore, when quantifying the keff uncertainty due to the cross sec-
tion data uncertainty, the mesh refinement in the AGREE model can be removed to reduce the
computational burden, by reducing both the memory usage and run time.

For the multi-physics coupling case, a higher resolution power distribution will be obtained
with the mesh refinement, which helps predict the temperature distribution better. In such cases,
the mesh refinement is necessary when propagating the cross section data uncertainty.

3.4 Comparison of Analytical and Stochastic UQ Methods for
the HTR-10

Both the analytical and stochastic UQ methods developed in Section 3.2 were applied on the HTR-
10 benchmark problem. This is considered an important first step in this research since the bench-
mark provides experimental data with measurement uncertainty which can be used to provide per-
spective on the relative magnitude of the modeling and simulation uncertainties. This perspective
is not possible with the gFHR which is currently still in the design stage. However, since it is an
advanced nuclear reactor, it is the application of primary interest in the research performed here.
In the benchmark results presented in Section 2.3.2, three few-group structures, 4G, 8G and 14G,
are used to generate homogenized cross sections for the AGREE neutron diffusion calculation.
According to the results, the differences between the SERPENT keff result and the AGREE 8G
and 14G keff are smaller compared to the 4G case, which suggests an increased number of energy
groups in AGREE more accurately describes the physics of the reactor. However, the computa-
tional cost of the 14G is significantly larger than the 8G and 4G cases. So in the actual application,
the 8G structure is a reasonable compromise of accuracy versus execution time and the analysis in
this section was performed for the HTR-10 benchmark with the 8G structure.
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3.4.1 UQ of Benchmark B1

The description and modeling approach of HTR-10 benchmark B1 was presented in Section
2.3.2.1. The results are shown in Table 2.2. Both analytical and stochastic methods are applied to
calculate the uncertainty of AGREE keff due to MC generated cross section uncertainties.

For both methods, the uncertainties of χ, νΣf , Σtr, Σab and Σs are taken into account. For the
analytical method, the cross sections are perturbed independently; while for the stochastic method,
all the cross sections in the same homoginized region are perturbed together. 108 random samples
are created and evaluated for each perturbation in the stochastic method. The results estimated by
L-2 norm are listed in Table 3.9. As indicated, the results of the analytic and stochastic methods are
similar which provides confidence in using the stochastic method for a wider range of responses
than the restrictive use of CPT analytic methods for only the core keff .

Table 3.9: HTR-10 B1 ∆keff due to MC generated cross section

Height [cm] Serpent keff AGREE keff (8-Group)
∆keff due to MC XS

CPT (pcm) Dakota (pcm)

112.06 0.95949 0.96305 17.0 16.3
118.06 0.98003 0.97770 17.3 16.3
124.06 0.99921 1.00519 16.4 15.8
130.06 1.01694 1.02358 17.4 16.7
136.06 1.03328 1.04333 17.2 16.7

3.4.2 UQ of Benchmark B4

The uncertainty of HTR-10 Benchmark B4 is calculated using the the stochastic method. The
results estimated by L-2 norm are shown in Table 3.10. The rod worth calculated by AGREE is
ρcr = 1649 pcm, which is 180 pcm larger than the benchmark experimental result. The uncertainty
of ρcr can be calculated with Eq. 5.6, which is 20.5 pcm.

Table 3.10: HTR-10 Benchmark B4 ∆keff due to MC generated cross section

Case
Serpent keff AGREE keff ∆keff due to MC XS

± std.dev. (pcm) (8-Group) (by Dakota, pcm)

Rod in 0.98100 ±7.0 0.98612 14.4
Rod out 0.99680 ±7.1 1.00242 14.2
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3.4.3 UQ of Test B2

The uncertainty of HTR-10 Test B2 is calculated using the the stochastic method. The results
estimated by L-2 norm are shown in Table 3.10.

Table 3.11: HTR-10 Test B2 ∆keff due to MC generated cross section

Temperature Serpent keff AGREE keff ∆keff due to MC XS
(◦C) ± std.dev. (pcm) (8-Group) (by Dakota, pcm)

20 1.13823 ±7.3 1.14553 18.7
120 1.12712 ±7.4 1.13623 18.4
250 1.10920 ±7.5 1.11780 18.1

3.4.4 UQ of Test B3

The uncertainties of HTR-10 Benchmark B4 keff are calculated using the the stochastic method.
The results estimated by L-2 norm are shown in Table 3.12. The rod worth calculated by AGREE
is ρcr = 1291 pcm, which is 52 pcm smaller than the Chinese MCNP benchmark result. The
uncertainty of ρcr can be calculated with Eq. 5.6, which is 27.1 pcm.

Table 3.12: HTR-10 Test B3 ∆keff due to MC generated cross section

Case
Serpent keff AGREE keff ∆keff due to MC XS

± std.dev. (pcm) (8-Group) (by Dakota, pcm)

All rod in 1.136410 ±9.2 1.129690 24.0
All rod out 1.120300 ±9.4 1.146411 25.5

3.5 Summary

In this chapter, the statistical error of Monte Carlo generated cross sections are first assessed. It
shows that the statistical error is inversely proportional to the square root of the number of neutron
histories. The statistical error introduced from Monte Carlo cross section generation will bring
additional uncertainty to the results of the subsequent neutronics and thermo-fluids simulations.
Therefore, the quantification of the uncertainty of the subsequent calculations caused by the uncer-
tainty of Monte Carlo generated cross sections are necessary.

Two types of methods are developed to propagate the uncertainty of Monte Carlo generated
cross sections. One is the analytical method based on the conventional perturbation theory. The
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other is the stochastic method based on random sampling. The analytical method is implemented
based on AGREE code and the stochastic method is implemented based on the coupling of AGREE
code and Dakota code. Both methods are tested using a simplified gFHR fresh core demonstration
problem and the results from both methods agree very well with each other which provided confi-
dence in using the stochastic method for a wider range of responses than the restrictive use of CPT
analytic methods. Some parametric studies are conducted to investigate the features of the Monte
Carlo cross section uncertainty propagation and the factors affecting the uncertainty propagation.

The stochastic method is chosen as the uncertainty propagation method for the subsequent
studies in this theis for its universality and extendibility.

Finally, the methods are applied on the HTR-10 benchmark problems. The uncertainties of
the hybrid method calculated benchmark results due to Monte Carlo generated cross section were
quantified.
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CHAPTER 4

Uncertainty Analysis for the FHR: Steady-State
Simulation

4.1 Introduction of FHR Steady-State Simulations

In Section 2.4, the description and modeling of gFHR benchmark was introduced. The gFHR
benchmarks in Section 2.4 are neutronics simulations performed by Serpent and AGREE.

In this section, the neutronics simulations are coupled with thermo-fluids calculations using
the SAM code. The uncertainty analysis methods developed in Chapter 3 are performed on both
AGREE code and the SAM code to quantify the uncertainties of interested quantities propagated
from the uncertainties of Monte Carlo generated cross section data.

4.1.1 Introduction of SAM Code

The System Analysis Module (SAM) is a system analysis code for the safety analysis developed
by Argonne National Laboratory. It focuses on modeling and simulating advanced reactor con-
cepts, including FHRs, Liquid-Metal-cooled fast Reactors (LMR), Molten Salt Reactors (MSR),
and High-Temperature Gas-cooled Reactors (HTGR). SAM has the capabilities of modeling and
simulating the heat transfer and single-phase fluid dynamics of the non-LWR coolants. SAM also
has a reactor point kinetics model to simulate the reactor core neutronics responses.

SAM is being developed under the U.S. Department of Energy (DOE) Nuclear Energy Ad-
vanced Modeling and Simulation (NEAMS) program. SAM is a MOOSE-based (Multiphysics
Object-Oriented Simulation Environment) code, which utilizes the libMesh library for the mesh-
ing and finite-element modeling, utilizes PETSc as the numerical linear and non-linear solvers.
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4.1.2 Coupling Scheme for gFHR

The Monte Carlo-deterministic hybrid methods used for gFHR neutronics calculation is the same
as what was described in Section 2.1. In addition to the neutronics simulation, the methods of
thermo-fluids simulation for gFHR is also developed.

The coupling scheme for the gFHR simulation is shown in Fig. 4.1. For the thermo-fluids
simulation of the gFHR in SAM, the core is modeled by a two-dimensional porous medium model
and the external loops are represented by one-dimensional models. The internal point kinetics
solver is employed for the coupling of neutronics in SAM. The essential neutronics parameters
required by the point kinetics solver are provided by Serpent and AGREE. AGREE provides the
power distribution in the gFHR core as the heat source in SAM’s thermo-fluids calculations. The
temperature coefficients and control rod worth are used for transient analysis. The delayed neutron
parameters, including the delayed neutron fraction and the precursor decay constants, are provided
by Serpent for the modeling of the point kinetics equations. The xenon cross sections and related
parameters are provided by Serpent as well.

Fig. 4.1: The coupling scheme of Serpent-AGREE and SAM

The AGREE code also has the capability to model the thermo-fluids in the core of pebble-bed
type reactors based on the porous media approach. Therefore, the fuel temperature and coolant
temperature calculated by both codes are consistent and can be used for code-code validation.

45



4.1.3 Homogenized Cross Section Generation for gFHR

The following analysis will be based on the gFHR equilibrium core at hot full power (HFP) con-
dition, instead of the gFHR fresh core at hot zero power (HZP) condition in Section 3.3. The cross
section generation methods used for HFP cores are a little different from the HZP cores.

The homogenized cross section generation for the HFP cores includes three steps.

Step 1 Since the core temperature distributions are unknown, the temperature distributions of fuel,
coolant, moderator and reflector are all assumed to be uniform in Serpent modeling. The
cross sections are generated based on the uniform temperature by Serpent

Step 2 The cross section generated in Step 1 is used in AGREE to perform the neutronics and
thermo-fluids coupling calculation. Then the temperature distributions of fuel, coolant, mod-
erator and reflector are obtained.

Step 3 The temperature distributions obtained in Step 2 are applied to the Serpent model. Then the
homogenized cross sections at HFP condition are generated by Serpent.

Above method is depicted in Fig. 4.2. The cross sections are generated twice, one is with
uniform temperature distributions at HZP condition and another is with “actual” temperature dis-
tributions at HFP condition. The cross sections generated in Step 3 are more accurate since it uses
better temperature distributions.

Fig. 4.2: The cross section generation method for HFP cores

To be noted, the temperature distributions in Step 3 is calculated from Step 2, in which the cross
sections are not accurate enough. It means that the temperature distributions used in Step 3 are still
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not the exact HFP temperature distributions. Therefore, the Step 2 and Step 3 can be repeated
multiple times to reach a convergence of the exact temperature distributions and cross sections at
HFP condition. However, in practice the Step 2 and Step 3 are performed only one time and the
cross sections and temperature distributions are accurate enough (See Appendix C).

4.1.4 Calculation of Temperature Distribution

The core temperature distributions discussed in Section 4.1.3 are calculated with AGREE code.
A simple single-channel thermo-fluid model is developed based on the porous media approach
in AGREE, which is shown in Fig. 4.3. The flibe flow comes from the inlet, goes down the
downcomer and flows into the bottom of the active core. The mass flow rate is 1173.0 kg/s. The
core inlet temperature is 550 ◦C (823 K). The outlet temperature is 650 ◦C (923 K).

Fig. 4.3: Single-channel thermo-fluid model in AGREE

Using AGREE neutronics and thermo-fluid coupling calculation, the temperature distributions
of the gFHR core can be obtained. Fig. 4.4 and Fig. 4.5 show the temperature distribution of fuel,
coolant, moderator and reflector, respectively.

According to Fig. 4.4, the hottest region (1031.4 K) in the core is middle upper region at the
centerline of the core, which is also the highest power density occurs. The highest coolant temper-
ature (936.2 K) occurs at the outlet of the core centerline.
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Figure 4.4: Fuel (left) and coolant (right) temperature distributions of the equilibrium core at HFP
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Figure 4.5: Moderator (left) and reflector (right) temperature distributions of the equilibrium core
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According to Fig. 4.5, the highest moderator temperature (982.3 K) occurs at the outlet of the
core centerline, which overlaps with the highest coolant temperature region. The highest reflector
temperature (939.5 K) occurs at the region next to the highest coolant temperature region.

4.1.5 Calculation of Local Power

The local power can be calculated from both Serpent and AGREE using the flux and energy release
per fission:

Pi =
G∑

g=1

κg
iΣ

g
f,iϕ

g
i . (4.1)

The radial and axial power profiles calculated by Serpent and AGREE are compared, as plotted
in Fig. 4.6. It shows that AGREE and Serpent agree very well on the power distributions. The
maximum difference occurs at the boundary of the core, where the neutron leakage is significant.
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Figure 4.6: Radial (left) and axial (right) power distributions of the equilibrium core

The region-wise power distribution of the gFHR core calculated by AGREE and the relative
difference from Serpent results are shown in Fig. 4.7. The average power density is around 20
W/cm2. The maximum power density occurs at the upper center of the core. The difference
between AGREE and Serpent results is less than 1% for most of the core.

4.1.6 Calculation of Region-wise Reactivity Coefficients

The temperature reactivity coefficient is the change of reactivity for a unit change in material
temperature:

αT =
dρ

dT
. (4.2)
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The temperature reactivity coefficient is a physical property of the material and therefore differ-
ent materials have different temperature reactivity coefficients. In the reactor core, the temperature
reactivity coefficients of fuel (αTf

), moderator(αTm), coolant (αTc) and reflector (αTr) are typically
of most concern for reactor safety analysis.

Since the temperature reactivity coefficients are calculated when the reactor system is at near
criticality, i.e., keff ≈ 1.0, Eq. 4.2 can be simplified by

αT =
dρ

dT
=

d
(
1− 1

keff

)
dT

=
1

k2
eff

dkeff

dT

≈ dkeff

dT
. (4.3)

4.1.6.1 Methods

The temperature reactivity coefficients can be calculated by perturbing the temperature of the cor-
responding material. In general, there are two ways to perform the calculation:

1. Perturb the temperature in Serpent since the nuclear data libraries are temperature dependent
and thus the material temperatures can be specified in Serpent.

2. Generate temperature dependent cross sections first and then perturbing the material temper-
atures in AGREE. The methods of generating temperature dependent cross sections is called
“cross section branching”, which will be introduced in Section 4.2.

Method 1: Direct Subtraction

• Run Serpent at temperature T1, and get cross section set {ΣT1}; Run Serpent at temperature
T2, and get cross section set {ΣT2}.

• Run AGREE with cross section set {ΣT1}, get keff,1; Run AGREE with cross section set
{ΣT2}, get keff,2.

• Calculate reactivity coefficient:

αT =
keff,1 − keff,2

T1 − T2

Method 2: Cross section Interpolation

• Run Serpent at temperature T1, T2, T3, · · · , and get cross section set {ΣT1}, {ΣT2}, {ΣT3},
· · ·
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• Interpolate {ΣT1}, {ΣT2}, {ΣT3}, · · · , get temperature-dependent cross section {Σ(T )}.

• Run AGREE at temperature T
′ , get keff,1; Perform a temperature perturbation at T ′ by ∆T

in AGREE, get keff,1.

• Calculate reactivity coefficient:

αT =
keff,1 − keff,2

∆T

4.1.6.2 Results of lumped reactivity coefficients

The lumped reactivity coefficients of the gFHR core can be calculated with both methods. For
the Serpent code, the reactivity coefficients are calculated with Method 1 by perturbing the core
temperatures by 100 K (50 K above the nominal temperature and 50 K below the nominal tem-
perature). The nominal temperature is obtained by running AGREE thermo-fluids calculation, as
shown in Fig. 4.4 and Fig. 4.5.

For each Serpent run, 500,000 particles are simulated for 100 inactive cycles and 500 active
cycles. The standard deviations of Serpent keff are all between 7 pcm and 9 pcm. The uncertainties
of reactivity coefficients calculated by Serpent can be propagated by

∆αT
=

1

∆T

√
∆2

keff,1
+∆2

keff,2
, (4.4)

which are all around 0.12 pcm/K.

Table 4.1: Reactivity coefficients of the gFHR equilibrium core at hot-full-power (HFP)

Reactivity coefficient Serpent 2 (ref.) AGREE Difference (%)

Fuel temperature (pcm/K) -4.24±0.12 -4.32 -1.9
Coolant temperature (pcm/K) -1.23±0.12 -1.24 -0.8

Moderator temperature (pcm/K) -1.07±0.12 -0.92 14.0
Reflector temperature (pcm/K) +0.99±0.12 +0.85 -14.1

For AGREE code, the lumped reactivity coefficients are calculated with Method 2 with
temperature-dependent cross sections. The temperature distribution in the whole core is perturbed
by 100 K (50 K above the nominal temperature and 50 K below the nominal temperature).

According to the results in Table 4.1, the temperature reactivity coefficients of fuel, moderator
and coolant are all negative, which is significant for the inherent safety of the reactor. However, the
temperature reactivity coefficient of reflector is positive, which should be addressed in the reactor
safety analysis. The temperature reactivity coefficients of fuel and coolant calculated by Serpent
agree well with AGREE results. The differences between the Serpent and AGREE results of other
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two reactivity coefficients are around 14%, but the differences are still within the allowable range
of error.

4.1.6.3 Results of region-wise reactivity coefficients

The region-wise temperature reactivity coefficients of fuel, coolant, moderrator and reflector are
calculated based on the Method 2 developed in Section 4.1.6.1. To be noted, in Section 2.4, the
gFHR core is discretized into 19 radial regions and 28 axial regions for homogenized cross sec-
tion generation, in which there are 12×20 fuel regions. The size of each homogenized region is
around 10 cm×15 cm, which is relatively very small. For the region-wise temperature reactivity
coefficients calculation, a coarser mesh is created by merging 3 radial and 2 axial meshes into one
mesh. This is depicted by Fig. 4.8. By merging the meshes, the discretization of the core becomes
7 radial × 14 axial regions, in which there are 4×10 fuel regions.

Fig. 4.8: gFHR coarse mesh for region-wise reactivity coefficients calculation

There are several reasons to use a coarser mesh for temperature reactivity coefficients calcula-
tion:

1. The region-wise temperature reactivity coefficients are calculated by perturbing the regional
material temperature by 50 K above the nominal temperature and 50 K below the nominal
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temperature. If the region is too small, the eigenvalue change caused by the temperature
perturbation will not be noticeable enough and a large uncertainty will be resulted.

2. In the SAM gFHR model, a four-channel core will be modeled since the runtime of SAM
code increases significantly when the number of channels is large. The coarse mesh shown
in Fig. 4.8 is compatible to the SAM model.

3. In the gFHR benchmark specification document[46], the active core is discretized into 4×10
fuel regions, which is the same as the coarse mesh in Fig. 4.8.

Fig. 4.9 and Fig. 4.10 show the region-wise temperature reactivity coefficients of fuel, coolant,
moderator and reflector, respectively. According to Fig. 4.9 and Fig. 4.10, the temperature re-
activity coefficients of fuel, coolant and moderator are negative in all the fuel regions, while the
temperature reactivity coefficients of reflector are positive in all the reflector regions. The negative
fuel temperature reactivity coefficient and the negative coolant temperature reactivity coefficient
are relatively easy to explain: the fuel coefficient is negative due to Doppler broadening, while the
coolant coefficient is negative due to density changes. It is worth noting the temperature reactivity
coefficient of the moderator and the temperature reactivity coefficient of the reflector: even though
both the moderator and the reflector are made of graphite, their reactivity temperature coefficients
have opposite signs. This is because, for the moderator, an increase in temperature leads to a hard-
ening of the neutron energy spectrum in the active region, resulting in reduced reactivity. On the
other hand, for the reflector, an increase in temperature causes an increase in the elastic scattering
cross-section of graphite[48], thereby reflecting more neutrons back into the core. The maximum
region-wise temperature reactivity coefficients of fuel, coolant and moderator in absolute value all
occur at the center of the third radial core channel.

In Section 4.1.6.2, the whole core temperature reactivity coefficients are calculated by perturb-
ing the temperature distributions of the whole core. On the other side, the whole core temperature
reactivity coefficients can be calculated by summing up the region-wise ones. The whole core
temperature reactivity coefficients obtained from both methods are summerized in Table 4.2. The
differences between the results are all below 5%, which shows that the temperature reactivity co-
efficients calculated from both methods are consistent with each other.

4.2 Uncertainty in Branch Cross Section Generation

The methods of generating temperature-dependent and control rod-dependent cross sections from
Serpent cases are generally referred to as cross section branching. The methodology is described
in GenPMAXS theory manual[49], but a brief overreview of the methods will be provided in this
section.
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Figure 4.9: Fuel (left) and coolant (right) temperature reactivity coefficients of gFHR

Table 4.2: Whole core reactivity coefficients of the gFHR from two methods

Reactivity coefficient
AGREE AGREE

Difference (%)
lumped region-wise sum

Fuel temperature (pcm/K) -4.324 -4.320 0.1
Coolant temperature (pcm/K) -1.239 -1.235 0.3

Moderator temperature (pcm/K) -0.918 -0.897 2.3
Reflector temperature (pcm/K) +0.852 +0.888 4.2
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Figure 4.10: Moderator (left) and reflector (right) temperature reactivity coefficients of gFHR
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4.2.1 Cross Section Interpolation

The cross section at a certain temperature is obtained by interpolating in AGREE. The cross section
interpolation is performed using Eq. (4.5):

ΣT
x = D(T − Tref ) + Σ

Tref
x , (4.5)

where Tref is the temperature of the reference branch. D is defined as:

D = wlDl + whDh , (4.6)

where Dl and Dh are the two closest partial derivatives of the cross section with respect to the
material temperature, wl and wh are the weights of the two partial derivatives. They are calculated
by GenPMAXS based on Serpent generated cross section data using following formulas:

Dl =
∂Σx

∂T

∣∣∣∣
Tl

=
ΣTl

x − Σ
Tref
x

Tl − Tref

, (4.7)

Dh =
∂Σx

∂T

∣∣∣∣
Th

=
ΣTh

x − Σ
Tref
x

Th − Tref

. (4.8)

The weights are determined by

wl =
T − Tl

Th − Tl

, (4.9)

wh =
Th − T

Th − Tl

= 1− wl . (4.10)

Fig. 4.5 is a demonstration of how the absorption cross section of a reflector region at 500 K is
interpolated. There are five branches used for the interpolation, including one reference branch and
four reflector temperature branches. The reference branch is at 900 K. The closest two branches
to 500 K are at 294 K and 615.9 K.

4.2.2 Cross Section Branches

In the gFHR simulations, the branches for fuel temperature, moderator temperature, coolant tem-
perature, reflector temperature and control rod fraction are considered. The cross section at a
certainty state (Tf , Tm, Tc, Tr, control rod position) can be obtained by doing multi-dimensional
interpolation. A two dimensional interpolation case is depicted in Fig. 4.12.

It should be noted that for the moderator temperature, coolant temperature and reflector tem-
perature branches, the partial derivatives are with respect to the temperatures. However, for the
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Fig. 4.11: Demonstration of the cross section interpolation in AGREE

Fig. 4.12: Illustration of a two-dimensional cross section interpolation case
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fuel temperature branches, the partial derivatives are with respect to the square root of the fuel
temperature since it more accurately describes the physics of the fuel temperature doppler effect,
i.e.,

DTf
=

∂Σx

∂
√

Tf

. (4.11)

4.2.3 Evaluation of Cross Section Interpolation Error

In most cases, five branches are used to generate the temperature dependent cross sections for a
certain material. For example, when generating the fuel temperature dependent cross sections,
T low
f , Tmid-low

f , T ref
f , Tmid-high

f and T high
f are used as fuel temperature branches, where

• T ref
f is the nominal fuel temperature;

• T low
f is the lowest possible fuel temperature, which is equal to the fluoride salt freezing

temperature;

• T high
f is the highest possible temperature in the simulation, which is 1500 K;

• Tmid-low
f = 1

2
(T low

f + T ref
f );

• Tmid-high
f = 1

2
(T high

f + T ref
f ).

Since the temperature range is from 300 K to 1500 K, it means the spacing for fuel temper-
ature interpolating is 300 K, which is somewhat sparse. However, the interpolation with 300 K

spacing can actually give very accurate results. This will be illustrated by a study of evaluating the
interpolation error.

The study is motivated by the cross section interpolation error introduced in reactor safety
analysis codes using reactivity coefficients. The methods for the reactivity interpolation error were
previously discussed in [50].

4.2.3.1 Grid Spacing

In the research performed here, the cross sections for temperature interpolation are generated using
a Monte Carlo code. The idea for evaluating the interpolation error is similar to the method used
for reactivity coefficients with a deterministic code. Here a sparse grid and a dense grid are used
to interpolate the νΣf cross section for the fuel temperature range from 300 K to 1500 K. For
the sparse grid, the grid spacing is 300 K, which means there are 5 branches as the reference
points. While for the dense grid, the grid spacing is 40 K, which means there are 31 branches as
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Fig. 4.13: MC XS interpolation for different grid spacing

the reference points. The cross section is interpolated for the fuel temperatures every 5 K. The
interpolation results are shown in Fig. 4.13.

To evaluate the accuracy of the interpolations, the “true” cross sections at the interpolated tem-
perature points (every 5 K) are generated using Serpent code. The “true” value of the cross section
and the standard deviation are shown in Fig. 4.14.

Fig. 4.14: Serpent generated νΣf XS with standard deviation

The interpolation error is obtained by comparing the interpolated value with the “true” value.
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The error of the interpolation is shown in Fig. 4.13. The interpolation error is converted to ∆keff/keff

in the unit of pcm by applying Eq. 3.15. It shows that the interpolation errors are on the same order
of magnitude even the grid spacings are different.
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Fig. 4.15: MC XS interpolation error for different grid spacing

Using additional grid spacings (h = 240 K, 200 K, 80 K, 20 K) to do the cross section in-
terpolation and calculating the root mean square (RMS) of the interpolation error, the results are
plotted in Fig. 4.16. Both the x-axis and y-axis are in logarithmic scale. It shows that when the
grid spacing is decreasing from 300 K to 20 K, the RMS of interpolation error keeps at the same
order of magnitude (∼ 1.0 × 10−7 cm−1). Therefore, using dense grid (or more reference data
points) does not improve the accuracy of cross section interpolation.
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Fig. 4.16: MC XS interpolative error for νΣf XS with different grid spacing

62



4.2.3.2 Number of Neutron Histories

When generating the cross sections with Serpent in the above study, 100,000 neutrons are simulated
in 100 inactive cycles and 500 active cycles. The standard deviation of the νΣf cross section is
around 10−7 cm−1, i.e., the relative standard deviation is around 0.02%. The accuracy of cross
section data can be improved by adding the number of neutron histories in Monte Carlo simulation.
Therefore, the number of neutron histories is increased by 10 times for generating the reference
data points and the “true” values. The results are shown in Fig. 4.17.

Fig. 4.17: Serpent generated νΣf XS with standard deviation

The standard deviation of the νΣf cross section is reduced to around 4 × 10−8 cm−1, i.e., the
relative standard deviation is around 0.007%. The standard deviation of νΣf is reduced by a factor
of ∼ 3, which is expected since the error of Monte Carlo calculation is inversely proportional to
the square root of the number of neutron histories.

Using the new cross section data, the interpolation error for different interpolating grid spacings
is calculated again. The RMS of the interpolation error is plotted in Fig. 4.18. It can be observed
that the order of magnitude of the error becomes smaller compared to the results in Fig. 4.16.
However, there is no benefit to refining the temperature interval to give interpolation error below
the cross section standard deviation.

Comparing the results in Fig. 4.16 and Fig. 4.16, the key information is summarized in Ta-
ble 4.3.
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Fig. 4.18: MC XS interpolative error for νΣf XS with different grid spacings, 10 times more
neutron histories

Table 4.3: MC number of histories, MC std. dev. and interpolative error

Number of MC histories MC std.dev. of νΣf RMS of interp. err.

100,000× 500 ∼ 1× 10−7 ∼ 1.4× 10−7

1,000,000× 500 ∼ 4× 10−8 ∼ 5× 10−8
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4.2.3.3 Summary

Based on the study of interpolation error presented in Section 4.2.3.1 and Section 4.2.3.2, the
following conclusions can be drawn:

1. Increasing the number of branches (reference data points) can reduce the interpolation error,
but only when grid is very sparse. Therefore, using five branches for temperature dependent
cross section interpolation in this thesis is accurate enough.

2. Increasing the number of histories when generating Monte Carlo cross sections can reduce
the interpolative error.

4.3 Uncertainty Analysis for the Local Power

4.3.1 Uncertainty of the MC Generated Cross Section Data

The local power in AGREE is calculated using Eq. 4.12. As indicated, the results of the analytic
and stochastic methods are similar which provides confidence in using the stochastic method for
a wider range of responses than the restrictive use of CPT analytic methods for only the core
keff , where the energy release per fission (κΣf ) data is used. Therefore, the uncertainty of κΣf is
required for the uncertainty analysis of the local power. Since κ and Σf are reported by Serpent
separately, the uncertainty of κΣf is propagated by

∆κΣf
= κΣf ·

√(
∆κ

κ

)2

+

(
∆Σf

Σf

)2

, (4.12)

where ∆κ

κ
and

∆Σf

Σf
are relative uncertainties and their values are provided in Serpent output directly.

Eq. (4.12) is implemented in GenPMAXS.
Except for νΣf , other cross section data, including χ, Σtr, Σab, νΣf and Σt, are also taken into

account for the uncertainty analysis of the local power. The uncertainties of these cross section data
are reported by Serpent directly and therefore they are converted to PMAX format by GenPMAXS
directly without further processing.

4.3.2 Calculation Scheme

The calculation scheme is depicted in Fig. 4.19. The cross section data and their uncertainties are
processed by GenPMAXS and are converted into PMAX format. Then Dakota generates a number
of samples by randomly sampling based on the cross section and uncertainty data. The samples
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are processed by an input processor to generate a set of AGREE cases. All the cases are run by
AGREE and the outputs are collected by an output processor. The values of interested responses
are extracted from the output files for Dakota. Finally, Dakota calculates the standard deviation
of the interested responses by gathering statistics, which are the uncertainties of the interested
responses due to the uncertainty of MC generated cross section data.

Fig. 4.19: Coupling scheme of AGREE and Dakota for uncertainty calculation

4.3.3 Results

Applying the calculation scheme described above, the uncertainties of the gFHR core power dis-
tribution are calculated. The contributions from the branch cross sections are taken into consider-
ation. When generating the branch cross sections, 500,000 particles are simulated for 500 active
cycles (100 inactive cycles) in Serpent. The cross section types generated for fuel regions and non-
fuel regions are different. Table 4.4 lists the cross section data whose uncertainties are considered
in the local power uncertainty calculation.

The uncertainties of the gFHR core local power are shown in Fig. 4.20, along with the power
density distribution. In the axial direction, the uncertainties in the central regions are smaller than
those in the peripheral regions. Since the neutron flux in the central region is higher, the uncertainty
of the cross section data is smaller. Thus the uncertainty of local power is smaller. In the radial
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Table 4.4: Cross section data contributed to the power distribution uncertainties

Region type Cross section Derivatives

Fuel region
χ No derivatives

Σtr,Σab,Σs, νΣf
∂

∂
√

Tf

, ∂
∂Tc

, ∂
∂Tm

, ∂
∂Tr

Non-fuel region Σtr,Σab,Σs
∂

∂
√

Tf

, ∂
∂Tc

, ∂
∂Tm

, ∂
∂Tr

direction, the uncertainties in the center regions are larger than those in the outer regions. Since
the volume of the homogenized region in the central is higher, the uncertainty of the cross section
data is smaller. Thus the uncertainty of local power in the outer region is smaller.
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Fig. 4.20: gFHR core power density distribution and relative uncertainty

The noteworthy results from Fig. 4.20 are summerized into Table 4.5.

Table 4.5: The relative uncertainty of gFHR core power density

Mean Pi (W/cm3) RMS of ∆Pi

Pi
(%) Max of ∆Pi

Pi
(%) Min of ∆Pi

Pi
(%)

21.92 0.44 0.76 0.19
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4.4 Uncertainty Analysis of Reactivity Coefficients

4.4.1 Uncertainty Analysis for the Total Core Reactivity Coefficients

The core total temperature reactivity coefficients are calculated with Method 1 (Section 4.1.6.1).
The uncertainty can be calculated by

∆αT
=

1

2∆T

√
∆2

keff,1
+∆2

keff,2
(4.13)

The methods for the calculation of the uncertainty of keff is introduced in Chapter 3. Applying
the random sampling methods to calculate ∆keff,1 and ∆keff,2 , the uncertainty of the lumped tem-
perature reactivity coefficients can be calculated subsequently using Eq. 4.13. The uncertainties of
keff are all in a range of 23 pcm to 28 pcm. Therefore, the uncertainties of the reactivity coefficients
are all in a range of 32 pcm to 40 pcm. The uncertainties and the relative value to the reactivity
coefficients are listed in Table 4.6. It shows that the absolute values of the uncertainty are on the
same level, but the relative value varies a lot because of the varying of the reactivity coefficients
values. The fuel temperature reactivity coefficients has the smallest relative uncertainty while the
reflector temperature reactivity coefficients has the largest relative uncertainty. Since the absolute
values of the uncertainty are nearly the same, the larger the reactivity coefficient is, the smaller the
relative uncertainty becomes.

Table 4.6: Uncertainty of lumped temperature reactivity coefficients of the gFHR

Reactivity coefficient AGREE (lumped) Uncertainty Relative (%)

Fuel temperature (pcm/K) -4.324 0.367 8.7
Moderator temperature (pcm/K) -0.918 0.344 37.5

Coolant temperature (pcm/K) -1.239 0.373 30.5
Reflector temperature (pcm/K) +0.852 0.365 44.3

4.4.2 Uncertainty Analysis for the Region-wise Reactivity Coefficients

4.4.2.1 Uncertainty of MC Generated Cross Section Data

The region-wise temperature reactivity coefficients are calculated with Method 2. To calculate
the uncertainty of region-wise temperature reactivity coefficients, the uncertainty of temperature-
dependent cross sections must be evaluated properly first.

In the gFHR neutronics calculation, the cross section data include χ, Σab, Σtr, νΣf and Σs.
The fission spectrum χ is independent of the material temperatures. So there are no derivatives
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calculated for χ. For other cross sections, the derivative of every branch is calculated:

Dx,i,g,br =
∂Σx,i,g

∂T

∣∣∣∣
Tbr

=
ΣTbr

x,i,g − Σ
Tref

x,i,g

Tbr − Tref

, for Tbr = Tm, Tc or Tr ; (4.14)

Dx,i,g,br =
∂Σx,i,g

∂
√
T

∣∣∣∣
Tbr

=
ΣTbr

x,i,g − Σ
Tref

x,i,g√
Tbr −

√
Tref

, for Tbr = Tf . (4.15)

where x, i, g, br represent cross section type, homogenized region ID, group ID and branch ID,
respectively.

According to Eq. (4.14) and Eq. (4.15), the uncertainty of the derivative data can be propagated
from the uncertainty of ΣTbr

x,i,g and Σ
Tref

x,i,g :

∆Dx,i,g,br
=

1

|Tbr − Tref |

√
∆2

Σ
Tbr
x,i,g

+∆2

Σ
Tref
x,i,g

, for Tbr = Tm, Tc or Tr ; (4.16)

∆Dx,i,g,br
=

1∣∣√Tbr −
√

Tref

∣∣√∆2

Σ
Tbr
x,i,g

+∆2

Σ
Tref
x,i,g

, for Tbr = Tf . (4.17)

The uncertainties of branch cross section data, including the cross sections and the derivatives,
are preprocessed by GenPMAXS code and output to PMAX files.

4.4.2.2 Calculation Scheme

The algorithm for calculating the uncertainty of region-wise reactivity is shown in Fig. 4.21, which
is similar to Fig. 4.19. There are three modifications compared to the coupling scheme for calcu-
lating the uncertainty of local power:

1. The derivatives of the cross section data and their uncertainties are considered when gen-
erate PMAX files, since temperature-dependent cross sections are utilized in region-wise
reactivity calculation. Eq. (4.16) and Eq. (4.17) are implemented in GenPMAXS to obtain
the uncertainties of the cross section derivatives.

2. A driver script is developed in Python for calculating all the region-wise reactivity coeffi-
cients.

3. The input and output files for the Python driver are generated and processed by the input and
output processors.
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Fig. 4.21: Coupling scheme for calculating the uncertainty of region-wise reactivity coefficients

4.4.2.3 Results

Applying the calculation scheme developed above, the relative uncertainties of the region-wise
temperature reactivity coefficients (Fig. 4.9 and Fig. 4.10) are calculated. The branch cross sec-
tions are generated by Serpent with simulating 500,000 particles for 500 active cycles (100 inactive
cycles). The types of cross sections and their derivatives taken into account for the uncertainty cal-
culation are the same as those in local power uncertainty calculation, which are listed in Table 4.4.
The results are shown in Fig. 4.22 to Fig. 4.25, along with the region-wise temperature reactivity
coefficients for comparison.

Fig. 4.22 shows that the relative uncertainties of the fuel temperature reactivity coefficients in
most regions are smaller than 10%. However, the uncertainties in the centerline regions (Radial
Channel 1) and at the bottom regions are higher than 10%. The largest uncertainty occurs at the
bottom of the centerline, which is as high as 33.1%. Comparing the relative uncertainty distribution
with the reactivity coefficient distribution, it can be observed that the uncertainty of the regions that
the reactivity coefficients are larger are smaller, and vice versa.

For the uncertainties of coolant and moderator temperature reactivity coefficients shown in
Fig. 4.23 and Fig. 4.24, the similar distributions can be observed, except that the uncertainties of
αTc and αTm are larger than the uncertainties of αTf

. The reason is that absolute values of the
uncertainty are on the same level, however, the values of αTc and αTm are smaller than the values
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Figure 4.22: Region-wise αTf
and the relative uncertainty

of αTf
. Therefore, the relative uncertainties of αTc and αTm become larger.

For the uncerainties of reflector temperature reactivity coefficients, Fig. 4.25 shows that they are
smaller than that of αTf

, αTc and αTm . The uncertainties of αTr in most of the regions are smaller
than 5%. The largest uncertainties occur at the outer region of the top and bottom reflectors, which
are over 60%. However, these large uncertainties will not affect subsequent simulations, since the
reactivity coefficients at those regions are very small (less than 0.001 pcm/K).

The noteworthy data in Fig. 4.22 to Fig. 4.25 are summarized in Table 4.7.

Table 4.7: The relative uncertainty of gFHR core region-wise temperature reactivity coefficients

Reactivity Mean of αT Mean of ∆αT

αT
RMS of ∆αT

αT
Max of ∆αT

αT
Min of ∆αT

αT

Coefficient (pcm/K) (%) (%) (%) (%)

αTf
-0.108 11.4 12.6 33.1 6.1

αTc -0.031 41.4 52.6 197.1 13.6
αTm -0.022 29.5 35.6 102.6 13.0
αTr +0.022 8.2 16.5 74.0 0.3
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Figure 4.23: Region-wise αTc and the relative uncertainty
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Figure 4.24: Region-wise αTm and the relative uncertainty
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Figure 4.25: Region-wise αTr and the relative uncertainty

4.4.3 Correlations between Region-wise Neutronics Parameters

The uncertainties of the local power and region-wise reactivity coefficients, as well as the cor-
relations between them are calculated by AGREE-Dakota. The correlation matrix is shown in
Fig. 4.26.

As indicated in Fig. 4.26, the correlations within local power and within the reflector temper-
ature reactivity coefficients are strong. The local power and the region-wise reflector temperature
reactivity coefficients are mildly correlated, however, the correlations between other parameters
are negligible. The correlation matrix will be applied to propagate the uncertainty of neutronics
parameters to SAM transient simulations in Chapter 5.

4.5 Uncertainty Analysis for SAM Steady-State Results

4.5.1 SAM Model of gFHR

A SAM model was developed for the gFHR reactor based on the generic Pebble-Bed Fluoride-
salt-cooled High-temperature Reactor (PB-FHR) primary loop model developed by ANL[9]. The
SAM generic PB-FHR model is mainly created based on the UC Berkeley Mk1 FHR design as
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Fig. 4.26: Correlation matrix between the local power and region-wise reactivity coefficients
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well as some features from Kairos Power’s KP-FHR design.
A 3D-1D flow coupling scheme is applied for modeling the PB-FHR core and the primary loop.

The reactor core is modeled in 3-D with the active pebble-bed core, fueling chute, defueling chute,
expansion section, contraction section and the reflectors, while the primary loop is modeled in 1-D.
The model is shown in Fig. 4.1. The 3-D and 1-D model are coupled by exchanging the boundary
condition data at the inlet and outlet of the core (Location 1 and Location 2 in Fig. 4.1). The flow
velocity or the mass flow rate, the flow temperature and pressure are transferred at the inlet and
outlet.

Fig. 4.27: SAM 3D-1D flow coupling model of generic PB-FHR

For the gFHR benchmark problem, the reactor is simplified by removing the fueling and defuel-
ing chute, expansion and contraction section, only keeping the active pebble-bed core and graphite
reflector. Here the generic PB-FHR SAM model is adapted for the gFHR modeling by replace the
pebble-bed core with the gFHR active core parameters. This is depicted by Fig. 4.28. The reactor
core is modeled with porous media a approach and the average porosity is 0.4. The heat source in
the core is represented by specifying a power shape function.

In this study, both a single-channel core model and a multi-channel core model are created. For
the single-channel core model, the core is represented by an vertical pebble-bed channel with 10
axial nodes. The radial power distribution is integrated into one value at each axial position. For
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Fig. 4.28: SAM gFHR model with single-channel core and multi-channel core

the multi-channel core model, the core is represented by 4 vertical channels, which is consistent
with the 4×10 model shown in Fig. 4.8. The power distribution shown in Fig. 4.7 is specified as
the power shape function after normalization.

To be noted, in the multi-channel core model, the four channels have different flow areas and
power fractions. The flow area fractions and the power fractions of the four channels are listed in
Table 4.8. The flow area fractions are calculated based on the channel volumes, while the power
fractions are calculated based on the power density distribution and the channel volumes. The fuel
pebble packing fraction is assumed to be uniformly 60% in the core, which neglects the local non-
uniformity caused by the Monte Carlo generated pebble locations. The assumption is reasonable
since the channels are large enough and the local non-uniformity can be averaged.

Table 4.8: Flow area fraction and power fraction of the SAM multi-channel core model

Channel number 1 2 3 4

Flow area fraction (%) 6.25 18.75 31.25 43.75
Power fraction (%) 8.14 22.64 32.10 37.11

4.5.2 SAM Steady-state Results

4.5.2.1 SAM Single-channel Core Model

For the single-channel SAM model, the axial temperature distribution of fuel and coolant are shown
in Fig. 4.29. The results calculated by AGREE are plotted on the same figure for comparison. For
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the AGREE results, the temperature of each node is the average temperature of the node; while for
the SAM results, the temperatures are the temperatures at the boundaries of each node. So there
are 10 temperature points on the AGREE result curves while there are 11 points on the SAM result
curves.
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Figure 4.29: The axial Tc (left) and Tf (right) of gFHR SAM single channel model

For the coolant temperature, SAM results and AGREE results are consistent with each other.
The differences between SAM and AGREE are below 3 K for all the axial nodes.

For the fuel temperature, the fuel matrix temperatures calculated by SAM AGREE well with
AGREE. The maximum difference between SAM and AGREE results is smaller than 10 K. The
differences at the bottom and the top of the core are larger than that at the center of the core.
The maximum fuel matrix temperature is around 1010 K, which occurs at the lower center of the
reactor. The highest temperature point of the fuel corresponds to the location of maximum power
density. Except for the fuel matrix temperature, the fuel kernel temperature is also calculated by
assuming that the temperature difference between the kernel and the matrix is proportional to the
power density.

4.5.2.2 SAM Multi-channel Core Model

In the SAM multi-channel core model, there are four vertical channels. The axial temperature
distributions of fuel and coolant for the four channels are shown in Fig. 4.30.

For the coolant temperature, the inlet temperatures are the same for the all four channels. The
outlet temperatures are different since the power fractions of the channels are different. The max-
imum coolant temperature is 949.4 K, which occurs at the outlet of Channel 1 (the inner-most
channel).

For the fuel temperature, the axial shapes of the fuel temperature for the four channels are
similar. The maximum fuel temperature points of the four channels are at the same axial position.
The maximum fuel temperature is 1049.8 K, which is at the lower center of Channel 1.
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Figure 4.30: The axial Tc (left) and Tf (right) of gFHR SAM multi-channel model

The outlet and maximum fuel temperatures of each channel are listed in Table 4.9. Comparing
to the results of the single-channel model, it can be observed that the maximum fuel temperature
and the fuel outlet temperature predicted by the multi-channel model are about 40 K and 27 K

higher, respectively, which is notable difference in the reactor safety analysis. Therefore, a multi-
channel model is necessary for a better prediction of the maximum fuel temperature and the core
outlet temperature.

Table 4.9: Channel temperatures calculated by the SAM multi-channel model

Channel number 1 2 3 4

Toutlet (K) 949.6 940.6 923.3 909.2
Tf,max (K) 1049.8 1034.3 1007.2 989.6

Table 4.10 lists the computational resources used for the SAM single-channel model and multi-
channel model in the steady-state simulation. The multi-channel model consumes more memory
and converges slower than the single-channel model. However, the computation resource con-
sumption is not proportional to the number of channels because of the overhead.

Table 4.10: Computational resource for the SAM single-channel model and multi-channel model

Model Run time (s) Memory (MB)

Single-channel 58 119
Multi-channel 139 200
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4.5.3 SAM-Dakota Coupling Scheme for Uncertainty Analysis

The calculation scheme is depicted in Fig. 4.31, which is similar to the AGREE-Dakota coupling
scheme introduced in Section 4.3.2. There are three modifications compared to the Dakota-AGREE
coupling scheme:

1. The input values and uncertainties are for neutronics parameters, which are the power profile
and reactivity coefficients data. The values are from AGREE and the uncertainties are from
Dakota-AGREE coupling calculation.

2. The coupling with the DAKOTA code is with SAM instead of AGREE.

3. The input and output files for SAM are generated and processed by the input and output
processors.

Fig. 4.31: Coupling scheme of SAM and Dakota for uncertainty calculation

4.5.4 Results of SAM-Dakota Calculation

The calculation scheme developed in Section 4.5.3 is applied on calculating the uncertainty of
the SAM multi-channel temperatures. Since in the SAM steady-state calculation, only the local
power data are obtained from Serpent/AGREE neutronics calculation. Therefore, the uncertainties
of the local power are taken into account for calculating the uncertainties of SAM results. The
local power data and their uncertainties are from Section 4.3.3 (shown in Fig. 4.20). The interested
responses from SAM are the temperatures listed in Table 4.9. The uncertainty results are listed in
Table 4.11 and Table 4.12.

79



Table 4.11: Uncertainty of channel outlet temperatures in the SAM multi-channel model

Parameter Tout,1 Tout,2 Tout,3 Tout,4

Value (K) 949.6 940.6 923.3 909.2
Uncertainty (K) 0.0004 0.0002 0.0001 0.0001

Table 4.11 shows that the uncertainties of the coolant outlet temperature of the four channels
due to the uncertainties of the local power calculated by AGREE are negligible. There are two
reasons: one is that the uncertainties of local power data are very small (the RMS is only 0.44%, see
Fig. 4.20), the other is that the power shape specified in SAM multi-channel model are normalized
during the steady-state simulation. Since the coolant outlet temperature is only depend on the inlet
coolant enthalpy and the core total power, the coolant outlet temperature is almost fixed after the
power shape normalization, despite the perturbations on the local power data.

Table 4.12: Uncertainty of channel maximum fuel temperatures in the SAM multi-channel model

Parameter Tf1,max Tf2,max Tf3,max Tf4,max

Value (K) 1049.8 1034.3 1007.2 989.6
Uncertainty (K) 0.41 0.28 0.21 0.17

Table 4.12 shows that the uncertainties of the maximum fuel temperature of the four channels
due to the uncertainties of the local power calculated by AGREE are very small, among which the
largest uncertainty is only 0.41 K. Besides, the uncertainty value decreases from the center channel
(Channel 1) to the outer channel (Channel 4). It is because that the uncertainties of local power at
the centerline regions are larger than those at outer regions.

4.6 Summary

In this chapter, the stochastic method for Monte Carlo generated cross section uncertainty propaga-
tion based on AGREE-Dakota coupling is applied to the steady-state neutronics and thermo-fluids
simulations of the gFHR reactor. The methods used in gFHR steady-state simulations, includ-
ing the Serpent-AGREE code coupling, the branch cross section generation, the local power and
region-wise reactivity coefficients calculation, the neutronics and thermo-fluids coupling in SAM
code, are introduced first. The issues in the temperature dependent cross section interpolation are
addressed by conducting a study of the interpolative error in Monte Carlo generated branch cross
sections.
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The stochastic method based on AGREE-Dakota coupling developed in Chapter 3 is further
extended for the uncertainty quantification of the local power distribution and the region-wise
reactivity coefficient distributions. The results show that the uncertainties of the local power dis-
tribution due to the uncertainty of Monte Carlo generated cross sections are in a small level, while
the uncertainties of the region-wise reactivity coefficients are larger.

A stochastic method based on SAM-Dakota coupling is developed to propagate the uncertainty
of Serpent/AGREE calculated neutronics parameters to SAM simulations. The method is then ap-
plied to the SAM simulation of the gFHR steady-state case. The results show that the uncertainties
of the maximum coolant and fuel temperatures in the SAM multi-channel steady-state simulation
propagated from the uncertainty of Serpent/AGREE calculated neutronics parameters are all at a
very low level.
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CHAPTER 5

Uncertainty Analysis of the gFHR: Transient
Simulations

5.1 Methods of gFHR Transient Analysis

The capability of both steady-state and transient analysis are essential for licensing new reactor
designs. Transient analysis enhances the understanding of the fundamental physics of the reactors
and provides guidance for both the operational and safety analysis of the reactor. Both the AGREE
and SAM codes have the capability of performing transient simulations, however the AGREE code
is primarily focused on the neutronics and thermo-fluids coupling simulation of the reactor core,
whereas the SAM code is a reactor system code which can model the primary loop, secondary
loop and all the key reactor system components. In this section, the methods used for the gFHR
transient analysis in the AGREE code and in the SAM code will be briefly introduced.

5.1.1 gFHR Transient Simulation in AGREE

For simulation of the transient cases using the AGREE code, the control rods in the gFHR are of
primary importance. The gFHR control rod system design was released by Kairos Power [51], and
is included in the Kairos Power’s gFHR benchmark model (Section 2.4). There are 10 control rods
inserted in the side reflector region surrounding the active core, as illustrated in Fig. 5.1.

The control rods are used for reactivity management during normal operation and transient
conditions. The total worth of the 10 rods must also be capable of shutting down the reactor at any
time. The fully inserted position of the rod is aligned with the bottom of the pebble bed active core,
and the fully withdrawn position is aligned with the top of the top reflector. The detailed design
parameters of the control rods are listed in Table 5.1.

The gFHR core with the control rod system was modeled in Serpent by homogenizing each
control rod into the cross sections of the adjacent side reflector region. A control rod branch was
then used in GenPMAXS to generate control rod dependent cross sections for the AGREE code.
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Fig. 5.1: Control rod system design in the gFHR core, axial (left) and radial (right) cross section
views

Table 5.1: Design parameters of the gFHR control rod system

Parameter Value

Absorber Material B4C
Boron Enrichment 100% 10B
Absorber Density 1.76 g/cm3

Number of Rods 10
Diameter of Rods 5.2 cm
Centroid of Rods 7.9 cm from the core-reflector interface

Azimuthal Distribution Equidistantly distributed
Un-roded Material Flibe

Cladding None cladded
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In AGREE, the region absorption cross section was determined based on the control rod insertion
depth.

For the transient analysis in AGREE, two ways were considered for modeling the rate of re-
activity insertion and removal because of control rod movement. One is through a user-defined
time-dependent external reactivity insertion function, and the other is through a user-defined time-
dependent control rod movement function.

The reactivity feedback during the transient was calculated based on the neutronics/thermo-
fluids coupling and temperature-dependent cross sections. During a transient simulation, the total
power at a certain transient time step can be calculated either by the point kinetics or spatial ki-
netics solver in AGREE. The temperature distributions of the core materials are then calculated
by the thermo-fluids solver. The cross sections are then updated based on the new temperature
distributions and the feedback reactivities are then calculated.

5.1.2 gFHR Transient Simulation in SAM

In the SAM code a Point Kinetics Equation (PKE) solver was implemented for the simulation of
transient cases [7]. In the point kinetics equation solver, the feedback from fuel axial expansion,
core radial expansion, fuel Doppler, coolant density, moderator temperature and xenon concen-
tration are modeled. In the transient analysis of the gFHR core, the fuel axial expansion and
core radial expansion reactivity feedback are not considered because the data was not included in
the benchmark. Only the reactivity feedback from fuel Doppler, coolant density and moderator
temperature are considered based on the results calculated in Section 4.1.6. The xenon feedback
reactivity is modeled with a lumped iodine/xenon decay solver.

The PKE model in SAM relies on the kinetics parameters calculated from Serpent code and
AGREE codes. Table 5.2 lists the source of kinetics parameters used in SAM.

Table 5.2: Kinetics parameters calculated by Serpent and AGREE that are used as input in SAM

Code Parameters

Serpent Xe-135/I-135 constants, total flux, lumped fission XS, rod worth
AGREE Power shape, region-wise reactivity coefficients

5.1.3 gFHR Reactivity Coefficients Conversion in SAM

There are several types of reactivity feedback models implemented in SAM code, including the lin-
ear temperature feedback model, linear density feedback model, logarithmic temperature feedback
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model, linear expansion feedback model and lumped xenon feedback model[52]. In the gFHR
SAM model, the linear temperature feedback model is chosen for moderator and reflector reac-
tivity feedback, while the linear density feedback model is used for coolant reactivity feedback.
For fuel temperature feedback, both the logarithmic temperature feedback model and the linear
temperature feedback model are tested, the results show that the linear feedback model achieves
better agreement with AGREE result. Therefore, the linear temperature feedback model is chosen
for fuel reactivity feedback.

For the linear temperature reactivity feedback model, the feedback reactivity is calculated by

ρx(t) =
N∑
i=1

αTx,i

(
T x,i(t)− T

ss

x,i

)
, (5.1)

where i denotes the region ID; x denotes the material type including fuel, moderator and reflector;
T

ss

x,i is the steady-state average material temperature at region i. For the fuel and moderator, the
reactivity coefficients αTx,i are the region-wise ones calculated in Chapter 4 Section 4.1.6.3. For the
reflectors, since they are modelled in five parts separately (see Fig. 4.27), the region-wise reflector
temperature reactivity coefficients shown in Fig. 4.10 are summed into five lumped values. Note
that the values in Fig. 4.9 and Fig. 4.10 are calculated by Eq. (4.3) in unit of pcm/K. There is
an approximation by neglecting the 1/k2

eff term in Eq. (4.3). This approximation is eliminated by
multiplying 1/k2

eff to the values when they are converted to ∆k/k per K in SAM model.
For the linear density reactivity feedback model, the feedback reactivity is calculated by

ρx(t) =
N∑
i=1

αdx,i

(
dx,i(t)− dssx,i

)
Vx,i , (5.2)

where i denotes the region ID; x denotes the material type, which is coolant; dssx,i is the steady-
state coolant density and Vx,i is the volume of coolant in region i. The coolant density dx,i(t) in the
transient is calculated based on the coolant temperature. αdx,i is the density reactivity coefficient in
unit of ∆k/k per kg. Since in Fig. 4.9, the coolant reactivity coefficients αTc,i are based on coolant
temperature, they need to be converted to αdc,i. In gFHR, the coolant is flibe and the density of
flibe follows a linear relation to the flibe temperature[53]:

d = 2415.6− 0.49072T , (5.3)

where the flibe density d is in unit of kg/m3 and the flibe temperature T is in unit of K. Then
the region-wise coolant temperature reactivity coefficients in Fig. 4.9 can be converted to coolant
density reactivity coefficients. The results are shown in Fig. 5.2.
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Fig. 5.2: Coolant density reactivity coefficients in gFHR, converted from coolant temperature re-
activity coefficients in Fig. 4.9
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5.1.4 Model of the Control Rod Dependent Power Shape Function

One innovative feature developed in the research here and implemented in the SAM code is a point
kinetics option which estimates the impact of the control rod movement on the reactivity in SAM
based on pre-computed AGREE power distribution data. For most cases, the point kinetics solver
is sufficiently accurate. However, for cases in which there a significant change in the power shape
during the transient, the point kinetics solver can have substantial errors because it does not take
into account changes in the spatial shape of the flux. For the transient cases studied in this section,
the control rod position changes during the transient are modelled in SAM, which is one of the
most important mechanisms for changes in the power distribution.

The control rod dependent power shape function was implemented in SAM by enabling the
user to input a multi-linear interpolation function as a power shape function p(z, poscr) that is both
axial (z) dependent and control rod position (poscr) dependent for a each core channel.

Fig. 5.3 is an illustration of a control rod position dependent axial power shape function of the
gFHR core. In SAM code, once the control rod position poscr is determined in a certain time step,
the axial power shape p(z) at position poscr is interpolated and applied to the core channel as the
heat source of the channel.

Fig. 5.3: The 3-D surface plot of the control rod position dependent axial power shape function of
the gFHR core

The following case provides an example to demonstrate how the control rod dependent power
shape function can improve the prediction of the power in a transient case. Assuming that the
initial control rod position is z1 = 1.6m, during 0 < t < 1s, the control rod moves from the initial
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position z1 to position z2 = 2.6m in constant speed. In other words, the control rod is withdrawn
from the core by 1.0m in 1 second, which introduces a reactivity of around 1.15$. After t > 1s,
the control rod stays at z2 = 1.6m.

This transient case can be simulated in SAM in two ways:

(a) Assuming the core axial power shape is fixed during the whole transient. The fixed axial
power shape is the power shape at z1 = 1.6m.

(b) Assuming the core axial power shape changes when the control rod moves. The axial power
shape for control rod at z1 = 1.6m and at z2 = 2.6m are shown in Fig. 5.4.

Fig. 5.4: The axial power shape when the control rod position is at z1 = 1.6m and at z2 = 2.6m

The power history predicted by SAM for Case (a) and Case (b) are shown in Fig. 5.5. For the
tail power of the transient case at t = 10s, there is a 4.5% difference, which shows that the control
rod position dependent power shape function does help the point kinetics solver improve the results
in a transient simulation by taking the spatial effect into account.

5.2 Introduction of the gFHR Transient Case

In the gFHR benchmark developed and released by Kairos Power, the focus was primarily on the
reactor core design and steady-state keff calculations. A transient reactivity case was developed in
in the work here to demonstrate the results of this research.

A ramp reactivity transient case is created by inserting and removing a reactivity linearly. The
transient is initialized by inserting a reactivity linearly of 0.5$ in 1.0 second. Then the reactivity is
then removed also linearly in the next 5 seconds. This is depicted in Fig. 5.6.
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Fig. 5.5: The power history predicted by SAM for Case (a) fixed power shape, and Case (b)
dynamic power shape

Fig. 5.6: The insertion and removal of external reactivity in the ramp reactivity transient case
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The ramp reactivity case was simulated in both the AGREE code and SAM code. For the
AGREE code, the case was simulated in three conditions:

(a) All the feedback are NOT considered.

(b) The feedback from fuel Doppler, coolant temperature and moderator temperature are con-
sidered. The fuel kernel temperature is calculated for Doppler feedback.

(c) The feedback from fuel Doppler, coolant temperature and moderator temperature are con-
sidered. The fuel kernel temperature is not calculated.

For the SAM code, the case was simulated for two conditions:

(a) All the feedback are NOT considered.

(b) The feedback from fuel Doppler, coolant temperature and moderator temperature are con-
sidered. The fuel kernel temperature is not calculated.

The power history results of the ramp reactivity transient case predicted by AGREE and Serpent
are shown in Fig. 5.7. It shows that the results from AGREE and SAM agree well with each other
for both the non-feedback case and the fuel Doppler without kernel temperature case.

Fig. 5.7: The power history predicted by AGREE and SAM in different conditions during the ramp
reactivity transient

The fuel temperature and the feedback reactivity from fuel Doppler calculated by AGREE and
SAM are shown in Fig. 5.8 and Fig. 5.9, respectively. Fig. 5.8 and Fig. 5.9 explain the how the
feedback reactivity in different simulation conditions affects the power history prediction shown
in Fig. 5.7. When the fuel Doppler feedback is considered, the fuel temperature increases as the
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power increases, which brings negative feedback reactivity to the core. Thus the maximum power
and the tail power during the transient are smaller. Since the fuel kernel temperature is higher than
the average fuel temperature, if the fuel kernel temperature is calculated for the Doppler feedback,
the negative feedback reactivity will be even larger and thus the peak power will be lower.

Fig. 5.8: The fuel temperature calculated by AGREE and SAM in different conditions during the
ramp reactivity transient

5.3 Uncertainty of Neutronics Parameters in SAM Transient
Simulations

5.3.1 Uncertainty Analysis of Control Rod Worth

The integral control rod worth is calculated by

ρcri = ρcr0 − ρcri =
1

ki
− 1

k0
. (5.4)

According to the rule of uncertainty propagation (referring to Appendix A),
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Fig. 5.9: The fuel Doppler feedback reactivity calculated by AGREE and SAM in different condi-
tions during the ramp reactivity transient

dρcri
ρcri

= d(lnρcri)

=
∂(lnρcri)

∂k0
dk0 +

∂(lnρcri)
∂ki

dki , (5.5)

the relative uncertainty of integral control rod worth ρcri can be evaluated by

∆ρcri

ρcri
=

√(
∂(lnρcri)

∂k0
∆k0

)2

+

(
∂(lnρcri)

∂ki
∆ki

)2

=

√[(
1

k0 − ki
− 1

k0

)
∆k0

]2
+

[(
1

ki − k0
− 1

ki

)
∆ki

]2
(5.6)

where k0 and k1 are the nominal values, ∆k0 and ∆k1 are the uncertainties of k0 and k1.
If the control rod worth is reported in the unit of $, i.e.,

ρcri =
ρcr0 − ρcri

βeff
=

(
1

ki
− 1

k0

)
1

βeff
, (5.7)

the uncertainty of βeff should also be considered. Then the propagation of the uncertainty of ρcri
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becomes

dρcri
ρcri

= d(lnρcri)

=
∂(lnρcri)

∂k0
dk0 +

∂(lnρcri)
∂ki

dki +
∂(lnρcri)
∂βeff

dβeff . (5.8)

Thus, the relative uncertainty of integral control rod worth ρcri in unit of $ can be evaluated by

∆ρcri

ρcri
=

√(
∂(lnρcri)

∂k0
∆k0

)2

+

(
∂(lnρcri)

∂ki
∆ki

)2

+

(
∂(lnρcri)
∂βeff

∆βeff

)2

=

√[(
1

k0 − ki
− 1

k0

)
∆k0

]2
+

[(
1

ki − k0
− 1

ki

)
∆ki

]2
+

(
∆βeff

βeff

)2

(5.9)

5.3.2 Uncertainty of Power Shape Function

The control rod dependent power shape function shown in Fig. 5.3 are obtained by moving the
control rods in AGREE steady-state calculations. The control rods are moved by 15.5 cm in the
active core region and 15.0 cm in the top reflector region for each case. Therefore, the control rods
are moved by 24 times and 24 axial power shape functions are obtained to compose the control rod
dependent power shape function in Fig. 5.3. It would be computationally expansive to quantify the
uncertainty of local power for all the 24 cases. Therefore, only the local power uncertainty of the
case that the control rods are at z = 139.5 cm (near criticality control rod position) is quantified and
the relative uncertainty for other cases are assumed to be the same as this case. The uncertainties
of each axial nodes of the power shape function are shown in Fig. 5.10.
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Fig. 5.10: Relative uncertainty of the axial power shape function
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Fig. 5.10 shows that the relative uncertainties of the power shape function at all axial nodes are
less than 1%. Besides, the uncertainties are smaller at the higher power density regions.

5.4 SAM-Dakota Coupling for UQ in Transient Simulations

The SAM-Dakota coupling scheme of the uncertainty quantification for SAM transient simulations
is similar to what is illustrated in Fig. 4.31.

5.4.1 Results of the Ramp Reactivity Transient Case

For the ramp reactivity transient case, the neutronics parameters including the local power and
region-wise reactivity coefficients from AGREE are used in SAM point kinetics model. Therefore,
the uncertainties of the local power and region-wise reactivity coefficients are taken into account
for the uncertainty quantification of the SAM transient simulation. The interested responses in-
clude the maximum coolant temperatures, the maximum fuel temperatures in the channels, the
maximum core power and the asymptotic tail power.

The results of maximum channel coolant temperatures are shown in Table 5.3. Two estimations
of the uncertainties are reported, one is calculated by assuming the neutronics parameters are
independent, the other is calculated by assuming the neutronics parameters are correlated and
the correlation matrix is obtained in Section 4.4.3. It shows that correlated estimations are smaller
than the independent estimations, which means that the dominate correlation coefficients between
the neutronics parameters are negative. Nevertheless, the independent assumption can provide a
more conservative estimations for the uncertainties of maximum temperatures.

Table 5.3 shows that the uncertainties for the four channels are all smaller than 0.25 K, which
are almost negligible in the transient analysis. The contributions to the uncertainty from the un-
certainty of local power and region-wise reactivity coefficients are shown in Table 5.4. It shows
that the major contribution to the uncertainty of maximum channel coolant temperatures is from
the uncertainty of local power, which is over 50%. The contribution from the uncertainty of fuel
temperature reactivity coefficients is also significant, which is around 20% to 40%. The contribu-
tion from the uncertainty of reflector temperature reactivity coefficients is negligible. To be noted,
the results in Table 5.4 show that, even the uncertainties of αTm and αTc are higher than the uncer-
tainties of αTf

, the contribution from ∆αTf
is still higher than the contributions from ∆αTm and

∆αTc . There are two reasons: (1) the uncertainties are reported in relative percentages, even the
relative uncertainties of αTm and αTc are higher, the absolute values may still be smaller than the
uncertainties of αTf

; (2) the temperature change in fuel are more dramatically than that in modera-
tor and coolant, therefore, the reactivity feedback from fuel are stronger than that from moderator

94



and coolant.

Tab. 5.3: Channel maximum coolant temperatures in the SAM simulation of the ramp reactivity
transient case and their uncertainties

Parameter Tc1,max Tc2,max Tc3,max Tc4,max

Value (K) 966.0 956.0 936.3 919.9

Uncertainty (K)
independent 0.25 0.20 0.14 0.12
correlated 0.13 0.12 0.10 0.08

Tab. 5.4: Percentage contributions to the channel maximum coolant temperature uncertainties from
the uncertainties of local power and region-wise reactivity coefficients, unit: %

Contribution to ∆Tc1,max ∆Tc2,max ∆Tc3,max ∆Tc4,max

∆Pi 73.3 65.4 51.6 55.4
∆αTf ,i 20.4 26.5 37.0 34.0
∆αTm,i 4.8 6.2 8.8 8.2
∆αTc,i 1.4 1.8 2.4 2.1
∆αTr,i 0.0 0.0 0.0 0.0

The results of channel maximum fuel temperatures are shown in Table 5.5. It shows that the
uncertainties for the four channels are all smaller than 0.44 K, which are almost negligible in the
transient analysis. The contributions to the uncertainty from the uncertainty of local power and
region-wise reactivity coefficients are shown in Table 5.6. Unlike the channel coolant temperature
case, it shows that the major contribution to the uncertainty of channel maximum fuel temperatures
is from the uncertainty of region-wise fuel temperature reactivity coefficients, which can be as high
as over 70%. The contribution from the uncertainty of local power ranges from 7.7% to 25.3%,
which is also not negligible.

Tab. 5.5: Maximum channel fuel temperatures in the SAM simulation of the ramp reactivity tran-
sient case and their uncertainties

Parameter Tf1,max Tf2,max Tf3,max Tf4,max

Value (K) 1070.8 1053.8 1024.3 1006.5

Uncertainty (K)
independent 0.44 0.39 0.33 0.34
correlated 0.40 0.37 0.32 0.30

The results of the maximum core power and asymptotic core power are shown in Table 5.7. It
shows that the uncertainties are both less than 0.2 %. The contributions to the uncertainty from
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Tab. 5.6: Percentage contributions to the channel maximum fuel temperature uncertainties from
the uncertainties of local power and region-wise reactivity coefficients, unit: %

Contribution to ∆Tf1,max ∆Tf2,max ∆Tf3,max ∆Tf4,max

∆Pi 19.0 13.7 7.7 25.3
∆αTf ,i 63.5 67.6 72.4 58.6
∆αTm,i 9.6 10.2 10.9 8.8
∆αTc,i 7.7 8.2 8.8 7.1
∆αTr,i 0.0 0.0 0.0 0.0

the uncertainty of local power and region-wise reactivity coefficients are shown in Table 5.8. It
shows that contribution is mainly from the uncertainty of region-wise fuel temperature reactivity
coefficients, which is more than 65%. For the maximum core power, the contribution from the
uncertainty of moderator temperature reactivity coefficients is the second important; while for the
asymptotic tail core power, the contribution from the uncertainty of coolant temperature reactivity
coefficients is the second important.

Tab. 5.7: Maximum and asymptotic core power in the SAM simulation of the ramp reactivity
transient case and their uncertainties

Parameter Pmax Pasy

Value (% full-power) 207.2 87.3

Uncertainty (% full-power)
independent 0.17 0.19
correlated 0.18 0.19

Tab. 5.8: Percentage contributions to the uncertainties of maximum core power and asymptotic
core power from the uncertainties of local power and region-wise reactivity coefficients, unit: %

Contribution to ∆Pmax ∆Pasy

∆Pi 0.4 0.0
∆αTf ,i 65.3 72.6
∆αTm,i 34.0 3.2
∆αTc,i 0.2 24.0
∆αTr,i 0.0 0.0
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5.4.2 Results of the Ramp Reactivity Transient Case with Reduced Neutron
Histories

In Section 3.3.4.2, the relation between the uncertainty and the number of neutron histories used
in Monte Carlo cross section generation has been studied for the AGREE steady-state keff . In this
section, a similar study is performed to investigate the relation between the uncertainty and the
number of histories for the SAM transient output parameters.

In Section 5.4.1, the preceding Monte Carlo cross section generation simulates 500,000 neu-
trons for 100 inactive cycles and 500 active cycles. In this section, the number of neutrons is
reduced by a factor of 10.

The relative uncertainty of the local power and the region-wise reactivities are shown in
Fig. 5.11 to Fig. 5.13. Comparing the results to the uncertainty results calculated in Fig. 4.20,
Fig. 4.22, Fig. 4.23, Fig. 4.24, Fig. 4.25, it can be observed that when the number of neutron
histories is reduced by 10 times, the relative uncertainties are increased by around 3 times. In
other words, the uncertainties of local power and region-wise reactivity coefficients are inversely
proportional to the square root of the number of neutron histories, which is consistent with the
expectation.
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neutron histories

The uncertainties of local power and region-wise reactivity coefficients are then propagated to
the SAM transient simulation of the ramp reactivity case. The results for the maximum coolant
temperatures, maximum fuel temperatures and the core powers are shown in Table 5.9, Table 5.10
and Table 5.11, respectively. Comparing to the uncertainties listed in Table 5.3, Table 5.5 and
Table 5.7, when the number of neutron histories in preceding Monte Carlo simulation is reduced
by 10 times, the uncertainties of the SAM transient results are increased by about 3 times. It still
satisfies the rule that the uncertainty is inversely proportional to the square root of the number of
neutron histories.

Tab. 5.9: Channel maximum coolant temperatures in the SAM simulation of the ramp reactivity
transient case and their uncertainties

Parameter Tc1,max Tc2,max Tc3,max Tc4,max

Value (K) 966.0 956.0 936.3 919.9
Uncertainty (K) 0.89 0.74 0.57 0.48

In this chapter, the impact of the uncertainty in the reactivity coefficient parameters calculated
by Serpent/AGREE were propagated into the transient analysis of the SAM code using the Dakota
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Figure 5.13: Relative uncertainty of region-wise αTm (left) and αTr (right) for reduced number of
neutron histories

Tab. 5.10: Maximum channel fuel temperatures in the SAM simulation of the ramp reactivity
transient case and their uncertainties

Parameter Tf1,max Tf2,max Tf3,max Tf4,max

Value (K) 1070.8 1053.8 1024.3 1006.5
Uncertainty (K) 1.42 1.28 1.09 1.10

Tab. 5.11: Maximum and asymptotic core power in the SAM simulation of the ramp reactivity
transient case and their uncertainties

Parameter Pmax Pasy

Value (% full-power) 207.2 87.3
Uncertainty (% full-power) 0.63 0.57
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code and methods developed and demonstrated in in Chapter 4 The method was extended for the
SAM transient simulations by first developing models in SAM for the gFHR transient simulation,
to include the point kinetics solver, the reactivity feedback model, the control rod model, and the
control rod dependent cross sections. Then a transient ramp reactivity case was created for the
safety and operational analysis of the gFHR reactor.

Finally, the stochastic method for uncertainty propagation were applied to propagate the un-
certainty of Serpent/AGREE calculated neutronics parameters to the uncertainty of SAM transient
simulation results. The results show that the uncertainties of the maximum coolant and fuel tem-
peratures and the maximum core power in the ramp reactivity transient case are very small when
sufficient neutron histories are used in SERPENT to generate the few group macroscopic cross
sections. However, when the number of histories is reduced and the uncertainty in the reactivity
coefficients is large, the uncertainty in the transient predictions of the SAM code can be non-
negligible. The contributions to the uncertainties from different parameters was also assessed
which demonstrated that for different responses, the dominate contributions to the uncertainties
result from different parameters.
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CHAPTER 6

Summary, Conclusion and Future Work

6.1 Summary

There has been considerable research related to the quantification of uncertainties in nuclear reactor
analysis methods for both existing light water and advanced reactors. The uncertainty analysis of
HTRs was divided into several phases for both the pebble-bed and prismatic HTRs. The essential
principles and methods proposed to assess the uncertainty in the HTR were similar in several ways
to those used for LWRs. However, the complexity of the modeling required for HTR analysis can
potentially introduce additional uncertainties. Specifically, the traditional “two-step” method used
for LWR analysis can be less effective for modeling the HTR core. This is primarily because of
the high leakage and the significant spatial variations in the neutron spectrum in the core. Several
researchers have demonstrated the advantages of using full core Monte Carlo methods to gener-
ate homogenized multi-group cross sections for the small reactors such as the HTR. These cross
sections are then used in deterministic core simulators for depletion and safety analysis. However,
the stochastic nature of Monte Carlo processes has the potential to introduce additional statistical
uncertainties in the overall uncertainty in the prediction of the core behavior.

The work performed in this thesis was not to provide a comprehensive uncertainty analysis of
the HTR. Rather, the principal objective of the research in this thesis was to quantify the additional
uncertainty introduced by the use of Monte Carlo multi-group cross sections into the analysis of
the HTR. An overarching objective of the work here was the development of modeling insights and
procedures to minimize the contribution of the uncertainty in multi-group cross sections generated
by Monte Carlo methods to the overall uncertainty in deterministic calculations.

In this thesis, the objective was achieved by performing uncertainty quantification for the key
output parameters in deterministic steady-state and transient safety calculations. The results show
that when the homogenized multi-group cross sections are generated with sufficient number of
neutron histories in the Monte Carlo calculation, the uncertainties in the subsequent deterministic
simulations caused by the Monte Carlo cross section uncertainty are negligible. The percentage
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contributions from the uncertainties of different input parameters were also analyzed.

6.2 Conclusion

In this thesis, the uncertainty of the deterministic code calculated results due to the uncertainty
introduced by preceding Monte Carlo cross section generation were quantified using the industry
standard code Dakota. Based on the results obtained in this research, several conclusions were
evident.

First, a probabilistic based method was developed for propagating the uncertainty introduced
by Monte Carlo cross section generation to the subsequent neutronics and temperature fluids filed
simulations, and compared to the results of an analytic perturbation based deterministic method.
Both methods were applied to the HTR-10 experiments which were formalized in a IAEA bench-
mark problem. Good agreement was achieved between the probabilistic and analytic methods.

Second, parametric studies were performed to investigate the factors that would impact the un-
certainty quantification. Analysis showed that the correlation between the cross section data was
weak, so they could be treated as independent variables in the uncertainty quantification. Further-
more, when the number of neutron histories is fixed in the Monte Carlo cross section generation,
the uncertainty is insensitive to the number of energy groups and to the mesh refinement in the
neutron diffusion calculation.

Third, the uncertainty of Monte Carlo generated cross sections was propagated for several im-
portant neutronics parameters, including the keff , local power and region-wise reactivity coeffi-
cients. An innovative local power form function was developed for the SAM code to improve the
accuracy of the point kinetics solution for control rod movement. The results of the uncertainty
analysis showed that if a fixed number of neutron histories were used, the uncertainty of the keff and
local power are small, while the uncertainty of some region-wise reactivity coefficients were larger.

Fourth, the uncertainty of Monte Carlo generated cross sections was also propagated to the
thermo-fluids parameters in transient simulations through the neutronics parameters. Results
showed that despite the uncertainty of some neutronics parameters being larger, the uncertainty
of the important thermo-fluids parameters was small, such as the maximum coolant and fuel tem-
perature.

Finally, the contributions of the uncertainty introduced from different neutronics parameters
were analyzed in order to provide guidance to reactor analysts on the numbers of histories neces-
sary to minimize the contribution of the uncertainty introduced from Monte Carlo into the predic-
tion of HTR reactor safety performance.
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6.3 Future Work

Some areas of future work are suggested to further refine the methods developed in this work. First,
in the AGREE-Dakota coupling scheme, the computational burden for the AGREE calculations
was significant since it was necessary to run multiple times with a set of sampled input parameters.
This was especially the case for the problems requiring very fine 3-D discretizations such as HTR-
10 benchmark. Several areas of research are possible, to include methods to better utilize the
solutions to the AGREE neutron diffusion equation as initial guess to speed up convergence of the
AGREE iterations of the perturbed cases. This research might include the use of reduced order
model (eg. digital twins) to accelerate the coupled field solution.

Second, in the AGREE-Dakota coupling calculation, a set of sampled cases were generally
performed in parallel on the compute cluster. It was evident that if multiple cases are performed
on the same node, the computational time will increase significantly for all cases, despite that the
cases being performed on their own processors independently. Several test cases were analyzed
and it showed that the memory is not a limitation. This requires further investigated to determine
the reasons for the reduced computing performance.

Finally, in the SAM code system modeling of the gFHR reactor, only the reactor core was
assessed since the SAM FHR pump model was still under development. Once the pump model and
other components models are qualified, a system model of the gFHR reactor should be developed
and an uncertainty quantification should be performed using the same methods developed in this
thesis.

103



APPENDIX A

Propogation of Uncertainty

Assuming a variable y is a function of variable x1, x2, · · · , xn:

y = F (xi, x2, · · · , xn) . (A.1)

where the uncertainties of variable x1, x2, · · · , xn are ∆x1 ,∆x2 , · · · ,∆xn .
Since

dy =
∂F

∂x1

dx1 +
∂F

∂x2

dx2 + · · ·+ ∂F

∂xn

dxn , (A.2)

the uncertainty of y propogated from the uncertainty of x1, x2, · · · , xn is

∆y =

√(
∂F

∂x1

)2

(∆x1)
2 +

(
∂F

∂x2

)2

(∆x2)
2 + · · ·+

(
∂F

∂xn

)2

(∆xn)
2 . (A.3)

In some cases, the relative uncertainty of y is more interested. Since

dy

y
= d ln y

=
∂ lnF

∂x1

dx1 +
∂ lnF

∂x2

dx2 + · · ·+ ∂ lnF

∂xn

dxn , (A.4)

the relative uncertainty of y propogated from the uncertainty of x1, x2, · · · , xn is

∆y

y
=

√(
∂ lnF

∂x1

)2

(∆x1)
2 +

(
∂ lnF

∂x2

)2

(∆x2)
2 + · · ·+

(
∂ lnF

∂xn

)2

(∆xn)
2 . (A.5)

Eq. (A.3) and (A.5) are the Rule of Uncertainty Propogation.
Based on Eq. (A.3) and (A.5), the uncertainty of some frequently used functions can be ob-
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tained:

∆z =
√

∆2
x +∆2

y , if z = x± y ; (A.6)

∆z

z
=

√(
∆x

x

)2

+

(
∆y

y

)2

, if z = x± y or z =
x

y
; (A.7)

∆z

z
=

√(
m
∆x

x

)2

+

(
n∆y

y

)2

, if z = xmyn . (A.8)
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APPENDIX B

Uncertainty Bounding

Assume there are two correlated cross section data Σ1, Σ2. Both of them follow the normal distri-
bution:

Σ1 ∼ N (Σ1,∆Σ1) (B.1)

Σ2 ∼ N (Σ2,∆Σ2) (B.2)

The covariance between them are cov(Σ1,Σ2) = cov(Σ2,Σ1).
Generate a set of samples for both variables independently, say they are

Σ1
1,Σ

2
1,Σ

3
1, · · · ,ΣN

1 (B.3)

Σ1
2,Σ

2
2,Σ

3
2, · · · ,ΣN

2 . (B.4)

Run a set of N cases with {Σ1
1,Σ2}, {Σ2

1,Σ2}, {Σ3
1,Σ2}, · · · , {ΣN

1 ,Σ2}, the corresponding re-
sults are k1

eff,1, k
2
eff,1, k

3
eff,1, · · · , kN

eff,1. Assuming above results follow a normal distribution

keff,1 ∼ N (keff,1,∆keff,1) (B.5)

where the mean value and standard deviation

keff,1 =
1

N
(k1

eff,1 + k2
eff,1 + k3

eff,1 + · · ·+ kN
eff,1) (B.6)

∆keff,1 =
1

N

[
(k1

eff,1 − keff,1)
2 + (k2

eff,1 − keff,1)
2 + (k3

eff,1 − keff,1)
2 + · · ·+ (kN

eff,1 − keff,1)
2
]

(B.7)

can be calculated.
Thus the sensitivity of keff with respect to Σ1 can be obtained:

SΣ1
keff

=
∆keff,1

∆Σ1

(B.8)
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Similarly, the sensitivity of keff with respect to Σ2 can be obtained:

SΣ2
keff

=
∆keff,2

∆Σ2

(B.9)

Since Σ1 and Σ2 are correlated, the total uncertainty of keff can be calculated with the Sandwich
Rule:

∆2
keff

= S⃗TV S⃗ (B.10)

=
[
SΣ1
keff
SΣ1
keff

] [cov(Σ1,Σ1) cov(Σ1,Σ2)

cov(Σ2,Σ1) cov(Σ2,Σ2)

][
SΣ1
keff

SΣ2
keff

]
(B.11)

where

cov(Σ1,Σ1) = ∆2
Σ1

(B.12)

cov(Σ2,Σ2) = ∆2
Σ2

(B.13)

|cov(Σ1,Σ2)| = |cov(Σ2,Σ1)| ⩽
√

∆2
Σ1
∆2

Σ2
= ∆Σ1∆Σ2 (B.14)

Then Eq.(B.11) yields

∆2
keff

=
(
SΣ1
keff

)2
∆2

Σ1
+ 2SΣ1

keff
SΣ2
keff
cov(Σ1,Σ2) +

(
SΣ2
keff

)2
∆2

Σ2
(B.15)

⩽ ∆2
keff,1

± 2∆keff,1∆keff,2 +∆2
keff,2

(B.16)

=
(
∆keff,1 ±∆keff,2

)2 (B.17)

i.e., the uncertainty of keff can be bounded by

∆keff ⩽ ∆keff,1 +∆keff,2 (B.18)

For the more general case with multiple cross section data, Eq.(B.18) becomes

∆keff ⩽
∣∣∣∣∣∣∆⃗keff

∣∣∣∣∣∣
1

(B.19)
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APPENDIX C

Temperature Distribution Convergence

The fuel temperature distribution and coolant temperature distribution calculated based on the HZP
cross sections, i.e., Step 2 in Section 4.1.3, are shown in Fig. C.1.
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Fig. C.1: The fuel temperature distribution and coolant temperature distribution calculated based
on the HZP cross sections

The fuel temperature distribution and coolant temperature distribution calculated based on the
HFP cross sections, i.e., Step 3 in Section 4.1.3, are shown in Fig. C.2.

The difference between the fuel and coolant temperature distributions calculated from above
two cases are shown in Fig. C.3.
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Fig. C.2: The fuel temperature distribution and coolant temperature distribution calculated based
on the HFP cross sections
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Fig. C.3: The difference between the fuel and coolant temperature distributions calculated based
on the HZP and HFP cross sections

109



According to Fig. C.3, the differences between the fuel and coolant temperature distributions
calculated from the Step 2 and Step 3 in Section 4.1.3 are below 6 K and 2 K, respectively. It
shows that even the Step 2 and Step 3 are performed only one time, the temperature distributions
are already converged pretty well. Therefore, the Step 2 and Step 3 in Section 4.1.3 are only
performed one time in practice.
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APPENDIX D

Matrix Structure of the Operators in Neutron
Diffusion Equation

In Chapter 3 Eq. 3.2, the neutron diffusion equation is written into a operator form. In a 3-D multi-
group discretization, the operator M and F are in matrix form. The matrix structurs of the operator
M and F in Eq. 3.2 are shown in Fig. D.1 and Fig. D.2.

Fig. D.1: Matrix structure of operator M in neutron diffusion equation

Fig. D.2: Matrix structure of operator F in neutron diffusion equation
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where A are G×G block matrices, while D̃ are G×G diagonal matrices.
In 3-D discretization, the operator M is a seven-diagonal matrix since each spatial region is

connected to its six neighbors. In 2-D discretization, the operator M is a five-diagonal matrix
since each spatial region is connected to its four neighbors.

For the 3 × 5 simplified gFHR fresh core demonstration model created in Chapter 3 Section
3.3.1, the matrix structures of the operator M and operator F are shown in Fig. D.3. The con-
nections between a spatial region with its four neighbors are shown in colored blocks. When a
cross section is perturbed, only the corresponding block in the operator M and F will be changed.
Therefore, to obtain the perturbed operator ∆M and ∆F , only several entries in the matrix need
to be considered.

Fig. D.3: Matrix structure of operator M and F for the 3× 5 demonstration model
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