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ABSTRACT

This dissertation presents a comprehensive analysis of high-frequency transient-large-amplitude
(TLA) geomagnetic perturbations in ground magnetometer data. TLA events are large (≥ 6 nT/s),
rapid (< 60 seconds) magnetic field changes, or dB/dt. This dissertation characterizes TLA signa-
tures and investigates their relation to other space weather events in order to gain insight into the
small-scale magnetosphere-ionosphere processes that cause them and may also give rise to GIC.

In the initial discovery study, TLA events at five stations of the Magnetometer Array for Cusp
and Cleft Studies (MACCS) throughout 2015 were identified. The events were characterized based
on amplitude and frequency of occurrence, diurnal trend, and relation to geomagnetic storms, au-
roral substorms and nighttime geomagnetic disturbance events (GMD), also referred to as night-
time magnetic perturbation events (MPE). We show that TLA events occurred most often at local
magnetic nighttime and while TLA events were observed at all five MACCS stations, a majority
of individual events (74%) were observed at only one station, inferring a localized spatial scale
smaller than ∼ 580 km. The main driver for TLA events in 2015 was not sudden commencements
(SC) or sudden impulses (SI) that are the most rapid global-scale space weather events. Rather,
TLA events showed stronger association to smaller-scale processes like substorms and nighttime
GMDs.

The timescales and amplitudes of TLA dB/dt intervals are similar to noisy magnetic signatures
caused by external interferences or internal instrumental defects, making detection of only TLA
events a tedious and time-consuming manual process. An automated high-frequency magnetic
disturbance classifier was developed to identify second-timescale, high-frequency dB/dt intervals
in ground magnetic field data and discriminate between noise-type or geophysical TLA events. The
full process utilizes insights gained from a statistical analysis of both types of events to implement
constraints as well as a machine learning support vector machine to make the final classification of
TLA or noise-type dB/dt. This method is a useful capability both for data quality control and the
continued investigation of small-scale surface geomagnetic perturbations.

Finally, the automated high-frequency disturbance classifier was used to gather a large database
of TLA events for all latitude ranges and throughout Solar Cycle 24 from 2009 to 2019. Char-
acteristics of the expanded TLA database show results consistent with the initial study and with
nighttime GMDs. TLA event occurrence peaked in the declining phase of the solar cycle and

xiv



trended similarly with the number of substorm onsets per day. Nearly all of the most extreme
GMD events had associated TLA intervals in the same location and while GMDs have an effective
radius of ∼275 km, TLA events exhibited even more localized spatial scale. From an analysis of
a TLA-related GMD event, we show that these events are associated with dipolarization fronts on
the nightside at geosynchronous orbit and fast plasma flows toward Earth, and are closely tempo-
rally related to poleward boundary intensifications (PBI) and auroral streamers in the ionosphere.
The highly localized behavior and connection to the most extreme GMD events suggests that TLA
intervals are a ground manifestation of rapid and complex ionospheric current structures coupled to
the magnetosphere that can drive GICs. The analysis of high-frequency TLA geomagnetic pertur-
bation events in this dissertation gives new perspective of small-scale magnetosphere-ionosphere
(M-I) phenomena that can lead to GIC.
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CHAPTER 1

Introduction

1.1 Space Weather Impacts

Space weather events occur due to the interaction of highly active solar wind with the Earth’s
magnetosphere, causing electromagnetic and magnetohydrodynamic disturbances to propagate
throughout the magnetosphere-ionosphere (M-I) system. These events have impacts that can di-
rectly effect society on Earth.

The geomagnetic storm is the largest and longest type of space weather event. The largest geo-
magnetic storms are triggered by an interplanetary shock incident on the magnetopause that com-
presses the dayside magnetosphere. The interplanetary shock can be due to high speed solar wind
streams or a coronal mass ejection (CME). The sudden compression increases the magnetopause
current (shown in Figure 1.1) and pushes it closer to Earth, causing the worldwide average horizon-
tal magnetic field on the ground in the equatorial region (called the Dst index) to rapidly increase.
The compression is called a sudden commencement (SC) when it is followed by extended peri-
ods (several hours) of southward interplanetary magnetic field (IMF) causing geomagnetic storm
phases to develop (it is termed a sudden impulse (SI) when storm phases do not follow it). The
period of southward IMF and subsequent ring current enhancement characterizes the main phase
of the storm: increased dayside magnetic reconnection causes more solar wind energy transport
into the magnetosphere, enhancing the cross-tail current and ultimately increasing particle injec-
tion into the ring current. The ring current expands Earthward and continues a chain reaction of
M-I disturbances down to Earth’s surface. The recovery phase occurs when the southward IMF
weakens or disappears completely, the reconnection rate decreases and the ring current decays.
Thus the large-scale perturbations of the storm subside.

The auroral substorm is the most frequent type of geomagnetic activity, occurring 4-6 times per
day (Borovsky and Yakymenko, 2017). Substorms happen concurrently with geomagnetic storms
when the M-I system is highly disturbed, but occur in the absence of storm activity as well. Simi-
larly to storms, substorms occur when the IMF turns southward and increased energy from the solar
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Figure 1.1: Diagram of some of the primary M-I currents involved in geomagnetic storms and
substorms. The orientation of this figure is from the nightside of the Earth looking toward the
dayside i.e., sunward. Image from Kivelson and Russel (1995).

wind flows into the magnetosphere, however the physical processes and primary current systems
differ. As dayside reconnection occurs, magnetic flux is transferred from the solar wind and stored
in the magnetotail, increasing pressure in the tail lobes resulting in thinning of the plasma sheet
and formation of a neutral point in the near-tail; this is the growth phase. The expansion phase
occurs when nightside reconnection occurs and the stored energy in the magnetotail is explosively
released along field lines into the ionosphere (McPherron et al., 1973; Russell and Mcpherron,
1973; McPherron, 1979). The expansion phase forms a new current system: the substorm current
wedge (SCW, Figure 1.1). The SCW diverts current from the tail in the Region 1 field-aligned
current (FAC) orientation and closes via a westward auroral electrojet in the ionosphere. The au-
roral electrojet (AE) index is an effective measure of electrojet activity and is derived from the
difference of the maximum and minimum horizontal magnetic field values recorded in the auroral

2



zone (approx. 60-75◦ geomagnetic latitude (MLAT)).
Figure 1.2 shows the orientation of the field-aligned current (FAC) systems from Le et al.

(2010). The FACs extend from the outer magnetosphere down to the ionosphere where they close
parallel to the surface via Pedersen currents. The upward and downward FAC generate rotational
current systems called Hall currents that are also oriented parallel to the surface. These current
systems are always present, but become enhanced during intervals of geomagnetic storm and/or
substorm activity. Intensifications of the Hall currents during storms and/or substorms are referred
to as the westward electrojet (WEJ) and eastward electrojet (EEJ). The FAC system is a highly
effective vehicle for energy transport from the magnetosphere to the ionosphere and the surface of
Earth.

Figure 1.2: Diagram of field-aligned currents showing their closure in the ionosphere via Pedersen
currents and subsequent Hall currents.

Enhancements and spatial redistribution of these current systems cause disturbances of the sur-
face geomagnetic field. This effect is described by Faraday’s law of induction: temporally varying
magnetic fields always accompany spatially varying electric fields. From this physical principle,
large variations of the surface geomagnetic field over time drive currents through conductive sys-
tems on Earth. These are referred to as geomagnetically induced currents (GIC).
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GICs flow through long, parallel (to Earth’s surface) systems like railways, pipelines and power
grids (Boteler and Beek, 1999). Following an extreme space weather event, GICs can be large
enough to cause severe damage to and even total failure of power systems resulting in major power
outages and costly repairs.

The largest geomagnetic storm on record occurred in 1859 and is called the Carrington Event.
The storm was so intense that the auroral oval expanded as far south as Hawai’i and large GICs
flowed through and caused damage to telegraph transmission lines (Boteler, 2006). In more recent
history, the geomagnetic storm of March 1989 caused GICs in the HydroQuebec power grid that
caused a major power outage lasting nine hours. The 1989 storm was triggered by two large
CMEs, the timing of the second CME interacting with Earth corresponded with the collapse of
the HydroQuebec power system, and occurred prior to the peak intensity of the storm. When the
storm reached maximum strength, the auroral oval expanded to lower latitudes and caused more
localized power system issues at locations in the United States (Boteler, 2019).

1.1.1 dB/dt as a proxy for GIC

Following from Faraday’s law of induction that describes electromagnetic induction via an elec-
tromotive force produced when an electric circuit interacts with a magnetic field, the Maxwell-
Faraday equation relates the rate-of-change of the surface geomagnetic field, dB/dt, to the curl
of the electric field (i.e., magnetically induced current). Equation 1.1 governs this relationship;
this shows that the rotational electric field (i.e., current) is directly proportional to the temporally
varying magnetic field.

∇× E = −∂B

∂t
(1.1)

As such, dB/dt is often used as a proxy for GICs (Viljanen, 1998). More specifically, the
approximate linear relationship between the horizontal component of the surface magnetic field,
dH/dt, and the induced geoelectric field was by shown by Bolduc et al. (1998). Because of the
directly proportional relationship between GIC and dB/dt, and because dB/dt measurements are
more accessible than measuring the actual induced currents or geoelectric field within power lines,
large surface dB/dt are studied to gain insight on the spatial and temporal behavior of space weather
events that give rise to GICs. It is important to note that effective GICs in power systems are not
solely dependent on the strength and direction of dB/dt, but also the spectral characteristics of the
electromagnetic perturbations, the ground conductivity structure of the region and the geometry of
the power system (Pulkkinen et al., 2017). The ground conductivity and power system geometry
are issues pertaining to the engineering aspects of GICs, this dissertation research is focused on
the spatio-temporal characteristics of dB/dt.
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The amplitude and timescale of potentially hazardous dB/dt can be characterized by the associ-
ated M-I current activity that causes the disturbances on the ground. Kataoka and Ngwira (2016)
organized dB/dt and the resulting GIC into three general categories: 1) RC-type: slow dB/dt with
10-60 minute timescale and amplitudes of hundreds of nT, associated with ring-current evolution
that causes global GICs most effectively at low magnetic latitudes, 2) AE-type: fast dB/dt with
timescale of several minutes and thousands of nT amplitude caused by auroral electrojet activity
giving rise to GICs in high magnetic latitude regions, and 3) SC-type: global, transient dB/dt with
timescale of several seconds and amplitudes of tens of nT, caused by sudden commencements. The
RC- and AE- types are mainly dependent on the southward component of the interplanetary mag-
netic field and the solar wind speed, whereas the SC-type is mostly dependent on the dynamic pres-
sure of the solar wind. Prior to the research presented in this dissertation, large, second-timescale
dB/dt have been thought to be primarily related to SCs, as they are the most rapid space weather
event. However, our research shows that second-timescale dB/dt with very large amplitudes are
much more common than SCs alone, and often occur related to smaller-scale space weather events.

Because of the potential severity of space weather impacts on society and technological infras-
tructure, the more accessible and directly proportional value of GICs- dB/dt- is studied heavily
in an effort to understand the behavior of both the M-I dynamics that give rise to the dB/dt and
the engineering aspects of how large dB/dt generates GICs and how these GICs affect power sys-
tems. An ultimate goal is the ability to forecast severe space weather occurrences and predict the
behavior of the magnetic field perturbations that will result.

1.2 Small-Scale Phenomena Related to GIC

The most extreme space weather events are geomagnetic storms that are triggered by the colli-
sion of a coronal mass ejection (CME) with Earth’s magnetosphere (Gosling, 1993). Severe storms
like the Carrington Event or the March 1989 storm are those that have been shown to generate the
most damaging GICs on the largest scale. Thus, studies of GICs are often focused on analyzing
the largest, longest geomagnetic storms (and subsequently the largest and longest dB/dt at the sur-
face). However, beyond the largest events that cause disturbances of global-scale M-I currents,
smaller-scale processes (often related to auroral substorms) that enhance finer-scale structures in
ionospheric currents also play a key role in generating GIC.

It is often assumed that the geoelectric field impinging on a power system is spatially uniform
across the scale-size of the system. However, a study by Pulkkinen et al. (2015) found that while
large-scale geoelectric fields enhancements occur (generated by ionospheric currents and subse-
quent geomagnetic field disturbances), extreme peaks of the geoelectric field are much more local-
ized. They show that single station peaks are often twice as large as the regional average (”regional
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average” here refers to distances of the order of 500 km). Engebretson et al. (2019a,b) confirmed
this by showing that nighttime geomagnetic disturbances (GMD) with 5-10 minute timescale are
highly localized, with half-amplitude radius of ∼275 km. The structure of the geoelectric field in
the localized regions where maxima occur can also greatly vary from regional and global extremes
and these peaks often occur on short periods, so the geoelectric field can be temporally localized
as well.

The nature of localized enhancements observed on the ground points to localized sources in the
ionosphere (Boteler and Beek, 1999). Ngwira et al. (2015) expanded on the study by Pulkkinen
et al. (2015) and provides further evidence for localized geoelectric field extremes. Possible source
mechanisms suggested for the localized geoelectric field peaks are localized substorms, rapid in-
tensifications of the Eastward Electrojet (EEJ) and bursty bulk flows (BBF) in the magnetotail.

BBFs are characterized by ∼10-minute timescale Earthward plasma flow velocity enhance-
ments in the magnetotail corresponding with magnetic field dipolarizations and ion temperature
increases (Angelopoulos et al., 1992). BBFs can produce north-south (N-S) aligned auroral stream-
ers in the ionosphere (Henderson et al., 1998) that can then evolve into omega bands (Henderson
et al., 2002). It is important to note that omega bands are related to fast Earthward flows (Partamies
et al., 2017), but they can also be caused by Kelvin-Helmholtz instability driven by flow shears in
the inner-plasma sheet (Liu et al., 2018b).

Ngwira et al. (2018) and Dimmock et al. (2020) further reinforce the regional variability of
dB/dt and subsequent geoelectric field extremes. Dimmock et al. (2020) shows that regional varia-
tion of dB/dt is coupled to energy deposition in the magnetosphere and the results of Ngwira et al.
(2018) agree that the localization of surface dB/dt is likely related to magnetospheric currents map-
ping to local ionospheric structures. Dimmock et al. (2020) suggests that GICs are primarily driven
by small-scale spatiotemporal structures superimposed on the large-scale westward electrojet. The
findings of Weygand et al. (2021) are consistent with this concept, showing that most localized
nighttime GMDs capable of causing GICs occur underneath the WEJ and many under the Harang
current system.

As previously mentioned in Chapter 1.1.1., the spectral characteristics of the geomagnetic per-
turbations are an important aspect of the resultant GICs. Shorter and higher-frequency perturba-
tions in the Pi 1-2 range (16.7-1000 mHz) are not capable of directly causing large GICs due to
the skin-depth effect of conductive media. These frequencies can only penetrate the lithosphere to
shallow depths, resulting in smaller current induction loops that are not substantial within large-
scale conductor systems like a power grid. However, large-amplitude, second-timescale geomag-
netic perturbations often occur within longer space weather events that can generate substantial
GICs in Earth’s surface. Further, dB/dt in this frequency range may cause GIC that could impact
small-scale conductors like free-floating electronics and sensors that are more sensitive to smaller
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induced currents.
This dissertation is focused on the analysis of these rapid geomagnetic perturbations, referred

to as transient-large-amplitude (TLA) perturbations. Nighttime GMDs are of particular interest in
regard to TLA dB/dt because many GMDs have TLA dB/dt occurring prior to or within the overall
disturbance. Investigation of the relationship between GMDs and TLA dB/dt is a central aspect of
this dissertation.

An example of a TLA event is shown in the bottom panel of Figure 1.3, showing magnetic
field data for ∼45 minutes at the RANK station on 17 December, 2017. The specific TLA dB/dt
intervals are marked near 06:10 UT with the open circles (start of the interval) and closed circles
(end of the interval) in each component. This TLA event occurred within an overall nighttime
GMD event that began around 06:05 UT and peaked at about 06:15 UT.

Figure 1.3: Magnetic field data from three stations on December 17, 2017. The Bx component is
displayed in black, By in blue and Bz in red. The TLA intervals are signified by hollow circles
denoting the start of the interval and filled circles denoting the end of the interval. The mean B
value in the each component has been subtracted.
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The other station data are shown in the panels above RANK in Figure 1.3 because they show
nighttime GMD events from about 06:10 to 06:20 UT as well as 06:30 to 06:40 UT (Engebretson,
2023). The GMDs at RBY and CDR both have maximum derivative amplitudes exceeding 10 nT/s.
The RANK station measured TLA dB/dt that also exceeded 10 nT/s, and the overall magnetic field
change during the entire interval was also largest at RANK, with ∆Bz of nearly 800 nT from 06:09
to 06:15.

The dB/dt values for every half-second measurement over the same interval shown in Figure
1.3 are displayed in Figure 1.4. The scale of the y-axes are the same for all three panels; while
there are dB/dt peaks at RBY and CDR when the nighttime GMDs are occurring, the dB/dt values
at RANK when the TLA event occurred were the largest of the three stations. Figures 1.3 and 1.4
show examples of a scenario in which nighttime GMDs occurred at three stations with TLA dB/dt
occurring within the largest GMD at only one of the three locations.

Figure 1.4: Magnetic field dB/dt data for three stations on December 17, 2017. The dBx/dt values
are displayed in black, dBy/dt in blue and dBz/dt in red.

8



1.3 ULF Wave Context

Low-frequency waves in plasma are such that the frequency of the wave perturbations are lower
than the natural frequencies of the plasma (i.e., plasma frequency, ion gyrofrequency). Because
plasma is composed of charged particles, both mechanical properties (i.e., pressure, density) and
electromagnetic properties (i.e., electric currents, magnetic field) effect the ionized gas; the result
is magnetohydrodynamic (MHD) waves.

MHD waves are described by three solutions to the basic set of MHD equations consisting of
fluid equations, Maxwell’s equations and Ohm’s law (McPherron, 2005). These solutions define
three characteristic MHD wave modes: the (1) fast and (2) slow modes are compressional waves
with speeds relative to the (3) Alfvén wave speed. The Alfvén wave is a non-compressional (con-
stant pressure and density) wave that propagates parallel to the magnetic field lines. The Alfvén
wave behaves like beads (particles) on a string (magnetic field line) and thus effectively channels
energy along field lines through different regions of the M-I system. Alfvén waves play an im-
portant role in M-I coupling as they carry FACs (Keiling, 2009) and are essential in establishing
quasi-static FAC as shown in Figure 1.2.

Ultra-low frequency (ULF) waves in the magnetosphere are magnetohydrodynamic plasma
waves in the frequency range from about 1 mHz to 10 Hz. ULF waves in the magnetosphere
are classified by their waveform and wave period (Jacobs et al., 1994) The two waveform classifi-
cations are pulsation continuous (Pc) for quasi-sinusoidal waveforms and pulsation irregular (Pi)
for irregular waveforms; these waveforms are then divided into subclasses based on wave period
as shown in Figure 1.5.

ULF waves have multiple generation mechanisms including sources in the solar wind, mag-
netopause instabilities and interactions within the magnetosphere (e.g., Engebretson et al., 1987;
Walker, 1981). These waves play a key role in transporting energy throughout the M-I system.
The wave frequency and polarization is dependent on the source of energization and subsequently
the region where energization occurs. When measured on the ground, the ULF wave frequency
depends on where the local field line maps to in the magnetosphere, and the locations of magneto-
spheric regions is variable depending solar wind dynamic pressure and magnetic field conditions.

Pc-1 and Pc-2 frequencies measured on the ground are caused by electromagnetic ion-cyclotron
(EMIC) resonances generated in the equatorial region of the magnetosphere (Roldugin et al., 2013)
and are associated with the recovery phase of geomagnetic storms and auroral particle precipitation
(Engebretson et al., 2008). Not shown in Figure 1.5, Ps6/Pi3 magnetic pulsations are quasi-periodic
sequences of GMDs with ∼5-40 minute periods and they often accompany omega band auroral
structures (Opgenoorth et al., 1983).

Pi 1-2 have long been understood to be substorm-related and well-correlated with bright, ac-
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Figure 1.5: ULF waveform classifications in frequency range (left) and period range (right).
Adapted from Jacobs et al. (1994).

tive aurora (Rooney and Sherman, 1934). Pi pulsations are currently understood to originate from
cross-tail current disruption triggering Alfvén waves carrying FACs that establish the substorm
current wedge (Milling et al., 2008; Baumjohann and Glassmeier, 1984), resulting in particle pre-
cipitation into the local E-region ionosphere (Engebretson et al., 1983; Oguti et al., 1984). Further,
Pi2 pulsations have been linked to BBFs in the near-Earth magnetotail (Kepko and Kivelson, 1999).

The TLA dB/dt intervals that are the focus of this dissertation are geomagnetic perturbations in
the Pi 1 and short Pi 2 frequency ranges. TLA dB/dt are referred to as high-frequency disturbances
because they fall in the highest range of the ULF wave frequency band, but they are not necessarily
sinusoidal, more often these perturbations have irregular waveform like Pi pulsations. TLA dB/dt
show similarities to Pi pulsations in timescale and frequency, as well as some space weather drivers
but they are not defined as Pi 1-2 pulsations because they do not always show a direct association
to substorm onsets.

1.4 Machine Learning Applications to Space Weather

Second-timescale dB/dt are often excluded from space weather studies because these higher fre-
quencies of the magnetic field are effectively low-pass filtered when computing the resultant geo-
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electric field (Pulkkinen et al., 2006, 2013). Thus, 1-minute resolution magnetic field data have
long been the accepted standard for space weather research. However, there has been a more re-
cent demand for higher temporal resolution magnetic field data in GIC research in order to increase
accuracy and reduce bias in GIC forecasting (Gannon et al., 2017; Grawe et al., 2018).

The challenge that arises with the use of high-rate (≤ 10 s) magnetic field measurements is
that noisy signatures are present. Data measured at or averaged over 1-minute helps to exclude
or remove instrumental artifacts and/or noisy data due to interference. Using high-rate magnetic
field data requires an alternative method to reduce contaminated data. Many current automated
data-cleaning processes may remove some noisy dB/dt intervals but do not remove them all, and
can also remove important geophysical TLA dB/dt that are very similar in timescale and amplitude
to variations caused by magnetic noise sources.

Machine learning is the field of data science that uses algorithms to build models that ”learn” the
behavior of some set of training data, then makes predictions, detections or classifications of new,
unseen data based on the learned behavior and improves performance with increased experience
in such decision-making (Mitchell, 1997). Machine learning was developed in the late 1950’s and
has grown in popularity since, evolving with new models and new applications to problem solving
in various fields.

In recent years, machine learning applications to space weather problems have grown signifi-
cantly (Goss, 2020). Numerous machine learning models have been used to predict magnetic field
values for forecasting purposes, such as feed-forward and convolutional neural networks (Reiss
et al., 2021) as well as linear, random forest and gradient boosting regressors (Pinto et al., 2022).
Further, machine learning techniques have been employed for the specific task of magnetic field
data cleaning as well. Finley et al. (2023) used a convolutional neural network to identify and re-
move noisy magnetometer data from interference by other components aboard a spacecraft. Hoff-
mann and Moldwin (2022) used an unsupervised machine learning clustering algorithm to separate
the ambient magnetic field from spacecraft noise.

In this dissertation, we present a new technique to identify large, second-timescale magnetic
field disturbances and classify them as either noise-type or geophysical. As the use of magnetic
field data with high temporal resolution becomes more imperative in space weather research, the
technique allows for the use of such high-rate data without averaging the data or using other auto-
mated data cleaning methods that can remove meaningful geophysical signatures.

1.5 Guiding Questions

This thesis is focused on analyzed high-frequency, TLA dB/dt in surface magnetic field data. The
following list compiles the central guiding questions for this dissertation research.

11



1. How often do TLA signatures occur? What are their amplitude characteristics and
spatiotemporal behavior? How do TLA events present on large spatiotemporal scales i.e.,
throughout a solar cycle and at all magnetic latitudes?

2. How can TLA dB/dt be effectively identified in high-rate magnetic field data to enable
continued analysis without a time-consuming manual identification process? Are there
distinctions between the characteristics of magnetic noise and high-frequency geophysical
dB/dt and how can these be exploited to make TLA identification more efficient? How can
machine learning be applied to the problem of detecting TLA intervals in magnetic field data
and what implications might this have for the space weather community as a whole?

3. Are TLA signatures significant in the context of space weather events that can cause
GICs? What is the relationship of TLA intervals with larger space weather events and what
can be learned about small-scale M-I dynamics from this relationship?

1.6 Outline

This dissertation is organized as follows. Chapter 2 addresses the first guiding question. This
chapter presents an initial discovery study of TLA dB/dt intervals in magnetic field data and as-
serts their importance in the investigation of GICs. This analysis includes one year of magnetic
field data from several magnetometer stations in north-east Canada; we investigate their behavior
throughout daily magnetic local time as well as the entire year, discuss the localization of events
within the region and contextualize them in relation to geomagnetic storms, substorms and night-
time GMDs. Chapter 3 answers the second guiding question and presents a new technique to
identify high-frequency dB/dt and classify intervals as either noise-type or geophysical. The per-
formance of the method is analyzed and the implications of this method for scientific community
are explored. Chapter 4 provides a more comprehensive analysis that addresses the first and third
guiding question. This chapter presents a study of TLA dB/dt that occurred throughout Solar Cycle
24 at a large number of stations in the high-latitude region. The study provides more data to show
the spatiotemporal behavior of TLA events and discusses their association to nighttime GMDs that
can cause GICs. Then a case study of a TLA-related GMD event is presented that provides evi-
dence for potential solar wind drivers and M-I processes responsible for these events. Chapter 5
presents our conclusions and their impacts, and discusses future work.
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CHAPTER 2

Characterization of Transient-Large-Amplitude
Geomagnetic Perturbation Events

This chapter presents an initial discovery study of TLA dB/dt measured on the ground in the con-
text of GICs. This research was originally published in the American Geophysical Union’s Geo-
physical Research Letters journal under the title ”Characterization of Transient-Large-Amplitude
Geomagnetic Perturbation Events. Geophysical Research Letters” (McCuen et al., 2021). The
work is presented as published with minor formatting adjustments. The tables of TLA events and
space weather association information, as well as the algorithm developed for this research are
available on the University of Michigan Deep Blue data repository (https://doi.org/10.7302/9t46-
0092). The results presented in this chapter rely on the SC Event List calculated and made available
by Observatori de L’Ebre, Spain from data collected at magnetic observatories. The authors thank
Mike Hapgood for his comments as a referee of this publication.

2.1 Introduction

Space weather events occur due to the interaction of active solar wind with near-Earth space,
activating magnetohydrodynamic (MHD) and electromagnetic transfer processes that propagate
throughout the magnetosphere-ionosphere (M-I) system down to the surface of Earth. Perhaps
the most critical concern regarding space weather is the threat of large geomagnetically induced
currents (GIC) to technological infrastructure on Earth. Flowing through man-made conductors
on Earth like railways, pipelines and power grids, GICs can be large enough to cause damage to
transformers resulting in major power outages and costly equipment damage (Boteler et al., 1998;
Pulkkinen et al., 2017). GICs are the result of a horizontal surface electric field E induced in
Earth’s surface that is driven by large changes of the surface magnetic field, dB/dt, via Faraday’s
law of induction. Hazardous GICs associated with large, rapid magnetic disturbances often result
from the most disruptive geomagnetic storms and auroral substorms. Therefore, significant efforts
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of the geophysical community are aimed at developing global MHD models of geomagnetic storm
and substorm activity and incorporating the magnetotelluric response of the Earth to compute GICs
(Pulkkinen et al., 2015; Zhang et al., 2012). However, beyond the largest space weather events,
several studies suggest that there are more rapid, small-scale and localized processes involved in
generating some extreme GICs (Dimmock et al., 2020; Engebretson et al., 2019a, 2021; Ngwira
et al., 2015, 2018; Opgenoorth et al., 2020).

Impulsive geomagnetic disturbances as a source of GICs were first reported by Kappenman
(2005). More recently, Belakhovsky et al. (2019) presented case studies of impulsive magnetic
events such as sudden commencements (SC), dayside traveling convection vortices (TCV), night-
side geomagnetic disturbance events (GMD) (also known as nighttime magnetic perturbation
events (MPE)), and irregular Pi3 pulsations that can all induce substantial GIC. These impulsive
disturbances are in the lower range of the ultra-low frequency (ULF) band from 1-22 mHz with
periods of 1-10 minutes. Shorter-timescale (< 1 minute) perturbations of the geomagnetic field
are much less effective at generating GICs due to their frequency content. Because of the skin
depth effect in a conducting medium, lower frequencies penetrate deeper into the Earth, increasing
the size of the induction loop and subsequent induced currents while higher frequencies can only
penetrate to shallow depths, resulting in much smaller induction loops that are incapable of driving
GICs (Oyedokun et al., 2020). While extreme dB/dts with second timescales do not cause GICs
on Earth directly, we show here that they often occur in close relation to or within larger impulsive
disturbances that are capable of generating GICs. These rapid magnetic perturbations in the Pi
1-2 frequency range may be ground manifestations of small-scale ionospheric current systems that
play an important role in driving localized, but considerable GICs.

In this study, we present occurrences of transient-large-amplitude (TLA) dB/dts that occurred
at one or more of six stations of the Magnetometer Array for Cusp and Cleft Studies (MACCS)
throughout 2015. These perturbations all have amplitudes comparable to geomagnetic disturbances
that cause large GICs, but have timescales less than 60 seconds. We investigate them here in an
effort to gain insight on the transient structures of the geomagnetic field and small-scale M-I cou-
pling mechanisms relevant to GICs. We have characterized these events based on their frequency of
occurrence, spatial and temporal dependence, and association (or lack thereof) to longer impulsive
magnetic events, substorms and storms.

2.2 Data Set and Identification Technique

The magnetometer data used in this study are from six ground stations of the MACCS array.
The stations are located in north-east Nunavut, Canada (geographic and corrected geomagnetic
(CGM) coordinates are listed in Supporting Information Table S1, the stations are shown with
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lines of CGM latitude in the map of Supporting Information Figure A.1.) This chapter refers to
station locations in CGM coordinates that were calculated for the year of 2015 with the IGRF
transformation tool of the World Data Center (WDC) for Geomagnetism, Kyoto. The MACCS
magnetometers collect 8 samples per second in three axes, then average and record the data at
two samples per second (Hughes and Engebretson, 1997). The half-second sampling rate and high
sensitivity (0.01 nT resolution) of the MACCS magnetometers is sufficient to detect shorter period
Pi 1 and 2 pulsations. The geomagnetic variations measured by the magnetometers are in local
geomagnetic coordinates: X (north-south), Y (east-west) and Z (vertical).

A semi-automated algorithm was developed to identify dB/dt signatures in magnetometer data
with user-specified duration and magnitude. After initial data processing to remove instrument
artifacts and smooth the data with a sliding average (if desired and with user-specified window
length), the algorithm is essentially a series of filters. First the algorithm calculates the slope
between each and every data point and determines the sign of the slope (assigns a 1 if positive slope,
-1 if negative slope). If the sign of the slope changes for at least 1-second (two data points), the
data point at which this change occurs (i.e., local minima or maxima) is flagged. Then the last filter
recalculates the new dB/dt between each local maxima and minima and returns the information of
the signature if it meets the conditions of the defined thresholds for dB/dt and ∆t. The final product
returned from the algorithm is a seven column matrix, each row represents an individual event and
provides the start and end time of the event, start and end B value, the time elapsed of the event:
dt, the change in magnetic field amplitude: dB, and the total derivative amplitude of the interval:
dB/dt.

We used this algorithm to identify dB/dt signatures with amplitude 6 nT/s or higher and duration
less than 60 seconds. The dB/dt threshold is comparable to the surface magnetic field perturbations
(∼8 nT/s) that caused the HydroQuebec power grid to fail during the geomagnetic storm of March
1989 (Kappenman, 2006). Further, the timescale threshold of <60 seconds makes these dB/dt
intervals distinct from common GIC studies that focus on longer magnetic field changes >1 minute.

We characterize a transient-large-amplitude (TLA) event as one or more of these dB/dt signa-
tures if they occur within 1-hour of another (regardless of the axis measured in and the station
measured at). Note that in this chapter we refer to events as TLA dB/dt intervals grouped by hour
and station (i.e., TLA events occurring at multiple stations within an hour is one event), in the rest
of this dissertation TLA events are separated by station location (i.e., TLA dB/dt groups at multiple
stations are counted as multiple events).

Because of the timescale and magnitude of the dB/dts sought, many of these signatures are sim-
ilar in nature to magnetometer noise caused either by instrumental artifacts or magnetic deviation
due to interference by ferromagnetic materials in the vicinity of the magnetometer (Nguyen et al.,
2020). Therefore, each event returned from the routine was visually inspected to confirm that it
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appeared to be of physical nature or remove it if it was a result of noise. The manual classifica-
tions of either geophysical TLA events or noise-type events were based on documented shapes and
amplitudes of noise in fluxgate magnetometer data (Khomutov et al., 2017), and inspection of the
behavior of the magnetic field on second-timescale. Noise-type events consistently showed very
sharp variation of the magnetic field on a second-timescale while geophysical events exhibited
smoothly varying magnetic field changes on second-timescale.

In our manual inspection process, we found that the events resulting from magnetometer noise
have several characteristics that make them possible to automatically detect. Our future work will
incorporate a machine learning noise identification method that will help to fully automate the
dB/dt search algorithm and contribute to magnetic noise cleaning approaches for other magne-
tometer arrays.

After the filtering process, a total of 178 transient-large-amplitude dB/dt signatures were iden-
tified. The majority of these signatures (61%) were measured in the x-component (north-south),
30% in the y-component (east-west) and 9% in the z-component (vertical). Finally, grouping the
dB/dts if they occurred within 1 hour of another signature resulted in a total of 38 TLA dB/dt
events. While the primary temporal periods of interest in this study are 1-60 seconds, we also
ran the algorithm with the upper limit for the duration of events extended to 5 minutes in order
to compare to the 5-10 minute lasting GMDs studied in Engebretson et al. (2019a). Note that we
used cleaned, full resolution half-second magnetic field data in this study and GIC measurement
often involves averaging magnetometer data over 1 minute (Ngwira et al., 2008; Pulkkinen et al.,
2006). Because our identification method relies on changes of the magnetic field lasting at least 1
second, some larger and more extended dB/dts are undetected by our algorithm due to more rapid
changes of the slope within.

Our analysis of TLA event dependence on space weather events relies on several databases.
The SuperMAG database (Gjerloev, 2012) Ring Current (SMR) index (Newell and Gjerloev,
2012) was used to determine geomagnetic storm activity and the SuperMAG Electrojet indices
(SME) (Newell and Gjerloev, 2011) were used to examine auroral substorm activity during
the events (supermag.jhuapl.edu/indices/). The association of TLA events with SCs was deter-
mined with the International Service of Geomagnetic Indices Sudden Commencement event list
(isgi.unistra.fr/events_sc.php).

2.3 Occurrence of Transient-Large-Amplitude
(TLA) dB/dt Events

We identified 38 TLA events consisting of one or more dB/dt signatures with magnitude 6 nT/s
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or higher and duration less than 60 seconds. Over half of the events (55%) have multiple dB/dt
signatures. Seven of the 38 TLA events exhibit dB/dts that last less than 10 seconds; in six of these
cases the < 10 s signatures precede a larger-amplitude, longer-timescale dB/dt. Figure 2.1 shows
three panels with examples of distinct TLA events identified at the MACCS stations in 2015. The
hollow circles in all three panels of Figure 2.1 mark the start of each dB/dt within the TLA event
and the solid dots mark the end of each dB/dt. Note that axes in all plots of Figure 2.1 have been
adjusted by subtracting the mean Bx,y,z value from the interval, so the magnitude of the rate of
change of the magnetic field is still to scale.

We expected to find many events occurring due to SCs or sudden impulses (SI, a dayside mag-
netospheric compression that is not followed by geomagnetic storm phases) as they have been
considered the primary driver for the most rapid GICs (Kataoka and Ngwira, 2016). We found
only one SC-related event, shown in Figure 2.1a. This is the only SC-related event despite five
recorded SCs and two SIs that occurred in 2015 when the MACCS stations were located on the
dayside. This TLA event started on 22 June 2015 at 18:33:22 UT (12:41:22 MLT, at RBY), just
seconds after a large CME reached Earth causing an SC at 18:33 UT. The largest dB/dt signature
of the entire data set occurred in this event at RBY in the y-component, lasting 9.5 seconds with a
magnitude of -33.49 nT/s. The dB/dts measured in the y- and z-components at PGG and CDR all
last 10.5 seconds or less, with the shortest event in the y-component at CDR with a magnitude of
13.3 nT/s and lasting just 5 seconds.

Shown in Figure 2.1b is an event that occurred on 11 November 2015 beginning at 01:12:20 UT
(21:22:36 MLT of 10 November 2015). This event consists of 34 dB/dts measured at all but the
NAN station. Of these 34 dB/dts, six have magnitude greater than 10 nT/s and five have duration
< 10 seconds. One of the largest dB/dts (16.2 nT/s) was measured at PGG at 1:13:21 UT in the
y-component and lasted only 1 second. The TLA dB/dts occur at each station within a ∼6 minute
interval and occur within a nighttime GMD event (Engebretson et al., 2019b). The TLA and GMD
event occur within a longer period of disturbance that lasted ∼1 hour; they are not associated with
a geomagnetic storm, although a substorm onset occurred at 01:07 UT, about 5 minutes prior to the
start of the event. The events were preceded by a steady magnetic field for at least an hour prior to
the start of the disturbance around 00:40 UT.

Finally, Figure 2.1c shows a TLA event on 9 October 2015 starting at 04:26:06 UT at the CDR
station (23:31:06 MLT of 8 October 2015) where Bx decreases by 135.9 nT in 21 seconds (dBx/dt
= -6.46 nT/s). Then about 14 minutes later, two similar signatures occurred at GJO: a dBx/dt of
-6.87 nT/s at 04:49:37 UT and a dBy/dt of -6.52 nT/s at 04:41:05 UT. Note, however, that the
dBx/dt at GJO actually lasted 80 seconds, this is one of the signatures identified when extending
the upper threshold for the duration of the sample in the search algorithm to 5 minutes rather than
60 seconds. This TLA event occurred on the second day of recovery from a moderate geomagnetic
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Figure 2.1: (a): A TLA event that occurred on 22 June 2015. (b): An event that occurred on 11
November 2015. (c) An event that occurred on 9 October 2015. All three panels show the x, y and
z components of the surface magnetic field from top to bottom, respectively. Hollow circles mark
the start of a dB/dt signature and solid dots mark the end.

storm and there were marked substorm onsets occurring at 04:13 UT and 4:34 UT. A nighttime
GMD was identified at RBY at 04:37 UT in the interval between these two TLA events at CDR
and GJO but no TLA signatures were measured within the GMD at RBY (note that the GJO station
was not used in the statistical study of Engebretson et al. (2019a)).

2.4 Spatial and Temporal Characteristics and Space Weather
Dependence

There are ten TLA events that consist of at least one dB/dt signature with magnitude exceeding
10 nT/s and half of these occurred within an event that has at least one other |dB/dt| ≥ 10 nT/s.
The ten largest events were measured primarily between 73◦ and 76◦ CGM latitude at the PGG and
CDR stations: PGG and CDR not only recorded the majority of the largest events but a substantial
fraction (52.6% and 44.7%, respectively) of events in general. The GJO (76.86◦) station recorded
eight events and RBY (75.62◦) and IGL (78.63◦) recorded four events each. The southern-most
station, NAN (65.67◦), recorded just two events that were not recorded at any other station. In fact,
74% of the events were measured locally at only one station (the average, absolute distance from
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one station to the nearest station is ∼580 km. Note this average excludes NAN as it is the lowest
latitude station with only two locally recorded events). Of the other 26% of events measured at
more than one station, 4 were recorded relatively simultaneously (as shown in Figures 1a and 1b)
while 6 other events had dB/dts at more than one station delayed by at least 2 minutes (and at most
14 minutes, shown in Figure 2.1c).

Figure 2.2: Maximum dB/dt as a function of magnetic local time (MLT) of each TLA event found
in 2015. The bars extended from some squares signifies the duration of an event with multiple
dB/dts. The opacity of squares is based on the temporal proximity after the nearest substorm
onset. The inner red squares signify unrelated events that occurred more than 30 minutes from
substorm onset and in the absence of a storm or nighttime GMD.

TLA events occurred substantially more often in the Fall-Winter months with 57.9% of events
occurring in October through December. To illustrate the occurrence of TLA events as a function
of magnetic local time as well as the association to geomagnetic storms and substorms, Figure
2.2 shows the maximum dB/dt of each TLA event throughout 2015 as a function of MLT. The
events that occurred between 18-6 MLT are plotted as squares with opacity according to temporal
proximity of prior substorm onset: the black squares signify that the event started within 15 minutes
after the nearest substorm onset and during nighttime hours of 18-6 MLT, the grey squares are
events that occurred 15-30 minutes after substorm onset and the white squares occurred more
than 30 minutes after the nearest substorm onset (daytime events were automatically marked as

19



white squares). These onset delays were determined with the SuperMAG Newell and Gjerloev
(2011) Substorm Event List (supermag.jhuapl.edu/substorms/). The bars extending from some of
the squares in Figure 2.2 signify the full duration of the event if it consisted of multiple dB/dts,
showing at what point throughout the event that the maximum dB/dt occurred. Only three events
occurred in the commencement or main phase of a geomagnetic storm, these are labeled in Figure
2.2. There are also five events that occurred on the first day of recovery from a geomagnetic storm
and four events that occurred on the second day of recovery.

Figure 2.2 shows that a vast majority (92.1%) of events occurred at nighttime between 18-6
MLT with peak number of events (71.1%) in the pre-midnight sector from 18-24 MLT. A large
number of the events (73.7%) occurred within 30 minutes of substorm onset, but it is clear from
Figure 2.2 that not all of the nighttime events show this association to substorm onsets (see white
squares occurring at nighttime). While there is a strong association of TLA events to substorm
onsets, 26.3% of events occurred more than 30 minutes after a substorm onset, with a small subset
of events (10.5%) that occurred more than 2 hours after substorm onset. Figure 2.2 also shows that
the ten largest TLA events (≥ 10 nT/s) were more likely to occur between 18-24 MLT and within
30 minutes of a substorm onset, but they did not always occur within 30 minutes of substorm onset.

Comparison to the nighttime GMD events of Engebretson et al. (2019a) found that 73.7% of
TLA events either preceded an GMD at one of the six stations within 30 minutes or occurred within
the longer-timescale perturbation. Seven of the ten largest > 10 nT/s TLA events were associated
to GMDs that also exceeded > 10 nT/s but on 5-10 minute timescales. The GMDs that have TLA
dB/dts associated with them comprise less than 5% of the entire set of GMDs identified in 2015,
however over half the GMDs that have TLA signatures are among the set of largest GMDs (> 12
nT/s) identified at the MACCS stations during 2015.

Less than 10% of TLA events occurred in the absence of a geomagnetic storm and more than 30
minutes after the nearest substorm onset or nighttime GMD, we classify these as unrelated events
(marked in Figure 2.2 as squares with red centers). While TLA events can occur during quieter
geomagnetic conditions, there is a clear tendency for these signatures to appear during conjunctions
of space weather events. The Venn diagram of Figure 2.3 shows the number of TLA events based
on their association to other geomagnetic disturbances, showing the overlapping (and lack thereof)
of events that can give rise to TLA dB/dts. It was previously noted that the percentage of TLA
events related to substorms and nighttime GMDs is the same, but Figure 2.3 shows that these are
not the same set of events. TLA events were most likely to occur in association with a nighttime
GMD that commenced within 30 minutes of a substorm onset, however this was not always the
case. The higher density to the right side of the diagram illustrates that TLA events generally
did not occur due to a global geomagnetic event alone; more often there were other, smaller-scale
processes involved.
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Figure 2.3: Venn diagram of number of TLA events related to geomagnetic storms (with cells
specified for storm phases), substorms, and nighttime GMDs, as well as the distinct unrelated
events.

2.5 Discussion and Conclusions

While TLA dB/dt variations do not drive GICs directly, we show here that they often occur in
close relation to or within larger geomagnetic disturbances- like substorms and nighttime GMDs-
that can cause GICs. We found that SCs were not the main driver for TLA events; though the
large SC that occurred on 22 June did cause the largest amplitude perturbation, it was the only
TLA event associated to an SC despite many occurring over the course of the year. There is a
strong association of these events to the onset of substorms as well as an association to nighttime
GMDs, but it can be seen in Figure 2.3 that this is not a perfect correlation (i.e., not all nighttime
events are substorm-related). The relationship with substorm onsets appears to be a complicated
one, as several events occurred multiple hours after the nearest substorm onset, and many of the
substorm-related events also occurred during the main phase or recovery of a geomagnetic storm.
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In addition to a clear association to substorm onsets, we found that a majority of our events
either preceded or occurred within a nighttime GMD (Engebretson et al., 2019a). These nighttime
GMDs are large-amplitude magnetic disturbances with 5-10 minute timescale; the study surveyed
GMDs observed in this region of north-east Canada from 2014-2017. Like GMDs, the TLA events
identified were often, but not always, associated with substorms on a similar two-thirds basis. Us-
ing the spherical elementary current systems (SECS) method (Amm and Viljanen, 1999) and the
implementation of this technique by Weygand et al. (2011), a superposed epoch analysis was con-
ducted to investigate the average equivalent ionospheric currents (EIC) and inferred field-aligned
currents (FAC) during 21 nighttime GMDs that occurred at CDR from mid-2014 to 2016. Enge-
bretson et al. (2019a) found that the largest of these GMDs were associated to intense westward
ionospheric currents 100 km above CDR, coinciding with a region of shear between upward and
downward FAC. They also found that the largest horizontal dB/dts occurred slightly south of CDR
in a localized region of ∼275 km. Our TLA events show some similarities to these GMDs: 1) Of
all six stations, the PGG and CDR stations measured the greatest number of events as well as the
largest-amplitude events (|dB/dt| ≥10 nT/s) and 2) we found only ten events that were measured
by more than one station, so the majority of our events (∼73.7%) were measured locally at just
one station. The localized nature of many TLA disturbances implies that the source currents are
localized in the ionosphere (Boteler and Beek, 1999).

More recent research has found extreme local enhancements of the geoelectric field with spatial
scale ∼250-1600 km (Ngwira et al., 2015); these peak geoelectric fields occur during geomagnetic
storms but are highly localized in nature, suggesting smaller-scale, localized ionospheric processes
as a source mechanism. Ngwira et al. (2015) suggested localized substorm events as a possible
source mechanism for generating localized geoelectric extremes, but the exact processes responsi-
ble is yet unknown. The tendency of TLA events to occur within some of the largest GMDs and
soon after substorm onset suggests that the TLA dB/dts are signatures of rapid, small-scale iono-
spheric currents, which could be related to the localized substorm events proposed by Ngwira et al.
(2015). However, TLA events also occurred independently of both substorms and GMDs, (as well
as geomagnetic storms). Localized instabilities that often occur during substorms but can occur
in association with other magnetotail phenomena were suggested by Engebretson et al. (2019a)
as a cause for nighttime GMDs. Further investigation of the role of TLA dB/dts within nighttime
GMDs may shed light on the fine-scale M-I processes responsible. Our future work will involve
an expanded search for TLA events and will include a superposed epoch analysis to investigate the
small-scale ionospheric current systems involved in driving TLA events.

In order to better understand our events in the context of these GMDs, we extended the upper
threshold of the search algorithm to identify disturbances lasting up to 5 minutes with magnitude
> 6 nT/s. We found 25 additional dB/dts that were all related to TLA events that we had already
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identified. Interestingly, only one signature lasted slightly longer than 2 minutes. We hypothesized
that the absence of magnetic perturbations in the 2-5 minute timescale range could be due to
algorithm bias. Because the method of the routine searches for changes in the direction of the slope
(dB/dt) with the condition that the change last for at least 1 second, and we used raw magnetic field
data without any smoothing method, it was possible that the algorithm could be missing collections
of dB/dt signatures lasting 2-5 minutes because there are shorter timescale variations occurring
within them that did not meet the threshold of 6 nT/s. To test this theory, we applied a 10-point
sliding average filter on the magnetic field data (as was done in Engebretson et al. (2019a)) so
that any of these shorter variations would be smoothed over, then ran the search algorithm for
disturbances lasting up to 5 minutes again. When the data were smoothed, the algorithm identified
all the same events as with raw data and identified 17 new events. With the smoothed data, all the
events with signatures lasting > 60 seconds were the same apart from one case where the smoothed
data marked the magnetic field response to the SC at RBY as a disturbance lasting 60.5 seconds
rather than 34 seconds. This occurred in many cases where the 10-point smoothing altered the exact
moment the signature started or ended (subsequently altering the amplitude characteristics as well).
While the smoothing method resulted in many signatures marked as having longer duration, there
was still only a small number of dB/dts with > 1 minute timescale (32 as opposed to 25 with raw
data) and the longest signature lasted 147 seconds. By comparing our results with smoothed data,
we verified the methodology of the algorithm and determined that the absence of large-amplitude
(> 6 nT/s) magnetic disturbances with timescale 2.5-5 minutes is not due to algorithm bias. This
finding suggests that all longer-timescale magnetic perturbations at these stations consist of more
rapid variations lasting less than ∼2.5 minutes, with a vast majority < 60 seconds.

What we learned from the error analysis of this study is that a common smoothing method on the
data altered the timing and amplitude of the events (sometimes removing signatures altogether),
suggesting that the short-timescale nature of the geomagnetic field could often be altered with
common data processing methods or missed altogether with 1-minute or even 10-second averaged
magnetic field data. While TLA events show a clear association with substorm activity as well
as many shared characteristics with nighttime GMDs, they are not consistently related to these
space weather events. We found a small subset of TLA events that are unrelated to geomagnetic
storms, auroral substorms and nighttime GMDs. TLA events show a localized behavior with a
weak association to geomagnetic storms, suggesting that there are other physical mechanisms,
even beyond substorms, for localized extreme enhancements in the geomagnetic field. Finally, we
show that these signatures can have amplitude of the same order as events that can drive GICs and
they often occur in close temporal relation to or within these longer-timescale disturbances. Our
future work will include a statistical analysis on an expanded set of TLA events to investigate the
physical processes in the M-I system driving them and their relation to current-inducing events.
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CHAPTER 3

Automated High-frequency Geomagnetic
Disturbance Classifier: A Machine Learning

Approach to Identifying Noise while Retaining
High-Frequency Components of the Geomagnetic

Field

This chapter presents a methodology for a technique to identify high-frequency dB/dt in mag-
netic field data and classify it at either noise-type or geophysical. This work was published in the
AGU Journal of Geophysical Research: Space Physics under the title ”Automated High-Frequency
Geomagnetic Disturbance Classifier: A Machine Learning Approach to Identifying Noise While
Retaining High-Frequency Components of the Geomagnetic Field” (McCuen et al., 2023b). The
research is presented as published with minor formatting adjustments and removal of a repeated
figure from Chapter 2. The data used for this analysis as well as the fully automated geomagnetic
disturbance classifier are available on the University of Michigan’s Deep Blue data repository
(doi.org/10.7302/78zf-yw59).

3.1 Introduction

Space weather occurs due to solar disturbances such as solar flares and coronal mass ejections
that activates magnetohydrodynamic and electromagnetic disturbances that propagate throughout
the magnetosphere-ionosphere (M-I) system down to the surface of Earth. One ground manifesta-
tion of severe space weather events is geomagnetically induced currents (GIC), perhaps the most
critical space weather concern. Flowing through man-made conductors on Earth like railways,
pipelines and power grids, GICs can be large enough to cause damage to transformers resulting in
major power outages and costly equipment damage (Pulkkinen et al., 2017). GICs are the result
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of a horizontal surface electric field E induced in Earth’s surface that is driven by large changes of
the surface magnetic field, dB/dt, via Faraday’s law of induction. Thus, the dB/dt is often used as
a proxy to study GIC.

While large GICs often occur during global space weather events like sudden commencements
(SC) and geomagnetic storms that cause major changes in the global large-scale M-I currents, it
has been known for some time that smaller-scale phenomena are capable of causing GICs as well.
An example of such phenomena are nighttime geomagnetic disturbances (GMD), also known as
nighttime magnetic perturbation events (MPE), that are often associated with substorm activity
and may be a result of other magnetotail phenomena that commonly occurs during substorms
(Engebretson et al., 2019a). GMDs have 5-10 minute timescales, relatively small spatial scales
(∼275 km) compared to global events and are related to localized ionospheric instabilities.

It was shown by Viljanen (1997) that smaller-scale ionospheric currents play a key role in
producing very large dB/dt at the surface. Several recent studies also suggest that beyond the largest
space weather disturbances, there are more rapid, localized and small-scale processes involved in
generating some extreme GICs (Engebretson et al., 2021; Ngwira et al., 2015; Pulkkinen et al.,
2015). Dimmock et al. (2020) found that the localized horizontal magnetic field derivative can vary
by a factor of three times the spatial average and thus these regional extremes are not accurately
represented in global geomagnetic activity indices. Further, Dimmock et al. (2020) found that
enhancements in regional dB/dt are linked to increased energy deposition in the magnetosphere
mapping to local ionospheric structures and thus play a key role in modeling GIC during strong
storms.

Less is understood about rapid and regional dB/dt enhancements because magnetic field data
with 1-minute temporal resolution has long been the accepted standard in space weather research.
This is because higher-frequency, second-timescale variations are effectively low-pass filtered
when computing the geoelectric field (Pulkkinen et al., 2006, 2013). However, these second-
scale magnetic field changes may be especially important in understanding small-scale dynam-
ics of space weather events. While magnetic disturbances in this Pi 1-2 frequency range do not
cause GICs directly, they have been found to occur prior to and/or during some GIC-capable space
weather events, nighttime GMDs in particular (McCuen et al., 2021).

We refer to rapid dB/dt enhancements as transient-large-amplitude (TLA) events: instances of
high-frequency, short-timescale magnetic field variations (< 60 s) that have large dB/dt values
over 6 nT/s and occur within a 1-hour window. McCuen et al. (2021) (Chapter 2) found that TLA
dB/dt intervals identified in 2015 often occurred in the pre-midnight sector (magnetic local time,
MLT), 30 minutes after a substorm onset and in association to many of the most extreme nighttime
GMDs. Of 175 GMDs at four MACCS stations in 2015 (IGL, RBY, PGG, CDR), nearly half of the
52 largest events (maximum dB/dt values greater than 10 nT/s) had associated TLA dB/dt intervals.
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Engebretson et al. (2019a) used a superposed epoch spherical elementary current systems
(SECS) analysis on 21 strong events at the CDR station to conclude that they were associated
with westward overhead currents that coincided with a region of shear between upward and down-
ward field-aligned currents (FAC). The TLA event in Figure 1 is one of these strongest GMDs
identified at CDR in the study of Engebretson et al. (2019a); the example shows many TLA in-
tervals within the GMDs and appears to exhibit a westward moving disturbance as the minimum
of the negative bays in the Bx component appear successively in each station from east to west
(see map of MACCS stations in Section 3.2). A westward current in the ionosphere can gener-
ate a magnetic field with field lines that point northward above the current region and southward
below, resulting in large negative depressions in the Bx component of the ground magnetometers.
While there is some evidence for the processes responsible for generating GMDs, their exact phys-
ical mechanisms and the current systems involved are still under investigation. Analyzing these
higher-frequency perturbations within the GMDs and observing the ionospheric behavior during
such events allows for more detailed understanding of regional dB/dt enhancements, small-scale
ionospheric currents, the dynamics of shear regions between upward and downward FAC and the
potential connection to other magnetotail phenomena.

While substorms and GMDs have minutes to tens of minute timescales, there is clear evidence
of higher-frequency (<60 s) behavior within many of these events. Because many of the GMDs
that exhibited TLA signatures were amongst the most intense events but were not related to the
most extreme space weather events (i.e., SCs and/or global geomagnetic storms), this suggests
that more localized, small-scale ionospheric currents are involved in generating these large dis-
turbances. Further, because the GMDs that exhibited TLA intervals prior to or within the overall
disturbance were some of the largest GMDs of the dataset suggests that TLA signatures may be
good indicators of the strongest small-scale events that have the capability to cause GICs.

Analysis of the second-timescale behavior of the surface magnetic field is a pathway to un-
derstanding the small-scale dynamics of M-I current systems that can give rise to GIC. Studying
these high-frequency signatures will improve the understanding of rapid and localized magnetic
field behavior and associated ionospheric currents. This more detailed knowledge of the fine-scale
nature of the geomagnetic field can aid in improving modeling and forecasting of space weather
events.

While it is necessary to analyze high-frequency TLA variations in ground magnetic field data
in order to advance our understanding of small-scale M-I dynamics, the challenge in this task is
retaining these high-frequency signatures in global magnetic field databases. Advancements in
technological capabilities (Love and Finn, 2017) and the need for improved accuracy in measuring
dB/dt (Tõth et al., 2014) have motivated the shift toward using higher temporal resolution magnetic
field measurements for space weather applications. However, common data processing methods
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often reduce or remove transient-large-amplitude signatures via their data cleaning or noise re-
moval procedures because the signatures are similar in amplitude and timescale to that of magne-
tometer noise. The term magnetometer noise refers to two main sources of error in magnetometer
readings: instrumental defect and/or magnetic deviation caused by interference of ferromagnetic
materials (e.g., cars, technological devices, other instrumentation) in the vicinity of the magne-
tometer (Nguyen et al., 2020). Either of these sources can cause rapidly varying and irregular data
measurements that have similar amplitude and timescale characteristics to TLA signatures.

Because of the similarity of noise-type data to TLA signatures, the geophysical TLA dB/dt are
often reduced or removed with the noise signatures in common data processing procedures. In-
termagnet, a worldwide magnetometer database commonly used for M-I and GIC research, uses
a frequency band pass filter of 0.008-0.2 Hz (5-125 seconds) on 1-second data to remove error
artifacts (St-louis et al., 2014). SuperMAG is a widely-used, global magnetic field data collabora-
tion that provides uniformly processed data from over 300 ground based magnetometers (Gjerloev,
2012). SuperMAG offers 1-second (averaged if raw data has higher resolution) resolution mag-
netic field data that has undergone an automated data cleaning procedure. Both of these procedures
can alter or remove higher-frequency variations of the field. Beyond data processing procedures by
commonly used databases, many magnetic field data are averaged over 1-minute or more in prac-
tice for GIC and space weather studies. Even though many magnetic field arrays offer 1-second
magnetic field data, the data averaging and processing techniques used often remove or modify
TLA variations.

The problem remains, TLA variations that are important to retain for space weather studies can
be removed or reduced in common data cleaning and processing, but are difficult to distinguish
from noise in raw data. Numerous methods have been used to characterize and statistically ana-
lyze noise in magnetometer data (Khomutov et al., 2017; Nguyen et al., 2020) but challenges in
anomaly detection have motivated the use of more modern machine learning techniques to identify
and remove outliers from magnetometer data (Mitra et al., 2020; Xu et al., 2020). The data clean-
ing process for large magnetic field databases usually requires an experienced magnetologist to
determine whether some signals are natural or noisy. In the case of TLA signatures that are similar
in frequency and amplitude to error artifacts, machine learning algorithms can be especially useful
for making these types of determinations without the need for human supervision.

In this chapter, we present the full methodology for a geomagnetic disturbance classifier that
identifies occurrences of high-frequency (0.017-1 Hz) signals in magnetic field data and classi-
fies whether they are a result of noise interference or geophysical sources. This process utilizes
statistical characteristics of both noise-type and geophysical dB/dt signatures to define a high fre-
quency geomagnetic disturbance event and implements a machine learning classification algorithm
to classify the dB/dt signatures by their sources.
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This chapter is organized as follows. Chapter 3.2 describes the magnetometer data used in this
study and section 3.3 outlines the dB/dt search algorithm. Chapter 3.4 discusses and illustrates the
noise-shapes identified in data from MACCS, and Chapter 3.5 describes the statistical characteris-
tics of the noise-type and TLA dB/dt intervals and events. The filters implemented into the search
algorithm based on the analysis of Chapters 3.4 and 3.5 are explained in Chapter 3.6. In Chapter
3.7, the machine learning approach used to fully automate the search algorithm is described and
the results discussed (the cross-validation process is detailed in Appendix B.1.) Chapter 3.8 ex-
amines the effect of a common data processing procedure on the high frequency signatures being
studied and discusses the data products provided by the procedure developed. Finally, Chapter 3.9
discusses our results and the implications for space weather studies followed by our conclusions.

3.2 Data Sets

This study uses magnetic field data from three geomagnetic and space physics magnetometer
databases, as well as data processed through the SuperMAG data service that includes all three
databases. The MACCS data are used for the initial identification of TLA dB/dt signatures and
the noise classification for algorithm improvement. Then, we use data from a magnetometer
site within the Athabasca University THEMIS UCLA Magnetometer Network eXtension (AU-
TUMNX) (Connors et al., 2016) as well as data from the CANadian Magnetic Observatory Sys-
tem (CANMOS) (Nikitina et al., 2016) to compare how well the dB/dt search process performs on
magnetic field data from different systems.

Station Geographic Geographic Corrected Corrected
Latitude Longitude Geomagnetic Latitude Geomagnetic Longitude

IGL 69.3 278.2 77.6 355
GJO 68.6 264.2 76.8 329.8
RBY 66.5 273.8 75.2 347.2
PGG 66.1 294.2 73.2 19.9
CDR 64.2 283.4 72.6 3.0
IQA 63.8 291.5 71.4 15.2

INUK 58.8 281.9 67.6 0.02
NAN 56.4 298.3 63.1 22.5

Table 3.1: Location coordinates of stations used in this study.

The geographic and geomagnetic coordinates of the magnetic observatories used in this study
are listed in Table 4.1 and shown on the map in Figure 4.1 with lines of corrected geomagnetic
(CGM) latitude and longitude for 2015. The CGM coordinates were calculated using the AACGM-
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v2 Calculator (available at http://sdnet.thayer.dartmouth.edu/ aacgm/aacgm calc.php#AACGM)
for epoch 2015.

Figure 3.1: Station locations shown on a map of Nunavut, North-East Canada. Circles represent
locations of MACCS stations, the square is the location of the CANMOS IQA station and the
triangle signifies the AUTUMNX INUK station. Lines of latitude and longitude are in corrected
geomagnetic coordinates.

The ground-based stations used in this study are all in the near vicinity of Inuit communities in
arctic Nunavut, Canada. Many of the MACCS stations are located at the local airport, configured
such that the computing instrumentation is kept inside the airport or nearby facility and the sensor is
located away from the building inside a small, enclosed box on the ground. The IGL magnetometer
sensor is located right within the local town of Igloolik near the Igloolik Research Centre where
the rest of the station equipment is held. The PGG magnetometer is located ∼1 km outside of
town near the Pangnirtung water reservoir. In all cases of the MACCS magnetometer stations,
their locations make them susceptible to man-made noise interference from multiple sources (cars,
snowmobiles, nearby facilities, etc.). The CANMOS station and AUTUMNX station are also
susceptible to local interference from human activity, however these observatories are dedicated
solely to magnetic field data acquisition and do not rely on local facilities like an airport to house
instrumentation. This allows the CANMOS and AUTUMNX observatories to be located further
from town centers and aids in prevention of noise contamination.

The magnetometers used in this study at the MACCS and the IQA station of CANMOS are
Narod ringcore fluxgate magnetometers designed and supplied by Dr. Barry Narod of Narod Geo-
physics, Ltd., Vancouver, B.C., Canada (Hughes and Engebretson, 1997). The AUTUMNX in-
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struments are THEMIS-class fluxgate magnetometers provided by UCLA (Russell et al., 2008)
and based on the design for the earlier Sino Magnetic Array at Low Latitudes (SMALL) terrestrial
vector fluxgate magnetometers (Gao et al., 2000).

The Narod magnetometers collect 8 samples per second in three axes, then average and record
the data at two samples per second for MACCS data and one sample per second for the CANMOS
data. The AUTUMNX magnetometers record the magnetic field at 2 Hz. The data used from
AUTUMNX and CANMOS observatories have resolution of 0.01 nT, the MACCS data have a
0.025 nT data resolution, and all three have timing accuracy of at least 1 ms. The high-resolution,
sampling rate and timing accuracy are sufficient to detect short-timescale Pi 1-2 pulsations. The
magnetometer data used from MACCS and AUTUMNX are in geomagnetic coordinates: H (geo-
magnetic north-south), D (geomagnetic east-west) and Z (vertical). The data from CANMOS is in
geographic coordinates: X (geographic north-south), Y (geographic east-west) and Z (vertical).

3.3 dB/dt Search Algorithm

We developed an initial algorithm to identify changes of the magnetic field with user-specified
magnitude and duration. The initial algorithm works in the following main steps: 1) calculate the
change in magnetic field strength (∆B) divided by the timestep (∆t): dB/dt (or slope) between
each pair of successive data points and label the sign of the slope (labeled as a -1 for negative
slope, +1 for positive slope and zero for zero slope), 2) mark the points when the sign of the slope
changes for at least two measurement cycles (i.e., local minima and maxima) and 3) recalculate
the new dB/dt between the local minima and maxima and return the information if the signature
also meets the user-specified criteria for timescale, minimum and maximum ∆B and dB/dt.

Because the search criteria are such that the slope must have the same sign for two measurement
cycles (step 2), the algorithm relies on the sampling frequency of the data and should be used for
magnetic field data with 1-second or higher temporal resolution for high-frequency studies. How-
ever, the same dB/dt search procedure can be performed on data averaged over a longer time period
to identify dB/dt signatures with varying timescales (i.e., performing the dB/dt search algorithm
on 1-minute averaged data will identify dB/dt signatures that last at least 2 minutes).

There is also an intermediate step after Step 1 that deals with the instances of zero slope that
last only one measurement cycle: if a zero slope occurs only once in between two like-sign slope
values, the sign of the slope is changed to match those slope values. This measure is taken so
that a change in slope will only be marked in cases of zero slope if it persists for at least two
measurement cycles and is consistent with the minimum dB/dt search to be intervals that last twice
the sampling frequency. The final product returned from the algorithm is a nine column matrix;
each row represents an individual dB/dt interval and provides the start and end time of the interval,
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start and end B value, the time elapsed: dt, the change in magnetic field amplitude: ∆B, and
the total perturbation: dB/dt. The final two columns indicate the component that the interval was
identified in and the station at which the interval took place.

The method was developed to identify high-frequency (0.017-1 Hz) transient-large-amplitude
(TLA) events in the magnetometer data. We define an event as any number of geomagnetic signa-
tures with < 60 seconds timescale and dB/dt > 6 nT/s within a 1-hour event window. The hour
windows are defined by the UT clock and determined by measurement frequency (i.e., number of
data points in one hour) and are divided consecutively. For example, for a measurement frequency
of 2 Hz, the first 7200 data points define the first hour window, and the next hour window is the
following 7200 data points. The determination of event windows to have a duration of 1-hour was
based on the observed groups of geophysical TLA dB/dt intervals; many TLA occur within a larger
5-15 minute negative bay and could include TLA dB/dt in the 15-20 minutes prior or after the bay
(an example of such a TLA event is shown later in Figure 3.6), so 1-hour windows would encom-
pass all of these related TLA dB/dt within one event. Further, there was always at least 1-hour
between TLA event windows and often multiple hours or days, so extending the event window
time to a relevant timescale (like 90 minutes or 2 hours) did not change the number of TLA events.

The minimum dB/dt threshold was chosen as it is comparable to magnetic field measurements
during the March 1989 geomagnetic storm that caused the HydroQuebec power grid failure (Kap-
penman, 2006). This was the most severe geomagnetic storm of the twentieth century and maxi-
mum magnetic field changes during that storm were on the order of 8 nT/s (but lasting much longer
than just seconds), so dB/dt of this magnitude are considered large-amplitude.

Unfortunately, these specifications also describe the signals that can occur as a result of in-
strumentation error or interference by ferromagnetic material (i.e., ”noise”). The term noise is
relative to the specific goal of the measurement or problem to be solved. For this study, we use
the term noise to refer to two main sources of error in magnetometer readings: instrumental defect
and/or magnetic deviation caused by interference of ferromagnetic materials in the vicinity of the
magnetometer (Nguyen et al., 2020).

3.4 Noise Shapes Identified in MACCS Data

In order to capture all such magnetic signals of interest with this timescale, we set the initial
criteria for the dB/dt search to signatures with 1-60 second timescale, ∆B 6-10,000 nT and dB/dt
from 6-1000 nT/s. The similarity of TLA events to noisy signals resulted in the algorithm identify-
ing a majority of signals that were due to noise rather than natural geophysical processes. Because
the size and timescale of these signatures fall into the same ranges (and thus the power spectra
of geophysical and noise-type events were nearly identical as well), and common data cleaning
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techniques can alter or remove TLA signatures, determining whether a given signal is of geophys-
ical nature or a result of noise was done by examining the shape of the signal, the behavior of the
magnetic field prior to and after the signal, and the amplitude characteristics of the interval. Thus,
we manually separated the noise signals from the natural geophysical perturbations by comparing
with the magnetic noise characterization of Khomutov et al. (2017).

The noise shapes described in Khomutov et al. (2017) are compiled from Intermagnet data from
observatories located in the mid-latitude, eastern hemisphere. The observatories have various types
of fluxgate magnetometers with measurement frequency from 0.2-2 Hz (5-0.5 seconds). The main
sources of noisy signals in magnetometer data are both external and internal. Externally, there are
large-scale noise sources like DC railways that can impact magnetic field data at large distances,
and there are more local sources of ferromagnetic and/or conductive material within the nearby
vicinity of the magnetometer sensor. Internally, noisy signals can arise from instrumentation error.
While the exact source of a specific noisy signal can vary, the main sources are consistent across
observatories and databases. For these main sources of interference with fluxgate magnetometer
systems, the characteristic shapes and sizes of the resulting noisy signals in the data are common
(Neska et al., 2013; Santarelli et al., 2014; Khomutov et al., 2017). The four most common shapes
of noise and their characteristics reported by Khomutov et al. (2017) are defined and illustrated as
follows.

Spikes in magnetometer data are large-amplitude (∼ tens of nT), relatively short signals (gen-
erally lasting less than a few seconds) with well-defined leading and back edges that have similar
amplitudes. Isolated spikes, spikes with large amplitude (many tens of nT), and spikes that last
only one measurement cycle have a low probability of being caused by geophysical sources. An
example of a spike is shown in Figure 3.2: 1-minute of MACCS magnetometer data taken at the
PGG station on 2 July, 2015. The hollow red circles represent the start of a dB/dt interval that is
> 6 nT/s and the solid red dots represent the end of the signature. Note that in this example, the
starting point of the first dB/dt intervals in the Bx and Bz components appear to occur prior to the
start of the visible decrease in the field. This is because the magnetic field strength in the Bx and Bz
components begins decreasing very subtly at the starting points marked with open circles in these
components; these points mark the time that the field changed the sign of slope (to decreasing)
for at least one second and if the slope increased within the intervals it was only for a half-second
interval.

The mean B value of each component in the interval shown is subtracted from the data, but this
does not change the ∆B and dB/dt amplitudes or the timescales of the intervals from the original
data. The entire spike signature lasts about 20 seconds with each interval of large dB/dt lasting
3.5-10.5 seconds. The maximum amplitude of the spike is about 318 nT (dBx/dt beginning at
21:16:17.75 and decreasing for 8.5 seconds). We further define spikes in this noise classification
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Figure 3.2: A spike in the magnetometer data that occurred on 2 July 2015 at the PGG station. The
hollow circles mark the start of each dB/dt signature and the solid dots mark the end. Note that
the consecutive solid red dots in the Bz plot (bottom) signify that the negative peak of this spike is
both the end of the interval prior and the start of the interval following.

to be instances of three or less large dB/dt signatures (with < 60 s timescale and magnitude > 6
nT/s) occurring within a 1-minute interval.

Figure 3.3 shows an example of a jump shape in the MACCS data. Jumps are much like spikes
but with a continuous interval between the leading and back edges. The timescales of these jumps
vary; in this study, we specify jumps to have a minimum 1-minute interval sustained between
the leading and trailing edges in which the magnetic field does not increase/decrease beyond the
starting value of the leading edge (i.e., the very first hollow circle in all three panels of Figure
3.3 at approx. 15:18 UT). Jumps often occur due to changes of the magnetic field distribution via
ferromagnetic material.

Random-like noise is usually caused by man-made disturbances which add randomized varia-
tions to the background magnetic field. These look like patches of highly frequent dB/dt intervals
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Figure 3.3: A noise jump that occurred at the CDR station on 27 August 2015. Hollow circles mark
the start of a dB/dt signature and solid dots mark the end. The mean B value of each component in
the interval shown is subtracted from the data.

with randomized shape and amplitude. An example of random-like noise is shown in Figure 3.4.
This patch of random noise lasted about 7-minutes; the algorithm identified 93 dB/dt signatures
from the three components combined. Figure 3.4b is a zoomed view of a section of this event
from 10:16:10-10:17:10 UT showing how some of these variations are presented on a 1-minute
timescale. Figure 3.4b shows that, on a 1-minute timescale, these magnetic field variations have
dissimilar shapes to classic spikes as defined above although they may appear to be a group of fre-
quent spikes when observed on a slightly longer timescale. While the shape of these magnetic field
changes cannot be defined as spikes or a jump, we determine that they are noise variations because
of 1) the highly frequent nature and the randomized shapes of the dB/dt intervals, 2) the jagged
behavior of these variations on a second-scale (Figure 3.4b) and 3) the shape of the noise group on
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a minute-scale (Figure 3.4a) that appears to positively deviate from the background magnetic field
in each axis.

Figure 3.4: (a): Random-like noise that occurred at the IGL station on 3 January 2015. Hollow
circles mark the start of a dB/dt signature and solid dots mark the end. (b): A zoomed-in view of
1-minute of the random-like noise-type event shown in (a). The mean B value of each component
in the interval shown is subtracted from the data.

The last noise shape found in the MACCS magnetometers throughout 2015 is bay-like noise.
An example of bay-like noise is shown in Figure 3.5b: a disturbance that occurred within 1-minute
at the PGG station on 20 June 2015. The full high-frequency disturbance event (Figure 3.5a)
consists of a bay-like disturbance as well as three separate spikes later in the hour window (note
that just 25 minutes of this event are shown to emphasize the shape of the high-frequency intervals
within this hour window). The bay-like disturbance is shown with a zoomed view in Figure 3.5b.
The magnetic field changes in Figure 3.5b are near 50 nT in the x- and y- components but nearly
150 nT in the z-component. This is a common manifestation of noise in magnetometer data, usually
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caused by magnetic field changes near the instrument due to a moving ferromagnetic object (i.e.,
a vehicle or other instrumentation). It is shaped like a positive/negative magnetic bay that persists
for the duration of the passing object (usually seconds). Bay-like noise often has sharp leading
and trailing edges like spikes or jumps, but the behavior between these edges is more random and
variable. These impulses can be difficult to distinguish from natural signals because negative and
positive bays can also occur due to M-I sources. While bay-like noise events have similar shapes to
TLA events, the distinction between them is that TLA events often occur within a bay that lasts 5-
15 minutes (see TLA event examples in Chapter 2) while noise-type bays generally have a duration
of just seconds. Further, this example is decided to be a noise-type event because of the jagged
magnetic field variations on a second-timescale, as well as the very similar and smooth behavior
of the magnetic field prior to and after the disturbance bay: a common characteristic of noise-type
events in magnetic field data.

Figure 3.5: (a): A noise-type hour-event that occurred on 20, June 2015 at the PGG station con-
sisting of a bay-like disturbance and three spikes. (b): Bay-like noise in MACCS magnetic field
data. Hollow circles mark the start of a dB/dt signature and solid dots mark the end. The mean B
value of each component in the interval shown is subtracted from the data.

Figure 3.6 shows an example of a TLA event that occurred on 10 November 2015. The figure
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shows dB/dt signatures that occurred at the PGG station but there were also TLA dB/dt observed
at two other MACCS stations during this hour. These signatures at the PGG station occur prior
to (in the Bx component) and within a large nighttime GMD that began at 00:36 UT. There are
twelve total dB/dt signatures in the full event shown in Figure 3.6a with average ∆B of about 274
nT, mean ∆t of 33.8 seconds and mean dB/dt of just under 8 nT/s. Figure 3.6b shows one-minute
of zoomed-in data from this event from 00:41:30 to 00:42:30 with one TLA-type dB/dt signature
in the x- and z- component each. The signature in the z-component of Figure 3.6b has the largest
dB/dt amplitude of the event of 10.37 nT/s. Figure 3.6b shows that on a 1-minute timescale, these
are smooth changes of the magnetic field rather than jagged edges of noisy data. This is a distinct
characteristic of TLA events with geophysical sources: the magnetic field is smoothly varying on
a second-timescale rather than rapidly changing with sharp edges as observed in noise-type events.

Figure 3.6: (a): A transient-large-amplitude (TLA) geomagnetic event that occurred on 10 Novem-
ber 2015 at the PGG station. Hollow circles mark the start of a dB/dt signature and solid dots mark
the end. (b): A zoomed-in view of 1-minute of the TLA event shown in (a). The mean B value of
each component in the interval shown is subtracted from the data.

The common feature of these noise shapes in magnetometer data is that they are composed of
some combination of second-timescale magnetic field changes with dB/dt > 6 nT/s. These are
characteristics equal to that of the geophysical TLA dB/dt that are meaningful in the context of
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small-scale M-I currents. However, the TLA event in Figure 3.6 shows dB/dt intervals occurring
prior to or within nighttime GMDs that are associated to small-scale ionospheric currents and these
TLA dB/dt intervals show smooth variations on a 1-minute timescale.

There are some distinct differences between the dB/dt signatures that arise from noise sources
and TLA dB/dt caused by M-I sources. Noise-type dB/dt events can often be identified by the
shape of the event, the behavior of the magnetic field prior to and after the event (the highly similar
and often steady nature of the magnetic field on either sides of the noise-type perturbation) and
the smoothness of the magnetic field on a second-timescale (noise-type events often show sharp
magnetic field changes on a second-timescale whereas TLA dB/dt events are always smoothly
varying on such fine timescales). These criteria were used to manually separate noise-type and
TLA events. This manual classification method based on the descriptions in the study by Kho-
mutov et al. (2017) was expert-verified by one of the co-authors of this study. From the manual
separation of events, the numerical characteristics of the dB/dt signatures of each event type were
then used to create filters to automatically classify noise-type and TLA dB/dt signatures, discussed
in greater detail in the following section.

3.5 Statistical Characteristics of Noise-Type and TLA Events

While some shapes of noise signals are more likely to result from either man-made sources or
internal instrumentation issues, all four of the noise types described in section 3.4 can arise from
both hardware and external sources. Determining the exact source of noise in magnetic field data
can be a challenge, but separating geophysical magnetic signatures from data contaminated with
noise from outside interference is a more tangible task. After collecting all dB/dt signatures that
satisfy the conditions for a high-frequency event (dB/dt > 6 nT/s, dt from 1-60 s), we manually
classified the geophysical events, as well as each type of noise shape identified. Then we analyzed
the statistical characteristics of these types of dB/dt events to improve the selection criteria for
the search algorithm. The statistical characteristics that set geophysical TLA events apart from
noise-type events are described and compared below.

Noise-type events, whether from instrumentation error or external interference, contribute sig-
nificantly more dB/dt events than geophysical events. From the six MACCS stations throughout
2015, we identified 215 TLA dB/dt (making up 59 separate events) and 845,572 noise-type dB/dt
signatures (making up nearly 5500 separate events). Figure 3.7 shows histograms of the number
of noise-type dB/dt (orange) and the number of TLA dB/dt (blue) based on their timescale (dt),
amplitude (∆B) and magnitude (dB/dt). All three histograms show the number of events on a log-
arithmic scale. Figures 3.7b and 3.7c both include a zoomed-in view of the bottom left corner of
the full distribution showing the portion containing the geophysical events. It can be seen from all
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three plots that the number of noise-type dB/dt identified is orders of magnitude larger than that of
TLA dB/dt.

Figure 3.7a shows that noise-type dB/dt signatures were far more likely to last less than 10
seconds whereas TLA dB/dt had a relatively even spread of timescales from 3.5-60 seconds. Noise-
type events at the six MACCS stations throughout 2015 had 99.8% of dB/dt intervals that lasted
less than 10 seconds compared to just under 10% of the total TLA dB/dt. Further, all of the TLA
dB/dt intervals that had dt < 10 seconds occurred within hour event windows that had longer dB/dt
from 10-60 seconds, whereas most of the noise-type hour events consisted solely of dB/dt intervals
lasting less than 10 seconds. The uniform distribution of ∆t of the TLA intervals shows that there
are a relatively consistent number of meaningful geophysical signatures over the second-timescale
range.

Figure 3.7b shows that noise-type dB/dt signatures were far more likely to be less than 60 nT
in amplitude (94.9% of noise-type dB/dt had ∆B < 60 nT/s compared to just 5.5% of TLA dB/dt
signatures), however the noise also contributed to outliers thousands of nT higher than any of the
TLA dB/dt which had a maximum ∆B = 580.75 nT. A similar trend is seen in the histogram of
dB/dt magnitudes (Figure 3.7c) where the TLA dB/dt occupy a small slice under the distribution of
the noise-type dB/dt. The zoomed view of Figure 3.7c shows that the largest TLA dB/dt magnitude
was ∼33 nT/s compared to many noise-type dB/dt magnitudes exceeding 200 nT/s. Reasonable
magnitudes for the most extreme second-timescale magnetic field changes are from 40-110 nT/s
(Kataoka and Ngwira, 2016).

Noise-type dB/dt signatures occurred more often than TLA dB/dt overall and they also occurred
in higher concentration per 1-hour event window. The random-type noise signature was the most
frequently occurring. As is shown in Figure 3.4, random-noise events usually sustained longer
intervals of highly variable magnetic field that contributed hundreds, sometimes thousands, of
characteristic dB/dt signatures while geophysical TLA events often had just a few TLA dB/dt
within a longer ∼10-20 minute perturbation. We found that a noise event (within a 1-hour window)
at an individual station had 154.6 dB/dt intervals on average while geophysical TLA events had an
average of 3.2 dB/dt (maximums of 25 and 2370 dB/dt per 1-hour event window respectively). As
previously mentioned, the hour windows are defined by the measurement frequency (i.e., number
of data points in one hour) and are divided consecutively.

The number of 1-hour windows containing TLA and/or noise-type dB/dt per station is shown
in Table 3.2, as well as the number of individual dB/dt signatures identified at each station. In
order to numerically describe the distinction between the concentration of dB/dt per hour window
for noise-type and TLA events, we calculated the ratio of number of noise-type or TLA dB/dt
per event to the total number of dB/dt (with any timescale and any amplitude) within the event
hour. Table 3.2 contains the minimum and maximum of these ratios. While TLA and noise-type
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Figure 3.7: Histograms showing number of dB/dt signatures (separated by TLA and noise-type)
from all six MACCS stations throughout 2015. (a): Distribution based on dt values, (b): distribu-
tions based on ∆B values and (c): distribution based on dB/dt values.
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dB/dt events had similar minimum ratios (i.e., both event types exhibited events with very few or
even singular high-frequency dB/dt intervals), the maximum ratios between TLA and noise-type
dB/dt are very different from one another. TLA dB/dt never populated more than 4% of the total
dB/dt within the respective hour event window, while noise-type events more often exhibited hour
windows where the dB/dt composed of more than 10% and up to nearly 67% of all the magnetic
field changes within the hour.

Station Total dB/dt # Noise # TLA Min ratio Max ratio Min ratio Max ratio
windows windows TLA:All TLA:All Noise:All Noise:All

IGL 33413 2159 4 0.0011 0.0069 0.0001 0.4377
GJO 1369 241 6 0.0019 0.0227 0.0004 0.6667
RBY 65800 991 7 0.0009 0.0085 0.0002 0.2117
PGG 1790 607 20 0.0006 0.0258 0.0002 0.0140
CDR 2353 695 15 0.0005 0.0355 0.0002 0.1998
NAN 741062 759 7 0.0008 0.0033 0.0002 0.5923

Table 3.2: Table showing number of 1-hour event windows that contain noise-type or TLA dB/dt,
as well as the minimum and maximum ratios of TLA and noise-type to all dB/dt respectively.

It is worth noting that the maximum ratio of noise-type or TLA type is not directly proportional
to the total number of noise-type or TLA event windows. For instance, the GJO station had the
least amount of noise-type event windows, but the highest maximum ratio of noise-type to all dB/dt
out of all the stations. This is to say that because the ratio is calculated based on the specific hour,
it is dependent on the type of noise and how much there is and independent of the overall noise
present in the station data.

To summarize the statistical characterization of geophysical TLA and noise-type events in this
chapter, there are three main distinctions between geophysical TLA dB/dt events and noise-type
dB/dt events:

1. TLA events have at least one dB/dt signature > 6 nT/s that lasts 10 or more seconds within
the 1-hour event window.

2. Large, second-timescale dB/dt are more likely to be of geophysical nature if they last from
10-60 seconds and have amplitude 60-1000 nT.

3. Large, second-timescale dB/dt are more likely to be noise if they occur in large concentration
per 1-hour window (occupying more than 5% of the total magnetic field changes within the
hour window). TLA-type events often have less than 20 dB/dt within an approximately
15-20 minute perturbation.
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3.6 dB/dt Search Algorithm Filters

Following from the main characteristics described in the previous section, two main filters were
applied to improve the dB/dt search algorithm and reduce the number of noise-type dB/dt identified
by the routine. First: the dB/dt search is performed on consecutive 1-hour partitions of data and
the requirements to determine a potential TLA event are specified as a 1-hour event window that
contains at least one dB/dt that has magnitude 6-100 nT/s, ∆B from 60-1000 nT and timescale 10-
60 seconds. Not only are the maximum values for ∆B and dB/dt decreased to the range observed
for all TLA-type events, but the requirement that there be at least one signature lasting more than
10 seconds (and effectually having ∆B > 60 nT) is implemented. If there are no signatures that
meet this criteria in the hour window, the search procedure moves on to the next hour window. If
there are any dB/dt that do fall within these values, the algorithm continues to the next stage.

In the second stage of the dB/dt search, dB/dt intervals with 6-100 nT/s, timescale 1-60 seconds
and ∆B 6-1000 nT are identified (i.e., all of the high-frequency dB/dt signatures that could be TLA
or noise-type), as well as the total number of dB/dt intervals with any amplitude and timescale
within the hour. If the number of high-frequency signatures is more than 5% of the total number
of the dB/dt within the hour, then the algorithm rejects all signatures identified. If this ratio is less
than 5%, then the algorithm removes any intervals that last less than 2-seconds (as the minimum dt
for all TLA events identified from the MACCS stations in 2015 was 3.5 seconds) and returns the
remaining dB/dt intervals as the final data product. In this case where all TLA criteria are satisfied,
the dB/dt search is also performed for 1-minute prior to the start time of the hour and 1-minute
after the start time of the hour (as well as for the two minutes framing the end time of the hour) so
that no dB/dt intervals are lost by being split by the hour partition.

The ratio method allows for the 5% threshold to depend on the individual station data and
1-hour environment which can be highly variable across magnetometer arrays, dates and times.
In other words, if a station’s data are overall highly variable (higher number of total dB/dt on
average per 1-hour) then the 5% threshold allows for a larger number of dB/dt— comparative to the
instrumentation and/or the surrounding magnetic environment— to be identified before rejecting
the hour-window as containing only noise-type dB/dt. This ratio method is a general metric to
reduce noise in magnetometer data based on the concentration of short-lived (< 60 s) and large-
amplitude (> 6 nT/s) dB/dt intervals per 1-hour event window at an individual station.

To summarize the algorithm filters, the filtered dB/dt search returns magnetic field intervals
with dt from 2-60 seconds, ∆B from 6-1000 nT and dB/dt from 6-100 nT only if: at least one
of these signatures within the 1-hour event window lasts 10 seconds or more, and if these high-
frequency intervals (along with those that last less than 2 seconds) do not populate more than 5%
of the total dB/dt within the hour window. Implementation of the above conditions into the dB/dt
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search process returned all of the same 215 TLA dB/dt and reduced the number of noise-type
dB/dt returned by 99.6% (from 845680 to 2970 noise-type dB/dt). The numbers of both TLA and
noise-type dB/dt prior to and after the filters are listed in Table 3.3. The filters removed all noise-
type dB/dt from the RBY and NAN station, the latter of which had the most noise-type dB/dt in
the unfiltered search. The IGL station had the most noise-type dB/dt remaining after the filtered
search with 2,669 dB/dt.

Station Total # TLA # Noise-type Total # Noise-type
pre-filter dB/dt pre-filter post-filter post-filter

IGL 33413 20 33393 2689 2669
GJO 1369 14 1355 50 36
RBY 65800 32 65768 32 0
PGG 2353 61 1729 151 90
CDR 1790 69 2284 242 173
NAN 741062 19 741043 19 0
IQA 92 71 19 71 0

INUK 392 301 87 303 2

Table 3.3: Table with number of dB/dt intervals from 2015 of both TLA and noise-type, before
and after the filters described in this section.

In order to better evaluate the performance of the dB/dt search algorithm and the performance
filters, the dB/dt search routine was tested with and without the filters on one year of data from both
a CANMOS observatory and an AUTUMNX ground magnetometer station. The IQA (Iqaluit) sta-
tion from CANMOS and the INUK (Inukjuak) station from AUTUMNX were used for comparison
because they are both in the same region of NE Nunavut as the other stations used in the original
dB/dt study. We used all available data from 2015 (note that AUTUMNX magnetometers (IQA)
record magnetic field variation data with a 1-second rather than half-second cadence). The un-
filtered dB/dt search results were manually classified as noise-type or TLA events via the criteria
described in Sections 3.5 and 3.6 in order to test the accuracy of the filters.

The results of these search algorithms with and without the filters are presented in Table 3.3. In
the MACCS stations, all TLA intervals were retained and a vast majority of noise-type signatures
were successfully removed. The filters removed all of the noise-type dB/dt from the IQA station
and all but 2 noise-type signatures from the INUK station. It is important to note that at the IQA
and INUK stations, the filtered dB/dt search removed two events at each station that were classified
as geophysical rather than noise-type, but did not meet the TLA selection criteria of having a dB/dt
with timescale of 10-60 seconds and a ∆B of at least 60 nT. These were the only events that were
removed via the filters that were not classified as noise-type events nor TLA events; these four
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events make up six signatures total comprising just 1% of the total geophysical signatures (i.e.,
total of the ”# TLA dB/dt unfiltered & filtered” in Table 3.3) from all eight stations in 2015.

The filtered dB/dt set contains all of the same TLA-type dB/dt signatures as prior to the filters,
however there are significantly less noise-type intervals after being filtered. The ∆B, ∆t and dB/dt
values of the intervals in the filtered data set are much more similar between TLA and noise-type,
however the noise-type events still exhibit many more signatures in general, and many more with
the smallest ∆t and ∆B values from 2-10 s and 6-100 nT (2134 noise-type intervals compared to
20 TLA intervals). The distribution of dB/dt values after the filters has many noise-type signatures
with large dB/dt values that only few TLA signatures have (over 500 noise-type intervals have
dB/dt value from 20-100 nT/s compared to 2 TLA intervals), although it is still very possible for
TLA signatures to have dB/dt intervals in this range from 20-100 nT/s.

The filtered dB/dt signatures have greatly narrowed dB, dt and dB/dt characteristics. The num-
ber of dB/dt signatures per noise-type and TLA event is also much more similar in the post-filtered
data set. Prior to the filters, the average number of dB/dt signatures per noise-type hour event
window (for the six MACCS station used for the noise characterization in section 3.5) was over
150 dB/dt, and after the filters, this average for the same six stations is just over 10 dB/dt inter-
vals. Overall, the filters greatly reduced the total number of noise-type dB/dt but also narrowed the
noise-type dB/dt to just those that are most similar to TLA events. However, it can be seen from
Table 3.3 that there is still a large number of noise-type dB/dt in the filtered dB/dt set.

What remains after the filters are noise-type and TLA signatures that are most similar in their
amplitude and timescale characteristics, as well as the total number of dB/dt intervals within an
hour event window. The data in Table 3.3 shows that the specific selection criteria imposed on
the TLA dB/dt search algorithm greatly improved the efficiency of the results, removing over 99%
of the noise-type dB/dt while retaining all TLA intervals that meet the formal definition of TLA
events described in this section and excluding only four geophysical events that did not meet the
criteria for a TLA event.

3.7 Support Vector Machine Classification of Noise-Type and
TLA dB/dt

While the filters described in section 3.6 improved the accuracy of the dB/dt search algorithm,
there were still thousands of noise-type dB/dt (mostly found in the more commonly noisy stations
IGL and CDR) which required further separation from the TLA dB/dt. Because the noise-type and
TLA dB/dt intervals have very similar statistical characteristics after being filtered, they cannot be
further separated with a linear approach and a more complex method of distinguishing the intervals
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is needed. As a final measure of separation, we implemented a machine learning classification
technique to classify the dB/dt intervals returned from the filtered algorithm as TLA or noise-type.
The primary goal with a machine learning classifier was to identify and remove as many noise-type
dB/dt as possible while retaining as many TLA-type dB/dt as possible.

The classifier used to identify TLA and noise-type dB/dt from the data set is called a support
vector machine (SVM). In recent works, the SVM has been utilized for various space weather ap-
plications (e.g., prediction of solar flares using magnetic field data (Bobra and Couvidat, 2015) and
prediction of high-latitude ionospheric scintillation with multiple types of solar wind and geomag-
netic field data (McGranaghan et al., 2018)). This classifier was tuned and trained using all of the
post-filter dB/dt signatures from 2015 and all eight stations (i.e., all of the dB/dt in the post-filter
column of Table 3.3). The features used to tune and train the model are the dB, dt and dB/dt (val-
ues scaled to between 0-1), the geomagnetic latitude of the station represented as a fraction of 90
degrees, the time represented as a day fraction, and the day of year represented as a year fraction
of 365 days (while also accounting for leap years). Thus, all of these features are scaled so that all
values are between zero and one.

An SVM is a supervised machine learning technique often used for binary classification (Cortes
and Vapnik, 1995). The objective of an SVM is to classify samples by determining the optimal
hyperplane- or decision boundary- to separate the samples within the feature space (Suthaharan,
2016). The feature space for a training data set is the N-dimensional vector space that contains all
of the feature values of the training set. The optimal hyperplane is determined by maximizing the
space from the decision boundary to the nearest data points- or support vectors- in the feature space.
If a data set is not linearly separable within the feature space (as in the case of the 2015 dB/dt set),
the features are transformed into a higher-dimensional feature space where a linear hyperplane can
be derived as decision boundary between classes. This transformation of the features to a higher
dimensional space is performed using a kernel function.

The SVM used to classify dB/dt intervals in this study is from the scikit-learn library and uses
the radial basis function (RBF) kernel (Pedregosa et al., 2011). The hyper-parameter C is used
in the SVM model that introduces a penalty for incorrectly classified samples, the severity of the
penalty determined by how large the scalar C is. A large value for C means a higher consequence
for misclassified samples, this results in a decision boundary with smaller margins and can lead
to overfitting of the training data. A C value that is too low results in very large margins and, in
turn, more misclassified samples. The RBF kernel function also uses the hyper-parameter gamma,
γ, that defines how much influence a single training example has. A small value of γ means that
the similarity radius of each training point is larger and thus more points can be grouped together
in the feature space, whereas a large value of γ means that the data points have to be much closer
to one another in the feature space in order to be grouped together in the classification. Further
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discussion of the tuning process and the hyper-parameter selection for the SVM can be found in
Appendix B.1.2 and B.1.3.

In the tuning and testing process, we used three main metrics to evaluate the performance of
the SVM model: accuracy score, Probability Of Detection (POD) score, and Heidke skill score
(HSS). The accuracy score represents the number of correct classifications (both TLA and noise-
type) divided by the total number of predictions. Often the accuracy score does not best represent
the performance of the model, so more complex metrics are utilized.

The latter two metrics are based on the model evalution guidelines of Liemohn et al. (2018) and
they use the outcomes of the predictions made by the model in the tuning and testing process: H
(hits i.e., correct classifications of TLA events), M (misses i.e., TLA events incorrectly classified
as noise-type), F (false alarms i.e., noise-type events incorrectly classified as TLA events) and N
(correct negatives i.e., noise-type events correctly classified as noise-type events). These metrics
make up the contingency table for the model and are also commonly referred to as true positives,
false negatives, false positives, and true negatives, respectively. The POD score gives a more
specific evaluation of how well the model performs at classifying TLA events, it is given by Eq.
(9) of Liemohn et al. (2018):

POD =
H

H +M
(3.1)

The POD score is a useful metric here because our purpose is to retain as many TLA events as
possible. It ranges between 0 and 1 with higher values being better scores. The Heidke skill score
(Heidke, 1926) represents all of the values in the contingency table and gives an evaluation of how
well the model performs while excluding the classifications made by random chance (Eq (8) of
Liemohn et al. (2018)):

HSS =
2[(H ·N)− (M · F )]

[(H +M)(M +N) + (H + F )(F +N)]
(3.2)

The HSS is highest at a value of 1 if the model perfectly classifies all of the hits and correct
negatives and can result in a negative value if the model has no ability to classify TLA events.

In order to determine the optimal values for γ and C, the SVM model was cross-validated by
first splitting the 2015 dB/dt data set into ten separate sets- or ”stratified cross-folds”- with equal
proportion of each type of sample (TLA and noise-type, of these sets may contain overlapping
samples). Then each of these ten folds is split into training (80%) and testing (20%) sets and
49 SVMs are trained and tested for each of these ten data folds. Each of the 49 SVMs have a
different combination of seven γ values (from 0.0001-100 in multiples of ten) and seven C values
(from 0.001-1000 in multiples of ten). Thus, 49 combinations of γ and C were used to train SVMs
on each of 10 separate folds of data for a total of 490 fits to the model. The SVM that has the
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highest accuracy and POD score averaged across all ten test folds is chosen to have the optimal
hyper-parameters.

Figure 3.8: (a): Cross-validation grid showing the average accuracy score as the color of each
square for each C and γ value for all 49 folds in the tuning process. (b): Same cross-validation
grid as in (a) but for the average POD score for all 49 folds. Note that color bars are different for
(a) and (b).

The results of the cross-validation process are shown in Figure 3.8: two grids showing the
average accuracy and average POD of the ten folds for each C and γ value. In both cases, the
hyper-parameters in the SVM that scored the highest average accuracy (0.989) and POD (0.944)
scores across the ten folds of training data are γ = 1 and C = 10.

After the optimal values for γ and C were determined, these hyper-parameters were used to
train the final SVM using all of the 2015 dB/dt data. In order to test the model performance, the
initial, unfiltered dB/dt search as well as the filtered dB/dt search were performed on all of the same
eight stations but for the year of 2016. All dB/dt identified from 2016 were manually classified
as noise-type or TLA based on the criteria described in sections 3.4 and 3.5 (i.e., comparison of
shapes and amplitudes of the perturbations with those described in Khomutov et al. (2017) and
statistical characteristics of events at MACCS stations in 2015) in order to assess the accuracy of
the model predictions. The filtered dB/dt search was successful in removing a majority of noise-
type dB/dt intervals while retaining all of the TLA signatures. Then the SVM classification was
performed on the filtered dB/dt intervals.

The SVM model was chosen because it exhibited the best classification accuracy and POD
scores out of four supervised machine learning classification algorithms. The details of the other
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three algorithms and their scores are provided in Appendix B.1.2. Table 3.4 lists the number of
TLA and noise-type dB/dt returned from the unfiltered and filtered dB/dt search for the year of
2016 as well as the results from the SVM classification. Because the classification is performed
on individual dB/dt intervals and many events consist of multiple dB/dt grouped within a 1-hour
window, the dB/dt label predictions are grouped if they occur within a 1-hour event window of
one another and the final SVM classification of all the dB/dt intervals in the event window is the
majority vote of the predictions. If there are an equal number of dB/dt classified as noise-type
and TLA within an event window, all dB/dt are labeled as geophysical TLA in order to reduce the
number of TLA events removed by the SVM classification.

Station # Noise-type # Noise-type # TLA # Noise-type # TLA
unfiltered filtered dB/dt post-SVM post-SVM

dB/dt dB/dt unfiltered dB/dt dB/dt
& filtered

IGL 131526 5126 13 7 12
GJO 3078 1 10 0 5
RBY 192525 249 37 0 32
PGG 3695 351 23 5 23
CDR 410 61 53 8 53
NAN 211736 0 2 0 2
INUK 7 2 194 2 194
IQA 182 121 106 0 89

Total Total # Correct # Incorrect # Incorrect # Correct
unfiltered SVM-classified noise-type noise-type TLA TLA

dB/dt: 543597 6349 5889 22 28 410
Hour events: 3010 464 319 8 8 129

Table 3.4: Table with number of dB/dt signatures of both TLA and noise-type returned from the
unfiltered and filtered dB/dt search algorithm and after the SVM classification

Table 3.4 shows that there were a total of 543,597 high-frequency dB/dt intervals identified in
the 2016 data. These events were manually separated via the criteria described in section 3.4 to
obtain a total of 543,159 noise-type dB/dt and 438 TLA dB/dt. After imposing the filters described
in section 3.6, just 6349 intervals remain including 5911 noise-type and the same 438 TLA type
(the manual classification found no geophysical events that did not meet the criteria for a TLA
event). The filtered dB/dt intervals are those that go on to be classified with the SVM.

From the filtered dB/dt search, there are 5911 noise-type dB/dt signatures making up 327 event
hours and 438 TLA dB/dt signatures making up 137 event hours. At the bottom of Table 3.4 are
the number of dB/dt for each prediction type of the SVM classification. Out of 6349 total dB/dt
signatures from the filtered dB/dt search for these eight stations throughout 2016, there are a total
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of 6299 correct predictions (i.e., H, ”hits”) resulting in an accuracy score for individual dB/dt
signatures of 0.9923. Further, for the individual dB/dt interval SVM classifications, the POD score
is 0.9361 and the HSS is 0.9383.

The dB/dt set returned from the full automated process of filtered dB/dt search with SVM
majority-vote classification consists of 410 TLA dB/dt signatures making up 130 TLA hour-events
and 22 noise-type dB/dt signatures making up 8 hour-events. In addition to the individual dB/dt
predictions, Table 3.4 also includes the SVM prediction results of the hour-event windows. Out of
the initial 464 event hours, 448 were classified correctly as having either TLA or noise-type dB/dt
within, for an SVM classification accuracy score of full-hour event windows of 0.9655, POD score
of 0.9416 and HSS of 0.9171.

There are 22 incorrectly classified noise-type dB/dt signatures (making up 8 separate hour-event
windows) that remain in the final data set and 28 incorrectly classified TLA-type dB/dt signatures
(making up 8 event-windows) that are removed from the final data set after the SVM classification.
All of the noise-type events mislabeled as TLA events consist of 1, 2 or 3 dB/dt in each component
of the field that are part of a spike lasting less than 5 minutes; the average ∆t and ∆B of the
incorrectly classified noise-type intervals is longer and larger than that of the correctly classified
noise-type intervals. The TLA events mislabeled as noise also have few dB/dt signatures (6 of 8
have less than 5 dB/dt signatures total) and all occur within a negative bay that lasts 20 minutes
or more. The average ∆t and dB/dt of the missed TLA events are similar to that of the correctly
classified, however the average ∆B for the missed TLA intervals is about 40 nT smaller than
that of the correctly classified TLA events. These details suggest that the most difficult events
to distinguish are those with very few dB/dt intervals within the hour window: often spikes with
longer than average timescale and amplitude, or TLA events with smaller than average amplitude.
Because there are still eight hour events with noise-type dB/dt in the final dB/dt set, the final step
of this complete dB/dt search process requires that the signatures are still plotted and the TLA-type
events manually confirmed. However, the results of the full process in Table 3.4 show that the final
dB/dt set is significantly narrowed to a majority of TLA-type events and only a few noise-type
events.

The test scores of the SVM classifier on the filtered dB/dt intervals have all been presented
above and show that the majority-vote SVM classification performs very well at identifying high-
frequency disturbance events and classifying them as noise-type or geophysical.

In addition to providing the characteristics of the individual dB/dt signatures that meet the TLA
event filter criteria and the SVM classification, the complete automated process provides a com-
plete high-frequency disturbance event list for a magnetic field data set. The high-frequency event
flagging process identifies all hour event windows that have any high-frequency dB/dt (defined as
a dB/dt interval with 1-60 second timescale, dB/dt > 6 nT/s and subsequent minimum ∆B of 6 nT)
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and initially classifies the hour as a noise-type event. Then, if the requirements are met for these
dB/dt to be a potential geophysical TLA event (i.e., the filter criteria: at least one dB/dt interval
lasting more than 10 seconds and ratio of high-frequency dB/dt to all dB/dt within the hour being
less than 0.05), the SVM majority-vote classification is performed. If the SVM classifies a majority
of the high-frequency dB/dt as geophysical, then the classification of the hour window is changed
to geophysical event rather than noise-type event. The resulting list is compiled of all of the hour
event windows within a data set that contain high-frequency perturbations and includes the SVM
majority-vote classification of the hour event as a zero if the dB/dt signatures are determined to
be noise-type and a one if they are determined to be of geophysical nature. Thus, the complete
high-frequency geomagnetic disturbance classifier can be used to retrieve information on the in-
dividual TLA dB/dt signatures as well as to identify hour event windows in the data that contain
high-frequency signals and determine the geophysical or noise-type nature of those signals with
high accuracy.

To concisely illustrate the performance of the fully automated geomagnetic disturbance clas-
sifier (initial dB/dt search, filters, and SVM classification), the contingency matrix for the 2016
test data is shown in Figure 3.9. This contingency matrix shows the four types of classification
(H, F, M, N) for the entire set of high-frequency dB/dt intervals identified in the 2016 test data.
The statistics in this Figure 3.9 are compiled from the Table 3.4 and show more clearly how well
the complete process performs at identifying all second-timescale, high-frequency dB/dt intervals
and classifying them as noise-type or geophysical TLA events. The test results for the full data
set are listed below the contingency matrix. The accuracy score is quite high, but represents some
possibility of correct classifications by random chance because there is such a larger proportion of
noise-type dB/dt and event hours compared to TLA. The POD and HSS scores are more indicative
of the actual performance of the automated process. The POD and HSS scores are all near 0.94 an
show that the fully automated geomagnetic disturbance classifier performs quite well.

This automated high-frequency geomagnetic disturbance classifier can be implemented on
large-scale magnetic field databases. As a usable research artifact, we have provided the high-
frequency event lists for the six MACCS stations used in this study for the year of 2017 to our
data repository (doi.org/10.7302/78zf-yw59). From these lists, we can identify that at the CDR
station, 30 of the 104 GMDs that occurred during 2017 (of Engebretson et al. (2019a)) had TLA
high-frequency variations associated to them and these are among the largest GMDs that occurred
that year (> 10 nT/s). With these event lists, we can cross-reference these events with those from
the other stations to identify what other stations to compare the spatial scales and relative strengths
of these perturbations in this region which can help identify the M-I phenomena involved. Further,
these event lists enable to us to avoid the hours of data that are highly likely to be contaminated
with noise-type dB/dt events.
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Figure 3.9: Contingency matrix and test scores for fully automated geomagnetic disturbance clas-
sifier performing on the 2016 test data.

3.8 Effect of Data Processing on High-Frequency Geomagnetic
Signatures

We have identified both noise-type and geophysical TLA signals in raw data from MACCS,
AUTUMNX and CANMOS magnetic field data as well as processed data from SuperMAG. While
further data processing measures like averaging the data over 1-minute- or even 1-second- or using
a band-pass filter may remove these signatures altogether, these techniques could also remove TLA
signatures that are necessary for the study of small-scale M-I currents.

To briefly examine the effect of a common data processing and resampling procedure on high-
frequency signals, we compared dB/dt signatures identified from raw, unprocessed MACCS data
with those identified from processed data from the SuperMAG data service for two separate events
that occurred at the PGG station in 2015. SuperMAG collects data from contributors (MACCS,
AUTUMNX and CANMOS included) and processes it uniformly with the procedure described in
Gjerloev (2012). SuperMAG offers 1-second averaged magnetic field data that has undergone the
data cleaning (automated and manual) and baseline removal process: separation of the background
magnetic field from sources in the M-I system by determining both the yearly trend and diurnal
variations of the magnetic field (Gjerloev, 2012), as well as resampling the 2 Hz data to 1 Hz.

The MACCS, AUTUMNX and CANMOS magnetometer stations are all part of the SuperMAG
network, so it is convenient to compare raw data from MACCS with processed data from Super-
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MAG for the same events. The filtered dB/dt search was conducted on both the raw MACCS data
and the processed data from SuperMAG for two events at PGG during 2015. One of these events is
the bay-like noise-type event that occurred on 20 June 2015, this event is shown in the unprocessed
MACCS data in Figure 3.5 and in the processed SuperMAG data in Figure 3.10. The other event
is a TLA event on 10 November 2015, shown in Figure 3.6.

Figure 3.10: Bay-like noise in MACCS magnetic field data that has been processed with the Su-
perMAG data processing technique. The event occurred on 20, June 2015 at the PGG station.
Hollow circles mark the start of a dB/dt signature and solid dots mark the end. The mean B value
of each component in the interval shown is subtracted from the data (Note that this mean B value
is different than that subtracted from the raw data in Figure 3.5 because all of the values are altered
in the SuperMAG data processing.

With the unprocessed MACCS data, the noise-type event on 20 June exhibited 17 high-
frequency dB/dt signatures among the four disturbances within the hour. These dB/dt signatures
have an average ∆B of 69.8 nT, average ∆t of 6.2 seconds, and average dB/dt of 13.1 nT/s. With
the processed SuperMAG data (1-second averaged, cleaned and baseline removed) there are just
10 dB/dt signatures that have average ∆B, ∆t and dB/dt of 68.7 nT, 6.9 seconds and 11.1 nT/s,
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respectively. Figure 3.10a shows that all four of the noise shapes are still present in the processed
data, however there are less dB/dt signatures that meet the criteria for a high-frequency disturbance
(second-timescale, dB/dt >6 nT/s and ∆B > 60 nT). Further, the zoomed view of the bay-like
disturbance in Figure 3.10 shows that the processed data removes some of the high-frequency be-
havior between the leading and trailing edges of the bay in all three components, but some of the
high-frequency dB/dt signatures are still present.

The TLA event on 10 November 2015 at the PGG station exhibited 12 dB/dt signatures in the
unprocessed MACCS data (shown in Figure 3.6) and 9 dB/dt signatures in the processed Super-
MAG data. This event, like the noise-type event on 20 June 2015, had slightly lower average ∆B
(273 nT) and dB/dt (7.6 nT/s) but slightly longer average dt (34.7 s) in the cleaned and processed
SuperMAG data. In both noise-type and TLA events, the processed data from SuperMAG exhibits
fewer high-frequency dB/dt signatures overall, however in both cases some of these intervals are
still present.

This comparative analysis shows that the SuperMAG data processing technique can reduce
the amplitude of and even remove some high-frequency dB/dt signatures, but it does not remove
the high-frequency noise-type events altogether. The same effect is observed for TLA events.
Therefore, it is necessary to implement the automated high-frequency geomagnetic disturbance
classifier on unprocessed data to identify intervals where high-frequency disturbances are present
and classify them as noise-type or geophysical.

3.9 Conclusions

In this chapter, we have outlined a basic dB/dt search algorithm and detailed the characteristics
of the TLA and noise-type dB/dt identified by performing the search algorithm on data from six
stations of the MACCS array during 2015. Then, we discussed the filters that were implemented
to improve the dB/dt search process based on the characterization of the manually identified noise-
type and TLA events and the SVM majority-vote classification of noise-type and TLA dB/dt sig-
natures. Finally, we present an automated high-frequency geomagnetic disturbance classifier for
magnetic field data.

The high-frequency geomagnetic disturbance classifier is a new technique that identifies inter-
vals of unprocessed magnetic field data with 1-second or higher temporal resolution that contain
high-frequency signals and determines if they are a result of noise or geophysical sources. The full
dB/dt search process can identify these event windows and determine the correct source (noise-type
or geophysical) with over 96% accuracy.

Because we found that both noise-type and geophysical high-frequency events are present
in processed 1-second SuperMAG data, it is recommended that the SuperMAG data processing
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method incorporate this automated high-frequency event classifier on the raw, unprocessed mag-
netic field data and include this list of hour events containing high-frequency intervals and their
classifications in the database. This list indicates windows of data that are likely contaminated
with noise and undesirable for use in official space weather research, and identifies windows of
data that contain high-frequency signals that are likely due to geophysical sources. The detailed
information on these dB/dt intervals allows for analysis on the high-frequency behavior of space
weather events and small-scale M-I currents.
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CHAPTER 4

Magnetosphere-Ionosphere Drivers of
Transient-Large-Amplitude Geomagnetic

Disturbances: Statistical Analysis and Event Study

This chapter presents a comprehensive analysis of a large database of TLA events. This re-
search was submitted to AGU’s Journal of Geophysical Research: Space Physics on April 12,
2023. The database of TLA events used in this study as well as the ASI movie file titled
”thg asi mosaic 201609300100kuuj.mpeg” is available on the University of Michigan Deep Blue
Data Repository (doi.org/10.7302/9par-f788). The GMD event data used in this study are also
available on UM Deep Blue (doi.org/10.7302/275e-da06).

4.1 Introduction

Extreme space weather events like geomagnetic storms and substorms can drive large geomag-
netically induced currents (GIC) through conductors on Earth’s surface. GICs pose a significant
threat to technological infrastructure as they can result in costly equipment damage and power
outages (Boteler et al., 1998; Pulkkinen et al., 2017). For decades, GICs have been studied with
various methods in order to forecast their occurrence and mitigate their consequences. From Fara-
day’s law of induction, the induced currents on the ground are directly related to large changes
of the surface geomagnetic field, and thus the magnetic field changes- dB/dt- are often studied as
proxy for GICs, though it is the surface geoelectric field and ground conductivity structure that
determines the size of the GIC.

The largest and longest space weather events are generally considered to pose the greatest threat
to technological infrastructure. These events typically cause geomagnetic field disturbances that
last from tens of minutes to several hours and have peak derivative amplitudes exceeding 8 nT/s
(Kappenman, 2006). However, recent studies have shown that more rapid and localized processes
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are also capable of generating GICs (Engebretson et al., 2019a, 2021; Ngwira et al., 2015; Pulkki-
nen et al., 2015). Case studies of some of these processes were presented by Belakhovsky et al.
(2019), and include sudden commencements (SC), dayside traveling convection vortices (TCV),
nightside geomagnetic disturbance events (GMD) and irregular Pi 3 pulsations. All of these space
weather processes have timescales of 1-10 minutes and frequency range of 1-22 mHz.

Higher-frequency Pi 1 and Pi 2 magnetic pulsations with irregular waveforms and periods of 1-
40 and 40-150 s respectively (Jacobs et al., 1964) have long been studied for their role in substorm
dynamics. Pi2 waves are commonly associated with the development substorm current wedge
(SCW) (Atkinson, 1967; McPherron et al., 1973); the polarizations of Pi2 magnetic pulsations on
the ground have been used to identify the location of the SCW (Lester et al., 1983). Pi 1 pulsations
have also been observed in association with substorm onsets (Lessard et al., 2006) and have been
shown to be caused by local ionospheric enhancements and particle precipitation (Engebretson
et al., 1983; Arnoldy et al., 1987).

While type Pi 1-2 magnetic pulsations are clearly associated with substorm processes, distur-
bances with these frequencies are not generally associated with GIC activity. Magnetic perturba-
tions in the Pi 1-2 frequency range with second-timescales are less studied in the context of GICs
as they are incapable of directly driving large currents through conductors on the surface of Earth.
However, it has been shown recently that magnetic field perturbations in this frequency range are
an important aspect of larger space weather events that can cause GICs.

The study of Chapter 2 (McCuen et al., 2021) found that high-frequency transient-large ampli-
tude (TLA) dB/dt intervals (17-1000 mHz; 1-60 second periods) with derivative amplitude greater
than 6 nT/s often occur prior to or within many of the most intense nighttime geomagnetic dis-
turbance events (GMD) that could drive GICs. Nighttime GMDs are large, isolated geomagnetic
perturbations with overall amplitudes of hundreds of nanotesla and 5-10 minute periods (Enge-
bretson et al., 2019a). These events are often associated with substorm onsets, but do not require
substorm activity to occur (Engebretson et al., 2021).

It is shown in Chapter 2 that TLA dB/dt intervals are often related to nighttime GMDs and
auroral substorms, however this relationship is complex. TLA dB/dt with Pi 1-2 pulsation periods
are sometimes involved in substorm processes, but do not always occur in close temporal prox-
imity to substorm onsets or geomagnetic storms. While sudden commencements (SC) have been
previously thought to be a primary driver for the most rapid and large-amplitude magnetic field
perturbations (Kataoka and Ngwira, 2016), there was only one SC related TLA event despite five
other SC events that occurred in 2015 while the MACCS stations were located on the dayside.
Rather than SCs and large geomagnetic storms, the largest TLA events were most often associated
with smaller-scale processes like GMDs and substorms, suggesting that small-scale ionospheric
currents are involved in driving these large-amplitude, high-frequency signatures.
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These high-frequency TLA magnetic field intervals show a clear relation to other GIC-causing
space weather events, however the exact role these variations play within and in association to
larger events is yet unknown. The goals of this study are to (1) more broadly understand the
behavior of TLA events throughout the solar cycle, (2) more clearly define how high-frequency
perturbations behave within larger space weather events, especially nighttime GMDs and (3) de-
termine the small-scale ionospheric currents and space weather phenomena that give rise to these
disturbances. We analyze TLA dB/dt events in magnetometer data from multiple arrays that span
the high-latitude region of North America and throughout Solar Cycle 24. We discuss these events
in the context of other space weather phenomena and suggest possible physical mechanisms for
their generation based on the evidence presented.

4.2 Data

The data used in this chapter are from multiple magnetometer arrays. Table 4.1 gives the
geographic and corrected geomagnetic (CGM) coordinates for the stations as well as the array
each station is a part of; the map shown in Figure 4.1 shows the locations of these stations in CGM
coordinates. The details of each array and instrumentation are outlined below.

Station Geographic Geographic Corrected Corrected Observatory
Code Latitude Longitude Geomagnetic Geomagnetic System

Latitude Longitude
IGL 69.3 278.2 77.7 354.9 MACCS
GJO 68.6 264.2 76.9 328.48 MACCS
RBY 66.5 273.8 75.3 347 MACCS
PGG 66.1 294.2 73.3 19.9 MACCS
CDR 64.2 283.4 72.6 2.9 MACCS

SALU 62.2 284.4 70.8 4.0 AUTUMNX
RANK 62.8 267.7 71.8 337.4 CARISMA
YKC 62.48 245.5 68.9 304 CANMOS
FCC 58.8 265.9 67.85 334.9 CANMOS
GILL 56.4 265.3 65.5 334.3 CARISMA
WHIT 61.01 224.8 63.5 281 THEMIS GBO
KJPK 55.3 282.2 62.4 359.9 AUTUMNX
ATHA 54.71 246.7 61.5 308.5 CARISMA
MEA 54.62 246.7 61.44 308.43 CANMOS

Table 4.1: Location coordinates of stations used in this study. The CGM coordinates
were calculated using the AACGM-v2 Calculator (available at http://sdnet.thayer.dartmouth.edu/
aacgm/aacgm calc.php#AACGM) for epoch 2014. Note epoch 2014 was used as it is the median
year of Solar Cycle 24.
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1) The Magnetometer Array for Cusp and Cleft Studies (MACCS) is a system of magnetometers
located in north-east Nunavut, Canada from about 65◦ to 80◦ geomagnetic latitude (Engebretson
et al., 1995). MACCS is operated by Augsburg University and the University of Michigan and is
funded by the National Science Foundation (NSF). The MACCS stations contain fluxgate magne-
tometers with axes aligned with the Earth’s magnetic field (H: magnetic north-south, D: east-west,
Z: vertical with positive direction downward into Earth). The MACCS magnetometers measure
the magnetic field at 8 Hz and then average and record the measurements at 2 Hz (half-second
cadence); the measurements are accurate to 0.025 nT.

2) The Canadian Array for Realtime InvestigationS of Magnetic Activity (CARISMA) is a sys-
tem of ground-based magnetometers located across central Canada (Mann et al., 2008). CARISMA
is operated by the University of Alberta as part of the Canadian Geospace Monitoring Program
(CGSM) and is funded by the Canadian Space Agency (CSA). Like MACCS, the CARISMA sys-
tem consists of fluxgate magnetometers that measure the magnetic field at 8 samples/second. The
stations used in this chapter offer final data products that are averaged to 2 samples/s and rotated
from the geographic coordinates they are originally measured in to local geomagnetic coordinates.
These magnetometer systems offer 0.025 nT resolution data.

3) The the CANadian Magnetic Observatory System (CANMOS) (Nikitina et al., 2016) is a
ground magnetometer array operated by Natural Resources Canada (NRCan). CANMOS employs
fluxgate magnetometers across Canada that sample the magnetic field at 8 Hz, then resamples to 1
Hz after despiking and performing a 9-point rectangular filter. The CANMOS data have 0.01 nT
resolution. The data from CANMOS is in geographic coordinates: X (geographic north-south), Y

(geographic east-west) and Z (vertical).
4) The Athabasca University Time History of Events and Macroscale Interactions During Sub-

storms (THEMIS) University of California, Los Angeles (UCLA) Magnetometer Network eXten-
sion (AUTUMNX) (Connors et al., 2016) is located in the eastern region of Canada. The AU-
TUMNX instruments are fluxgate magnetometers provided by UCLA that measure the magnetic
field with 0.01 nT resolution at 2 samples/second and in local geomagnetic coordinates.

5) THEMIS Ground-Based Observatory (GBO) systems (Russell et al., 2008) are a part of
the larger collaboration of stations that contribute magnetic data to the THEMIS Ground Mag-
netometer (GMAG) cooperative. THEMIS GBO stations are operated by UCLA, contain UCLA
instruments as in (4) and thus have the same resolution, measurement frequency and coordinate
system as mentioned above.

4.3 Methodology

A high-frequency TLA event is defined as a 1-hour period at a single station in which there is
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Figure 4.1: Locations of the magnetometer stations used in this study. The symbols for each
station represent the array to which they belong: squares signify MACCS stations, triangles signify
CARISMA stations, circles are for CANMOS stations, the diamond is for the THEMIS GBO and
the asterisks represent AUTUMNX stations. The X marks the magnetic footprint of the GOES-13
spacecraft (determined using tools from SSCWEB https://sscweb.gsfc.nasa.gov/) during the event
discussed in Section 6.1. Lines of the latitude and longitude are shown in corrected geomagnetic
coordinates for epoch 2014.

at least one dB/dt interval with timescale from 2-60 seconds and magnitude greater than 6 nT/s
(subsequent ∆B > 60 nT). The lower derivative amplitude threshold of 6 nT/s was chosen as it is
comparable to the 8 nT/s disturbances observed during the geomagnetic storm of March 1989 that
caused significant power system damage (Kappenman, 2006). Note that geomagnetic disturbances
during storms persist for timescales much longer than 60 seconds, but the 6 nT/s threshold serves
as a baseline for what is considered to be large dB/dt.

TLA events often present as clusters of these dB/dt intervals in multiple components of the
magnetic field data at a given station. In order to identify instances of TLA events in ground
magnetic field data, an automated dB/dt search procedure was designed. The automated proce-
dure is necessary because the characteristics of TLA dB/dt intervals are very similar to that of
magnetometer ”noise”, referred to in this study as signals resulting from outside interference or in-
strumentation error that do not have geophysical sources. Noise-type signals in magnetometer data
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are often very short-timescale and large-amplitude dB/dt intervals, so identifying TLA signatures
and distinguishing them from noise-type signals is an imperative aspect of this research.

The automated geomagnetic disturbance classifier is described thoroughly in Chapter 3 and dis-
cussed briefly here. The basic algorithm functions by partitioning every hour of data consecutively
based on the number of data points and the measurement frequency (i.e., for the 2 Hz MACCS data,
the first hour partition is the first 7200 data points and the second hour partition is the following
7200 data points). Then, instances where the sign of the slope of the magnetic field changes and
remains the same for at least two measurement cycles (i.e., for 1 consecutive second for 2 Hz data
or 2 seconds for 1 Hz data) are identified. The consistency of sign change for two cycles is required
to reduce single-point errors/spikes in the data or highly variable data due to noise interference.

After the slope sign changes are identified, the time difference between each slope sign change
is calculated (i.e., the ∆t between each change of slope direction) as well as the change in magnetic
field strength (∆B), and the rate-of-change of the interval (dB/dt). Finally, this first step of the
process identifies all of the intervals between changes of the sign of the slope that last from 1 to 60
seconds and have rate-of-change of at least |6| nT/s.

The next steps of the algorithm incorporate a filtering process that has requirements derived
from the statistical analysis of geophysical and noise-type events described in McCuen et al.
(2023). The first condition is that at least one dB/dt interval identified from the first step in each
hour-window of data lasts 10 seconds or more. This condition is defined because all of the geo-
physical events identified in the MACCS data for 2015 met this criteria, whereas a large number of
hour windows with only noise-type dB/dt exhibited only intervals that lasted less than 10 seconds.
If any dB/dt identified in an hour-window lasts more than 10 seconds and has derivative amplitude
of at least |6|, the ratio filter is performed.

This ratio filter finds the ratio of the number second-timescale dB/dt > 6 nT/s to the total number
of dB/dt intervals within the hour (in which the magnetic field changes for at least two measurement
cycles, for any timescale and magnitude). If this ratio is less than 5%, then the dB/dt intervals
identified in the hour advance to the next step in the process. This condition is implemented
because many noise-type events in magnetometer data consist of more than 5% concentration of
large, second-timescale dB/dt (hundreds, sometimes thousands of dB/dt within an hour period), so
this ratio filter excludes instances that are highly likely to be a result of noise interference rather
than geophysical source. The 5% ratio threshold is another requirement derived from the analysis
of McCuen et al. (2023).

Finally, if the first two qualifiers are met, (i.e., if there are second-timescale dB/dt > 6 nT/s
intervals and at least one interval with 10-60 second timescale, and the 5% ratio filter is passed)
then a support vector machine (SVM) classification is performed on the dB/dt intervals to clas-
sify them as either geophysical TLA or noise-type. The SVM classification is performed on the
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dB/dt intervals within the hour window and the majority vote of these individual classifications is
assigned to all of the dB/dt intervals within the hour. Then, if the SVM classifies a majority of the
dB/dt intervals as TLA, they are returned as a data product.

4.4 Solar Cycle Dependence of TLA Events

A subset of stations were selected to examine the solar cycle dependence of TLA events. This
subset excludes TLA event data from the MACCS stations and consists of events from stations be-
low 63◦ CGM for epoch 2014 (Table 4.1). These stations were selected because there is more uni-
form data availability throughout the solar cycle (see Supporting Information Table S1 for yearly
data availability).

To explore the occurrence of TLA events in comparison to both sunspots and substorms
throughout Solar Cycle 24, we reference Figure 4.2: the number of substorms per day from late
2009 to 2020 (shown in blue) and the number of TLA events per day (shown in black). The number
of substorm onsets are from the SuperMAG substorm event list (Newell and Gjerloev, 2011); this
method defines substorm onsets as the initial minute in which the SML index drops sharply by 45
nT in the next three minutes and has a sustained negative bay of at least 100 nT over the following
half-hour. The SML index is the lower envelope of N-component magnetic field measurements at
stations between 40◦ and 80◦ magnetic north and reflects the maximum strength of the westward
auroral electrojet. This index makes up half of the overall SuperMAG electrojet index, SME, de-
rived by subtracting the SML values from the upper-envelope of N-component values (SMU) from
the same set of stations (the SME index is derived using the same concept as the AE index only
with many more stations over a larger range from +40◦ to +80◦ MLAT). Each of these values
were subjected to a rolling 30-day average and then normalized to values between zero and one.
The vertical red dashed lines show the times of Solar Minimum and Maximum for Solar Cycle 24
(note that the following Solar Minimum was in April 2020, just beyond the range shown in Figure
4.2). Figure 4.2 shows that the number of TLA events per day generally follows the number of
substorms per day, and the number of both events increases during the declining phase of the solar
cycle as the number of sunspots decreases.

Next, the association of TLA event occurrences to ring current activity and solar wind speed
throughout the solar cycle is examined. Figure 4.3a displays the probability density of all Su-
perMAG Ring Current Index (SMR) (Newell and Gjerloev, 2012) values for 2009-2019 (shown in
red) compared with the SMR values during the minute of the maximum dB/dt interval of each TLA
events from 2009-2019. Figure 4.3a shows that SMR values have a narrow distribution that peaks
near zero with average value of -6 nT and standard deviation of ∼ 15 nT, while the distribution for
TLA events is shifted to more negative values, peaking from 0 to -50 nT (mean value of -54 nT)
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Figure 4.2: Number of substorm events (blue) and TLA events (black) per day from late 2009 to
early 2020. Values have been averaged over a moving 30-day period and normalized.

with a larger standard deviation of 43 nT and a long tail that extends to -175 nT. While a majority
of TLA events occur for only slightly elevated SMR values, this distribution shows that some TLA
events are related to very active geomagnetic storms.

Figure 4.3b shows the probability distribution of all solar wind flow speed values, Vsw, for
every minute throughout the solar cycle (red) compared with the solar wind flow speed during the
minute of the maximum dB/dt interval during each TLA event (blue). The Vsw values are from the
OMNI database (time shifted to the Earth’s bow shock nose) (King and Papitashvili, 2020). These
distributions show that Vsw peaks between 300-400 km/s, with a mean value of 412 km/s and Vsw
during TLA events is much higher on average (mean of 578 km/s) and a majority of values from
450-700 km/s.

Figure 4.2 shows that TLA events occur more often during the declining phase of the solar
cycle when substorm activity is increased and large geomagnetic storms driven by coronal mass
ejections (CME) occur less often. This observation together with Figures 4.3a and 4.3b that show
TLA events are more common during slightly elevated ring current activity and fast solar wind
speeds, may indicate that TLA events may be related to weak geomagnetic storms caused by
coronal holes and subsequent corotating interation regions (CIR) that are most frequent in the
descending phase (Hajra and Sunny, 2022) and give rise to fast flow speeds that can cause mild
ring current activations.

4.5 Latitude and Local Time Dependence

In this section, we examine the latitude and magnetic local time dependence (MLT) of TLA
events. For these purposes, a subset of the full database of TLA events was created so that there
are an equal number of stations used from each magnetic latitude range. This subset consists
of TLA events identified in all 12 stations for the years of 2015-2019 only (excluding the two
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Figure 4.3: Number of the largest TLA events per year separated by the SMR value and the solar
wind flow speed during the event.

AUTUMNX stations used in the event analysis of section 6.1, see Supporting Information Table
S1). There are three stations in each magnetic latitude range: 61-64◦, 65-69◦, 71-74◦ and 75-78◦.
It is also important to note that we surveyed seven magnetometer stations in the mid-latitude region
from 30-60◦ MLAT and three stations in the equatorial region below 30◦ MLAT for all years of the
solar cycle and we found no geophysical TLA signatures at any magnetic latitudes lower than 60◦.

Figure 4.4 shows two distributions of the number of TLA events based on the magnetic latitude
at which they occurred (a) and the magnetic local time at which they occurred (b). Figure 4.4a
shows that a majority of TLA events occurred in the 65-69◦ range with a slightly smaller population
of events in the 71-74◦ range. The equatorward boundary of the auroral oval is nominally around
65◦; during the expansion phase of substorms the auroral oval can extend to 62–64◦ and 68–70◦ in
the midnight sector (Akasofu, 1964).

Figure 4.4b shows the local time distribution of TLA events for each hour of MLT. This plot
shows that TLA events are primarily nighttime events, with two distinct local time populations.
The majority of events occurred from 17-01 MLT and a much smaller number of TLA events oc-
curred from 01-08 MLT. About 3% of the total TLA events from 2015-2019 occurred during the
daytime (referred to here as those occurring from 08-17 MLT, outside of the two nighttime popula-
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Figure 4.4: Histograms of (a) number of TLA events based on magnetic latitude range and (b)
number of TLA events that occurred for every hour of magnetic local time.

tions). Daytime events were most commonly associated with geomagnetic storms (ten events were
related to SCs, five occurred during the main phase and two during first day of recovery), however
three daytime events are referred to as unrelated events that were not associated to a storm and oc-
curred more than 60 minutes from a substorm onset. Unrelated events, that occurred more than 60
minutes from substorm onset and in the absence of a CME-driven geomagnetic storm, comprised
just over 8% of the TLA events that occurred in the 2015-2019 subset. Note that unrelated events
in Chapter 2 refers to those that were not associated to nighttime GMDs in addition to storms and
substorms; here we refer to unrelated events as those that show no association to storms and sub-
storms but may be related to nighttime GMDs (i.e., this would include the five TLA events related
to nighttime GMDs but not storms and/or substorms in Figure 2.3).

4.6 Connection to Substorms and GMD Events

McCuen et al. (2021) analyzed TLA events solely from five MACCS stations for the year of
2015 and showed that they were strongly associated to GMD events. Nighttime GMDs are mag-
netic perturbations with amplitudes of hundreds of nT and periods of 5-10 minutes (Engebretson
et al., 2019a). These events are generally localized to a ∼275 km radius and they occur in two
distinct local magnetic time populations in the pre- and post-midnight regions (Engebretson et al.,
2019b). GMDs are often associated to substorm onsets but substorms are not necessary to cause
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them (Engebretson et al., 2021); the pre- and post-midnight populations show different temporal
relations to onsets, indicating that there may be distinct M-I drivers for GMDs dependent on MLT.

GMDs have been observed to coincide with dipolarizations in the magnetotail and subsequent
auroral streamers (Engebretson et al., 2019b) as well as omega bands (Engebretson et al., 2020).
The SECS analysis of nighttime GMDs by Weygand et al. (2021) found that a majority of GMDs
occurred underneath the westward electrojet (WEJ); many of the pre-midnight events occurred
within the Harang current system while the remaining pre-midnight as well as many of the post-
midnight events occurring underneath the downward region 1 or upward region 2 field-aligned
current (FAC) systems.

In the present analysis, TLA events are analyzed in comparison with a dataset of GMD events
that occurred at the RBY, CDR and PGG stations from 2015-2019 (Engebretson, 2023). In this
subset of GMD events, there are 843 hour windows in which GMDs occurred and 236 of them ex-
hibited associated TLA dB/dt intervals. The most extreme GMD events with derivative amplitudes
exceeding 12 nT/s occurred within 154 hour windows and of the 154 hour windows of extreme
GMD events, a large majority (124 windows, 81%) have TLA dB/dt intervals included within the
hour window. For GMDs with derivative amplitudes over 20 nT/s, this percentage is even higher:
from 2015-2019, 28 hour windows included GMDs > 20 nT/s and 26 of these windows (93%)
included TLA intervals as well.

Of those 124 hour windows with extreme GMDs and associated TLA dB/dt, there are 91 hour
windows that consist of GMDs observed at multiple stations; 58 of these windows have the largest
TLA dB/dt at the station location of the largest GMD. There are 78 cases of hour windows in which
extreme GMDs occur at multiple stations and TLA dB/dt intervals occur at fewer station locations
than the GMDs. In other words, TLA events were often even more localized than the spatial extent
of the GMDs and further, when the nighttime GMDs commonly occurred at more than one station,
the largest TLA dB/dt occurred at the specific location of the largest GMD.

To examine the relationship between substorms, nighttime GMDs and TLA dB/dt events, Figure
4.5 shows the number of TLA and GMD events that occurred from 2015-2019 based on their
temporal proximity from the nearest substorm onset (a) and the longitudinal difference of the
TLA and GMD events from the location of the substorm onset (b). These substorm onset times
and locations are from the SuperMAG substorm event list defined by Newell & Gjerloev (2011).
Because TLA events often consist of multiple dB/dt signatures, the time and location of each event
is marked with the maximum dB/dt interval of each TLA event. The blue bars in Figure 4.5 show
the number of all TLA events, the orange bars show TLA events that were related to GMDs within
the same hour window, and the red bars show the number of TLA events related to extreme GMD
events (>12 nT/s).

Figure 4.5a shows that TLA events most commonly occur within 20 minutes of substorm onset
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Figure 4.5: Number of 1-hour event windows from 2015-2019 that contain TLA events (blue),
TLA events related to GMDs (orange) and TLA events related to extreme GMDs (red) as a function
of the time delay from substorm onset (a) and the longitude difference (in geographic coordinates)
from where the TLA event occurred to where the substorm onset occurred (b).

with average onset delay of 5.5 minutes. TLA events also occurred in the 30 minutes prior to onset
but much less frequently than 30 minutes after onset. The distribution of hour windows containing
GMD-related TLA events is much wider than that of the total TLA event population and shows
that extreme GMD events with associated TLA intervals comprise about half of all GMD-related
TLA events meaning that when GMD events occur with associated TLA dB/dt they are very likely
to be the most extreme GMD events. This distribution also shows that hour windows containing
extreme GMD events with associated intervals can occur well beyond 20 minutes from the most
recent substorm onset, and a sizeable population of TLA intervals occur more than 2 hours from
onset.

Figure 4.5b shows the number of hour windows that occurred for a given difference in longitude
from the location of substorm onset identified by Newell & Gjerloev (2011) to the location of the
maximum dB/dt of TLA events. Here, negative degrees of longitude difference signify that the
location of the TLA and/or GMD events within the hour window occurred to the west of the
location of the substorm onset. The distance conversion of longitudinal degrees to kilometers
ranges from 65 km per 1◦ longitude at 54◦ geographic latitude (the geographic latitude of the
lowest station) to 38 km per 1◦ longitude at 70◦ geographic latitude (geographic latitude of highest
station), for an average of about 52 km per 1◦ longitude over this latitude range.

The distribution of Figure 4.5b shows that most TLA and TLA-related GMD events occurred
within ±20◦ longitude of the substorm onset, and more often occur 20◦ to the west of the onset
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location rather than to the east. Further, Figure 4.5 shows that many hour windows containing ex-
treme GMD events with associated TLA intervals occur very far from the location of the substorm
onset, in many cases more than 80◦ of longitude west of the onset location. Taken together, these
two figures show that a majority of TLA events are closely related to substorm activity, but also
shows the distinction that many TLA events, especially those related to extreme GMDs, can have
in both time and space from substorm onsets.

4.6.1 Analysis of September 30, 2016 GMD/TLA Events

Figure 4.6 shows GMD events that occurred at six stations on September 30, 2016. The data
for each station are plotted from top to bottom in order of decreasing magnetic latitude. Within
these GMDs, TLA intervals occurred at the RBY, CDR, and RANK stations, shown as open circles
signifying the start of each interval and solid circles as the end. The TLA intervals first occurred
at the RANK station from 01:26 to 01:28 UT, at CDR within the 01:33 UT minute, and then at
RBY from 01:33 to 01:39 UT. The largest amplitude derivative (-12.29 nT/s) occurred at RBY in
the z-component, lasting 44 seconds and spanning the minutes from 01:34-01:35 UT. The GMDs
at CDR, RBY and SALU are all among very large events in the GMD database, with derivative
amplitudes exceeding 12 nT/s. Figure 4.7 displays a zoomed-in view of the magnetic field data
when the TLA dB/dt intervals occurred to show the specific TLA variations.

This event occurred during relatively quiet global geomagnetic conditions (the SMR index
ranged from ∼-28 nT to 16 nT during the hour shown). A substorm onset occurred at 01:10
according to the method of Newell & Gjerloev (2011). Substorm auroral onsets are determined by
major auroral intensifications (Akasofu, 1964; Nishimura et al., 2010); by this definition a small
substorm auroral onset occurred at 01:05 UT and a larger onset occurred at 01:20 UT. The SML
index increased ∼160 nT 01:00 to 01:10 UT, then decreased to the minimum value of -785 nT
at 01:29 before increasing again to pre-onset values by the end of the hour, but did not show any
distinction of the substorm auroral onset at 01:05 UT.

The average solar wind flow speed was 685 km/s and average solar wind dynamic pressure was
around 2.4 nPa during this hour, both of which rose slightly at the time of onset (to 708 km/s and 2.8
nPa, respectively) and then returned to varying near the average. The IMF Bz turned southward
(decreasing) from 01:05-01:21, 01:23-01:30 and 01:32-01:38 with sharp northward increases in
between the intervals, and then increased slowly at 01:38 for the remainder of the hour.

In order to analyze the ionospheric behavior during this interval, the spherical elementary cur-
rent systems (SECS) method developed by Amm & Viljanen (1999) and applied to magnetometers
in North America and Greenland by Weygand et al. (2011) was used to analyze the horizon-
tal equivalent ionospheric currents and the vertical current amplitudes during this interval. The
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Figure 4.6: Magnetic field data from six stations on September 30, 2016. The Bx component is
displayed in black, By in blue and Bz in red. The TLA intervals that occurred within some of the
events are signified by hollow circles denoting the start of the interval and filled circles denoting
the end of the interval. The dashed vertical lines signify the times that correspond to the SECS
maps in Figures 4.8 and 4.9. The mean B value in each component for the interval shown has been
subtracted.
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Figure 4.7: Zoomed view of magnetic field data intervals where TLA dB/dt occurred on September
30, 2016. The Bx component is displayed in black, By in blue and Bz in red. The TLA intervals
are signified by hollow circles denoting the start of the interval and filled circles denoting the end
of the interval.
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SECS method calculates equivalent ionospheric currents by expanding the ground magnetic field
effects of two spherical elementary current systems: a curl-free system (field-aligned currents) and
a divergence-free system (entirely ionospheric currents).

Figure 4.8 and 4.9 display SECS maps for pertinent minutes throughout this event, with the sta-
tions in Figure 4.6 marked as colored circles. The red shaded regions indicate locations of upward
FAC and the blue shaded regions indicate downward currents, with the degree of shading signifying
the strength of the current. Further, the movie of file ”thg asi mosaic 201609300100kuuj.mpeg”
in the data repository for this research (doi.org/10.7302/9par-f788) shows a mosaic composition of
images from THEMIS All-Sky Imagers (ASI) at four stations in this region for the hour interval in
which this event occurs.

The two southern-most stations, FCC and KJPK, measured slight disturbances near the time of
the substorm onset ∼01:10 UT. The SECS map at 01:10-01:11 UT (not shown) indicate a slight
and localized intensification of the upward current and mild south-eastward horizontal currents
above the FCC and GILL stations. At 01:22 (Figure 4.8a, and marked as a dashed line in the KJPK
and FCC panels of Figure 4.6), an up-down current pair appeared spanning from East to West over
Hudson Bay, shown in the SECS map of Figure 4.8a. At this time, the RANK and SALU stations
(mauve and orange, respectively) are both underneath the downward R1 currents, and RANK and
FCC both lie within the Harang current system. A moderate westward horizontal current is shown
in the shear region between the up-down current pair. Magnetic disturbances were observed at
FCC and KJPK near this time, most notably at FCC but not at the stations north of FCC.

At 01:26 (Figure 4.8b, and marked in RANK and SALU panels of Figure 4.6), the SECS maps
show that the current pair begins to extend northward. GMDs were seen at RANK and SALU,
with TLA intervals in the By- and Bz-component at RANK. At this time, SALU is still underneath
the downward R1 currents while RANK is located in the boundary region between downward and
upward R1 currents. From about 01:26-01:28, strong westward currents are observed in the SECS
maps extending over SALU that turn slightly northward to the north of RANK and southward to
the south of RANK.

At 01:32-01:33 (Figure 4.9a, and marked in CDR and RBY panels of Figure 4.6), the upward
portion of the current pair in red (to the south of the downward portion in blue) separates into two
separate localized upward FAC systems on either side of the north edge of the Hudson Bay. At
this time, WNW horizontal currents are enhanced overhead of the upward current lobes. GMDs
were recorded at the two northern-most stations, CDR and RBY, with peaks near 01:32-01:33 and
TLA intervals in the x-component at CDR and x- and z- components at RBY. While there are large
positive excursions in the z-components at both CDR and RBY around 01:33 UT, the SECS maps
show that the these disturbances appear to be caused by separate, localized upward FAC systems
overhead each station on either side of the northern Hudson Bay. Over the next ten minutes from
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Figure 4.8: SECS maps during the 30 September 2016 event at 01:22 UT (a) and 01:26 UT (b)
in geographic coordinates (dotted black lines) and geomagnetic coordinates (dotted pink lines).
Each panel shows the combined field-aligned like current densities and equivalent currents. The
dots indicate the points at which the equivalent current was determined and the vector gives the
magnitude and direction. The stars mark the stations with usable data on that day. The key for the
equivalent current is given in the lower right corner, and the color bar indicates the current density
values. The colored circles mark CDR (yellow), RBY (gray), SALU (orange), RANK (mauve),
FCC (green), and KJPK (pink).
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Figure 4.9: SECS maps during the 30 September 2016 event at 01:32 UT (a) and 01:37 UT (b),
formatted the same as in Figure 4.8. The key for the equivalent current is given in the lower
right corner, and the color bar indicates the current density values. The colored circles mark CDR
(yellow), RBY (gray), SALU (orange), RANK (mauve), FCC (green), and KJPK (pink).
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01:32 to 01:42, the upward current on the east side weakens, while the the upward current to
the west moves slightly north west and intensifies at 01:37 (Figure 4.9b) when TLA dB/dt are
measured at RANK (Figure 4.6 top panel) before weakening at 01:39 when the GMDs at all of the
four northern stations begin to subside.

The ASI data images (”thg asi mosaic 201609300100kuuj.mpeg” of the data repository located
at doi.org/10.7302/9par-f788) are consistent with the magnetic field data and SECS maps. A rela-
tively stationary east-west auroral arc appeared just north of KJPK soon after the time of the first
substorm auroral onset and extended across the bay over FCC by 01:18. The second substorm
auroral onset started at 01:20 and initiated a series of brightenings. An intensification occurred at
01:22 and the arc began moving poleward, then from 01:25 to 01:26:30 auroral streamers emerged
from the arc in two distinct parts: (a) one to the west of SALU over RANK and (b) another part to
the south of SALU.

The arc portion (a) over RANK continued moving poleward and began to break up at 01:29
into a smaller part to the north and a longitudinally extending streamer to the south. The streamer
north of RANK continued moving poleward and began to fade at 01:32. The streamer to the south
of RANK intensified at 01:29:30, moved equatorward and dissipated by 01:31.

The arc portion (b) south of SALU at 01:26:30 had two portions within it, one to the south and
extending slightly west of SALU and a stronger part SE of SALU. By 01:27:30 these two features
were more distinct, extending in the NW-SE direction. The part south of SALU reached SALU
at 01:27:45 while the eastern part moved equatorward. Both portions then retreated equatorward
and faded away by 01:29. At this same time, a new streamer appeared NE of SALU, intensified
as it moved equatorward and dissipated by 01:31. From 01:31:30, a small streamer appeared
over RANK and moved equatorward while extending longitudinally at 01:32:30 and then fading.
During this time, another intensification occurred NE of SALU and streamers moved equatorward,
then faded by 01:35:45.

Figure 4.10 shows magnetic field data measured by the GOES-13 spacecraft during this event.
The field-line footprint of GOES-13 at this time is shown in Figure 4.1. Here, Bz (plotted in red)
is parallel to the Earth’s rotation axis, positive northward, Bx is in the Earthward direction perpen-
dicular to Bz, and By is in the eastward direction perpendicular to Bx and By. The sharp increases
in Bz (highlighted as gray panels) signify dipolarization fronts (DF) in the magnetotail at geosyn-
chronous orbit, the timing of which coincide with the timing of ionospheric current enhancements
and subsequent GMDs measured on the ground.

The first substorm auroral onset occurred at 01:05 UT and a second onset occurred at 01:20 UT,
both with DFs that occurred ∼2-3 minutes after. Perturbations were measured at the two southern-
most stations, KJPK and FCC, corresponding closely with these DFs. An east-west auroral arc
appeared around 01:12 north of KJPK and south of SALU. The arc brightened around 01:22 after
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Figure 4.10: Magnetic field data measured by the GOES-13 spacecraft during the GMD/TLA
event. The Bx component is measured

the second substorm onset and DF; the SECS maps show an E-W, up-down current pair extended
across the southern Hudson Bay, westward horizontal currents increased in this region, and an
GMD occurred at FCC. At about 01:26, a third DF occurred and the auroral arc began to move
poleward and split into two separate parts over RANK and SALU, with auroral streamers that
emerged from the arc and moved equatorward. The SECS maps show the up-down vertical current
pair moved northward as well and the horizontal currents increased in the northwest direction;
GMDs were observed at RANK and SALU with TLA intervals within the GMD at RANK, but
not at SALU. Then around 01:33, another DF occurred at geosynchronous orbit as auroral patches
were observed over RANK and SALU, developing into longitudinally localized streamers that
moved equatorward; two distinct localized upward FACs enhanced on either side of the northern
Hudson Bay and strong WNW horizontal currents extended over the region. During this time,
GMDs occurred at CDR and RBY, with TLA intervals within the GMDs at both stations.

The auroral poleward expansion shown in the ASI data corresponds well with the poleward
progression of GMDs and the timing of the largest ionospheric currents. DFs are the leading
edge of dipolarizing flux bundles (DFB) (Nakamura et al., 2002), defined as transient (∼ 40 s),
localized (≲ 3RE in XGSM and YGSM ) flux tubes carrying strong northward magnetic field (Liu
et al., 2018a). DFBs typically propagate at high speeds from the near-Earth reconnection region,
efficiently transporting magnetic flux in short flow bursts referred to as bursty bulk flows (BBF).
Auroral streamers emerging from poleward boundary intensifications (PBI) are considered to be
the auroral signatures of BBFs (Henderson et al., 1998; Sergeev et al., 1999). Although there is no
available plasma flow velocity data in the magnetotail during this time, the DFs at GOES-13 in the
magnetotail paired with the PBI and streamers in the ionosphere appear to be evidence of a BBF
event. Further, the double auroral onset nature of this case may indicate that the first auroral onset
was a pseudo-breakup: a small, localized, substorm-like activation of auroral brightening that often
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precedes a full-scale substorm. Pseudo-breakups can be associated with localized dipolarization
in the tail that does not cause a global reconfiguration of the magnetotail (Akasofu, 1964) but can
generate a localized current wedge (Pulkkinen, 1996; Pulkkinen et al., 1998).

We suggest that the cause of the poleward progression in this event is the tailward retreat of
the magnetotail reconnection region due to successive DFBs. As the magnetic field dipolarizes,
the reconnection region shifts downtail and this corresponds to the poleward shift of the larger
magnetic footprint. Further, the Earthward propagation of fast flows in the plasma sheet cause the
PBIs to extend equatorward and align in the north-south (NS) direction, forming auroral streamers
(Nakamura et al., 2011; Ieda et al., 2016).

The overall structure of the GMDs are observed progressing northward; the peaks are measured
closely in time for stations with similar magnetic latitudes, but the TLA intervals present are ob-
served to be more longitudinally localized. For instance, RANK and SALU are about a degree
separate in latitude and see relatively simultaneous peaks in all three components as the vertical
current pair and auroral arc move northward, however TLA dB/dt are measured only at RANK.
Then, CDR and RBY show a similar peaks in time but many more TLA intervals are observed
at RBY than CDR. The stations on the western region of the Hudson Bay (RANK, RBY) where
the localized upward FAC structure was stronger, exhibited the majority of TLA intervals in this
event. It appears that while the GMDs at each station are a response to the larger-scale (roughly
1000 km) ionospheric currents, the TLA dB/dts are smaller-scale features of more localized FACs
and auroral intensifications. Further, the SML index in this case does not reflect the the timing of
the TLA dB/dt that align fairly closely with the auroral enhancements and features of the SECS
maps. This discrepancy is likely due to the localization and rapidity of the ionospheric variations
causing the TLA dB/dt; the SME index uses 1-minute cadence magnetic field data with a sliding
30-minute buffer that may not capture the small-scale ionospheric enhancements.

4.7 Discussion

Engebretson et al. (2019b) analyzed three separate GMD events that occurred during 2015. It
was shown that all three of these events occurred within 1-hour of a substorm onset as well as a
dipolarization at GOES-13, indicating that these events were generally related to fast flows from
the magnetotail that penetrated the near-Earth plasma sheet. These events all exhibited a northward
and westward spatial progression, and SECS maps during these events showed coinciding regions
of localized horizontal current enhancements with ∼275 km radius. Two of these three events had
TLA dB/dt intervals within the GMD: Event 1 on November 11, 2015 and Event 3 on October 9,
2015. In Event 1, TLA events occurred at two of the four stations that measured GMDs and in
Event 3, TLA dB/dts occurred at one of the four stations. In both Events 1 and 3, the locations of
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the GMDs that had associated TLA dB/dt are where the largest GMDs (>12 nT/s) occurred over
the spatial extent of the disturbance; Event 2 exhibited no extreme GMDs and had no associated
TLA signatures.

The TLA-related GMD events of the present study show some consistency with the spatial
progression of those in Engebretson et al. (2019b): many TLA intervals occurred prior to the
GMD at a more southern station (as shown in Figures 1.3 and 4.6) indicating northward progression
of a fast ionospheric event. However, in comparison to substorm onsets, many TLA-related GMD
events occurred to the west of the location of substorm onset defined by Newell & Gjerloev (2011),
indicating an eastward progression in some cases. Rather than an eastward progression, this could
be due to the overall northward progression of a larger ionospheric disturbance, but with more
longitudinally localized variations (i.e., auroral streamers) causing the rapid TLA signatures at
only some of the stations, as in the event analyzed in section 6.1.

Wei et al. (2021) presented an analysis of intense dB/dt events on the ground that occurred
on January 7, 2015 . The perturbations occurred from 08:40-09:20 at 24 stations in mid- to high-
latitude North America. During this event, large GMDs with TLA intervals within them occurred
at SALU and KJPK. The study by Wei et al. (2021) included seven other stations that were also
analyzed in the present study, but only four of these stations exhibited TLA signatures (ATHA,
MEA, GILL, and RANK, temporally in that order). The larger perturbations and the TLA events
showed a northward progression. This event occurred just after a substorm onset and in close tem-
poral response to a BBF event carrying multiple DFs that were detected by the Cluster spacecraft at
geosynchronous orbit in the magnetotail. It is suggested in Wei et al. (2020) that during this event,
the large-scale substorm current wedge (SCW) system is composed of multiple localized R1-sense
FAC structures driven by multiple BBFs, as has been previously proposed (Birn and Hesse, 2014;
Liu et al., 2013) and demonstrated (Liu et al., 2015, 2018a).

Weygand et al. (2021) analyzed GMDs during 2015 and 2017 at CDR and KJPK and found
that a majority of the events occurred within the westward electrojet and the pre-midnight events
often occurred beneath the Harang current system. In section 6.1, The pre-midnight event on 30
September 2016 is consistent with these observations: the SECS maps at 01:22 and 01:26 (Figures
4.8a and 4.8b) show that FCC and KJPK were within the upward Harang current with the WEJ
flowing between this region and the downward Region 1 currents to the north, overhead RANK and
SALU. Then at 01:32 UT (Figure 4.9a), localized and transient upward FACs appear separately
above RANK to the west and CDR to the east; the upward FAC lobe on the west strengthened
near RBY when TLA dB/dt were measured at 01:37 UT (Figure 4.9b). These localized FACs
were likely caused by an instability in the inner plasma sheet, as evidenced by the dipolarization
observed at GOES-13. The TLA dB/dt at RANK (01:26 UT) appeared when the station was located
in a boundary region between upward and downward currents, as was the case for the TLA dB/dt
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that occurred at CDR near 01:32 UT and at RBY near 01:32 and 01:37 UT.

4.8 Summary & Conclusions

In this chapter, we have shown that TLA dB/dt events occurred primarily at night, preferentially
in the pre-midnight sector. These high-frequency perturbations occurred only in the high magnetic
latitude region above 60◦ MLAT, with a majority in the 65-74◦ MLAT band where substorm onset
and expansion occurs. TLA events most often occurred within 60 minutes of substorm onsets
but there is also a subset referred to as unrelated events that occurred more than 60 minutes after
substorm onset and in the absence of a CME-driven geomagnetic storm.

TLA dB/dt events occurred most often during the declining phase of the solar cycle when the
yearly mean sunspot number decreases but the number of substorm onsets per year increases from
solar maximum. TLA events were most common during intervals of mild SuperMAG ring current
activity and fast solar wind flow speeds. This may indicate a relationship between TLA and GMD
events with weak CIR-driven storms due to fast solar wind flow speeds emanating from coronal
holes. Future work includes an investigation of this potential association, especially for the so-
called unrelated TLA events.

We have shown in this chapter that many TLA events during 2015-2019 were associated with
GMDs, often preceding the event or occurring within the overall disturbance. Not only were TLA-
related GMD events common, but as GMD amplitudes increased, the likelihood that TLA intervals
were associated with the GMD vastly increased: 81% of hour windows with extreme, >12 nT/s
GMDs had associated TLA intervals, and 93% of even larger GMDs >20 nT/s included TLA
intervals. Engebretson et al. (2019a, b; 2021) and Weygand et al. (2021) all show that GMDs have
an effective radius of ∼300 km. The results presented here show that high-frequency intervals of
the magnetic field can be even more localized: TLA dB/dt intervals often occurred at fewer stations
than the extent of the GMDs were measured, as shown in Figure 1.3, the event on September 30,
2016, Events 1 and 3 of Engebretson et al. (2019b) and the January 7, 2015 event of Wei et al.
(2021). While TLA dB/dt are commonly more localized than GMD events, the locations of the
largest TLA dB/dt most often signify the locations of the largest GMDs.

This chapter has presented multiple cases of TLA dB/dt correlated with magnetotail dipolariza-
tions, as well as localized FAC structures, PBIs and auroral streamers; one of which also included
measurements of bursty Earth-directed plasma flows in the magnetotail (Wei et al., 2021). We
show that TLA events are closely associated with substorm activity, but they also occur many tens
of minutes and even hours apart from substorm onsets, as well as in locations very far from the
location of the onsets. The spatial and temporal separation of some TLA events from substorms
indicates that TLA events are driven by M-I processes that are often, but not always related to sub-
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storms. Additionally, TLA events may be the ground manifestations of highly localized pseudo-
breakups and/or localized substorm current wedgelets driven by individual closed-field line DFBs
as in Liu et al. (2015, 2018), and these could have GIC-driving potential but are not reflected in
large-scale geomagnetic activity indices like SME.

Strong magnetic perturbations and Pi 2 pulsations are closely correlated with auroral intensifi-
cations followed by streamers driven by DFs and fast flow bursts in the magnetotail (Kepko and
Kivelson, 1999; Lyons et al., 2012; Nishimura et al., 2012). This study has shown that disturbances
in the Pi 1 frequency range are often present in these situations as well. TLA magnetic perturba-
tions appear to have complex M-I drivers, but they are likely the result of small-scale ionospheric
current phenomena coupled to the magnetotail that often but do not always occur during sub-
storms. Because these high-frequency signatures are very often associated with the most extreme
nighttime GMDs that can drive GICs on Earth (and even though magnetic variations with Pi 1 and
short Pi 2 periods do not drive GICs directly), TLA dB/dt and the associated M-I phenomena such
as BBFs are important to take into account when investigating the complex dynamics that can give
rise to GIC. Future work includes a broader investigation of the ionospheric currents, magnetotail
dynamics- especially fast plasma flows in the tail- and solar wind drivers of TLA-related GMD
events. Identification and analysis of TLA dB/dt in association with nighttime GMDs will con-
tinue to provide insight on their M-I drivers and their behavior from the ionosphere to the ground,
where GMDs with associated TLA intervals pose the greatest threat of hazardous GICs.
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CHAPTER 5

Conclusions and Future Work

5.1 Discussion of Results and Impacts

5.1.1 Results and Impacts of Chapter 2

In Chapter 2, we presented an introductory discovery study on high-frequency TLA signatures
and provided evidence for their importance in the context of GICs. The chapter initially addresses
the first part of Guiding Question 1 that asks how often do TLA signatures occur and what are
their characteristics and provides a broad answer to Guiding Question 3 that asks what relationship
TLA events have to other GIC-causing space weather events.

Chapter 2 investigated the occurrence of TLA events with a set of TLA dB/dt intervals identified
in six MACCS stations throughout 2015. We identified a substantial number of TLA events, many
with very large derivative amplitudes (> 10 nT/s). We found that these rapid dB/dt signatures
occur primarily during local magnetic nighttime and in the Fall-Winter months. Further, TLA
events were relatively localized, more often occurring at just one of the six MACCS stations. We
showed that TLA events exhibit a strong association to substorm activity and nighttime GMDs and
a significant portion of the largest > 10 nT/s GMD events in 2015 had associated TLA intervals.

An important impact of the research in Chapter 2 is our finding that the main driver for TLA
dB/dt was not SCs that were previously considered to be the cause of the most rapid and large-
amplitude perturbations on the ground, but rather that TLA dB/dt were more closely related to
small-scale processes and conjunctions of small-scale space weather events (i.e., GMDs and sub-
storms). This suggests that there are more localized and small-scale ionospheric phenomena re-
sponsible for giving rise to TLA events. Further, we found a subset of TLA events that occurred
in the absence of a geomagnetic storm phase and more than 60 minutes from the most recent sub-
storm onset; this suggests that some small-scale M-I processes that can give rise to large dB/dt and
subsequent GICs on the ground can occur during relatively quiet geomagnetic conditions.
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5.1.2 Results and Impacts of Chapter 3

In Chapter 3, Guiding Question 2 is answered: we presented an automated process for iden-
tifying high-frequency dB/dt intervals in ground magnetometer data. This method combines 1) a
filtering process derived from a statistical analysis of noise-type and geophysical dB/dt intervals
with 2) an SVM classification of the filtered intervals to return a list of all the second-timescale,
large-amplitude (>6 nT/s) perturbations in a set of magnetic field data, each with a classification
of either noise-type or geophysical.

A key finding from the performance analysis of the identification process is that common tech-
niques for the identification and removal of magnetic noise are insufficient, motivating the need for
the use of the automated process we have developed. The data processing procedure used by the
SuperMAG data service incorporates both resampling the data as well as automated and manual
data cleaning to remove noise signatures. We showed in Chapter 3 that despite this procedure,
the magnetic field data are still contaminated with signatures of noise interference. Our method
performs very well (HSS = 0.94) at identifying these intervals of data and correctly classifies them.

The automated geomagnetic disturbance classifier described in Chapter 3 provides a valuable
technique that can be easily applied to massive magnetic field databases. As discussed in Chapter
1.4, the need for high-resolution magnetic field data is growing, but the use of such data presents
challenges in dealing with data contamination. Higher-temporal resolution data helps to improve
accuracy for GIC forecasting and other magnetic field studies, as well as preserves the relevant
TLA signatures introduced in Chapter 2, that could be altered or removed with common data
cleaning procedures. The method we presented provides a solution to this problem, targeting
high-frequency noise intervals in magnetic field data, while retaining important high-frequency
signatures relevant to M-I phenomena.

5.1.3 Results and Impacts of Chapter 4

In Chapter 4, we presented a comprehensive analysis on a large database of TLA events that
occurred at 12 stations in the high-latitude region above 60◦ MLAT. With this study, we extended
the research conducted in Chapter 1 to more definitively respond to Guiding Questions 1 and 3.

We showed in Chapter 4 that TLA events occur throughout the duration of the solar cycle, but
were most frequent in the declining phase during intervals of decreased global geomagnetic activity
and increased solar wind flow speed. TLA events only occur in the high-latitude region and were
not identified in magnetometer data measured at middle and equatorial magnetic latitudes. We
provided supporting evidence for the strong association of TLA events with substorm activity and
nighttime GMDs, and we also showed a large number of unrelated TLA/GMD events that can
occur in the absence of CME-driven geomagnetic storms and substorm activity.
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There is a clear correlation between TLA dB/dt intervals and the largest (> 12 nT/s) GMD
events. We stated that nearly all of the most extreme GMD events (> 20 nT/s) had associated
TLA dB/dt intervals. TLA perturbations were often even more localized than the spatial extent
of the GMDs. Often when GMDs occurred at more than one station, TLA dB/dt were measured
at fewer stations and the stations where TLA dB/dt were measured were the locations of the most
extreme GMDs. These behaviors imply the usefulness of TLA intervals to understand the evolution
of small-scale ionospheric perturbations that pose a threat of GIC-driving. TLA dB/dt could be
used as an indicator for the location of the most extreme geomagnetic disturbances, and/or as
an indicator for the timing of a growing perturbation. As GIC research becomes more focused
on the localized nature of the geomagnetic field, TLA dB/dt can be used to gain a more explicit
understanding of geomagnetic perturbations on small spatial and temporal scales and ultimately
more accurately predict where and when the greatest GIC threat will occur.

Finally, in Chapter 4 we illustrate that GMD events with associated TLA dB/dt are related to
dipolarizations of the nightside geomagnetic field at geosynchronous orbit and fast plasma flows
toward Earth that result in localized FAC structures and subsequent PBIs and auroral streamers.
In the September 30, 2016 event analyzed in Chapter 4.6.1, we showed that TLA dB/dt were
measured when the stations were located in boundary regions between upward and downward
currents, suggesting ionospheric flow shear may be involved. In extended research of Chapter 4
(see Appendix C.3), we discuss post-midnight TLA-related GMD events related to omega band
auroras that can also be produced by fast Earthward flows and provide an example of such an
event. The results of the Engebretson et al. (2020) study showed that during GMD events, a current
generator model was favored over a voltage generator, suggesting that excitation of resonant field-
line oscillations coincide with GMDs.

Our results from Chapter 4 and Appendix C.3 suggest that fast flows from the magnetotail are
involved in exciting oscillations in the Pi 1 and short Pi 2 range and that these excitations are not
always related to substorm activity. Such fast flow events cause small-scale FACs that couple to
the ionosphere, causing transient auroral features like PBIs and streamers and subsequent rapid
and localized high-frequency TLA dB/dt on the ground. These perturbations are a key component
in extreme nighttime GMDs that can drive GICs.

5.1.4 Caveats

TLA dB/dt were grouped into separate events based on 1-hour intervals in order to analyze all
TLA dB/dt that may be related to one another. Further, as highlighted in Chapter 2.2, the study
of Chapter 2 referred to TLA events if they occurred within the same hour at multiple stations,
whereas the studies in Chapters 3 and 4 separated TLA events by each station. These methods of
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separating TLA events based on their occurrence at more than one station introduce a source of
discrepancy in the statistics of TLA events. However, an examination of the effect of separating by
station for the TLA events from 2015-2019 found that this effect is not significant enough to alter
the statistical characteristics of TLA events we have examined in this dissertation. From 2015-
2019, there were 598 hour event windows containing TLA dB/dt at any station. Separating into
distinct events based on station location resulted in 702 events (i.e., about 100 of those hour event
windows contained TLA events at more than one station). Because TLA events were commonly
localized at one station, the station separation of events did not greatly impact the statistical results.

Another potential source of statistical discrepancy is the event window timescale of 1-hour.
Because TLA intervals often occur prior to or within a nighttime GMD that lasts 5-15 minutes,
we chose to group all TLA dB/dt that occur within the GMD as well as in the 15-20 minutes prior
to and after the GMD. As mentioned in Chapter 3.3, extending the length of an event window
would not change the number of TLA events (unless changed to event windows lasting multiple
hours or days). However, grouping TLA dB/dt by a shorter timescale of 15-20 minutes instead
may introduce some differences in the statistical results. As in the example shown in Figure 1.3
where multiple GMDs occur within 1-hour, there may be some instances where TLA dB/dt could
be related to separate GMDs within a 1-hour window. It is presumed that a shorter-timescale
grouping may produce slight differences in the number of TLA events, but would likely not greatly
impact the overall statistical results of this dissertation research. Investigation of the impact of
shorter-timescale grouping of TLA dB/dt should be a part of future studies on GMD events with
associated TLA intervals.

5.2 Future Work

TLA dB/dt are magnetic pulsations with frequencies in the Pi 1-2 range. Until now, Pi 1/2 have
been considered as key components of substorm dynamics (Heacock and Hunsucker, 1981), but
they have not been thought to have much importance in the context of GICs. From the research
presented in this dissertation, we have shown that they are an important feature of almost all of the
most extreme GMDs. As many TLA dB/dt precede larger, longer GMDs or occur in the location
of the largest GMD, the occurrences of these signatures indicates that some physical M-I process
has been triggered that can result in GICs. Further, it has been shown that TLA-related GMDs are
related to fast Earthward plasma flows and can occur without geomagnetic storm and/or substorm
activity. A continued study of the M-I dynamics involved in causing these unrelated events and an
assessment of the GICs that can be caused by TLA/GMD events during all levels of geomagnetic
activity is recommended moving forward.

BBFs have been associated to Pi 2 (Kepko et al., 2001) and Ps 6/Pi 3 pulsations (Opgenoorth
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et al., 1983), and these ULF wave frequencies have been related to omega bands, PBIs and stream-
ers. These auroral structures have gained attention for their usefulness in determining the spatial
and temporal behavior of dB/dt that may have high impact on GIC research and forecasting (Zou
et al., 2022). We have shown that dB/dt in the Pi 1 range also occur in association to BBFs and
all three of the resultant auroral structures mentioned above. Further investigation of fast flows,
magnetotail instabilities and Alfvén wave coupling is important to understand the role Pi 1-2 range
perturbations have in M-I coupling and within events with GIC-driving potential.

Continued investigation of TLA events requires ionospheric and magnetospheric data at higher
temporal and spatial resolutions. Analysis of the specific TLA dB/dt in comparison to ASI data and
SECS maps with higher temporal resolution will provide more specific connections to ionospheric
dynamics. Further, measurements of the magnetic field by multiple spacecraft spaced close to-
gether at the relative width of BBFs (2-3 RE) would allow for a more comprehensive investigation
of substorm current wedgelets driven by multiple BBFs.

Inclusion of these higher frequency components in dB/dt studies will add more detailed under-
standing of the ground geomagnetic response to ionospheric disturbances that could cause large
GICs. A more precise view of the ground magnetic field may prove useful in improving dB/dt
forecasting and modeling in an effort to predict and mitigate GICs. Further, it is suggested that
going forward, BBFs are considered as a potential magnetospheric driver for GICs on the ground;
we suggest that BBFs and the ionospheric responses are investigated more thoroughly to better
understand their role in generating rapid and extreme surface dB/dt and assess the threat of GICs.

Finally, measurement of the effective geomagnetically induced currents is necessary to evaluate
the potential impact on small-scale electronics and sensors on Earth caused by TLA dB/dt intervals
of the surface magnetic field as well as the resulting geoelectric peaks caused by extreme GMDs
with associated TLA dB/dt.
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APPENDIX A

Chapter 2 Appendix

A.1 Supporting Information

The information provided here details the station locations used in the study of Chapter 2.
Table A.1 lists the geographic latitude and longitude, and the corrected geomagnetic latitude and
longitude of the six MACCS stations used in this study. Figure A.1 shows these six stations at their
respective geomagnetic coordinates. These corrected geomagnetic coordinates were calculated
for the year of 2015 with the IGRF transformation tool of the World Data Center (WDC) for
Geomagnetism, Kyoto.

Station Geographic Geographic Corrected Corrected
Code Latitude Longitude Geomagnetic Geomagnetic

Latitude Longitude
IGL 69.3 278.2 78.63 343.3
GJO 68.6 264.2 76.86 320.5
RBY 66.5 273.8 75.62 322.33
PGG 66.1 294.2 75.53 11.16
CDR 64.2 283.4 73.70 353.8
NAN 56.2 298.3 65.67 14.80

Table A.1: Locations of MACCS stations used in the study of Chapter 2.
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Figure A.1: Map of MACCS stations used in this study with lines of corrected geomagnetic lati-
tude.
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APPENDIX B

Chapter 3 Appendix

B.1 Extended Research: Machine Learning Algorithm Tuning

B.1.1 Introduction

This section provides supplemental information to the research described in Chapter 3. Three
machine learning algorithms are outlined and the tuning process that lead to the selection of the
SVM classifier in Chapter 3 is described. We provide background information on these other
three classification algorithms, define the hyper-parameters that were cross-validated, and provide
accuracy scores on the test data set to show evidence for the determination that the SVM classifier
performed the best out of the four algorithms.

B.1.2 Tuning Process

For this study, four machine learning algorithms were analyzed to determine the model that
performed the highest accuracy score on the test data. Each of the four algorithms were tuned with
the tuning process outlined below and tested on a dB/dt test set from the eight stations for the year
of 2016. The machine learning classification algorithms that were analyzed are the decision tree,
random forest, support vector machine (SVM), and Gaussian process classifier (GPC).

A Gaussian process classifier (GPC) is similar to an SVM in that it also relies on a kernel
function, but uses this kernel differently. A GPC classifies data by predicting possible functions
that fit the training data (Rasmussen and Williams, 2006). The initial assumptions for the functions
that may possibly fit the training data are determined by the kernel function which represents the
probability distribution over these functions. The model assumes a prior probability distribution
of these functions via the kernel function and then updates this probability distribution based on
information from the training set and using Bayesian inference methodology. In the tuning process,
four different kernel functions were analyzed to determine the kernel function that performs the

86



best on the training data: the radial basis function (RBF), the dot product function, the Matern
function and the rational quadratic function.

A decision tree predicts classes by splitting the data into subsamples based on true/false re-
quirements until every sample is isolated into a class (Song and Lu, 2015). Every time the model
splits the dataset, a node is created and each group that the data was split into is referred to as a
leaf. The loss function for a decision tree is a function that informs the model of the quality of each
split, usually by comparing the class distribution before and after the split via the gini or entropy
functions- these are the ”criterion” hyper-parameters in Table B.1. Each time a node is split into
subsets, the depth of the tree increases up until the maximum allowable depth specified (max depth
parameter in Table B.1). The max features parameter is the maximum number of features used to
determine each split, the Min samples/split parameter represents the minimum number of dB/dt
samples required in order to make another split and min samples/leaf is the minimum number of
dB/dt samples required to be in each group (leaf) after splitting.

A random forest is an ensemble of decision tree predictors whose majority vote determines
the output prediction. Each tree is built with a random subset of the training data (with the same
distribution as the overall training set) as well as a random combination of the features (the number
of which is less than the total number of features and designated by the ’maximum features’ hyper-
parameter) and the final prediction is the popular vote of these trees (Breiman, 1996).

Each tree in a random forest is built with the same hyper-parameters, but not necessarily the
same training data. In addition to the decision tree’s hyper-parameters, a random forest has a
setting to determine how many trees will be built in the ensemble. The random forest also has the
bootstrap hyper-parameter: if True, each tree is built with a random but equally sized subset of the
training data with replacement (i.e. each random subset is taken from the full data set so some trees
have the same samples) and if False each tree is built from the entire data set (Breiman, 2001).

The general tuning process is as follows: the training data were split into separate but equally
proportional sets (referred to as a ”fold” of the data) and then a model with a combination of of
hyper-parameters was trained and tested on each of the partitioned data sets and the model that
scored the highest is selected for those hyper-parameters. The number of combinations of hyper-
parameters to be trained and tested on was based on each models required hyper-parameters and the
computation time to fit each model with each combination of parameters. The number of separate
folds each model was split into, as well as the number of combinations of hyper-parameters and
the overall number of fits of the model are listed in Table B.1. The specific hyper-parameters that
resulted in the best model for each type of model are also listed in Table B.1.

Each of the four models were tuned and cross-validated with the specific number of folds and
fits shown in Table S1. The optimal hyper-parameters determined are listed. Each model is then
fit to the training data with the optimal hyper-parameters, then the model is tested on the test data
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set that consists of data from each of the eight stations for the year of 2016, the test scores are
listed at the bottom of Table S1. The results in Table S1 show that the SVM model had the highest
accuracy and Heidke skill score on the test set. While the POD score was slightly higher for the
random forest, the SVM classifier was chosen because the average of the three test scores for SVM
was higher than tht of the random forest. Thus, the SVM was chosen as the best classifier for
high-frequency dB/dt signatures in magnetic field data.

Model SVM GPC Decision Tree Random Forest
Folds 10 5 10 5

Tuning Candidates 49 4 2700 2880
Fits 490 20 27000 14400

Kernel = RBF Kernel = Matern Criterion = entropy Criterion = gini
Optimal γ = 1 length scale = 1 Max depth = 8 Max depth = 10
hyper- C = 10 ν = 1.5 Max features = 3 Max features = 5

parameters Min samples/leaf = 3 Min samples/leaf = 2
Min samples/split = 9 Min samples/split = 3

Number of trees = 200
Bootstrap = True

Accuracy 0.9825 0.9784 0.9677 0.9627
POD 0.9112 0.9043 0.8497 0.9590
HSS 0.8688 0.8422 0.7671 0.7607

Table B.1: Table detailing the tuning, training and testing information for four machine learning
algorithms

B.1.3 Discussion of Hyper-parameter Selection in SVM Classifier

As discussed in Chapter 3, the SVM classifier with the radial basis function requires the spec-
ification of the γ and C hyper-parameters. The γ parameter controls the radius of influence, or
similarity radius, of samples used as support vectors. A smaller value of γ means a larger sim-
ilarity radius. The C parameter determines how much the model can decrease the margin of the
decision boundary in return for a larger number of correct classifications. A large value of C means
that the decision boundary can be much closer to the training samples if more samples are classified
correctly.

Figure B.1 is a visualization of the decision function on an example classification problem
with two input features and two target classes. Each box in the 4x3 grid is an example feature
space for a different combination of hyper-parameters with increasing values of γ downward and
increasing values of C to the right. These plots were created using the example code available
at scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.
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Figure B.1: Grid of example feature spaces and decision functions for various combinations of γ
and C in the RBF kernel of the SVM classifier. The blue and red circles represent exampel target
classes and the blue and red shading represents the regions where the decision function classifies
the targets as blue or red.

When gamma is small, the similarity radius for grouping samples and classifying them is larger.
This means that the shape of the data cannot be properly identified and the decision boundary is too
broad. When gamma is large, the opposite occurs and the SVM overfits to the data, capturing the
exact shape of the training data and resulting in an inability to generalize to new data. When C is
small, the margin for the decision boundary can be large regardless of the amount of misclassified
samples and the margin decreases for increasing C.

The top left box of Figure B.1 shows the decision function when γ and C are both small. The
similarity radius is very large and the margin of the decision boundary is large, so the decision
function in this case is just a linear separator between classes. The bottom right box shows the
opposite case where γ and C are both large, the decision boundary is overfitting the samples,
classifying all samples correctly but with no ability to generalize to new data in this feature space.

When gamma is small and C is large (bottom left), the similarity radius is large so the SVM
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groups data in a broad area of the feature space, but there is a penalty for incorrect classifications
so the decision boundary margin is reduced and the classification region is relocated so there are
less misclassified samples. When gamma is large and C is small (top right), the similarity radius is
small so the region of influence of each sample is small and thus classification regions are small.
Then, because C is large, the margin of the decision boundary to the samples is very small and the
model incorrectly generalizes and thus only samples extremely close to the blue circles are labeled
blue, and everywhere else is labeled more likely red.

For this two-dimensional feature space, the two best performing models are those in the center
of the grid (located at (2,2) and (3,2)). These classifiers balance the size of the similarity radius
and the decision boundary margin to obtain the largest number of correctly classified samples. The
RBF kernel with γ = 1 and C = 10 is what is used for the geomagnetic disturbance developed and
described in section 3.7. The model has an intermediate value of γ and a slightly higher value for
C resulting in a slight reduction of the boundary margin in return for more specific classification
of the targets. The result is that less geomagnetic TLA dB/dt intervals would be misclassified at
noise-type events.

The value for Gamma is intermediate so the model is able to define a similarity radius that
effectively captures the shape of the sample groups in the feature space; the value for C is slightly
higher than the median of the typical range for C, so the decision boundary margin is slightly
closer to the samples in order to maximize the number of correctly classified samples, indicating
that some of the samples of each classification are quite close to one another in the feature space.
Comparison of the two best performing example classifiers in Figure B.1 shows that these hyper-
parameters tune the model to have a more distinct decision function in the feature space than both
γ and C values of 1.

The SVM classifier for geomagnetic and noise-type dB/dt has input features of dB, dB/dt, dt,
time of day, day of year, and magnetic latitude of the station. The filters described in section
3.6 removed a large number of noise-type intervals and narrowed the training samples to a more
defined range of dB, dt and dB/dt values. Thus, the dB, dB/dt and dt features are all quite similar
to one another for the noise-type and geomagnetic dB/dt. From our further analysis of longer-
term temporal trends and spatial behavior of TLA dB/dt from the study in Chapter 4, we know
that TLA dB/dt occur more often at nighttime and is strongly associated with substorm activity
that is more common around the equinoxes. Further, TLA dB/dt occur only at high-latitudes and
most commonly from 65-74◦ MLAT. Noise-type dB/dt can occur at any location and at any time,
however some stations are more noisy at random times due to instrumental error and/or during
daylight hours due to station location relative to human interference.

This information paired with the behavior of hyper-parameter combinations shown in Figure
B.1 and the resultant high performance of the SVM classifier developed in section 3.7 suggests
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that the decision function identifies some distinctions and nuances of the temporal and spatial
characteristics of geomagnetic and noise-type dB/dt. Because the model still makes some incorrect
classifications of both types of dB/dt intervals, this suggests that there are some noise-type and
geomagnetic dB/dt that are virtually identical or that there are some intervals with typical amplitude
and timescale characteristics of one type but occur at a magnetic latitude or at a time that is more
common for the opposite type of interval.

B.2 Identification of the F2 Trace in Ionosonde Data with U-net
Approach

This section details research conducted during an internship with Air Force Research Labo-
ratory (AFRL) at Kirtland Air Force Base in Albuquerque, New Mexico. This internship was a
joint effort between AFRL and the National Science Foundation, and began September 2021 and
ended May 2022. While this project did not directly contribute to the research on TLA events
that are the topic of this dissertation as a whole, the research described in this section aided in a
broader understanding of machine learning applications to space weather that did contribute to the
development of the automated TLA classification method of Chapter 3. The data and transmit-
ter/receiver locations described in this section are classified and so are represented with arbitrary
labels. Collaborators of this work are: Kathleen Shurkin (AFRL Advisor), Eugene Dao (Team
Member), John Carilli (Team Member), Capt. Tyler Hussey (Team Member).

Approved for public release; distribution is unlimited. Public Affairs release approval:

AFRL20232104.

B.2.1 Background & Motivation

An ionogram is the displayed data recorded from an ionosonde: an instrument set that surveys
ionospheric conditions by transmitting and receiving high-frequency radio waves through the iono-
sphere and measuring their parameters (i.e., frequency and time of travel). The resulting ionogram
is a plot of the time of arrival (or altitude) as a function of the frequencies reflected by the iono-
sphere and effectively maps the main parameters of the ionospheric layers present. An oblique
(OB) ionogram refers to ionosonde data that was recorded at a receiver that is some ground range
distance from the transmitter; a vertical incidence (VI) ionogram is created from data recorded
at a receiver at the same location as the transmitter. The traces in an oblique ionogram appear
”stretched” along the frequency axis because of the frequency shift due to the angle of incidence
upon the ionosphere (Picquenard, 1974).
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Beyond trace transformations due to the degree of obliqueness, the ionogram shows ionospheric
anomalies and disturbances like the presence of the sporadic-E layer: a thin, highly-ionized layer
in the E region that blankets the ionosphere above (Whitehead, 1989) or the spread-F phenomenon
that occurs due to plasma instabilities in the F-layer (Herman, 1966). For many reasons, it is useful
to observe and analyze the radiative state of the ionosphere: one common motivation being that
these space weather disturbances can significantly impact radio communications. For decades,
image analysis techniques have been used to analyze ionograms in an effort to classify or extract
the various features of the ionogram traces (Tsai and Berkey, 2000).

The research project detailed in this report consists of analyzing the quality of a convolutional
neural network (CNN) model to identify the F2 trace within ionosonde data. Further, a central goal
of this research is to determine how well such a model performs when classifying ionograms of
varying degrees of obliqueness and estimate the amount of data required for optimal performance
of the model. More specifically, our goal was to use a U-net architecture (Ronneberger et al.,
2015) to identify the F2 trace within the ionograms independently of the degree of obliqueness of
the data.

B.2.2 Method & Data

One of the central goals of this research project is to determine the efficacy of a convolutional
neural network with a U-net architecture to effectively identify the F2 trace in ionograms. To
accomplish this goal, a U-net model was trained on ionogram images with labels (or masks) that
include only the pixels of the image that are classified as the F2 trace. The model scores were
evaluated to determine the optimal number of epochs required to achieve the best performing
model. The best performing model in this case was determined when the binary cross-entropy loss
function (a function that measures the error in the model) does not decrease for 25 epochs.

The training data used in this study are 296 images created from oblique ionosonde data
recorded at a receiver, R1. The transmission site for these ionogram data is located approximately
1100 km away at tranmission site T2. In order to test the U-net model performance with more
training data, images from the ”Pink data set” were labeled and added to the training data in multi-
ples of the original 296 from 2x to 5x. The Pink data set is created from ionograms from multiple
transmitters that are anonymous so there is a mix of degrees of obliqueness within the added data.
The test set for the model is comprised of 274 ionogram images and masks from the R1 receiver
and three transmitter sites: T1, T2, T3. T1 is located about 100 km from the R1 receiver, T2 is
∼1100 km from R1 and the T3 site with ground range ∼2700 km to R1.

All of the ionogram images used for training and testing are black and white (i.e., single chan-
nel), 200 x 200 pixels, padded with 28 pixels on all sides so that the final image size input to the
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model is 256 x 256.
The specific U-net architecture was constructed by Capt. Tyler Hussey (Deputy Branch Chief

- RVBX) and was modeled after the original U-net description by Ronneberger (2015). A typical
convolutional layer of a CNN takes an input image and performs matrix multiplication (or dot
product) with the image and a filter (a matrix of weights used to detect some part of the image)
that is applied to a portion of the image. The output value is stored in the output of the layer.
Then, the filter is shifted to the next portion of the image and another value is added to the output
until all portions of the image have been covered with the filter and a complete output has been
constructed. The CNN is informed by a loss function to determine how well the weights performed
at identifying the feature and then the model updates the weights in the next epoch to optimize
(decrease) the loss function.

The configuration of the U-net model is shown in Figure B.2. The principle behind a U-net
architecture is to perform convolutions as a typical neural network, however it is followed by an
expansive path which performs transposed convolutions that upsample the image back to the input
image size. The final output of the model are image predictions with equal size as the input (256 x
256); the model predicts for every pixel in the input image the likelihood (a value between 0 and
1) that it is part of the F2 trace. Pixel predictions of ≥0.5 are part of the F2 trace. This model will
be referred to as the Tyler Hussey (TH) model. The loss function used for this model is the binary
cross-entropy loss.

To evaluate the model performance, the Mean IoU and Dice coefficient are used. The accuracy
represents the total number of correctly predicted pixels; the loss is a metric that indicates how
poorly the model predicted a single pixel. A common problem in image segmentation occurs when
the target pixel group is small relative to the image size so the model can predict all zero (i.e., ”not
in target group”) and accomplish a relatively high accuracy classification. For this reason, the
Mean Intersection over Union (IoU) and Dice coefficient are used to better evaluate the model
training performance. Mean IoU is a common metric used in image segmentation problems.

IoU (also referred to as Jaccard index (Jaccard, 1912), shown in Equation 1) is a measure of the
intersection of the pixels in the true mask and predicted mask divided by the union of the pixels.
The Mean IoU is the average of the IoU values for every sample in the training batch or test set.
The IoU equation is,

IoU =
|A ∩B|
|A ∪B|

=
TP

(TP + FP + FN)
(B.1)

where A represents the mask and B represents the predicted image. Here, TP = True Positive
predictions, FP = False Positive predictions, and FN = False Negative predictions. ”True Positive”
means that the model predicted a pixel to be Positive (i.e., ≥ 0.5, part of F2 trace) and was correct
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Figure B.2: U-net architecture created by Capt. Tyler Hussey and modeled after the original U-net
of Ronneberger (2015). The numbers above each rectangle are the number of filters used for the
convolution and the vertical numbers on the bottom left of each rectangle are the dimensions of the
output image of the layer.

(i.e., prediction was True); False Positive means that the model predicted Negative (i.e., < 0.5, not

part of F2 trace) and was incorrect, and so on. The Dice coefficient (Equation 2) indicates how
close the predicted image is to the mask compared to the similarity of the two by chance Dice
(1945). In other words, the dice coefficient is the ratio of twice the intersection of the mask and
predicted image to the total pixels in both the mask and predicted image.

Dice =
2|A ∩B|
(|A|+ |B|)

=
2TP

(2TP + FP + FN)
(B.2)

B.2.3 Results

The TH model was trained on the original data set of 296 images (with 80/20 train/validation
split) until the loss function reached a minimum and stopped decreasing for 25 epochs; this oc-
curred after 500 epochs. The accuracy score for the training and validation sets as well as the loss
and validation loss are shown in Figure B.3 (left). As mentioned previously, the accuracy is ini-
tially high and converges quickly. A better representation of the learning performance of the model
is shown in Figure B.3 (right): the mean IoU and dice coefficients for the training and validation
data sets. This shows that after 500 epochs when the loss was no longer decreasing, the validation
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Mean IoU (green) and validation Dice score (red) both began to plateau around their maxima from
400-500 epochs. From these training results, 500 was chosen to be the optimal number of training
epochs.

Figure B.3: (Left): Plot of the learning curves of accuracy and loss scores for the training and
validation sets for 500 epochs of training the TH model. (Right): Learning curves of Dice and
Mean IoU values for training and validation sets for 500 epochs of training.

The model was tested on the full test data set (274 images from T1, T2, T3) as well as on test sets
consisting of images for each of the transmitter sites individually. Then, the TH model was trained
for 500 epochs on increased training data sets consisting of multiples of 296 up to 5x and tested
again on the full test set as well as on the individual transmitter site test sets. The Dice coefficient
scores for the full test are compiled in Table B.2 with the scores for the TH model trained on
expanded data set multiples (i.e., each multiple training data set contains the same images and
masks as the previously trained models with an added 296 samples and an 80/20 train/validation
split). Table B.2 shows that for the full test set, the test Dice score increases more than 10% upon
doubling the original training data set and then increases in smaller increments from 2x to 5x data
sets. The test scores are highest for the T2 test images for all data set multiples; this was expected
because the model was trained on images from the T2 transmitter site. The model scored the lowest
in all cases for the ionogram images from the T1 site, these scores increase from 1x to 4x training
sets and then slightly decrease on the 5x training set.

The differences in test scores observed for each of the transmitter sites is likely due to the secant
law: the reflected frequency in an oblique ionogram is shifted from the critical frequency (in a VI
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1x 296 2x 3x 4x 5x
Full test set 0.4966 0.6182 0.6427 0.6618 0.6731

T1 0.0516 0.1609 0.3377 0.4458 0.4241
T2 0.7171 0.7067 0.7133 0.7204 0.7233
T3 0.3304 0.6581 0.6554 0.6628 0.6977

Table B.2: Dice scores for each test set and each model.

ionogram) by a factor of the secant of the incident angle on the ionosphere sec(θi) (Picquenard,
1974). While the rate of change of sec(θi) increases from 0◦ to 90◦, the geometry of oblique
ionosonde data collection is such that most ground ranges are far enough away that θi is from 85-
90◦ and thus secθi is within a similar range for most oblique ionograms, but is very different for
much smaller values of θi (i.e., short-range oblique ionograms).

For example, for a ray path to the bottom-side ionosphere at h = 100 km and a flat ground, be-
yond a ground range of about 1000 km, the angle of incidence is around 85◦ or greater. This means
that for oblique ionograms with ground ranges beyond about 1000 km, the degree of obliqueness
(i.e., the amount of frequency shift) changes much less than it does for ground ranges less than
1000 km. In other words, degree of obliqueness is more similar for ionograms with ground ranges
of 1000 km and 10,000 km than for ground ranges of 1000 km and 100 km. The effect of this
is observed in the model: the frequencies in the oblique ionogram training set from T2 are more
similar to frequencies in the T3 test set than the T1 test set, despite the closer range between T2
and T1. Essentially, the model learns the similarity of the long-range oblique ionograms much
more efficiently than the similarity of long-range and short-range oblique ionograms.

The performance on the short-range ionogram images is the primary weakness of the model,
this can also be seen in Figure B.4, a plot of the Dice scores for the model trained on each multiple
of training data that are listed in Table B.2. The decrease in the T1 Dice value for the 4x model
while the test scores on the other sites are still increasing indicates that more short-range or VI
ionogram training data is necessary. Because these scores are the lowest of the three transmission
sites, adding even 1x more VI or short-range oblique ionogram data could greatly increase the
performance of the model overall.

While the model exhibited lower scores for the short-range oblique ionograms from T1, the
increase from 1x to 5x training data is still clear from Figure B.4. An example of the actual
ionogram image output of the model trained on 5x training data is shown in Figure B.5. Figure B.5
(a) is the original ionogram image from the T1 training set, Figure B.5 (b) is the mask which is the
exact pixels from (a) that are part of the target F2 trace and Figure B.5 (c) is the output prediction
of the model. Figure B.5 shows that while there are some performance issues with the VI ionogram
images, the model still does perform moderately well on classifying the F2 trace.
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Figure B.4: Plot of the dice scores separated by Full Test Set and the individual transmission sites for each
model trained.

Another example of the final model output is shown in Figure B.6, the same format as in Figure
B.5, these are ionogram image (a), mask (b), and prediction output (c) for an ionogram from the
T2 transmitter site. This ionogram has traces of the F1 layer and the E layer; it shows that not
only can the model predict the F2 trace in a short-range ionogram where the only other traces are
multiple hop traces of F2, but the model also can distinguish the F2 trace from other ionospheric
layer traces in an oblique ionogram. However, the test scores in Table B.4 show that it does not
predict every F2 trace in the T2 test set so well, as the final score is only 0.67. There are some cases
where the model predicts most but not all of the F2 trace pixels correctly and others where the F2
trace is more ambiguous or the ionogram data are corrupted with noise and the model outputs no
F2 trace prediction pixels at all (i.e., a blank output image).
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Figure B.5: (a): Original ionogram image from T1 test data set, (b): mask of ionogram image,
with only the pixels of original image that are labeled as F2 trace and (c): model output prediction
image, with pixels predicted as F2 trace.

Figure B.6: (a): Original ionogram image from T2 test data set, (b): mask of ionogram image,
with only the pixels of original image that are labeled as F2 trace and (c): model output prediction
image, with pixels predicted as F2 trace.

B.2.4 Discussion & Conclusions

The goals of this project were to a) determine if the TH U-net model can identify the F2 trace
in ionogram image data and find the optimal number of epochs to train the model on a baseline
dataset, b) determine how well the model performs on ionogram images with various degrees of
obliqueness and c) determine how much added training data is necessary to sufficiently identify
the F2 trace in ionograms for any degree of obliqueness. The results outlined above show that the
TH model can identify the F2 trace, but the test scores of the model could still be greatly improved.

The test scores on the final model trained on a 5x training set are highest on new ionogram
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images that are from the same T2 transmitter site. The test scores on the T3 data are slightly lower
but in close range to those of T2, and lowest on the short-range images from the T1 transmitter
site. The similar scores of the T2 and T3 site around 0.70 despite the greater distance between the
two (∼1600 km) as opposed to T2 and T1 (∼1000 km) indicates that the model has great potential
to identify the F2 trace in ionograms images and to do so regardless of the ground range between
transmitter and receiver (i.e. degree of obliqueness). It is hypothesized that the final 5x model
would perform similarly to the 0.70 test score for ionograms with ground ranges much greater
than 2700 km The lower scores of the short-range from T1 and the decrease in the scores from
the 4x to 5x model indicates that the model requires more VI and short-range oblique ionogram
training data in order to sufficiently identify F2 traces in all ionogram types. Future work on this
research project involves adding more short-range and VI training data and then testing the model
on ground ranges <<1000 km and >>2700 km.

Overall, the main goals of this project have been met. This research proves the concept for F2
trace identification with a U-net convolutional neural network architecture, however more training
data of both VI and oblique ionogram images are necessary to improve the performance of the
model.
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APPENDIX C

Chapter 4 Appendix

C.1 Magnetometer Data Availability

Station 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
IGL 0 0 175 0 0 0 354 293 338 287 337
GJO 0 0 307 0 0 0 327 272 255 0 152
RBY 0 0 299 0 0 0 343 213 343 303 342
PGG 0 0 323 0 0 0 306 185 305 342 345
CDR 0 0 174 0 0 0 343 228 337 334 337

RANK 350 348 336 238 280 352 342 100 361 363 341
YKC 356 361 364 366 365 363 358 344 341 365 178
FCC 85 365 361 362 349 354 360 335 351 349 247
GILL 365 365 358 365 286 353 361 300 362 343 214
WHIT 321 357 333 256 335 364 350 357 219 36 282
ATHA 356 362 365 364 355 358 359 210 323 364 323
MEA 365 365 365 365 365 365 365 355 363 365 200
SALU - - - - - - - 1 - - -
KJPK - - - - - - - 1 - - -

Table C.1: Magnetometer station data availability per year for 2009-2019.

C.2 Other Data Use Acknowledgements

The magnetic footprint of GOES-13 was determined using tools provided by SSCWEB (https:
//sscweb.gsfc.nasa.gov/).

The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface at https://
omniweb.gsfc.nasa.gov.

GOES magnetometer data are available online (https://satdat.ngdc.noaa.gov/
sem/goes/data/full/).
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C.3 Extended Research: Interhemispheric Comparisons of
Large Nighttime Magnetic Perturbation Events Relevant
to GICs

In this section, we summarize a study that I was a co-author of titled ”Interhemispheric Com-
parisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs” published in JGR:
Space Physics (Engebretson et al., 2020). Then we discuss the relevance of the findings of this
study to the results of Chapter 4.

C.3.1 Summary

In this study, four nighttime GMD events observed from 2015-2018 are analyzed us-
ing conjugate high-latitude magnetometer stations. The data used are from 1) PGG and
IQA in eastern Nunavut, Canada of the MACCS (Engebretson et al., 1995) and CANMOS
(Nikitina et al., 2016) programs respectively, paired with the magnetically conjugate south
pole station in Antarctica (Engebretson et al., 1997) and 2) the Greenland West Coast Chain
(www.space.dtu.dk/MagneticGroundStation) and magnetically conjugate stations in Antarctica of
the Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) chain (Clauer et al., 2014)
and the British Antarctic Survey (BAS) Low Power Magnetometer (LPM) chain (Kadokura et al.,
2008). The events were identified using the semi-automatic routine described in detail in Enge-
bretson et al. (2019a).

Of the four GMD events, three of them were pre-midnight events and one was a post-midnight
event. The pre-midnight GMDs showed fair hemispheric conjugacy in the timing of Bx excursions
(which were the largest perturbations for pre-midnight events), latitudinal profiles and amplitude
peaks. For the post-midnight interval, highly localized GMDs occurred independently in time
over an approximate 1.5 hour period at each station in both hemispheres and the largest amplitude
perturbations were in the By component. Auroral images from the DMSP spacecraft (orbiting
at ∼840 km) were used to confirm the presence of omega bands in the auroras during the post-
midnight interval.

Omega band auroral structures resemble an inverted Greek letter, Ω with scale size from a
few hundreds to a thousand kilometers (Jorgensen et al., 1999). They generally appear in the
morning sector during substorm recovery; they are formed by an eastward-moving (∼1 km/s) train
of alternating upward and downward small-scale FAC that causes undulations of the westward
electrojet. Thus, a quasi-sinusoidal pulsations embedded in an electrojet bay is the magnetic field
response on the ground.

Comparison of magnetic perturbation amplitudes with ionospheric conductances via the AMIE
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procedure (Cousins et al., 2015) showed that the GMD amplitudes did not correspond well to the
ionospheric conductances, concluding that a current generator model was favored over a voltage
generator model as a M-I electrodynamic driver of these events. The current generator model
corresponds to the excitation of resonant field line oscillations.

C.3.2 Connection to the Research Presented in Chapter 4

In Chapter 4, we have shown that many of the characteristics of TLA events are similar to that of
nighttime GMDs. The magnetic local time dependence of both types of events are very similar,
with two distinct populations in the pre- and post-midnight sectors. The dependence on both ring
current activity and solar cycle dependence, as well as auroral electrojet activity and the distribution
of time delay from substorm onset are all very similar to nighttime GMDs. It is understandable that
there are so many shared chatacteristics of nighttime GMDs and TLA events because they often
occur concurrently, and/or in the near vicinity of one another.

As one of the key findings of Engebretson et al. (2020) is that conjugate post-midnight GMDs
were associated with omega bands, and following from the simultaneity of many TLA and GMD
events, it is reasonable to assume that post-midnight TLA events may be associated with auroral
omega bands as well. To explore this assumption, we have examined THEMIS ASI data during
some of the post-midnight TLA-related GMD events.

Of the set of 33 TLA-related GMD events that occurred from 2015-2019 during the post-
midnight interval from midnight to 6 MLT, there were seven events that clearly coincided with
omega band structures in the ASI images. An example of one of these events is shown in Figure
1.3; the figure shows magnetic field data at four stations on 17 December, 2017 and TLA dB/dt
that occurred at RANK near 06:10 UT preceding GMDs at stations to the north.

The ASI images at RANK for three-second intervals during the minute of 06:10 UT is shown in
Figure C.1. These images show a clear omega band structure in the auroras that starts to form in the
first second, moves slightly eastward and dissipates by the end of the minute. A separate omega
band structure was observed in the minute prior that also dissipated by the start of the interval
shown in Figure C.1.

C.3.3 Discussion

Zesta et al. (2000) have shown that there is a one-to-one correlation between PBIs and BBFs in
the tail. Henderson et al. (2002) showed that PBIs and auroral streamers can evolve directly into
omega bands, suggesting a strong relationship between BBFs and omega bands. The relationship
between fast flows and omega bands in the auroras has since been reinforced by Partamies et al.
(2017).
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Figure C.1: THEMIS ASI data at the RANK station at from 06:10-06:11 UT on 17 December,
2017.

It is known that Ps6/Pi3 magnetic pulsations (quasi-periodic sequences of GMDs with ∼5-
40 minute periods (Opgenoorth et al., 1983)) often accompany omega band structures. Multiple
sources have asserted that omega bands and associated Ps6/Pi3 pulsations are very effective at
driving large GIC (Kozyreva et al., 2019; Apatenkov et al., 2020; Chinkin et al., 2021). The
Engebretson et al. (2020) study summarized in this section gave an example of a post-midnight
GMD associated with omega bands; we have presented another example of a GMD with TLA
dB/dt intervals that coincides with omega bands in the ionosphere. These results emphasize the
relationship between nighttime GMD/TLA events and omega bands in the aurora and reinforce the
potential for these events to drive GICs at Earth’s surface.
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