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ABSTRACT

The perception system is a key component of AVs, as it relies on onboard sensors to gather in-
formation. However, the system faces challenges due to occlusions that obstruct visibility. Safely
navigating in highly occluded scenarios remains a significant obstacle for AVs. In this dissertation,
we present a systematic approach to address this issue by preparing AVs for fully occluded areas
on the road.

To effectively model the occluded areas, we introduce a joint object detection and semantic
segmentation algorithm. This helps in acquiring critical environmental information with increased
efficiency, enabling AVs to make decisions in the presence of occlusions. In tandem, we pro-
pose a semantic 3D mapping framework that efficiently identifies occlusions, which feeds into
a layered 2D map, essential for planning, and contains the occlusion data. The experiments in
SemanticKITTI dataset demonstrated that the proposed perception algorithms can generate a se-
mantic grid map of the environment and identify the occluded grids efficiently and effectively.

To tackle the occlusion problem and produce a safe plan for the AV, an occlusion-aware ob-
ject management system is introduced to generate virtual road users for the planning algorithm,
and near-optimal trajectories are solved using a sampling-based method while taking the presence
of virtual objects into account. The experiments in a 2D toy driving environment showed the pro-
posed planner can achieve better safety against baseline approaches while maintaining a reasonable
passing speed in several challenging testing scenarios.

Furthermore, the effectiveness of the proposed perception and planning framework is validated
in both the Carla simulator and the physical Mcity testing facility, demonstrating the effectiveness
of the proposed architecture and its superior safety performance over baseline approaches. Besides,
a modular AV stack is described to guide the integration of the proposed perception and planning
framework in the experiments.

Validation experiment results show that the proposed framework results in a reduced crash rate
in comparison to several baselines, including the renowned open-source AV framework, Autoware.
Notably, these outcomes were realized without needing a High-Definition (HD) map with road
geometry definitions.

xiii



CHAPTER 1

Introduction

The Automated Driving System (ADS) is an emerging multidisciplinary topic both for the aca-
demic and industry. It’s expected to improve the driving safety, passenger experience, traffic
throughput and logistic efficiency. The boom of its public interest starts from the famous prize
competitions “Grand Challenge”, and later the “Urban Challenge” held from 2004 to 2007, spon-
sored by Defense Advanced Research Projects Agency (DARPA). Many famous companies build-
ing ADS, such as Waymo and Uber, originated from the teams participated in those challenges
[170, 242]. There are also AV tests organized by research teams to demonstrate the possibilities of
fully autonomous driving platforms including the VIAC[17] and PROUD[27] tests. Nevertheless,
these tests did not indicate that ADS has reached maturity.

In 2014, another milestone for the development of ADS is the publish of the J3016 document
[51] from the Society of Automobile Engineers (SAE), which defines six levels of capabilities for
the AV. It has been one of the most cited references for driving automation. A mature ADS must
be able to comprehend and monitor the driving environment, and react to road events properly and
safely. The J3016 standard was published and regularly updated to help the industry evolve and
provide a roadmap for companies to reach the final full driving automation. There are also other
government documents [79, 1] for AV published around that time 1.

Guided by those legislative documents, there are a growing number of AV start-ups building a
variety of ADS. Different companies take different approaches to achieve the driving automation.
Some of them (namely Tesla and Xpeng) build the ADS with only mature and cheap automotive
sensors (such as cameras and radars), while most others are trying to deploy more advanced sensors
like lidars and mmWave radars. Some of them rely on the onboard sensors to build a model of the
driving environment, while others incorporate pre-built HD maps or Vehicle to Everything (V2X)
communication to help the vehicles achieve a higher automation ability. Yet, regardless of the
different approaches, all AVs must take safe reactions even in very challenging scenarios. One
of those scenarios is driving in a highly occluded environment, which is a big challenge even for

1A collection of laws and regulations related to AV can be found at this webpage from Stanford.

1

http://cyberwiki.law.stanford.edu/wiki/index.php/Automated_Driving:_Legislative_and_Regulatory_Action


the latest competent ADS. According to the report [208] from Waymo, 2 out of 8 critical events
that likely involve airbag deployment were directly related to occlusion, while the other events are
caused by the incompetence or adversarial behavior of the other vehicle. Recently, Cruise [117]
and Tesla [70, 71] also publicly explained their perception and planning system, and some of their
efforts have been put into the occlusion issue as well.

Therefore, in this dissertation, we worked on improving the safety and roadmanship of ADS
under severe occlusion, by proposing novel perception and planning algorithms with occlusion
awareness. In this chapter, we will first review the architecture of AVs, and then briefly discuss the
existing algorithms for AV perception, cognition, planning and control. Then, the research problem
will be proposed. Lastly, the contributions and structure of this dissertation will be summarized.

1.1 System architectures of AV

Like most robotic systems, AV is required to understand the surrounding environment and inde-
pendently make decisions to accomplish some given tasks. The winner of the DARPA Urban
Challenge, the “Boss” from Carnegie Mellon University, was documented in [242]. Its on-board
system consists of modules of perception, motion planning, mission planning, behavior reasoning.
Following these successful architectures, a lot of researchers[119, 320, 13, 264, 10] and com-
mercial companies [158, 157, 156] have explained their designs of ADS, which usually split the
onboard system into three high-level modules: Sensing, Computing and Planning.

Sensing

The sensing system consists of a variety of automotive-grade sensors. Different from intrinsic
sensors which monitor the status of the vehicles, extrinsic sensors are used to collect raw in-
formation of the environment surrounding the vehicle. In the remainder of this dissertation, we
only discuss the extrinsic sensor (omitting the adjective “extrinsic”), which are most relevant to
the driving automation. Currently, the commonly used sensors includes cameras, radars, lidars,
Global Navigation Satellite Systems (GNSS), and Inertial Measurement Unit (IMU). Each sensor
is usually accompanied with auxiliary hardware modules for power supply and data decoding. The
configuration of the sensors on AVs is subject to the trade-off between cost and performance.

Cameras have been widely used in the automotive industry with the development of Advanced
Driver Assistance Systems (ADAS) systems. It can provide images of the environment with a high
information density and a relatively lower cost. However, the camera can only sense the objects
within its field of view and its availability can degrade significantly due to bad weather, glare,
and ill lighting condition. Therefore modern AVs [158, 157] are usually equipped with multiple
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cameras so that their field of view can complement each other and the depth information can be
implicitly inferred based on the extrinsic transformation between the cameras.

Radars have also gained popularity thanks to the wide deployment of ADAS systems. Radars
use radio waves to detect obstacles in certain directions, it report the distance to the obstacles in a
variety of range, and some radars can also report the velocity of the obstacles based on the Doppler
effect. Radars are robust against weather change and it’s widely used in primitive ADAS features
such as automatic emergency braking, blind spot monitoring, and parking assistance. Neverthe-
less, most radars deployed on vehicles nowadays has a low resolution, and it’s hard for them to
categorize the obstacles. They can hardly tell whether the obstacle is a standing pedestrian or a
pole.

Lidars, compared with the two types of sensors above, haven’t been widely integrated into the
automotive systems until recent years. They can precisely describe the shape of the environment
through a collection of laser reflections, which is usually called the point cloud. Thanks to the
high precision, lidars have attracted many AV companies including Waymo, Cruise, Baidu, etc.
However, despite the desreasing trend of the lidar price, they are still much more expensive that
the cameras (per unit) and it’s still hard for lidars to achieve the same level of information density
as cameras.

GNSS and IMU are the two key components for the ADS. The GNSS module receives the
information from the navigation satellites and reports the position of the vehicle related to the
earth, which is usually considered as the “global” position of the vehicle. On the other hand, the
IMU module usually consists of a gyroscope, an accelerometer and a compass, which reports the
orientation, acceleration, and angular velocity of the body it attached to. These two components
are usually integrated together to obtain an accurate global pose and velocity information of the
vehicle.

Besides the common sensors mentioned above, new types of sensors are being developed to
meet the growing requirements of efficiency and robustness. 4D imaging radar and event cameras
are some of the most promising new sensors. However, they are still experimental and the related
software and algorithms for those sensors are not ready yet.

Computing

After the environment information is fetched by the sensors, the computing modules are responsi-
ble for analyzing the data and provide instant commands for the actuation module. The common
computing modules include Perception, Navigation, Cognition and Planning subsystems [302].

Perception is the subsystem that process the raw sensor data input, and produces primitive ab-
stractions of the data, such as object category, object pose and size, semantic masks and motion
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flow. These information is usually produced by object detection and tracking, semantic segmenta-
tion and motion estimation algorithms.

Navigation is the subsystem that is responsible for telling where is the ego vehicle, and provide
information beyond the perception range of the on-board sensors. Mapping and localization are the
two parts of this system and they are usually coupled. Mapping module provides the abstraction
of the static environment including terrain profile, road boundary, lane markers, etc. It’s usually
accomplished by a mapping algorithm based on Computer Vision (CV) algorithms or a map service
provider. Localization then utilizes GNSS/IMU sensor readings, and/or the mapping results to tell
the pose and velocity of the ego vehicle. Based on these information, the global route for the a trip
can be generated with some routing algorithms.

Cognition[302] is the subsystem that provide higher-level abstraction of all the results from
perception and navigation. In this system, the tracked targets will be associated with the static
map, and a prediction module will provides estimations of the surrounding targets. Then all the
related information will be organized and provided to the downstream subsystems.

Planning is the subsystem that consumes the abstracted information from upstream modules
and generate safe and effective trajectories for the actuation module to follow. There are two
common steps in this subsystem. The first one is behavior planning, which generates high-level
intentions such as lane changing and merge-in maneuvers. The second one is motion planning,
which compute an optimal or near-optimal path and then a trajectory, considering certain goals
and constraints.

Actuation

The actuation module will control the ego vehicle to follow the computed trajectory. A controller
will first convert the trajectory into primitive commands (steering, throttle, braking) based on the
current states of the ego vehicle. Then those commands will be sent to the internal network of
the vehicle, and they are usually executed by drive-by-wire hardware modules, including steer-by-
wire, brake-by-wire and electronic throttle control.

Auxiliary Modules

Besides these three high level modules responsible for a competent driving behavior of the AV,
there are also some auxiliary modules that provide supports for other aspects of the AV. For ex-
ample, there is a safe guard in many ADS [156, 231], which monitor and assess the performance
of the vehicle and provide a fall-back controller in case of system failure. Besides, remote assis-
tance client is also an important module for robotaxi companies, which allow them to take-over
the vehicle without physical contact.
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Among these auxiliary modules, a very important component for ADS is the middleware. ADS
is usually designed to be modular, so that the software modules are loosely coupled and the system
complexity can be reduced. In a modular system, the middleware is responsible for transmitting
data between the modules and provide diagnostic information when necessary. The Robot Op-
eration System (ROS) [198] is a widely used middleware which provide a data communication
framework and a rich set of utility libraries. Based on ROS, [156] developed a new middleware
called Cyber-RT, which claims to have high throughput and low latency. The middleware is the
foundation of many ADS frameworks [156, 119, 120, 302].

1.2 Perception and Cognition Algorithms for AV

The perception algorithms in AV are responsible for extracting the objects and model the static
environment based on the data input from the sensors. For objects, the common tasks include ob-
ject detection and object tracking. For the static information, the common tasks include semantic
segmentation and mapping. The results produced by perception modules (and navigation mod-
ules) will be consumed by the cognition algorithms to generate a driving map for the downstream
planning module [302]. Common modules of cognition include prediction and mapping.

In this section, the algorithms for AV perception and cognition will be reviewed.

Object Detection

Object detection algorithms identify the objects of interest in a sensor frame, and report basic
information about the objects, usually including position and classification. The object detection
algorithm usually consists of two steps: hypothesis generation and hypothesis refinement [47]. In
the generation step, potential objects are identified in the sensor frame; In the verification step,
these objects are verified so that false positives will be rejected. Furthermore, many algorithms
also refine the location of the objects in this step.

In the early days, primitive features (e.g. colors, edges, and symmetry) are used for the 2d
object detection [31, 135, 232]. These features are prone to environmental artifacts such as
shades, raindrops, sensor occlusions, etc. However, these features can be cheaply computed
and they are usually used in the hypothesis generation step. For the verification step, the re-
searchers turned to robust artificial features such as Histogram of Oriented Gradients (HOG)[47]
and Haar[97, 246]. Some methods also utilize the classification methods such as Support Vec-
tor Machine (SVM)[232, 222] and AdaBoost[153, 125] for the verification step. Besides the
appearance-based object detection algorithm that uses the features mentioned above, there is an-
other way to do object detection by finding the changes in consecutive sensor frames. This ap-
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proach is usually called “detection by tracking”, and it will be discussed in the review of tracking
algorithms.

After the Convolutional Neural Networks (CNN) became popular in computer vision tasks,
deep learning has been widely applied to object detection algorithms, starting from the success of
the series work of Region-based Convolutional Neural Network (RCNN)[85, 84, 204]. The struc-
ture of the CNN based object detectors also follows the generation-verification structure, but it
can achieve much higher precision and recall compared with the classical methods using artificial
features, thanks to the robustness of the features extracted from CNN. Furthermore, the flexibility
of the deep learning algorithms makes it possible to combine the hypothesis generation and verifi-
cation into a single framework[204, 201], and the performance boost benefit from the end-to-end
optimization of the neural networks.

Detection in 2D sensor frames (e.g. images) is a mainstream task discussed in the literature.
However, detection in 3D sensor frames (e.g. point clouds) is also an emerging task arising from
the widespread adoption of lidar sensors. The difference between detection in 2D and 3D sensor
frames is that the feature extraction algorithms for the two types of data are different. In classi-
cal methods, the point cloud is usually split into voxels. The common features of point clouds
used in the detection are the point density, relative location to the voxel center, normal direction
and, reflectance [250, 223]. The detection hypothesis is usually generated with a sliding window.
With the development of deep learning, some researchers also explored the application of neural
networks in the 3D space. The two notable works for feature extraction from the point cloud are
PointNet[196, 195] and VoxelNet[311]. The former created a paradigm for feature extraction with-
out splitting the points into voxels. Later, there is a growing number of works that applies neural
network techniques to the 3D object detection problem [282, 215, 306, 291, 307].

Object Tracking

Object tracking algorithms track the existence, identification and dynamic states of objects. It
can also improve the state estimation accuracy by combining the information from the multiple
frames, compared with the states estimated from a single frame using object detection algorithms.
The object tracking task defined in the computer vision consists of two variants: single object
tracking and multiple object tracking. The latter one is more relevant in the context of AV and we
only discuss the multiple object tracking algorithm in the remainder of the thesis.

There are two paradigms for object tracking: “detection by tracking” and “tracking by detec-
tion”. The first approach directly identifies the changing parts in the sensor frames. Optical flow
[80, 163] or and occupancy grids [58, 88] are widely used in this approach. However, a separate
module is required for extracting the objects from the optical flow or occupancy grid, and it’s hard
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for this approach to find static objects. Therefore, most of the tracking methods follow the sec-
ond approach, which first detects the objects per frame, and then track the objects based on the
detection results. In this approach, there are two steps: data association and state update.

The data association step find the correspondence between the detected objects and the previ-
ously tracked object. It is expected to re-identify the same object between multiple frames. At
the second step, a state filter will update the state of the object given the current state, uncertainty
and the new observation. The Hungarian algorithm [136] is widely used for the association step
[269, 19, 306], which globally optimize the distance between matched targets. Other association
methods include nearest neighbor [59], multi-hypothesis tracking [21], and probabilistic data as-
sociation [73]. On the other hard, the Kalman filter and its variants are widely used for the state
update [269, 19, 306]. With the development of deep learning, researchers has proposed to use
neural networks to achieve the data association steps as well [269, 265].

Semantic Segmentation

Semantic segmentation algorithms provide dense semantic annotations for the sensor data. The
annotation is usually pixel-wise for image inputs [300, 128], and point-wise for point cloud input
[196, 233, 57, 48]. Semantic information is important for several downstream tasks including lane
detection, drivable area detection, and traffic sign detection. These downstream tasks extract the
data of interest based on the semantic annotations and use some post-processing methods to model
the target. For instance, lane detection algorithms [160, 217] usually first extract the lane marker
pixels, and then use some geometric models to estimate the lane parameters.

Before the wide applications of neural networks, the semantic segmentation is usually accom-
plished with classical machine learning models including decision forests [218, 29] and conditional
random fields [224, 138]. With the development of deep neural networks, CNN has been widely
used in semantic segmentation as well [300, 128, 129, 257, 305, 57]. The neural network can be
directly supervised by pixel-wise or point-wise semantic losses. Researchers have also tried to
utilize the temporal information from multiple sensor frames in the segmentation tasks by fusing
the features from each frame [214] or selected frames [214, 180]. A more detailed review of the
semantic segmentation (and object detection) can be found in Section 2.1.1.

Prediction

With the detection and tracking of the targets on the road, an important step for the ADS is to
predict the future trajectories of these targets. These predicted trajectories will be provided to the
planning module for risk assessments.
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The prediction algorithms can be categorized into physics-based, pattern-based, and planning-
based [118]. The physics-based planning methods include state estimation (e.g. constant velocity
[30], Kalman filter), and reachable sets. They predict future trajectories directly based on the cur-
rent state and explicit motion models. However, these methods don’t predict the input to the motion
models, and they are usually accurate only in a short period of time. The pattern-based methods
find the most likely motion pattern (aka. mode) and the prediction is rolled out based on the pat-
tern. Many kinds of surrounding information will be taken into consideration, such as road type,
drivable areas, and traffic signs. The output of these methods is either the full trajectories or high-
level maneuvers. The motion pattern can be identified using clustering [7], classification [271], or
encoder-decoder algorithms. The planning-based prediction algorithms are a class of models that
infer the future actions of an agent based on its implicit goals, as evidenced by past actions. They
primarily follow two approaches: one determines the most likely goal and corresponding policy
(action plan) of the surrounding agent using inverse Reinforcement Learning (RL) [317, 228] or
imitation learning [194, 101], and the other incorporates the prediction directly into the motion
planning module usually based on the Partially Observable Markov Decision Process (POMDP)
[110] or game theoretic frameworks [293]. The former planning-based approach also relies on an
adequate amount of data for training like the pattern-based prediction methods, while the latter one
relies on motion or interaction models like the physics-based prediction methods. Please refer to
Section 1.3 for a more detailed review of planning algorithms.

The neural networks for prediction usually follow the encoder-decoder structure, because it is a
common strategy in deep learning algorithms to force the networks to extract high-level informa-
tion. The algorithms using deep learning can be categorized as discrete ones or distributional ones
based on the format of the data they operate on. They can also be categorized as spatial, tempo-
ral, spatial-temporal, or relational ones based on how the data inputs are organized. The discrete
methods usually operate on discrete perception outputs such as grid maps [187], rasterized images
[56] and BEV renderings[62]. The distributional approaches usually rely on the variational autoen-
coder structure to predict the future trajectories [161, 141]. Prediction with relational modeling has
become popular in recent years and a notable method for relational modeling is the graph neural
network, which has been widely applied to trajectory prediction [90].

The behavior of different targets (e.g. vehicles, pedestrians, etc.) can be considerably different.
The pedestrians can have higher social interaction and their trajectories are more volatile, while
the vehicles are limited by the vehicle dynamics and they can change their states, such as velocity
and heading, very quickly. Therefore, the physics-based and pattern-based planning methods must
have separate dynamics models for these targets. However, for planning-based algorithms, the
algorithms are usually designed such that they can cover a variety kinds of targets [93, 146].
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Mapping

The mapping process is an important module for both navigation and cognition. It carries all the
related information from the environment in a data structure (i.e. the map) and the planning system
uses it for collision avoidance. Based on the extent of the map, there are two kinds of maps: global
navigation maps and local planning maps. The former ones are designed to cover the globe or part
of the globe, and they usually provide the map information with precision up to road level. Famous
providers of global maps include Google, Here, Baidu, Tencent, etc. In terms of the application
for AV, these maps are usually used for routing [302], and they are stored on the cloud, rather than
on each vehicle. In ADS, the local planning map is more relevant because it only describes the
information within a certain range of the ego vehicle and usually contains up-to-date information,
which is crucial for the planning system. The precision of the local map is usually higher than that
of the global map as well. However, local maps are usually built on top of global maps, because
most parts of the static environment do not change over time and are suitable for storage in the
cloud and retrieved when needed. A more fine-grained categorization of maps is described in
[283], which proposed a 7-layer HD map model. In this model, layers 1 to 4 store the global traffic
information, layers 5 to 7 store the dynamic local information from the perception of AVs.

A local planning map might include several aspects [270]: topology, geometry, semantics, and
road users. Different data models are required for different aspects. For example, [119] uses point
clouds to represent the geometry and Lanelet2[193] to represent the road topology. On the other
hand, [302] uses a unified data structure to store the topology, geometry, and road users. Currently,
there lacks a consensus on the map representation and storage format for AV. A brief overview of
different (HD) map formats can be found at [237].

The algorithms for the different aspects are also different. The topology information currently
relies on data collection and offline pipelines, which usually rely on manual annotations. The
semantic information is usually generated from semantic segmentation as mentioned above, while
the attributes and dynamic states of the road users can be obtained by object detection and tracking.
Lastly, the process of modeling the environment geometry is commonly referred to as the mapping
process. There are two major approaches for the mapping problem, simultaneous Localization and
Mapping (SLAM)[11, 144, 174] and occupancy mapping[185]. SLAM algorithms focus more on
the localization and it usually produces a sparse map, while the occupancy mapping focus on the
mapping coverage and it is more compatible with the planning algorithms. A more detailed review
of the occupancy mapping algorithms can be found in Section 2.2.1.

The local map also provides an important context for the planning algorithms and many pre-
diction algorithms incorporate HD maps to help regularize the trajectories. The map context is
usually used by algorithms with the encoder-decoder structure as the map information can be fed
into an encoder as well [167, 78].
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Datasets

Different from other modules in ADS, the perception and cognition algorithms heavily rely on
datasets because they usually operate on sensor data that are hard to be simulated accurately, and
machine learning techniques are widely used in those algorithms. Recently, there have been more
and more datasets collected by both academic organizations and commercial companies. Table 1.1
summarizes some famous autonomous driving datasets. It’s worth noting that some datasets have
special properties. For example, the CADC dataset[191] contains a majority of data collected in
snow weather, the VKITTI[74] and Woodscape[292] datasets contain synthetic data, and the Mcity
dataset [65] contains choreography data collected in a closed testing facility.

Table 1.1: A list of popular AV datasets2

Dataset Release Date Label
Bounding

Box
Semantic

Label
Vehicle

Pose
HD
Map Camera

KITTI[81] 2012 15k frames ✓ ✓ (2D) ✓ ✓ (stereo)
RobotCar[162] 2015 - ✓ ✓ (stereo + 3 fisheye)
KAIST[116] 2017 - ✓ ✓ (stereo)
VKITTI[74] 2017 15k frames ✓ ✓ (stereo)
ApolloScape[108] 2018 5k frames ✓ ✓ (2D) (separate)
MVSEC[313] 2018 - ✓ ✓ (event)
SemanticKITTI[14] 2019 15k frames ✓
nuScenes[32] 2019 40k frames ✓ ✓ ✓ ✓ ✓ (6 mono)
Lyft L5[105] 2019 55k frames ✓ ✓ ✓ ✓ (6 mono)
Argoverse[40] 2019 20k frames ✓ ✓ ✓ ✓ (stereo)
H3D[188] 2019 1M boxes ✓ ✓
A*3D[190] 2019 39k frames ✓
WoodScape[292] 2019 10k frames ✓ ✓ (2D) ✓ ✓ (4 fisheye)
BLVD[281] 2019 250k boxes ✓ ✓ ✓ (mono)
Waymo[229] 2020 20k frames ✓ ✓ ✓ (5 mono)
CADC[191] 2020 7k frames ✓ ✓ ✓ (stereo + 8 mono)
Cirrus[262] 2020 6k frames ✓ ✓ ✓ (mono)
KITTI360[150] 2020 80k frames ✓ ✓ ✓ ✓ (stereo + 2 fisheye)

1.3 Planning and Control Algorithms for AV

With the environment model produced by perception and cognition modules, the ADS is then
required to make decisions and generate proper commands to let the AV drive to the desired po-
sition, which are usually accomplished with the planning and control modules. The planning
process is usually split into a high-level behavior planning (aka. decision making) step and a low-
level motion/trajectory planning step. After the planning steps, the vehicle controller will generate
commands for the actuators based on the current vehicle states.

2None exhaustive. Please refer to the AD-Datasets website [22] for a more complete list.
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In this section, the algorithms for AV planning and control will be reviewed.

Behavior Planning

The behavior planning module is responsible for determining high-level intentions such as lane
change, highway merge-in and yield on unsignalized intersections. In the early days, the behavior
planning is usually built on simple heuristics or finite state machines. The highway scenarios are
particularly interesting for the researchers, because the challenge for AV driving on highways are
mostly related to making proper decisions. The related maneuvers include lane following, car
following, lane changing, passing, overtaking, merging and highway toll [49]. The lane change
behavior was specifically well-studied by transportation engineers for the purpose of microscopic
simulation. Gipps [83] proposed the first heuristic decision model for lane changing, and it takes
various traffic properties into consideration with an accompanying longitudinal behavior model
such as the Intelligent Driver Model (IDM)[238]. Later in 2003, [236] proposed a comprehensive
gap acceptance model for the lane changing decision. Based on these work, [123] proposed a lane
change model with a parameter to change the politeness of the driving behavior.

Aside from the behavior models designed for specific scenarios, some algorithms are applicable
to arbitrary scenarios with a preset of candidate actions. The fuzzy logic [12, 54] method is a
systematic way to composite the rules, it can emulate the human driver’s behavior by defining
linguistic variables. However, it’s not scalable to complex scenarios. Given the states of the road
users, some researchers built behavior models using machine learning classifiers, such as support
vector machine [263], nearest neighbor [67]. Among these methods, the decision process is usually
formulated as a Markov process, where the related techniques including Markov decision process
[310, 54, 82, 316], hidden Markov model [143], and RL[102, 253, 169] are commonly applied.
Another formulation of the decision process is to view the interactions between road users as a
game, and the game theoretic approaches [148, 235] can be leveraged to improve the interactive-
awareness of the behavior model.

With the growing amount of available driving data and the growing demand for robustness in
corner cases, the deep learning [107] approaches has become more and more popular in the behav-
ior planning problems. Deep learning is also the foundation of many RL algorithm, which either
estimate the reward using neural networks (aka. Q-learning) [145, 102], or use neural networks
in the actor-critic framework [288]. Some researchers classified the methods mentioned above by
being cognitive / rational or learning-based / rule-based [49], which provides a great overview of
the characteristics of the methods.
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Trajectory Planning

With a given target behavior, the trajectory planner will generate a feasible trajectory for the ego
vehicle to follow. In some papers, the trajectory planning happens after a motion / path plan-
ning step that generates a feasible path with collision check, and then assign the velocities to the
waypoints of the path.

The path planning algorithms have been extensively studied by the robotics researchers, which
can be categorized by five characteristics [50]: space configuration, pathfinding, symbolized
forces, parametric curves, numeric optimization and machine learning. The first category of path
planning algorithms relies on a specific representation of the feasible space, such as cell grids,
road graphs, and state lattice. These algorithms include the Voronoi diagram [142] and proba-
bilistic roadmap [121]. The second category is based on pathfinding algorithm on graphs, such as
A* [96, 24] and rapidly-exploring random tree [140, 61, 64]. The third category symbolize the
configuration space as attractive or repulsive forces. The famous family of algorithms based on ar-
tificial potential fields [126] fall into this category. The forth category are commonly used for path
planning on highways, because the highway roads are usually built as simple curves[243, 248].
The fifth category is usually tightly coupled with vehicle control, and its algorithms formulate the
planning problem as an optimization problem with certain goal and cost functions. The popular
examples in this category include motion predictive control [152, 3, 38] and quadratic program-
ming [278, 279, 318]. The last category emerges with the development of machine learning and
deep neural networks. The machine learning models can be trained to directly output efficient and
feasible paths, using RL [178, 256] or imitation learning [202].

Apart from path planning algorithms, there are also algorithms that directly generates trajec-
tories. These algorithms can be divided into two categories [212]: geometrical curve-based and
optimization-based. The algorithms in the former category first generates candidate trajectories
with a certain family of curves, and then the trajectories will be selected based on some crite-
ria. The curve families that are commonly used in ADS are Bézier curves[87], splines[255],
polynomials[319, 267], arcs[225] and clothoids[28]. The latter category mainly refers to the
Motion Predictive Control (MPC), which has been widely used in trajectory planning for vehi-
cles [172, 181, 312].

Vehicle Control

After the desired trajectory has been finalized by the trajectory planning module, the vehicle con-
troller generates commands for the actuators such that the ego vehicle can reach the desired state in
time. For AVs, the control of the vehicle is usually split into longitudinal control and lateral control
[8, 41], and some controllers are designed only for lateral control (i.e. they determine the steering
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angle of the vehicle), such as pure pursuit [55, 301], the Stanley controller [234], and preview
control [274, 278]. They work together with longitudinal controllers, which determine the throttle
and braking of the vehicle, to provide a fully functional controller for the AV. However, since sep-
arating the lateral and longitudinal control makes it hard for the lateral controller to be adaptive to
speed change, many approaches consider the control problem in a single formulation. The notable
examples include methods based on Linear-Quadratic Regulator (LQR) [298] and MPC [149, 92].
A comparison of different controllers can be found at [287].

With the development of machine learning algorithms, researchers have also been trying to inte-
grate machine learning models into the vehicle control problem. These methods are usually trained
in an end-to-end manner in order to leverage the flexibility of machine learning. Among the meth-
ods, RL [247, 122, 289] and supervised learning [194, 42, 23] are the two most popular directions.
However, the end-to-end controller usually lacks interpretability and stability guarantee, they are
not of the greatest research interest.

Simulators

Different from the algorithms for perception and cognition which relies on large-scale datasets, the
planning and control algorithms are usually trained and validated on simulators. The fidelity and
scalability of the simulators for AV make a difference to the development cycle of AV planning
and control algorithms. Some of the popular simulators for AV are listed in Table 1.2, and more
information can be found at [237].

Table 1.2: A list of popular simulators related to AV.

Simulator Specialization Functionality
Multi

Ego-Vehicle
Environment

Traffic
Sensor

Configuration
High-Fidelity

Rendering
Vehicle

Dynamics
Open

Source
Carla[66] Graphics ✓ ✓ ✓ ✓ ✓ ✓
LGSVL[205] Graphics ✓ ✓ ✓ ✓ ✓
AirSim[210] Graphics ✓ ✓ ✓ ✓
DeepDrive[199] Graphics ✓ ✓ ✓
DRIVE Sim[182] Graphics ✓ ✓ ✓
Gazebo[130] Robotics ✓ ✓ ✓ ✓
MORSE[69] Robotics ✓ ✓ ✓
CoppeliaSim[52] Robotics ✓ ✓ ✓
TORCS[275] Racing ✓ ✓ ✓
CarSim[220] Dynamics ✓ ✓
CarMaker[9] Integration ✓ ✓ ✓ ✓ ✓
PreScan[219] Integration ✓ ✓ ✓ ✓
VI-grade[245] Integration ✓ ✓ ✓ ✓ ✓
CommonRoad[4] Traffic ✓ ✓
Vissim[89] Traffic ✓ ✓
SUMO[133, 159] Traffic ✓ ✓ ✓
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1.4 Problem Statement

With the current design of ADS architectures as described in Section 1.1, the AV can be trained to
be responsive to the visible objects and events on the road, but it lacks the ability to handle the ob-
jects beyond the sight, which can be caused by sensor degradation [244] or environment occlusions
[208]. These two problems are critical for the safety of the AV and have to be addressed before
the wide acceptance of AVs. There is little we can do about the former problem yet. It is usually
tackled by automatic sensor cleaning devices [226] or a safeguard based on contamination detec-
tion [241, 239]. However, for the occlusion problem which is more common in normal driving, we
believe it is feasible to solve it by improving the design of the ADS architecture with modifications
on computing modules so that the AV can be prepared for the risk caused by occlusion and drive
safely yet still efficiently in a crowded environment.

It is worth noting that a lot of the research work [249, 131] for computer vision focuses on
improving the perception performance with partial occlusions. On the contrary, we focus on full
occlusions in this dissertation, because conventional perception algorithms for object detection
and tracking still work under partial occlusions, but not under full occlusions.

In this dissertation, we aim to address the following questions motivated by the problems men-
tioned above:

1. How to efficiently represent the occluded area in the environment, without the help of a

priori maps?

2. How to let the AV drive safely with occlusions in the environment, without negatively af-
fecting mobility?

For the first question, we require the solution to be independent of prebuilt maps (especially
HD maps), because the construction of these maps can be expensive, and a method that relies
on prebuilt maps cannot handle short-term changes of the environment. For the second question,
we require the solution not to negatively affect the mobility of the vehicle significantly, because
driving exceptionally slowly is a trivial solution for the vehicle to keep safe. However, experienced
human drivers will only slow down if they determine the occlusion is severe and risky enough. This
behavior is also known as defensive driving. Nevertheless, they will keep desired speed or recover
to the desired speed quickly if they found out that there is no actual risk, by previous observations
or reasoning. We expect a competent AV to behave similarly, by being cautious but not overly
conservative under full occlusions.
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1.5 Contributions

To answer the question proposed above, several contributions have been made in this dissertation.
The remainder of this dissertation is organized into individual chapters, and each chapter describes
the work on a specific problem. The contributions are summarized below:

1. Novel perception algorithms are proposed to efficiently represent the occluded area in a
driving environment (Chapter 2):

(a) An algorithm for joint 3D object detection and semantic segmentation is proposed.

(b) An algorithm for fast probabilistic 3D occupancy mapping is proposed.

(c) A framework for occlusion modeling with occupancy maps is proposed.

2. Novel planning algorithms are proposed to enable safe driving behavior under full occlusions
in the environment (Chapter 3):

(a) An object management system with imaginary targets is proposed.

(b) An sampling-based occlusion-aware planning algorithm is proposed.

3. A novel ADS platform is proposed, and the effectiveness of the proposed perception and
planning algorithms are demonstrated with the help of this platform (Chapter 4).

15



CHAPTER 2

Occlusion-aware Environment Modeling

To help the AV be cautious about the occluded areas in the environment, a model for the environ-
ment with occlusions is necessary. In this chapter, we present a method to represent the environ-
ment and identify occluded areas in the environment (Section 2.3). To support this method, we
proposed a method for efficient detection and segmentation (Section 2.1), and a method for fast
semantic occupancy mapping based on the results from detection and segmentation (Section 2.2).
The occluded area will be represented in the generated occupancy map.

2.1 Joint Object Detection and Semantic Segmentation

3D object detection and scene understanding are two major perception tasks for 3D computer
vision. The former task provides position and dimension information for dynamic objects of in-
terest, while the latter task helps to understand the environment, which is usually accomplished
by semantic segmentation of the sensor data. These tasks are important for autonomous driving
and mapping. The detected 3D bounding boxes are useful for object behavior prediction, while
the semantic information is useful for lane-keeping and static obstacle avoidance. Significant prior
works exist using lidars for these tasks thanks to their superior ranging precision and robustness to
certain environmental factors such as low/high lighting.

During the past decade, techniques for object detection and segmentation have advanced signifi-
cantly. CNN have been widely used, including [68, 204, 230] for 2D object detection, [300, 99, 43]
for 2D semantic segmentation, [311, 195, 290] for 3D object detection and [305, 315] for 3D se-
mantic segmentation.

Few of these works combine the detection and segmentation tasks, several follow the panoptic
segmentation scheme proposed by [128]. Examples include [251] on 2D images, and [315] on
3D point clouds. The simultaneous multi-task learning strategy is favorable for real-time appli-
cations, since it’s usually computationally efficient to generate detection and segmentation results
simultaneously, as some computations can be re-purposed.
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Figure 2.1: An example of simultaneous object detection and segmentation. Legend of point clouds:
■ Car ■ Truck ■ Pedestrian ■ Vegetation ■ Sidewalk ■ Drivable Surface ■ Terrain ■ Man-made

It’s worth mentioning that 3D detection is different from 2D detection in the sense that a 2D
bounding box is usually a tight bound of corresponding instance mask, while 3D detection (in
outdoor scenes) provides object shape and orientation. Instance segmentation in 2D is also inher-
ently different from 3D instance segmentation in terms of overlap, since there may exist occluded
objects in 2D images where pixels of one object may locate inside the bounding box of another
object, which is not the case in 3D point clouds, where bounding boxes should not overlap under
normal situations. These differences make the design of panoptic segmentation methods different
between 2D and 3D data.

In this section, we propose a method called Voxel-based Implicit Network (VIN), which takes
a 3D lidar point cloud as input and reports both 3D object detection and semantic segmentation
results as the outputs. Our main contributions include:

1. A semantic branch from a voxel-based 3D object detector which adds little computation
overhead for the additional output. The semantic branch can be trained with weak supervi-
sion. The performance with just 0.1% semantic labels, after some training, was found to be
on par with a model trained with full supervision.

2. A strategy to fix inconsistency between bounding boxes and point-wise semantic labels,
validated by our experiments.
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3. Improved semantic and panoptic segmentation quality compared with state-of-the-art meth-
ods based on the results from the nuScenes-lidarseg dataset.

2.1.1 Related Work

2.1.1.1 3D Object Detection

Due to the wide availability of various datasets including [81, 32, 65], 3D object detection has
become a hot topic in computer vision. Grouped by the modality of sensors used in the detection,
the methods in literature can be categorized as image only [44, 171, 39, 261], point cloud only
[195, 311, 282, 290, 215] and multi-modal fusion [221, 168]. Among the lidar-based detection
algorithms, the approaches include feature extraction by points, voxels, projected images, and
combinations [215, 134]. The point-based approaches [195] apply Multi-Layer Perceptron (MLP)
and gather feature from points in the same group, while the voxel-based methods [311, 290, 221]
first assign the point cloud into voxel grids, and then CNN modules are applied to the voxels.
The projection-based methods [168] project the point cloud into images in a perspective view and
then features are extracted using 2D CNN models. After the feature extraction, these methods
usually generate 3D bounding boxes in a single-staged or two-staged manner ([154] and [204]
respectively).

2.1.1.2 Point Cloud Semantic Segmentation

Point cloud semantic segmentation is an emerging research field taking advantage of datasets in-
cluding [14, 32]. Similar to 3D object detection using point clouds, the segmentation algorithms
also can use different approaches. PointNet[196] and its successors [197, 233] directly operate on
a point cloud array and report point-wise semantics. Voxel-based frameworks [57, 5, 48] extract
features for voxel grid convolution and reports voxel-wise semantics. Due to the cubic growth of
computational cost with the number of voxel grids, sparse convolution [282, 48] is widely applied
for these methods. Voxels are usually sliced in the 3D Cartesian coordinate, while there are also
methods [103, 309, 315] using the polar or cylindrical coordinate systems. Methods that lever-
age projected images [273] for semantic segmentation take advantage of well-explored techniques
developed for the 2D segmentation.

Different representations for point clouds have respective strengths and drawbacks. Point-wise
feature operation preserves the granularity of the original point cloud, but suffers from heavy com-
putation cost. Voxel-wise feature operations are fast, but suffer from lower precision introduced by
the rasterization. Projection-based methods can take advantage of handy 2D convolution structures
and their efficiency but need to learn to reconstruct the 3D object shape. In our approach, we en-
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hance the voxel-based framework for its efficiency, by using the implicit representation introduced
in Section 2.1.2, to enable precise point-wise predictions.

Recently, many researchers [86, 164, 155] work to advance the ability of point cloud semantic
segmentation with fewer labels, namely weakly or semi-supervised semantic segmentation. Most
of them depend on unsupervised algorithms [86, 155] to cluster the point cloud, or depends on
consistency between data frames [164]. In this section, we propose a method that can handle weak
supervision with the help of object detection results.

2.1.1.3 Joint 3D Detection and Segmentation

Both 3D object detection and environment segmentation are important tasks for autonomous driv-
ing. Relatively few papers combine the two tasks to provide richer information for downstream
modules. [168] achieved joint 3D object detection and point cloud segmentation by combining
the features from the lidar point cloud and camera image and extrinsic projection to collect addi-
tional point cloud features from the image feature map. [240] improved semantic segmentation
performance by adding object detection as an auxiliary downstream stage for additional super-
vision, which shares a similar structure as our approach, but they started from a point-based se-
mantic backbone. In addition, the two approaches cited above only produce results in a Field of
View (FoV) limited by the camera. In this section, we aim to develop detection and segmentation
results without this limitation.

There are many other methods [103, 315] that produce panoptic segmentation results of a point
cloud. Their output point cloud, which are slightly different from those generated by joint 3D
detection and segmentation, contain semantic labels and instance IDs. [103] proposed a shift-
ing network module to predict whether a point belongs to a certain instance or not by location
regression. [315] proposed a panoptic segmentation framework based on a cylindrical representa-
tion of the point cloud augmented by asymmetrical convolutional modules. Compared with these
methods, our method achieves panoptic segmentation by generating instance labels with predicted
bounding boxes.

2.1.1.4 Implicit Representation

Many recent computer vision algorithms use 2D or 3D grids which result in loss of data granularity.
To preserve precision, a possible solution is to operate on the raw points, and another way is to use
implicit representation such as signed distance functions [166, 186]. The key insight behind the
implicit representation is to learn a function to represent the input location, instead of learning the
collection of per-location predictions given the feature map input. The prediction can be occupancy
of the location as used in [166], or a direct semantic label as what we used in this section. A major
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benefit of this approach is that we can predict continuously, i.e. prediction can be obtained for
arbitrary query positions, whether it’s aligned with the original data or not.

2.1.2 Methodology

Different from most methods mentioned in Section 2.1.1, our goal is to generate 3D bounding
boxes and point-wise semantic labels simultaneously given a point cloud input. On top of these
results, panoptic segmentation predictions can be generated trivially. First, the backbone applicable
to our algorithm will be described. Then the details of the proposed semantic branch will be
explained. Finally, the panoptic segmentation will be covered. Figure 2.2 illustrates the structure
of the proposed method.

Object 
Branch

VFEPoint Cloud

Semantic 
Branch

InConsistency
Suppression

Point-wise 
position input

2D Conv3D Sparse Conv

Implicit Function𝒇𝒇(𝒙𝒙)
Proposed

Figure 2.2: The overall structure of the proposed joint 3D object detection and semantic segmen-
tation framework

2.1.2.1 Backbone Network

Our method can work with any voxel-based detectors that predict bounding boxes based on a
feature map. To show the effectiveness of our semantic branch, we use CenterPoint [290] as our
backbone. CenterPoint follows the VoxelNet [311] structure, consisting of voxel feature extraction
layers, a 3D convolutional backbone, a bird’s eye view 2D convolutional backbone and several
detection heads (see the upper branch of Figure 2.2. After object proposals are generated for each
location, they are passed through a Non-Maximum Suppression (NMS) or Circular NMS module
to collect final predictions.

2.1.2.2 Semantic Rendering Branch

Inspired by [129], we propose a semantic rendering branch that learns a continuous function to gen-
erate semantic distribution prediction for each input position and reduce rasterization error. The
semantic branch prevents granularity loss by using an implicit function. This process is achieved
by using a lightweight MLP module with inputs coming from both point positions and local voxel
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features. Different from PointRend which uses both coarse and fine-grained features, we only
use the original global feature map from the convolutional backbone since our base framework
is a single-stage detector instead of the two-stage MaskRCNN [99] used in [129]. In our exper-
iment, the MLP of the semantic branch consists of 4 layers with 256, 128, 64, and 32 channels,
respectively.

Given a query point q = (xq, yq, zq) from the point cloud input and backbone feature map
M ∈ RC×D×H×W , we first find the grid position (i, j, k) ∈ ND×H×W in the feature map where the
query point lies, then the semantic distribution sq ∈ RS with S classes of the point are generated
by the MLP module f : R3+C → RS formulated as

sq = softmax(f([xq − cxi yq − cyj zq − czk M·ijk])) (2.1)

where (cxi, cyj, czk) ∈ RD×H×W represents the real-world center of the grid in the feature map
indexed by (i, j, k). If the query point is outside of the voxel grid, then the voxel closest to the
point is selected. This module f will be supervised by the point-wise semantic labels from the
dataset.

Since only the position of the query point is fed into the function, unlike the method used
in [315], the semantic branch can predict points that are not in the original point cloud. The
decoupling between feature extraction and querying is beneficial when semantics are required to
be extrapolated between points, which will be further discussed in Section 2.1.3.4. Note that in
our backbone, the 3D voxel features are flattened and processed by a 2D convolutional network,
therefore in our case D = 1. The proposed branch can be applied directly to a 3D voxel grid if the
backbone framework produces a 3D tensor for the detection head.

With the network structure defined above, we define the loss function as

L = αclsLcls + αregLreg + αsemLsem (2.2)

where we use focal loss with Gaussian kernels for the classification loss Lcls on the heatmap,
and L1 loss for the regression loss Lreg on box parameters, both of which are inherited from the
backbone method we adopted from [290]. For semantic supervision, we use a combination of
Lovász loss [16] and weighted cross-entropy loss for the semantic loss Lsem. In our experiment,
the parameters for the weight loss are αcls = αsem = 1, αreg = 0.25.

2.1.2.3 Panoptic Post-processing

After bounding boxes and point-wise semantic labels are generated, panoptic segmentation results
can be generated by assigning instance ids of the boxes to the points inside them.
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Aside from panoptic label generation, object bounding boxes and semantic labels can be used
to mutually recover the error in predictions. Inspired by the strategy introduced in [305], we
developed a novel procedure named ICS to first fix inconsistent labels of the bounding boxes using
a estimated label from point-wise semantic outputs and then inconsistent points will be fixed. The
algorithm is described in the pseudocode (Program 2.1) below. The inputs for the procedure are
the collection of predicted bounding boxes B and semantic point clouds P . Each box b ∈ B

has an object classification K(b) with confidence score s(b), and each point p ∈ P has semantic
classification K(p) with confidence score s(p). b also denotes the area inside the box. In the
procedure description, Kth denotes the thing categories.

1: procedure ICS(B,P ) ▷ It fixes inconsistent labels in-place
B: labeled bounding boxes, P : labeled point cloud
cα, cγ: tunable parameters with default value 1
mp: score margin for overriding point label

2: Sort B descendingly by score
3: for i = 1 . . . |B| do ▷ loop for fixing box label
4: Pi ← {p ∈ P ∩ bi|K(p) ̸= K(bj) ∀j < i, p ∈ bj} ▷ select inconsistent points
5: for k ∈ Kth do ▷ for each semantic class k
6: P k

i ← {p ∈ Pi|K(p) = k} ▷ select points with label k
7: αk ← |Pk

i |/|Pi| ▷ count criterion
8: βk ← ∑

p∈Pk
i
s(p)/|Pk

i | ▷ score criterion
9: γk ← 1 + scγ (bi) · 1k=K(bi) ▷ correctness criterion

10: k∗ ← argmaxk∈Kth αkβkγk ▷ select the best class using the three criteria
11: if k∗ ̸= K(bi) then ▷ if the best class is not the predicted one
12: if ∃ j > i s.t. K(bj) = k∗ then
13: Swap K(bi) and K(bj) ▷ swap label with a box with lower score
14: else
15: K(bi)← k∗ ▷ override the box label by the best class
16: for i = |B| . . . 1 do ▷ loop for fixing point labels
17: for p ∈ {p ∈ P ∩ bi|s(p) < s(bi)−mp} do ▷ for each point with low score
18: if ∃ j < i s.t. p ∈ bi ∩ bj then
19: Continue ▷ ignore boxes with large overlap
20: K(p)← K(bi) ▷ override the point label by box label

Program 2.1: Pseudo code of the ICS algorithm

2.1.3 Experiment Results

Experiments are conducted on the nuScenes [32] dataset with nuScenes-lidarseg extension. This
dataset is selected because it provides labels for both 3D object detection and point cloud semantic
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segmentation. The nuScenes dataset contains various labels for different tasks, including 28k syn-
chronized frames with multiple cameras, one lidar and multiple radars for training, and 6k samples
each for validation and testing. The nuScenes-lidarseg extension provides point-wise semantic
labels of 15 categories in total. It’s a challenging dataset with adverse environment scenarios in-
cluding dark nights and rainy days.

Our backbone method is CenterPoint [290] with a voxel size of 0.1m and without CBGS [314]
or other test-time augmentation due to our hardware limitation. Our model is trained with 2
NVIDIA V100 16G GPUs, using AdamW optimizer with cyclic learning rate scheduling start-
ing from 1e−4 and weight decay of 0.01. Please refer to [290] and [307] for details.

Selected qualitative results are shown in Figure 2.3. Our method is able to generate precise
point-wise semantic labels while preserving the ability to predict accurate 3D bounding boxes.
However, our method still suffers from the problem of ambiguity due to the sparsity of the lidar
point cloud, common for all lidar-based detection or segmentation algorithms.

2.1.3.1 Quantitative Results

Semantic Segmentation Performance: For segmentation performance, our method is compared
against state-of-the-art methods on the nuScenes lidar segmentation track. The main metrics used
for comparison are the Intersection-over-Union (IoU) for each category. mean Intersection-over-
Union (mIoU) and frequency-weighted Intersection-over-Union (fwIoU) numbers are also pro-
vided by the nuScenes benchmark. The results are presented in Table 2.1, compared with other
methods, our approach performs significantly better in most ”things” categories except for the traf-
fic cones. Our backbone method does not preserve details in each voxel, thus it may not work well
with small objects. On the other hand, existing methods outperform in many ”stuff” categories,
because our network needs to focus on objects to learn object detection well. Overall, our method
outperforms the state-of-the-art methods by about 9.4 percentage points in mIoU.

3D Object Detection Performance: For the lidar-only object detection performance, we select
a few other state-of-the-art methods on the nuScenes detection track. The overall performance is
measured by mean Average Precision (mAP) and nuScenes Detection Score (NDS) proposed by
[32] to capture not only precision performance, but also errors of other target properties. From
the results shown in Table 2.2, we found that although our method suffers performance loss when
adding a semantic branch, we still achieve good performance in most categories. This indicates that
our method can produce semantic segmentation labels without much loss of detection performance.
The most prominent gaps come from the ”trailer”, ”bicycle” and ”construction vehicle” categories,
all of which are rare in the dataset. It’s hard for the network to maintain the same performance
when it learns to solve an additional segmentation task. Label balancing techniques can be applied
in the future to solve the problem.
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Figure 2.3: Qualitative results of VIN. First column: ground-truth semantic labels and bounding boxes;
Second column: estimated semantic labels and bounding boxes; Third column: error points of semantic
segmentation (labeled in red); Forth column: confidence score of the semantic segmentation (colors vary
from light green to dark blue for scores from low to high). Best viewed in color and zoomed in.

Table 2.1: Comparison of semantic segmentation performance using the nuScenes validation dataset. For
all metrics the higher the better, the best one is shown in boldface.
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SalsaNext [53] [46] 58.8 82.8 81.0 65.7 77.1 38.3 18.4 52.8 47.5 4.7 43.5 56.6 94.2 60.0 70.3 81.2 80.5
MinkNet42 [48] [46] 60.8 82.7 77.1 62.2 77.4 42.5 23.0 55.6 55.1 8.3 50.0 63.1 94.0 67.2 68.6 83.7 80.8
(AF)2-S3Net [46] [46] 62.2 83.0 80.0 67.4 82.3 42.2 20.1 59.0 62.0 12.6 49.0 60.3 94.2 68.0 68.6 82.9 82.4

VIN (ours) - 73.7 84.3 87.0 82.6 91.7 63.2 49.9 79.7 82.2 46.2 59.4 74.7 94.5 67.1 68.5 83.7 81.2
VIN + ICS (ours) - 73.8 84.4 87.0 82.8 91.7 63.7 50.4 79.8 82.5 46.1 59.4 74.7 94.5 67.1 68.5 83.7 81.2
VIN (seg only) - 72.0 86.3 86.6 82.0 91.8 61.8 45.9 80.3 68.6 30.7 45.2 75.4 95.8 73.8 72.6 85.3 83.3

Panoptic Segmentation Performance: Panoptic segmentation is a side product of our method,
however, it can be used to evaluate the combined performance of detection and segmentation.
The metrics proposed in [128] is leveraged in our experiment, which includes Panoptic Quality
(PQ), Segmentation Quality (SQ) and Recognition Quality (RQ). SQ and RQ are analog to point-
averaged and instance-averaged IoU. We also adopt the replaced Panoptic Quality (PQ†) metric
proposed by [103]. The performance of our algorithms is compared with three baseline methods
in Table 2.3. Our algorithms outperform these baseline methods in most metrics except SQ. A
possible fix is adding penalty terms for ”stuff” points inside object boxes and ”thing” points outside
object boxes in future work, thus explicitly let the network distinguish between the environment
and objects.
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Table 2.2: Comparison of (lidar-only) 3D object detection performance on the nuScenes validation dataset.
All metrics are the higher the better, the best one is underlined. Abbreviations: CV - construction vehicle,
TC - traffic cone, Ped - Pedestrian, Motor - Motorcycle, R - Reproduced

Method Source mAP NDS Car Truck Bus Trailer CV Ped Motor Bicycle TC Barrier

PointPillars [139] [297] 28.2 46.8 75.5 31.6 44.9 23.7 4.0 49.6 14.6 0.4 8.0 30.0
3DSSD [286] [297] 42.6 56.4 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
CenterPoint [290] [297] 56.6 65.0 84.6 54.7 66.0 32.3 15.1 84.5 56.9 38.6 67.4 66.1

CenterPoint R 50.7 60.2 82.6 50.3 63.8 30.8 12.0 79.9 43.9 22.3 60.8 60.4
VIN (Ours) - 45.2 57.0 82.1 48.3 61.3 18.7 3.5 73.4 50.4 2.2 56.1 55.9
VIN + ICS (Ours) - 46.3 57.6 82.1 48.1 61.1 22.7 7.2 74.3 50.4 4.1 56.6 56.4

Table 2.3: Comparison of panoptic segmentation performance on nuScenes validation set. All metrics are
the higher the better, the best ones are highlighted in boldface.

Method Source PQ PQ† RQ SQ PQth RQth SQth PQst RQst SQst mIoU

Cylinder3D[309] + SECOND[282] [103] 40.1 48.4 47.3 84.2 29.0 33.6 84.4 58.5 70.1 83.7 58.5
Cylinder3D[309] + PointPillars[139] [103] 36.0 44.5 43.0 83.3 23.3 27.0 83.7 57.2 69.6 82.7 52.3
DS-Net[103] [103] 42.5 51.0 50.3 83.6 32.5 38.3 83.1 59.2 70.3 84.4 70.7

VIN (ours) - 51.7 57.4 61.8 82.6 45.7 53.7 83.6 61.8 75.4 80.9 73.7
VIN + ICS (ours) - 51.7 57.5 61.9 82.6 45.7 53.8 83.6 61.8 75.4 80.9 73.8

2.1.3.2 Ablation Study

Inconsistency Suppression The proposed ICS procedure is used to eliminate inconsistency be-
tween bounding boxes and semantic labels, which is beneficial for downstream perception mod-
ules. This is demonstrated in Table 2.1, 2.2 and 2.3. For fixing semantic and panoptic segmentation
labels, we set mp = 0.1 in Algorithm 2.1 and achieve slightly better results. On the other hand,
ICS made a difference on detection performance, especially in the ‘barrier’, ‘construction vehicle’
and ‘bicycle’ categories, indicating that ICS is effective. The improvement comes from using point
predictions to help determine the object classification.

Weakly supervised segmentation Weak supervision can help to reduce label efforts when
building datasets. Thanks to the nature of the implicit function representation, it doesn’t require
the full point cloud for supervision. Our method can handle weakly supervised segmentation tasks
by feeding fewer labels during the training process. A key difference between our proposed method
and single-task segmentation methods is that our method only get auxiliary information from the
bounding box labels. The efficacy of our method is illustrated in Table 2.4. It can be seen that our
method achieves robust segmentation performance even with just 0.1% semantic labels. However,
the performance does not change monotonically with the amount of available labels, which is
unexpected and requires further experiments to explain.

25



Table 2.4: Comparison of detection and segmentation performance on nuScenes validation set with differ-
ent supervision levels. The label percentages denote the ratio of points used in training the semantic branch.
All metrics are higher the better.

Method mAP NDS mIoU fwIoU mIoUth mIoUst PQ PQ† PQth PQst

Ours (full supervision) 45.2 57.0 73.7 84.3 71.3 78.3 51.7 57.4 45.7 61.8
Ours (10% label) 45.7 57.4 74.4 84.8 72.3 78.0 52.7 58.2 46.3 63.4
Ours (1% label) 44.7 56.6 72.6 84.6 69.5 77.9 50.4 55.9 42.8 63.1
Ours (0.1% label) 45.1 57.0 72.3 84.5 69.1 77.5 50.6 56.0 43.2 62.9
Ours (0.02% label) 44.5 56.6 70.6 83.8 67.1 76.5 49.0 54.5 41.3 61.8

2.1.3.3 Inference Efficiency

A major motivation to combine detection and segmentation in a single network is to reduce in-
ference time and achieve lower latency when deployed. We compare our method with baseline
CenterPoint in terms of inference time. Measured on a single NVIDIA 2080Ti graphics card, the
original CenterPoint network with 0.1m voxel size achieves 6.0 FPS, while our method with the
same voxel size and backbone configuration achieves 5.9 FPS but with the additional semantic seg-
mentation results. This is much better than having a separate segmentation implementation. For
example, a state-of-the-art method [46] alone takes 0.27 seconds (reported on nuScenes leader-
board, on an NVIDIA Tesla V100). When deploying our method on a vehicle, further optimiza-
tion, including network distillation and refactoring using a highly efficient inference framework
(e.g. TensorRT), can be implemented.

2.1.3.4 Utilizing the Implicit Function

Thanks to the fact that our semantic branch is merely based on the feature map produced by the
convolutional backbone, semantics queries can be conducted at arbitrary positions in the space, as
mentioned in Section 2.1.2.

Here we demonstrate two use cases of the query ability, semantic prediction on down-sampled
point cloud and dense semantic map generation. The experiment results for the former case are
reported in table 2.5. The down-sampling strategy is useful for reducing on-board latency or help-
ing generate off-board labels for autonomous vehicles. In this experiment, only partial points
(down-sampled from the original point cloud) are fed into the trained detection backbone and the
semantics of the remainder of the original point cloud is predicted by either the semantic branch
or nearest neighbor querying. It can be concluded from the experiment that our model can bet-
ter capture the semantics in region with no lidar measurements when the original point cloud is
down-sampled to reduce the inference time.

On the other hand, it’s also possible to generate a dense semantic map by querying semantics
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Figure 2.4: Two examples of generated dense semantic map on the nuScenes dataset. The left plots show
the semantic prediction of the scene, the right plots show the input point cloud which is colored by the
height. Please refer to Figure 2.3 for the color legend.

at grid points with the semantic branch. Figure 2.4 shows the semantic prediction of the scenes
at certain height (the bilinearly interpolated height of the point cloud is used to create the figure).
This dense map can be used as a BEV semantic map, which standalone models have been proposed
in the literature (e.g. [203]) to estimate. It’s useful for finding the semantics boundary for different
areas and better interpreting the performance of the deep learning model.
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Table 2.5: Comparison of segmentation performance with partial point cloud input on nuScenes. The best
ones are highlighted in boldface.

Method
mIoU (random sample) mIoU (beam sample)
100% 75% 50% 32 beams 24 beams 16 beams

Ours 73.7 73.3 72.5 73.7 72.5 70.2
Nearest Neighbor 73.7 73.1 72.2 73.7 64.6 55.9

(Inference time) 169ms 133ms 104ms 169ms 125ms 96ms

2.2 Fast Probabilistic 3D Occupancy Mapping

Mapping is an important task for robotic applications, including AVs. It is the foundation of
subsequent tasks such as navigation and planning, and it’s especially important for occlusion iden-
tification. If conducted offline, 3D mapping can generate HD Maps, focusing on the static portion
of the environment. On the other hand, online mapping must understand both the static and dy-
namic elements of the environment, and must do so in real-time. This challenging application
was recently explored by some researchers for robots exploring unknown environments, or for
autonomous vehicles interacting with dynamic road users.

There are several 3D mapping formats including polygon mesh maps [268], volumetric
maps[185, 77], surfel maps and point cloud maps [192]. Polygon meshes originate from com-
puter graphics, representing objects by vertex points and the edges between them. Polygon meshes
can be used to directly model object surfaces, but it is difficult to incorporate information with
uncertainties. Point cloud maps [192] are commonly used in SLAM due to their simplicity and
flexibility in transformation. However, it suffers from heterogeneous density which makes it harder
for subsequent planning usage. Surfel maps [45] are based on point clouds with surface normal
stored in each point. Lastly, volumetric maps are based on volumetric grids storing the map in-
formation including occupancy probabilities [185], Truncated Signed Distance Function (TSDF)
[184] or semantic probabilities [77]. These grids are usually stored in a sparse data structure for
better time and memory efficiency. Volumetric maps are particularly suitable for dense mapping,
which produces a continuous representation of the environment and suitable for downstream tasks
like path planning.

For semantic segmentation and mapping, much progress was accomplished recently using deep
neural networks. Researchers have developed neural networks for 2D semantic segmentation [300]
on images and 3D semantic segmentation [48] on point clouds. A novel joint object detection and
semantic segmentation algorithm is also discussed in the previous section. With the ability to
label point clouds, semantic mapping quality is improved by replacing traditional classifier labels
[209] with ones from neural networks [77]. Semantic segmentation provides an alternative and a
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direct way to handle dynamic elements in the environment, which is usually realized by detecting
dynamic segments [91] in the map based on geometry.

The occupancy grid map based on Bayesian inference with sparse kernel [77] is chosen as our
backbone method due to its efficiency and nature of dense mapping. In this section, we propose
a method with two important features: real-time semantic mapping and dynamic object handling.
The main contributions of this work are:

1. We proposed a probabilistic random sampling method for free space representation.

2. We developed an efficient free beam representation on top of a R-Tree.

3. Validation of the significant improvement in inference speed and accuracy of dynamic object
removal through experiments. 100x speed improvement was observed using a real-world
point cloud dataset.

2.2.1 Related Work

2.2.1.1 Semantic Occupancy Mapping

Semantic mapping using lidars is usually based on volumetric representation due to its natural fit-
ness for preserving a probability distribution over all occupied positions. Volumetric occupancy
maps use 3D voxels with each voxel holding information about occupancy, Signed Distance Func-
tion (SDF) and semantic information. The information is updated incrementally when a new ob-
servation is available. Note that the occupancy can be regarded as a kind of binary semantics.
Gaussian Process Occupancy Map (GPOM)[185] is a widely used representative framework that
estimates the occupancy probability considering the correlation between grids. However, GPOM
suffers from O(N3 + N2M) time complexity (for N range measurements and M query points).
For faster storage, occupancy grids are usually stored using blocks indexed by a hashmap [179],
resulting in a sparse voxel grid. For faster inference, [127] partition the voxels into blocks and
achieve O

(
N3

K2

)
training and O

(
N2M
K2

)
inference complexity where K is the number of blocks.

[63, 77] introduces Bayesian Kernel Inference into the mapping problem, further reducing the
inference complexity to O(M logN).

For semantic information, the Markov Random Field (MRF) [98] and Conditional Random
Field (CRF) [209, 285] were frequently used in early semantic segmentation work. Later, deep
neural networks became popular and showed good performance for both 2D images [300] and
3D point clouds [48]. With semantically labeled point clouds or depth images, semantic maps
can be generated by fusing semantic prediction for each position by voting [209], CRF [137] or
Bayesian inference [77]. The last approach [77] is used as the backbone in our work for its learning
capability and efficiency.
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2.2.1.2 Free space representation for Occupancy Mapping

In other volumetric maps like the TSDF map, free space is usually handled by ray casting along
each scanning beam [104, 184]. However, in the occupancy map with Bayesian inference, training
and testing steps are separated, which requires the free space to be represented by some geometries.
Defined or sampled points along beams are commonly used in the literature [185, 200, 63, 252,
183] to represent free space. [185] uses the closest point on each beam to the query point as a
free space data point. [252, 63] linearly interpolate between sensor origin and scanning hits with
free space points. [63] also proposed to use point-to-line distance in the kernel calculation to
reconstruct sensor beams from free space points during testing. [183] proposed adaptive order
quadrature, which actually weighs sampled free points by the length of its beam. On the other
hand, [200] sampled points between sensor origin and hits with uniform probabilities. Point-based
free space representation can be efficient, but they are not complete in the sense that they cannot
guarantee full coverage of all possible free space. Instead, the line-based representation to be
presented in Section 2.2.2 can ensure the whole free space is covered.

In [104], the authors identified the problem of false negatives brought by close beams with
shallow angles. This problem is not present in free space representation with sampled points, since
the free points can be down-sampled before training, and points too close to each other will be
eliminated. However, this problem is still relevant when free space is represented in other forms,
which we face in our method. The solution to this problem will be discussed in Section 2.2.2 as
well.

2.2.2 Methodology

In this section, the mapping framework will first be introduced, then the two proposed representa-
tions for free space modeling are discussed.

2.2.2.1 Semantic Occupancy Mapping

We adopt the semantic occupancy mapping framework based on Bayesian Kernel Inference with
Categorical likelihood as introduced in [77]. The integration process of new range measurements
in this framework is separated into two phases. First, the input point cloud will be down-sampled,
and free space points will be sampled based on the measurements and added to input data points.
Then the data points will be collected by each block to construct training samples per block. In the
second phase, existing blocks in the occupancy map adjacent to training blocks will be collected as
test blocks, and Bayesian inference will be performed with sparse kernels to update the Categorical
posterior for each block. The key for fast inference is to use a sparse kernel defined below to
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constrain the amount of data being considered.

k(x, x′) = 1d<lσ0

[
2 + cos(2πr)

3
+

1

2π
sin(2πr)

]
(2.3)

where x and x′ are training data points and testing data points, d = ∥x− x′∥, r = d
l
, and kernel

size σ0 and kernel length l are hyper-parameters. With this kernel, the search of query data can be
limited by l, resulting in fast local inference. Then the Bayesian update step can be formulated as

αk
∗ = αk

0 +
N∑
i=1

k(x∗, xi)y
k
i (2.4)

where {αk
0} is the prior Dirichlet distribution and {αk

∗} is the posterior distribution, k ∈
{1, 2, .., K} is the index of categories. Please refer to [77] for more details. We further improve
the whole process to meet real-time inference requirements in several aspects, as stated below:

1. Heavily templatize the code to improve computation performance.

2. Use a forward iteration to collect data points in each block, rather than query data points
per block through an R-Tree, as in [63, 77]. This improves the time complexity of gathering
training data fromO(M logN) toO(N), where M is usually of the same order of magnitude
as N .

3. New free space representations are proposed to improve the inference speed of free space
and provide extra flexibility for adjusting speed over accuracy. Details are presented in the
following subsections.

2.2.2.2 Random Free Space Sampling

Point sampling is a common strategy to gather free space data points from range measurements
as additional training data. Evenly spaced [252] or uniformly sampled [200] points can cover free
space along a beam in arbitrary resolution. However, at locations near the sensor origin, sampled
points are more crowded than those farther away, which makes the sampling inefficient. Based
on this observation, we propose a sampling strategy with designed probabilities along each sensor
beam, which is derived from the well-known unit-disk sampling problem.

Consider a 2D range sensor and a 2D grid occupancy map, the sampled points can cover the
free space evenly with a linear probability along a beam. This behavior will be referenced as
linear-weighted sampling in the remainder of the paper. The proof is presented here as follows.
Assume we want to uniformly sample a point (x, y) ∈ V = {(x, y)|

√
x2 + y2 < R} in the visible
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area V of the sensor, where R is the radius of the area. This implies the desired probability density
function is

p(x, y) =
1

πR2
(2.5)

. When we convert the coordinates into a polar coordinate system, assuming the corresponding
point is represented as (r, θ), then its density function should be p(r, θ) = |J |p(x, y) = rp(x, y) =
r

πR2 where J is the Jacobian matrix of the polar transformation

x = r cos θ, y = r sin θ, J =

(
cos θ −r sin θ
sin θ r cos θ

)
(2.6)

As the sampling is uniform in all directions, we can use the marginal probability of r as our
sampling strategy

p(r) =

∫ 2π

0

p(r, θ)dθ =
2r

R2
∝ r (2.7)

Therefore we can prove that when the probability of a point sampled at a position is proportional
to the distance from this position to the sensor origin, we can achieve uniform sampling in the
circular FoV of the sensor.
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Figure 2.5: Comparison of different free space sampling strategies with fixed beam length. All
plots include 135 sampled points and the color of each point represents which lidar beam the point
belongs to. (a) Evenly spaced beams with evenly sampled points along beams. (b) Evenly spaced
beams with uniformly sampled points along beams. (c) Evenly spaced beams with linear-weighted
sampled points. (d) Points sampled uniformly with regards to angle and radius. (e) Points sampled
uniformly in angle and linearly in radius.

The difference of several sampling strategies is depicted in Figure 2.5. Figure 2.5(e) corre-
sponds to the exact case in Equation 2.7 and in Figure 2.5(c) points are linearly sampled along
each beam but the beams are not randomly sampled, which corresponds to the application of sam-
pling in the mapping process. It can be seen that points sampled evenly or uniformly along beams

32



0

2

4

6

Evenly spaced samples Uniform samples
Linear−weighted sampled

(proposed) Uniformly weighted Linearly weighted
Bilinearly weighted

(proposed)

4 6 8 10 12
(a)

6
5
4
3
2
1
0

4 6 8 10 12
(b)

4 6 8 10 12
(c)

4 6 8 10 12
(d)

4 6 8 10 12
(e)

4 6 8 10 12
(f)

0

2

4

6

Evenly spaced samples Uniform samples
Linear−weighted sampled

(proposed) Uniformly weighted Linearly weighted
Bilinearly weighted

(proposed)

4 6 8 10 12
(a)

6
5
4
3
2
1
0

4 6 8 10 12
(b)

4 6 8 10 12
(c)

4 6 8 10 12
(d)

4 6 8 10 12
(e)

4 6 8 10 12
(f)

Figure 2.6: Illustrative examples of free space representation with simulated 2D scans. The top row
shows the training data and the bottom row shows the inference results. Free space representations
include (a) Evenly spaced sampled points, (b) Uniformly sampled points, (c) Linearly sampled
points, (d) Line representation, (e) Line representation with linear weights, (f) Line representation
with bilinear weights. The representations with bold titles are the most efficient ones with the least
free space density overflow (purple area) and best preserving occupied space density (orange dots).
Note that evenly sampling is deterministic while uniformly sampling is probabilistic.
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all have clustered points around the origin, which reduces the sampling efficiency. The problem
could be worse in the 3D point cloud from lidar sensors. Besides, The space near the origin is
usually not a place of interest when we construct the map.

The strategies illustrated in Figure 2.5(a) and (b) are commonly used in the literature (see [252,
63] and [200] respectively). Aside from the difference in the distribution of samples, we also
limit the number of samples per beam to a fixed count instead of a number dependent on beam
length. This enables efficient parallel computation and will not affect free space coverage when
the sampled points are very few due to resource limitations. Another example of sampled points is
shown in Figure 2.6(a-c), where a similar difference can be found.

Even though this sampling strategy is more efficient than uniform sampling along each beam,
a sufficiently large number of samples are still required to cover the free space without skipped
grids. To mitigate this problem, we propose another free space representation in the next section.

2.2.2.3 R-Tree based free beam retrieval

Inspired by BGKOctomap-L [63], which uses sampled points to present free space, but calculates
kernel (Equation 2.3) with distances from point to beamline, we directly calculate point-to-line
distance without sampling points. In order to meet the real-time requirement, an efficient algorithm
is required for querying point neighbors to a line or vice versa. Traditionally this problem can
be handled by tree data structures including KD-Tree and R-Tree. However, for lidar beams all
starting from the sensor origin, the bounding boxes of the beamlines usually have a large overlap
and the leaf node will contain a large number of points, which degrades query to linear time
complexity. A graphical explanation with a 2D world is shown in Figure 2.7. There are specialized
tree structures for storing line segments and points, such as PMR-Quadtree [100]. Although this
data structure can make points query efficient by splitting the regions along the lines, the tree can
be very deep due to a large amount of split in our case.

To mitigate the problem, we use the projection of beamlines on a sphere around the sensor
origin and construct R-Tree on the sphere, which helps the query of close point-line pairs to keep
a logarithmic time complexity. Specifically, given sensor origin at (xo, yo, zo) and a lidar range
measurement at (xi, yi, zi), we first calculate the beam representation in the spherical coordinate

∆x = xi − xo, ∆y = yi − yo, ∆z = zi − zo (2.8)

φi = arctan
∆y

∆x

, θi = arccos

√
∆2

x +∆2
y

r
, ri =

√
∆2

x +∆2
y +∆2

z (2.9)

where r denotes the range, φ denotes the azimuth angle and θ denotes the elevation angle. Then
the beamline can be represented by a varying r from 0 to ri with fixed φ = φi, θ = θi. After the
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Figure 2.7: Line-based free space representation in 2D Cartesian and polar coordinate. Active
beamlines are ones whose bounding box overlaps with the query ball region. In the right plot, the
query region is projected from the left plot but the query box is generated using Inequalities 2.10
(θq = 0). It can be found that there are much less activated bean lines in the right plot that those in
the left plot.

coordinate conversion, R-Tree is constructed based on spherical coordinates (ri, φi, θi). To make
the coordinate system compatible with range queries, the R-Tree needs to be modified to consider
the periodicity of coordinates.

Once the R-Tree is constructed, beamlines in proximity to the query points can be obtained
using a ”box” in the spherical coordinate system. By considering the query point (xq, yq, zq) and
the query range l (ideally equal to the kernel length), the lines in close proximity to the query
point can be retrieved. This process involves converting the query point to spherical coordinates
(rq, φq, θq) using Equations 2.8 and 2.9. Subsequently, the retrieval operation is performed using
the following box query:

rq < r <∞, φq −
l

r cos θq
< φ < φq +

l

r cos θq
, θq −

l

r
< θ < θq +

l

r
(2.10)

Note that this query box is a close approximation of the ball around query point (see query
boxes in Figure 2.7), and correct query results can be guaranteed by enlarging l slightly. Besides,
the query can be problematic when data points are near the north or south pole of the sphere, but
this is very unlikely in a lidar scan where elevation angles of points are usually in a small range
around 0.

With the proposed spherical R-Tree data structure, we can achieve efficient kernel inference as
illustrated in Figures 2.6(d) and 2.7. In Figure 2.7, the query point activates much fewer lidar beams
in the polar coordinate than in the Cartesian coordinate. Nevertheless, a similar problem discussed
in the previous section is encountered where the kernel value of being free will be exceptionally
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large near the sensor origin. Following the same idea, linear weights can be applied to kernel values
along each beam as shown in Figure 2.6(e). Furthermore, to ease the aforementioned problem of
false negatives due to shallow beam angle from [104], we propose to use bilinear weights along
the beam (the weight peaks at the middle of each lidar beam), which is illustrated in Figure 2.6(f).

2.2.3 Experiment Results

To exam the performance improvement of proposed free space representations, we conducted ex-
periments on the real-world dataset SemanticKITTI [14]. SemanticKITTI is a large-scale dataset
based on the KITTI dataset, with point-wise semantics from 19 categories. There are about 65k
lidar measurements per frame in the SemanticKITTI dataset. We adopt the point cloud data with
inferred labels provided by [77] for our experiment. The hardware used for the experiment is a
desktop computer equipped with an 8-core CPU (Ryzen 2700), 16G RAM. The software environ-
ment is Ubuntu 18.04 with bundled Point Cloud Library (PCL) 1.8.1. We also adopt parameters
used in [77], with kernel length l = 0.3, kernel scale σ0 = 0.1 and Dirichlet prior αk

0 = 0.001.
During the experiments, the map resolution is set as 0.3m.

Our approach applies to any GPOM [185] variations, and in this section we test the perfor-
mance using a semantic mapping framework to best demonstrate its efficiency. For conventional
occupancy maps, classifications can be conducted using binary semantics, and map updates will be
much faster than the 19-category classification. The baseline [77] used for comparison is compiled
based on the official code repository provided by the authors except for minor modifications for
frame time reporting.

2.2.3.1 Accuracy comparison on dynamic objects

There are two motivations for efficient free space representations: to reduce false positives in
mapping and to handle dynamic objects. We evaluate the recall of moving points detection
to assess the performance for dynamic objects. The moving label is directly provided by the
SemanticKITTI dataset, we will count how many moving points are removed from the mapping
process. Note that this metric is calculated across all categories, although the points from moving
vehicle comprise most of the moving points. A negative example is shown in Figure 2.9(a2),
several long blocks are classified as car due to aggregated mapping results from different frames.
With proper free space representation as shown in Figure 2.9 (a1) and (c2), most false-positive car
blocks on road can be eliminated, and the recall can be close to 1.

The relationship between free space representation and mapping quality is quantitatively illus-
trated in Figure 2.8. For point-based free space representation, key free space samples are those
samples passed through voxel-grid down-sampling from PCL, which is used to collect training
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Figure 2.8: Quantitative comparison of mapping performance with different approaches. The
number of samples per beam varies in the experiments, forming the lines in the plots. Baseline is
from [77]. Comparison notes: (a) left-top is better. (b) right-top is better. (c) left-top is better.

data to reduce computation. More valid free space samples will lead to better mapping quality
for free space, but key samples are particularly efficient using the proposed random sampling as
shown in Figure 2.8b. However, with more free space samples, the semantic prediction accuracy
will degrade because more voxels will be marked as free. On the other hand, for line-based free
space representation, all valid space can be covered without fine-grained sampling. Thus we can
achieve even better quality as in Figure 2.8b and 2.8c by a small margin. It is worth mentioning
that without the bilinear weighting proposed in Section 2.2.2, there will be a lot of false negatives
in the map as shown in Figure 2.9b2 and 2.8b. This demonstrates the problem originated in [104],
where the query point will be falsely negative if it is too close to a lidar beam than its actual hit
point.

2.2.3.2 Computation speed analysis

The quantitative results are shown in Figure 2.8 and 2.9. Our method is able to achieve real-time
(>10Hz) mapping without free space consideration, and near real-time (4-10Hz) performance with
the proposed free space representations. With the linear sampling strategy proposed in Section
2.2.2, good mapping quality is achieved. With the line-based representation and spherical R-Tree
proposed in Section 2.2.2, the best mapping quality is achieved with around a 4Hz frame rate.
The proposed line-based representation is able to achieve better mapping quality with less time
consumption than point-based representations.

Further analysis of time complexity with different free space representations is evaluated in
Table 2.6. It is worth noting that the number K of free space points per beam is vastly different
in evenly spaced sampling and linear-weighted sampling. In the former approach, K can reach 50
if the maximum range is 50m and free space points are sampled with 1m gaps. However, K is
fixed for parallelization and K = 5 is required to achieve similar quality in the latter approach. R-
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baseline proposed

(a1) 83.37± 17.06s (b1) 16.79± 2.24s (c1) 119.78± 6.43ms

(a2) 5.56± 0.14s (b2) 263.60± 17.40ms (c2) 269.04± 11.54ms

Figure 2.9: Qualitative results and frame time with different free space representations in a 3s seg-
ment of SemanticKITTI. (a) Commonly used baseline methods. (b) Other variants. (c) Proposed
methods. Specifically, (a1)(b1) Evenly sampled points with 1m and 10m gap respectively (from
[77]). (a2) No free space representation (from [77]). (c1) one linearly sampled point per beam.
(b2)(c2) Line-based representation with uniform and bilinear weight respectively.
Legend of map grids: ■ Car ■ Road ■ Building ■ Vegetation ■ Other ground ■ Terrain ■ Other
vehicle . Labels of the proposed methods are in bold.

Tree is used in both the baseline method and our line-based representation, resulting in logarithmic
complexity. The difference is that R-Tree is used for point query in the baseline, but for line query
in our method. Furthermore, bulk insertion is used in our method during the training data creation
step.

Due to the better time complexity, our methods achieve more than 100x speedup compared
with the baseline method (see Figure 2.8c). Real-time performance with free space modeling can
be achieved by using fewer semantics categories or limiting the range of inference positions.

2.3 Occlusion Modeling with Occupancy Maps

In the ADS, as mentioned in Section 1.2 and 1.3, an environment model is required as the input
to the trajectory planner. To make the planner occlusion-aware, we first need an environment
representation that takes the occlusion into consideration. In this section, we will proposed an
approach to identify and represent the occluded area in an occupancy grid map.
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Table 2.6: Time complexity comparison of different free space representations.
N - number of training data points. M - number of testing points. K - (average) number of free
space points per beam. ∗: this part is parallelizable.

Method Creating training data Training Testing
Baseline [77] O(KN +N logN) O∗(M logN +N) O∗(M +N)
Ours + evenly spaced sampling O(KN) O∗(M +N) O∗(M +N)
Ours + linear-weighted sampling O∗(KN) O∗(M +N) O∗(M +N)
Ours + line based O(N) O∗(M logN +N) O∗(M +N)

2.3.1 Related Work

Occlusion is an important problem in the CV field. Most CV methods focus on the detection or
segmentation of partially occluded and self-occluded objects. Some algorithms mitigate the occlu-
sion issue by splitting the detection target into parts [296, 216], while many other machine learning
algorithms improve the detection and segmentation performance by adding data augmentation into
the training datasets [249, 308, 277].

The more challenging problem discussed in this dissertation is the full occlusion where the
whole body of the object is invisible to the observer. There exist several methods that predict the
existence of the hidden object using environmental or historical information. Li et al.[147] and
Galceran et al.[76] proposed methods to track objects that temporarily enter the occluded area.
Some other research works include [2], [227, 95, 114, 173] proposed perception algorithms that
predict the existence of the pedestrian using the behavior of surrounding objects that can see and
reacts to the crossing pedestrian. However, these two kinds of methods are both limited to specific
scenarios. The former requires that the target is previously visible, while the latter requires that
there is another road user and the occluded target has to be visible to it. On the contrary, our
method does not depend on any assumption on road users and the detection of the occluded area is
accomplished by modification on a grid mapping framework.

2.3.2 Occlusion Identification

Conventionally, the occlusion can be classified by the property of its source object as shown in
Figure 2.10. The FoV of a vehicle is defined as the area where the onboard sensors can sense when
there are no obstacles surrounding the vehicle. The areas beyond FoV are the blind spots. When
there are objects surrounding the vehicle, some areas in the FoV will be occluded, which can be
classified as static or dynamic occlusions. The dynamic occlusion can be trivially identified when
you have a 3D model of the dynamic objects on the road (through a detection algorithm such as the
one described in Section 2.1). However, identifying the static occlusion is hard with our premise
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Figure 2.10: Sensor limitation and different kinds of occlusions.

to not rely on HD maps, which means that the algorithm has no access to vectorized maps. In this
section, an approach to identify the occluded area in an 3D occupancy grid map will be introduced.

Given an occupancy grid map, the occluded blocks can be identified by the spherical R-Tree
data structure as proposed in Section 2.2.2 with a query predicate different from Inequalities 2.10.
The predicate for an query point being occluded is formulated as:

0 < rq < r, φq −
l

r cos θq
< φ < φq +

l

r cos θq
, θq −

l

r
< θ < θq +

l

r
(2.11)

The difference between the Inequalities 2.11 and 2.10 is that the range of rq is flipped, reflecting
the fact that the occluded locations are those behind the lidar measurements. Since the lidar point
cloud is sparse, we don’t have information between the lidar beamlines. The “thickness” of a lidar
beamline is actually determined by the query range l. When l is bigger, more area will be marked
as occluded given the same point cloud input.

(b) informed occlusion

(a) unknown occlusion ?

Figure 2.11: Occlusions categorized by whether prior information is available.

To identify all the occluded blocks in an existing occupancy map, we check the center points of
all of the grids with previous observations. To explain the choice to ignore the grids with no prior
information, we propose another way to categorize the occluded area, as shown in Figure 2.11. If
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there is prior information about a grid in the map (e.g. we know this grid was free before), the
occlusion of this grid is informed. Otherwise, the occlusion of the grid is unknown if there is no
prior information. We ignore the grids with unknown occlusion because:

1. There are many spaces in the grid map that have no observations. Considering all the spaces
would result in a lot of unnecessary computational cost.

2. Considering unknown occlusion could lead to false positives. For instance, it there is a
building on a grid with no previous observations, it is not necessary to consider this grid
during planning.

It is worth noting that the lack of informed locations can be reduced by storing the generated
map during driving. Afterwards, the ADS can have prior information at visited locations by loading
the stored occupancy map. This strategy is leveraged in the Section 4.2.2.

2.3.3 2D BEV Map Generation

With the occluded grids identified in the 3D occupancy map, we then convert the 3D map into 2D
to make it easier for the planner to utilize. However, the critical information should be preserved as
much as possible during the conversion. We adopt the multi-layer 2D grid map structure designed
by [72], where each grid has multiple values with different semantics. Specifically, there are five
relevant layers in the 2D map listed below:

1. Ground Elevation: height of the ground 3D grid.

2. Ground Semantics: semantics associated with the ground 3D grid.

3. Occluded Height: height (relative to the ground) of the top occluded 3D grid.

4. Grid Status: three states (unknown, free, and occupied) and a occlusion flag.

5. Grid Status History: the length of time since the last status change for the current grid.

The ground 3D grid is the highest 3D grid with ground-related semantic labels (such as the
Sidewalk, Drivable Surface, Terrain labels in Figure 2.1) at this 2D location. The top occluded
grid is the the highest occluded 3D grid below a height threshold Hi at this 2D location. This
threshold is used to ignore the occluded area that are too high to cause any driving risk. The
occlusion flag is set only if the occlusion height is above another threshold Hl. The occlusion that
is too short to case any driving risk (such as low bushes along the road) can be excluded by this
threshold.
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In the current design of semantic layers, the consideration of occluding object holes is omitted
due to the complexity of representing multiple occlusion sections within a single grid. While
modeling these sections instead of using a binary occlusion flag could potentially yield limited
benefits, it may significantly escalate computational complexity.

The application of the grid status and its history will be detailed in the next chapter.

2.3.4 Experiment Results

To evaluate the proposed occlusion identification framework, we conducted experiments on the
SemanticKITTI[14] dataset which is also used in Section 2.2.3. The occupancy mapping algorithm
with the proposed occlusion identification function is tested on the sequence 04 of the dataset. The
qualitative results are shown in Figure 2.12. The figure shows that the proposed identification
method can find the occluded grids in the occupancy maps. It can also be found that more (in-
formed) occluded areas are identified with a previously generated occupancy map.

(a) The occupancy map being con-
structed

(b) The occupancy map being con-
structed with occlusion identifica-
tion.

(c) Occlusion identification with
previously constructed occupancy
map.

Figure 2.12: The qualitative results of occlusion identification on SemanticKITTI sequence 04.
See the Figure 2.9 for the color legend. The gray dots in figure (b) and (c) are the identified
occluded grids.

2.4 Summary

In this chapter, our focus was on efficiently representing occluded areas in the environment without
relying on pre-existing maps. We proposed a series of three consecutive approaches for semantic
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segmentation, occupancy mapping, and occlusion modeling. The key findings and conclusions of
this chapter are as follows:

1. A novel framework for joint 3D object detection and semantic segmentation using lidar
point clouds was proposed, demonstrating higher efficiency compared to separate imple-
mentations. The algorithm’s efficacy and efficiency were confirmed through experiments on
the nuScenes dataset, where it was compared with state-of-the-art methods for semantic and
panoptic segmentation tasks. Furthermore, a modification allowing the learning of implicit
representation of spatial semantic properties was proposed, which can be applied to any 3D
object detectors that produce global feature maps.

2. Two free space representations were proposed to improve 3D occupancy mapping. The
point-based representation with linear sampling offered greater speed and flexibility depend-
ing on the number of points per beam. On the other hand, the line-based representation en-
sured comprehensive coverage of all free space, resulting in improved mapping quality. The
use of a spherical R-Tree facilitated efficient storage and querying of beamlines. Experimen-
tal validation on a real-world dataset using lidar point cloud confirmed the improvements in
speed and mapping quality, enabling real-time semantic 3D occupancy mapping in large-
scale outdoor scenarios.

3. A framework for the identification and representation of occluded areas in an occupancy map
was introduced. The spherical R-Tree data structure was also utilized to identify occluded
grids. To represent occlusion in an occupancy map, the proposed approach involved storing
occlusion information as state and history values. Preliminary experiments conducted on
SemanticKITTI demonstrated the effective identification of occluded areas in an occupancy
map, irrespective of whether the map was generated online or offline.

In summary, this chapter contributes with novel approaches for efficiently representing occluded
areas, encompassing joint 3D object detection and semantic segmentation, enhanced occupancy
mapping techniques, and the identification of occluded areas within occupancy maps. The pro-
posed methods demonstrate promising results and pave the way for AV planning with full occlu-
sions in the environment.
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CHAPTER 3

Occlusion-aware Motion Planning

With the occlusion modeling approach presented in Chapter 2, this chapter focuses on designing an
occlusion-aware planning framework for AVs. The objective is to ensure safe AV behavior while
avoiding excessive conservativeness in highly occluded environments. Inspired by the behavior of
human drivers, the proposed framework responds to occlusions by creating virtual objects referred
to as ”phantoms”.

Specifically, the first part of the framework (Section 3.1) handles the life cycle of the phantoms,
and the second part (Section 3.2) finds the near-optimal trajectory based on the prediction of actual
targets and the generated phantoms. The technical details of the planner are also covered in [304].

What sets our framework apart from other occlusion handling methods for AVs is its indepen-
dence from HD maps or vectorized maps, such as Lanelet maps[193]. Additionally, it does not rely
on assumptions about the source of occlusion or the behavior of other road users. These aspects
contribute to the framework’s versatility and applicability in diverse real-world scenarios.

3.1 Phantom Management System

The systematic approach for representing the occluded road users is described in this section. First,
the occluded areas in the occupancy map are detected using the R-Tree data structure described in
Section 2.3 and in [303]. Then imaginary moving targets are generated in these areas. Lastly, each
phantom will be checked in every frame and removed if certain criteria are met.

Definition There are two kinds of imaginary targets: submerging objectsOs and phantomsOp.
Submerging objects are previously detected targets that entered an occluded area at a certain time
and never appeared again. On the other hand, phantoms are those that have never been detected,
and their (hypothetical) positions are either beyond the field of view or in occluded areas (see
Figure 2.10) all the time. Both kinds of imaginary targets can enter the visible area in the future
and the planner should be prepared for them. In practice,Os can be considered asOp because they
only carry additional prior information for initial states. So without loss of generality, we only
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describe the strategy used for managing Op in this section.
The management of phantom consists of three parts: generation of new phantoms, update of

the phantom states, and elimination of old phantoms. These three processes are executed usually
immediately after the tracking module in the AV system. We assume all the phantom have constant
acceleration and constant heading angle, so the state update is trivial and efficient. The total number
of phantoms is limited by a budget parameter. New phantoms will be generated only if the number
of phantoms does not exceed the budget.

3.1.1 Generation

The generation of phantoms happens at each time step. To generate a new phantom, we first
pick the feasible locations (occluded but not occupied grids in the occupancy map) and calculate
the generation probabilities of those locations (Section 3.1.1.1), then a feasible grid is randomly
chosen and the phantoms will be generated on the grid with a certain initial state (Section 3.1.1.2).
At each chosen grid, a vehicle-like and a pedestrian-like phantom will be generated at the same
time, with different limits on the initial states.

An objects manager will try to generate as many phantoms as possible at each time step until
the budget for the number of phantoms is reached. Generation trials are not always successful, so a
limit on the number of trials is also placed on the generation process so that the time consumption
is constrained.

3.1.1.1 Generation Probabilities

Several aspects are modeled into the probability to make the phantom generation diverse and effi-
cient. First, the more areas the phantoms cover, the better, so the locations with existing phantoms
nearby are assigned a lower probability. Specifically, this probability can be calculated using a
convolution with a matrix filled by ones as the kernel. Secondly, we put more phantoms near the
ego vehicle, because they are likely more dangerous. Thirdly, it is unlikely for a newly occluded
area to have targets in it if we asserted that there were no targets. Therefore, the locations with
a long occlusion history will be assigned higher probability. It prevents over-conservative behav-
iors in our experiments. The phantom generation probability at grid (i, j) could be heuristically
formulated as

pij ∝
max(0, tanh (Tij/aT ))

Nij ∥cij − ce∥2
(3.1)

where Tij is the length of the occlusion history and aT is a scaling parameter. Nij is the number
of existing nearby phantoms given the grid index (i, j). cij denotes the center of grid (i, j) and ce
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denotes the ego position.

3.1.1.2 Initial state determination

To make the generated phantoms cover dangerous cases more efficiently, the initial state of a phan-
tom is selected so that it will collide with the ego vehicle in the short future (this time span is
denoted as Tf ). For the ego vehicle, we assume it follows the last planned trajectory Slast in Tf ,
while for the phantom, we assume its trajectory is straight and has constant linear acceleration,
which will make the state update of a large number of phantoms efficient. Although the assump-
tion can be strong for general road users, we believe that the simplistic motion models can be
compensated with more phantom targets.

Given these assumptions, when generating a phantom at the grid (i, j), initial velocity vij of
a phantom is uniformly sampled from the interval [vmin

ij , vmax
ij ], which is determined based on a

predefined speed limit Mspeed, acceleration limit Maccel, and a deceleration limit Mdecel:

vmin
ij =max

{
0,

1

t

(
d− 1

2
Maccel · t2

)}
(3.2)

vmax
ij =min

{
Mspeed,

1

t

(
d+

1

2
Mdecel · t2

)}
(3.3)

where d = ∥Slast(t)− cij∥2, t is randomly chosen from (0, Tf ], S(t) represents the way point
along trajectory S at time t. After the velocity is determined, the acceleration of the phantom is
aij = 2(d − vij · t)/t2. Besides, the heading angle of the phantom follows the vector from cij

to Slast(t). With the calculated behavioral parameters, the phantom target will collide with the
ego vehicle at time t if the ego vehicle keeps following the current trajectory. Note that the limits
Mspeed, Maccel, and Mdecel should be set separately for different types of phantom targets. The
phantom generation will fail if either of the following conditions is not met:

1. There are feasible initial state candidate (most importantly vmin
ij < vmax

ij ).

2. The line between cij , Slast(t) does not intersect with any static obstacles.

3.1.2 Phantom elimination

The phantoms will not last forever, they will be eliminated if one of the two conditions below is
met:

1. The phantom enters the visible area.

2. Newly observed occupied grids block the phantom (either the phantom or part of its trajec-
tory is in the occupied grids).
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3. The phantom becomes obsolete after it exists for too long or it is too far away from the ego
vehicle.

In practice, the third condition hardly gets activated because the phantoms are generated to
collide with the ego vehicle in future. Therefore the design of the related threshold will not be
discussed in this section.

3.1.3 Integration with Object Tracking

Here we describe how the proposed phantom management system can be integrated with a object
tracking module of an ADS in the Program 3.1. The integrated module will be referred to as
“object management system” in the remainder of the dissertation.

1: procedure OBJECT MANAGEMENT STEP(B,P )
Inputs ∆t: duration since last update, O: list of detected objects, M : the occupancy map with
occlusion status and history, ce: the position of the ego vehicle
States T : list of tracked objects, P : list of tracked phantoms
Parameters MP : budget of phantoms, Mi: maximum iterations

2: Update T given O and ∆t
3: Remove unnecessary phantoms according to Section 3.1.2.
4: Get all the occluded grids Moccl given T and M .
5: Get all the feasible locations L for phantom generation given Moccl.
6: Calculate the generation probabilities of these locations as pL according to Equation 3.1.
7: i← 0 ▷ number of iterations
8: while |P | < MP and i < Mi do ▷ each iteration tries to generate a phantom
9: Randomly sample a location cp from L according to pL.

10: Randomly sample a collision time t from [0, Tf ) uniformly.
11: Calculate the motion parameters based on ce, cp and t.
12: if the motion parameters are valid then
13: Add a new phantom p given the motion parameters to P

14: i← i+ 1

15: for each phantom p ∈ P do
16: Update the state of the phantom given its motion parameters and ∆t.

Program 3.1: The brief explanation of a update step of the object management system. The update
of T in the procedure can be implemented using a conventional object tracker, such as the Kalman
Filter.
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3.2 Occlusion-aware Planner with Deterministic Sampling

In this section, the details of the planning algorithm will be discussed. Firstly, the structure of
the fundamental algorithm will be reviewed. Then it is followed by the composition of additional
planning costs for occlusion.

3.2.1 Related Work

There have been many researchers exploring the planning strategy for AV under occluded scenar-
ios. The methods in the literature mainly fall into three categories according to the representation
of occlusion: geometry, reachable sets, and raw sensor data. The methods using geometric repre-
sentations [151, 207, 109, 176, 60, 177, 26] identify the occlusion by finding the corner points of
the occluding objects. These methods usually rely on HD maps and only consider the occluded
area on the road. Moreover, some of the methods [151, 109, 60, 177] represent the occluded
area by edge positions on each lane, and the positions could be tracked over time. Notably, the
Responsibility-Sensitive Safety framework [211] proposed by Mobileye also use this approach to
design the safety criteria for scenarios with limited visibility [213]. The methods built on reach-
able sets [206, 294, 295, 175, 132] represent the possible occluded area by a reachable set. The
advantage of this method is that occluded areas where vehicles (or other users) are very unlikely to
exist will be excluded. It can prevent the ego vehicle from being over-conservative. However, the
representation and propagation of the reachable set itself are costly as well. Yu et al. [294, 295]
use samples to approximate the reachable set and achieve safe driving behavior in the intersections.
[299] uses samples to represent the FoV of the ego vehicle. These sampling strategies reduce the
complexity of representing occluded areas, but they are still highly dependent on precise environ-
ment modeling. The raw sensor data are usually adopted by learning-based methods [113, 254?
], which adapt the planning system to occluded scenarios by training the planner with occlusion-
related driving data. The training data, however, are usually limited and it is hard for learning-based
planners to generalize to the various scenarios that AVs will encounter in the real world. Different
from all the methods in the literature, the planning method proposed in this dissertation represents
the occlusion states as grid properties in a grid map, which makes it independent of a detailed map
of the environment.

For trajectory planning, the geometry- and reachable-set-based occlusion representations are
usually combined with a heuristics-based or optimization-based planner, as the risk of occlusion
could be explicitly expressed. The learning-based methods directly generate actions from the un-
derlying machine learning models. On the other hand, Some methods [227, 109, 25, 272] use the
POMDP to describe the other road users, and the occlusion is implicitly modeled as hidden states.
Our method is built on a sampling-based trajectory planning algorithm [280], which is fast and
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reliable.

3.2.2 Deterministic trajectory generation

The base planning algorithm used in this dissertation is from [280]. This planner models the
trajectory generation as an optimal control problem, i.e. given cost function J =

∫ T

0
L(x, u)dt +

E(T, xT ) the optimal trajectory is

u∗ = argmin
u

J (3.4)

s.t. ẋ = f(x, u)

C(x, u) ≤ 0

and f denotes the system dynamics. L and E are the running cost and endpoint cost respectively,
and C is the constraint. The state x is defined in the Frenet coordinate, that is

x = (s, ṡ, s̈) or x =
(
d, ḋ, d̈

)
(3.5)

where s and d are the two components of the Frenet coordinate (see [280]). This problem is
usually intractable when the cost function does not have a simple structure. Therefore we use the
deterministic sampling strategy [280] to find a near-optimal solution. An optimal trajectory to a
simplified version[266] of Problem (3.4) is a quintic polynomial w.r.t. the time, therefore we first
generate a set of candidate polynomial trajectories based on [266], and then we select the best
trajectory that has the lowest cost with constraint checking.

The constraints C(x, u) on the trajectories include:

• C1: The (longitudinal and lateral) speed and acceleration along the trajectory all fall in a
feasible range.

• C2: The trajectory is confined inside the drivable area.

• C3: No collision with other (real) targets.

And the cost function J is a weighted sum of the following cost terms:

• J1: Smoothness

• J2: Deviation from the target state

• J3: Risk of leaving the drivable area

• J4: Risk of being too close to obstacles
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• J5: Consistency of optimal trajectories

• J6: Risk of collision with phantoms

• J7: Risk of lack of visibility

All the constraints C1 – C3 and cost functions J1 – J5 are from [280], please refer to the Section
VI of [280] for the definition of these terms. The cost function J6 and J7 will be discussed in the
next subsection.

3.2.3 Cost terms for occlusion

To make the ego vehicle prepared for occluded road users (vehicles or pedestrians), two additional
cost terms are added to the trajectory optimization.

3.2.3.1 Risk of collision with phantoms

The first cost is designed to prevent collision of the ego vehicle with the phantoms. The cost is
defined such that it encourages the ego vehicle to find a path that is unlikely to cause a collision
with the phantoms. It’s formulated as

J6 = Φ1

− 1∣∣∣Ôp

∣∣∣
∑
p∈Ôp

ttcp

 (3.6)

Here Ôp is the most critical subset of the phantomsOp. For each phantom p, we calculate the Time
to Collision (TTC) ttcp based on the trajectories of the ego vehicle and the phantom, then the TTC
values are averaged. The set Ôp is selected based on TTC as well, it consists of K phantoms with
the lowest TTC. A function Φ1(·) is used to reduce the impact of this term when TTC is very large.
We set Φ1(x) = tanh(x) + 1 in our experiments so that the risk of phantoms is reduced but not
ignored when they are unlikely to collide with the ego vehicle.

3.2.3.2 Risk of lack of visibility

Clear vision while driving is crucial for safety. To improve awareness in obstructed situations with
autonomous vehicles, it’s important to encourage the vehicle to keep its distance from obstacles
and drive in a direction that will improve the field of view. To emulate this behavior, we introduce
another cost term as follows:

J7 = Φ2

(
1

T

∫ T

0

d(t)dt

)
(3.7)
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Here d(t) is the distance from the ego vehicle at time t to the nearest (occluding) obstacle around
it. Similar to Eq. (3.6), the distance is averaged over the planning horizon and passed through a
function Φ2 so that its impact is reduced when the drivable area is not very narrow. Specifically,
the function is set to be Φ2(x) = (max{0,Mdist − x})2 so that the optimal trajectory will not be
skewed when it’s far away from the occluding object (i.e. obstacles).

The existence of Φ(·) functions is necessary because both the TTC and the distance can easily
become large in a normal driving environment. Nevertheless, the definitions of the Φ(·) functions
are not critical as long as the cost function can be bounded by them. With all the proposed cost
terms, the optimized trajectory should be encouraged to be more prepared for the potential risks
introduced by occlusion on the road by slowing down and getting away from the occluding object.

3.2.4 Experiment Results

3.2.4.1 Experiment Setup

To evaluate the effectiveness of the proposed planning framework, we test the algorithm in several
predefined risky scenarios that are common in real-world driving, based on [208] and our experi-
ence. These scenarios are illustrated and described in Figure 3.1. For the intersection scenario, we
do not use real-world maps to create it like in [294], because most of the real intersections do not
have severe occlusions, and the authors in [294] still have to place virtual obstacles to create the
occlusions. Furthermore, for scenarios (b)-(e) in Figure 3.1, the occlusion is caused by dynamic
objects. These scenarios have little to do with the road geometry and were not discussed in [294]
and [295].

Experiments will be carried out using a 2D simulator, where all road users are treated as rigid
bodies with standard dynamic states. In the simulation, every road user is assumed to have a
flawless controller. As a result, during each state update, road users transition to their next state
based on their designated trajectory. Specifically, the ego vehicle follows the trajectory from our
proposed planner, while an Other Road User (ORU) follows the constant velocity trajectory defined
by the scenario with a given initial speed.

During the following experiments, the initial speed and the target speed for the ego vehicle are
both 10 m/s, and the initial speed for the ORU is 10 m/s in the intersection scenario and 4 m/s in the
other scenarios. The path for the ORU is fixed and the initial location is randomly selected within
1m around the default initial position. The default initial positions and paths deliberately place the
ORU in the occluded area of the ego vehicle at the beginning, leading to a potential collision if
the ego vehicle maintains its original speed. Consequently, this creates challenging scenarios for
the algorithms to handle.

Some of the key parameters of the proposed algorithm are set as the following: The maximum
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(a) Intersection (b) Parked Bus (c) Parked Truck (d) Parallel Parking (e) Parking Lot

Figure 3.1: Illustration of experiment scenarios. In all the scenarios, the ego vehicle is driving
upwards, when (a) An occluded car is driving into the intersection without the right of way (e.g.
running a red light). (b) Pedestrians are coming out from the occlusion caused by the parked bus.
(c) An occluded car is driving out without the right of the way. (d) Pedestrians are coming out from
the occluded area between parked vehicles. (e) Pedestrians are coming out from the occluded area
between parked vehicles.

iterations of phantom generation are set to half of the phantom targets budget. For vehicle-like
phantoms, Mspeed = 20m/s, Maccel = 2m/s2, Mdecel = 2m/s2; For pedestrian-like phantoms,
Mspeed = 5m/s, Maccel = 0.5m/s2, Mdecel = 0.5m/s2. Note that these values don’t reflect
the capabilities of actual vehicles and pedestrians, but only for phantoms. Besides, the distance
threshold for J7 is Mdist = 10m and the default budget for the phantom count is 100.

The grid map input for the planner (described in Section 3.2) is generated based on the scenario
and the position of the ego vehicle. The resolution of the occupancy grid map is set to 1.6m (the
side length of each grid is 1.6). For each scenario in Fig 3.1 and each setting, we run 20 separate
tests with different random seeds. We use the original planner as described in [280] as the baseline
in our comparisons.

3.2.4.2 Evalution Metrics

To judge the performance of the proposed framework, we evaluate the phantom management (Sec-
tion 3.1) and the motion planning module (Section 3.2) separately. For the former part, we want
the planner to be efficient in computation and capture the trajectories of real targets well. A
good manager should use fewer phantoms while retaining a great coverage of possible trajectories
of the occluded real targets. While for the latter part, we want the manager to generate smooth tra-
jectory and to be safe even under severe occlusion. A good planner should avoid hard deceleration
while retaining a large distance between the ego vehicle and the ORU. Therefore three metrics are
leveraged in our experiments:

Phantom count and closest distance between phantoms and the ORU: To evaluate the ef-
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ficiency of phantom management, multiple test runs will be executed with different budgets for
the number of phantoms. During each run, we will collect the lowest distance Dp between any
phantoms and ORU o, calculated as

Dp = min
p∈Op

min
t∈Toccl

d(p, o) (3.8)

where Toccl denotes the set of timestamps when o is occluded. In our experiment, there is only one
road user, so o is always that road user and will be omitted.

Peak and median deceleration: To evaluate the smoothness, we collect the deceleration data
of the ego vehicle during the test runs. The peak and median values of the deceleration will be
reported and compared.

Closest distance between the ego vehicle and the ORU: To evaluate the safety, since there is
not always a collision during the experiments, we collect the lowest distance De between the ego
vehicle and the ORU as an indication of driving safety. De is formulated as

De = min
t∈[0,T ]

d(ego, o) (3.9)

where T is the time horizon of the whole run. A collision happened when De = 0

Aside from these main metrics, we also measure the scenario passing time and the minimum
speed during each test run to capture the conservativeness of the methods. Each scenario will have
a preset finish point to determine when the ego vehicle passed the scenario.

3.2.4.3 Experiment Results

In this section, 100 test runs will be executed for each scenario. Even though there is no limitation
on the number of road users for our planning framework, only one ORU will be generated at the
designed starting point in each test run for better consistency.

First, we compare the safety of the methods evaluated by the minimum distance De and maxi-
mum braking in each run, which is depicted in Fig 3.2. From the results, we can find that although
the levels of difficulty of driving safely through these scenarios are not the same, our proposed
planner can achieve lower collision risk by maintaining a larger distance from the other road user
and avoiding most of the hard braking required for collision avoidance in all scenarios, thanks to
the generated phantoms and the related cost on these phantoms.

It is worth noting that, in the parking lot scenario there is a huge variation in the deceleration
profile from Figure 3.2(a). The reason behind it is that the original planner [280] generates diverg-
ing trajectories in the scenario where the pedestrian is appearing at different times. In some cases,
the planner determines that it is safer to not decelerate (and even accelerate), which usually leads
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(a) (b)

Figure 3.2: The safety comparison of the methods. (a) compares the maximum deceleration under
each scenario (lower the better) (b) compares the minimum distance between the ego vehicle and
the other real road user under each scenario (high the better). A distance of zero means collisions
happened in that scenario. Note that the max deceleration in the scenario intersection and parked
bus are very deterministic, and the quartile lines coincide. The baseline method is [280]

to collisions as shown in Figure 3.2(b). On the other hand, the proposed method always tends to
decelerate when the ego vehicle is driving in a highly occluded scenario.

Secondly, in terms of the phantom generation efficiency, we plot the trade-off between the num-
ber of phantoms and the phantom effectiveness in Figure 3.3. The result shows that the effective-
ness of the phantoms depends on the scenario. The larger area is occluded, the more phantoms are
required to get the same level of coverage on the ORU, which is consistent with common sense.
Nevertheless, regardless of the scenario, our phantom generation algorithm has good efficiency.
With only 120 phantoms, our method can cover the ORU with an error of less than 0.4m, which
is much less than the resolution of the grid map input. For context, in [294] the planner needs as
many as 215 particles for each lane to capture the potential behaviors of occluded objects.

Some overall statistics are reported in Table 3.1 as well. The results reported in this table are
separated into two categories because [294] only supports the intersection scenario. The method
[294] marked with † is the occlusion-unaware version of their algorithm used as a baseline in their
experiments. Compared with the non-occlusion-aware method (first two columns), the proposed
framework significantly reduced the collision rate and increased the minimum distance between
the ego vehicle and the other road user. Since we set the scenario to be very challenging, it is
hard to achieve zero collision rates without a huge influence on mobility. It can be noticed that
the method proposed in [294] achieves better safety, but that is due to it being overly conservative.
Under the setting in our experiments, the intersection is severely occluded and the planner in [294]
will almost always come to a full stop before it can see through the roads of another direction, even
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Figure 3.3: The efficiency comparison of different budgets for the phantoms. The lines and areas
respectively denote the median and quartiles of the results from multiple test runs.

Table 3.1: Safety and mobility statistics of the planners.

Method [280] [294]† [294] [295] Proposed
(averaged over all scenarios)

Crash Rate ↓ (%) 58 - - - 5
Min Distance De ↑ (m) 0.27 - - - 2.27

(the intersection scenario only)
Crash Rate ↓ (%) 47 43 0 31 4
Min Distance De ↑ (m) 0.25 0.42 5.73 1.87 1.58
Passing Time ↓ (s) 2.91 3.28 6.32 4.55 3.40
Min Speed ↑ (m/s) 6.03 3.68 0.17 1.10 5.35

if the ego vehicle has the right of way. This results in almost double passing time.

3.2.4.4 Case Study

To evaluate the behavior of the proposed planner, the experiments of two scenarios are explained in
detail in this section. The Intersection and Parked Bus scenarios (Figure 3.1 (a) & (b)) are chosen
due to their representativeness.
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The summaries of the experiments conducted on these two scenarios are rendered in Figure
3.4, with 400 test runs for each scenario to obtain converged speed and acceleration profiles. In
the intersection scenario, the proposed planner will slow down before it enters the intersection
due to the generated phantoms. After the ego vehicle enters the intersection, all the phantoms are
removed and no new phantoms are generated because all the occluded grids are newly occluded
(see the strategy described in Section 3.1), then the ego vehicle started to accelerate back to the
default speed. In the parked bus scenario, the proposed planner will let the ego vehicle slow down
and nudge away from the parked bus, and then when it spotted the pedestrian suddenly appearing
in front of the bus, it started to brake harder and move to the right to reduce the safety risk.

Comparing the plots in Figure 3.4 (d) and (e), we can find that the proposed framework will
slow down earlier thanks to the presence of the phantoms. This results in a smoother deceleration
compared with the occlusion-unaware baseline method. Compare the plots in Figure 3.4 (d) and
(f), the proposed planner will slow down even if there are no real other road users around, but the
ego vehicle started earlier to recover the desired speed if our planner confirmed that there is no
actual risk in the surrounding environment. According to a user experience survey conducted in
three Japan cities, this proactive braking behavior is acceptable for most human drivers, although
it can be annoying sometimes [115].

3.2.4.5 Ablation Study

Table 3.2: The performance of the proposed planner with different weights in the parked bus
scenario.

Settings Crash Rate↓(%) Min Dist.↑(m) Min Speed↑(m/s)
Default 3 0.88 4.27

(Different weight on J6, default = 500)
WJ6 = 200 5 0.87 4.68
WJ6 = 800 2 0.98 4.09

(Different weight on J7, default = 10)
WJ7 = 5 5 0.79 4.30
WJ7 = 20 3 0.88 4.14

In this section, the influence of the weights of the cost function terms is discussed in Table 3.2.
For the weight selection on other terms, please refer to [280]. The results imply that lower weights
of J6 and J7 lead to higher safety risk, while a higher weight of J7 leads to a minor degradation of
the mobility. This validates the effectiveness of the objectives J6 and J7.

We also provide additional experiments to demonstrate the capability of the proposed algorithm
with variation in numbers of ORU and the status of the occluding object in Table 3.3. In the first and
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Table 3.3: The performance of the proposed planner with different scenario settings. (units omit-
ted)

Settings Method Crash Rate↓ Min Dist.↑ Min Speed↑
(the intersection scenario)

1 ORU ours 4 1.58 5.35
1 ORU [280] 47 0.25 6.03
2 ORUs ours 36 1.04 6.01
2 ORUs [280] 52 0.20 7.04

(the parking lot scenario)
1 ORU ours 0 2.68 1.93
1 ORU [280] 69 0.35 5.86
2 ORUs ours 41 0.75 3.44
2 ORUs [280] 45 0.53 6.34

(the parked truck scenario)
static ours 12 1.01 3.00
static [280] 75 0.10 3.92
moving ours 0 2.11 2.96
moving [280] 44 0.23 3.92

second sections of the table, there will be another ORU generated in the scene with a randomized
starting position and speed. In the third section, the truck is driving north at a speed of 1m/s in
the “moving” setting. It can be found that the test cases are significantly more challenging with
more ORUs but less challenging with moving occluding objects. Regardless of the change, the
proposed method consistently achieves better safety compared with the baseline method without
significantly affecting mobility.

3.3 Summary

In this chapter, we explored how to help AVs handle highly occluded scenarios safely and effi-
ciently without relying on prior knowledge of road topology or environment models. The pro-
posed framework operates under the assumption that an occupancy grid map is generated from
sensor inputs by an upstream module. The key findings and conclusions of this chapter are as
follows:

1. The concept of phantoms is introduced and elucidated. Phantoms serve as imaginary targets
used to represent the behaviors of fully occluded road users with no observation history.
They play a crucial role in preparing acAVs to navigate through occlusions on the road.

2. A phantom management framework is proposed, encompassing the generation, update, and
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elimination of phantoms. The generation process incorporates probabilistic aspects and fac-
tors in the duration of occlusion history, thereby enhancing the efficiency of phantom gen-
eration. Importantly, the proposed phantom-based method effectively captures the possible
trajectories of other road users, requiring fewer imaginary objects compared to some particle
generation algorithms.

3. An occlusion-aware planning framework is presented, leveraging a deterministic sampling
strategy. During experiments conducted in specially designed scenarios with high occlusion
risk and collision possibility, the proposed framework achieves safer maneuvering without
being overly conservative and negatively affecting mobility.

It is worth noting that the application of the proposed planner framework is not limited to au-
tonomous driving but can be adapted for any robotic system operating in occluded environments.
This design is flexible and doesn’t impose great computation increase for the existing ADS. How-
ever, the proposed strategy is not a perfect solutions, and it sometimes suffer from the stochasticity
brought by the random phantom generation. In future work, the quantization of occlusion risks can
be further enhanced in the following ways:

1. Calibration of the phantom generation probabilities. The way we design phantom proba-
bilities at occluded locations is pivotal for planning against risks associated with occlusions.
The heuristic-based probabilities defined in Section 3.1.1.1, while straightforward and easily
adjustable, do not accurately represent the existence likelihood of hidden road users. Ex-
ploring data-driven methods may yield probability distributions more in line with real-world
behaviors.

2. Utilizing the semantic information. The joint detection and segmentation algorithm pro-
posed in Section 2.1 reports the semantic information of the environment. However, the
semantic information is not effectively leveraged in the phantom generation process. For
example, it’s usually unnecessary to generate vehicle-like phantoms on the sidewalk. Inte-
grate semantic information into the object management system might further improve the
efficiency of the phantom generation process.

3. Quantification without phantoms. Currently the proposed planner relies on hypothetical
targets to symbolize occlusion risks serves to reduce computational demands. But with
advanced data-driven techniques, directly quantifying the risk at specific locations might
be desirable, bypassing the need for using phantoms as a proxy of estimation.

59



CHAPTER 4

Systematic Experiments

In this chapter, we will elaborate on how we test the efficacy of the proposed perception and
planning algorithms when they are integrated into an ADS. First, a modular software stack will
be introduced in Section 4.1 that supports both the simulated and real-world experiments with
a unified framework. Then we will discuss how the experiments are designed and conducted in
simulation and real-world tests sequentially through Section 4.2 and 4.3.

4.1 A Modular AV Stack

Motivated by the advancement of various techniques including machine learning, advanced range
sensors, and computing units, researchers have suggested new approaches in various domains of
AV [189, 111] and devoted a lot of time to evaluating them. However, due to the complexity and
cost of a self-driving system, a major remaining limitation is that test vehicles are expensive, and
an easy-to-use complete software stack is lacking.

To tackle this problem, we present our early attempt, named Cloud-and-Learning-compatible
Autonomous driving Platform (CLAP)[302], aiming to contribute to more open and collaborative
development of AV. CLAP1 consists of essential algorithms in perception, navigation, cognition,
planning, and control, and can be used both for simulations and for vehicle implementation. This
platform has been used for our algorithm development. Our platform helped us rank in the top 3
among three tracks in the 2019 Carla AD Challenge2 which aims at testing the driving performance
of autonomous agents with different sensor setup. This platform has also been deployed on our
experimental vehicles (see Figure 4.2).

We have published papers supported by this platform about algorithms of perception [305, 36],
trajectory planning [37, 34] and control [278, 35]. Besides the essential driving function, the

1The platform is open-sourced under https://github.com/CLAP-Framework/clap
2The content of the challenge in detail can be found at https://carlachallenge.org/
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Figure 4.1: Example of visualization interface of CLAP Platform.

platform also provides utilities like a visualization server (Figure 4.1), calibration tools [276], and
broadcasters.

The overall design goals of the platform are:

• Modular and flexible for easy development of algorithms

• Researcher friendly with decoupled components and great readability.

• Suitable for machine learning models and strategies through a uniform data structure.

• Compatible with both simulations (e.g. Carla [66]) and hardware. (e.g. Mcity test vehicles
[65])

A desired attribute of the platform is “cloud-compatible” and “learning-compatible”. The plat-
form can run in cloud containers (e.g. Docker [165]) and it’s equipped with V2X interfaces, which
makes it “cloud-compatible”. And the data structure designed for various machine learning algo-
rithms makes the platform “learning-compatible”.

The remainder of this section is organized as follows: we will first review the literature om
Section 4.1.1, then Section 4.1.2 will discuss the platform architecture, Section 4.1.3 presents
examples of our research to demonstrate the cloud and learning capabilities of CLAP.
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(a) The test vehicle from the University of Michigan (b) The test vehicle from Tsinghua University

Figure 4.2: The test vehicles from the University of Michigan and Tsinghua University with the
CLAP platform deployed.

4.1.1 Related work

There exist several middlewares and autonomous driving platforms from both academia and in-
dustry. A well-known one is the ROS[198], widely used by robotics and AV researchers. ROS
provides essential tools to help each component to communicate with each other efficiently using
TCP/UDP interfaces. Its successor, ROS2, provides many improvements such as better data distri-
bution and Python3 support. AUTOSAR[75] is another middleware for automotive manufacturers,
which provides standardized hardware abstraction of ECUs and communication interfaces in ve-
hicles. A new component of AUTOSAR, called Adaptive Platform, was released in early 2017
which includes support for cross-domain computation platforms and remote distributed services.
The AUTOSAR architecture focuses on the development of onboard devices rather than being an
operating system. There are private middlewares implemented by companies such as Tesla au-
topilot [112] and universities [27, 10], which we are not going to compare in this section since
relatively little is known in the open literature.

Platforms specifically for automated vehicles have also been developed, e.g., Apollo and Au-
toware. Apollo[156] is built by Baidu, consisting of software, hardware and, a cloud platform.
Apollo published version 5.0 in September 2019 and claimed to achieve geo-fenced automated
driving. Autoware[119] is an open platform providing an all-in-one solution for AV. Autoware.ai
is based on ROS and its successor Autoware.auto is based on ROS2. Autoware includes high-
precision localization algorithms and vector-based HD Map, together with other essential percep-
tion, planning, and control algorithms. Since Autoware and Apollo are developed and maintained
by commercial companies, they focus more on real vehicles and explore less about state-of-the-art
machine learning algorithms. Our platform, named CLAP, is developed for both being used on a

3The functionalities of other platforms are based on their official documentation. A white dot stands for the func-
tionality currently missing in the documentation. It doesn’t mean that it cannot be implemented using that platform.
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Table 4.1: Comparison of existing AV platforms.3

Features Apollo Autoware CLAP
Modular ✓ ✓ ✓

Running in cloud ✓ ✓ ✓

Hardware adapters ✓ ✓ ✓

ROS-based ✓ ✓

Standard HD map support ✓ ✓

Easy customization ✓ ✓
Generalized environment
model for planning ✓

Dataset as input ✓
Compact and unified
message definition ✓

Reinforcement Learning interface ✓

Online learning capability ✓

Fully open-sourced ✓ ✓

Major language C++ C++ Python

test vehicle and linked with simulation software. In addition, we make sure it is well suited for
working with machine-learning modules. Table 4.1 shows the comparison between our platform
and other popular platforms.

4.1.2 System Architecture

CLAP was built on top of ROS, which makes it easy to take advantage of existing modules such
as those from Autoware. CLAP is written mainly in Python and some critical parts are written in
Cython [15] and C++ to provide native performance. The algorithm implementations and inter-
faces to ROS in the platform have been separated in the code, so the platform is portable to other
modular middlewares such as LCM[106]. In the platform, multiple algorithms have already been
implemented and are ready for use, even though some are very simple and can be vastly improved.
Please refer to the code repository for details.

4.1.2.1 Building Blocks

The platform is divided into core subsystems and peripheral modules. The architecture is similar to
what has been described in Section 1.1 with a few novel modules. The core subsystems play a key
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role in the computation flow for AV functions including sensing, cognition, perception, navigation,
and control. Peripheral modules provide various interfaces for datasets, simulators, and vehicle
hardware, together with system monitoring, visualization tools, and other common utilities. The
relationship between the modules is illustrated in Figure 4.3. Usually, each module has a single
instance running at the same time, but there can also be multiple instances running as backups.
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Figure 4.3: Structure of the CLAP platform. The connections in the figure only show the major
data flow. In this platform, all the information can be passed from one module to another directly.

(1) Perception: The perception subsystem includes essential modules for vehicles to sense the
surrounding. It converts multi-modal sensor data from the cameras, lidars, radars, etc. into a uni-
fied world model and abstracts the key information (e.g. obstacle moving speed, lane geometries,
etc.) to establish a high-level understanding of the world. Data of other road users and infrastruc-
tures received from V2X can also be included. Two key aspects of perception are included in the
platform: target tracking and scene reconstruction.

Target tracking incorporates algorithms to detect and track dynamic obstacles around the ve-
hicle (e.g. vehicles, pedestrians, animals, etc.) The output of the module is the kinematic and
geometric properties of the objects.

Scene reconstruction relates to image segmentation and point cloud segmentation, to build a
structured representation of the static environment, such as road profile, drivable area [284] and
lane properties. The output of the module is a parametric representation of the local map.

(2) Navigation: This subsystem provides information beyond the perception range of the on-
board sensors and can cover three functions: localization, map provider, and routing.

Localization is an essential function to request and obtain the proper subset of global informa-
tion. With precise localization, the surrounding environment can be obtained from map services or
vehicular communication, which helps to decrease the computational load of the AV. Localization
performance can be improved with an HD Map input, either in dense point cloud or in vectorized
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format, using algorithms such as iterative closest point[18] and normal distributions transform[20].
Map provider offers a structured local map based on the location of the ego vehicle. The local

map contains information similar to what the scene reconstruction module could create, but is
more robust and does not require line-of-sight. This module can work with customized map data
structures or using existing map tools like SUMO[133].

Routing The routing module selects a proper route for given origin-destination pairs. The route
may be optimized for different metrics: travel time, distance, or energy consumption. In our
platform, the routing can use dynamic information from connected vehicles and infrastructures
for continuous updates. The key difference between the routing and the planning modules is that
routing assigns a path beyond the vehicle’s perception range and it’s not updated frequently.

(3) Cognition: We group the modules that comprehend the surrounding environment and con-
nect perception and navigation with planning, into a subsystem named cognition. It bridges data
from perception and navigation modules into a dynamic local map that contains all information
needed by the planning module. Its main functionality includes target prediction and scene ab-
straction.

Target prediction is the continuation of target tracking, which predicts the maneuver of sur-
rounding objects based on past trajectory and object signals (e.g. turn signals, hand gesture). The
interaction between road users will also be taken into account.

Scene abstraction refers to the process that local map elements from navigation and perception
subsystems are further abstracted. An example is to associate detected vehicles and traffic lights
with lanes. This module is an important part of our platform that distinguishes itself from others,
and provides a unified interface for decision agents under different scenarios. The details will be
discussed in the next section.

(4) Planning: The planning module processes all the environment information from upstream
modules and generates a proper plan for the vehicle to follow. The planning module is split into
two sub-modules: decision and trajectory generation.

Decision is also known as maneuver planning or mission planning. This module makes different
decisions for different scenarios. For instance, the module will decide whether and when to change
lanes. The decision module will create a proper task for the trajectory generator.

Trajectory generator creates a path and trajectory for the vehicle to follow in the next few
seconds. The trajectory should be selected considering the following constraints: collision-free,
comply with traffic rules and regulations, and stay within the dynamic limit of the vehicle.

(5) Control: The last subsystem is control. Control commands for throttle, braking, and steer-
ing should be generated at a high frequency so that the vehicle could respond to sudden events
quickly. A high-fidelity dynamic model is usually used. The control module also controls auxil-
iary devices such as turn signals and windshield wipers.
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(6) Peripheral: The peripheral module provides some other utilities, e.g. adapters to use
datasets as sensor input. These modules ensure interoperability with both simulations and physi-
cal hardware. The platform also includes a library for commonly used kinematics and dynamics
computation.

4.1.2.2 Environment Model

The interface connects the modules and the sub-systems within a module. In this subsection, the
interface in the cognition module will be covered, to demonstrate how this platform model the
environment and tasks. The key model of the data flow is a representation of the dynamic local
environment called map state, which includes two map categories (see Figure 4.4) for junction
case and multi-lane case, respectively. The map state is designed to provide a uniform input for
the planning algorithm (e.g. reinforcement learning models).

Road Obstacle The objects around the host vehicle are all treated as road obstacles. Each ob-
stacle contains essential information: (1) unique id, (2) dynamic states with an assigned confidence
level, and (3) physical boundary. Specifically, the dynamic states are represented by pose, velocity,
and acceleration in the local Cartesian coordinate and also in the Frenet coordinate along with the
centerline of the current lane or reference path. The formal representation of the dynamic state S

is described below.

S = (xC ,vC , aC , sF ,vF , aF , θ) (4.1)

where each component is a random variable represented by its mean and covariance. The variables
with subscript ‘C’ are in the Cartesian coordinate and those with ‘F’ are in the Frenet coordinate.
The Frenet coordinate is suitable for generalized algorithms for driving along a lane.

The data structure also contains auxiliary information θ for planning in multi-lane scenarios,
including current lane index, lane behavior (e.g. changing to left lane), and priority. For instance,
at an intersection, vehicles in lanes that have Right of Way (RoW) will be assigned a higher priority
than other vehicles.

Lane State is an abstraction of a predefined path on the road. The lane could be an area defined
by paved lane markers, or a virtual area surrounding the reference path. The data structure contains
both static and dynamic information. The geometric properties and traffic regulations of the lane
are often static, while the obstacles in the lane and sudden changes of the lane’s nature (e.g. lane
blockage, construction) are dynamic. The underlying representation of the static part of a lane is a
list of multiple lane points. Each lane point is a geometry point as well as an edge point where the
speed limit or lane marker type changes.

Map State For scenarios on well-structured roads with clear lane markings, we build a map
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structure called multi-lane map states (Figure 4.4a). This data structure contains multiple lane
states and essential information about the target lanes. For scenarios on unstructured areas such as
intersections, highway merge, and construction sections, we use a map structure named junction
map states (Figure 4.4b), which contains the reference path presented as a lane state, and a drivable
area which provides a constraint for the planner. When driving on the road, a junction map is
always generated while the multi-lane map is only generated when the lanes are well defined and
detected, and when no unusual event is happening (e.g. road blocked by construction, responding
to emergency vehicles, etc).

Ego 
Vehicle

Road Obstacle

Road 
Obstacle

Drivable Area 
Boundary

(a) Multi-lane map state

Ego 
Vehicle

Road Obstacle

Road Obstacle

Drivable Area 
Boundary

(b) Junction map state

Figure 4.4: The schematic diagram of the two map states.

By defining this data structure, reinforcement learning models can be effectively trained and the
trained model can be used in similar scenarios. For example, the model [37] trained in a highway
environment is successfully deployed into the roundabout scenario, the agent can navigate into and
out of the roundabout safely just like driving on and off the highway.

4.1.3 Use Cases

In this section, we present two examples of how this platform was used to implement and test
AV algorithms. To highlight the cloud-compatibility of the platform, we tested a fully automated
agent under an emergent braking scenario in the dockerized simulator and ran multiple instances at
the same time in our server. To demonstrate learning-compatibility and the possibility to migrate
from the simulation to real-world hardware, we trained an RL agent in simulation and deployed
the agent on an experimental vehicle. The details of the deployed AV components can be found in
Appendix A.
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Figure 4.5: Speed profile of the front vehicle with different initial speeds.
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Figure 4.6: The relationship between different error criteria and final stopping distance. The stop-
ping distance using the true position of the front vehicle is 7.76 meters. r is the correlation coeffi-
cient.

4.1.3.1 Effect of perception error on control error using parallel simulations

In this example, we designed an emergency braking scenario to test the influence of perception
error on the final vehicle distance error. Two consecutive vehicles were driving on a straight road
where the ego car behind is controlled by our platform while the lead vehicle follows a designed
braking profile [259]. The two cars first were driving at the same speed at a steady distance between
them, and then the front vehicle braked suddenly to challenge the rear vehicle.

The ego vehicle is controlled by the CLAP platform using YOLOv3 [201] and Inverse Per-
spective Mapping as perception backbone, multi-lane map state with a single predefined lane as
planning input, and the IDM[124] and a simple Proportional–Integral–Derivative (PID) controller
as planner and controller. The parameters of IDM and PID are fixed during the experiments. Multi-
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Figure 4.7: Simulation results of an emergency stopping scenario case. (a)(c) use the true position
from the simulator while (b)(d) use the perceived position with error. Initial speeds of (a)(b) are
10m/s while initial speeds of (c)(d) are 15m/s

ple runs were simulated using Carla simulator [66], which generates high-fidelity camera data and
simulates the vehicle dynamics. The experiment is carried out in “Town” 04 of Carla on a rainy
day, and the whole test process is done in parallel with Docker by executing multiple containers
with different profile settings, where each container has a simulator and an agent instance.

We compared the braking behavior of the ego vehicle using either simulation-reported location
or sensor-perceived location of the front vehicle during the planning stage. Figure 4.5 shows the
designed speed profile and Figure 4.6 shows the error distribution of multiple runs, which will be
discussed later. From the results from simulation (as shown in Figure 4.6), perception error will
usually lead to a smaller stop distance which is more dangerous. In the case described in Figure
4.7, however, the perception error results in a larger final distance between the ego vehicle and the
front vehicle, because the perception error leads to a conservative detection result. The final result
is highly related to detection performance during the braking period.

Therefore, to quantify the correlation between perception error and final vehicle performance,
we created a signed error criterion for this scenario and we compared the correlation of these errors
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with regards to the final stop distance. The definitions of the errors are listed below:

• Root Mean Squared Error (RMSE) of position: e1 =
√

1
n

∑
t (xt − x̂t)2

• Signed Mean Error (SME) of position: e2 = 1
n

∑
t (xt − x̂t)

• RMSE of speed: e3 =
√

1
n

∑
t (vt − v̂t)2

Here x, v are the position and velocity of the front vehicle in the longitudinal direction, and the
variables with a hat are the perceived values. The comparison results are plotted in Figure 4.6.
From 24 simulation runs, we can find that the signed error shows a higher correlation with the final
stopping distance. And perception error of speed plays a less important role during the process.

This use case example shows the ability of our platform to study vehicle performance, in ad-
dition to traditional machine learning performance criteria (mAP, recall ratio, etc.). Besides, by
using simulation software, the effect of weather, lighting, and various other factors can be stud-
ied quickly and efficiently. For example, in the emergency braking case, the research may focus
on improving the perception module or the control module. We also want to note that, the same
scenario can be repeated on real test vehicles for a faster development cycle.

4.1.3.2 Deployment of reinforcement learning agent with map states

(a) Test scenario in the Carla simulator (b) Test scenario in the real-world

Figure 4.8: Test routes for the reinforcement learning agent. The yellow line in (b) is the actual
driving path of the agent.

In the second example, we developed an AV agent based on reinforcement learning using our
unified map state interface and test it in real-world driving. The agent is trained in Carla simulations
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to drive around a block and the route contains both road segments and intersections. The designated
routes in the simulator and real-world can be found in Figure 4.8. Then it’s deployed in a vehicle
for open-road testing. The test vehicle (see Figure 4.2) is an Xpeng G1 electric vehicle, equipped
with lidars, GPS, and IMU. In the test, the agent used object detection and tracking results from
the perception module of the platform. The agent was able to navigate through this environment
safely and smoothly with several surrounding vehicles and pedestrians. The actual driving path is
shown in Figure 4.8b with several lane changes accomplished during the test. The details of the
RL-S Safeguard algorithm used here can be found in [36].

This example shows that the platform can be used for a seamless transition between simulations
and real-world experiments.

4.2 System Validation in Simulated Scenarios

The proposed occlusion-aware perception and planning algorithms can be evaluated on top of the
previously discussed AV stack. The interconnection between the involved modules is depicted
in Figure 4.9. For the purpose of focusing on the occlusion-aware techniques presented in this
dissertation and to ensure the integrity of the validation results, certain modules such as localization
have been omitted, as compared to the comprehensive AV system introduced in Section 4.1.2.

This architecture establishes the connectivity among all the modules proposed in Chapter 2 and
Chapter 3, defining their interoperation. To demonstrate the potential of deploying a system based
on this architecture in a real vehicle, its implementation will be carried out on the ROS platform
and tested in the Carla simulator [66] within this section.

It is important to note that, due to the substantial computational requirements of the neural net-
works involved, the (joint) detection and segmentation module is excluded during testing. Instead,
the simulator provides ground truth semantic labels and object locations. Nevertheless, the simu-
lation includes the aspect of occlusion during the object detection process through a custom ROS
node. This node selectively excludes objects that are not fully observable to the ego vehicle from
the list of detected objects, which is then fed to the downstream modules.

4.2.1 Testing Scenarios

The testing of the system is conducted on the Carla simulator [66], which is a high-fidelity sim-
ulator designed for ADSs. It is equipped with high-quality sensor simulation, vehicle dynamics
solvers, walker bone controllers, traffic manager, and traffic light simulation, which provides a
comprehensive test-bed for ADS. There are more than 10 built-in maps in the simulator and we
choose the map “Town 05” for the testing because it comprises a rich set of driving environments
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Figure 4.9: Architecture of the ADS to be tested. The necessary input for the system is the pose
of the ego vehicle and the lidar point cloud. The point cloud is used to generate the static map and
detect the dynamic objects.

including urban buildings, parking lots, residential areas, and viaducts.
To make it easier to test the ego vehicle controlled by the ADS, a loop route is designed in

the north part of the map, as illustrated in Figure 4.10. Along the route, there are four scenarios
designed analog to those in Section 3.2.4. The details of the scenarios used for testing are shown
in Figure 4.11.

In the parking lot scenario, when the ego vehicle is driving between the parked vehicles, there
will be two pedestrians appearing from the left and right of the ego vehicle. Both pedestrians are
not visible in the beginning due to the occlusion by the parked cars along the route. In the bus
station scenario, there is a parked vehicle on the sidewalk, blocking the ego vehicle so that the
pedestrian behind the bus stop will not be visible until it suddenly walks out from the bus stop.
In the intersection scenario, there will be a vehicle driving from the right-hand side of the ego
vehicle, running a red light. Due to the walls next to the road, the ego vehicle will not detect the
other vehicle until it nearly enters the intersection area. In the parked bus scenario, there will be
two buses parking near the bus stop, and a pedestrian will suddenly appear in front of the leading
bus. The pedestrians are initially invisible due to the occlusion caused by the two buses. In all of
the above scenarios, if the ego vehicle starts off at the specified speed and does not slow down,
it will always collide with other road users. During the testing, the ORUs are assumed to be not
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Figure 4.10: The testing loop and the location of the testing scenarios in the map “Town 05”. The
testing scenarios are: (1) Parking Lot (2) Bus station (3) Intersection (4) Parked Bus.

reactive, they will follow the designed route at a constant speed.
Like the scenarios designed in Section 3.2.4, these scenarios are a good representation of the

common risks caused by occlusions in normal driving, and even human drivers would need an
amount of experience to navigate them (relatively) safely.

4.2.2 Implementation Details

In this section, the implementation details of the ADS architecture and the testing environment will
be introduced. Please refer to Figure 4.9 for an overview of the architecture.

There are two key ROS nodes implementing the mapping and planning algorithms. A map-
ping node is implemented to handle the point cloud filtering and the occupancy map update. The
mapping algorithm relies on the Eigen and OpenMP library to perform point search and kernel
calculation efficiently. The output of the mapping modules is a 2D grid map stored in the data
structure provided by the GridMap ROS package [72]. Please refer to Section 2.3.3 for the layers
in this grid map. Subsequently, a planning node is implemented to maintain a list of both tracked
objects and phantoms, and generate an optimized trajectory, based on the grid map it receives from
the mapping module. It depends on Eigen and a customized trajectory manipulation library. The
output of the planning module is a trajectory of a short time horizon. Lastly, a low-level controller
node is also implemented to convert the trajectory to vehicle commands, including throttle, steer-
ing, and brake values. The pose, point cloud, and object list are provided by the official Carla-ROS
bridge, and the vehicle commands are also sent to the bridge for execution.
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Figure 4.11: Definitions of the scenario. The testing scenarios are: (1) Parking Lot (2) Bus station
(3) Intersection (4) Parked Bus. In these pictures, the green arrows denote the driving direction of
the ego vehicle under test, and the blue arrows denote the driving/walking direction of the ORU
after being triggered.

An important feature of the proposed ADS architecture is that the occupancy map will be loaded
and dumped from a file storage automatically. This capability enables the AV to memorize the
environment it visited and helps the identification of the occluded area. The occupancy map is
serialized using the MessagePack library and stored in an SQLite database. Each block of the
occupancy map will be indexed by Morton Code. The spatial property of the Morton code helps to
find the blocks nearby the ego vehicle. During the serialization, the semantic probabilities of each
grid will be compressed by only storing the probability of the highest category, the probability of
the free category, and the average probabilities of the remaining categories.

To automate the testing in Carla, a loop route broadcaster and a scenario trigger are imple-
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Figure 4.12: A screenshot of the ADS running with the Carla simulator in RViz. The left bottom
view displays the image from a virtual camera placed behind the vehicle, and the right area displays
the occupancy grid map and the planning information. In the right area, the purple grids represent
the occluded grids and the green grids are non-occluded grids (including occupied grids). The
yellow line in the middle denotes the current planned trajectory and the starting points of the cyan
arrows denote the pose of the phantoms. The length of the arrows is proportional to the speed of
the phantoms.

mented. The route broadcaster will publish part of the reference path near the ego vehicle and
the scenario trigger will initialize and control the ORUs when the ego vehicle reached a preset
location. The scenario trigger will also reset the environment when the ego vehicle passed another
preset location. Similar to Section 3.2.4, the scenario trigger will add random noise to the trigger
location and the initial speed of the ORUs, so that the behavior of the ego vehicle can be better
evaluated.

Since the list of objects is directly provided by the Carla simulator, the occlusion has to be
simulated when the ADS is tested, which will be implemented as a separate node. To achieve this,
7 key points of the ORU are used as representations for visibility testing, and if 5 out of 7 key points
are not visible from the sensor of the ego vehicle, the ORU will be considered as occluded and not
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included in the list of objects provided to the planning node. The key points are the center of an
ORU and the midpoint of the six lines connecting the center of the ORU and the center of the six
faces of the bounding box. In this way, the occlusion can be simulated efficiently and accurately.

The experiments will be conducted on ROS noetic with Ubuntu 20.04 operating system and
Carla 0.9.13. The Figure 4.12 shows the visualization of the ADS during the experiments. Due
to lacking access to complete ADS that can be easily deployed, the proposed ADS architecture
without occlusion-aware cost terms in the planner will be used as the baseline in the experiment.
Additionally, a publicly available AV stack, the Autoware [119, 120], will be tested for compar-
ison as well. The Autoware.Universe framework based on the ROS2 Galatic will be used in the
experiments.

4.2.3 Testing Results

Table 4.2: Quantitative results of the testing in Carla simulator

Scenario Algorithm Crash Rate Average Minimum Distance

Intersection
Autoware [119] 70% 0.981m
Baseline 90% 0.013m
Ours 60% 1.258m

Bus Station
Autoware [119] 40% 0.852m
Baseline 40% 0.805m
Ours 0% 3.172m

Parked Bus
Autoware [119] 50% 0.735m
Baseline 40% 0.369m
Ours 20% 1.441m

Parking Lot
Autoware [119] - -
Baseline 50% 0.255m
Ours 10% 1.293m

The testing results are summarized in the table 4.2. It can be found that in all the scenarios, the
proposed algorithm achieves lower crash rates and higher average minimum distances by a large
margin compared with the baseline ADS without occlusion awareness. Among all the scenarios,
the intersection is the most challenging one because the ORU is running the red light in the middle
lane of the road, therefore the ORU is visible from the ego vehicle later than the intersection
scenario tested in Section 3.2.4. However, the proposed ADS system still reduces the number of
crashes and kept a higher safety margin from the ORU vehicle in the intersection scenario. These
results validate the ability of the proposed algorithm to improve the safety of an ADS.

When comparing with the performance of the Autoware, the proposed planner similarly
achieves better safety. The experiment data for the parking lot scenario is unavailable for Au-
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toware because it requires lane maps for planning. Therefore Autoware cannot drive in the parking
lot because there are no lanes in that area. It’s worth noting that, the longitudinal planner of Auto-
ware is not well tuned for high speed scenario, therefore the speed of the ego vehicle oscillates in
a range of ±2 km/h, and the average speed of the vehicle is smaller than the target speed in the in-
tersection scenario, which partially contributes to the lower crash rate compared with the baseline
approach.

4.3 System Validation in Real-world Scenarios

Aside from the validation in the simulated scenarios, we also tested the effectiveness of the pro-
posed system with real-world scenarios. Specifically, we designed a test scenario inside the Mcity
testing facility to evaluate the performance of the occlusion-aware perception and planning algo-
rithms.

The experiments are conducted with the vehicle platform displayed in Figure 4.2a, which is
also used by [278]. The vehicle is equipped with an RTK 3003 module from Oxford Technical
Solutions and an Inertial Measurement Unit. These sensors report the precise pose of the testing
vehicle. It’s also equipped with a by-wire controller that read commands from ROS topic, and a
Dedicated Short-Range Communications (DSRC) module which reports the positions of the other
vehicles in the facility through V2X communication.

In the real-world experiments, we focus on testing the object management system proposed in
Section 3.1, and we integrate the phantoms management into the existing planner deployed on the
vehicle (developed by [279]) by injecting the phantoms into the list of objects. In order to remove
other uncertainties in the system and focus on the effectiveness of the phantom-based management
system, we utilize the positions reported by DSRC as the perception results. To simulate the
occlusion in the perception system, we added a ROS module that removes the other vehicles which
are not visible from the position of the ego vehicle similar to the module discussed in the simulation
experiments (see Section 4.2).

4.3.1 Testing Scenarios

The testing scenario is an intersection inside the urban area of the Mcity testing facility. The testing
route is plotted in Figure 4.13. During the test, there will be a human-driving challenge vehicle
coming from the right. If the ego vehicle does not respond properly, there could be a collision at
the intersection. The route of the ego vehicle and the challenge vehicle are designed to be looping
so that the tests can be conducted by multiple times easily.

The testing cases are listed in Table 4.3, where the case 0 is considered as the baseline case.
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Figure 4.13: The test route for the object management system test. The blue line represents the
route for the ego vehicle and the red line represents that of the challenge vehicle. There are several
facade walls blocking the view of the ego vehicle, represented by the purple lines.

Table 4.3: Testing cases for the object management system test.

Case 0 Case 1 Case 2 Case 3
Occluded Vehicle ✓ ✓
Phantom Vehicle ✓ ✓

The occluded vehicle row represents the existence of the challenge vehicle and the phantom vehicle

row represents whether the proposed object management system with phantoms is enabled. It is
worth noting that we limit the phantoms to be generated only on the lanes, as we know that the
challenge vehicle will not drive outside the road area. This is also an example of how the phantom
generation efficiency can be further improved with additional information.

4.3.2 Testing Results

The tests are conducted with fixed starting points for the ego vehicle and the challenge vehicle.
The challenge vehicle always starts at the same time as the ego vehicle. However, due to the
stochasticity of the human driver’s behavior, the trajectories of the ego vehicle and the challenge
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(a) Case 0: no phantoms, no challenge car. (b) Case 1: no phantoms, with a challenge car.

(c) Case 2: with phantoms, no challenge car. (d) Case 3: with phantoms, with a challenge car.

Figure 4.14: Screenshots of the trajectory planner under different testing scenarios. The gray
vehicle at the bottom is the ego vehicle, the red vehicles are the generated phantoms and the yellow
vehicle is the challenge vehicle.

vehicle are not the same across the test runs. Figure 4.14 illustrates the scenarios in action. The
proposed phantom generation algorithm can successfully place phantom vehicles in the occluded
area. Notice that there are speed gauges at the left bottom of the screenshots, which show that the
ego vehicle starts to slow down earlier with the help of generated phantoms.

In Figure 4.15 where the screenshots at different timestamps are shown, the phantom elimina-
tion process has been demonstrated. There are phantoms on both sides of the road at the beginning,
because there are walls on both sides of the road as shown in Figure 4.13. Later on, the left side
became visible first, and then the right side became visible as well. Therefore, the phantoms to the
left were cleared first and the phantoms to the right were cleared later. Finally, when the ego ve-
hicle entered the intersection, all the branches of the intersection became visible and all phantoms
are removed.

We also recorded the dynamic states of the ego vehicle during the tests, which are plotted
in Figure 4.16. It can be found from Figure 4.16a that, with the proposed phantom generation
approach, the ego vehicle will slow down even if there is no actual risk at the intersection. This is

79



Figure 4.15: Screenshots showing the phantoms evolving in the test case 2. The temporal order of
the screenshots are: left-top, right-top, left-bottom, and right-bottom.

reasonable defensive driving behavior, and slowing down is a necessary cost to pay in exchange for
the safety improvement, which is demonstrated in Figure 4.16b, where the hard brake is avoided
with the help of the phantom generation. The peak deceleration of the ego vehicle is around 1m/s2

with the phantoms compared with around 4m/s2 without the phantoms. According to the speed
profile, the ego vehicle slowed down earlier when the phantoms exist during planning, which is
consistent with the finding from Figure 4.14. A qualitative comparison of the safety is also shown
in Figure 4.17. With the help of the generated phantoms, the distance was increased between the
two vehicles when the challenge vehicle is at the front of the ego vehicle.

4.4 Summary

In this chapter, we first present an ADS framework as the foundation of our experiments. Then
simulated and real-world experiments have been conducted to evaluate the efficacy of the proposed
occlusion handling system. The key findings and conclusions of this chapter are as follows:

1. An open platform, designed to facilitate AV development, is introduced. This researcher-
friendly platform comprises core subsystems and modules for essential autonomous driving
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(a) The speed and acceleration profiles of case 0 and 2.
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(b) The speed and acceleration profiles of case 1 and 3.

Figure 4.16: Quantitative results of the object management system tests with or without the chal-
lenge car.

tasks. It has been utilized in research conducted at the University of Michigan and Tsinghua
University, offering state-of-the-art algorithms that enable researchers to easily compare new
implementations with standardized input and output.

2. Simulation experiments using the Carla simulator are performed on the “Town05” map, fea-
turing curated scenarios. The integration and testing of perception algorithms discussed in
Chapter 2 and planning algorithms proposed in Chapter 3 are carried out. The performance
of the vehicle under test, controlled by both the proposed and baseline ADS frameworks,
reveals that the proposed solution for handling full occlusions on the road enhances driving
safety compared to the baseline methods.
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(a) Case 1 (without phantoms) (b) Case 3 (with phantoms)

Figure 4.17: Screenshots showing the distances between the ego vehicle and the challenge vehicle.

3. Real-world experiments are conducted at the Mcity testing facility, where a testing scenario
involving an intersection with obstructed FoV is designed. By comparing the performance
of the testing vehicle with and without the proposed occlusion handling methods, the effec-
tiveness of the phantom generation and management framework is validated. The presence
of phantoms enables the testing vehicle to exercise caution in the presence of occlusions and
slow down before entering the intersection.

It is worth noting that the experiments conducted in this section have several limitations and
can be improved in the following ways:

1. Occlusion identification in new environments. The current occlusion handling experi-
ments requires prior environmental scanning, as it considers only informed occlusion for
phantom generation. Although incorporating the entire occluded area would enhance the
method’s adaptability to new environments, it would significantly increase computational
costs. A potential solution involves directly detecting occlusion in a 2D grid, integrate with
coarse-grained navigational maps, and utilizing a learning-based algorithm for phantom gen-
eration. Nevertheless, the proposed solution in this dissertation remains consistent with the
requirement of independence from HD maps stated at the beginning of the dissertation. The
occlusion detection and phantom generation algorithm operate on a simple occupancy grid
map, regardless of its resolution.

2. Testing with perception error. While it is feasible to deploy the system with a more com-
prehensive perception module (e.g., the joint detection and segmentation module presented
in this Section 2.1), it was not tested in the simulation or real-world experiments due to
computational optimization constraints. Future research work should explore the impact of
perception errors on the final driving performance, as it would provide valuable insights.
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3. Testing in naturalistic driving environment. The performance of the proposed ADS under
normal driving conditions with naturalistic traffic was not evaluated, as it falls outside the
scope of this dissertation. We do not anticipate the proposed ADS framework to outperform
other frameworks in normal conditions. However, the proposed algorithm can be applied to
other planners without compromising their normal driving capabilities, thanks to the design
of cost terms and tuning parameters. Any optimization-based planner can be enhanced to
handle occlusion by incorporating the proposed cost terms in Equation 3.6 and 3.7.

4. Advanced design of the ORU behavior. In both simulated and real-world experiments, the
ORUs are passive and do not react to the ego vehicle. While this approach is acceptable for
the scenarios described in this chapter, where the ORU is typically visible to the ego vehicle
for only a short duration before a potential collision, incorporating reactive ORUs would
be beneficial for other scenarios. The methodologies described in [258] and [260] can be
employed to make the testing more closely resemble the experiences of human drivers in
daily life.

These limitations do not undermine the effectiveness and generality of the proposed framework
presented in this paper. However, conducting more comprehensive tests in the future will provide
a better evaluation of the framework’s capabilities and limitations.
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CHAPTER 5

Conclusion

This dissertation presents a novel solution addressing the challenge faced by AVs when encounter-
ing full occlusions on the road. The framework comprises new perception algorithms for efficient
identification of occluded areas without reliance on prebuilt HD maps, as well as new planning
algorithms for generating safer trajectories in the presence of occlusions. The algorithms and
frameworks proposed from Chapter 2 to Chapter 4 are summarized in the following section, and
several future research directions are presented at the end.

5.1 Summary

Chapter 2 details the identification and representation of occluded areas using point cloud data
input. A joint object detection and segmentation module generates object bounding boxes and
point-wise semantic labels. A fast occupancy mapping module generates a semantic 3D occupancy
map based on the semantic point cloud input. An occlusion modeling module then stores the
occlusion status of the environment in a 2D occupancy map for downstream planner modules.
Experiments on public datasets including nuScenes and SemanticKITTI demonstrate the improved
capabilities of the proposed algorithm over state-of-the-art methods, with successful detection and
visualization of occluded areas. The first question posed in Section 1.4 is answered in this Chapter.

Chapter 3 focuses on generating safe trajectories in the presence of fully occluded areas on the
road. An object management system tracks objects from the upstream perception modules and
generates predictions for the tracked objects. It also generates phantom objects to represent the
potential behavior of occluded objects around the ego vehicle. A sampling-based trajectory plan-
ner produces near-optimal trajectories that balance safety, smoothness, and mobility. Specifically,
two novel cost terms are proposed to quantify the risk caused by occlusion in the optimization.
Experiments in a simple 2D simulator demonstrate the effectiveness of the novel cost design for
trajectory optimization, with the proposed planner outperforming baselines in challenging scenar-
ios with severe occlusions. The second question posed in Section 1.4 is answered in this Chapter.
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Chapter 4 validated the performance of the proposed occlusion handling framework through
simulated and real-world experiments. The simulated experiments are conducted in the high-
fidelity Carla simulator, while the real-world experiments take place in the Mcity testing facility
affiliated with the University of Michigan. In both sets of experiments, the proposed framework
achieves a lower crash rate and larger safety margin compared to baseline methods. These findings
indicate that the proposed perception and planning modules work together effectively to mitigate
the risk of occlusions.

The novel occlusion-aware perception and planning framework proposed in this dissertation
is a two-stage solution to improve the safety of the AVs. It first identifies the occlusions and then
reacts to them using phantoms. The framework is not limited by the choice of algorithms for object
detection, point cloud semantic segmentation, or motion planning. Any combination of perception
and planning algorithms could benefit from the idea of using phantoms to represent the occluded
road users, which is also reportedly adopted by automotive companies including Cruise and Tesla.
Moreover, the two-stage framework can be generalized to other safety-critical robotic applications
where collision avoidance with dynamic objects in occluded environments is crucial.

5.2 Future Directions

In this dissertation, we propose to introduce imaginary targets in the planning to offset the chal-
lenges posed by occlusions, which limit onboard sensing capabilities. While this approach is
versatile and doesn’t significantly burden the computational capabilities of existing ADS, it is not
without its shortcomings. Apart from the limitations outlined in Section 3.3 and Section 4.4, there
are several ways in which the proposed solution can be further refined:

Integration with other information sources

1. Coarse-grained maps: Leveraging coarse-grained or lower resolution maps could provide
the ADS with broader contextual data about the environment. These maps might not offer
intricate details but can provide generalized information about road layouts, potential occlu-
sions, or traffic patterns, assisting the ADS in making more informed decisions when faced
with occlusions.

2. Social perception: Humans inherently understand social cues and behaviors when navi-
gating roads, be they as drivers or pedestrians. Integrating a system that can interpret such
social signals, like gestures, eye contact, body language, or even trajectories of other vehicles
[227], could immensely improve how the AV responds to unpredictable scenarios, especially
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in occluded conditions. Complemented with the social perception capabilities, the AV could
handle the scenarios with occlusions better.

3. Roadside perception: Incorporating data from roadside infrastructure, like traffic cameras
or IoT-enabled devices, could provide an external viewpoint to AVs, aiding in the identifi-
cation and understanding of occlusions and the road users in the occluded areas. This extra
layer of perception, independent of the vehicle’s onboard sensors, could enhance its overall
awareness and responsiveness to dynamic road conditions.

Investigating the trade-off between safety and mobility

1. User experience: While ensuring safety is paramount, the overall passenger experience
should not be compromised. An AV constantly taking overly-cautious measures due to
occlusions might result in a slower, less efficient journey. Some researchers have investi-
gated the human drivers’ acceptance of proactive braking systems [115]. The proposed ADS
framework can also produce proactive braking behavior, which should also be examined
from a human factor perspective.

2. Cooperative behavior As roads become populated with a mix of autonomous and manually-
driven vehicles, fostering cooperative behavior becomes essential. For example, when the
AV takes cautious actions under occlusions, it should prevent making surrounding vehicles,
especially those behind, annoyed by braking hard. Instead of solely relying on reactive mea-
sures, the AV could proactively communicate its intentions to other road users, ensuring safer
and more harmonious interactions. This could be particularly useful in occluded scenarios
where both human and AV drivers need to make split-second decisions.
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APPENDIX A

Structure Details of the CLAP framework

In this appendix, the design details of the CLAP framework will be explained. The full architecture
of the framework as deployed on the testing vehicle from Tsinghua University [33] is illustrated in
Figure A.1 [302, 33].
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Figure A.1: Detailed structure of the platform components deployed in the use cases.

For the input and output of this framework, we designed abstraction layers (in ROS) to adapt to
different data sources and sinks. For inputs, the platform supports reading data from datasets, sim-
ulators and physical sensors. For outputs, the platform supports converting the vehicle commands
to simulator signals or commands for physical actuators. With the abstraction layers, the transition
from dataset training and simulation to real world testing can be eased.
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In this platform we also support various map formats through the SUMO library [133]. We
have tested the conversion from OpenStreetMap [94] and OpenDrive [6] formats. Other formats
including Lanelet [193] and Vissim [89] are also supported by not tested yet. All these formats are
converted to the internal format of SUMO, and the local map states are constructed with the help
of SUMO interface.

We also have built-in support for perception and planning algorithms. The perception algo-
rithms include YOLOv3 [201], PseudoLidar [261], etc. and the planning algorithms include IDM,
MOBIL [123], etc. An important feature of the CLAP platform is that it is friendly to machine
learning frameworks by design. Most parts of the code base are written in Python and a OpenAI
gym wrapper is officially supported by this platform. Please refer to [33] for applications of RL
with this platform.
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[275] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis, Rémi
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tracking. arXiv preprint arXiv:2006.11275, 2020.

[291] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and
tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pages 11784–11793, 2021.

[292] Senthil Yogamani, Ciaran Hughes, Jonathan Horgan, Ganesh Sistu, Sumanth Chennupati,
Michal Uricar, Stefan Milz, Martin Simon, Karl Amende, Christian Witt, et al. Woodscape:
A multi-task, multi-camera fisheye dataset for autonomous driving. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 9307–9317. IEEE, 2019.

[293] Je Hong Yoo and Reza Langari. Stackelberg game based model of highway driving. In Dy-
namic Systems and Control Conference, volume 45295, pages 499–508. American Society
of Mechanical Engineers, 2012.

[294] Ming-Yuan Yu, Ram Vasudevan, and Matthew Johnson-Roberson. Occlusion-aware risk
assessment for autonomous driving in urban environments. IEEE Robotics and Automation
Letters, 4(2):2235–2241, 2019.

[295] Ming-Yuan Yu, Ram Vasudevan, and Matthew Johnson-Roberson. Risk assessment and
planning with bidirectional reachability for autonomous driving. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 5363–5369. IEEE, 2020.

[296] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and Stan Z Li. Occlusion-aware r-cnn:
detecting pedestrians in a crowd. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 637–653, 2018.

[297] Wenwei Zhang, Zhe Wang, and Chen Change Loy. Multi-modality cut and paste for 3d
object detection. arXiv preprint arXiv:2012.12741, 2020.

[298] Xizheng Zhang and Xiaolin Zhu. Autonomous path tracking control of intelligent electric
vehicles based on lane detection and optimal preview method. Expert Systems with Appli-
cations, 121:38–48, 2019.

[299] Zixu Zhang and Jaime F Fisac. Safe occlusion-aware autonomous driving via game-
theoretic active perception. arXiv preprint arXiv:2105.08169, 2021.

112



[300] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid
scene parsing network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017.

[301] Jianhui Zhao, Xinyu Zhang, Ping Shi, and Yuchao Liu. Automatic driving control method
based on time delay dynamic prediction. In International Conference on Cognitive Systems
and Signal Processing, pages 443–453. Springer, 2016.

[302] Yuanxin Zhong, Zhong Cao, Minghan Zhu, Xinpeng Wang, Diange Yang, and Huei Peng.
Clap: Cloud-and-learning-compatible autonomous driving platform. In 2020 IEEE Intelli-
gent Vehicles Symposium (IV), pages 1450–1456. IEEE, 2020.

[303] Yuanxin Zhong and Huei Peng. Real-time semantic 3d dense occupancy mapping with
efficient free space representations. arXiv preprint arXiv:2107.02981, 2021.

[304] Yuanxin Zhong and Huei Peng. Driving with caution about fully occluded areas based on
occupancy maps. In 2023 IEEE International Intelligent Transportation Systems Conference
(ITSC). IEEE, 2023.

[305] Yuanxin Zhong, Sijia Wang, Shichao Xie, Zhong Cao, Kun Jiang, and Diange Yang. 3d
scene reconstruction with sparse lidar data and monocular image in single frame. SAE
International Journal of Passenger Cars-Electronic and Electrical Systems, 11(07-11-01-
0005):48–56, 2017.

[306] Yuanxin Zhong, Minghan Zhu, and Huei Peng. Uncertainty-aware voxel based 3d object
detection and tracking with von-mises loss. arXiv preprint arXiv:2011.02553, 2020.

[307] Yuanxin Zhong, Minghan Zhu, and Huei Peng. Vin: Voxel-based implicit network for joint
3d object detection and segmentation for lidars. In BMVC, 2021.

[308] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data
augmentation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13001–13008, 2020.

[309] Hui Zhou, Xinge Zhu, Xiao Song, Yuexin Ma, Zhe Wang, Hongsheng Li, and Dahua
Lin. Cylinder3d: An effective 3d framework for driving-scene lidar semantic segmenta-
tion. arXiv preprint arXiv:2008.01550, 2020.

[310] Shiying Zhou, Yizhou Wang, Minghui Zheng, and Masayoshi Tomizuka. A hierarchi-
cal planning and control framework for structured highway driving. IFAC-PapersOnLine,
50(1):9101–9107, 2017.

[311] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object
detection. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 4490–4499, 2018.

[312] Yue Zhou, Edward Chung, Ashish Bhaskar, and Michael E Cholette. A state-constrained
optimal control based trajectory planning strategy for cooperative freeway mainline facili-
tating and on-ramp merging maneuvers under congested traffic. Transportation Research
Part C: Emerging Technologies, 109:321–342, 2019.

113
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