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Abstract 

Over the past century, the rise of antibiotic resistance (AR) has closely followed the discovery of 

new antibiotics and has continued to increase as antibiotic development stalled within the past few 

decades. Combination therapy, which involves the prescription of two or more therapeutic agents, 

is a promising solution for combating AR. However, the process of designing effective 

combination therapies is plagued by several challenges, including: (a) the exponential explosion 

in the combinatorial space to search as the number of drugs and dosage levels to screen increases, 

(b) the heterogeneity in bacterial drug response due to differences in genetic and phenotypic states, 

and (c) the limited mechanistic insight that empirical methods for combination therapy design 

currently offer. For my dissertation research, I sought to optimize the design of antibiotic 

combination therapies by considering intrinsic and extrinsic factors that influence the bacterial 

response to drug treatment (Chapter 1). To this end, I developed two computational methods that 

predict drug interaction outcomes (e.g., synergy) in specific cell states and growth conditions.  

The first approach is CARAMeL (Chapter 2), which stands for Condition-specific 

Antibiotic Regimen Assessment using Mechanistic Learning. CARAMeL leverages genome-scale 

metabolic models and machine learning to generate condition-specific drug interaction outcome 

predictions. Not only is CARAMeL better at generating accurate predictions for drug interaction 

outcomes against Escherichia coli and Mycobacterium tuberculosis compared to previous 

methods, but this approach is also the first to predict single-cell, media-specific, and sequential 

drug interaction outcomes. By evaluating how the outcome for individual drug combinations may 



 xv 

vary across different conditions, CARAMeL can identify drug combinations that are predicted to 

retain synergy regardless of fluctuations within the cell or the surrounding environment. 

The second approach that I developed is called TACTIC (Chapter 3), which stands for 

Transfer learning And Crowdsourcing to predict Therapeutic Interactions Cross-species. 

TACTIC implements crowdsourcing and transfer learning to generate strain-specific drug 

interaction outcome predictions, which is accomplished by extending information between 

multiple bacteria based on genes that are orthologous between one another. Using drug interaction 

data measured across 12 phylogenetically diverse bacteria, I show that TACTIC can better predict 

drug interaction outcomes for unseen microbes compared to INDIGO (INferring Drug Interactions 

using chemo-Genomics and Orthology), a prior computational approach that serves as the 

foundation for TACTIC. With the ability to predict strain-specific drug interaction outcomes, I 

apply TACTIC to determine drug combinations that are predicted to have narrow-spectrum 

synergy; that is, selective synergistic outcomes against pathogenic (and not commensal) bacteria. 

In Chapter 4, I demonstrate how CARAMeL and TACTIC can be leveraged to guide the 

design of clinically relevant combination therapies for the treatment of tuberculosis, one of the 

deadliest infectious diseases, and endophthalmitis, a serious eye infection that leads to blindness 

if improperly treated. Beyond the scope of the present work, CARAMeL and TACTIC hold the 

potential to aid the discovery of novel combination therapies with precise efficacy against other 

infectious diseases. To this end, both approaches are publicly available in adaptable formats that 

are primed for extended use by other research groups to optimize the design of antibiotic 

combination therapies. In the long-term future, CARAMeL and TACTIC could be extended to 

guide the design of combination therapies that are urgently needed outside of bacterial infections, 

including but not limited to fungal infections and cancer (Chapter 5). 
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Chapter 1 Introduction 

1.1 Bacteriology 101 

Bacteria are single-celled microorganisms that were amongst the first life forms on Earth, and they 

can reside within virtually any habitat. These organisms can generally be classified based on 

several characteristics related to their physiology and behavior (Figure 1-1A). For example, 

bacteria may be described by Gram staining, where Gram-positive bacteria possess a thick outer 

layer of peptidoglycan whereas Gram-negative bacteria are enclosed within a thin peptidoglycan 

layer covered by an additional outer membrane (Silhavy et al., 2010). Bacteria can also be 

characterized based on their growth rate, where fast-growing organisms (e.g., Escherichia coli) 

replicate within minutes while slow-growing organisms (e.g., Mycobacterium tuberculosis) 

require several hours to double in population size (M. Zhu & Dai, 2018). In relation to how bacteria 

interact with humans, these microorganisms can generally be classified as being commensal (i.e., 

harmless or health-promoting) or pathogenic (i.e., harmful or disease-causing) (Hornef, 2015).  

Bacterial infections can occur through various routes, including but not limited to foreign 

bacteria entering a wound site or bacteria that naturally reside within a body becoming 

opportunistic due to an environmental change (e.g., host immunodeficiency). Antibiotics describe 

a class of drugs that specifically kill or neutralize bacteria by targeting different cellular 

mechanisms such as cell wall synthesis, DNA/RNA synthesis, and protein synthesis. Antibiotics, 

like bacteria, can be classified based on several criteria (Figure 1-1B). First and foremost, 

antibiotics are formally classified based on their mechanism of action (G. Kapoor et al., 2017). 

Antibiotics may also be described as having broad- or narrow-spectrum activity, where the former 
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applies to compounds that effectively kill or neutralize a phylogenetically diverse selection of 

bacteria and the latter describes compounds that selectively kill or neutralize a single species or 

group of bacteria (Melander et al., 2018). Additionally, antibiotics can be defined as being 

bactericidal (i.e., death-inducing) or bacteriostatic (i.e., growth-arresting) (Nemeth et al., 2015). 

The bacterial response to antibiotic stress can be categorized into one of the following four 

phenotypes: susceptible, resistant, tolerant, or persistent (Brauner et al., 2016) (Figure 1-1C). A 

susceptible cell is effectively killed or neutralized by a given antibiotic, while the remaining three 

phenotypes describe a cell that can evade antibiotic stress in different ways. According to Brauner 

et al., these three phenotypes are distinguishable based on the minimum inhibitory concentration 

(MIC) and the minimum duration for killing (MDK) for a given cell population. The MIC measures 

the antibiotic concentration required to inhibit cell growth to a given extent (e.g., MIC99 = 

concentration that inhibits 99% of cell growth compared to an untreated cell). The MDK measures 

the duration of antibiotic exposure needed to kill a given proportion of a cell population (e.g., 

MDK99 = duration of antibiotic treatment that kills 99% of cells). Based on these two metrics, a 

resistant cell is one that has evolved to withstand a higher MIC than its susceptible equivalent, 

typically by inheriting genetic mutations that reduce antibiotic accumulation within itself or 

enzymatically inactivate the antibiotic. Tolerance describes the ability for a cell population to 

survive transient exposure to antibiotics and is characterized by the population having a higher 

MDK than a susceptible population, regardless of the MIC. Persistence is used to define a small 

cell sub-population (typically <1%) that survives antibiotic treatment at susceptible-level MIC but 

high MDK levels. Compared to resistant or tolerant cells, persistent cells are harder to characterize 

as their survival may be time- and/or dose-dependent.  
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Figure 1-1 Classification of bacteria, antibiotics, and antibiotic response. (A) Bacteria are commonly classified based 
on their Gram stain (Gram-positive or Gram-negative), growth rate (fast or slow), and interaction with a host 
(commensal or pathogenic). (B) Antibiotics are classified based on their mechanism of action (DNA, protein, or cell 
wall inhibitors), extent of activity (broad- or narrow-spectrum), and mode of activity (bacteriostatic or bactericidal). 
(C) The bacterial response to antibiotic treatment can be categorized into four phenotypes: sensitive, resistant, tolerant, 
or persistent. 

Given that tolerance and persistence are mainly defined by the MDK, these phenotypes 

only apply for cell response to bactericidal antibiotics. This dissertation describes topics and 

methodologies in context of the bacterial response to both bactericidal and bacteriostatic agents; 

hence, a cell that is described to overcome antibiotic stress can be assumed to be resistant unless 

it is clarified that a given cell population is tolerant or persistent. 
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1.2 Bacterial Metabolism Modulates Drug Resistance and Tolerance 

Metabolism entails the collection of fundamental biochemical processes that enable organisms to 

consume and produce chemical compounds to sustain life. Metabolism is often depicted as an 

interconnected network of metabolites linked by enzymatic reactions, ranging from a moderate 

size (hundreds of metabolites/reactions) to being large and complex (thousands of 

metabolites/reactions) depending on the organism. For all living cells, the primary purpose of 

metabolism is to produce energy that is used to maintain cellular functions such as movement and 

enable cellular growth, development, and reproduction. Metabolic processes are carried out as a 

cell interacts with its surrounding environment, which includes both the immediately available 

nutrients as well as other cells that interact with one another through metabolite exchange. For the 

purpose of my dissertation, I focus on understanding and examining bacterial metabolism within 

the human body during infection.  

 In context of antibiotic resistance, bacterial metabolism can serve as a double-edged sword. 

On one side, it plays a key role in promoting survival and pathogenicity in new niches. For 

instance, E. coli possesses high metabolic versatility that enables the utilization of multiple carbon 

and nitrogen sources. As a result, E. coli is readily able to colonize different environments (e.g., 

intestinal tract, urinary tract) where it can become pathogenic (Fuchs et al., 2012). The nutrients 

available in the local environment also play a role in sustaining survival and promoting virulence 

(Brown et al., 2008). For instance, the nutrient composition in the urinary tract creates a harsher 

growth condition for E. coli in comparison to the native gut environment. However, uropathogenic 

E. coli (UPEC) strains have evolved metabolic adaptations that not only enable its survival but 

also enhance its virulence in causing urinary tract infections (UTIs) (Mann et al., 2017).  
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 On the other side of the metaphorical double-edged sword, metabolism can enhance the 

bacterial susceptibility to antibiotics. For example, Kohanski et al. have proposed that metabolic 

activity plays a key role in modulating susceptibility to bactericidal drugs. Specifically, the authors 

have found that bactericidal antibiotic efficacy relies on tricarboxylic acid (TCA) cycle activity, 

as this enables production of hydroxyl radicals that damage cellular components (Kohanski et al., 

2007). Similar findings on the involvement of metabolic activity, particularly in relation to 

oxidative stress, in drug efficacy have been reported for other organisms (Dharmaraja, 2017). 

Other studies have shown that global metabolic regulators can modulate bacterial susceptibility to 

antibiotics by changing membrane permeability (Martínez & Rojo, 2011). In contrast to a 

metabolically active state, which often potentiates antibiotic activity, cells can instead enter a 

dormant state where they are metabolically inactive. This cell state has been found to render 

bactericidal agents ineffective (Lopatkin et al., 2019) and may also explain the presence of 

persistent sub-populations (K. Lewis, 2006).  

 The information above provides a brief overview of metabolism and contextualizes its role 

in modulating bacterial behavior during disease and in response to antibiotics. This topic is 

discussed in further detail in Chapter 2, where the metabolic response to antibiotics serves as a 

pivotal component of the methodology that is presented. The role of metabolism in antibiotic 

resistance, tolerance, and persistence is revisited in Chapter 4 in relation to how M. tuberculosis 

adapts to antibiotic stress.  

1.3 Antibiotic Resistance: A Global Health Crisis 

Antibiotic resistance (AR) refers to the phenomenon where bacteria become resistant to antibiotic 

treatments, therefore overcoming growth-inhibiting or death-inducing stresses. Resistance arises 

from extended exposure to antibiotics, which allow bacteria to evolve and genetically adapt to 
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promote their survival. Acquisition of resistance genes can occur via spontaneous mutations and 

horizontal gene transfer (HGT), where genetic material is laterally exchanged between bacteria 

(Blair et al., 2015). Specific manners through which HGT occurs includes conjugation (direct 

contact between bacteria), transduction (via viral vectors), and transformation (incorporation of 

exogenous genetic material). These genetic changes culminate to the development of resistance 

mechanisms that render antibiotic treatments ineffective in several ways (Figure 1-2), such as by: 

(a) activating new processes that avoid usage of the antibiotic target, (b) biochemically modifying 

an antibiotic via enzymatic action, (c) limiting the entry of antibiotics due to changes in membrane 

properties, (d) activating efflux pumps that remove antibiotics from the bacterial cytoplasm, and 

(e) modifying the antibiotic target to reduce binding affinity.  

 

Figure 1-2 Resistance mechanisms against antibiotic treatment. Bacteria adopt various strategies to resist antibiotic 
treatment, including: (A) activation of processes that avoid usage of antibiotic target, (B) degradation of antibiotic via 
enzymatic action, (C) modification of membrane properties to limit antibiotic access, (D) expression of efflux pumps 
that remove the antibiotic, and (E) modification of the antibiotic target. Adapted from the CDC 2019 AR Threats 
Report (Centers for Disease Control and Prevention, 2019). 

 Among the various infectious diseases that afflict humans to this day, tuberculosis (TB) is 

one of the most devastating with a death toll of millions per year since pre-historic times (Barberis 

et al., 2017). TB is caused by M. tuberculosis (henceforth M. tb), a slow-growing pathogen that is 
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only known to infect humans (Comas et al., 2013). M. tb primarily resides within the lung and 

adopts one of two states: active, where it actively causes disease, or latent, where it enters a 

dormant period with minimal metabolic activity. TB is a notorious infectious disease that is 

difficult to treat, mainly due to three reasons. First, TB incidence is disparately dispersed with the 

vast majority of active TB cases occurring within low-income regions in Africa and Asia (World 

Health Organization, 2015). As a result, nearly one-third of all active disease cases go undetected, 

and potentially further spread TB, due to the scarcity of medical assistance that can be reached or 

afforded. Second, M. tb can develop varying levels of antibiotic resistance which are difficult and 

time-consuming to pinpoint. This is problematic because the resistance profile of M. tb is 

indicative of which antibiotic regimen should be prescribed to effectively clear the infection 

(Mirzayev et al., 2021). Third, the ability for M. tb to switch between active and latent phases 

enables it to persist within the human host, even after anti-TB treatment (Stewart et al., 2003). This 

can make it nearly impossible to completely clear TB infection, sometimes resulting in disease 

relapse throughout a patient’s lifetime.   

 In addition to TB, both the Centers for Disease Control (CDC) and the World Health 

Organization (WHO) list other drug-resistant pathogens as critical threats, including but not 

limited to E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus (Centers for Disease 

Control and Prevention, 2019; World Health Organization, 2014). These three organisms 

collectively represent multiple bacterial characteristics that promote pathogenicity and 

development of resistance mechanisms. For example, E. coli is a fast-growing Gram-negative 

species that naturally resides in the gut of large organisms and is often used as the model organism 

to study bacterial cells. Due to its high versatility and resilience in adapting to new environments, 

E. coli can behave as a commensal member of the intestinal lining or become pathogenic, causing 
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infections in the gut, blood, and urinary tract (Leimbach et al., 2013). Though E. coli is 

comparatively less threatening than bacteria such as M. tb in context of AR, E. coli is adept at 

accumulating resistance genes via HGT; this trait not only leads to multidrug-resistant strains, but 

also enables E. coli to serve as a reservoir of resistant determinants that can be shared with other 

bacteria (Poirel et al., 2018). P. aeruginosa is another Gram-negative species, though slower in 

growth than E. coli, that naturally resides in environmental niches (e.g., soil). P. aeruginosa is an 

exemplary case of an opportunistic pathogen, a microbe that does not cause disease under normal 

circumstances (e.g., healthy host) but becomes pathogenic when its surrounding environment 

changes (e.g., immunocompromised host). Due to this trait, P. aeruginosa can cause various types 

of infections such as bacteremia (blood infection) in burn victims, ulcerative keratitis (eye 

infection) in contact lens users, and chronic lung infection in cystic fibrosis patients (Lyczak et al., 

2000). Unlike E. coli and P. aeruginosa, S. aureus is a Gram-positive species that is a commensal 

habitant of the nasal mucosa in humans (Wertheim et al., 2005). S. aureus causes infection when 

it invades the bloodstream or tissues underneath the mucosal layer, which can happen when this 

layer is disrupted during injury or surgery. In general, Gram-positive bacteria are more susceptible 

to antibiotic stress than Gram-negative counterparts, since the former lacks the outer membrane 

which serves as an additional resistive layer (Breijyeh et al., 2020). However, S. aureus has proven 

to be exceptionally resistive against antibiotic stress by rapidly acquiring resistance to various 

antibiotics shortly after exposure and has become notorious for causing epidemics of hospital-

acquired infections worldwide (Chambers & DeLeo, 2009).   

 The content above is certainly not exhaustive in describing the current state of AR; 

however, it provides sufficient introductory information that is revisited in later chapters of this 

dissertation. Specifically, Chapter 2 introduces a methodology that is constructed based on E. 
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coli. Chapter 3 describes another methodology that is based on E. coli and M. tb data but extends 

applicability to other bacteria such as P. aeruginosa and S. aureus. Chapter 4 focuses on 

leveraging both methodologies to design therapies that specifically counter drug-resistant M. tb in 

tuberculosis and identify narrow-spectrum therapies against P. aeruginosa in endophthalmitis (a 

serious eye infection).  

1.4 Strategies to Combat Antibiotic Resistance 

Current efforts to combat AR fall into two major categories: preventative measures and treatment 

options. Prevention tactics are heavily promoted by the CDC and the WHO, and these are widely 

implemented in both agricultural and clinical settings. Specific measures include: (a) increased 

sanitation when handling animals or caring for patients, (b) proper prescription and usage of 

antibiotic treatments, complemented by improved diagnostic technologies, and (c) administration 

of vaccines or antibody therapies to reduce infection rates (Centers for Disease Control and 

Prevention, 2019). On the treatment side, alternative options to the current method of treating 

bacterial infections are being explored, especially for highly resistant pathogens. Some examples 

include: (a) phage therapy, where genetically engineered bacteriophages are designed to target 

specific pathogens, (b) live therapeutics with health-promoting bacteria, such as fecal microbiota 

transplantation (FMT), and (c) combination therapy, where antibiotics are used in combination or 

are supplemented with another therapeutic agent (e.g., small peptides, nutrients).  

 Though each treatment option holds great potential for combating resistant bacterial 

pathogens, both phage therapy and live therapeutics are still poorly understood and hard to control. 

Consequently, their commercial viability is limited due to scalability issues and lack of widespread 

implementation guidelines (Lu & Koeris, 2011; Panchal et al., 2018). In contrast, combination 

therapy has the best potential for clinical application as this method optimizes the use of already 
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regulated therapeutics (Farha & Brown, 2019) and offers room for improved treatment efficacy 

through adjuvant supplementation (Tyers & Wright, 2019). Combination therapies can also engage 

multiple cellular targets to suppress growing resistance, which is difficult to achieve with a single 

active compound. In fact, combination therapies involving at least two and up to four antibiotics 

are commonly used to treat tuberculosis (Kerantzas & Jacobs, 2017). More broadly, combination 

therapies are widely used to treat other diseases such as viral infections (White et al., 2021) and 

cancer (Mokhtari et al., 2017).  

1.4.1 Combination therapies strategically overcome drug resistance 

The material in this section was partially adapted from the following article with adjustments:  

Cantrell, J. M., Chung, C. H., & Chandrasekaran, S. (2022). Machine learning to design 

antimicrobial combination therapies: Promises and pitfalls. Drug Discovery Today, 27(6), 

1639-1651. 

Combination therapies are discovered and designed by measuring how two or more drugs interact 

with one another. Drugs can be combined in a simultaneous or sequential fashion, where the former 

describes when drugs are formulated or prescribed together while the latter refers to when drugs 

are given in an order- and time-dependent manner. The vast majority of combination therapies that 

are used to treat bacterial infections are simultaneously prescribed. However, there is growing 

interest in designing sequential therapies in order to leverage collateral sensitivity (heightened 

susceptibility to one drug after adaptation to another drug) to mitigate drug resistance (Baym et 

al., 2016; Imamovic & Sommer, 2013; Lázár et al., 2018; Roemhild & Andersson, 2021). 

Nonetheless, established methods for discovering and designing combination therapies focus on 

investigating simultaneous drug interactions.  
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 Checkerboard assays, or dose-response matrices, are commonly used to observe and 

measure interactions between two drugs (Figure 1-3A). Schematically, drugs are combined at 

different concentrations (i.e., dosages) along orthogonal directions of a well plate (i.e., matrix), 

and their impact on cell viability (i.e., response) is measured using optical density or colorimetric 

assays. The way that drugs interact when combined can be visualized as an isobologram (Figure 

1-3B) and classified into one of three types of outcomes: synergy, additivity (i.e., neutral), or 

antagonism. For clinical use, the goal is to identify drug combinations that are synergistic, meaning 

that the drug combination achieves better efficacy (e.g., greater infection clearance) compared to 

the single agents. Using the data measured from checkerboard assays, drug interaction outcomes 

can be quantified using a mathematical model. Three foundational models, each possessing its own 

set of assumptions on how two drugs interact, are predominantly used to quantify drug interaction 

outcomes (Meyer et al., 2020). For the purposes of this dissertation, I describe two of these models 

in further detail: the Loewe Additivity Principle (Loewe & Muischnek, 1926) and the Bliss 

Independence Model (Bliss, 1939).  

 

Figure 1-3 Evaluating combination therapy outcomes using a checkerboard assay. A checkerboard assay measures 
the interaction between two compounds (e.g., drugs A and B) by evaluating the cell response (e.g., growth) across a 
well-plate where each compound is dispensed at concentration levels ranging from 0 to the minimum inhibitory 
concentration (MIC) along a vertical or horizontal direction. (B) The drug interaction is visually inspected using an 
isobologram, which depicts the curve that achieves a specified effect level (e.g., 90% growth inhibition) along the 
concentration axes for the two compounds. Based on the Loewe Additivity Principle (Loewe & Muischnek, 1926), 
the deviation from the line of additivity (a downward diagonal line) indicates synergistic or antagonistic interactions 
depending on whether lower (concave curve) or higher (convex curve) drug concentrations achieve the desired effect, 
respectively. 
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 The Loewe Additivity Principle assumes dose additivity for additive (i.e., neutral) drug 

interaction outcomes. This imposes three main assumptions: (1) a drug cannot interact with itself, 

(2) the effect achieved by the maximum concentration of one drug is the same as the other (e.g., 

[DrugA] = [DrugB] = 90% inhibition), and (3) the effect achieved in (2) is also achieved by 

combined ratios that sum to one (e.g., 0.5[DrugA] + 0.5[DrugB] = 0.7[DrugA] + 0.3[DrugB] = 

[DrugA] = [DrugB] = 90% inhibition). The third assumption is used to determine the drug 

interaction outcome, where synergy is defined by lower concentration ratios achieving the effect 

of the maximum concentration of the individual drugs (e.g., 0.3[DrugA] + 0.4[DrugB] = 90% 

inhibition). Mathematically, the Loewe Additivity Principle introduces the following equation, 

which compares the dosage required to reach a defined response level (e.g., % growth inhibition) 

when two drugs are combined versus when they act independently (Equation 1-1):  

𝑑𝑑𝐴𝐴,𝑥𝑥

𝐷𝐷𝐴𝐴,𝑥𝑥
+
𝑑𝑑𝐵𝐵,𝑥𝑥

𝐷𝐷𝐵𝐵,𝑥𝑥
= 1 

Equation 1-1 Quantifying the interaction between two drugs based on the Loewe Additivity Principle. 

 

where dA,x and dB,x represent the dosage required for each drug to achieve x% inhibition when 

combined, while DA,x and DB,x represent the dosage required for each drug to independently achieve 

x% inhibition. Equation 1-1 classifies a combination as synergistic or antagonistic based on 

whether the growth inhibition is less than or more than one, respectively.  

 The Bliss Independence Model assumes response additivity for additive drug interaction 

outcomes using probabilistic rules. This model is applicable when the following three assumptions 

are met: (1) the individual probabilities of cells being affected by each individual drug are 

independent, (2) the dose-response curve for each individual drug is exponential, and (3) each drug 

targets a distinct pathway from the other. The drug interaction outcome is determined by 
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comparing the measured response (e.g., % growth inhibition) from the checkerboard assay against 

the expected response for a combination, which is calculated using the probabilities of the 

individual drugs. Mathematically, the Bliss model is represented as:  

𝐼𝐼𝐴𝐴𝐵𝐵 = 𝐼𝐼𝐴𝐴 × 𝐼𝐼𝐵𝐵 

Equation 1-2 Quantifying the interaction between two drugs based on the Bliss Independence Model. 

 

where IAB is the expected response achieved by the combination based on the response achieved 

by each drug independently (IA and IB). Based on Equation 1-2, drug combinations are classified 

as synergistic or antagonistic based on whether they achieve a greater or lower desired response 

than expected, respectively. 

 The conventional approach for combination therapy screening primarily involves the use 

of checkerboard assays and quantification of drug interaction outcomes based on the Loewe and/or 

the Bliss model. Though this strategy has led to the establishment of over 400 FDA-approved drug 

combinations across many disease areas (P. Das et al., 2019), numerous challenges are implicated 

with this standard approach. First and foremost, experimentally searching for combination 

therapies has limited throughput and cannot scale to the exponential increase of the combinatorial 

search space upon incremental addition of drugs to screen. Second, without rational guidance of 

which drug combinations to test, the bench-to-clinic success rate can be very low. Third, 

checkerboard assays and mathematical formulae such as the Loewe and Bliss models were 

designed to evaluate pairwise (i.e., two-way) drug interactions; as a result, there is little consensus 

on how these methods can be extended to evaluate higher-order drug interactions. Last but not 

least, the conventional approach for combination therapy design cannot measure sequential drug 

interactions; hence, investigation into the potential for sequential therapies in overcoming drug 

resistance remains underexplored. 



 14 

 To address these challenges, I developed two computational methodologies for 

combination therapy design as part of my dissertation work. Both methodologies, which are 

described in Chapters 2 and 3, help to risk stratify drug combinations by predicting which drug 

combinations within a large combinatorial space (~thousands) are likely to yield synergy and 

proposing a smaller set (<50) for experimental validation. Both methodologies can also generate 

outcome predictions for higher-order drug interactions. Importantly, the methodology described 

in Chapter 2 further accounts for sequential drug combinations when generating predictions for 

their interaction outcomes. 

1.5 Computational Methods for Systems Biology and Drug Therapy Design 

1.5.1 Genome-scale metabolic models simulate systems-level metabolism 

The material in this section was partially adapted from the following article with adjustments: 

Chung, C. H., Lin, D. W., Eames, A., & Chandrasekaran, S. (2021). Next-generation genome-

scale metabolic modeling through integration of regulatory mechanisms. Metabolites, 11(9), 

606. 

Genome-scale metabolic models (GEMs) are computational representations of metabolic networks 

accounting for the entirety of metabolic activity encoded within the genome for a given organism 

(Price et al., 2004). Principally, they involve a set of mass-balanced metabolic reactions and 

metabolites represented in a stoichiometric matrix. GEMs also include gene-protein-reaction 

(GPR) associations describing the relationship between thousands of genes, proteins, and reactions 

(Thiele & Palsson, 2010). GEMs facilitate quantitative, in silico simulations of how environmental 

and genetic changes influence cellular metabolism (N. E. Lewis et al., 2012). Since their 

introduction, over 6,000 GEMs have been reconstructed across bacteria, archaea, and eukarya 

(Fang et al., 2020). 
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Figure 1-4 Mathematical framework of three constraint-based modeling (CBM) methods. Flux balance analysis 
(FBA) is a standard method to determine metabolic reaction flux solutions at steady-state by a cell that optimizes a 
defined objective function (e.g., maximize biomass). Parsimonioius FBA (pFBA) is another method that applies an 
additional constraint that minimizes the overall flux based on the assumption that the cell is efficiently modulating its 
metabolism. The constrain-flux-regulation (CFR) method incorporates FBA, pFBA, and additional constraints that 
maximize fluxes through up-regulated (“on”) reactions while minimizing fluxes through down-regulated (“off”) 
reactions. See main text for variable descriptions. 

 Constraint-based modeling (CBM) is the standard mathematical framework for 

reconstructing and analyzing GEMs, primarily through the addition of model constraints (N. E. 

Lewis et al., 2012) (Figure 1-4). The most basic form of CBM is flux balance analysis (FBA) 

(Orth et al., 2010). FBA begins with the stoichiometric matrix S, where rows signify metabolites 

and columns represent reactions. For each reaction (column), the stoichiometric coefficients of all 

metabolites involved in the reaction are set to a non-zero value. Specifically, positive coefficients 

indicate production of a metabolite while negative coefficients indicate consumption of a 

metabolite. A key assumption of FBA is steady-state metabolism in which each metabolite’s 

production and consumption is balanced equally (Reimers & Reimers, 2016). Mathematically, 

FBA aims to simulate reaction fluxes at steady-state, which leads to solving the following system 

of equations (Equation 1-3): 



 16 

𝑆𝑆 ∙ 𝑣𝑣 = 𝑏𝑏 

Equation 1-3 Constraining a genome-scale metabolic model based on flux balance analysis (FBA). 

 

where S represents the stoichiometric matrix, v is the vector of reaction fluxes, and b, representative 

of changes in metabolite concentrations, is set to a zero vector to mathematically reflect steady-

state metabolism.  

 Since the number of reactions exceeds the number of metabolites, the system is 

underdetermined and a large solution space exists; however, this can be narrowed by imposing 

additional constraints and specifying flux bounds. In FBA, linear optimization techniques are 

applied to solve a flux distribution that optimizes an objective function (Zobj). To reflect 

evolutionary pressure, growth is typically maximized by defining a biomass objective function 

that consists of biomass precursors (Feist & Palsson, 2010). Other objectives such as maximization 

of ATP can also be used in FBA (Schuetz et al., 2007). These constraints are mathematically 

represented as follows (Equation 1-4): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑠𝑠. 𝑡𝑡. 𝑙𝑙𝑏𝑏 < 𝑣𝑣 < 𝑢𝑢𝑏𝑏

 

Equation 1-4 Constraining a genome-scale metabolic model by specifying the objective function. s.t.: subject to. 

 

where Zobj is the objective function, vbiomass is the flux through a user-defined biomass reaction, v 

is the vector of all reaction fluxes, lb is a vector of the lower bound flux limit, and ub is a vector 

of the upper bound flux limit.  

 Though FBA can generate flux solutions that match experimental data (Edwards et al., 

2001; Schuetz et al., 2007), this method may still generate non-unique solutions. This predicament 

arises when multiple combinations of reaction fluxes can satisfy the above constraints and lead to 
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the same objective. To account for this uncertainty, other CBM methods that introduce additional 

constraints onto the flux solution space have been proposed (Bernstein et al., 2021). For the 

purposes of this dissertation, I describe one method called parsimonious FBA (pFBA) in further 

detail. pFBA adds another constraint layer to determine feasible flux ranges by assuming that cells 

maximize efficient enzyme usage to promote their growth (N. E. Lewis et al., 2010). This 

assumption is mathematically imposed by minimizing the overall flux in the system (Equation 

1-5): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑣𝑣𝑏𝑏

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑏𝑏=1
𝑠𝑠. 𝑡𝑡. 𝑣𝑣𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑣𝑣𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑙𝑙𝑜𝑜 𝑀𝑀𝑀𝑀𝑑𝑑 𝑙𝑙𝑏𝑏𝑏𝑏 ≤ 𝑣𝑣𝑏𝑏 ≤ 𝑢𝑢𝑏𝑏𝑏𝑏

 

Equation 1-5 Constraining a genome-scale metabolic model based on parsimonious FBA (pFBA). s.t.: subject to. 

 

where vi is the flux through reaction i, Nreactions is the total number of reactions, vbiomass is the flux 

through the biomass reaction, vbiomass,lb is the lower limit of the flux through the biomass reaction, 

lbi is the lower flux bound for reaction i, and ubi is the upper flux bound for reaction i. Of note, the 

flux solutions achieved using pFBA tend to emphasize a small number of high-flux reactions due 

to the underlying assumptions of pFBA. Nonetheless, pFBA has been shown to outperform other 

similar methods in predicting intracellular fluxes (Machado & Herrgård, 2014). 

 To further improve GEM accuracy in simulating metabolic reaction flux changes, CBM 

methods integrating omics data have been introduced (Ramon et al., 2018). Omics data refers to a 

large-scale collection of experimental measurements that provide systems-level understanding of 

a biological function. Different types of omics data help elucidate different facets of biological 

information, and these include genomics (gene-level), transcriptomics (gene transcript-level), 

proteomics (protein-level), and metabolomics (metabolite-level). A key component of the 
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methodology described in Chapter 2 is constrain-flux-regulation (CFR), a CBM method that 

integrates omics data to simulate the metabolic response to a perturbation (Campit & 

Chandrasekaran, 2020; Shen, Cheek, et al., 2019). CFR imposes constraints that maximize fluxes 

through overactive reactions while minimizing fluxes through underactive reactions. Reaction 

activity can be directly provided into the CFR function by specifying which reactions are 

overactive or underactive; alternatively, this information can be inferred from transcriptomics 

(e.g., gene transcript) data where reactions associated with up-regulated genes indicate those that 

are overactive while reactions associated with down-regulated genes are assumed to be 

underactive. Mathematically, flux maximization for overactive reactions is imposed as follows 

(Equation 1-6):  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�(𝑡𝑡𝑏𝑏 + 𝑟𝑟𝑏𝑏)

𝑁𝑁𝑢𝑢𝑢𝑢

𝑏𝑏=1
𝑠𝑠. 𝑡𝑡. 𝑣𝑣𝑏𝑏 − 𝑡𝑡𝑏𝑏(𝜀𝜀𝑏𝑏 + 𝑀𝑀) ≥ −𝑀𝑀 𝑀𝑀𝑀𝑀𝑑𝑑 𝑣𝑣𝑏𝑏 − 𝑟𝑟𝑏𝑏(𝜀𝜀𝑏𝑏 + 𝑀𝑀) ≥ 𝑀𝑀

𝑤𝑤ℎ𝑀𝑀𝑟𝑟𝑀𝑀 𝑡𝑡𝑏𝑏 = �1     𝑀𝑀𝑖𝑖 𝑣𝑣𝑏𝑏 > 0
0   𝑜𝑜𝑡𝑡ℎ𝑀𝑀𝑟𝑟𝑤𝑤𝑀𝑀𝑠𝑠𝑀𝑀

 , 𝑟𝑟𝑏𝑏 = �1     𝑀𝑀𝑖𝑖 𝑣𝑣𝑏𝑏 < 0
0   𝑜𝑜𝑡𝑡ℎ𝑀𝑀𝑟𝑟𝑤𝑤𝑀𝑀𝑠𝑠𝑀𝑀

 𝑀𝑀𝑀𝑀𝑑𝑑 𝑀𝑀 ≫ 𝜀𝜀𝑏𝑏

 

Equation 1-6 Applying constrain-flux-regulation (CFR) for overactive reactions. s.t.: subject to. 

 

where vi is the flux through reaction i, Nup is the total number of overactive reactions, εi is the 

minimum flux through reaction i, ti is set to 1 for reaction i if the flux directionality is positive, ri 

is set to 1 for reaction i if the flux directionality is negative, and M is a constant much larger than 

εi (default: M = 10,000). The mathematical expression for minimizing fluxes through underactive 

reactions is as follows (Equation 1-7):  
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � 𝜅𝜅(𝛼𝛼𝑏𝑏 + 𝛽𝛽𝑏𝑏)
𝑁𝑁𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟

𝑏𝑏=1
𝑠𝑠. 𝑡𝑡. 𝑣𝑣𝑏𝑏 ≥ 𝑙𝑙𝑏𝑏𝑏𝑏′ − 𝛼𝛼𝑏𝑏 𝑀𝑀𝑀𝑀𝑑𝑑 𝑣𝑣𝑏𝑏 ≤ 𝑢𝑢𝑏𝑏𝑏𝑏′ − 𝛽𝛽𝑏𝑏

𝑤𝑤ℎ𝑀𝑀𝑟𝑟𝑀𝑀 𝛼𝛼𝑏𝑏 ≥ 0 𝑀𝑀𝑀𝑀𝑑𝑑 𝛽𝛽𝑏𝑏 ≥ 0

 

Equation 1-7 Applying constrain-flux-regulation (CFR) for underactive reactions. s.t.: subject to. 

 

where vi is the flux through reaction i, Ndown is the total number of underactive reactions, αi 

indicates the flux deviation for reaction i if the flux directionality is positive, βi is the flux deviation 

for reaction i if the flux directionality is negative, κ is the penalty imposed onto αi and βi, lbi’ is the 

data-based lower flux bound for reaction i (default lbi’ = 0), and ubi’ is the data-based upper flux 

bound for reaction i (default ubi’ = 0). By default, CFR generates flux simulations that are defined 

by Equations 1-6 and 1-7 while satisfying the constraint imposed by pFBA (Equation 1-5).   

 In summary, GEMs are computational models that linearly represent the metabolic network 

for a given organism. FBA is the most common CBM method that is used to simulate steady-state 

metabolic reaction fluxes that optimize a specified cellular objective (e.g., biomass) within feasible 

flux bound limits. Additional CBM methods such as pFBA and CFR can be imposed onto GEMs 

to simulate metabolic states that more closely resemble what is observed experimentally. These 

metabolic modeling concepts are pivotal for the methodology introduced in Chapter 2, which 

simulates the bacterial metabolic response to antibiotic exposure and growth within defined media 

(i.e., cell culture environment). 

1.5.2 Brief primer on machine learning and its use for predictive modeling 

The material in this section was partially adapted from the following article with adjustments:  



 20 

Cantrell, J. M., Chung, C. H., & Chandrasekaran, S. (2022). Machine learning to design 

antimicrobial combination therapies: Promises and pitfalls. Drug Discovery Today, 27(6), 

1639-1651. 

Artificial intelligence (AI) describes a research area where computational machinery or systems 

are built to emulate different aspects of human intelligence such as thought, language, and vision 

(Muthukrishnan et al., 2020). Machine learning (ML) is a sub-field of AI that focuses on training 

computational machines to interpret a given dataset, and the level of information that is provided 

dictates which one of four types of ML is implemented (Morales & Escalante, 2022). The first is 

unsupervised learning, where a machine is given unlabeled data points and is tasked with 

identifying any meaningful patterns that may exist within the dataset. The second is supervised 

learning, where a machine is provided with labeled data points and is tasked with defining a 

function that connects each data point to its associated label. The third is semi-supervised learning, 

where the given dataset is partially labeled, and the machine is tasked with both goals of the prior 

two ML types (pattern recognition and function approximation). The last type of ML is 

reinforcement learning, where a machine acts as an agent within a defined environment and 

chooses a series of actions that maximize a defined reward and/or reduce a defined risk through 

trial-and-error.  

  For the purposes of this dissertation, additional information on unsupervised and 

supervised learning is specifically elaborated. Unsupervised learning is often used for clustering 

data points and/or reducing the dimensionality of a complex dataset. For instance, given single-

cell gene expression data for a heterogeneous cell population (e.g., immune cells), an unsupervised 

ML model can deduce that several cell sub-populations (e.g., macrophages, T cells, B cells) 

characterized by distinctive gene expression profiles may exist. On the other hand, supervised 
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learning is typically applied for classification- or regression-based tasks where a model learns to 

associate data points with a discrete or continuous set of labels, respectively. For example, given 

information on patient-specific demographic and clinical measurements where the patient health 

status (e.g., healthy vs. diabetic) is known, a supervised ML model can learn a function that 

classifies a patient into a known sub-group. Alternatively, a supervised ML model could learn a 

function that infers a continuous value (e.g., blood glucose level) for a patient based on their 

information.  

 Given that supervised ML models serve as function approximators, they are often used for 

generalizing a learned function to predict labels for new input data. Before these models can be 

applied for predictive modeling, their performance as accurate function approximators is evaluated 

and optimized based on different metrics (Greener et al., 2021; Jiang et al., 2020). The general 

process for evaluating the performance for a supervised ML model begins with splitting the input 

data along with its labels into training and testing sets. The model is then subjected to training and 

optimization using the training dataset, then evaluated using the testing dataset. Finally, model 

performance is evaluated using different metrics based on the nature of the given supervised ML 

model (Gramatica & Sangion, 2016; Roy et al., 2015). For classification-based models, 

performance is often measured by inspecting the Receiver Operator Characteristic (ROC) curve, 

which visualizes the sensitivity (i.e., true positive rate) against the specificity (i.e., true negative 

rate) of model predictions. The area under the ROC curve (AUROC) can further serve as a 

quantitative measure, with values close to 1 indicating high model accuracy. For regression-based 

models, performance can be measured by the coefficient of determination (R2), which calculates 

goodness-of-fit by comparing the expected output values against corresponding model-predicted 

values. The best R2 measure is 1, meaning there is no difference between true and predicted values. 
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Of note, the square-root of the R2 value indicates the correlation between true vs. model-predicted 

values, which is another measure for evaluating regression-based model performance.  

 The information described above provides a tailored understanding of ML that is 

constructive for understanding the methodologies introduced in Chapters 2 and 3. Both 

methodologies leverage supervised ML to build models predictive of drug interaction outcomes, 

either as a classification-based task (e.g., predicting synergy) or a regression-based task (e.g., 

predicting the Loewe- or Bliss-based drug interaction score) (Figure 5). Of note, both 

methodologies specifically leverage Random Forests as the base ML algorithm to define functions 

that approximate drug interaction outcomes given feature information that uniquely characterize 

distinct drug combinations. Briefly, Random Forests is an ensemble algorithm that consolidates 

the outputs from multiple decision trees to yield robust predictions (Breiman, 2001). Each tree is 

constructed using a random sample of data points, which are then split based on their features to 

attain the best class purity (for classification) or minimize the error between true vs. predicted 

values (for regression). 

 

Figure 1-5 Schematic for the computational design of combination therapies. Based on a supervised learning 
approach, computational methods such as genome-scale metabolic models and random forests models can learn to 
associate patterns in drug information, pathogen response to treatment, and external factors (e.g., growth environment) 
to drug interaction outcomes such as synergy (S) or antagonism (A).  
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1.6 Dissertation Objectives 

For my dissertation research, I sought to optimize the design of combination therapies effective in 

overcoming antibiotic resistance by considering intrinsic and extrinsic factors that influence the 

bacterial response to drug treatment. In pursuit of this goal, I developed two computational 

methods that prioritize different design objectives. The first method, which is fully described in 

Chapter 2, incorporates genome-scale metabolic modeling to understand how bacteria 

metabolically adapt in response to different conditions such as drug treatment or growth within 

specific environments. By providing this information into a ML model, I introduce a methodology 

that can predict condition-specific drug interaction outcomes. In Chapter 3, I describe the second 

computational method that leverages two ML concepts, namely crowdsourcing and transfer 

learning, that enables a model to predict strain-specific drug interaction outcomes. To demonstrate 

their utility, I apply both computational methods to determine synergistic drug combinations in the 

context of treating tuberculosis and endophthalmitis, a serious eye infection, in Chapter 4. In 

Chapter 5, I summarize my research findings and discuss limitations entailed with these two 

methodologies. I also provide suggestions on future research directions that can improve or expand 

my models for combination therapy design.  
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Chapter 2 A Flux-based Machine Learning Model to Simulate the Impact of Pathogen 

Metabolic Heterogeneity on Drug Interactions 

The material in this chapter was adapted from the following article with minor adjustments:   

Chung, C. H., & Chandrasekaran, S. (2022). A flux-based machine learning model to 

simulate the impact of pathogen metabolic heterogeneity on drug interactions.  

PNAS nexus, 1(3), pgac132. 

2.1 Abstract 

Drug combinations are a promising strategy to counter antibiotic resistance. However, 

current experimental and computational approaches do not account for the entire complexity 

involved in combination therapy design, such as the effect of pathogen metabolic heterogeneity, 

changes in the growth environment, drug treatment order and time interval. To address these 

limitations, we present a comprehensive approach that uses genome-scale metabolic modeling and 

machine learning to guide combination therapy design. Our mechanistic approach (a) 

accommodates diverse data types, (b) accounts for time- and order-specific interactions, and (c) 

accurately predicts drug interactions in various growth conditions and their robustness to pathogen 

metabolic heterogeneity. Our approach achieved high accuracy (AUC = 0.83 for synergy, AUC = 

0.98 for antagonism) in predicting drug interactions for E. coli cultured in 57 metabolic conditions 

based on experimental validation. The entropy in bacterial metabolic response was predictive of 

combination therapy outcomes across time scales and growth conditions. Simulation of metabolic 

heterogeneity using population FBA identified two sub-populations of E. coli cells defined by the 
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levels of three proteins (eno, fadB and fabD) in glycolysis and lipid metabolism that influence cell 

tolerance to a broad range of antibiotic combinations. Analysis of the vast landscape of condition-

specific drug interactions revealed a set of 24 robustly synergistic drug combinations with potential 

for clinical use. 

2.2 Significance 

Worldwide, 700,000 people die each year from drug-resistant infections. Drug 

combinations have great potential to reduce the spread of drug-resistant bacteria. However, their 

potency is impacted by both the pathogen growth environment and the heterogeneity in pathogen 

metabolism. The metabolic heterogeneity in a pathogen population allows them to survive 

antibiotic treatment. Here we present a flexible machine-learning framework that utilizes diverse 

data types to effectively search through the large design space of both sequential and simultaneous 

combination therapies across hundreds of simulated growth conditions and pathogen metabolic 

states. Our approach can serve as a useful guide for the selection of robustly synergistic drug 

combinations. 

2.3 Introduction 

Antimicrobial resistance (AMR) occurs due to extended exposure to antibiotics, which 

allows bacteria to evolve resistance mechanisms that render antibiotic treatments ineffective (Blair 

et al., 2015). In the context of AMR, bacterial metabolism plays a key role. Cell-to-cell variation 

in metabolism within a population can be beneficial in responding to antibiotic stress (Balaban et 

al., 2013; Kussell et al., 2005), and several pathogens take on a distinct metabolic state in vivo to 

tolerate antibiotics (Cohen et al., 2013; Rittershaus et al., 2013). It is important to note that tolerant 

cells are predicted to be the source of drug-resistant pathogens (Cohen et al., 2013; Gill et al., 
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2015; Holmes et al., 2016). In addition to stochasticity in metabolic activity within a population, 

extrinsic factors such as the metabolic environment also influence antibiotic efficacy (Martínez & 

Rojo, 2011; J. H. Yang, Bening, et al., 2017; J. H. Yang, Bhargava, et al., 2017). For example, the 

availability of oxygen and extracellular metabolites modulate potency of antibiotics (Martínez & 

Rojo, 2011). Metabolism can thus promote pathogen survival through adaptable use of nutrients 

in the local environment (Brown et al., 2008; Fuchs et al., 2012).  Bacterial metabolism also 

impacts susceptibility to antibiotics through the production of reactive oxygen species 

(Dharmaraja, 2017; Kohanski et al., 2007) or changes in membrane permeability (Martínez & 

Rojo, 2011). Of note, these metabolic responses are also tied to entropy (i.e., disorder) in the 

bacterial stress response, which has been shown to be a generalizable predictor for antibiotic 

sensitivity (Z. Zhu et al., 2020). Altogether, these individual findings suggest that modeling 

bacterial metabolism in response to antibiotics may be insightful for the design of novel treatments 

that mitigate resistance. 

Combination therapy, which involves the use of two or more therapeutics, holds great 

potential for combating resistant pathogens as it not only leverages already regulated therapeutics 

(Farha & Brown, 2019), but also offers room for improved efficacy (Tyers & Wright, 2019). 

Further, combination therapy could be optimized to selectively target resistant pathogens via 

collateral sensitivity, which has been shown to overcome multi-drug resistance in cancer (Pluchino 

et al., 2012; Vijayaraghavalu et al., 2013). Collateral sensitivity entails the increased sensitivity to 

a therapeutic that results from initial treatment with another stress agent (Pál et al., 2015). This 

phenomenon has been observed across various diseases and organisms (Deeks, 2003; Gadamski 

et al., 2000; Lukens et al., 2014; Pluchino et al., 2012), and in context of AMR, could be leveraged 

to prevent and mitigate resistance (Baym et al., 2016). Theoretical studies have also predicted that 
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antibiotic combinations can be effective in heterogeneous populations and reduce the rise of 

resistance more effectively than monotherapy (Ankomah et al., 2013; Baym et al., 2016). 

However, these studies do not provide a guideline to identify promising combinations among 

thousands of possible candidates. Combination therapies are traditionally identified using 

experimental methods; however, this approach quickly becomes infeasible when considering the 

vast combinatorial search space, the effects of the growth media, pathogen metabolic 

heterogeneity, and time-/order-dependence for treatment efficacy. 

With the advent of high-throughput omics data and application of machine learning (ML), 

it is now possible to expedite the search for effective combination therapies. ML has also been 

applied to reveal mechanistic insights into antibiotic mechanisms of action (Ribeiro da Cunha et 

al., 2021; J. H. Yang et al., 2019) and identify novel antibacterial compounds (El Zahed & Brown, 

2018; Stokes et al., 2020). In the past decade, several groups have used these methods to 

computationally design combination therapies in context of cancer (Chua et al., 2017; Lee et al., 

2012; Regan-Fendt et al., 2019; Yuan et al., 2021; Zhang et al., 2021; X.-M. Zhao et al., 2011) and 

AMR (Chandrasekaran et al., 2016; Cokol et al., 2018; Ma et al., 2019). For the latter case, prior 

models have been shown to generate predictions that accurately correspond to experimental and 

clinical efficacy against Escherichia coli and Mycobacterium tuberculosis, thus offering effective 

reduction of the search space for combination therapies against AMR (Chandrasekaran et al., 2016; 

Ma et al., 2019). However, these approaches are limited by the availability of omics data measuring 

the bacterial response to antibiotic treatment. The combined drug effect on bacterial growth has 

also only been assessed in a limited number of growth environments (Cokol et al., 2018). 

Moreover, current models have primarily focused on simultaneous combinations; consequently, 

the potential of designing time- and order-dependent combination therapies that promote collateral 
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sensitivity remains unexplored. Since combination therapy is increasingly used to treat many 

medical conditions such as tuberculosis (TB), Gram-negative, and biofilm-associated infections 

(Boyd & Nailor, 2011; Dheda et al., 2016; Forrest & Tamura, 2010; Solomkin et al., 2010), it is 

essential to consider how various metabolic factors (e.g., cell-to-cell heterogeneity, growth 

environment) influence the efficacy of different drug combinations. Computational tools are hence 

necessary to identify antibiotic treatments that are robustly efficacious across heterogeneous 

environments (Bumann, 2015; Eisenreich et al., 2010). 

To address these limitations, we present an approach that integrates genome-scale 

metabolic models (GEMs) into ML model development to determine effective combination 

therapies. Using GEMs allows us to integrate diverse data types and account for different pathogen 

metabolic states and growth conditions. GEMs are computational models built from gene-protein-

reaction associations of metabolic genes present in the genome of an organism (Price et al., 2004). 

Additionally, they include annotation of traditional antibiotic targets such as cell wall synthesis, 

DNA replication, and RNA transcription. Model constraints, such as from omics data or nutrient 

availability, can be imposed to simulate bacterial metabolism in response to different perturbations 

(Dahal et al., 2020; N. E. Lewis et al., 2012). Our approach using GEMs and ML provides a 

systems-level perspective of the bacterial response to antibiotic treatment in condition-specific 

cases. This is critical for designing efficacious combination therapies, since experimentally 

measured susceptibility to antibiotics may not always translate into efficacy in vivo. We further 

extend our approach to predict outcomes for sequential combination therapies, which can be 

designed into cyclic antibiotic regimens that mitigate resistance (Baym et al., 2016). Finally, we 

showcase how our models reveal mechanistic insights that explain treatment potency and can be 

leveraged to finetune data-driven combination therapy design. 
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2.4 Results 

2.4.1 The CARAMeL approach for combination therapy design 

Our approach, called Condition-specific Antibiotic Regimen Assessment using Mechanistic 

Learning (CARAMeL), involves a two-step modeling process: (a) simulating metabolic flux data 

using GEMs and (b) developing a ML model to predict combination therapy outcomes using flux 

from GEMs. For the first part, omics data and metabolite composition of the extracellular 

environment serve as GEM inputs to determine flux profiles in response to drug treatment and 

growth in defined media, respectively (Figure 2-1A). For the second part, GEM-derived flux 

profiles and drug interaction data serve as inputs to train a ML model that predicts interaction 

outcomes for novel drug combinations ((Figure 2-1B). We developed ML models predictive of 

combination therapy outcomes for E. coli and M. tb using the Random Forests algorithm. We 

specifically chose this ML method as it can handle small datasets and determine feature 

importance, i.e., how much each feature contributes to the accuracy in model predictions. The 

feature importance can reveal mechanistic insights into the factors driving combination therapy 

outcomes. 
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Figure 2-1 CARAMeL approach schematic. The Condition-specific Antibiotic Regimen Assessment using 
Mechanistic Learning (CARAMeL) approach involves a two-step process: (A) omics data (e.g., transcriptomics) 
measured for single drug treatments and information on growth media composition are integrated into a genome-scale 
metabolic model (GEM) to simulate metabolic flux changes. (B) This information, along with drug interaction data, 
serve as inputs to train a machine learning (ML) model; the trained model can then be used to predict outcomes for 
novel drug interactions. 

We determined metabolic flux profiles in response to drug treatment and condition-specific 

growth by constraining the E. coli GEM iJO1366 (Orth et al., 2011) and the M. tb GEM iEK1011 

(Kavvas et al., 2018). For drug flux profiles, we imposed chemogenomic data for E. coli (Nichols 

et al., 2011) and transcriptomic data for M. tb (Ma et al., 2019) as GEM constraints. Briefly, 

chemogenomic data measures single-gene knockout (KO) fitness while transcriptomics data 

measures genome-wide expression of genes. By selecting genes for which there was differential 

fitness or expression in response to a specific treatment, we could infer a set of differentially 

regulated genes for individual drugs. For transcriptomic data, positive and negative differential 

expression directly corresponded with up- and down-regulation, respectively. For chemogenomic 

data, we assumed that gene KOs that result in low fitness are likely to be up- regulated upon drug 

treatment, while gene KOs that enhance fitness were likely to be down-regulated. This assumption 
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is based on the cost-benefit gene expression model proposed by Dekel & Alon (Dekel & Alon, 

2005). Direct comparison of flux profiles simulated from a chemogenomic-based approach against 

flux profiles simulated with transcriptomics and proteomics data confirmed that these assumptions 

were valid (Figure S2-1) (Maeda et al., 2020; Mori et al., 2021; Suzuki et al., 2014). To determine 

growth media flux profiles, the availability of metabolites within a media condition was used to 

constrain the GEMs. Specifically, we modified the uptake rate for exchange reactions providing 

key metabolites (e.g., glycerol exchange for M9 glycerol media) to allow cellular intake (see 

Methods for further details). 

Prior to ML model development, we processed drug and media flux profiles to determine 

joint profiles for all combinations of interest. Joint profiles are comprised of four pieces of 

information: (a) the combined effect of all treatments (i.e., sigma scores), (b) the unique effect of 

individual treatments (i.e., delta scores), (c) the overall metabolic entropy (i.e., entropy scores), 

and (d) time interval (relevant for time- and order-dependent combinations). To determine sigma 

and delta scores, we adapted a strategy previously used for creating joint chemogenomic profiles 

(Chandrasekaran et al., 2016; Cokol et al., 2018). Specifically, we binarized drug and media flux 

profiles based on differential flux activity in comparison to baseline (i.e., GEM simulation without 

additional constraints). Sigma scores were defined as the union of binarized flux profiles for all 

treatments involved in a combination. Delta scores were defined as the symmetric difference 

between flux profiles (see Methods for details). To account for metabolic entropy, we first 

calculated entropy as defined by Zhu et al. (Z. Zhu et al., 2020) for each drug and media flux 

profile. We then defined entropy scores as the mean and sum of entropy among all treatments 

involved in a combination. Finally, the time feature was defined as the time interval between the 

first and last treatments for a combination (see Methods and Figure S2-2 for further details). 
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Using feature (i.e., joint profiles) and outcome (i.e., interaction scores, IS) information for 

a set of drug combinations, we trained ML models to associate feature patterns to drug combination 

outcomes. Next, we used the trained ML models to predict outcomes for new drug combinations 

based on their feature information alone. We then compared our predictions against experimental 

data by calculating the Spearman correlation. We also assessed model performance by calculating 

the area under the receiver operating curve (AUROC) for both synergy and antagonism. High and 

positive values for both metrics indicate that model predictions correspond well with actual drug 

interaction outcomes. 

2.4.2 CARAMeL predicts drug interactions with high accuracy 

We benchmarked CARAMeL against previous approaches by directly comparing our 

prediction accuracy against those reported in literature and those re-calculated using omics data 

directly instead of using flux data. For these comparisons, we trained ML models and evaluated 

their performance for five different cases:  

1. Predicting novel pairwise drug interaction outcomes for E. coli (Chandrasekaran et al., 

2016) 

2. Predicting novel three-way drug interaction outcomes for E. coli (Cokol et al., 2018) 

3. Predicting pairwise drug interaction outcomes for E. coli cultured in a novel nutrient 

condition (M9 glycerol media) (Cokol et al., 2018) 

4. Predicting novel pairwise and three-way interaction outcomes for M. tb (Ma et al., 

2019) 

5. Predicting interaction outcomes for multi-drug TB regimens used in clinical trials 

(Bonnett et al., 2017) 
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Of note, the first, second, and fourth cases tested the model’s ability to predict unseen 

combinations involving test drugs with new mechanisms of action. The third case assessed whether 

the model could predict drug interaction outcomes in a new growth environment, while the fifth 

case ascertained if predicted outcomes corresponded with clinical efficacy. Figure 2-2 summarizes 

our findings for all analyses listed above. For all these studies, the same train-test datasets were 

used for evaluating CARAMeL against the original methods to ensure direct comparison. The 

same thresholds for synergy and antagonism defined in the original studies were also used in all 

these comparisons. When re-evaluating omic-based approaches, we followed the exact procedure 

as reported in their respective original literature (Chandrasekaran et al., 2016; Cokol et al., 2018; 

Ma et al., 2019). To ensure fair comparison between CARAMeL and omic-based approaches, we 

also evaluated the omic-based methods for different parameter values and report the overall best 

results for all datasets (Table S2-1). Further discussion on ML model development and results, 

including the specific train-test allocation of interaction data reported in literature for each case, is 

provided below.  
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Figure 2-2 CARAMeL was benchmarked against other predictive approaches. (A) CARAMeL differs from previous 
omics-based approaches by using simulated metabolic flux data to define the joint profiles that are used in the random 
forests model. CARAMeL also provides advantages over the omics-based approaches, including the accommodation 
of diverse data types (e.g., chemogenomics, transcriptomics) and evaluation of user-defined media effects. (B) The 
Spearman correlation between actual outcomes and model predictions are shown and compared between three 
approaches: CARAMeL (this study), omics (determined using chemogenomic or transcriptomic data as input), and 
literature (reported in literature). (C) The area under the receiver operating curve (AUROC) for classifying interactions 
as synergistic or antagonistic is also directly compared between CARAMeL and omic-based approaches. 

For case 1, we used drug interaction data previously measured for 171 pairwise 

combinations involving 19 drugs that cover a diverse set of targets (Chandrasekaran et al., 2016) 

(Table S2-2). Out of this total, 105 interactions involving 15 drugs were used for model training 

and the remaining 66 interactions, which involved four new drugs that introduced new mechanisms 

of action (e.g., RNA synthesis), were used for model validation. The CARAMeL model yielded 

significant correlations between experimental and predicted scores (R = 0.71, p ~ 10-11, Figure 
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S2-3A). Model predictions also yielded high AUROC values for classifying synergy (IS < -0.5, 

AUROC = 0.84) and antagonism (IS > 2, AUROC = 0.89) () based on thresholds defined in the 

original study. Of note, these results were considerably better than those reported in literature (R 

= 0.52) (Chandrasekaran et al., 2016) and those re-calculated using the omic-based approach (R = 

0.64) (Figure 2-2A).  

For case 2, we re-trained the CARAMeL model using 171 pairwise interactions to predict 

56 three-way combinations involving eight antibiotics (Cokol et al., 2018) (Table S2-2). Our 

model generated accurate predictions (R = 0.62, p ~ 10-7, Figure S2-3C) and notably identified 

synergistic interactions (IS < -0.2, AUROC = 0.95, Fig. Figure S2-3D) with higher accuracy than 

the omics-based approach (AUROC = 0.76, Figure 2-2B).  

For case 3, the CARAMeL model was once again re-trained with the 171 pairwise 

interactions and additional pairwise data measured for E. coli cultured in M9 glucose and lysogeny 

broth (LB) media. We then applied our model to predict 55 pairwise interaction outcomes for E. 

coli cultured in M9 glycerol media. Our model yielded results comparable to those from literature 

(Cokol et al., 2018) and re-determined using omics data across all three performance measures (R 

= 0.68, p ~ 10-8, Figure 2-2, Figure S2-3E, and Figure S2-3F).  

For case 4, we trained a CARAMeL model using combination data for M. tb treated with 

196 pairwise to five-way interactions involving 40 drugs (Ma et al., 2019) (Table S2-3). We then 

used data for 36 unseen interactions for model validation. The CARAMeL model yielded 

predictions that significantly correlated with experimental data (R = 0.55, p ~ 10-4, Figure S2-4A) 

and performed well in classifying synergistic (IS < 0.9, AUROC = 0.81) and antagonistic (IS > 

1.1, AUROC = 0.83) interactions (Figure S2-4B). Though the CARAMeL-based correlation is 

slightly lower than that reported in literature (Ma et al., 2019) (R = 0.63), our model classified both 
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synergistic and antagonistic interactions with high accuracies that are comparable to a model 

trained on omics data (Figure 2-2C).  

For case 5, we used the same CARAMeL model from case 4 to predict interaction outcomes 

for 57 multi-drug TB regimens involving nine drugs prescribed in separate clinical trials (Bonnett 

et al., 2017) (Table S2-3). Of note, interaction outcomes for this dataset measured regimen 

efficacy based on sputum clearance after two months of treatment. We found that model 

predictions were significantly correlated (R = 0.56, p ~ 10-6, Figure S2-4C) with sputum 

clearance, and that model predictions classified as synergistic (IS < 0.9) captured most of the 

efficacious treatments (sputum clearance > 80%) amongst all 57 TB regimens (Figure S2-4D). 

These results were comparable to both literature- (Ma et al., 2019) and omic-based results across 

all three performance measurements (Figure 2-2).  

Overall, we found that our approach retained high accuracies in predicting combination 

therapy outcomes for a diverse set of test cases based on E. coli and M. tb data. This is striking 

considering that CARAMeL solely relies on simulated metabolic information, which was 

determined using only ~25–35% of available omics data. 

2.4.3 Using CARAMeL to predict sequential interactions 

Current approaches for predicting combination therapy outcomes focus on drug treatments 

that are given simultaneously. Here, we extended our approach to predict treatment efficacy for 

time- and order-dependent (i.e., sequential) interactions. In contrast to simultaneous combinations, 

the order and length of each drug treatment dictates how a pathogen adapts itself, and in turn, 

influences its sensitivity to successive drug treatments. As such, interaction outcomes are 

interpreted as leading to collateral sensitivity (analogous to synergy) or cross-resistance (analogous 

to antagonism). For this task, we used data for E. coli evolved in single drug treatments over three 
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timespans (10, 21, and 90 days) then subsequently treated with a second drug (Imamovic & 

Sommer, 2013; Oz et al., 2014; Suzuki et al., 2014). To account for both time- and order- 

dependent drug effect, we re-defined the delta scores for sequential joint profiles. Briefly, delta 

scores were defined as the difference in binarized drug profiles scaled by the time interval between 

treatments (mathematically defined for pairwise sequences below):  

𝛿𝛿 =
𝑡𝑡2𝑣𝑣2 − 𝑡𝑡1𝑣𝑣1
𝑡𝑡2 − 𝑡𝑡1

 

Equation 2-1 Delta score calculation for sequential drug interactions. 

where δ = delta scores, t = length of treatment time, and v = binarized flux profile. 

To initially assess how well the CARAMeL approach could predict sequential treatment 

outcomes, we first conducted a 10-fold cross-validation of the sequential data (N = 628), which 

involved 27 unique drugs (Table S2-4). We found that CARAMeL predictions moderately, but 

significantly, correlated with experimental outcomes (R = 0.49, p < 10-16, Figure 2-3A). Further, 

the model performed well in determining whether a sequential interaction resulted in collateral 

sensitivity (IS < -0.1, AUROC = 0.73) or cross-resistance (IS > 0.1, AUROC = 0.75) (Figure 

2-3D).  

We next evaluated the extent of our model’s predictive power by conducting two types of 

leave-out analyses: (a) leave-first-drug-out and (b) leave-second-drug-out. The first case tested 

whether the model could generalize sequential treatment outcomes for an unknown evolved strain, 

while the second case assessed whether the model could generalize the immediate effect of a drug 

on strains evolved in other drugs. For a leave-out analysis, all interactions involving the drug of 

interest in the appropriate sequence position (first or second) were left out of model training and 

instead predicted for by the trained model. Similar to the cross-validation analysis, model 

performance was measured by the overall Spearman correlation and AUROC values for collateral 
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sensitivity and cross-resistance. We found that both leave-out analyses yielded accuracies similar 

to those attained from cross-validation (Figures 2-3B, 2-3C, 2-3E and 2-3F). Overall, these results 

indicate that CARAMeL generates robust and accurate predictions for sequential interactions. 

 

Figure 2-3 Model performance for sequential drug interactions. (A) The sequential treatment data used in this work 
measured outcomes based on the change in the minimal inhibitory concentration (MIC) or bacterial growth for a 
second antibiotic treatment given after exposure to a first antibiotic and compared to an untreated control (i.e., no pre-
treatment with a first antibiotic). CARAMeL model performance using sequential data was evaluated based on 10-
fold cross-validation (CV), leave-first-drug-out, and leave-second-drug-out analyses. Shown are the (B-D) scatter 
plots between experimentally measured outcomes (change in MIC or growth) vs. model predictions and (E-G) the 
AUROC performance for detecting collateral sensitivity (CS, outcome < 0) or cross-resistance (CR, outcome > 0). 
AUROC: area under the receiver operating curve.  ***p-value < 10-3. 

To gain mechanistic insight into which factors influence combination therapy outcomes, 

we trained a CARAMeL model using all interaction data available for E. coli. We then ranked 
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features by their predictive importance based on how the model accuracy decreases when a feature 

is removed (see Methods for details). In total, we found that 580 features explained 95% of the 

variance in model predictions (Dataset 2-1). Of note, entropy features were amongst the top 20, 

implying that metabolic disarray due to antibiotic stress is indicative of treatment efficacy (Figure 

S2-5). For the GEM-derived features (i.e., sigma and delta scores), we determined that the 

differential flux through 167 metabolic reactions associated with the top features significantly 

distinguished between synergistic and antagonistic interactions (two-sample t-test, adjusted p-

value < 0.05, Dataset 2-2). We then deduced that eight metabolic pathways were enriched by this 

set of 167 reactions (hypergeometric test, adjusted p-value < 0.05, Table 2-1). Differential activity 

through these pathways aligned with the expected metabolic response to antibiotic treatments. For 

example, increased flux through DNA repair systems (e.g., nucleotide salvage) is expected after 

exposure to quinolones, which target DNA gyrase (Fàbrega et al., 2009). Differential flux through 

transport reactions is also a common tactic that decreases drug concentrations within the bacterial 

cell, therefore minimizing their adverse effects (Levy, 2002). 

Table 2-1 Metabolic pathways enriched amongst top predictors for the E. coli CARAMeL model. Pathway enrichment 
was determined based on 580 features explaining 95% of the variance in model predictions. These features mapped 
to 333 reactions in the E. coli GEM iJO1366, out of which 167 had differential flux that significantly distinguished 
between synergy and antagonism (two-sample t-test, adjusted p-value < 0.05). Based on this 167-reaction list, eight 
pathways were found to be significantly enriched (hypergeometric test, adjusted p-value < 0.05). N = number of 
reactions in pathway, Ratio = N / total reactions in pathway, P-value = hypergeometric test adjusted p-value. 

Pathway N Ratio P-value 
Purine and Pyrimidine Biosynthesis  9 0.36 3E-05 
Pyruvate Metabolism  5 0.50 1E-04 
Inorganic Ion Transport and Metabolism 19 0.17 1E-04 
Transport, Inner Membrane 37 0.11 1E-03 
Glycine and Serine Metabolism  4 0.29 6E-03 
Glycolysis/Gluconeogenesis  5 0.23 8E-03 
Nucleotide Salvage Pathway 17 0.12 1E-02 
Cell Envelope Biosynthesis 15 0.12 3E-02 
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2.4.4 CARAMeL simulates the impact of intrinsic and extrinsic metabolic heterogeneity on 

drug interactions 

In vivo metabolic conditions span growth in diverse substrates such as sugars, nucleotides, 

glycerol, lipids, and hypoxic conditions (Eisenreich et al., 2010). In contrast to existing approaches 

for drug combination design, CARAMeL enables drug interaction predictions in a large array of 

metabolic conditions. This can help prioritize drug combinations for successful clinical translation 

considering that the predominant nutrient source can change depending on where bacteria reside 

inside the host (Brown et al., 2008). By screening different conditions that are representative of in 

vivo environments, we can identify drug combinations that target E. coli in diverse metabolic 

conditions. Moreover, evaluating drug combinations based on efficacy across a large compendium 

of metabolic network states will ensure robustness against heterogeneity. 

To demonstrate the power of using CARAMeL in predicting condition-specific 

combination therapy outcomes, we applied it to predict pairwise drug interactions in multiple 

media conditions. For this task, we gathered experimental data for E. coli treated with four single 

drug treatments (Aztreonam (AZT), Cefoxitin (CEF), Tetracycline (TET), Tobramycin (TOB)) 

and two pairwise drug treatments (CEF + TET, CEF + TOB) (Table S2-5). Of note, this treatment 

panel evaluated the metabolic response in E. coli to bactericidal (i.e., death-inducing) and 

bacteriostatic (i.e., growth-inhibiting) drugs, both individually and in combination. Each drug 

treatment outcome was assessed in E. coli cultured in Biolog phenotype microarray (PM) (Bochner 

et al., 2001) plate-1, which measured metabolic respiration in 95 carbon sources and one negative 

control (Figure 2-4A). Out of these 95 media conditions, 57 could be simulated based on the 

metabolites annotated in the E. coli GEM (Dataset 2-3). As a result, ML model development and 
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all downstream analyses were conducted using the data subset pertaining to the 57 media 

conditions that were simulated.  

We constructed a ML model using the following inputs: flux profiles for the four drug 

treatments as well as the 57 media conditions, and interaction outcomes for 228 (4 * 57) drug-

media combinations. We then evaluated our model by predicting outcomes for 114 (2 * 57) drug-

drug-media combinations (Figure 2-4B). Overall, we found that model predictions significantly 

correlated with experimental outcomes (R = 0.68, p < 10-16, Figure 2-4C). We also assessed 

correlations specific to each drug pair and found that model predictions still corresponded well 

with experimental data (CEF+TET: R = 0.59, p ~ 10-6, CEF+TOB: R = 0.81, p < 10-16). This 

large-scale inspection of combination therapy outcome in different growth environments was only 

possible with the CARAMeL approach, where flux profiles could be determined for 57 media 

conditions. A direct comparison of the same scale was not possible with the omic-based approach, 

as neither chemogenomic nor transcriptomic data was available for all these media conditions.  
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Figure 2-4 CARAMeL accurately predicted drug interaction outcomes in 57 carbon sources. (A) E. coli was cultured 
in 96 carbon sources (Biolog PM01 plate), then treated with four single drug treatments (AZTreonam, CEFoxitin, 
TETtracycline, TOBramycin) and two pairwise treatments (CEF + TET and CEF + TOB). (B) Heatmap of metabolic 
activity (measured based on the respiration ratio between treatment vs. control) in response to all experimental 
perturbations (data only shown for the 57 media conditions simulated using the E. coli GEM). (C) Spearman 
correlation between experimental outcome and model predictions for all combinations in the test set are shown. GEM: 
genome-scale metabolic model. *** p-value < 10-3. 

We next evaluated how cell-to-cell heterogeneity influenced combination therapy 

outcomes using population FBA (Labhsetwar et al., 2013), a modeling approach that simulates 

cell-specific metabolic heterogeneity based on single-cell proteomics data (Taniguchi et al., 2010). 

Specifically, information on the protein copy number levels measured for E. coli cultured in M9 

glucose media is used to constrain the metabolic model. To simulate heterogeneity between cells, 

the single-cell proteomics data is randomly sampled based on the Gamma distribution for each cell 

and subsequently used to constrain the GEM to simulate cell-specific metabolic states (Figure 

2-5A). We used population FBA to simulate 1,000 E. coli cells cultured in M9 glucose media 

(Methods). We then generated pairwise predictions between all drugs for which the E. coli 
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CARAMeL model was trained on (N = 33) against the 1,000 simulated cells (Dataset 2-4). For 

each drug pair, we evaluated three interaction cases: (a) simultaneous treatment (D1 + D2), (b) 

sequential treatment from D1 to D2, and (c) sequential treatment from D2 to D1. For sequential 

interactions, we set the duration for the first treatment to 14 days, based on the most commonly 

prescribed antibiotic treatment duration against bloodstream infection by Enterobacteriaceae 

(Tansarli et al., 2019), and one day for the second treatment.  

 

Figure 2-5 Single cell-specific combination therapy predictions. (A) Schematic showing how population FBA 
(Labhsetwar et al., 2013) was applied to simulate cell-specific metabolic heterogeneity. Specifically, single-cell 
proteomics data (Taniguchi et al., 2010) was randomly sampled (based on the Gamma distribution) and used to 
constrain the E. coli genome-scale metabolic model to simulate cell-specific fluxes, which were ultimately used to 
generate cell-specific drug interaction predictions. (B) Cells were found to cluster into two distinct groups after 
applying principal component analysis (PCA) onto the simultaneous prediction data (PC loadings for the first two 
dimensions reported in Data S6). (C) The sampled level for three enzymes (eno, fadB, and fabD) were found to 
significantly correlate with cell-specific scores along principal component 1 (PC1) from panel B. (D) Cluster-1 cells 
were predicted to be more sensitive to most drug combinations (e.g., AMK + AZT) compared to cluster-2 cells. (E) 
For a smaller set of drug combinations (15%), primarily involving quinolones (e.g., AMK + NAL), cluster-2 cells 
were predicted to be more sensitive than cluster-1 cells. AMK: amikacin, AZT: aztreonam, NAL: nalidixic acid. 

Using the prediction landscape for the 1,000 cells, we determined the extent of cell-to-cell 

variability for each unique drug pair (Dataset 2-5). Overall, sequential predictions varied more 

largely between cells (up to 14% change in standard deviation relative to the mean) while there 

was less than 5% change in standard deviation compared to the mean for the simultaneous case, 
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suggesting that simultaneous treatments may be more robust to heterogeneity (Figure S2-6). 

Interestingly, the variation among simultaneous predictions tended to follow a bimodal distribution 

(Figure S2-7). Applying principal component analysis (PCA) onto the simultaneous prediction 

landscape for all 1,000 cells confirmed that two distinct sub-populations can be determined via k-

means clustering (Figure 2-5B and Figure S2-8, see Methods for details). We further confirmed 

that the cell clustering was not being driven by non-uniform sampling of the flux solution space 

by re-sampling single-cell fluxes using optGpSampler (Megchelenbrink et al., 2014) (Figure 

S2-9). Of note, this distinct cell grouping was not observed when PCA was applied to cell-specific 

proteomics data nor metabolic flux data (Figure S2-10).  

We next sought to determine whether the clustering pattern seen in the drug interaction 

PCA plot was being driven by specific enzyme levels or metabolic activity. Thus, we evaluated 

the correlation between the cell-specific scores along principal component 1 (PC1) against 

corresponding enzyme levels and simulated flux profiles. We determined that sampled levels for 

three enzymes (eno, fadB, and fabD) significantly correlated with the cell mapping along PC1 

(Figure 2-5C). These enzymes correspond to enolase (involved in glycolysis), a multi-functional 

enoyl-CoA hydratase (involved in lipid metabolism), and malonyl-CoA-acyl carrier protein 

transacylase (involved in lipid metabolism), respectively. A similar comparison of PC1 scores with 

the simulated flux data revealed more than 400 significantly associated reactions (Dataset 2-7), 

which altogether correspond to 16 pathways (hypergeometric test, adjusted p-value < 0.05, Figure 

S2-11). These findings confirm that cluster-1 cells differ from cluster-2 cells based on their 

metabolic activity through glycolysis (eno) and lipid metabolism (fadB and fabD).  

Hence, fluctuations in the levels of these three proteins were predicted to drive the broad 

metabolic shift between the two sub-populations. To confirm the causality, we performed 



 45 

knockouts of these three proteins. A similar PCA assessment for cells simulated to have single- 

and multi-gene knockout of eno, fadB, and fabD confirmed that the PCA-based cell clustering 

seen in Figure 2-5B is strongly driven by the metabolic states characterized by eno and fabD levels 

(Figure S2-12).  

Based on the direction of the enzyme correlation with PC1 scores, we inferred that cluster-

1 cells exhibit low glycolysis and high lipid metabolism, while cluster-2 cells exhibit the opposite 

behavior. For a large set of drug combinations (85%), we found that reduced glycolysis coupled 

with high lipid metabolism promoted more synergistic outcomes (Figure 2-5D, Dataset 2-8), 

while the same metabolic state was found to promote more antagonistic outcomes for a smaller set 

(15% of the combinations) (Figure 2-5E, Dataset 2-8). Of note, a small number of cells 

representing <1% of the total population (labeled as “cluster-3”) did not cluster together with either 

dominant sub-population but instead fell near the center of the drug interaction PCA space 

(Figures 2-5B and Figure S2-7). Closer inspection of enzyme levels for eno, fadB, and fabD 

revealed that the sampled levels for eno were much lower for cluster-3 cells (~400 per cell) 

compared to cluster-1 and cluster-2 cells (~600 per cell, Figure S2-13). Considering that enolase 

is an essential enzyme for maintaining glycolysis and cell growth, an adequately high level for 

enolase (e.g., > 500 per cell) may be required to simulate stable flux solutions that lead to the 

patterns we observe in Figure 2-5B. These cells may represent an unstable transition state between 

cluster 1 and 2.  

Interestingly, the smaller set of drug combinations with antagonistic outcomes in cluster 1 

is overrepresented by combinations that include quinolones such as nalidixic acid (~12% among 

synergistic vs. ~86% of antagonistic combinations in cluster-1 involved quinolones, refer to 

Dataset 2-8). A prior study has found that quinolone efficacy is reduced in high-density bacterial 
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populations, likely due to depletion of metabolites that couple carbon metabolism to oxidative 

phosphorylation (Gutierrez et al., 2017). The same study subsequently shows that quinolone 

efficacy can be restored via supplementation with glucose and an electron acceptor, which 

stimulate respiratory metabolism. Our findings, coupled with the literary evidence described 

above, indicate that cluster-1 cells may represent a sub-population that is tolerant to treatments 

involving quinolones. Given the highly interconnected nature of cellular metabolism, stochastic 

changes in a small number of key metabolic enzymes can result in distinct phenotypes when treated 

with stressors. These two sub-populations may not be evident in an unperturbed system which 

shows fluctuations in numerous proteins; however, when exposed to antibiotics they may result in 

bifurcation into two stable sub-populations. Though experimental validation would be required to 

fortify these results, we confirmed that all the reported findings tied to the cell-specific predictions 

are robust to a wide range of modeling parameters (Figure S2-8). 

2.4.5 Screening for robust combination therapies 

Synergy observed in the lab may not result in synergy in vivo due to differences in growth 

conditions or drug pharmacokinetics, wherein drugs may reach the infection site at different times 

rather than simultaneously (Cicchese et al., 2021). Considering these factors, combination 

therapies that show synergy across growth conditions and time scales hold the best potential for 

successful clinical translation. To discover such therapies, we predicted pairwise and three-way 

regimen outcomes for all drugs for which the E. coli CARAMeL model was trained on (N = 33) 

across 57 carbon sources (from Biolog PM01). For sequential interaction predictions, treatment 

duration for pairwise treatments was set to 14 days followed by 1 day, while three-way treatments 

were set to a 14-14-1-day prescription. In total, we generated predictions for 90,288 pairwise 

combinations (33C2 pairs x 3 interaction cases x 57 PM01 conditions, Dataset 2-9) and 2,176,944 
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three-way combinations (33C3 combinations x 7 interaction cases x 57 PM01 conditions, Dataset 

2-10).  

Out of 528 unique drug pairs and 5,456 unique three-way interactions, none was predicted 

to be synergistic across all media conditions and interaction cases. In fact, sustained synergy across 

media conditions seems to occur for only a small subset (< 10%) of drug interactions (Figure 

S2-14). Specifically, 73 drug pairs and 165 three-way interactions were predicted to yield synergy 

both simultaneously and sequentially in at least one media condition (Figure 2-6 and Figure 

S2-15). Of note, all 73 drug pairs showed less than 5% cell-to-cell variation based on population 

FBA for all interactions cases (i.e., simultaneous and sequential interactions). Upon closer 

inspection of both pairwise and three-way sets, synergy was not found to be retained across a 

majority of media conditions for three-way drug interactions. On the other hand, several pairwise 

interactions were found to retain synergy well; specifically, 24 drug pairs out of 73 were found to 

be synergistic in more than 50% of conditions in both simultaneous and sequential cases.  
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Figure 2-6 Pairwise combination therapy prediction across 57 media conditions. (A) Out of 528 drug pairs, 73 were 
predicted to yield synergy (IS < 0) in at least one media condition for both the simultaneous and sequential cases (the 
top 15 robustly synergistic drug pairs are listed in the legend). (B) Heatmap of the predicted interaction scores for the 
73 drug pairs across 57 media conditions and three interaction types (D1 + D2, D1 → D2, D2 → D1).  Refer to Table 
S2-2 and Table S2-4 for full descriptions on antibiotics used for E. coli. 

Interestingly, several of these 24 drug pairs possess evidence for clinical use against 

bacterial infections. For example, amikacin-ampicillin treatment (AMK-AMP) has previously 

been shown to be clinically effective for a wide range of infections (American Thoracic Society, 

2005; Dellinger et al., 2013; Krause et al., 2016) including treatment of bacteremia in neutropenic 

patients(Palmblad & Lönnqvist, 1982) and neonatal bacterial infections (Umaña et al., 1990). 

Other drug interactions of note include: azithromycin-rifampicin (AZI-RIF), which has 

demonstrated clinical efficacy in treating arthritis induced by pathogenic Chlamydia (Gram-

negative) (Carter et al., 2010); fusidic acid-rifampicin (FUS-RIF), which has shown clinical 

efficacy against prosthetic joint infection caused by drug-resistant Staphylococci (Gram-positive) 
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(Zimmerli et al., 2004); and minocycline-rifampicin (MIN-RIF), which has been shown to prevent 

colonization by slime-producing staphylococci in catheters (Raad et al., 1995). Additionally, 

rifampicin combined with other drugs has been advised as treatment for Gram-negative and non-

mycobacterial infections (Drapeau et al., 2010; Forrest & Tamura, 2010). Further investigation 

into the set of 24 drug pairs predicted to yield robust synergy may lead to the discovery of new 

combination therapies that could be put to clinical use. 

2.5 Discussion 

Here we introduced CARAMeL, a modeling approach to design condition-specific 

antibiotic regimens. CARAMeL offers multiple advantages over prior methods of similar nature. 

First, our approach enables use of diverse data types (e.g., chemogenomics, transcriptomics) 

individually or in combination, derived from a single source or in combination from multiple 

sources, therefore maximizing the number of drugs that are screened. For instance, our E. coli 

CARAMeL model leveraged use of both chemogenomics data (for defining drug flux profiles) and 

proteomics data (for simulating single cells), a feat that cannot be accomplished with prior methods 

of similar nature. Second, we extended our approach to simulate different interaction cases 

(simultaneous vs. sequential) when designing combination therapies. To our knowledge, no 

framework currently exists to incorporate these factors into drug discovery efforts against AMR. 

Third, the use of GEMs enables simulation of highly tunable metabolic conditions (as showcased 

with our analysis of the Biolog PM01 data), which may be leveraged to investigate combination 

therapy outcomes in the host environment. GEMs also enable the simulation of pathogen metabolic 

heterogeneity, due to both intrinsic stochasticity and the metabolic environment. Pathogen 

heterogeneity is a critical barrier in designing effective antibiotic therapies, and this must be 

factored into combination therapy design to mitigate the rise of resistant strains.  
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Additional advantages to the CARAMeL approach include its mechanistic model 

interpretability, its ability to simulate pathogen metabolic heterogeneity, and its use in generating 

predictions across numerous conditions in large-scale. Regarding model interpretation, the E. coli 

CARAMeL model revealed that entropy, or metabolic disarray, plays an important role in 

combination therapy outcome. The direct link between model features (i.e., sigma and delta scores) 

and GEM reactions also pinpointed pathways that are activate in response to drug treatment (Table 

2-1), many of which align with the expected resistance mechanisms against antimicrobial stress 

(Fàbrega et al., 2009; Levy, 2002).  

Using population FBA (Labhsetwar et al., 2013), we investigated how drug interaction 

outcomes may differ from cell-to-cell. Our findings potentially point to a connection between the 

metabolic state of a cell and its tolerance against combination treatments. Specifically, we found 

that sensitivity to a broad-range of drug combinations may be influenced by the variation in activity 

of glycolysis and lipid metabolism; these processes are directly related to antibiotic action and 

interaction such as uptake, respiration, and oxidative stress (Stokes et al., 2019). Our results also 

imply that drug interaction outcomes measured for a bulk cell population may not be representative 

for cell sub-populations. Surprisingly, very few cells show the “average” behavior of the 

population; in most cases, the average prediction may be defined by the outcome in two dominant 

sub-populations where one is more sensitive to treatment while the other is more tolerant. This 

investigation, along with our results with the Biolog data, demonstrate how pathogen metabolic 

heterogeneity may arise due to both intrinsic stochasticity and the local growth environment. 

Pathogen heterogeneity is a critical barrier in designing effective antibiotic therapies, and this must 

be factored into combination therapy design to mitigate the rise of resistant strains.  
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Finally, analysis of the drug interaction landscape suggests that only a small set of 24 out 

of ~6,000 combinations show robust synergy across growth conditions and interaction cases, with 

some possessing clinical evidence for efficacy (American Thoracic Society, 2005; Carter et al., 

2010; Dellinger et al., 2013; Drapeau et al., 2010; Forrest & Tamura, 2010; Palmblad & Lönnqvist, 

1982; Raad et al., 1995; Umaña et al., 1990; Zimmerli et al., 2004). Further investigation into this 

list of drug interactions may lead to the discovery of new combination therapies for clinical 

application. 

Ultimately, CARAMeL serves as a proof-of-concept of how computational approaches, 

such as systems-level metabolic modeling and machine learning, can be combined to create hybrid 

models that provide mechanistic insight into various biological processes (Cantrell et al., 2022; Y. 

Kim et al., 2021; Zampieri et al., 2019), in this case antimicrobial efficacy and resistance. Although 

the use of GEMs in CARAMeL offers major advantages with data compatibility, condition 

tunability, and mechanistic insight, it also introduces some limitations. The level of accuracy and 

thoroughness in GEM annotation may influence CARAMeL model performance. Moreover, our 

current approach only provides a “snapshot” perspective of the metabolic response to a condition. 

This may be a potential reason for the diminished CARAMeL model performance in predicting 

sequential outcomes. Nevertheless, these are areas that can be addressed with continued curation 

of GEMs (Bernstein et al., 2021) and advances in dynamic metabolic modeling (Chung et al., 

2021; Saa & Nielsen, 2017). Overall, the ability to simulate specific growth environments and 

pathogen metabolic heterogeneity offers the potential to evaluate treatment efficacy in vivo and 

advance clinical translation of novel antibiotic regimens. Moreover, these combination therapies 

could restore use of defunct antibiotics against resistant pathogens while mitigating further 

resistance (Baym et al., 2016; S. Kim et al., 2014). Beyond bacterial infections, CARAMeL has 
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the potential to design explainable combination therapies that are urgently needed to combat fungal 

infections (Livengood et al., 2020) and drug-resistant cancer cells (Mokhtari et al., 2017). Such 

broader applications can be achieved by leveraging the large volume and diversity of highly 

curated GEMs that exist and continue to be constructed (Fang et al., 2020). Our approach can 

further be used to understand the role of metabolic heterogeneity in cancer treatment, which plays 

a major role in tumor drug resistance (Jamal-Hanjani et al., 2015; Junttila & De Sauvage, 2013). 

2.6 Methods 

2.6.1 Experimental design (biolog phenotype microarray) 

E. coli MG1655 was cultured in Biolog phenotype microarray (PM) 1, which screened 

bacterial growth in 95 carbon sources and a negative control (i.e., water) (Bochner et al., 2001). E. 

coli was subsequently treated with six distinct drug treatments in duplicate: aztreonam (0.03 

ug/mL), cefoxitin (1.87 ug/mL), tetracycline (1.42 ug/mL), tobramycin (0.15 ug/mL), cefoxitin 

(1.87 ug/mL) + tetracycline (1.42 ug/mL), and cefoxitin (1.87 ug/mL) + tobramycin (1.42 ug/mL). 

Including a reference plate (E. coli growth in PM01 only), phenotype in each treatment was 

colorimetrically measured in duplicate using tetrazolium violet dye, which quantifies cellular 

respiration. All experimental procedures, data collection, and quality control were performed at 

Biolog, Inc. The area under the respiration curve was calculated using MATLAB and reported as 

the ratio of treatment to reference. 

2.6.2 Simulating metabolic flux using GEMs 

The E. coli GEM iJO1366 (Orth et al., 2011) and the M. tb GEM iEK1008 (Kavvas et al., 

2018) were used to simulate metabolic fluxes at steady-state. To simulate drug flux profiles, 

chemogenomic data for E. coli (Nichols et al., 2011) and transcriptomic data for M. tb (Ma et al., 
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2019) served as GEM constraints. Specifically, differential gene regulation in response to each 

drug treatment was inferred from each dataset. For chemogenomic data, which measured single-

gene knockout (KO) fitness, genes KOs that promoted growth were assumed as dispensable while 

gene KOs that resulted in low fitness were assumed to be essential for growth in said condition. 

Based on these assumptions, genes corresponding with low (z < -2) and high (z > 2) fitness were 

inferred to be up- and down-regulated, respectively. Of note, the original source for the E. coli 

chemogenomic data used in this study was already processed and normalized into z-scores that 

accounted for both the gene KO and drug treatment effects. For transcriptomic data, which 

measured single-gene expression, up- and down-regulation were directly inferred based on high (z 

> 2) and low (z < -2) expression values, respectively. These processes yielded individual sets of 

differentially regulated genes that were integrated into corresponding GEMs using a linear 

optimization version of the integrative metabolic analysis tool (iMAT) (Shen, Boccuto, et al., 

2019; Shlomi et al., 2008). To determine media flux profiles, metabolite availability was 

computationally defined by constraining exchange reactions annotated in iJO1366. For each 

carbon source of interest (e.g., glycerol), the lower bound (i.e., uptake rate) for the corresponding 

exchange reaction (e.g., glycerol exchange) was set to -10 g/mmol to allow cellular intake. 

Of note, use of the linear iMAT algorithm required constraint-based modeling (CBM) 

parameter fine-tuning for three variables: kappa, rho, and epsilon (Campit & Chandrasekaran, 

2020; Shen, Cheek, et al., 2019). Kappa and rho serve as relative weights for “off” and “on” 

reactions associated with the differentially expressed genes, respectively, in their contribution to 

the objective function. Epsilon represents the minimum flux through “on” reactions. For the 

purposes of this research, we varied all three parameter values from 10-3 to 1 and determined the 

optimal parameter set based on three criteria: (1) maximizing the Spearman correlation between 
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predicted and actual interaction scores after 10-fold cross-validation using a training dataset, (2) 

minimizing the number of conditions simulated to have no growth, and (3) ensuring non-zero 

variability in the simulated growth rates between conditions. Table S2-6 provides results for all 

three assessments for all parameter sets of interest. The following optimal parameter values were 

obtained for each GEM using the training dataset: (1) iJO1366 – kappa =10-2, rho = 10-2, epsilon 

= 1, and (2) iEK1008 – kappa = 10-2, rho = 10-2, epsilon = 10-2. These parameter values were 

used for all results when benchmarking CARAMeL against previous approaches based on E. coli 

and M. tb drug interaction datasets (Table S2-7). 

To simulate cell-specific flux data, we applied population FBA (Labhsetwar et al., 2013), 

an approach that models metabolic heterogeneity within a cell population using proteomics data. 

For the purposes of this study, we defined a population of 1,000 E. coli cells to simulate using the 

default parameters for population FBA. For the reproducibility analysis (related to Figure S2-8), 

we ran population FBA for 1,000 cells and subsequently used the simulated flux data to generate 

cell-specific drug interaction outcome predictions a total of 30 times. To retrieve uniform sampling 

of the cell-specific flux solution space (related to Figure S2-9), we applied optGpSampler 

(Megchelenbrink et al., 2014) to generate 100 flux solution samples for 10 unique cells derived 

from a population FBA simulation. See the populationFBA.mlx file in the GitHub repository for 

this study (https://github.com/sriram-lab/CARAMeL) for details on the exact implementation of 

population FBA and optGpSampler. Of note, the flux data for all conditions (i.e., drug, media, 

single-cell) used to define joint profiles was generated from a single run of the condition-

appropriate CBM method (i.e., iMAT, FBA, population FBA). The exact flux data that was used 

to generate all results is stored as a data file in the GitHub repository associated with this study 

(https://github.com/sriram-lab/CARAMeL). 
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2.6.3 Data processing to determine joint profiles 

Flux profiles were used to define joint profiles for each drug combination, which were 

comprised of four pieces of information: sigma scores, delta scores, cumulative entropy, and 

treatment time interval (Figure S2-2). Sigma and delta scores were representative of the combined 

and unique effect of drugs involved in a combination, respectively. Of note, joint profiles for the 

original omics-based approaches were only defined by sigma and delta scores (Chandrasekaran et 

al., 2016; Cokol et al., 2018; Ma et al., 2019). For CARAMeL, the general procedure for 

determining sigma and delta scores was retained from the original literature, with the input data 

(flux profiles) being the only difference. Both score types were determined after flux profiles were 

binarized based on differential flux activity (either positive or negative) in comparison to baseline, 

mathematically defined below: 

𝑣𝑣𝑏𝑏,𝑝𝑝𝑜𝑜𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝 = �1 𝑀𝑀𝑖𝑖 
𝑣𝑣𝑏𝑏,𝑝𝑝𝑡𝑡𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑡𝑡𝑝𝑝
𝑣𝑣𝑏𝑏,𝑜𝑜𝑏𝑏𝑏𝑏𝑝𝑝𝑙𝑙𝑏𝑏𝑡𝑡𝑝𝑝

> 2

0                𝑜𝑜𝑡𝑡ℎ𝑀𝑀𝑟𝑟𝑤𝑤𝑀𝑀𝑠𝑠𝑀𝑀
, 𝑣𝑣 ∈ ℝ𝑏𝑏 

Equation 2-2 Reaction flux binarization criterium for positive differential flux activity. 

𝑣𝑣𝑏𝑏,𝑡𝑡𝑝𝑝𝑛𝑛𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝 = �1 𝑀𝑀𝑖𝑖 
𝑣𝑣𝑏𝑏,𝑝𝑝𝑡𝑡𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑡𝑡𝑝𝑝
𝑣𝑣𝑏𝑏,𝑜𝑜𝑏𝑏𝑏𝑏𝑝𝑝𝑙𝑙𝑏𝑏𝑡𝑡𝑝𝑝

< −2

0                   𝑜𝑜𝑡𝑡ℎ𝑀𝑀𝑟𝑟𝑤𝑤𝑀𝑀𝑠𝑠𝑀𝑀
, 𝑣𝑣 ∈ ℝ𝑏𝑏 

Equation 2-3 Reaction flux binarization criterium for negative differential flux activity. 

where v = reaction flux and m = total number of GEM reactions. Sigma scores were mathematically 

defined for both simultaneous and sequential interactions using the following equation: 

𝜎𝜎𝑏𝑏 =
2
𝑀𝑀
�𝑣𝑣𝑏𝑏,𝑜𝑜 , 𝑣𝑣 ∈ ℝ𝑏𝑏×𝑡𝑡
𝑡𝑡

𝑜𝑜=1

 

Equation 2-4 Sigma score definition for joint profiles. 
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where σ = sigma score, v = binarized flux profile, m = total number of GEM reactions, and n = 

total number of conditions in a combination. Delta scores were separately defined for simultaneous 

and sequential interactions based on Eq. 6a and Eq. 6b, respectively: 

𝛿𝛿𝑏𝑏,𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑙𝑙𝑝𝑝𝑏𝑏𝑡𝑡𝑝𝑝𝑜𝑜𝑠𝑠𝑏𝑏 = �1 𝑀𝑀𝑖𝑖 �𝑣𝑣𝑏𝑏,𝑜𝑜

𝑡𝑡

𝑜𝑜=1

= 1

0       𝑜𝑜𝑡𝑡ℎ𝑀𝑀𝑟𝑟𝑤𝑤𝑀𝑀𝑠𝑠𝑀𝑀

, 𝑣𝑣 ∈ ℝ𝑏𝑏×𝑡𝑡 

Equation 2-5 Delta score definition for joint profiles of simultaneous drug interactions. 

𝛿𝛿𝑏𝑏,𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡𝑝𝑝𝑏𝑏𝑏𝑏𝑙𝑙 = 𝑡𝑡𝑡𝑡𝑣𝑣𝑏𝑏,𝑡𝑡 −
2
𝑀𝑀
� 𝑡𝑡𝑜𝑜𝑣𝑣𝑏𝑏,𝑜𝑜 , 𝑡𝑡 ∈ ℝ𝑡𝑡, 𝑣𝑣 ∈ ℝ𝑏𝑏×𝑡𝑡
𝑡𝑡−1

𝑜𝑜=1

 

Equation 2-6 Delta score definition for joint profiles of sequential drug interactions. 

where δ = delta score, t = treatment time interval, v = binarized flux profile, m = total number of 

GEM reactions, and n = total number of conditions in a combination. Cumulative entropy features 

were determined by processing non-binarized flux profiles in two steps. First, metabolic entropy 

for each condition was mathematically defined by the following equation:  

𝐻𝐻𝑜𝑜 = 𝑙𝑙𝑀𝑀�𝜎𝜎𝑜𝑜2� 

Equation 2-7 Entropy feature definition for joint profiles. 

where Hj = metabolic entropy due to condition j and σj2 = variance in the non-binarized flux profile 

for condition j. Of note, this formulation was adapted from Zhu et al., who quantified entropy of 

the bacterial stress response to antibiotics (Z. Zhu et al., 2020). Next, the mean and sum in entropy 

for all conditions involved in an interaction were used to define two distinct entropy features. 

Finally, the time feature was defined as the time interval between the first and last treatment for a 

combination. For simultaneous interactions, the time feature was set to zero. 

2.6.4 ML model development using random forests 
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All CARAMeL models were built in MATLAB (Mathworks, Inc.) using the regression-

based Random Forests (RF) algorithm (Breiman, 2001). Briefly, RF is an ensemble method 

comprised of decision trees that learn to associate feature information to a target variable. For the 

regression-based approach, the RF model returns the mean prediction from all decision trees. To 

develop CARAMeL models, joint profiles served as feature information while drug interaction 

scores were used as the target variable. Interaction scores were quantified using the Loewe 

additivity model (Loewe & Muischnek, 1926), which is based on drug concentrations (refer to the 

original sources of drug interaction datasets for further details in score calculation). Both joint 

profiles and interactions scores for drug combinations of interest were used as model inputs during 

training, while only joint profiles were provided as input during model testing. Default values for 

all other model parameters were used during both training and testing. 

2.6.5 ML model performance assessment 

Model performance was evaluated based on two metrics: (1) the Spearman correlation 

between actual and predicted interaction scores and (2) the area under the receiver operating curve 

(AUROC) for classifying interactions as synergistic or antagonistic. Of note, model predictions 

for TB regimens used in clinical trials were negative transformed before being compared to clinical 

outcomes. Since these clinical trials reported percentage of patients that were cured, we would 

expect to see a negative correlation between interaction scores and clinical efficacy, with 

synergistic regimens (negative IS) performing better than antagonistic regimens. The sign for the 

scores were hence flipped to maintain a positive correlation indicating good model performance. 

Classification of simultaneous drug interactions was based on score threshold values reported in 

the original literature for a dataset. For both sequential interactions and the CARAMeL model 
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trained on all interaction data for E. coli, interaction scores were first scaled by the maximum 

absolute value (Equation 2-8):  

𝑀𝑀𝑏𝑏𝑠𝑠𝑏𝑏𝑙𝑙𝑝𝑝𝑠𝑠 =
𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀|𝑀𝑀| 

Equation 2-8 Drug interaction score scaling function. 

where x = reported drug interaction score and xscaled is the value used to train the E. coli 

CARAMeL model. 

Scaled interaction values below -0.1 and above 0.1 were then used to classify interactions 

as synergistic and antagonistic, respectively. For the 10-fold cross-validation analysis conducted 

for sequential interactions, the interaction data was randomly partitioned into ten subsets of similar 

size (N ~ 63). CARAMeL was then applied to predict each subset at a time, where the given subset 

was left out of the model training (i.e., the remaining 90% of the data was used to train the model). 

All model predictions were then compared to the sequential data as a whole to calculate the overall 

Spearman correlation and AUROC values. 

2.6.6 CARAMeL top feature extraction 

Top features were determined based on their ranked importance in generating accurate 

predictions. To calculate feature importance, each feature was first left out of model training and 

testing. The mean squared error (MSE) between predicted and true interaction scores was then 

calculated for each model. Finally, feature importance was measured as the increase in MSE for a 

model lacking a feature compared to the model trained on all features. After ranking features 

according to decreasing importance, the first set of features amounting to a cumulative importance 

of 0.95 (corresponding to 95% variance explained) were selected for downstream model 

interpretation and analysis. To determine overall importance, we trained a CARAMeL model using 

all interaction data available for E. coli. Broadly, this included three sets of simultaneous 
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combinations (Chandrasekaran et al., 2016; Cokol et al., 2018) (pairwise, three-way, and media-

specific treatments) and three sets of sequential interactions (Imamovic & Sommer, 2013; Oz et 

al., 2014; Suzuki et al., 2014) (differing based on elapsed treatment time). To account for differing 

units of measurement between datasets, we scaled interaction scores according to Equation 2-8. 

This scaling constrained all interaction scores to range between ±1 while retaining the sign 

consensus for classifying interactions based on their score (negative IS → synergy, positive IS → 

antagonism). In total, we trained our model on 966 drug interactions and attained highly accurate 

predictions (R = 0.45, p < 10-16) for both synergistic (IS < -0.1, AUROC = 0.67) and antagonistic 

(IS > 0.1, AUROC = 0.71) interactions based on a 10-fold cross-validation. 

2.6.7 PCA and k-means clustering to determine cell sub-populations 

Principal component analysis (PCA) was applied onto three datasets pertaining to single-

cell results: (1) the sampled enzyme levels (352 proteins x 1,000 cells), (2) the simulated metabolic 

reaction fluxes (2,583 reactions x 1,000 cells), and (3) the CARAMeL predictions for simultaneous 

drug interactions (528 drug pairs x 1,000 cells). PCA results were then visualized onto the 2-

dimensional space defined by the first two principal components (PCs) for all three PCA 

applications. The cell sub-populations reported in the main text were determined via k-means 

clustering (k = 2) of the PCA data for drug interactions. The silhouette value (i.e., measure for 

evaluating cluster assignment) for each cell was subsequently calculated to determine the presence 

of any “outlier” cells (i.e., cluster-3, silhouette value < 0.5). 

2.6.8 Statistical analysis 

A one-way analysis of variance (ANOVA) test was used to compare both the entropy mean 

and entropy sum of drug interactions grouped by their classification (synergy, neutral, 
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antagonism). A multiple comparison test based on Tukey’s honestly significant difference (HSD) 

was subsequently performed to identify statistically significant pairwise differences using a p-

value threshold of 0.05. A two-sample Student’s t-test with unequal variance was used to define 

which reactions distinguished between synergistic and antagonistic interactions based on 

differential flux activity. Lastly, a hypergeometric test was conducted to determine significantly 

enriched metabolic pathways based on GEM reactions associated with top CARAMeL predictors. 

For this test, the total number of reactions annotated in iJO1366 corresponded with the population 

size. Of note, the p-values determined from t-tests and hypergeometric tests were adjusted using 

the Benjamini-Hochberg approach (Benjamini & Hochberg, 1995). 

2.7 Supplementary Materials 

2.7.1 Figures 
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Figure S2-1 Flux profile comparison between different omic-based simulations. Correlations based on Pearson’s 
method (all yielded p << 10-3). All plots possess the same number of points (i.e., reactions, N = 2,583). Nichols: 
chemogenomic-based (Nichols et al., 2011), Maeda: transcriptomic-based (Maeda et al., 2020), Suzuki: 
transcriptomic-based (Suzuki et al., 2014), Mori: proteomic-based (Mori et al., 2021). 
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Figure S2-2 Schematic of flux data processing into joint profiles. Flux data (v) simulated from genome-scale 
metabolic models is binarized according to differential flux (either positive or negative) in comparison to wild type 
(WT, i.e., reference). These binarized flux profiles, along with the entropy (H) calculated for each condition (C), 
define the phenotype matrix which is subsequently processed into joint profiles. The sigma (σ) definition is the same 
between simultaneous (sim) and sequential (seq) interactions, while the delta (δ) definition differs depending on the 
interaction type. R = reaction, T = time interval, n = number of conditions in a combination. 
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Figure S2-3 CARAMeL results for E. coli drug interaction data. Model performance results visualized as scatter and 
receiver operating curve (ROC) plots are shown for predicting (A-B) pairwise interactions, (C-D) three-way 
interactions, and (E-F) pairwise interactions in M9 glycerol. AUROC: area under the receiver operating curve. FIC: 
fractional inhibitory concentration, S: synergy, A: antagonism. 
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Figure S2-4 CARAMeL results for M. tb drug interaction data. (A-B) Model performance results visualized as 
scatter and receiver operating curve (ROC) plots are shown for predicting multi-drug interactions measured 
experimentally. (C) The model predictions for 57 TB regimens prescribed in clinical trials correlate with clinical 
efficacy. (D) Predictions classified as synergistic capture most of the efficacious treatments (sputum clearance > 
80%). AUROC: area under the receiver operating curve, ** p-value < 0.01, *** p-value < 0.001 (unpaired t-test). 
FIC: fractional inhibitory concentration, AUROC: area under the receiver operating curve, S: synergy, A: 
antagonism. 

 

Figure S2-5 Metabolic entropy is predictive of combination therapy outcomes. The mean metabolic entropy induced 
by a drug combination is significantly lower for synergistic (S) interactions than antagonistic (A) interactions), while 
cross-resistant (R) interactions seem to induce lower metabolic entropy overall. Each line with a circle represents the 
95% confidence interval of the entropy score for a particular group. Color difference indicates significant differences 
between intervals (ANOVA, p < 0.05). 
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Figure S2-6 Cell-to-cell variation in pairwise drug interaction predictions. The cell-to-cell variation (represented as 
the percent change in standard deviation) in drug pair predictions is shown for three interaction cases: D1 + D2, D1 → 
D2, D2 → D1. 
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Figure S2-7 Distribution of cell-specific outcome predictions for select drug interactions. The distribution for the top 
ten drug interactions with the largest variation across cells are shown for all time cases (D1 + D2, D1 → D2, D2 → D1). 
Refer to Table S2-2 and Table S2-4 for full descriptions on antibiotics used for E. coli. 
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Figure S2-8 Cell clustering based on drug interaction data is reproducible. Repeated simulation (N = 30) of cell-
specific fluxes (via population FBA) followed by CARAMeL prediction of cell-specific drug interaction outcomes 
reproducibly shows bimodal distribution of simultaneous prediction data, as seen in the 2-dimensional visualization 
of cell placement along the principal component (PC) space. 
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Figure S2-9 Cell clustering is not driven by non-uniform sampling of the flux solution space. Cell-specific drug 
interaction outcomes were repeatedly determined for a given cell based on uniform sampling of the flux solution space 
via optGpSampler. (A) The principal component analysis (PCA) visualization of the prediction data for simultaneous 
drug interactions shows similar clustering patterns as seen in Figs. 5B and S8. (B) The same PCA visualization 
grouped by cell identity shows that predictions belonging to the same original cell identity cluster together (except for 
a few outliers). 

 

Figure S2-10 Distinct cell clustering only occurs in CARAMeL prediction data for cell-specific drug interaction 
outcomes. Cell clustering was investigated by applying principal component analysis (PCA) for cell-specific (A) drug 
interaction prediction data, (B) sampled enzyme count data, and (C) simulated metabolic flux data. The cluster groups 
shown in the legend were defined via k-means clustering of the PCA-transformed data for drug interactions. Of note, 
panel A is the same image shown in Figure 2-5B in the main text. Additionally, panel C only shows the placement of 
999 cells in PCA space due to removal of one outlier point. 
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Figure S2-11 16 metabolic pathways are significantly associated with cell clustering. Over 400 metabolic reactions 
were found to robustly correlate in a significant manner with cell-specific scores along principal component 1 (PC1) 
shown in Figure 2-5B (Dataset 2-7). A total of 16 pathways were subsequently found to be enriched by this set of 
reactions (hypergeometric test, adjusted p-value < 0.05). 
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Figure S2-12 Cell clustering is driven by stochastic changes in eno and fabD levels. Single- and multi-gene knockout 
(KO) simulations for eno, fadB, and fabD reveal that the clustering pattern seen in Fig. 5B cannot be replicated in the 
absence of eno and fabD. 

 

Figure S2-13 Cluster-3 cells are characterized by low eno levels. Cluster-3 cells, or those that do not cluster together 
with the dominant cell sub-populations seen in Fig. 5B, were found to possess much lower levels of eno (~400 per 
cell) compared to cluster-1 and cluster-2 cells (~600 per cell). 
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Figure S2-14 Distribution of cell-specific drug interaction predictions. The distribution for the top ten drug 
interactions with the largest variation across cells are shown for all time cases (D1 + D2, D1 → D2, D2 → D1). Refer to 
Table S2-2 and Table S2-4 for full descriptions on antibiotics used for E. coli. 

 

Figure S2-15 CARAMeL predictions for three-way combination therapy landscape. (A) Out of 5,456 unique three-
way drug interactions, 165 were predicted to yield synergy (IS < 0) in at least one media condition for both the 
simultaneous and sequential cases (the top 15 robustly synergistic drug combinations are listed in the legend). (B) 
Heatmap of the predicted interaction scores for the 165 drug combinations across 57 media conditions and seven 
interaction types. Refer to Table S2-2 and Table S2-4 for full descriptions on antibiotics used for E. coli. 
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2.7.2 Tables 

Table S2-1 Omics-based approach evaluation for different z-score thresholds. * Chosen parameters for E. coli and M. 
tb. R1: pairwise interactions (Chandrasekaran et al., 2016), R2: three-way interactions (Cokol et al., 2018), R3: 
glycerol interactions (Cokol et al., 2018), R4: pairwise and three-way interactions (Ma et al., 2019), R5: pairwise to 
five-way TB clinical regimens (Bonnett et al., 2017).  

 Z-score E. coli results M. tb results 
 R1 R2 R3 R4 R5 
 0.25 0.1728 0.4548 0.5101 0.5604 0.4518 
 0.50 0.3158 -0.0494 0.4004 0.5510 0.4870 
 0.75 0.2558 0.4535 0.6616 0.5283 0.3555 
 1.00 0.2780 0.3724 0.6781 0.5372 0.4802 
 1.25 0.3541 0.4384 0.6566 0.5637 0.4102 
 1.50 0.4269 0.5369 0.6501 0.5929 0.3889 
 1.75 0.3494 0.3891 0.6460 0.5234 0.4580 
* 2.00 0.6508 0.5201 0.7068 0.5537 0.4737 
 2.25 0.4125 0.4671 0.6602 0.4489 0.4653 
 2.50 0.3665 0.4159 0.6432 0.4064 0.3937 
 2.75 0.3741 0.4621 0.6284 0.4139 0.4856 
 3.00 0.4194 0.3473 0.6177 0.4969 0.5344 
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Table S2-2 List of antibiotics used in E. coli drug interaction datasets. Abb.: abbreviation. 

    Dataset 

Compound Abb. Target Class Pair 
(train) 

Pair 
(test) 

Three-
way LB Glucose Glycerol 

Amikacin AMK 

Protein synthesis, 30S 
Aminoglycoside 

      
Gentamicin GEN       

Spectinomycin SPE       
Tobramycin TOB       

Minocycline MIN 
Tetracycline 

      

Tetracycline TET       
Azithromycin AZI 

Protein synthesis, 50S 
Macrolide 

      
Chlarythromycin CLA       

Erythromycin ERY       

Chloramphenicol CHL Phenylpropanoid       
Ciprofloxacin CIP 

DNA gyrase Quinolone 
      

Levofloxacin LEV       

Nalidixic acid NAL       
Ampicillin AMP 

Cell wall 
Beta-lactam 

      
Aztreonam AZT       
Cefoxitin CEF       
Oxacillin OXA       

Vancomycin VAN Glycopeptide       

Fusidic acid FUS Elongation factor Fusidane       

Trimethoprim TMP Folic acid biosynthesis Pyrimidine       

Rifampicin RIF RNA synthesis Rifampin       
Nitrofurantoin NIT 

Multiple mechanisms 
Furan       

Triclosan TRI Phenol       
Hydrogen peroxide H22 Oxidative stress Stress       
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Table S2-3 List of antibiotics used in M. tb drug interaction datasets. Abb.: abbreviation, PTM: post-translational 
modification. * Putative mechanism.  

    Dataset 
Compound Abb. Target Class Train Test Clinical 

Sutezolid SUTx Protein synthesis, 23S Oxazolidinone    

Amikacin AMK 

Protein synthesis, 30S 
Aminoglycoside 

   

Kanamycin KAN    

Spectinomycin SPE    

Streptomycin SM    
Minocycline MIN 

Tetracycline 
   

Tetracycline TET    

Azithromycin AZI 

Protein synthesis, 50S 
Macrolide 

   

Chlarythromycin CLA    

Erythromycin ERY    

Roxithromycin ROX    

Linezolid LZDx Oxazolidinone    

Chloramphenicol CHL Phenylpropanoid    

Ciprofloxacin CIP 

DNA gyrase 
Quinolone 

   

Levofloxacin LEV    

Moxifloxacin MOX    
Norfloxacin NFX    

Ofloxacin OFX1    
Novobiocin NOV Glycoside    

Ampicillin AMP 

Cell wall 

Beta-lactam 
   

Oxacillin OXA    

Vancomycin VAN Glycopeptide    

Cefaclor CFL Cephalosporin    

SQ109 SQ109 Ethylenediamine    

Isoniazid* INH Hydrazine    
Econazole ECO 

Imidazole 
   

Pretomanid PA824    
Ethionamide* ETH Isonicotinic acid    

Cycloserine D CSD Serine    

PBTZ169 PBTZ169x Thiazine    

Capreomycin CAP 
Multiple mechanisms 

Peptide    

Clofazimine* CFZ Phenazine    

Fusidic acid FUS Elongation factor Fusidane    

Ethambutol EMBx 
RNA synthesis 

Ethylenediamine    
Rifampicin RIF Rifampin    
Rifapentine RIFP Rifamycin    
Bedaquiline BDQ ATP synthase Diarylquinoline    

Ethium bromide EB DNA structure Phenanthridine    
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Pyrazinamide* PZA Fatty acid synthase Pyrazine    
Menadione MEN PTM Vitamin    

Verapamil VERx Calcium channels Phenethylamine    

Thioridazine THZ 
Synaptic activity Phenothiazine 

   

Chlorpromazine CPZ    

  

Table S2-4 List of antibiotics used in sequential drug interaction datasets for E. coli. Abb.: abbreviation. 

    Time scale 
Compound Abb. Target Class T = 10 T = 21 T = 90 
Amikacin AMK 

Protein synthesis, 30S 

Aminoglycoside 

   
Gentamicin GEN    

Spectinomycin SPE    

Streptomycin SM    
Tobramycin TOB    

Doxycycline DOX 
Tetracycline 

   
Minocycline MIN    
Tetracycline TET    

Azithromycin AZI 

Protein synthesis, 50S 
Macrolide 

   
Erythromycin ERY    

Spiramycin SPI    

Chloramphenicol CHL Phenylpropanoid    
Ciprofloxacin CIP 

DNA gyrase Quinolone 

   
Levofloxacin LEV    
Nalidixic acid NAL    
Norfloxacin NOR    
Ampicillin AMP 

Cell wall Beta-lactam 

   

Cefoxitin CEF    

Ceftazidime CFZ    
Amoxicillin AMX    

Sulfamonomethoxine SMM 
Folic acid biosynthesis 

Sulfonamide    

Trimethoprim TMP Pyrimidine    
Nitrofurantoin NIT Multiple mechanisms Furan    

Fosfomycin FOS Cell wall biogenesis Phosphonic acid    

Fusidic acid FUS Elongation factor Fusidane    

Polymyxin B PMB Lipopolysaccharide Peptide    

Rifampicin RIF RNA synthesis Rifampin    
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Table S2-5 Drug information for Biolog experiment. Abb.: abbreviation, Conc.: drug concentration. 

     Conc. (μg/mL) 
Compound Abb. Target Class Type Single Pairwise 
Aztreonam AZT 

Cell wall Beta-lactam 
Bactericidal 0.03 - 

Cefoxitin CEF Bactericidal 1.87 1.87 
Tetracycline TET 

Protein synthesis, 30S 
Tetracycline Bacteriostatic 1.42 1.42 

Tobramycin TOB Aminoglycoside Bactericidal 0.15 0.15 
 

Table S2-6 Constraint-based modeling (CBM) parameter optimization results. * Chosen parameters for M. tb, + 
chosen parameters for E. coli. CV-R: 10-fold cross-validation correlation in the training dataset, GR-V: variance in 
growth rate, NG-P: percentage of no growth (GR = 0) conditions. 

 CBM parameters E. coli results M. tb results 
 Kappa Rho Epsilon CV-R GR-V NG-P CV-R GR-V NG-P 
 0.001 0.001 0.001 0.4055 0 0 0.3640 0 0 
 0.01 0.01 0.001 0.3260 0.0074 0 0.5024 0.0003 0.0233 
 0.1 0.1 0.001 0.4077 0.0634 0 0.4858 0.0005 0.0698 
 1 1 0.001 0.4313 0.2022 0.3636 0.4409 0.0005 0.0698 
 0.001 0.001 0.01 0.4260 0 0 0.4124 0 0 
* 0.01 0.01 0.01 0.3739 0.0091 0 0.5207 0.0003 0.1395 
 0.1 0.1 0.01 0.389 0.0670 0 0.5149 0.0004 0.6977 
 1 1 0.01 0.4189 0.1866 0.4848 0.5242 0.0003 0.7674 
 0.001 0.001 0.1 0.6406 0 0 0.5231 0 0 
 0.01 0.01 0.1 0.4090 0.0095 0 0.4959 0.0001 0.5581 
 0.1 0.1 0.1 0.3978 0.1056 0.0606 0.4792 0.0001 0.7907 
 1 1 0.1 0.3869 0.1294 0.5152 0.4471 0.0001 0.8837 
 0.001 0.001 1 0.3860 0 0 0.4620 0 0 

+ 0.01 0.01 1 0.6512 0.0113 0 0.5131 0.0003 0.6047 
 0.1 0.1 1 0.6150 0.0994 0.0909 0.5270 0 0.8140 
 1 1 1 0.6294 0.0765 0.5758 0.5099 0 0.9070 
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Table S2-7 Benchmarking correlation results based on different constraint-based modeling (CBM) parameter choices. 
* Chosen parameters for M. tb, + chosen parameters for E. coli. R1: pairwise interactions (Chandrasekaran et al., 
2016), R2: three-way interactions (Cokol et al., 2018), R3: glycerol interactions (Cokol et al., 2018), R4: pairwise and 
three-way interactions (Ma et al., 2019), R5: pairwise to five-way TB clinical regimens (Bonnett et al., 2017). 

 CBM parameters E. coli results M. tb results 
 Kappa Rho Epsilon R1 R2 R3 R4 R5 
 0.001 0.001 0.001 0.2884 0.4441 0.5781 0.6370 0.5535 
 0.01 0.01 0.001 0.5032 0.3516 0.5092 0.5873 0.4369 
 0.1 0.1 0.001 0.4676 0.3666 0.5715 0.4946 0.2304 
 1 1 0.001 0.5115 0.4001 0.5421 0.4717 0.4135 
 0.001 0.001 0.01 0.3726 0.3636 0.5544 0.4638 0.5361 
* 0.01 0.01 0.01 0.4525 0.2447 0.5900 0.5256 0.5445 
 0.1 0.1 0.01 0.5390 0.2599 0.5514 0.4858 0.2642 
 1 1 0.01 0.3899 0.3460 0.5915 0.4730 0.4124 
 0.001 0.001 0.1 0.5421 0.5809 0.5669 0.5382 0.4483 
 0.01 0.01 0.1 0.5829 0.5023 0.6281 0.6335 0.4263 
 0.1 0.1 0.1 0.3313 0.3762 0.6382 0.5942 0.5140 
 1 1 0.1 0.1545 0.4375 0.6745 0.5560 0.4982 
 0.001 0.001 1 0.1772 0.1372 0.2668 0.3253 0.5380 

+ 0.01 0.01 1 0.6445 0.6216 0.6641 0.4884 0.4870 
 0.1 0.1 1 0.6057 0.6536 0.6650 0.4947 0.4788 
 1 1 1 0.6352 0.6169 0.6101 0.4939 0.3726 
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2.7.3 Datasets 

All supplementary data files from this chapter are available in the online version of the 

CARAMeL publication: https://doi.org/10.1093/pnasnexus/pgac132  

 

Dataset 2-1 Top CARAMeL features explaining 95% of the variance in model predictions.  

Dataset 2-2 iJO1366 reactions explaining 95% of the variance between actual and predicted interaction outcomes. 

Dataset 2-3 Biolog phenotype microarray 1 (PM01) conditions. 

Dataset 2-4 CARAMeL predictions for 2-way drug interactions for 1,000 individual cells and three treatment 
strategies (1 x simultaneous, 2 x sequential) (N = 1,584,000). 

Dataset 2-5 Cell-to-cell variation in predictions for pairwise drug interaction outcomes (N = 528). 

Dataset 2-6 Principal component (PC) loadings 1 and 2 for the principal component analysis (PCA) transformation 
of the drug interaction prediction data (simultaneous only).  

Dataset 2-7 iJO1366 reactions that are robustly* associated with cell clustering. *Significant correlation with PC1 
scores determined for all 30 replicated runs 

Dataset 2-8 Cluster-based sensitivity and tolerance indication for the 528 unique drug pairs. 

Dataset 2-9 CARAMeL predictions for 2-way drug interactions in 57 media conditions and three treatment 
strategies (1 x simultaneous, 2 x sequential) (N = 90,288). 

Dataset 2-10 CARAMeL predictions for 2-way drug interactions in 57 media conditions and seven treatment 
strategies (1 x simultaneous, 6 x sequential) (N = 2,176,944). 

https://doi.org/10.1093/pnasnexus/pgac132
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Chapter 3 Microbial Crowdsourcing and Transfer Learning Model Predicts Strain-specific 

Drug Interactions 

The material in this chapter was adapted from the following manuscript with minor adjustments:   

Chang, D. C.*, Chung, C. H.*, Rhoads, N. M., & Chandrasekaran, S. Microbial 

crowdsourcing and transfer learning model predicts strain-specific drug interactions.  

In preparation. * These authors contributed equally to this work 

3.1 Abstract 

Machine learning (ML) algorithms are necessary to efficiently identify potent drug combinations 

within a large candidate space to combat drug resistance. However, existing ML approaches cannot 

be applied to emerging and under-studied pathogens with limited training data. To address this, 

we developed a transfer learning and crowdsourcing framework (TACTIC) to train ML models on 

data from multiple bacteria. TACTIC was built using 2,965 drug interactions from 12 bacterial 

strains and generally outperformed traditional single-species ML models in predicting cross-

species drug interaction outcomes. Upon evaluating the top gene-associated predictors for a 

TACTIC model trained on all 2,965 drug interactions, we uncovered that cross-species and 

species-specific drug interaction outcomes may be driven by metabolic and genetic drivers, 

respectively. Using the same TACTIC model, we identified small sets of drug interactions (N < 

100) out of ~4,000 possible combinations that are predicted to be selectively synergistic against 

multiple groups of pathogenic bacteria including Gram-negative (e.g., Acinetobacter baumannii), 

Gram-positive (e.g., Staphylococcus aureus), and non-tuberculous mycobacteria (NTM) species. 
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Our implementation of TACTIC demonstrates how data from model organisms coupled with 

computational methods can be leveraged for drug discovery in context of less-studied organisms. 

3.2 Introduction 

Antibiotic resistance is becoming a global health crisis as growing resistance outpaces current 

antibiotic drug development. In the United States alone, more than 2.8 million antibiotic-resistant 

infections occur each year, with more than 35,000 cases resulting in death (Centers for Disease 

Control and Prevention, 2019). These infections are caused by a diverse set of bacterial pathogens 

that pose major health threats, especially if left unchecked. Some of the most concerning species 

include carbapenem-resistant Acinetobacter baumannii, multidrug-resistant Pseudomonas 

aeruginosa, and extremely drug-resistant Mycobacterium tuberculosis (henceforth M. tb) (Centers 

for Disease Control and Prevention, 2019; World Health Organization, 2014). At the same time, 

no new classes of antibiotics have been brought to market for decades (Hutchings et al., 2019). 

 One possible solution for overcoming antibiotic resistance is to design synergistic drug 

combination therapies (Tyers & Wright, 2019). Such combinations could engage multiple cellular 

targets to suppress growing resistance, which is difficult to achieve with a single active compound. 

A major drawback, however, is the challenge in exploring a vast combinatorial space that 

exponentially increases when considering new drugs or dosage levels. Due to the empirical nature 

of designing drug combination therapies, the discovery of new combined regimens has been slow. 

Most notably, the four-drug regimen course that is standard for treating tuberculosis (TB) has not 

changed in 50 years, which has led to growing resistance (Pai et al., 2016). Therefore, there is a 

dire need for alternative approaches that can efficiently screen and prioritize promising drug 

combinations. 
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 Machine learning (ML) has recently been leveraged to design synergistic drug 

combinations for various complex diseases (Cantrell et al., 2022; Güvenç Paltun et al., 2021). In 

context of antibiotic resistance, an approach called INDIGO was developed to propose 

combination therapies effective against Escherichia coli and M. tb (Chandrasekaran et al., 2016; 

Ma et al., 2019). Specifically, omics data for E. coli and M. tb treated with individual drugs, along 

with corresponding drug combination assay data, were used to construct two separate models 

predictive of drug interaction outcomes (e.g., synergy) for each organism. The E. coli INDIGO 

model was further extended to predict drug interaction outcomes for Staphylococcus aureus by 

leveraging omics data for genes that are orthologous between the two species. Although INDIGO 

was shown to yield predictions that correlate with experimental data, the original models are biased 

towards E. coli and M. tb. In other words, the original models do not extend well for other 

organisms, especially species that are phylogenetically distant from E. coli and M. tb (e.g., S. 

aureus). 

 Within this study, we leverage transfer learning and crowdsourcing to construct predictive 

models for non-model yet clinically relevant bacterial pathogens. Transfer learning is a ML 

concept where a model trained on one task is re-applied to solve a different yet similar task, usually 

after some finetuning (Torrey & Learning, 2010). Crowdsourcing describes the process of 

amalgamating input from various information sources to complete a common task (Vaughan, 

2018). We integrate these concepts onto a modeling foundation inspired by INDIGO to develop a 

new approach called TACTIC: Transfer learning And Crowdsourcing to predict Therapeutic 

Interactions Cross-species. We show that TACTIC generates more accurate predictions than 

INDIGO for 12 phylogenetically diverse bacterial strains. We then examine a fully trained 

TACTIC model to explain the genetic drivers for cross-species and species-specific drug 
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interaction outcomes. Finally, we apply TACTIC to predict drug combinations with narrow-

spectrum synergy against pathogenic bacteria. 

3.3 Results 

3.3.1 Drug interaction data collection 

To build and validate our framework, we compiled drug interaction data from 17 publications 

(Bhusal et al., 2005; Brochado et al., 2018; Chandramohan et al., 2019; Chandrasekaran et al., 

2016; Coelho et al., 2015; Cokol et al., 2018; Gonzalo et al., 2015; Katzir et al., 2019; Ma et al., 

2019; Ocampo et al., 2014; Rey-Jurado et al., 2012, 2013; Russ & Kishony, 2018; Silva et al., 

2016; Yeh et al., 2006; Yilancioglu & Cokol, 2019; W. Zhao et al., 2016) (Figure 3-1A, Table 

3-1). In total, we attained 2,965 drug interactions involving 88 drugs measured across 12 strains 

representative of six species: A. baumannii, E. coli, M. tb, P. aeruginosa, S. aureus, and Salmonella 

enterica Serovar Typhimurium (henceforth S. Typhimurium) (Figure 3-1B, Dataset 3-1, Dataset 

3-2). Drug interactions were quantified based on the Loewe Additivity (Loewe & Muischnek, 

1926)l or Bliss Independence (Bliss, 1939) model, and sometimes both depending on the study. 

Based on the drug interaction classification scheme defined for each study, our pooled data consists 

of 913 synergistic (31%), 826 neutral (28%), and 1,226 antagonistic (41%) interactions (Figure 

3-1C). Our pooled data is representative of two- to ten-way drug combinations, although more 

than 85% (N = 2,522) represents pairwise interactions.  

 Out of the 1370 unique drug combinations represented in our data collection, 757 were 

measured more than once (Dataset 3-3). This could be attributed to data being pulled from 

different studies, drug combinations being measured in different strains, or quantification of drug 

interactions using different metrics (Figure S3-1A). An inspection of the standard deviation 

calculated for each replicated drug combination revealed that combinations with the largest 
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difference in interaction scores (IS) were pulled from independent studies (Figure S3-1B). An 

evaluation of the agreement between class labels assigned for a replicated drug combination further 

showed that class disagreement was more prevalent when a combination was pulled from different 

studies and/or was measured in different strains (Figure S3-1C). 

 

Figure 3-1 Drug interaction data collection for TACTIC. (A) Drug interaction data collected from 17 published 
sources was used to build TACTIC models. (B) This data collection measured outcomes in 12 bacterial strains 
representative of six organisms: Acinetobacter baumannii, Escherichia coli, Mycobacterium tuberculosis, 
Pseudomonas aeruginosa, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus. (C) Drug 
interaction outcomes were measured using the Loewe Additivity and/or the Bliss Independence model, and data 
distribution was found to be relatively balanced between the three outcome classes: synergy (S), neutral (N), and 
antagonism (A). 
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Table 3-1 TACTIC drug interaction data collection. Drug interaction outcome measurements gathered from 17 
independent studies. Ntotal = total number of interactions, Nhigh = number of high-order interactions. 

Organism Strain Ntotal Nhigh Model Interaction Outcome 
Synergy Neutral Antagonism 

A. baumannii ATCC 17978 45 30 Loewe 23 (0.51) 10 (0.22) 12 (0.27) 

E. coli 

BW25113 473 - Both 117 (0.25) 155 (0.33) 201 (0.42) 
MC4100 98 26 Both 12 (0.12) 24 (0.25) 62 (0.63) 
MG1655 623 185 Both 123 (0.20) 218 (0.35) 282 (0.45) 

iAi1 316 - Bliss 116 (0.37) 66 (0.21) 134 (0.42) 

M. tuberculosis ATCC 35801 154 134 Bliss 85 (0.55) 41 (0.27) 28 (0.18) 
H37Rv 389 68 Loewe 181 (0.47) 56 (0.14) 152 (0.39) 

P. aeruginosa PAO1 163 - Bliss 44 (0.27) 47 (0.29) 72 (0.44) 
PA14 163 - Bliss 51 (0.31) 54 (0.33) 58 (0.36) 

S. aureus ATCC 29213 45 - Loewe 5 (0.11) 23 (0.51) 17 (0.38) 

S. Typhimurium 14028s 248 - Bliss 77 (0.31) 68 (0.27) 103 (0.42) 
LT2 248 - Bliss 79 (0.32) 64 (0.26) 105 (0.42) 

 

Of note, there was little consensus in the interaction outcome measured for the combination 

between isoniazid (INH) and rifampicin (RIF), despite being measured in only one strain (M. tb 

H37Rv) and being quantified based on a common mathematical model (Loewe Additivity). While 

one study defined this combination as synergistic based on a score of -0.089, another study found 

this combination to be antagonistic with a score of 0.982. Interestingly, a similar level of 

incongruence was also found for the combinations between INH and PA-824 (lowest score = -

0.245, highest score = 0.176), bedaquiline (BDQ) and PA-824 (lowest score = -0.749, highest 

score = 0.155), and clarithromycin (CLA) and RIF (lowest score = -5.778, highest score = 0.111) 

(Figure S3-2). Though it is difficult to pinpoint the exact reason why these outcomes differ so 

greatly, these discrepancies in the interaction outcome are most likely due to differences in 

experimental conditions such as the growth media that was used, the drug concentration gradient 

evaluated for the combination, and/or the drug sensitivity profile of M. tb H37Rv. 

 On the other hand, a handful of drug combinations (N = 36) measured for the same strain 

of E. coli or M. tb by different studies agreed on the outcome class, even when the interaction was 

measured using different mathematical models (Dataset 3-3). For drug combinations repeatedly 
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measured in different strains (N = 664), the vast majority (>86%) either agreed on a single outcome 

class (N = 215) or disagreed between neighboring class labels (synergy vs. neutral, neutral vs. 

antagonism, N = 357). These drug interactions may indicate those with broad-spectrum activity, 

where broad-spectrum synergistic combinations may provide a therapeutic option to treat 

infections where the causative agent is unknown. In contrast, drug interactions measured to have 

diverging outcomes across different organisms (N = 92) may serve as narrow-spectrum therapies 

that selectively target a known pathogen. 

3.3.2 Benchmarking TACTIC against INDIGO 

TACTIC is an extension of INDIGO (Chandrasekaran et al., 2016), a computational approach for 

predicting drug interaction outcomes between antibacterial agents. Our approach specifically 

expands on the orthology aspect, which enables the application of a dataset measured for one 

organism (e.g., E. coli) to another (e.g., S. aureus). Unlike INDIGO models, which are trained on 

data for a single organism (i.e., E. coli or M. tb), a TACTIC model is trained on omic and drug 

interaction data measured in multiple organisms (Figure 3-2). All other steps involved in 

developing a predictive model (e.g., defining ML model features, the ML algorithm used) were 

preserved from the original INDIGO publication and are reprised in the Methods section. The 

metric used for evaluating predictive model performance was also preserved. Specifically, model 

accuracy was measured based on the Spearman rank correlation between model predictions and 

experimentally measured drug IS, with high positive values indicating better performance.  
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Figure 3-2 TACTIC approach schematic. The Transfer learning And Crowdsourcing to predict Therapeutic 
Interactions Cross-species (TACTIC) approach uses single drug response and drug interaction data to train a machine 
learning (ML) model that predicts drug interaction outcomes for multiple organisms. Single drug response data is 
processed to define ML features for a given set of drug combinations. Orthology mapping allows the transfer of drug 
response data measured in one organism to another by conserving data between orthologous genes. 

 We benchmarked TACTIC against INDIGO by evaluating their accuracy in predicting 

drug interaction outcomes for each of the 12 bacterial strains for which data was collected above. 

For INDIGO, we directly used the previously constructed E. coli (Chandrasekaran et al., 2016) 

and M. tb (Ma et al., 2019) models to generate predictions for all 2,965 drug interactions. For the 

TACTIC approach, we trained one model for each strain-specific dataset, where drug interactions 

measured for the strain of interest (N) were set aside for testing while the remaining drug 

interaction data (2,965-N) was used for training a model. We found that TACTIC models were 

considerably better at predicting drug interaction outcomes for A. baumannii, P. aeruginosa, S. 

Typhimurium, and most E. coli strains compared to INDIGO models (Figure 3-3). Unsurprisingly, 
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the INDIGO models for E. coli and M. tb yielded more accurate predictions for E. coli MC4100 

and both M. tb strains, respectively; however, TACTIC models were still able to yield predictions 

comparable to those from the INDIGO models. Interestingly, all three models were less accurate 

in predicting drug interaction outcomes for S. aureus. This could potentially be due to the fact that 

S. aureus (Gram-positive) is phylogenetically distant from all other bacteria considered within this 

benchmarking analysis (Gram-negative strains).  

 

Figure 3-3 Benchmarking TACTIC against INDIGO. Strain-specific drug interaction outcome prediction accuracy 
was compared between TACTIC models and INDIGO models previously developed from E. coli (Chandrasekaran et 
al., 2016) or M. tb (Ma et al., 2019) data. Model performance was quantified based on the Spearman rank correlation 
between model predictions and experimentally measured drug interaction scores. 

3.3.3 Genetic predictors of cross-species and species-specific drug interaction outcomes 

Having confirmed that TACTIC provides an improvement over INDIGO in predicting drug 

interaction outcomes cross-species, we next trained a TACTIC model with the entire data 

collection on the 2,965 drug interactions measured across 12 bacterial strains. Using this fully 

trained TACTIC model, we sought to uncover which features the model most relied on for 

generating predictions and how changes in these feature values explained synergistic or 
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antagonistic outcomes. For this task, we first determined the set of ML features, ranked by 

decreasing importance score, that explained 95% of the variance in model predictions (see 

Methods for details). In total, ~2,500 features associated with 1,258 E. coli MG1655 genes and 

411 M. tb H37Rv genes (both sets including 251 orthologous genes between the two organisms) 

met this criterium (Dataset 3-4). Although the most important genes (i.e., those with the highest 

cumulative importance score) did not show a biologically meaningful connection (Figure 3-4A), 

a gene set enrichment analysis of all top genes against the KEGG database (Kanehisa & Goto, 

2000) revealed four pathways that are significantly enriched (Figure 3-4B, hypergeometric test, 

adjusted p-value < 0.05). Of note, all pathways relate to bacterial metabolism, with the biosynthesis 

of amino acids enriched by genes specific to both E. coli MG1655 and M. tb H37Rv. 

 

Figure 3-4 TACTIC model interpretation. (A) Based on importance scores determined for all 27,972 TACTIC model 
features, 2,499 were found to explain 95% of prediction variance (top 10 shown). (B) Four metabolic pathways were 
found to be significantly enriched (hypergeometric test, adjusted p-value < 0.05) by genes associated with top model 
features based on gene-pathway annotation in the KEGG database for E. coli str. K-12 substr. MG1655 and M. tb 
H37Rv genomes. 

 To gain a more fine-grained insight, we evaluated how the values for ML features 

associated with genes belonging to these pathways varied between synergistic and antagonistic 

interactions (see Methods for details). Using a stringent significance level (adjusted p-value < 1-6) 

based on the adjusted p-value distribution for all feature-specific tests (Figure S3-3), we 

determined 79 sigma or delta features that differed based on the drug interaction outcome type 
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(Dataset 3-5). From this set, we visually pinpointed 11 genes for which both the sigma and delta 

feature values significantly differed between synergistic and antagonistic interactions along the 

same direction for gene-specific changes (Table 3-2, Figure S3-4). Interestingly, all 11 genes are 

unique to E. coli MG1655 and play a role in central metabolic pathways. Considering that 

information on these genes were derived from the E. coli chemogenomic dataset (Nichols et al., 

2011), gene-specific values indicate changes in fitness for the knockout strain of a given gene in 

response to a particular condition. The trends for all 11 genes indicate that drug interactions 

involving at least one drug that perturbs central metabolic pathways generally result in antagonistic 

outcomes. These findings may align with a longstanding hypothesis that fully intact and active 

bacterial metabolism may potentiate drug efficacy (Kohanski et al., 2007; Martínez & Rojo, 2011); 

therefore, gene perturbations that attenuate metabolic activity may decrease combined antibiotic 

potency and lead to antagonistic interactions.  

Table 3-2 E. coli MG1655 gene knockouts associated with antagonistic outcomes. KO: knockout. 

Locus Gene Description Primary Pathway KO Fitness 
b0115 aceF pyruvate dehydrogenase, E2 subunit Glycolysis / Gluconeogenesis 

Positive 
b0118 acnB hypothetical protein 

Citrate cycle (TCA cycle) 
b1136 icd isocitrate dehydrogenase 
b3737 atpE ATP synthase Fo complex subunit c Oxidative phosphorylation 
b4042 dgkA diacylglycerol kinase Glycerolipid metabolism 

b3041 ribB 3,4-dihydroxy-2-butanone-4-phosphate 
synthase Riboflavin metabolism 

Positive 

b0844 ybjI 5-amino-6-(5-phospho-D-ribitylamino) 
uracil phosphatase Negative 

b3620 waaF ADP-heptose--LPS heptosyltransferase 2 

Lipopolysaccharide 
biosynthesis 

Positive 

b3625 waaY lipopolysaccharide core heptose (II) 
kinase 

Negative b3628 waaB 
UDP-D-galactose: 
(glucosyl)lipopolysaccharide-1,6-D-
galactosyltransferase 

b3632 waaQ lipopolysaccharide core 
heptosyltransferase 3 

 



 90 

 We next sought to investigate species-specific associations between ML feature patterns 

and drug interaction outcomes (synergy or antagonism). For this task, we assessed the relationship 

between IS and strain-specific drug impact for 24 drug combinations measured in six strains within 

the same study (Brochado et al., 2018). We defined strain-specific drug impact based on Equation 

3-1 below: 

𝐷𝐷𝐼𝐼𝑏𝑏𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑏𝑏𝑠𝑠𝑝𝑝𝑏𝑏𝑜𝑜𝑡𝑡 =
�∑ 𝑣𝑣𝑏𝑏𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑏𝑏𝑠𝑠𝑝𝑝𝑏𝑏𝑜𝑜𝑡𝑡

𝑁𝑁𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
𝑏𝑏=1

𝑁𝑁𝑜𝑜𝑡𝑡𝑝𝑝ℎ𝑜𝑜𝑙𝑙𝑜𝑜𝑛𝑛𝑜𝑜𝑠𝑠𝑏𝑏
 

Equation 3-1 Quantification of strain-specific drug impact based on TACTIC model features. 

where DIinteraction is the drug impact for a given drug interaction, vinteraction is the vector of ML 

features determined for the given drug interaction, Nfeatures is the total number of ML features, and 

Northologous is the number of E. coli MG1655 and M. tb H37Rv genes that have corresponding 

orthologs annotated within the genome of the strain for which the drug interaction pertains to. 

Based on this metric, we found that the IS for two out of 24 drug combinations have a significantly 

negative correlation with strain-specific drug impact (Figure S3-5). Interestingly, these 

interactions (A22 + chloramphenicol and fosfomycin + novobiocin) are the only ones involving 

bacteriostatic-bacteriostatic interactions (Dataset 3-2). Given that the strain-specific drug impact 

metric is mainly driven by the number of orthologous genes between a given organism and the 

combined genomes of E. coli MG1655 and M. tb H37Rv, these findings imply that the deviation 

in cross-species drug interaction outcomes aligns with the phylogenetic distance for combinations 

that only involve bacteriostatic compounds. In turn, this may indicate that bacteriostatic drug 

effects are more dependent on the genetic state of a given organism, as opposed to bactericidal 

agents which are believed to be more dependent on the phenotypic (e.g., metabolic) state of a 
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bacterial cell (Dwyer et al., 2009; Kohanski et al., 2007; Lopatkin et al., 2019; J. H. Yang, Bening, 

et al., 2017).  

3.3.4 Identifying narrow-spectrum drug synergies 

Similar to single antibiotic treatments, combined drug therapies can be designed to impose broad- 

or narrow-spectrum potency against different bacteria. Given the increasing appreciation for 

commensal microbiomes that share a symbiotic relationship with human hosts (Y. Liu et al., 2021; 

Manor et al., 2020; Namasivayam et al., 2018; Sorbara & Pamer, 2022), we were interested in 

applying TACTIC to identify drug combinations that are selectively synergistic (i.e., show narrow-

spectrum synergy) against different groups of pathogenic bacteria. For this task, we used the fully 

trained TACTIC model to generate drug interaction outcome predictions for all possible drug pairs 

out of 88 drugs (N = 3,828) across 18 bacterial strains (Dataset 3-6). This strain set included all 

of the 12 strains for which the TACTIC model was trained on as well as two non-tuberculous 

mycobacteria (NTM) species (Mycobacterium abscessus and Mycobacterium smegmatis) and four 

strains representative of gut microbiome commensals (Bacteroides vugatus, Eubacterium eigens, 

Eubacterium rectale, and Lactobacillus rhammosus). These new strains were selected based on 

growing concerns over NTM infections (Johansen et al., 2020) and studies that have deduced the 

species-level identities of commensal gut microbes (Forster et al., 2022; J. Yang et al., 2020).  
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Figure 3-5 Correlation heatmap for strain-specific TACTIC model predictions. Drug interaction outcome predictions 
for all possible drug pairs between 88 drugs (N = 3,828) were generated across 18 bacterial strains by the full TACTIC 
model. The Pearson correlation for strain-to-strain predictions was calculated for all strain pairs and visualized as a 
clustered heatmap. 

 Based on our screen of 3,828 drug interaction outcomes across 18 bacterial strains, we first 

evaluated the similarity between strain-to-strain predictions. By defining similarity as the Pearson 

correlation between strain-specific predictions, we found that drug interaction outcome similarities 

are primarily based on the Gram stain of an organism (Figure 3-5). Of note, outcome predictions 
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for S. aureus were the most dissimilar from all other strain-specific predictions (lowest correlation 

< 0.6). Unsurprisingly, strain-specific predictions for the same species were most similar to one 

another, and Mycobacteria-specific predictions clustered amongst each other. Overall, we found 

that these trends based on the Gram stain and species identity agreed with our hypothesis that 

divergence in drug interaction outcomes between different bacteria is primarily driven by 

phylogenetic dissimilarity. Of note, strain-specific predictions seemed to cluster based on the 

strain-specific relationship with the host (i.e., pathogen vs. commensal) within Gram stain groups. 

This finding supported the potential of identifying drug combinations with selective synergy 

against pathogenic bacteria within our strain-specific prediction landscape. 

 To identify drug combinations with narrow-spectrum synergy, we compared TACTIC 

model predictions for four strain group comparisons: commensals vs. all pathogens, commensals 

vs. Gram-negative pathogens, commensals vs. NTM pathogens, and commensals vs. S. aureus. 

For these comparisons, we imposed two criteria to define narrow-spectrum synergy. The first was 

to select drug combinations that are predicted to be additive or antagonistic (predicted IS ≥ 0) 

across all commensal strains. The second criterium selected pathogen-specific synergies based on 

one of the four thresholds: strong comprehensive synergy (predicted IS < -0.2 for all pathogens), 

comprehensive synergy (predicted IS < 0 for all pathogens), strong average synergy (mean 

predicted IS < -0.2), and average synergy (mean predicted IS < 0). For the first comparison, only 

the average synergy threshold returned narrow-spectrum synergies against all pathogens (Figure 

3-6A). A visual inspection of the top 20 narrow-spectrum synergies revealed that broad synergistic 

outcomes are hard to achieve for all pathogens, most likely because this group includes both Gram-

negative and Gram-positive species. For the second comparison, 34 drug combinations were 

predicted to have comprehensive narrow-spectrum synergy against Gram-negative pathogens 
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(Figure 3-6B), with stronger synergies predicted against E. coli and S. Typhimurium strains 

compared to A. baumannii or P. aeruginosa strains. For the third comparison, 16 drug 

combinations were predicted to have strong comprehensive narrow-spectrum synergy against 

NTM pathogens (Figure 3-6C). Interestingly, most of these combinations (N = 14) include 

clarithromycin, which is known to have potent effect against NTM strains (Cowman et al., 2016). 

The last comparison revealed that 17 drug combinations are comprehensively synergistic against 

S. aureus (Figure 3-6D); however, most interaction predictions appear to be additive (IS ~ 0), with 

only two drug combinations predicted to be mildly synergistic (IS ~ -0.1). Although we have yet 

to experimentally validate whether TACTIC model predictions for narrow-spectrum synergy are 

observed in vitro and in vivo, the results from these four commensal vs. pathogen comparisons beg 

the exploration of precise drug combinations that could more effectively clear hard-to-treat 

infections caused by specific groups of pathogenic bacteria.  
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Figure 3-6 Narrow-spectrum synergy predictions against pathogenic bacteria. Narrow-spectrum synergy was defined 
by additive or antagonistic predictions (predicted IS ≥ 0) across all commensal strains and adjustable thresholds for 
synergistic predictions (predicted IS < 0) across pathogenic strains. In total, (A) 80 drug pairs are predicted to have 
general synergy (mean IS < 0) against all pathogenic strains, (B) 34 drug pairs are predicted to have comprehensive 
synergy (all IS < 0) against Gram-negative pathogens, (C) 16 drug pairs are predicted to have strong comprehensive 
synergy (all IS < -0.2) against non-tuberculous mycobacteria (NTM) pathogens, and (D) 17 drug pairs are predicted 
to have comprehensive synergy (all IS < 0) against S. aureus. 
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3.4 Discussion 

Within this work we introduced TACTIC, a new computational approach that leverages transfer 

learning and crowdsourcing via orthology mapping to evaluate strain-specific drug interaction 

outcomes. Using a data collection of ~3,000 drug interactions measured across a phylogenetically 

diverse set of bacterial strains (Dataset 3-1), we showed that TACTIC models generated more 

accurate predictions cross-species compared to INDIGO (Chandrasekaran et al., 2016), a previous 

computational approach that served as the blueprint for the TACTIC approach. Using a complete 

TACTIC model trained on the entire drug interaction data collection, we further showed that this 

model could explain cross-species and species-specific drug interaction outcomes, which may be 

tied to the phenotypic (e.g., metabolic state) and genetic (e.g., Gram stain) nature of a given 

organism, respectively. Lastly, we used the full TACTIC model to generate a comprehensive 

prediction landscape of interaction outcomes for ~4,000 drug pairs across 18 bacterial strains. By 

comparing TACTIC model predictions for commensal strains against different groups of 

pathogenic bacteria, we identified a small set of drug interactions that are predicted to have narrow-

spectrum synergy against the latter group. Although these predictions have yet to be validated by 

experimental data, they provide a manageable starting point for discovering combination therapies 

optimized to clear bacterial infections while minimizing detrimental effects on the commensal 

microflora of a human host. 

 The TACTIC approach provides a novel method to investigate strain-specific drug 

interaction outcomes; however, we underscore the fact that the prediction accuracy for TACTIC 

models may decrease for species that are phylogenetically distant (e.g., S. aureus) from organisms 

that are accounted for during model training (e.g., E. coli and M. tb). To address this limitation, 

omics data measuring the drug response in other organisms (e.g., Staphylococcus spp.) could be 
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integrated into TACTIC models to improve prediction accuracy and extended application to a 

diverse range of bacterial species. We also reiterate the issues of discrepancies in drug interaction 

outcome scores that may arise from differences in experimental procedures and calculation metrics 

used by independent research groups. Though not explicitly stated in the Results section, these 

discrepancies in outcome measurements reported by different studies may have impacted TACTIC 

model performance, especially for M. tb strains. A potential solution to this limitation could be the 

inclusion of information on the growth environment or the phenotypic state of an organism, which 

both play a major role in transient drug persistence and tolerance (K. Lewis, 2006), during 

TACTIC model development. 

3.5 Methods 

3.5.1 Data acquisition and curation 

Two distinct data types were used to construct TACTIC models: drug response and drug 

interaction data. Drug response information was comprised of E. coli chemogenomic data (Nichols 

et al., 2011), where fitness of single-gene knockout strains was measured in response to individual 

stressors, and M. tb transcriptomic data (Ma et al., 2019), which measured differential gene 

expression in response to individual stressors. Each omic dataset was previously z-score 

normalized within its originating study; hence, the normalized omic data was directly used for 

defining TACTIC model features. The drug interaction data comprised of 2,965 combinations 

collected from 17 different literature sources covering 12 bacterial strains (Table 3-1, Dataset 

3-1). Drug combinations ranged between two- to ten-way interactions and were quantified based 

on the Loewe Additivity (Loewe & Muischnek, 1926)l and/or the Bliss Independence (Bliss, 1939) 

model based on the originating study. Of note, the drug interaction data collection used in this 

study represents the subset for which the full set of ML features could be determined based on the 
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omics datasets from which drug response information was extracted. Each drug interaction was 

labeled into one of the three outcome classes (i.e., synergy, neutral, antagonism) based on the 

classification criteria specified in its originating publication.  

3.5.2 Defining ML features for drug combinations 

The method for defining ML features for a given drug combination are fully described in the 

INDIGO study (Chandrasekaran et al., 2016). Briefly, drug response data is first binarized to 

indicate substantial gene-level changes (z > 2 and z < -2) in cell response to a given stressor. The 

binarized vectors for all drugs involved in a given combination are then combined to define sigma 

and delta features for each gene, which mathematically represent the combined drug and drug-

unique effect, respectively. Of note, a TACTIC model defines drug combination features based on 

two omic datasets that measure E. coli and M. tb drug response. To remove duplicated information 

captured within orthologous genes between these two organisms, a feature vector is defined by the 

sigma-delta transformation of the full set of M. tb genes and the sigma-delta transformation for 

genes unique to E. coli.  

3.5.3 Orthology mapping for predictive modeling 

The E. coli and M. tb omics datasets were directly used to define ML features for drug 

combinations measured against E. coli str. K-12 substr. MG1655 (henceforth E. coli MG1655) and 

M. tb H37Rv. For all other organisms, ML features were defined by first determining the sigma-

delta feature vector for a given drug combination then filtering this vector based on the orthology 

mapping between E. coli MG1655, M. tb H37Rv, and the given strain. Gene orthology was 

determined by mapping the E. coli MG1655 and M. tb H37Rv genomes against the genomes for 
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all other strains based on genome annotation available in OrtholugeDB (Whiteside et al., 2013), a 

database that infers orthologs based on the reciprocal-best-BLAST hit (RBBH) rate.  

3.5.4 TACTIC model construction using random forests 

All TACTIC models were constructed in Python v3.10.8 (Python Software Foundation) using the 

regression-based Random Forests (RF) algorithm supplied through the scikit-learn package v1.2.0 

(Pedregosa et al., 2011). Briefly, RF is an ensemble method comprised of multiple decision trees 

that independently learn to associate feature information (i.e., sigma-delta features for a given drug 

combination) to a target variable (i.e., the measured drug IS) during the training phase. Each 

decision tree is then tasked with estimating the target variable (i.e., drug interaction outcome) given 

feature information alone during the testing phase, and the average estimated value (i.e., the 

predicted drug IS) is returned by the RF algorithm. Randomization is factored into the model 

construction process via random sampling with replacement of the training dataset for each 

decision tree. This yields a diverse collection of decision trees that together reduce the variance 

between model predictions against true values for the target variable. Of note, all TACTIC models 

were constructed using the default parameter values for the RandomForestRegressor method in 

scikit-learn.  

3.5.5 TACTIC model interpretation via feature importance 

Feature importance for the full TACTIC model was determined by using the built-in computation 

for the scikit-learn RF algorithm, which defines importance as the mean decrease in variance for 

a regression task. Based on this definition, the importance score for each feature is calculated by 

first constructing a model without the given feature then comparing its prediction accuracy against 

that of the model trained on all features. Specifically, importance is quantified as the difference in 
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the mean squared error between model predictions and true values for the target variable. TACTIC 

model interpretation was completed by using the set of features ranked by decreasing importance 

score with a cumulative sum of 0.95, or the set of the most important features that explain 95% of 

the mean decrease in variance.  

3.5.6 Statistical analysis 

Three statistical tests were used for downstream model interpretation based on the set of sigma-

delta features explaining 95% of model importance. First, the two-sample Student’s t-test with 

equal variance was used to determine sigma features that statistically differ in mean value between 

synergistic or antagonistic drug interaction outcomes. For delta features, the chi-square test with 

Yates’ correction was applied to determine any associations between synergistic or antagonistic 

drug interaction outcomes and drug-unique effects on a single gene. Finally, a hypergeometric test 

was performed to determine KEGG pathways that were significantly represented by genes 

associated with the top model features (those explaining 95% of the variance). This test was 

conducted for KEGG pathways annotated from both the E. coli MG1655 genome (organism code: 

eco) and the M. tb H37Rv genome (organism code: mtu). Of note, the number of pathways 

annotated for each genome served as the population size specified in the hypergeometric test. 

Importantly, p-values from all three statistical tests were adjusted using the Benjamini-Hochberg 

correction (Benjamini & Hochberg, 1995) to minimize the false discovery rate. 

3.6 Supplementary Materials 

3.6.1 Figures 
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Figure S3-1 Replicated drug interactions in TACTIC data collection. (A) Replicated drug interactions occur due to 
data collected from different sources, measured in different strains, or quantified using different metrics. (B) 
Distribution of standard deviations calculated for each replicated drug interaction, grouped by the source for replicated 
data. (C) Number of outcome classes reported for each replicated drug interaction, grouped by the source for replicated 
data. 
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Figure S3-2 Anti-tuberculosis drug interactions with large discrepancy in reported outcomes. Four drug interactions 
common for treating tuberculosis were reported to have inconsistent combined treatment outcomes against M. tb 
H37Rv across different studies. BDQ: bedaquiline, CLA: clarithromycin, INH: isoniazid, PA824: PA-824, RIF: 
rifampicin. 

 

Figure S3-3 Adjusted p-value distribution for feature significance tests. The two-sample Student’s t-test with unequal 
variance and the chi-square test with Yates’ correction evaluated sigma and delta feature value association with drug 
interaction outcomes, respectively. All p-values were adjusted based on the Benjamini-Hochberg correction.  
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Figure S3-4 Difference in feature values between synergistic (S) and antagonistic (A) interactions for 11 metabolic 
genes. All 11 genes are associated with metabolic pathways that were determined to be enriched by top predictive 
features for the full TACTIC model.   
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Figure S3-5 Relationship between strain-specific drug interaction scores against strain-specific drug impact. Drug 
impact was determined based on TACTIC model features determined for strain-specific drug interactions. See Dataset 
3-2 for drug code information.  
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3.6.2 Datasets 

All supplementary data files from this chapter are available in the following external location: 

https://www.dropbox.com/s/m8zwd7297ho5yh8/Chung_Carolina_Dissertation_Data.xlsx?dl=0  

 

Dataset 3-1 TACTIC drug interaction dataset (N = 2,965). 

Dataset 3-2 Description of compounds represented in TACTIC drug interaction dataset (N = 88). 

Dataset 3-3 Unique drug interactions from the TACTIC drug interaction dataset (N = 1,370). 

Dataset 3-4 Importance scores for all TACTIC model features (N = 27,972). 

Dataset 3-5 Significance test results for ML model features derived from genes in enriched pathways (N = 337). 

Dataset 3-6 Prediction landscape for 3828 pairwise drug interaction outcomes across 18 bacterial species.  

 

. 

 

https://www.dropbox.com/s/m8zwd7297ho5yh8/Chung_Carolina_Dissertation_Data.xlsx?dl=0


 106 

Chapter 4 Case Studies on How Computational Methods Can Enhance Clinical 

Translation of Antibiotic Combination Therapies  

This chapter discusses two collaborative projects that leverage CARAMeL (Chapter 2) and 

TACTIC (Chapter 3) to determine synergistic drug combinations in a clinically relevant context. 

For the first project, I collaborated with the Sherman Lab at the University of Washington (UW) 

to generate strain- and media-specific drug interaction outcomes predictions against 

Mycobacterium tuberculosis using CARAMeL. Our objective was to understand how predicted 

outcomes may change depending on these two factors. For the second project, I collaborated with 

Dr. Karthik Srinivasan at the U-M Kellogg Eye Center in using TACTIC to determine drug 

combinations predicted to be selectively synergistic against causative agents of endophthalmitis, 

a serious type of eye infection. For both projects, my direct contribution was to generate drug 

interaction outcome predictions that could be validated in the lab or clinic with the help of my 

collaborator. In describing my role in these two projects, I demonstrate how computational 

approaches like CARAMeL and TACTIC can effectively guide combination therapy design to 

maximize the odds of observing synergistic interactions at the clinical stage. 

4.1 Applying CARAMeL to Assess Changes in Drug Interaction Outcomes for 

Tuberculosis during Disease Progression 

4.1.1 Background 

Tuberculosis (TB) is an airborne infectious disease caused by Mycobacterium tuberculosis (M. tb), 

which primarily resides and causes disease within the lung but is also capable of causing 
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extrapulmonary infections (Sharma et al., 2021). According to the World Health Organization 

(WHO), TB is the second leading cause of death due to an infection (after COVID-19), causing 

~1.6 million deaths in 2021 alone (World Health Organization, 2015). Individuals infected with 

M. tb experience one of two disease states: latent, where M. tb cells reside in a dormant state of no 

growth, or active, where M. tb becomes virulent and transmissible to others. TB is one of the most 

widespread infectious diseases, though its incidence is disproportionately higher within 

underdeveloped regions in Africa and Asia (World Health Organization, 2015). Due to scarce 

availability of thorough medical interventions in such TB-concentrated regions, active TB cases 

often go undetected or improperly treated. Lack of treatment can lead to further growth and spread 

of M. tb, while improper care allows M. tb to develop various levels of drug resistance. 

 Two classes of drug-resistant M. tb are clinically recognized based on which anti-TB agents 

are rendered ineffective (Seung et al., 2015). The first is multidrug-resistant (MDR) M. tb, which 

is resistant to isoniazid (INH) and rifampin (RIF, a.k.a. rifampicin) (the two most potent first-line 

agents). The second class is extensively drug-resistant (XDR) M. tb, which is resistant to INH, 

RIF, a fluoroquinolone (the primary group of second-line treatments), and a second-line injectable 

agent. Though not classified as a drug-resistant class, dormant M. tb cells that form during latent 

TB play a key role in maintaining their persistent survival within a host (Gomez & McKinney, 

2004). Hence, complete clearance of M. tb cells can be nearly impossible to achieve and the host 

may carry the risk of TB reactivation over the course of their lifetime.   

 From a macroscopic perspective, classifying TB as being in an active or latent phase can 

sufficiently capture the spectrum of TB progression; however, current TB research is focused on 

elucidating a microscopic-level view of how M. tb cells interact with host immune cells (Pai et al., 

2016). From this point of view, TB infection is broken down into the following events. First, M. 
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tb cells enter the human host via the respiratory tract and travel down to the lung where they 

encounter alveolar macrophages (AMs). As the first-line defense, AMs engulf M. tb cells and 

encapsulate them within phagosomes to eliminate M. tb via phagocytosis. M. tb cells that evade 

death are able to hijack AMs, which may then allow M. tb to gain access into the lung interstitium. 

Within this new environment, other immune cells (i.e., T and B cells) act as a second-line defense 

to contain the infection by forming multicellular structures called granulomas. These structures 

serve two conflicting roles, depending on the perspective: for the host, granulomas act as barriers 

that prevent M. tb cells from migrating to other regions; for M. tb, granulomas provide a protected 

environment where they can continue to survive and replicate (i.e., latent TB). If the bacterial load 

within the granuloma becomes too great, the granuloma may burst and M. tb cells may escape to 

cause further infection (i.e., active TB). Given that the state of granuloma structures directly drives 

active or latent TB, and hence which therapy is most appropriate for a TB-infected patient, TB 

research is heavily focused on understanding these structures (Ramakrishnan, 2012). Importantly, 

the core region is comprised of caseum, a necrotic formation of infected foamy macrophages that 

provide a high-lipid, low-oxygen, and mildly acidic growth environment. Such conditions allow 

M. tb to persist beyond antibiotic exposure, thus allowing M. tb to enhance its drug resistance 

profile (Sarathy & Dartois, 2020).   

 Due to M. tb heterogeneity in its geographic distribution, resistance profile, and degree of 

infection, TB is a notoriously difficult disease to treat. Hence, the anti-TB regimen that is 

prescribed to a given patient must carefully consider these facets of heterogeneity in order to 

achieve successful M. tb clearance. Within this work, I leverage genome-scale metabolic modeling 

to understand M. tb metabolism for strain- and growth media-specific phenotypes. I also employ 

metabolic modeling to investigate any genetic vulnerabilities for M. tb growing within caseum 
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conditions, which are believed to harbor drug-tolerant or dormant M. tb cells. Finally, I incorporate 

simulated metabolic response data into CARAMeL (described in Chapter 2) to predict strain- and 

growth media-specific drug interaction outcomes. Upon validating that model predictions align 

with the expected outcomes for standard anti-TB regimens, I inspect the prediction landscape to 

determine how drug interaction outcome predictions vary across strain and growth media axes. 

4.1.2 Methodology 

4.1.2.1 Transcriptomics data collection 

Transcriptomics (i.e., bulk gene expression) data was collected from six published sources and one 

unpublished dataset provided by the Sherman Lab at the University of Washington (UW) (Figure 

4-1A). Gene expression data measured for 43 drugs was retrieved from the INDIGO-MTB study 

(Ma et al., 2019), which is the same data that was used in the CARAMeL publication (Chung & 

Chandrasekaran, 2022). Strain-specific data was collected from two publications which 

collectively characterized four phenotypic strains of M. tb. The first study, conducted by Colangeli 

et al. (Colangeli et al., 2018), measured gene expression changes in clinical M. tb isolates from 

patients who either were completely cured of TB or experienced TB relapse following first- and/or 

short-line therapy. Of note, higher MIC values for INH and RIF below the standard resistance 

breakpoints were associated with isolates from patients who experienced disease relapse; this may 

indicate a shift towards drug tolerance in the relapsed strains. The second study, led by Verma et 

al. (Verma et al., 2019), measured gene expression changes for M. tb isolates collected from TB-

infected households with either low or high transmission rates. Of note, the authors found that 

transmission phenotypes were associated with distinct lung pathologies and granuloma 

composition. 
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Figure 4-1 CARAMeL-Mtb approach schematic. (A) Data measuring bulk M. tb gene expression (i.e., 
transcriptomics) across 111 clinically relevant conditions was collected from six individual data sources. This data 
collection was filtered to remove low-quality reads (N = 17) then processed to determine differentially expressed 
genes (DEGs). (B) The curated dataset included DEG information on 94 drug-, strain-, and media-specific conditions. 
(C) DEG information was integrated into the M. tb genome-scale metabolic model (GEM) iEK1008 (Kavvas et al., 
2018), which returned simulations of condition-specific metabolic responses. This data was then fed into a machine 
learning model predictive of drug interaction outcomes for M. tb (CARAMeL-Mtb). (D) Using both iEK1008 and 
CARAMeL-Mtb, four computational analyses were conducted: (1) gene essentiality (GE) prediction in caseum-
mimicking media, (2) prediction of the minimum bactericidal concentration (MBC) in caseum compared to broth 
media, (3) clinical outcome prediction for 57 multi-drug regimens, and (4) prediction of pairwise drug interaction 
outcomes in strain- and media-specific conditions. 
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 The remaining four transcriptomic data sources characterized M. tb growing in two types 

of environments: macrophages derived from TB-infected mouse lungs and within caseum 

conditions. Data from two published sources used distinct methodologies to measure gene 

expression for M. tb growing within alveolar or interstitial macrophages (AMs or IMs) of TB-

infected mice. The first source (GEO accession: GSE116394) collected samples from AMs at 24 

hours post-infection and employed Path-seq to measure enrichment of intracellular M. tb 

transcripts (Peterson et al., 2019). The second source (GEO accession: GSE132354) collected 

samples from both AMs and IMs at 14 days post-infection and applied dual RNA-seq to measure 

changes in M. tb gene expression (Pisu et al., 2020). Of note, the second source defined the in vivo 

M. tb transcriptome based on two references: differential gene expression compared to M. tb 

cultured in 7H9 broth or bone marrow-derived macrophages (BMDM).  

 Data on M. tb growth within caseum conditions was collected from two sources, which 

together measured gene expression changes for M. tb cultured in caseum-like growth media or 

rabbit-derived caseum samples. The published study, led by Sarathy et al. (Sarathy et al., 2023), 

introduced caseum-mimicking media conditions that aimed to reproduce the host lipid profile of 

ex vivo rabbit caseum. This study evaluated three inducers of foamy macrophage cells that 

characterize natural caseum conditions, namely: irradiated M. tb (iMTB), stearic acid (SA), and 

oleic acid (OA). M. tb gene expression was measured in each of these three caseum mimics at four 

timepoints: day 0 (shortly after infection induction), day 14, day 28, and day 42 (2-, 4-, and 6-

weeks post-infection, respectively). Of note, the authors found that iMTB and SA most adequately 

resembled the properties and phenotypic behavior of M. tb cultured in rabbit caseum over time. 

The last data source, which comes from the Sherman Lab at UW, recapitulated M. tb growth in the 

SA-based caseum mimicking growth media at the same later timepoints but a different initial 
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timepoint (days 7, 14, 28, and 42). This dataset also provides gene expression measurements for 

M. tb within caseum samples collected from lung lesions (N = 43) of different TB-infected rabbits 

housed at the National Institutes of Health (NIH).  

4.1.2.2 Inferring differential gene expression from bulk transcriptomics data 

In total, the transcriptomics data collection is representative of 111 individual M. tb phenotypes: 

growth in response to 43 drug treatments, 4 clinical strains (cured, relapsed, low, high), growth in 

5 mouse lung references (AM-H24, AM-D14-7H9, AM-D14-BMDM, IM-D14-7H9, IM-D14-

BMDM), growth in 4 caseum mimics at 4 timepoints each (iMTB, SA, OA at days 0, 14, 28, 42 

and HN878 at days 7, 14, 28, 42), and growth in 43 rabbit caseum extracts. Prior to data processing, 

17 samples from the caseum set were removed due to low quality or low transcript coverage. These 

included all OA-based caseum mimic timepoints, the iMTB-based caseum mimic at day 14, and 

12 rabbit caseum extracts. The remaining 94 M. tb transcriptomic profiles (Figure 4-1B) were then 

analyzed for differentially expressed genes (DEGs) as 5 independent datasets. The first dataset 

was derived from the INDIGO-MTB study, which provided z-score normalized gene expression 

values; hence, DEGs were determined based on z-score thresholds of +/- 2 for up- and down-

regulated genes, respectively. Considering that the two studies that measured strain-specific M. tb 

transcriptomics were conducted by overlapping research groups (Colangeli et al., 2018; Verma et 

al., 2019), strain-specific DEGs were determined from a combined dataset including the following: 

10 samples collected from patients cured of TB, 8 samples collected from patients who 

experienced TB relapse, 5 samples collected from TB-infected households with low transmission, 

8 samples collected from high transmission households, and reference transcripts for M. tb H37Rv 

measured in triplicate. DEGs were determined by calculating the log2 fold-change (log2FC) in 

average gene expression for the four strains (cured, relapsed, low, high) compared to the average 
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for the reference (H37Rv). The third and fourth datasets provided the log2FC in gene expression 

along with the adjusted p-values for M. tb transcripts collected from mouse AMs at 24 hours and 

both AMs and IMs 14 days post-infection, respectively. This information was directly interpreted 

to determine DEGs for M. tb growing within TB-infected mouse lungs. Of note, the fourth dataset 

provided log2FC and adjusted p-value data based on two reference points: M. tb cultured in 7H9 

broth or BMDM media. The fifth dataset included all samples relating to caseum conditions, and 

DEGs were determined by calculating the log2FC in gene expression within caseum mimics or 

rabbit caseum compared to a 7H9 broth control. For all log2FC-based DEG data, up- and down-

regulated genes were inferred as those having values above 1 or less than -1 (indicative of 2-fold 

or larger changes), respectively. 

4.1.2.3 Simulating condition-specific M. tb metabolism 

The M. tb genome-scale metabolic model (GEM) known as iEK1008 (Kavvas et al., 2018) was 

used to simulate condition-specific metabolic responses. Of note, the objective function was set as 

the ATP maintenance reaction (i.e., ATPM) and not biomass based on the assumption that M. tb 

does not prioritize growth but instead, strategically modulates its metabolic activity to fluctuate 

between active and dormant states. The constrain-flux-regulation (CFR) algorithm (Campit & 

Chandrasekaran, 2020; Shen, Cheek, et al., 2019) was used to integrate curated M. tb 

transcriptomics data into iEK1008 to simulate condition-specific reaction fluxes at steady-state 

(Dataset 4-1, Figure 4-1C). In general terms, the CFR algorithm applies additional GEM 

constraints that maximize fluxes through reactions associated with up-regulated genes (“on” 

reactions) while minimizing fluxes through reactions controlled by down-regulated genes (“off” 

reactions). Of note, this method requires parameter fine tuning for the following three variables: 

kappa, which sets the relative weights for “off” reactions; rho, which sets the relative weights for 
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“on” reactions; and epsilon, which specifies the minimum flux through “on” reactions. The optimal 

set of CFR parameter values was determined by balancing the following three criteria: (1) 

minimizing the number of phenotypes simulated to have zero flux through the objective function, 

(2) maximizing the variability in the objective function solution across all phenotypes, and (3) 

maximizing the Spearman rank correlation between CARAMeL predictions against 

experimentally measured drug interaction scores for M. tb (refer to Chapter 2 for further details). 

Upon inspecting all CFR parameter set permutations by varying each variable from 10-3 to 1 

(Table 4-1), the following set yielded the best results and was used for all downstream analyses: 

kappa = 10-1, rho = 10-1, epsilon = 10-3. 

Table 4-1 Results for constrain-flux-regulation (CFR) parameter optimization. * Chosen parameters for CARAMeL-
Mtb. Pzero = percentage of conditions with zero flux through the objective function, Var(obj) = variance in the objective 
function flux across conditions, R: Spearman rank correlation between model predictions and experimentally 
measured drug interaction data for M. tb. 

 Kappa Rho Epsilon Pzero Var(obj) R 
 0.001 0.001 0.001 0.265 0 0 
 0.01 0.01 0.001 0.546 0.002 0 

* 0.1 0.1 0.001 0.591 0.017 0 
 1 1 0.001 0.483 8.147 0 
 0.001 0.001 0.01 0.524 0 0 
 0.01 0.01 0.01 0.271 6E-04 0 
 0.1 0.1 0.01 0.553 0.153 0 
 1 1 0.01 0.554 5.721 0 
 0.001 0.001 0.1 0.316 0 0 
 0.01 0.01 0.1 0.355 0 0 
 0.1 0.1 0.1 0.354 0.06 0 
 1 1 0.1 0.577 1.629 0 
 0.001 0.001 1 0.322 0 0 
 0.01 0.01 1 0.371 0 0 
 0.1 0.1 1 0.298 0.002 0 
 1 1 1 0.51 7.781 0 
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4.1.3 Results 

Using both the M. tb GEM (iEK1008) and a CARAMeL model trained on M. tb drug interaction 

data (CARAMeL-Mtb), we conducted the following four computational analyses (Figure 4-1D):  

1. Gene essentiality (GE) prediction in caseum-mimicking media (N = 11) compared to a 

broth reference 

2. Minimal bactericidal concentration (MBC) prediction for 12 anti-TB drugs in all caseum 

conditions (N = 42)  

3. Clinical outcome prediction for 57 multi-drug regimens in all clinically relevant media (N 

= 47) compared to a no media reference 

4. Drug interaction outcome prediction for all possible pairwise interactions between 43 drugs 

(N = 903) across all clinical strains (N = 4) and clinically relevant media (N = 47) 

The purpose, implementation, and findings for each of these four analyses is further elaborated 

below. 

 The first analysis (GE prediction) aimed to pinpoint caseum-specific genetic vulnerabilities 

that could be experimentally validated. For this analysis, two constraints were applied onto 

iEK1008: single-gene deletion across all annotated genes (N = 1008) and media-specific growth 

inferred from transcriptomic data integration for all caseum-mimicking conditions (N = 11). GE 

was quantified as the relative change in the flux through the objective function (ATPM) for a gene 

knockout model compared to the media-corresponding gene-intact model (Dataset 4-2). GE for 

the broth reference was determined by carrying out single-gene deletion simulations without the 

media-specific constraint. Genes with differential essentiality in caseum-mimicking conditions 

compared to the broth reference were defined as those yielding more than 5% difference in the 

relative change in ATPM flux for at least one caseum mimic. Based on this criterium, four genes 
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were found to have differential essentiality between broth vs. caseum mimics (Figure 4-2): sucC 

(succinyl-CoA ligase subunit beta), sucD (succinyl-CoA ligase subunit alpha), acn (iron-regulated 

aconitate hydratase), and dctA (a probable C4-dicarboxylate-transport transmembrane protein). Of 

note, deletion of any ATP synthase subunit (N = 8) unsurprisingly yielded infeasible objective 

function solutions and were omitted from this analysis considering that ATPM flux is reliant on 

ATP synthase. The first three genes (sucC, sucD, acn) are primarily involved in the tricarboxylic 

acid (TCA) cycle, which is one of the three pathways directly involved in ATP production (Bonora 

et al., 2012). The fourth gene (dctA) is involved in the two-component system for the transport of 

TCA cycle intermediates (e.g., succinate) (Janausch et al., 2002). Upon inspecting the relative 

change in ATPM flux due to knockout of these four genes, the initial and last timepoints for M. tb 

growth in caseum mimics (days 0 and 42) are generally similar to the broth reference. This implies 

that metabolic adaptation to growth within a caseum-like media is a slow process, and that M. tb 

may fully adapt to this new environment within six weeks. Interestingly, the GE predictions 

indicate that ATP maintenance is relatively lower in M. tb growing within caseum-mimicking 

media at intermediate timepoints. Lower ATP production and/or usage may indicate that the cell 

is less metabolically active, thus perhaps entering a dormant state that is associated with persistent 

survival (Sarathy & Dartois, 2020). 
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Figure 4-2 Differential gene essentiality prediction in caseum-mimicking conditions. The flux through the ATP 
maintenance (ATPM) reaction (set as the objective function for iEK1008) was simulated for 1008 single-gene 
knockout M. tb strains across 11 caseum-mimicking conditions (iMTB, SA, HN878) and a reference broth condition. 
Gene essentiality was quantified based on the relative change in the flux through the ATPM reaction due to the single-
gene deletion compared to gene-intact M. tb simulated in the corresponding condition. Four genes (sucC, sucD, acn, 
and dctA) were found to have differential essentiality (>5% change in ATPM flux) in at least one caseum-mimicking 
condition compared to the broth reference. 

 The second analysis (MBC prediction) tested how well CARAMeL-Mtb could predict 

caseum-specific MBC by comparing experimental data against model predictions for drug-media 

interaction outcomes. The experimental data specifically measured the MBC90 (drug concentration 

to achieve 90% cell killing) for 12 drug treatments against M. tb cultured in both broth and caseum 

media (Dataset 4-3). The log2FC of the MBC90 in caseum compared to broth was used to validate 

model predictions. CARAMeL-Mtb was used to predict drug-media interaction outcomes between 

12 drugs and all caseum conditions (N = 42). Model predictions, which are returned as interaction 

scores (IS) based on the Loewe Additivity Model (Loewe & Muischnek, 1926), were then 

translated into synergy (IS < 0) or antagonism (IS ≥ 0) labels and compared against the equivalent 

translation of the experimental data (log2FC(MBC90) > 1 indicating antagonism, log2FC(MBC90) 

≤ 1 indicating synergy). The agreement (i.e., accuracy) between experimental data and model 
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predictions for all caseum conditions returned discrete results (Figure 4-3), with most conditions 

(N = 30) yielding high performance (accuracy > 0.9). Of note, predictions based on rabbit caseum 

conditions generally agreed better with experimental data compared to caseum-mimicking 

conditions. Within caseum mimics, the iMTB mimic timepoints yielded the most accurate 

predictions (accuracy > 0.9) while the HN878 mimic timepoints returned accuracies less than 0.6 

(Dataset 4-4). These results provide one indication that the iMTB-based caseum mimic may best 

resemble ex vivo caseum lesions; however, the MBC prediction results are taken with caution due 

to the low sample size (N = 12).  

 

Figure 4-3 Minimal bactericidal concentration prediction in caseum conditions. The CARAMeL-Mtb model was used 
to predict the outcome for 12 drug-media pairs across 42 caseum conditions. Model predictions were compared against 
the minimal bactericidal concentration required for 90% cell killing (MBC90) that was measured for the 12 drugs (see 
Dataset 4-3). Prediction agreement with experimental data was quantified as the classification accuracy, where 
synergy was defined by MBC90 ≤ 1 and predicted interaction score (IS) < 0, while antagonism was defined by MBC90 
> 1 and predicted IS ≥ 0. 

 The third analysis (clinical outcome prediction) evaluated whether media-specific drug 

interaction predictions aligned better with clinical outcomes compared to standard (i.e., drug-only) 

predictions. For this analysis, CARAMeL-Mtb was used to predict drug interaction outcomes for 

57 multi-drug regimens for which clinical outcomes (i.e., % culture clearance after 8 weeks) were 

measured (Bonnett et al., 2017). Media-specific outcome predictions were generated across all 

clinically relevant media conditions (mouse-derived macrophage samples, caseum-mimicking 

media, rabbit caseum samples, N = 47), and the no media reference predictions were determined 
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based on ML features defined by the drug interactions alone (Dataset 4-5). Agreement between 

model predictions and actual clinical outcomes was quantified by the inverse Spearman rank 

correlation and a two-sample t-test of clinical outcome values grouped by the predicted class 

(synergy defined by IS < 0 and antagonism defined by IS >= 0). Based on these two metrics, 

predictions based on a rabbit caseum sample (R002-12-S4) were found to best align with clinical 

outcomes and outperformed the standard predictions. Specifically, both prediction sets 

significantly agreed with clinical outcomes based on the inverse correlation (Figure 4-4A and 

Figure 4-4B) but only predictions determined within the R002-12-S4 condition significantly 

differentiated clinical outcomes based on the predicted class (Figure 4-4C and Figure 4-4D). 

These findings highlight the importance of predicting drug interaction outcomes in condition-

specific cases, which may better reflect combination therapy outcomes observed in the clinic. 
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Figure 4-4 Clinical outcome predictions across 47 clinically relevant growth media conditions. Predictions for 57 
multi-drug regimens were determined across 47 conditions representative of growth within macrophage cells, caseum-
mimicking media, or rabbit caseum lesions. Prediction agreement with actual regimen outcomes (measured as the % 
culture clearance) was evaluated based on (A-B) the inverse Spearman rank correlation between actual and predicted 
outcomes and (C-D) a two-sample t-test measuring the difference in clinical outcomes between predicted synergy and 
antagonism labels. Predictions determined within a rabbit caseum condition (R002-12-S4) yielded the most accurate 
results (B, D) and are visually compared against predictions generated without a media-specific context (A, C). 

 The last analysis (prediction landscape for pairwise drug interactions across strain and 

media axes) aimed to explore how drug interaction outcomes differ between strain- and media-

specific conditions. For this analysis, CARAMeL-Mtb was used to generate ~170,000 outcome 

predictions for all possible pairwise drug combinations between 43 drugs (N = 903) across four 

clinical M. tb strains (cured, relapsed, low, high) and 47 clinically relevant media conditions 

(Dataset 4-6). This prediction landscape was then inspected to carry out two main tasks: (1) 

evaluate how the predicted interaction outcome for INH + RIF (a central first-line treatment for 
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TB) changes across clinical M. tb strains and media conditions, and (2) identify drug combinations 

with significantly different predicted outcomes based on the clinical M. tb strain and/or the media 

type (defined as three groups: macrophage, caseum mimic, and rabbit caseum). For the first task, 

INH + RIF predictions were visualized as a strain-by-media clustered heatmap, with negative IS 

values indicating synergy and positive IS values indicating antagonism (Figure 4-5). Interestingly, 

this combination was predicted to be more antagonistic against the relapsed strain compared to all 

others, with strong antagonistic outcomes predicted in several rabbit caseum samples. These 

predictions align with the expected outcome for INH + RIF in the relapsed strain, considering that 

higher MIC values for INH and RIF were determined for clinical isolates from patients who 

experienced TB relapse in the originating study (Colangeli et al., 2018). Another notable finding 

is that INH + RIF is predicted to be synergistic against all strains when M. tb is simulated to reside 

within the macrophage and the HN878 (i.e., second SA-based) caseum mimic condition. On the 

other hand, this combination is predicted to be antagonistic in most rabbit caseum samples as well 

as the iMTB and SA caseum mimics. These prediction trends indicate that the iMTB and SA 

mimics may better resemble ex vivo caseum lesion conditions, and that M. tb may be more tolerant 

against INH + RIF within caseum compared to when it is encapsulated within macrophages. 
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Figure 4-5 Predicted outcomes for INH + RIF across four M. tb strains and 47 media conditions. Strain- and media-
specific outcome predictions for isoniazid (INH) combined with rifampicin (RIF) are shown as a clustered heatmap, 
where negative predictions for the interaction score (IS) correspond with synergy and positive prediction values 
correspond with antagonism.  
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For the second task, a two-way analysis of variance (2-way ANOVA) test was conducted 

for each drug combination to determine whether the predicted outcome significantly differs 

between clinical M. tb strains and/or the media condition type (macrophage vs. caseum mimics vs. 

rabbit caseum). Based on this analysis, 79 drug combinations were found to have a significant 

difference (adjusted p-value < 0.05) in the predicted outcome according to the strain type (Figure 

4-6A). Overall, the predicted outcomes for this drug interaction subset did not reveal any variations 

that clearly distinguish between the simulated M. tb strain types (Figure 4-6D); however, drug 

interaction outcomes for the relapsed strain in several rabbit caseum conditions (N = 9, PC2 > 0.5) 

were predicted to be more strongly antagonistic compared to all other strain- and media-specific 

conditions. The 2-way ANOVA results evaluating the media effect revealed that outcome 

predictions for nearly all drug combinations (898 out of 903) significantly differ based on the 

media type (Figure 4-6B). Interestingly, the predicted values for this subset can differentiate media 

conditions into three distinct clusters (Figure 4-6E). The smallest cluster (N = 9, PC2 > 3) captures 

the relapsed strain simulated in the nine rabbit caseum conditions that were previously identified 

in the strain-specific analysis. The other two clusters (separated at the PC1 = 0 line) were found to 

have opposite drug interaction outcomes for 749 drug combinations (Data S6). Specifically, 

synergy was generally predicted for M. tb strains simulated within all macrophage conditions, all 

HN878 caseum mimics, most SA caseum mimics, and several rabbit caseum samples. On the other 

hand, antagonistic outcomes were predominantly predicted for all drug combinations within the 

remaining media conditions (all iMTB caseum mimics and most rabbit caseum samples). Based 

on the 2-way ANOVA test, the prediction landscape was also inspected for drug combinations for 

which the predicted outcome is significantly influenced by both the simulated strain and media 

type. This analysis revealed 37 drug combinations for which outcome predictions are significantly 
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impacted by both factors (Figure 4-6C). Interestingly, all combinations involved at least one of 

three fluoroquinolones (which target DNA gyrase), namely: levofloxacin (LEV), moxifloxacin 

(MOX), and ofloxacin (OFX1) (Data S6). Similar to the findings from the strain- and media-

specific analyses, outcome predictions for the relapsed strain in nine rabbit caseum samples are 

strongly antagonistic and can distinguish these conditions from all others (Figure 4-6F, PC1 > 0.5 

and PC2 < -0.1).  
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Figure 4-6 Strain- and media-differentiating drug interactions. The outcome for 903 pairwise drug combinations was predicted across four clinical M. tb strains 
and 47 clinically relevant media conditions. Strain- and/or media-differentiating drug interactions were determined based on a 2-way analysis of variance (ANOVA) 
test. Collectively, predicted outcomes are significantly (adjusted p-value < 0.05) differentiated based on (A) the M. tb strain for 79 drug combinations, (B) the 
media type for 898 drug combinations, and (C) both strain and media factors for 37 drug combinations. (D-F) Principal component analysis (PCA) visualization 
for each subset of differentiated drug interactions reveal that the media type has a stronger effect on the predicted outcome, where drug pair interactions are 
suggested to be predominantly antagonistic in most caseum conditions. 
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4.1.4 Discussion 

Within this work, I sought to investigate how clinically relevant phenotypes related to M. tb drug 

resistance or tolerance levels and growth during different stages of TB progression may influence 

drug interaction outcomes. For this purpose, I compiled a collection of bulk M. tb transcriptomics 

data measuring gene expression changes across 94 conditions categorized into four types: response 

to single drug treatments, the clinical strain type, growth within mouse-derived AMs or IMs 

(representative of early TB infection), and growth within caseum (central structure within 

granulomas, indicative of later TB disease progression). By integrating this data collection into the 

M. tb GEM iEK1008, I simulated condition-specific metabolic signatures and subsequently fed 

this information into a CARAMeL model to develop CARAMeL-Mtb, a predictive model of 

strain- and media-specific drug interaction outcomes against M. tb.  

 Using both iEK1008 and CARAMeL-Mtb, I completed four computational analyses. First, 

I used iEK1008 to predict gene essentiality in caseum-mimicking media and determined that 

deletion of four genes involved in the TCA cycle (sucC, sucD, acn, and dctA) result in much lower 

ATP activity in caseum mimic conditions compared to M. tb growth in broth. This confirmed that 

most caseum-mimicking conditions work as expected by inducing a more dormant state for M. tb. 

Second, I applied CARAMeL-Mtb to predict drug-media interaction outcomes across all caseum 

conditions and found that most rabbit caseum conditions yielded predictions that best aligned with 

experimentally measured MBCs for 12 anti-TB drugs. Of note, predictions based on the iMTB-

based caseum mimic were comparable to those determined in context of these rabbit caseum 

samples. Third, I employed CARAMeL-Mtb to predict multi-drug interaction outcomes across all 

media conditions (both AM/IM and caseum types) and determined that predictions within a rabbit 

caseum sample (R002-12-S4) most accurately agreed with data measuring clinical outcomes (i.e., 
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% culture clearance after 8 weeks of treatment). Of note, these condition-specific predictions 

aligned better with clinical data compared to predictions made without media-specific context. For 

the fourth analysis, I generated outcome predictions for 903 drug pairs across four strain- and 47 

media-specific conditions. After inspecting how this prediction landscape varies across strain- and 

media-specific axes, I found that the media condition more strongly influenced drug interaction 

outcomes. Specifically, nearly all drug interactions were predicted to be more synergistic against 

M. tb residing within macrophages and SA-based caseum-mimicking conditions compared to most 

rabbit caseum and iMTB-based caseum-mimicking conditions. 

 Overall, two main conclusions can be drawn based on the findings from the four 

computational analyses described above. First, combined drug treatments may be more effective 

during the early stages of TB disease, before the development of granulomas and casea within 

which M. tb can persist. This trend may align with a previous study which found that M. tb drug 

tolerance in caseum increases by 3- to 400-fold compared to broth culture depending on the drug 

(Sarathy et al., 2018). The second conclusion is that the iMTB-based caseum-mimicking media 

may best reflect the growth conditions within actual caseum. This is based on the fact that all iMTB 

caseum mimic conditions matched most rabbit caseum conditions for MBC predictions (Data S3) 

and patterns observed across the strain- and media-specific prediction landscape (Figure 6). 

However, these conclusions are currently hypothetical and require experimental or clinical 

validation to ascertain that they reflect actual M. tb behavior. Nonetheless, this work showcases 

how CARAMeL can be used to understand how drug interaction outcomes can be modulated in 

condition-specific cases. 
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4.2 Leveraging TACTIC to Determine Narrow-spectrum Combination Therapies for 

Treating Bacterial Cases of Endophthalmitis 

4.2.1 Background 

Endophthalmitis is one form of eye infection that is characterized by bacterial or fungal 

colonization of the fluidic region within the eyeball (Simakurthy & Tripathy, 2023). Compared to 

other types of eye infection, endophthalmitis has low incidence (Watson et al., 2018); however, 

this disease is considered to be a time-sensitive ophthalmic emergency as untimely or improper 

treatment may lead to blindness. Endophthalmitis can be classified based on the causative agent, 

mode of entry, and time between agent entry and infection onset. The causative agent can be 

bacterial or fungal in nature, and a bacterial agent can be further narrowed down based on different 

staining techniques (e.g., Gram stain, acid-fast stain). Endophthalmitis results from one of two 

modes of entry: exogeneous, which may be due to a traumatic injury or surgical operation (Fabiani 

et al., 2022), or endogenous, which occurs due to an underlying systemic complication such as 

diabetes or immunosuppression (Sadiq et al., 2015). Exogenous endophthalmitis that occurs after 

a surgical procedure is further classified based on time of onset post-surgery as fulminant (within 

four days), acute (within six weeks), or chronic (after six weeks). All these factors are critical to 

quickly pinpoint for an individual patient in order to prescribe the most effective treatment 

regimen. 

 Based on a retrospective study that identified the primary pathogen for more than 900 cases 

of endophthalmitis (Gentile et al., 2014), most infections (~85%) are caused by Gram-positive 

bacteria (e.g., Staphylococcus spp.) followed by Gram-negative bacteria (~10%, e.g., 

Pseudomonas aeruginosa) and fungal pathogens (~5%, e.g., Candida albicans). Depending on the 

causative agent, antifungal or antibacterial therapies are prescribed to clear or neutralize the 
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infection. For bacterial cases, two antibiotics, one broadly targeting Gram-positive pathogens (e.g., 

vancomycin) and the other having broad-spectrum activity against Gram-negative species (e.g., 

ceftazidime), are commonly given as initial treatments (Simakurthy & Tripathy, 2023). Once the 

causative agent is identified at the species-level, antibiotics with more narrow-spectrum activity 

are prescribed. Of note, the use of narrow-spectrum therapies is generally preferred to avoid any 

development of antibiotic resistance due to overexposure to unnecessary treatments (T. Das, 2020). 

Narrow-spectrum therapies are also ideal for minimizing any detrimental effects on commensal 

bacteria of the ocular microbiome such as Corynebacterium spp., which was recently shown to 

heighten host immunity against eye infections (St. Leger et al., 2017). 

 Within this study, I collaborated with Dr. Karthik Srinivasan (a visiting scholar at the U-

M Kellogg Eye Center) to identify narrow-spectrum drug synergies against pathogens identified 

for internal cases of endophthalmitis. Specifically, I applied the TACTIC model (described in 

Chapter 3) to identify combination therapies predicted to have synergistic effect against 

pathogenic bacteria yet additive or antagonistic effect on commensal species. Upon validating 

TACTIC model predictions against expected drug interaction outcomes based on clinical and 

literature-based evidence, I propose a set of 48 drug pairs (out of 2,628 combinations) for further 

experimental and clinical investigation. 

4.2.2 Methodology 

Based on culture tests for internal endophthalmitis cases at the U-M Kellogg Eye Center (KEC), 

the following six species were identified as the primary pathogens: P. aeruginosa, Pseudomonas 

mendocina, Pseudomonas putida, Pseudomonas stutzeri, Neisseria spp., and Gemella 

haemolysans. For this set of pathogens, 15 antibiotics are typically used to clear bacterial infections 

(Table 4-2), with the combination of gatifloxacin (GAT) and moxifloxacin (MOX) used as the 
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first-line treatment. According to literature evidence on the ocular microbiome (Doan et al., 2016; 

Ozkan et al., 2017), species belonging to the Corynebacterium, Propionibacterium, and 

Staphylococcus genera are predominantly found on the eye surface of healthy individuals. Based 

on the combined information above, the full TACTIC model was employed to predict drug 

interaction outcomes for all possible pairwise combinations between 73 drugs against 12 bacterial 

strains (Dataset 4-7). The drug selection included 12 out of the 15 antibiotics used at the U-M 

KEC that could be accounted for by the omics data used in the TACTIC model; all other 

compounds were those represented within the drug interaction data that was used to train the 

TACTIC model. The strain selection was based on the genomes that were available in 

OrtholugeDB (Whiteside et al., 2013) for both pathogenic and commensal bacteria. Altogether, 

the 12 strains represent the following eight species: P. aeruginosa, P. mendocina, P. putida, P. 

stutzeri, Neisseria gonorrhoeae, Neisseria meningitidis, Corynebacterium kroppenstedtii, and 

Propionibacterium propionicum (Table 4-3). Of note, no genomes were available for species 

belonging to the Gemella genus, and the Staphylococcus genus was not included in the commensal 

set due to evidence of staphylococci commonly being the causative agent for Gram-positive 

endophthalmitis cases (Gentile et al., 2014).  
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Table 4-2 Antibiotics for treating internal cases of endophthalmitis. * used for first-line treatment. Abb.: 
abbreviation. 

Abb. Compound Target Class Included  
AMK Amikacin 

Protein synthesis, 30S 
Aminoglycoside 

Yes 

 
GEN Gentamicin  
CHL Chloramphenicol Phenylpropanoid  
CIP Ciprofloxacin 

DNA gyrase Quinolone 

 
GAT Gatifloxacin * 
LEV Levofloxacin  
MOX Moxifloxacin * 
OFL Ofloxacin  
CET Cefotaxime 

Cell wall 

Cephalosporin 
 

CFX Cefuroxime  
CFZ Ceftazidime  
VAN Vancomycin Glycopeptide  
IMI Imipenem Carbapenem 

No 
 

PIP Piperacillin Penicillin  
TAZ Tazobactam Beta-lactamase Beta-lactamase inhibitor  

 

Table 4-3 Bacterial strains included in TACTIC application against endophthalmitis. Ten strains belonging to the 
Pseudomonas and Neisseria genera were designated as pathogenic agents while the remaining two strains were 
representative of commensal species that naturally reside in the ocular microbiome.  

Organism Strain Gram Stain Group 

Pseudomonas aeruginosa 

DK2 

Negative Pathogen 

NCGM2.S1 
PA7 
UCBPP-PA14 

Pseudomonas mendocina ymp 

Pseudomonas putida 
KT2440 
S16 

Pseudomonas stutzeri DSM 10701 
Neisseria gonorrhoeae FA 1090 
Neisseria meningitidis MC58 
Corynebacterium kroppenstedtii DSM 44385 

Positive Commensal 
Propionibacterium propionicum F0230a 

 

4.2.3 Results 

In total, the TACTIC model generated more than 30,000 predictions that account for 2,628 unique 

drug pairs across 12 strains. Before inspecting this prediction landscape for interactions with 
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narrow-spectrum synergy, model predictions for the first-line treatment (GAT + MOX) as well as 

drug combinations experimentally tested against P. aeruginosa based on literature were evaluated. 

Experimental data was collected from two studies that measured the efficacy of antibiotic 

combinations against clinical or drug-resistant strains of P. aeruginosa. The first study, led by 

Kapoor & Murphy (P. Kapoor & Murphy, 2018), quantified the fractional inhibitory concentration 

(FIC) for five drug pairs, out of which three could be compared against TACTIC model 

predictions. The second study, conducted by Olsson et al. (Olsson et al., 2020), reported the class-

based interaction outcome (i.e., synergy or antagonism) for polymyxin B (PMB) combined with 

13 other antibiotics; out of 13 combinations, nine could be compared against TACTIC model 

predictions. Figure 4-7 shows the predicted interaction scores across all strains for the 13 drug 

combinations that could be compared against clinical or literature-based evidence. Three 

conclusions were drawn from these results:  

1. GAT + MOX is predicted to be mildly synergistic against all P. aeruginosa and Neisseria 

strains, but antagonistic for the other Pseudomonas species. For the commensal strains (C. 

kroppenstedtii and P. propionicum), this combination is predicted to be additive (i.e., 

neutral). These predictions indicate that GAT + MOX may be an effective first-line therapy 

for cases of endophthalmitis primarily caused by P. aeruginosa or Neisseria spp. but not 

for other cases. If these species-specific outcomes are shown to be true in the clinic, GAT 

+ MOX may not be the optimal first-line treatment due to its incomplete and weak coverage 

against all identified pathogenic strains. 

2. The three combinations from the Kapoor & Murphy study that could be compared against 

TACTIC predictions are ceftazidime (CFZ) + ciprofloxacin (CIP), CFZ + tobramycin 

(TOB), and CIP + TOB. Amongst these three, CFZ + TOB was the only combination to 
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experimentally show synergy for two out of four clinical strains of P. aeruginosa. TACTIC 

model predictions indicate that CFZ + TOB is relatively more synergistic than CFZ + CIP 

or CIP + TOB, thus aligning with literature-based trends.  

3. Out of the 13 drug combinations involving PMB, the TACTIC model correctly predicts 

that PMB yields stronger synergies when paired with aztreonam (AZT), fosfomycin (FOS), 

minocycline (MIN), and rifampicin (RIF) compared to other drugs. 

The conclusions above indicate that the predictions generated by the TACTIC model can be 

generally trusted and may align with experimental and/or clinical outcomes. 
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Figure 4-7 TACTIC prediction of 13 clinically or experimentally measured drug interactions. TACTIC model 
predictions across two commensal residents of the ocular microbiome and ten causative agents for clinical cases of 
endophthalmitis for 13 drug interactions with clinical or experimental data. Negative (blue) predicted interaction 
scores (IS) indicate synergy while positive (red) predictions indicate antagonism. Refer to Dataset 3-2 for more 
information on abbreviated drug names. 

 Based on the assurance provided above, I next inspected the prediction landscape for drug 

combinations with narrow-spectrum synergy against pathogenic strains. To conduct this 

investigation, I first assessed the correlation between model predictions generated for different 
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strains (Figure 4-8). As expected, predictions for different P. aeruginosa strains were highly 

correlated with one another (R ~ 1). Predictions for the two Neisseria strains were also highly 

correlated (R ~ 1). Interestingly, the correlation between P. aeruginosa predictions and those for 

other Pseudomonas species was lower (R ~ 0.9) than the correlations determined within the latter 

set (R ~ 0.95). Importantly, the predictions for C. kroppenstedtii and P. propionicum correlated 

well with each other (R ~ 0.95) and were dissimilar from predictions for all pathogenic strains (R 

< 0.9). These trends indicated that drug combinations with narrow-spectrum synergy against 

pathogenic bacteria may indeed exist within the prediction landscape generated by the TACTIC 

model. Drug combinations with narrow-spectrum synergy against pathogenic strains were defined 

as those having a predicted IS ≥ 0 (indicative of outcomes towards antagonism) for commensal 

strains while having a predicted IS < 0 (indicative of outcomes towards synergy) for all pathogenic 

strains. Based on these criteria, I identified 48 out of 2,628 possible drug combinations having 

narrow-spectrum synergy against pathogenic bacteria (Figure 4-9, Dataset 4-8). A quick 

inspection of the ten most synergistic drug interactions against pathogenic strains (most negative 

mean predicted IS, top ten rows in Figure 4-9) revealed a few combinations that involve 

gentamicin (GEN) and CFZ, which are commonly used to treat endophthalmitis and are more 

effective against Gram-negative pathogens (Benz et al., 2004). Interestingly, the remaining top 

synergistic set includes combinations involving at least one antibiotic active against the bacterial 

cell wall (mechanism of CFZ activity) but these combinations have not yet been investigated in 

treating endophthalmitis caused by bacterial agents. Considering that the effectiveness of CFZ in 

treating endophthalmitis has steadily decreased over the past few decades (Joseph et al., 2019), the 

proposed set of 48 drug interactions predicted to be selectively synergistic against Pseudomonas 

and Neisseria species may be worth exploring for clinical use.  
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Figure 4-8 Correlation between species-specific drug interaction predictions. Heatmap visualization of the Pearson 
correlation between drug interaction score predictions for two commensal strains of the ocular microbiome and ten 
pathogenic strains in clinical cases of endophthalmitis. 
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Figure 4-9 Drug combinations predicted to have arrow-spectrum synergy against pathogenic strains. Out of 2,628 
drug combinations, 48 were predicted to have narrow-spectrum synergy against causative agents for endophthalmitis 
(predicted IS < 0 against pathogenic strains, predicted IS ≥ 0 for commensal strains). Refer to Dataset 3-2 for more 
information on abbreviated drug names. 
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4.2.4 Discussion 

For this project, I sought to identify drug combinations that are selectively synergistic against 

causative agents for internal cases of endophthalmitis at the U-M KEC. To complete this task, I 

applied the fully trained TACTIC model (described in Chapter 3) to generate drug interaction 

outcome predictions across a selection of pathogenic and commensal bacteria of the eye. In 

collaboration with Dr. Karthik Srinivasan at the U-M KEC, we identified species belonging to the 

Pseudomonas and Neisseria genera to be the primary pathogens for internal cases of 

endophthalmitis (Table 4-3). Based on literature characterizing the normal ocular microbiome 

(Doan et al., 2016; Ozkan et al., 2017) and genomic information available in OrtholugeDB 

(Whiteside et al., 2013), I designated C. kroppenstedtii and P. propionicum as representative 

commensals of the eye microbiome.  

 In total, I generated outcome predictions for 2,628 drug pairs across a panel of 12 bacterial 

strains (10 pathogens and 2 commensals). Before scanning this prediction landscape for narrow-

spectrum synergies, I validated that TACTIC model predictions aligned with observed outcomes 

for internal cases of endophthalmitis treated with GAT + MOX as well as experimental data 

measuring drug interaction outcomes for clinical strains of P. aeruginosa (P. Kapoor & Murphy, 

2018; Olsson et al., 2020). I then inspected the prediction landscape for drug interactions predicted 

to be synergistic (IS < 0) against pathogenic strains and additive or antagonistic (IS ≥ 0) against 

commensal strains. Based on these two criteria, I identified 48 drug combinations that are 

selectively synergistic against pathogens that were identified for internal cases of endophthalmitis. 

A few of the most selectively synergistic drug combinations (AMoXicillin + GEN, BACitracin + 

GEN, AMPicillin + CFZ) involve antibiotics that are commonly used to treat endophthalmitis 

(Benz et al., 2004). Although the remaining combinations of the 48-set of narrow-spectrum 



 139 

synergy involve antibiotics that have not previously been investigated for treating endophthalmitis, 

they serve as a manageable starting point for discovering new combination therapies that 

effectively treat bacterial cases of endophthalmitis.  

4.3 Datasets 

All supplementary data files from this chapter are available in the following external location: 

https://www.dropbox.com/s/m8zwd7297ho5yh8/Chung_Carolina_Dissertation_Data.xlsx?dl=0  

 

Dataset 4-1 Curated and processed bulk M. tb transcriptomics data used for CARAMeL-Mtb (1009 x 95). 

Dataset 4-2 Gene essentiality (GE) predictions for all iEK1008 genes across all caseum-mimicking conditions (N = 
11) and a broth control, with values scaled by media-corresponding gene-intact references. Includes metadata on 
gene names, description, and associated pathways (1010 x 16). 

Dataset 4-3 Drug-media interaction outcome predictions made with CARAMeL-Mtb for 12 anti-TB drugs across all 
caseum conditions (N = 42). Includes metadata on drug names and MBC90 measurements in broth and caseum (13 x 
47). 

Dataset 4-4 Drug-media prediction accuracy against MBC90 measurements across all caseum conditions (N = 42). 
Includes information on the caseum condition type (mimics vs. rabbit) (43 x 3). 

Dataset 4-5 Multi-drug interaction outcomes predictions made by CARAMeL-Mtb for 57 regimens across all 
clinically relevant media conditions (N = 47) and a no media reference. Includes metadata on clinical outcome 
measurements (58 x 50). 

Dataset 4-6 Pairwise drug interaction outcome predictions made by CARAMeL for all possible drug pairs among 
43 drugs (N = 903) across four clinical strain types and 47 media conditions. Includes p-values calculated from a 2-
way ANOVA test evaluating strain-only, media-only, or strain-media effect on the predicted outcome (904 x 192). 

Dataset 4-7 Pairwise drug interaction outcome predictions made by TACTIC for all possible drug pairs among X 
drugs (N = 2628) across 12 strains related to clinical cases of endophthalmitis or the normal ocular microbiome 
(2629 x 13). 

Dataset 4-8 The set of 48 drug pairs predicted to have narrow-spectrum synergy activity against pathogenic strains 
for clinical cases of endophthalmitis (49 x 13). 

 

  

https://www.dropbox.com/s/m8zwd7297ho5yh8/Chung_Carolina_Dissertation_Data.xlsx?dl=0
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Chapter 5 Conclusions and Future Directions 

5.1 Summary of Findings 

Broadly speaking, my dissertation research focused on tackling the problem of antibiotic resistance 

(AR), a major global health crisis with detrimental consequences if left unaddressed (Centers for 

Disease Control and Prevention, 2019; World Health Organization, 2014). Specifically, I set out 

to optimize the design of antibiotic combination therapies, which offer a promising solution to AR 

but are difficult to translate into clinical use (Farha & Brown, 2019; Tyers & Wright, 2019). The 

challenges implicated with developing this therapeutic option include: (a) the exponential 

explosion in the combinatorial space to search as the number of drugs and dosage levels to screen 

increases, (b) the heterogeneity in bacterial drug response due to cell-specific genetic and 

phenotypic states, and (c) the limited mechanistic insight that empirical methods for combination 

therapy design currently offer. To overcome these barriers, I developed two computational 

methods that predict drug interaction outcomes in precise cell state and cellular growth contexts. 

  The first approach is CARAMeL (Chapter 2), which stands for Condition-specific 

Antibiotic Regimen Assessment using Mechanistic Learning. This approach leverages genome-

scale metabolic models (GEMs) (Price et al., 2004) and machine learning (ML) (Greener et al., 

2021) to generate condition-specific drug interaction outcome predictions. This is computationally 

achieved by simulating the metabolic response to individual conditions (e.g., single drug 

treatments, growth in minimal media) and using this data to engineer ML features for a drug 

interaction to predict its outcome (e.g., synergy, additivity, or antagonism). Although similar 
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computational methods that predict drug synergy have been developed before (Chandrasekaran et 

al., 2016; Cokol et al., 2018; Ma et al., 2019), I show that CARAMeL models generate comparable 

and sometimes more accurate predictions than previous models. I also demonstrate how 

CARAMeL can be used to predict media-specific, single-cell, and sequential drug interaction 

outcomes, which had not been previously done with similar methodologies. Most importantly, I 

showcase how CARAMeL can be leveraged to expedite and optimize combination therapy design 

by identifying 24 out of 528 (<5%) drug combinations predicted to be synergistic against 

Escherichia coli across different media conditions and regardless of simultaneous or sequential 

prescription. Of note, some of these combinations possessed evidence of clinical use. 

 The second approach that I developed is TACTIC (Chapter 3), which stands for Transfer 

learning And Crowdsourcing to predict Therapeutic Interactions Cross-species. As the name 

implies, this approach implements transfer learning (Torrey & Learning, 2010) and crowdsourcing 

(Vaughan, 2018) to generate strain-specific drug interaction outcome predictions. This is 

accomplished by integrating data from multiple organisms (e.g., E. coli, Mycobacterium 

tuberculosis) and transferring this information to other organisms (e.g., Acinetobacter baumannii, 

Staphylococcus aureus) via orthology mapping to engineer ML features used for predictive 

modeling. Based on a data collection of drug interaction outcomes measured across 12 bacterial 

strains, I show that TACTIC models can better predict drug interaction outcomes for unseen 

microbes compared to INDIGO (Chandrasekaran et al., 2016), a prior computational approach that 

serves as the inspiration for TACTIC. Using a TACTIC model trained on the entire cross-species 

data collection, I predict outcomes for 3,828 drug interactions across 18 strains representative of 

commensal (i.e., health-promoting) or pathogenic (i.e., disease-causing) bacteria. I then inspect 

this prediction landscape to identify substantially smaller sets of drug interactions (N < 100) 
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predicted to have narrow-spectrum synergy against all pathogens or specific groups of pathogens 

(e.g., Gram-negative species, non-tuberculous mycobacteria).  

 Beyond developing CARAMeL and TACTIC and demonstrating use cases for each one, I 

apply both approaches to predict combined drug treatment outcomes against causative agents for 

tuberculosis (TB) (Pai et al., 2016) and endophthalmitis (Simakurthy & Tripathy, 2023) (Chapter 

4). For the first application regarding TB, I use CARAMeL to predict drug interaction outcomes 

for clinical strains of M. tuberculosis (M. tb) simulated at different stages of TB progression. 

CARAMeL model predictions indicate that drug interaction outcomes differ based on both strain- 

and growth condition-specific factors, although the latter was found to have a larger impact on 

predicted outcomes. Specifically, changes in predicted outcomes across growth conditions (proxy 

for TB progression) imply that therapeutic interventions are most effective when given at early 

infection timepoints before M. tb can adapt to external stresses. This hypothesis aligns with 

previous studies that have shown greater M. tb resistance and tolerance against anti-TB drugs 

within conditions representative of late-stage TB infection (Gomez & McKinney, 2004; Sarathy 

et al., 2018; Stewart et al., 2003), often leading to incomplete infection clearance and TB relapse.  

 For the second application regarding endophthalmitis, I use the TACTIC model developed 

in Chapter 3 to predict drug interaction outcomes against bacterial agents that cause 

endophthalmitis (i.e., Pseudomonas spp.) as well as bacterial species believed to serve commensal 

roles within the ocular microbiome (i.e., Corynebacterium spp.) (St. Leger et al., 2017). This 

selection of organisms was specifically chosen to screen for combination therapies with the 

potential of achieving precise efficacy against internal cases of endophthalmitis at the U-M 

Kellogg Eye Center. Out of 2,628 drug interactions that were screened, I identified 48 (~2%) that 

are predicted to be selectively synergistic against pathogenic strains. Of note, this set includes drug 
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combinations involving antibiotics that are commonly used to treat endophthalmitis (Benz et al., 

2004); but most importantly, this reduced set provides a manageable starting point for developing 

new combination therapies effective against bacterial cases of endophthalmitis. 

 CARAMeL and TACTIC are tangible outcomes from my dissertation work. Within the 

scope of my research, I demonstrated how each approach could be leveraged to discover more 

effective regimens against tuberculosis and endophthalmitis, two infectious diseases that are 

clinically challenging to treat. Both computational approaches have the potential to aid in the 

discovery of new combination therapies with precise efficacy against other infectious diseases, 

with the long-term goal of mitigating antibiotic resistance. To this end, CARAMeL and TACTIC 

are both publicly available in adaptable formats that are primed for extended use by other research 

groups to optimize the design of antibiotic combination therapies. 

5.2 Limitations 

Though CARAMeL and TACTIC serve as novel methodologies for designing antibiotic 

combination therapies, it is critical to highlight several data- and computation-related limitations 

that pertain to both approaches. Data-related issues include the need for integrating more omics 

data and consolidating discrepancies in the quantification of drug interaction outcomes. Regarding 

omics data integration, additional information on the drug response for other bacteria that are 

phylogenetically different from E. coli or M. tuberculosis (e.g., S. aureus) may lead to more 

accurate predictions for strain-specific drug interaction outcomes. The inclusion of other omics 

data types (e.g., proteomics) may also help to gain a more holistic picture of the bacterial response 

to combined drug treatments. Regarding the quantification of drug interaction outcomes, a 

consensus on which mathematical model to use (e.g., Loewe or Bliss) and what drug dosages to 

explore (e.g., linear or logarithmic dilutions) does not currently exist. Disagreement over these 
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choices can lead to different measured outcomes for the same drug interaction, which hinders the 

development of an accurate predictive model for drug synergy. Computational tools built to 

automate outcome quantification have recently been introduced to address this concern (Ianevski 

et al., 2020; Wooten et al., 2021). It is worth exploring whether the unanimous use of one of these 

tools to quantify drug interactions could improve the utility of aggregated datasets for the 

computational design of combination therapies.  

 Regarding computation-related limitations of CARAMeL and TACTIC, both approaches 

do not yet implement the full capacity for modeling using GEMs and ML. Specifically, the 

metabolic response to different conditions (e.g., drug treatment) is only simulated at steady-state 

in the CARAMeL approach. This constraint can only capture the metabolic state of a cell at a 

single timepoint (i.e., when the organism has adapted to the given condition); hence, it is not 

suitable for considering dynamic changes in the bacterial drug response. This may explain why 

CARAMeL predictions for sequential drug interaction outcomes were moderately accurate in 

comparison to predictions for simultaneous interactions. Several methods that can simulate 

dynamic metabolic changes using GEMs exist and could be incorporated into the CARAMeL 

approach to improve the prediction of sequential therapy outcomes (Campit & Chandrasekaran, 

2020; Chung et al., 2021; N. E. Lewis et al., 2012). Regarding the ML aspect in CARAMeL and 

TACTIC, both approaches were developed using random forests (RF) (Breiman, 2001) as the 

foundational algorithm. Though RF was chosen due to its advantages as a white-box (i.e., 

explainable) ensemble method that generates robust predictions, it has limited predictive power 

for unseen situations (e.g., drug combinations involving drugs that it has not been trained on). As 

a traditional ML method, RF also relies heavily on manual feature engineering. To overcome these 

limitations, deep learning (DL) algorithms could be used to develop next-generation CARAMeL 
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and TACTIC models. DL methods provide two advantages over RF: (1) the prediction accuracy 

improves as more data is integrated into the model, and (2) DL methods can learn to identify 

informative features from the input data, therefore alleviating some of the effort required in feature 

engineering (LeCun et al., 2015). It is worth noting that DL methods are more complex, and hence, 

incur large computation costs and are difficult to interpret. Nonetheless, using DL methods as a 

new foundation for CARAMeL and TACTIC models holds great potential for generating more 

accurate predictions for unseen drug interactions. This, in turn, may promote the establishment of 

predictive modeling as a standard step in the pipeline for designing and developing new antibiotic 

combination therapies. 

5.3 Future Directions for Advancing Combination Therapy Discovery and Design 

5.3.1 CARAMeL and TACTIC for anti-fungal and anti-cancer combination therapy design 

Within the scope of this work, CARAMeL and TACTIC were developed to specifically aid the 

design of antibiotic combination therapies. Beyond the bacterial space, the use of combination 

therapies to overcome drug resistance is a strategy that can be adopted to tackle other disease areas. 

Here I briefly discuss two diseases for which CARAMeL and TACTIC could be extended to: drug-

resistant fungal infections and cancer. 

 Regarding fungal infections, the Centers for Disease Control and Prevention have begun 

to recognize certain fungi as emerging public health concerns, namely: azole-resistant Aspergillus 

fumigatus and multi-drug resistant Candida auris (Centers for Disease Control and Prevention, 

2019). Similar to antibiotic-resistant pathogens, resistant strains of A. fumigatus and C. auris pose 

serious threats that could unexpectedly claim thousands of lives annually if left unchecked (Rayens 

& Norris, 2022). The concern over rising drug resistance in fungal pathogens is exacerbated by 

the fact that, compared to antibiotics, few anti-fungal treatment options are available (McDermott, 
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2022). Within the past few decades, there has been growing interest in designing combination 

therapies to more effectively treat fungal infections (Baddley & Pappas, 2005; Johnson & Perfect, 

2010; Kontoyiannis & Lewis, 2004). At the same time, drug response and drug interaction data 

have been measured in tangentially related fungal species such as Saccharomyces cerevisiae and 

Candida albicans (Shrestha et al., 2015; Wildenhain et al., 2016). Considering that these data types 

have not yet been widely measured in A. fumigatus nor C. auris, the TACTIC approach could be 

integrated with S. cerevisiae and C. albicans data to predict drug interaction outcomes against 

drug-resistant fungal pathogens, and in turn, deduce combinations to explore as potential 

therapeutic options to treat fungal infections.  

 The search for combination therapy to treat cancer dates back farther than its application 

to address antibiotic resistance, with the first combination therapy suggested for clinical use 

proposed in 1965 to treat leukemia (Frei E 3rd et al., 1965). Since then, combination therapy design 

has been a mainstay strategy for combating various cancer types (Mokhtari et al., 2017; Webster, 

2016). Operating based on the understanding that cancer arises from dysregulation of multiple 

signaling pathways, anti-cancer combination therapy design is traditionally guided by empirical 

knowledge of how to target multiple pathways in parallel (Jia et al., 2009; Mokhtari et al., 2017). 

However, the successful clinical translation of combination therapy candidates identified in vitro 

is extremely low (Schmidt et al., 2023), possibly due to the complexity and heterogeneity in cancer 

cell response to drug treatments. Considering the abundance of drug response and drug interaction 

data that is available for multiple cancer types (Barretina et al., 2012; H. Liu et al., 2020; Shtar et 

al., 2022), coupled with the systemic-level of complexity and heterogeneity entailed in this disease 

area (Junttila & De Sauvage, 2013; Vasan et al., 2019), the CARAMeL approach may prove to be 

useful in designing anti-cancer combination therapies with these factors in mind.  
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5.3.2 Accounting for host-specific factors during combination therapy design 

A critical component that is lacking in CARAMeL and TACTIC, as well as other computational 

methods for combination therapy design, is the consideration of host-specific factors that influence 

bacterial or cancer cell response to treatment. Here I highlight the importance of understanding 

how the host-specific microbiome and immune system interact with disease-causing cells. In 

context of AR, the microbiome may play a spectrum of roles where on one end, it may provide a 

reservoir of antibiotic resistance genes that bacterial pathogens could adopt via horizontal gene 

transfer (Baron et al., 2018). On the other end, further understanding of the host microbiome could 

be harnessed to more effectively clear problematic infections, such as the case where fecal 

microbiota transplantation (FMT) was shown to effectively overcome recurring infection by 

Clostridium difficile (Bakken et al., 2011). In tandem with the microbiome, the host immune 

system also plays a significant role in fighting against malignant cells. In relation to AR, there is 

interest in investigating the use of immune-boosting compounds that could indirectly fight 

pathogens by disarming their virulence factors and enhancing immune-based bactericidal activity 

(Munguia & Nizet, 2017). In fact, immunotherapy (i.e., the stimulation of the immune system to 

treat a disease) has widely gained traction for the treatment of cancer within the past decade 

(Couzin-Frankel, 2013). Considering the unexpected yet successful stories of FMT and cancer 

immunotherapy, the role of the host microbiome and immune system is warranted for antibiotic 

and anti-cancer drug design. Hence, computational methods like CARAMeL and TACTIC, which 

aim to optimize combination therapy design, would benefit from incorporating host-specific 

information. Ultimately, this advancement may lead to more accurate identification of promising 

therapeutic candidates that are clinically proven to overcome drug resistance.  
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