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ABSTRACT

Safe reinforcement learning (RL) is an area of research focused on developing algorithms

and methods that ensure the safety of RL agents during learning and decision-making

processes. The goal is to enable RL agents to interact with their environments and

learn optimal decisions while avoiding actions that can lead to harmful or undesirable

outcomes. This dissertation provides a comprehensive study of model-free, simulator-

free reinforcement learning algorithms for Constrained Markov Decision Processes

(CMDPs) with sublinear regret and zero constraint violation, with the focus on three

settings: (1) episodic CMDPs; (2) infinite-horizon average-reward CMDPs and (3)

non-stationary episodic CMDPs.

The first part provides the first model-free, simulator-free safe-RL algorithm with

sublinear regret and zero constraint violation. The algorithm is named Triple-Q because

it includes three key components: a Q-function (also called action value function) for

the cumulative reward, a Q-function for the cumulative utility of the constraint, and a

virtual Queue that (over)-estimates the cumulative constraint violation. Under Triple-

Q, at each step, an action is chosen based on the pseudo-Q-value that is a combination

of the three “Q” values. The algorithm updates the reward and utility Qvalues with

learning rates that depend on the visit counts to the corresponding (state, action)

pairs and are periodically reset. In the episodic CMDP setting, Triple-Q achieves

Õ
(

1
δ
H4S

1
2A

1
2K

4
5

)
regret when K is large enrough, where K is the total number of

episodes, H is the number of steps in each episode, S is the number of states, A is

the number of actions, and δ is Slater’s constant. Furthermore, Triple-Q guarantees

x



zero constraint violation, both on expectation and with a high probability, when K

is sufficiently large. Finally, the computational complexity of Triple-Q is similar to

SARSA for unconstrained MDPs, and is computationally efficient. In Chapter III, the

results are extended to infinite-horizon average-reward Constrained Markov Decision

Processes (CMDPs). The proposed algorithm guarantees Õ
(√

SAκ
δ

K
5
6

)
regret and

zero constraint violation, where κ and δ are two constants independent of the learning

horizon K.

Then in Chapter IV the dissertation studies safe-RL in a more challenging setting,

non-stationary CMDPs, where the rewards/utilities and dynamics are time-varying and

likely unknown a priori. In the nonstationary environment, reward, utility functions,

and transition kernels can vary arbitrarily over time as long as the cumulative variations

do not exceed certain variation budgets. We propose the first model-free, simulator-free

RL algorithms with sublinear regret and zero constraint violation for non-stationary

CMDPs in both tabular and linear function approximation settings with provable

performance guarantees. Our results on regret bound and constraint violation for the

tabular case match the corresponding best results for stationary CMDPs when the

total budget is known. Additionally, we present a general framework for addressing

the well-known challenges associated with analyzing non-stationary CMDPs, without

requiring prior knowledge of the variation budget. We apply the approach to both

tabular and linear approximation settings.
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CHAPTER I

Introduction

Reinforcement learning (RL), with its success in gaming [1; 2] and robotics [3],

has been widely viewed as one of the most important technologies for next-generation,

AI-driven complex systems such as autonomous driving, digital healthcare, and smart

cities. However, despite the significant advances (such as deep RL) over the last few

decades, a major obstacle in applying RL in practice is the lack of “safety” guarantees.

Here “safety” refers to a broad range of operational constraints. The objective of a

traditional RL problem is to maximize the expected cumulative reward, but in practice,

many applications need to be operated under a variety of constraints, such as collision

avoidance in robotics and autonomous driving [4; 5; 6], legal and business restrictions in

financial engineering [7], and resource and budget constraints in healthcare systems [8].

These applications with operational constraints can often be modeled as Constrained

Markov Decision Processes (CMDPs), in which the agent’s goal is to learn a policy

that maximizes the expected cumulative reward subject to the constraints. CMDPs

have had an important impact on many other real-world applications: [9] has used

CMDPs to solve a hospital admission scheduling problem, [10] developed a pavement

management system for the state of Arizona to produce optimal maintenance policies

for a 7400−mile network of highways, which saved 14 million dollars in the first year.

A standard formulation for RL with constraints is the Constrained Markov Decision

1



Processes framework [11], in which the agent aims at learning a policy that maximizes

the expected cumulative reward under safety constraints during and after learning.

Model-based Solutions for CMDPS: On model-based approaches, the model

is assumed to be known or can be predicted. This model captures the agent’s

understanding of how the environment behaves and predicts the consequences of

different actions. The first model-based approach, based on Linear Programming (LP),

was first introduced by [12]. The optimal policy can be induced from the decision

variables which correspond to the occupancy measure, and the objective of the LP is

equivalent to the optimal value of the CMDP. [13] proposed an LP-based algorithm

that learns the optimal policy while satisfying the constraints for a CMDP with a

known model. [14; 15; 16; 17; 18] follow a similar approach but learn the models from

the data samples collected. This approach has also been utilized for CMDPs with

linear function approximation [19] under the assumption that the transition kernel is

linear. Leveraging the estimated model, the CMDPs can be solved approximately as

long as the estimate becomes more and more accurate. The works mentioned above

are proven to achieve sublinear constraint violation.

Another approach is to learn the model and find the solution using primal-dual

methods, [18; 17; 20] adopt the principle of optimism in the face of uncertainty

to design a primal-dual approach which achieves a sublinear regret and constraint

violation. [19] extends the studies to constrained episodic MDPs with a linear structure

via a primal-dual type policy optimization algorithm.

While model-based RL algorithms are sample efficient, they need to solve LPs

when the estimated models are updated continuously, so these algorithms are often

computationally inefficient and require a large memory to maintain a large number of

model parameters.

Model-free Solutions for CMDPs: Model-free algorithms, on the other hand,

learn state or action value functions, instead of transition kernels, so they require

2



Table 1.1: Existing Approaches in CMDPs.

Methodology Paper Setting

LP-based
[12; 15; 16]

[17; 18; 20; 31]
Episodic CMDPs

Model-based LP-based [13; 14; 32] Infinite-Horizon Average CMDPs
LP-based Primial-Dual [17; 18; 20] Episodic CMDPs
Primial-Dual [19] Episodic Linear Kernel CMDPs

Model-free Primal-Dual [29; 33] Episodic CMDPs
Primal-Dual [30] Infinite-Horizon Average CMDPs

significantly less memory space and have lower computational complexity. In [21],

the author proposes an actor-critic RL algorithm and shows its asymptotic global

convergence using multi-timescale stochastic approximation theory for infinite-horizon

average-reward CMDPs when the model is unknown. Policy gradient approaches have

also been developed [22; 23; 24] and seen successes in practice for solving constrained

RL problems, though they lack regret and constraint violation analysis. [25; 26; 27]

show that sublinear regrets and constraint violations are achievable when policy

“simulators” (or generative models) are given. Some very recent works [20; 28] show

that sublinear regret bound and zero violation are possible for episodic CMDPs without

simulators. In particular, [20] proposes a model-based algorithm, and [29] presents

a model-free algorithm for episodic CMDPs. [30] extends the model-free approach

to infinite-horizon average reward CMDPs. For safety concerns, [31] proves that it is

possible to achieve zero violation during training given a safe baseline policy based on

a model-based approach.

This dissertation investigates designing computationally efficient, model-free RL

algorithms with provable regret and constraint violation guarantees under a variety

of settings. We summarize the mentioned approaches with provable guarantees in

CMDPs in Table 1.1 to make a detailed comparison.
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1.1 Linear Programming approach for CMDPs

In this section, we present the LP approach for CMDPs which serves the funda-

mental role of designing LP-based algorithms. We consider finite-horizon CMDPs

with time-dependent dynamics. A finite-horizon CMDPs is denoted by the tuple

(S,A, H,P, r, g, µ0), where S is the state space with |S| = S, A is the action space with

|A| = A, H is the horizon. The transition P = {Ph}Hh=1 is a collection of transition

kernels (transition probability matrices). The initial state x1 at the beginning of each

episode is sampled from the distribution µ0. Then at step h, the immediate reward

and utility for taking an action ah at state xh are random variables Rh(xh, ah) and

Gh(xh, ah), with expectation E[Rh(x, a)] = rh(xh, ah) and E[Gh(xh, ah] = gh(xh, ah) re-

spectively. The environment then moves to a new state xh+1 sampled from distribution

Ph(·|xh, ah). Similar to [34], we assume that rh(x, a)(gh(x, a)) : S ×A → [0, 1].

A Markov randomized policy π = (π1, . . . , πH), πi : S → ∆A maps states to a

simplex ∆A on the action set A. We only consider Markov policies here since they are

rich enough to cover all the behavioral policies (policies that depend on all the history).

We will discuss more later in Section 1.2. Then at step h, the action ah ∼ πh(·|xh)

is taken at state xh according to a policy π. Then for any h ∈ [H], (s, a) ∈ S × A,

the reward Q−value function is the expected cumulative reward when an agent starts

from a state-action pair (x, a) at step h and then follows policy π :

Qπ
h(x, a) = rh(x, a) + E

[
H∑

i=h+1

ri(xi, πi(xi))

∣∣∣∣∣ xh = x, ah = a

]
, (1.1)

where the expectation is over the environment, the initial state distribution, and policy

randomness. The value function is expected cumulative rewards from step h to the

end of the episode under policy π, which is defined as:

V π
h (xh) =

∑
a

πh(a|xh)Q
π
h(x, a) (1.2)

4



Similarly, we use W π
h (x) : S → R+ and Cπ

h (x, a) : S × A → R+ to denote the

utility value function and utility Q-function at step h:

Cπ
h (x, a) = gh(x, a) + E

[
H∑

i=h+1

gi(xi, πi(xi))

∣∣∣∣∣ xh = x, ah = a

]
(1.3)

W π
h (x) =

∑
a

πh(a|xh)C
π
h (x, a). (1.4)

Given the model defined above, the objective of the agent is to find a policy that

maximizes the expected cumulative reward subject to a constraint on the expected

utility:

max
π∈Π

E [V π
1 (x1)] subject to: E [W π

1 (x1)] ≥ ρ, (1.5)

where we assume ρ ∈ [0, H] to avoid triviality since all the value functions are in [0, H]

due to the assumptions on the bound on reward/utility functions. We also assume that

VH+1(x) = WH+1 = 0 for any x ∈ S. We can reformulate the optimization problem

by using the occupancy measure [35; 11]. The occupancy measure qπ of a policy π is

defined as the set of distributions generated by executing the policy π :

qπh(x, a;P) := E[I{xh=x,ah=a|x1∼µ0,P,π}] = Pr{xh = x, ah = a|x1 ∼ µ0,P, π}. (1.6)

For ease of notation, We define the matrix notation qπ ∈ RHSA, where its (x, a, h),P

and the initial distribution of x1 is given by qπh(x, a;P) are given and clear. This

implies the value function can be rewritten as the occupancy measure:

V π
1 (x1) =E

[
H∑

h=1

rh(xh, ah|x1 ∼ µ0, π)

]
=

H∑
h=1

E [rh(xh, ah)|x1 ∼ µ0, π]

=
H∑

h=1

∑
x,a

rh(x, a) Pr{xh = x, ah = a|x1 ∼ µ0, π}

=
∑
h,x,a

qπh(x, a;P)rh(x, a) := r⊤qπ, (1.7)

5



where the second equality holds due to the linearity of expectation, and r ∈ RHSA

such that the element x, a, h element is given by rh(x, a). Similar, we can have

W π
1 (x1) = g⊤qπ. Thus the objective of a CMDP can be formulated as :

π∗ ∈ argmin r⊤qπ (1.8)

s.t.g⊤qπ ≥ ρ. (1.9)

For the occupancy measureq, it is easy to say that for any given policy π, it satisfies

that [36]:

∑
a

qπh(x, a) =
∑
x′,a′

Ph−1(x|x′, a′)qπh−1(x
′, a′), ∀x ∈ S (1.10)

qπh(x, a) ≥0, ∀x, a, (1.11)

for all h ∈ [H]/ {1}, for h = 1 we have that q1(x, a) = π1(a|x) ·µ0(x),∀x, a. We remove

the dependence on the model P in qπh here for ease of notation. Also the occupancy

measure satisfies that
∑

x,a q
π
h(x, a) = 1,∀h ∈ [H]. Also since the occupancy measure

satisfies the affine constraint, the we can state the following property [37]:

Proposition I.1. The occupancy measure is convex.

Then due to the linearity of the constraint function and of the structure of the

occupancy measure, the original control problem can be reduced to an LP problem

where the optimization variables are occupancy measures. The Markov policy πq
h can

be constructed through the occupancy measure qh:

πq
h(a|x) =

qh(x, a)∑
a′ qh(x, a

′)
, ∀(x, a, h) ∈ S ×A× [H]. (1.12)

Thus we are ready to state the formal LP problem as:

6



max
qh

∑
h,x,a

qh(x, a)rh(x, a)

s.t.:
∑
h,x,a

qh(x, a)gh(x, a) ≥ ρ

∑
a

qh(x, a) =
∑
x′,a′

Ph−1(x|x′, a′)qh−1(x
′, a′)

∑
x,a

qh(x, a) = 1,∀h ∈ [H] (1.13)

∑
a

q1(x, a) = µ0(x)

qh(x, a) ≥ 0,∀x ∈ S,∀a ∈ A,∀h ∈ [H].

Therefore, we can observe that we can obtain the optimal policy by solving the

LP problem when the reward functions, utility functions, initial distribution, and

transition probabilities are given.

1.2 The dominance of Markov policies

In order to show the dominance of Markov policies, we first define a history at

time h to be a sequence of previous states and actions, as well as the current state:

bh = (x1, a1, . . . , xh−1, ah−1, xh). Let Bh be the set of all possible histories of length h.

Definition I.2. A policy π is called a behavioral policy if the agent chooses an action

based on the history bh, i.e., a ∼ π(·|bh). The class of all policies defined above is

denoted by U, and is called the class of behavioral policies.

Let UM denote all the Markov policies, for any π ∈ UM , ah is only a function of

xh. Next we define the dominating policies formally:

Definition I.3. A class of policies Ū is said to be a dominating class of policies for

LP optimization problem 1.13. If for any policy π ∈ U there exists a policy π̄ ∈ Ū

7



such that

V π
1 (x1) ≤ V π̄

1 (x1) and W π
1 (x1) ≤ W π̄

1 (x1) (1.14)

Then we have the following theorem:

Theorem I.4. The Markov policies are dominating for any utility function which is a

function of the marginal distribution of state and actions.

Thus the class of Markov policies turns out to be rich enough that for any policy in

U, there exists an equivalent policy in UM that induces the same marginal probability

measure, i.e., the same probability distribution of the pairs (xh, ah), h ∈ [H]. Therefore

we only consider Markov policies for the CMDPs. We refer readers to the detailed

proofs in Theorem 6.1 in [11].

1.3 The structure of this dissertation

The structure of this dissertation is as follows. Chapter II addresses the episodic

CMDP setting and introduces the Triple-Q algorithm, the first model-free RL algorithm

for CMDPs with sublinear regret and zero constraint violation. The algorithm is

named Triple-Q because it includes three key components: a Q-function for the

cumulative reward, a Q-function for the cumulative utility (cost) for the constraint,

and a virtual queue that estimates the cumulative constraint violation. Under Triple-Q,

at each step, an action is chosen based on the pseudo-Q-value that is a combination

of the three “Q” values. Triple-Q combines the principle of “optimism in the face of

uncertainty” to overestimate the Q-values and the principle of “pessimism in the face

of constraints” to pessimistically track the constraint violation. Triple-Q is designed

as a two-time-scale algorithm, which is critical for an accurate estimation of the two

Q values while maintaining a small constraint violation. Triple-Q is proven to achieve

sublinear reward regret and guarantees zero constraint violation.
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Chapter III tackles the more challenging setting of infinite-horizon average-reward

CMDPs, where the agent aims for an optimal long-term average reward under con-

straints. The dissertation presents the first model-free RL algorithm for this setting,

based on the primal-dual approach. Through Lyapunov drift analysis, the algorithm

also achieves the best existing sublinear regret and zero constraint violation results.

Learning in non-stationary CMDPs, where rewards/utilities and dynamics change

over time, presents additional challenges. Chapter IV focuses on designing model-

free algorithms with sublinear regret and zero constraint violation guarantees for

non-stationary CMDPs, particularly when the total variation budget is unknown.

The dissertation presents different algorithms designed for both tabular CMDPs and

linear function approximation in large state and action spaces. These algorithms

employ periodic restart strategies, optimism bonuses, and a general double restart

method based on the “bandit over bandit” idea. Our results [33] on regret bound

and constraint violation for the tabular case match the corresponding best results

for stationary CMDPs when the total budget is known. Additionally, we present a

general framework for addressing the well-known challenges associated with analyzing

non-stationary CMDPs, without requiring prior knowledge of the variation budget.

We apply the approach to both tabular and linear approximation settings.

In the end, Chapter V concludes this dissertation.
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CHAPTER II

Triple-Q: A Model-Free Algorithm for Episodic

CMDP with Sublinear Regret and Zero Constraint

Violation

2.1 Introduction

Reinforcement Learning has gained significant attention because of its successes in

board games and video games such as Go [1] and StarCraft [2], and in highly-complex

robotics systems [3]. An agent’s objective in a typical RL problem is to maximize

the cumulative reward through interacting with an unknown environment. In board

games or video games, the outcomes of a random action are not consequential to

the users (e.g. not life-threatening). However, a careless action in an engineering

system might have catastrophic outcomes such as collisions and fatalities in robotics

and autonomous driving [4; 5; 6] or surgical robotics [38]. We consider cumulative

constraints in episodic CMDPs in this chapter, which include budget constraints,

energy constraints, or structural fatigue in flexible UAVs.

Related Work

Earlier studies on CMDPs assume the model is known. A comprehensive study of

these early results can be found in [11]. RL for unknown CMDPs has been a topic
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of great interest recently because of its importance in Artificial Intelligence (AI) and

Machine Learning (ML). The most noticeable advances recently are model-based RL

for CMDPs, where the transition kernels are learned and used to solve the linear

programming (LP) problem for the CMDP [14; 15; 16; 17; 20; 39], or the LP problem

in the primal component of a primal-dual algorithm [18; 17; 20]. If the transition

kernel is linear, then it can be learned in a sample-efficient manner even for infinite

state and action spaces and then be used in the policy evaluation and improvement

in a primal-dual algorithm [19]. [19] also proposes a model-based algorithm for the

tabular setting (without assuming a linear transition kernel).

The performance of a model-based RL algorithm depends on how accurately a

model can be estimated. For some complex environments, building accurate models is

challenging computationally and data-wise [40]. For such environments, model-free RL

algorithms often are more desirable. However, there has been little development on

model-free RL algorithms for CMDPs with provable optimality or regret guarantees,

with the exceptions [25; 41; 27], all of which require simulators. In particular, the

sample-based NPG-PD algorithm in [25] requires a simulator that can simulate the

MDP from any initial state x, and the algorithms in [41; 27] both require a simulator

for policy evaluation. It has been argued in [42; 43; 34] that with a perfect simulator,

exploration is not needed, and sample efficiency can be easily achieved because the

agent can query any (state, action) pair as it wishes. Unfortunately, for complex

environments, building a perfect simulator often is as difficult as deriving the model for

the CMDP. For those environments, sample efficiency and the exploration-exploitation

trade-off are critical and become one of the most important considerations of RL

algorithm design.
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Table 2.1: The Exploration-Exploitation Tradeoff in Episodic CMDPs.

Algorithm Regret Constraint Violation

OPDOP [19] Õ(H3
√
S2AK) Õ(H3

√
S2AK)

OptDual-CMDP [17] Õ(H2
√
S3AK) Õ(H2

√
S3AK)

Model-based OptPrimalDual-CMDP [17] Õ(H2
√
S3AK) Õ(H2

√
S3AK)

CONRL [15] Õ(H3
√
S3A2K) Õ(H3

√
S3A2K)

OptPess-LP [20] Õ(H3
√
S3AK) 0

OptPess–PrimalDual [20] Õ(H3
√
S3AK) O(1)

OPSRL[39] Õ(
√
S4H7AK) 0

Model-free Triple-Q Õ
(

1
δH

4S
1
2A

1
2K

4
5

)
0

Main Contributions

We consider the online learning problem of an episodic CMDP with a model-free

approach without a simulator. We develop the first model-free RL algorithm for CMDPs

with sublinear regret and zero constraint violation (for large K). The algorithm is

named Triple-Q because it has three key components: (i) a Q-function (also called

action-value function) for the expected cumulative reward, denoted by Qh(x, a) where

h is the step index and (x, a) denotes a state-action pair, (ii) a Q-function for the

expected cumulative utility for the constraint, denoted by Ch(x, a), and (iii) a virtual-

Queue, denoted by Z, which overestimates the cumulative constraint violation so far.

At step h in the current episode, when observing state x, the agent selects action a∗

based on a pseudo-Q-value that is a combination of the three “Q” values:

a∗ ∈ argmax
a

Qh(x, a) +
Z

η
Ch(x, a)︸ ︷︷ ︸

pseudo-Q-value of state (x, a) at step h

, (2.1)

where η is a constant. Triple-Q uses UCB-exploration when learning the Q-values,

where the UCB bonus and the learning rate at each update both depend on the

visit counts to the corresponding (state, action) pair as in [34]). Different from the

optimistic Q-learning for unconstrained MDPs (e.g. [34; 44; 45]), the learning rates
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in Triple-Q need to be periodically reset at the beginning of each frame, where a

frame consists of Kα consecutive episodes. The value of the virtual Queue (the dual

variable) is updated once in every frame. So Triple-Q can be viewed as a two-time-scale

algorithm where virtual-Queue is updated at a slow time scale, and Triple-Q learns

the pseudo-Q-value for fixed Z at a fast time scale within each frame. Furthermore,

it is critical to update the two Q-functions (Qh(x, a) and Ch(x, a)) following a rule

similar to SARSA [46] instead of Q-learning [47], in other words, using the Q-functions

of the action that is taken instead of using the max function.

We prove Triple-Q achieves Õ
(

1
δ
H4S

1
2A

1
2K

4
5

)
reward regret and guarantees zero

constraint violation when the total number of episodes K ≥
(

16
√
SAH6ι3

δ

)5
, where

ι is logarithmic in K. Therefore, in terms of the constraint violation, our bound

is sharp for large K. To the best of our knowledge, this is the first model-free,

simulator-free RL algorithm with sublinear regret and zero constraint violation. For

model-based approaches, it has been shown that a model-based algorithm achieves

both Õ(
√
H4SAK) regret and constraint violation (see, e.g. [17]). Two concurrent

papers [20; 39] developed model-based approaches that achieve zero constraint violation

assuming a strictly safe policy is known a-prior. It remains open that what is the

fundamental lower bound on the regret under model-free algorithms for CMDPs and

whether the regret bound under Triple-Q is order-wise sharp or can be further improved.

Table 2.1 summarizes the key results on the exploration-exploitation tradeoff of CMDPs

in the literature. We note that it is technically more challenging to bound regret and

constraint violation of model-free algorithms for CMDPs than model-based algorithms.

Under a model-based algorithm, the regret and constraint violation are determined by

the accuracy of the estimated model (transition kernels, reward functions, etc). The

accuracy of the estimated model improves as the number of data samples increases,

and so does the performance of the learned policy. Without maintaining a model,

the learning target (the pseudo-Q values) varies over time, depending on the dual
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variables, which becomes a key difficulty in bounding regret and constraint violation

of model-free algorithms for CMDPs. Furthermore, the optimal policy for a CMDP is

stochastic in general, so a greedy policy based on fixed pseudo-Q-values will not be

optimal, which makes it much more challenging than bounding regret of model-free

algorithms for unconstrained MDPs like the optimistic Q-learning [34; 44; 45].

As with many other model-free RL algorithms, a major advantage of Triple-Q

is its low computational complexity. The computational complexity of Triple-Q is

similar to SARSA for unconstrained MDPs, so it retains both its effectiveness and

efficiency while solving a much harder problem. While we consider a tabular setting in

this chapter, Triple-Q can easily incorporate function approximations (linear function

approximations or neural networks) by replacing the Q(x, a) and C(x, a) with their

function approximation versions, making the algorithm a very appealing approach for

solving complex CMDPs in practice.

We note that safe exploration is an active topic in reinforcement learning and

several heuristic methods, without provable guarantees, have been developed over

the past last years (see e.g., [48; 49; 50; 51; 52]). We will compare the performance

of Triple-Q and Deep Triple-Q (Triple-Q with neural networks) with some of these

algorithms in Section 2.4, and demonstrate significant performance improvements

(higher rewards, lower costs, and faster convergence) under Triple-Q.

2.2 Problem Formulation

We consider an episodic CMDP, denoted by (S,A, H,P, {rh}Hh=1, {gh}Hh=1, µ0),

where S is the state space with |S| = S, A is the action space with |A| = A, H is the

number of steps in each episode, and P = {Ph}Hh=1 is a collection of transition kernels

(transition probability matrices). At the beginning of each episode, an initial state x1

is sampled from the distribution µ0. Then at step h, the agent takes action ah after

observing state xh. Then the agent receives a reward rh(xh, ah) and incurs a utility
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gh(xh, ah). The environment then moves to a new state xh+1 sampled from distribution

Ph(·|xh, ah). Similar to [34], we assume that rh(x, a)(gh(x, a)) : S × A → [0, 1], are

deterministic for convenience.

Given a Markovian policy π, which is a collection ofH functions {πh : S → ∆A}Hh=1,

the reward value function V π
h at step h is the expected cumulative rewards from step

h to the end of the episode under policy π :

V π
h (x) = E

[
H∑
i=h

ri(xi, πi(xi))

∣∣∣∣∣xh = x

]
. (2.2)

The (reward) Q-function Qπ
h(x, a) at step h is the expected cumulative reward when

an agent starts from a state-action pair (x, a) at step h and then follows policy π :

Qπ
h(x, a) = rh(x, a) + E

[
H∑

i=h+1

ri(xi, πi(xi))

∣∣∣∣∣ xh = x, ah = a

]
. (2.3)

Similarly, we use W π
h (x) : S → R+ and Cπ

h (x, a) : S ×A → R+ to denote the utility

value function and utility Q-function at step h:

W π
h (x) = E

[
H∑
i=h

gi(xi, πi(xi))

∣∣∣∣∣xh = x

]
, (2.4)

Cπ
h (x, a) = gh(x, a) + E

[
H∑

i=h+1

gi(xi, πi(xi))

∣∣∣∣∣ xh = x, ah = a

]
. (2.5)

Given the model defined above, the objective of the agent is to find a policy that

maximizes the expected cumulative reward subject to a constraint on the expected

utility:

max
π∈Π

E [V π
1 (x1)] subject to: E [W π

1 (x1)] ≥ ρ, (2.6)

where we assume ρ ∈ [0, H] to avoid triviality since all the value functions are in [0, H]

due to the assumptions on the bound on reward/utility functions. The expectation

is taken with respect to the initial distribution x1 ∼ µ0. We remark here that the
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optimal Markovian policy is proven to exist, we refer readers to the book [11].

For simplicity, we adopt the following notation (some used in [34; 19]):

PhV
π
h+1(x, a) = Ex′∼Ph(·|x,a)V

π
h+1(x

′),Qπ
h(x, πh(x)) =

∑
a

Qπ
h(x, a)P(πh(x) = a), (2.7)

PhW
π
h+1(x, a) = Ex′∼Ph(·|x,a)W

π
h+1(x

′),Cπ
h (x, πh(x)) =

∑
a

Cπ
h (x, a)P(πh(x) = a). (2.8)

From the definitions above, we have

V π
h (x) = Qπ

h(x, πh(x)), Q
π
h(x, a) = rh(x, a) + PhV

π
h+1(x, a), (2.9)

W π
h (x) = Cπ

h (x, πh(x)), C
π
h (x, a) = gh(x, a) + PhW

π
h+1(x, a). (2.10)

The results in the chapter can be directly applied to a constraint in the form of

E [W π
1 (x1)] ≤ ρ. Without loss of generality, assume ρ ≤ H. We define g̃h(x, a) = 1−

gh(x, a) ∈ [0, 1] and ρ̃ = H−ρ ≥ 0, E [W π
1 (x1)] ≤ ρ can be written as E

[
W̃ π

1 (x1)
]
≥ ρ̃,

where

E
[
W̃ π

1 (x1)
]
= E

[
H∑
i=1

g̃i(xi, πi(xi))

]
= H − E [W π

1 (x1)] . (2.11)

Let π∗ denote the optimal solution to the CMDP problem defined in (2.6). We

evaluate our model-free RL algorithm using regret and constraint violation defined

below:

Regert(K) = E

[
K∑
k=1

(V ∗
1 (xk,1)− V πk

1 (xk,1))

]
, (2.12)

Violation(K) = E

[
K∑
k=1

(ρ−W πk
1 (xk,1))

]
, (2.13)

where V ∗
1 (x) = V π∗

1 (x), πk is the policy used in episode k and the expectation is taken

with respect to the distribution of the initial state xk,1 ∼ µ0 and the randomness of
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πk. We further make the following assumption.

Assumption II.1. (Slater’s Condition). Given initial distribution µ0, there exist

δ > 0 and policy π such that E [W π
1 (x1)]− ρ ≥ δ.

In this research, Slater’s condition simply means there exists a feasible policy that

can satisfy the constraint with a slackness δ. This has been commonly used in the

literature [19; 25; 17; 53]. We call δ Slater’s constant. While the regret and constraint

violation bounds depend on δ, our algorithm does not need to know δ under the

assumption that K is large (the exact condition can be found in Theorem II.2). This

is a noticeable difference from some of the works in CMDPs in which the agent needs

to know the value of this constant (e.g. [19]) or alternatively a feasible policy (e.g.

[54]) .

2.3 Algorithm

We now formally introduce the algorithm Triple-Q. The design of our algorithm is

based on the primal-dual approach in optimization. While RL algorithms based on the

primal-dual approach have been developed for CMDPs (see. e.g. [19; 25; 18; 17; 20]),

a model-free RL algorithm with sublinear regrets and zero constraint violation is new.

The design of Triple-Q is based on the primal-dual approach in optimization.

Given Lagrange multiplier λ, we consider the Lagrangian of problem (2.6) from a

given initial state x1 :

max
π

V π
1 (x1) + λ (W π

1 (x1)− ρ)

=max
π

E

[
H∑

h=1

rh(xh, πh(xh)) + λgh(xh, πh(xh))

]
− λρ, (2.14)

which is an unconstrained MDP with reward rh(xh, πh(xh)) + λgh(xh, πh(xh)) at step

h. Assuming we solve the unconstrained MDP and obtain the optimal policy, denoted
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by π∗
λ, we can then update the dual variable (the Lagrange multiplier) using a gradient

method:

λ←
(
λ+ ρ− E

[
W

π∗
λ

1 (x1)
])+

. (2.15)

While primal-dual is a standard approach, analyzing the finite-time performance such

as regret or sample complexity is particularly challenging. For example, over a finite

learning horizon, we will not be able to exactly solve the unconstrained MDP for given

λ. Therefore, we need to carefully design how often the Lagrange multiplier should be

updated. If we update it too often, then the algorithm may not have sufficient time

to solve the unconstrained MDP, which leads to divergence; on the other hand, if we

update it too slowly, then the solution will converge slowly to the optimal solution,

and will lead to large regret and constraint violation. Another challenge is that when

λ is given, the primal-dual algorithm solves a problem with an objective different

from the original objective and does not consider any constraint violation. Therefore,

even when the asymptotic convergence may be established, establishing the finite-time

regret is still difficult because we need to evaluate the difference between the policy

used at each step and the optimal policy.

Next, we will show that a low-complexity primal-dual algorithm can converge

and have sublinear regret and zero constraint violation when carefully designed. In

particular, Triple-Q includes the following key ideas:

• A sub-gradient algorithm for estimating the Lagrange multiplier, which is updated

at the beginning of each frame (recall that a frame consists of Kα consecutive

episodes) as follows: Z ←
(
Z + ρ+ ϵ− C̄

Kα

)+
, where (x)+ = max{x, 0} and C̄ is

the summation of all C1(x1, a1)s of the episodes in the previous frame. We call Z

a virtual queue because it is terminology that has been widely used in stochastic

networks (see e.g. [55; 56]). If we view ρ + ϵ as the number of jobs that arrive

at a queue within each frame and C̄ as the number of jobs that leave the queue
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within each frame, then Z is the number of jobs that are waiting at the queue. Note

that we added extra utility ϵ to ρ. By choosing ϵ = 8
√
SAH6ι3

K0.2 , the virtual queue

pessimistically estimates constraint violation so Triple-Q achieves zero constraint

violation when the number of episodes is large.

• A carefully chosen parameter η = K0.2 so that when Z
η
is used as the estimated

Lagrange multiplier, it balances the trade-off between maximizing the cumulative

reward and satisfying the constraint.

• Carefully chosen learning rate αt and Upper Confidence Bound (UCB) bonus bt

to guarantee that the estimated Q-value does not significantly deviate from the

actual Q-value. We remark that the learning rate and UCB bonus proposed for

unconstrained MDPs [34] does not work here. Our learning rate is chosen to be

K0.2+1
K0.2+t

, where t is the number of visits to a given (state, action) pair in a particular

step. This decays much slower than the classic learning rate 1
t
or H+1

H+t
used in [34].

The learning rate is further reset from frame to frame, so Triple-Q can continue to

learn the pseudo-Q-values that vary from frame to frame due to the change of the

virtual-Queue (the Lagrange multiplier).

The detailed description of Triple-Q is presented in Algorithm 1. The algorithm

only needs to know the values of H, A, S,K,, and no other problem-specific values

are needed. Furthermore, Triple-Q includes updates of two Q-functions per step:

one for Qh and one for Ch; and one simple virtual queue update per frame. So its

computational complexity is similar to SARSA.

2.3.1 Main Results

The next theorem summarizes the regret and constraint violation bounds guaran-

teed under Triple-Q.
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Algorithm 1: Triple-Q

1 Choose χ = η = K0.2, ι = 128 log
(√

2SAHK
)
, α = 0.6, and ϵ = 8

√
SAH6ι3

K0.2 ;

2 Initialize Qh(x, a) = Ch(x, a)← H and
Z = C̄ = Nh(x, a) = VH+1(x) = WH+1(x)← 0 for all (x, a, h) ∈ S ×A× [H];

3 for episode k = 1, . . . , K do
4 Sample the initial state for episode k : x1 ∼ µ0;
5 for step h = 1, . . . , H + 1 do
6 if h ≤ H ; // take a greedy action based on the

pseudo-Q-function

7 then

8 Take action ah ← argmaxa

(
Qh(xh, a) +

Z
η
Ch(xh, a)

)
;

9 Observe rh(xh, ah), gh(xh, ah), and xh+1 ;
10 Nh(xh, ah)← Nh(xh, ah) + 1, Vh(xh)← Qh(xh, ah),Wh(xh)←

Ch(xh, ah);
11 if h ≥ 2 ; // update the Q-values for (xh−1, ah−1) after observing

(sh, ah)

12 then

13 Set t = Nh−1(xh−1, ah−1), bt =
1
4

√
H2ι(χ+1)

χ+t
, αt =

χ+1
χ+t

;

14 Update the reward Q-value: Qh−1(xh−1, ah−1)←
(1− αt)Qh−1(xh−1, ah−1) + αt (rh−1(xh−1, ah−1) + Vh(xh) + bt);

15 Update the utility Q-value: Ch−1(xh−1, ah−1)←
(1− αt)Ch−1(xh−1, ah−1) + αt (gh−1(xh−1, ah−1) +Wh(xh) + bt);

16 if h = 1 then
17 C̄ ← C̄ + C1(x1, a1) ; // add C1(x1, a1) to C̄

18 if k mod (Kα) = 0 ; // reset visit counts and Q-functions

19 then

20 Nh(x, a)← 0, Qh(x, a) = Ch(x, a)← H, Z ←
(
Z + ρ+ ϵ− C̄

Kα

)+
,

and C̄ ← 0 ; // update the virtual-queue length

Theorem II.2. Assume K ≥
(

16
√
SAH6ι3

δ

)5
, where ι = 128 log(

√
2SAHK). Triple-Q

achieves the following regret and constraint violation bounds:

Regret(K) ≤ 13

δ
H4
√
SAι3K0.8 +

4H4ι

K1.2
(2.16)

Violation(K) ≤ 54H4ιK0.6

δ
log

16H2
√
ι

δ
+

4
√
H2ι

δ
K0.8 − 5

√
SAH6ι3K0.8. (2.17)

20



If we further have K ≥ e
1
δ , then Violation(K) ≤ 0 and

Pr

(
K∑
k=1

ρ−W πk
1 (xk,1) ≤ 0

)
= 1− Õ

(
e−K0.2+ +

1

K2

)
, (2.18)

in other words, Triple-Q guarantees zero constraint violation both on expectation and

with a high probability.

We note that the theorem holds when K is sufficiently large, and how large K

needs to depend on the slackness δ.

Novelty of the Proof Technique

We remark that a key difference between our analysis and the analysis of the

optimistic Q-learning for unconstrained MDPs [34; 44; 45; 57; 58] is that our proof

relies heavily on the Lyapunov-drift analysis of virtual-Queue Z. The drift analysis

on the Lyapunov function Z2 relates the difference between the optimal reward Q-

function and the learned reward Q-function to the difference between the optimal

pseudo-Q-function and the learned pseudo-Q-function. For fixed Z, Triple-Q can be

regarded as optimistic SARSA for the pseudo-Q-function, so the relationship enables

us to establish the regret bound by analyzing the pseudo-Q-function. Furthermore, the

Lyapunov-drift analysis on the moment generating function of Z, i.e. E[erZ ] yields an

upper bound on Z that holds uniformly over the entire learning horizon. This upper

bound, together with a fundamental relationship between Z and constraint violation,

leads to the constraint violation bound. The Lyapunov drift analysis has been used to

establish sublinear regret and zero constraint violation in constrained linear bandits

[59]. Some of the proofs were inspired by [59]. Compared with bandit problems,

CMDPs, however, is a much more challenging problem due to their sequential nature.
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2.3.2 The choices of the Hyper-parameters in Triple-Q

Recall that the regret upper bound in (2.58) and the constraint violation bound in

(2.60):

Regret(K) =O
(
Kϵ+K1−α +

K

χ
+
√

K2−αχ+
K

η

)
(2.19)

Violation(K) ≤−Kϵ+O
(
Kαη +K1−α +

K

χ
+
√
K2−αχ

)
. (2.20)

Note that we simplify the bounds above by keeping only K and the hyper-parameters

χ, α, ϵ and η, which should be chosen as functions of K. Letting χ = Kβ, in order

to have O(K/χ) and O(
√
K2−αχ) be of the same order, we should choose α = 3β.

Therefore,

Regret(K) =O
(
Kϵ+K1−3β +K1−β +K1−β +

K

η

)
=O

(
Kϵ+K1−β +

K

η

)
(2.21)

Violation(K) ≤−Kϵ+O
(
K3βη +K1−3β +K1−β +K1−β

)
=

−Kϵ+O
(
K3βη +K1−β

)
. (2.22)

To guarantee zero constraint violation, we need to have Kϵ, Kβη and K1−β of the

same order, so we set

ϵ = O
(
K−β

)
and η = O

(
K1−4β

)
.

To minimize the regret upper bound, K1−β and K
η

= K4β should be of the same

order, so β = 0.2, which leads to the choices of α = 0.6, χ = K0.2, ϵ = O(K−0.2), and

η = O(K0.2).
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2.4 Simulation

We remark that when implementing Triple-Q, we do not need to reset all the

Qh(x, a) and Ch(s, a) to H. Instead, we added extra “bonuses” to the learned values at

the beginning of each frame to ensure overestimation. This allows Triple-Q continues

to learn across frames. In particular, at the beginning of each frame, we update all

Q-values as follows to replace lines 18-20.

Algorithm 2: Replacing Lines 18-20 of Triple-Q

1 if k mod (Kα) = 0 ; // reset visit counts and add bonuses to

Q-functions

2 then

3 Nh(x, a)← 0 and Qh(x, a)← Qh(x, a) +
2H3√ι

η
,∀(x, a, h). if Qh(x, a) ≥ H

or Ch(x, a) ≥ H then

4 Qh(x, a)← H and Ch(x, a)← H; Z ←
(
Z + ρ+ ϵ− C̄

Kα

)+
, and

C̄ ← 0 ; // update the virtual-queue length

Consider frame T + 1. Note that if Q+
TKα+1,h(x, a) = C+

TKα+1,h(x, a) = H, then

condition (i) in the proof of Lemma II.5 holds. Otherwise, with the extra bonus, we have

Q+
TKα+1,h(x, a) = Q−

TKα+1,h(x, a) +
2H3√ι

η
< H and C+

TKα+1,h(x, a) = C−
TKα+1,h(x, a) <

H. Here, we use superscript − and + to indicate the Q-values before and after adding

the extra bonus and thresholding. Suppose that the overestimation holds at the end

of frame T, i.e. {F−
TKα+1,h − F π

TKα+1,h}(x, a) ≥ 0 for any π, h and (x, a). Then, at the

beginning of frame T + 1, we have

{FTKα+1,h − F π
h } (x, a)

=Q−
TKα+1,h(x, a) +

ZTKα

η
C−

TKα+1,h(x, a)−Qπ
h(x, a)−

ZTKα

η
Cπ

h (x, a)

+
2H3
√
ι

η
+

ZTKα+1 − ZTKα

η
C−

TKα+1,h(x, a)−
ZTKα+1 − ZTKα

η
Cπ

h (x, a)

≥2H3
√
ι

η
− 2
|ZTKα+1 − ZTKα |

η
H

≥0, (2.23)
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where the last inequality holds because according to Lemma A.2,

|ZTKα+1 − ZTKα | ≤ max

{
ρ+ ϵ,

∑TKα

k=(T−1)Kα+1Ck,1(xk,1, ak,1)

Kα

}
≤ H2

√
ι.

In summary, condition (i) in the proof of Lemma II.5 continues to hold under this

modified algorithm, assuming the overestimation result holds in the previous frame,

so does the overestimation result in frame T + 1. The advantage of this method is

that the algorithm does need to learn the Q-functions from scratch in each frame.

2.4.1 A Tabular Case

We first evaluated our algorithm using a grid-world environment studied in [60].

The environment is shown in Figure 2.1-(a). The objective of the agent is to travel

to the destination as quickly as possible while avoiding obstacles for safety. Hitting

an obstacle incurs a cost of 1. The reward for the destination is 100, and for other

locations, the Euclidean distance between them and the destination is subtracted

from the longest distance. The cost constraint is set to be 6 (we transferred utility to

cost as we discussed in the chapter), which means the agent is only allowed to hit the

obstacles at most six times. To account for the statistical significance, all results were

averaged over 25 trials, the same for later simulations.

The result is shown in Figure 2.2, from which we can observe that Triple-Q can

quickly learn a well-performed policy (with about 20, 000 episodes) while satisfying the

safety constraint. Triple-Q-stop is a stationary policy obtained by stopping learning

(i.e. fixing the Q tables) at 40, 000 training steps (note the virtual-Queue continues

to be updated so the policy is a stochastic policy). We can see that Triple-Q-stop

has a similar performance as Triple-Q and show that Triple-Q yields a near-optimal,

stationary policy after the learning stops.
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Figure 2.1: Grid World and DynamicEnv with Safety Constraints

Figure 2.2:
The average reward and cost under Triple-Q. The shaded region represents
the 95% confidence interval.

2.4.2 Ablation Study

We investigate Triple-Q’s sensitivity to hyperparameter η via an ablation study. As

shown in Figure 2.3, a smaller η,, which represents a higher weight on the constraint,

results in a lower cost while maintaining a similar performance in terms of reward.

2.4.3 Triple-Q with Neural Networks

We also evaluated our algorithm on the Dynamic Gym benchmark (DynamicEnv)

[61] as shown in Figure. 2.1-(b). In this environment, a point agent (one actuator for

turning and another for moving) navigates on a 2D map to reach the goal position

while trying to avoid reaching hazardous areas. The initial state of the agent, the

goal position, and the hazards are randomly generated in each episode. At each
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Figure 2.3: Performance of Triple-Q under different choices of η in the Grid World

step, the agents get a cost of 1 if it stays in the hazardous area; otherwise, there

is no cost. The constraint is that the expected cost should not exceed 15. In this

environment, both the states and action spaces are continuous, we implemented

the key ideas of Triple-Q with neural network approximations and the actor-critic

method. In particular, two Q functions are trained simultaneously, the virtual queue

is updated slowly every few episodes, and the policy network is trained by optimizing

the combined three “Q”s (Triple-Q). The implementation details can be found in

Table 2.2. These hyperparameters are used in two later environments, pendulum and

Ball-1D, as well. We call this algorithm Deep Triple-Q. The simulation results in

Figure 2.4 show that Deep Triple-Q learns a safe policy with a high reward much

faster than WCSAC [61]. In particular, it took around 0.45 million training steps

under Deep Triple-Q, but it took 4.5 million training steps under WCSAC.

Figure 2.4:
The rewards and costs of Deep Triple-Q versus WCSAC during Training
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Table 2.2: Hyperparameters

Parameter Value
optimizer Adam
learning rate 3× 1−3

discount 0.99
replay buffer size 106

number of hidden layers (all networks) 2
batch Size 256
nonlinearity ReLU
number of hidden units per layer (Critic and Actor) 256
virtual queue update frequency 3 episode

We further compared Deep Triple-Q with several existing safe exploration RL

algorithms. We first compared Triple-Q with CBF [50] on the Pendulum environment1.

In this environment, the constraint is that the maximum angle (rad) of the pendulum

cannot exceed 1 radian, otherwise, the episode ends. Since Triple-Q was designed to

address cumulative constraints, we set the threshold of the angel to be 0.5 so that the

angel will not exceed 1 radian with a high probability. The result was averaged over

25 trials. As shown in Figure 2.5, we observed that Triple-Q achieved a higher reward.

Although Triple-Q violated the constraint at the early stage and cannot guarantee a

strictly safe policy during learning, it can learn a relatively safe policy very quickly

without violating the hard constraint. We remark that CBF requires the physical

model of the pendulum as prior knowledge, while Deep Triple-Q does not.

Figure 2.5: Comparison with CBF

1https://gym.openai.com/envs/Pendulum-v0/
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Finally, we compared Triple-Q with DDPG+Safety Layer in [49] on Ball-1D

environment (Figure 2.6), where the goal of the RL agent is to keep the green ball as

close to the target (pink ball) as possible by controlling its velocity. The safe region is

[0, 1]. If the green ball steps out of it, the episode terminates. The threshold in this

environment was set to be 0.3. We can observed that Deep Triple-Q converged much

faster than DDPG+Safety Layer as shown in Figure 2.7.

Figure 2.6: Ball1d Environment

Figure 2.7: Performance during training

2.5 Details of the Proofs

In this chapter, we present the complete proof of the main theorem. A notation

table and some supporting lemmas can be found in Appendix A.

2.5.1 Regret

To bound the regret, we consider the following offline optimization problem as our

regret baseline [11; 35]:

max
qh

∑
h,x,a

qh(x, a)rh(x, a) (2.24)
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s.t.:
∑
h,x,a

qh(x, a)gh(x, a) ≥ ρ (2.25)

∑
a

qh(x, a) =
∑
x′,a′

Ph−1(x|x′, a′)qh−1(x
′, a′) (2.26)

∑
x,a

qh(x, a) = 1,∀h ∈ [H] (2.27)

∑
a

q1(x, a) = µ0(x) (2.28)

qh(x, a) ≥ 0,∀x ∈ S,∀a ∈ A,∀h ∈ [H]. (2.29)

Recall that Ph−1(x|x′, a′) is the probability of transitioning to state x upon taking

action a′ in state x′ at step h− 1. This optimization problem is linear programming

(LP), where qh(x, a) is the probability of (state, action) pair (x, a) occurs in step h,∑
a qh(x, a) is the probability the environment is in state x in step h, and

qh(x, a)∑
a′ qh(x, a

′)
(2.30)

is the probability of taking action a in state x at step h, which defines the policy.

We can see that (2.25) is the utility constraint, (2.26) is the global-balance equation

for the MDP, (2.27) is the normalization condition so that qh is a valid probability

distribution, and (2.28) states that the initial state is sampled from µ0. Therefore, the

optimal solution to this LP solves the CMDP (if the model is known), so we use the

optimal solution to this LP as our baseline.

To analyze the performance of Triple-Q, we need to consider a tightened version

of the LP, which is defined below:

max
qh

∑
h,x,a

qh(x, a)rh(x, a) (2.31)

s.t.:
∑
h,x,a

qh(x, a)gh(x, a) ≥ ρ+ ϵ
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(2.26)− (2.29),

where ϵ > 0 is called a tightness constant. When ϵ ≤ δ, this problem has a feasible

solution due to Slater’s condition. We use superscript ∗ to denote the optimal

value/policy related to the original CMDP (2.6) or the solution to the corresponding

LP (2.24) and superscript ϵ,∗ to denote the optimal value/policy related to the ϵ-

tightened version of CMDP (defined in (2.31)).

Following the definition of regret in, we have

Regret(K) =E

[
K∑
k=1

V ∗
1 (xk,1)− V πk

1 (xk,1)

]

=E

[
K∑
k=1

(∑
a

{Q∗
1q

∗
1} (xk,1, a)

)
−Qπk

1 (xk,1, ak,1)

]
. (2.32)

Now by adding and subtracting the corresponding terms, we obtain

Regret(K)

=E

[
K∑
k=1

(∑
a

{Q∗
1q

∗
1 −Qϵ,∗

1 qϵ,∗1 } (xk,1, a)

)]
+ (2.33)

E

[
K∑
k=1

(∑
a

{Qϵ,∗
1 qϵ,∗1 } (xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ (2.34)

E

[
K∑
k=1

{Qk,1 −Qπk
1 } (xk,1, ak,1)

]
. (2.35)

Next, we establish the regret bound by analyzing the three terms above. We first

present a brief outline.

Outline of the Regret Analysis

• Step 1: First, by comparing the LP associated with the original CMDP (2.24) and
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the tightened LP (2.31), Lemma II.3 will show

E

[∑
a

{Q∗
1q

∗
1 −Qϵ,∗

1 qϵ,∗1 } (xk,1, a)

]
≤ Hϵ

δ
,

which implies that under our choices of ϵ, δ, and ι,

(2.33) ≤ KHϵ

δ
= Õ

(
1

δ
H4S

1
2A

1
2K

4
5

)
.

• Step 2: Note that Qk,h is an estimate of Qπk
h , and the estimation error (2.35) is

controlled by the learning rates and the UCB bonuses. In Lemma II.4, we will show

that the cumulative estimation error over one frame is upper bounded by

H2SA+
H3
√
ιKα

χ
+
√

H4SAιKα(χ+ 1).

Therefore, under our choices of α, χ, and ι, the cumulative estimation error over K

episodes satisfies

(2.35) ≤ H2SAK1−α +
H3
√
ιK

χ
+
√

H4SAιK2−α(χ+ 1) = Õ
(
H3S

1
2A

1
2K

4
5

)
.

The proof of Lemma II.4 is based on a recursive formula that relates the estimation

error at step h to the estimation error at step h+ 1, similar to the one used in [34],

but with different learning rates and UCB bonuses.

• Step 3: Bounding (2.34) is the most challenging part of the proof. For unconstrained

MDPs, the optimistic Q-learning in [34] guarantees that Qk,h(x, a) is an overestimate

of Q∗
h(x, a) (so also an overestimate of Qϵ,∗

h (x, a)) for all (x, a, h, k) simultaneously

with a high probability. However, this result does not hold under Triple-Q because

Triple-Q takes greedy actions with respect to the pseudo-Q-function instead of the

reward Q-function. To overcome this challenge, we first add and subtract additional
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terms to obtain

E

[
K∑
k=1

(∑
a

{Qϵ,∗
1 qϵ,∗1 } (xk,1, a)−Qk,1(xk,1, ak,1)

)]

=E

[∑
k

∑
a

({
Qϵ,∗

1 qϵ,∗1 +
Zk

η
Cϵ,∗

1 qϵ,∗1

}
(xk,1, a)−

{
Qk,1q

ϵ,∗
1 +

Zk

η
Ck,1q

ϵ,∗
1

}
(xk,1, a)

)]
(2.36)

+ E

[∑
k

(∑
a

{Qk,1q
ϵ,∗
1 } (xk,1, a)−Qk,1(xk,1, ak,1)

)]

+ E

[∑
k

Zk

η

∑
a

{(Ck,1 − Cϵ,∗
1 ) qϵ,∗1 } (xk,1, a)

]
. (2.37)

We can see (2.36) is the difference of two pseudo-Q-functions. Using a two-

dimensional induction on step and episode, we will prove in Lemma II.5 that{
Qk,h +

Zk

η
Ck,h

}
(x, a) is an overestimate of

{
Qϵ,∗

h + Zk

η
Cϵ,∗

h

}
(x, a) (i.e. (2.36) ≤ 0)

for all (x, a, h, k) simultaneously with a high probability. To guarantee this overesti-

mation, Triple-Q resets all Q-values to H at the beginning of each frame.

Finally, to bound (2.37), we use the Lyapunov-drift method and consider Lyapunov

function LT = 1
2
Z2

T , where T is the frame index and ZT is the value of the virtual

queue at the beginning of the T th frame. We will show in Lemma II.6 that the

Lyapunov-drift satisfies

E[LT+1 − LT ] ≤ a negative drift +H4ι+ ϵ2 − η

Kα

(T+1)Kα∑
k=TKα+1

Φk, (2.38)

where

Φk = E

[(∑
a

{Qk,1q
ϵ,∗
1 } (xk,1, a)−Qk,1(xk,1, ak,1)

)]

+ E

[
Zk

η

∑
a

{(Ck,1 − Cϵ,∗
1 ) qϵ,∗1 } (xk,1, a)

]
,
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and we note that (2.37) =
∑

k Φk. Inequality (2.38) will be established by showing

that Triple-Q takes actions to almost greedily reduce virtual-Queue Z when Z is

large, which results in the negative drift in (2.38). From (2.38), we observe that

E[LT+1 − LT ] ≤ H4ι+ ϵ2 − η

Kα

(T+1)Kα∑
k=TKα+1

Φk. (2.39)

So we can bound (2.37) by applying the telescoping sum over the K1−α frames on

the inequality above:

(2.37) =
∑
k

Φk ≤
KαE [L1 − LK1−α+1]

η
+

K(H4ι+ ϵ2)

η
≤ K(H4ι+ ϵ2)

η
,

where the last inequality holds because L1 = 0 and LT ≥ 0 for all T. Combining

the bounds on (2.36) and (2.37), we conclude that under our choices of ι, ϵ and η,

(2.34) = Õ(H4S
1
2A

1
2K

4
5 ).

Combining the results in the three steps above, we obtain the regret bound in Theorem

II.2.

Detailed Proof

We next present detailed proof. The first lemma bounds the difference between

the original CMDP and its ϵ-tightened version. The result is intuitive because the

ϵ-tightened version is a perturbation of the original problem and ϵ ≤ δ.

Lemma II.3. Given ϵ ≤ δ, we have

E

[∑
a

{Q∗
1q

∗
1 −Qϵ,∗

1 qϵ,∗1 } (xk,1, a)

]
≤ Hϵ

δ
.

□
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Proof. Given q∗h(x, a) is the optimal solution, we have

∑
h,x,a

q∗h(x, a)gh(x, a) ≥ ρ.

Under Assumption II.1, we know that there exists a feasible solution {qξ1h (x, a)}Hh=1

such that ∑
h,x,a

qξ1h (x, a)gh(x, a) ≥ ρ+ δ.

We construct qξ2h (x, a) = (1− ϵ
δ
)q∗h(x, a) +

ϵ
δ
qξ1h (x, a), which satisfies that

∑
h,x,a

qξ2h (x, a)gh(x, a) =
∑
h,x,a

(
(1− ϵ

δ
)q∗h(x, a) +

ϵ

δ
qξ1h (x, a)

)
gh(x, a) ≥ ρ+ ϵ,

∑
h,x,a

qξ2h (x, a) =
∑
x′,a′

ph−1(x|x′, a′)qξ2h−1(x
′, a′),

∑
h,x,a

qξ2h (x, a) = 1.

Also we have qξ2h (x, a) ≥ 0 for all (h, x, a). Thus {qξ2h (x, a)}Hh=1 is a feasible solution to

the ϵ-tightened optimization problem (2.31). Then given {qϵ,∗h (x, a)}Hh=1 is the optimal

solution to the ϵ-tightened optimization problem, we have

∑
h,x,a

(q∗h(x, a)− qϵ,∗h (x, a)) rh(x, a)

≤
∑
h,x,a

(
q∗h(x, a)− qξ2h (x, a)

)
rh(x, a)

≤
∑
h,x,a

(
q∗h(x, a)−

(
1− ϵ

δ

)
q∗h(x, a)−

ϵ

δ
qξ1h (x, a)

)
rh(x, a)

≤
∑
h,x,a

(
q∗h(x, a)−

(
1− ϵ

δ

)
q∗h(x, a)

)
rh(x, a)

≤ ϵ

δ

∑
h,x,a

q∗h(x, a)rh(x, a)

≤Hϵ

δ
,
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where the last inequality holds because 0 ≤ rh(x, a) ≤ 1 under our assumption.

Therefore the result follows because

∑
a

Q∗
1(xk,1, a)q

∗
1(xk,1, a) =

∑
h,x,a

q∗h(x, a)rh(x, a)

∑
a

Qϵ,∗
1 (xk,1, a)q

ϵ,∗
1 (xk,1, a) =

∑
h,x,a

qϵ,∗h (x, a)rh(x, a).

The next lemma bounds the difference between the estimated Q-functions and

actual Q-functions in a frame. The bound on (2.35) is an immediate result of this

lemma.

Lemma II.4. Under Triple-Q, we have for any T ∈ [K1−α],

E

 TKα∑
k=(T−1)Kα+1

{Qk,1 −Qπk
1 } (xk,1, ak,1)

 ≤ H2SA+
H3
√
ιKα

χ
+
√

H2SAιKα(χ+ 1),

E

 TKα∑
k=(T−1)Kα+1

{Ck,1 − Cπk
1 } (xk,1, ak,1)

 ≤ H2SA+
H3
√
ιKα

χ
+
√

H2SAιKα(χ+ 1).

Proof. We will prove the result on the reward Q-function. The proof for the utility

Q-function is almost identical. We first establish a recursive equation between a

Q-function with the value-functions in the earlier episodes in the same frame. Recall

that under Triple-Q, Qk+1,h(x, a), where k is an episode in frame T, is updated as

follows:

Qk+1,h(x, a)

=


(1− αt)Qk,h(x, a) + αt (rh(x, a) + Vk,h+1(xk,h+1) + bt) if (x, a) = (xk,h, ak,h)

Qk,h(x, a) otherwise

,
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where t = Nk,h(x, a). Define kt to be the index of the episode in which the agent visits

(x, a) in step h for the tth time in the current frame. The updated equation above

can be written as:

Qk,h(x, a) =(1− αt)Qkt,h(x, a) + αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt) .

Repeatedly using the equation above, we obtain

Qk,h(x, a) =(1− αt)(1− αt−1)Qkt−1,h(x, a)

+ (1− αt)αt−1

(
rh(x, a) + Vkt−1,h+1(xkt−1,h+1) + bt−1

)
+ αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt)

= · · ·

=α0
tQ(T−1)Kα+1,h(x, a) +

t∑
i=1

αi
t (rh(x, a) + Vki,h+1(xki,h+1) + bi) (2.40)

≤α0
tH +

t∑
i=1

αi
t (rh(x, a) + Vki,h+1(xki,h+1) + bi) , (2.41)

where α0
t =

∏t
j=1(1− αj) and αi

t = αi

∏t
j=i+1(1− αj). From the inequality above, we

further obtain

TKα∑
k=(T−1)Kα+1

Qk,h(x, a) ≤
TKα∑

k=(T−1)Kα+1

α0
tH +

TKα∑
k=(T−1)Kα+1

Nk,h(x,a)∑
i=1

αi
Nk,h

(rh(x, a)

+Vki,h+1(xki,h+1) + bi) . (2.42)

The notation becomes rather cumbersome because for each (xk,h, ak,h), we need to

consider a corresponding sequence of episode indices in which the agent sees (xk,h, ak,h).

Next we will analyze a given sample path (i.e. a specific realization of the episodes in
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a frame), so we simplify our notation in this proof and use the following notations:

Nk,h = Nk,h(xk,h, ak,h), k
(k,h)
i = ki(xk,h, ak,h),

where k
(k,h)
i is the index of the episode in which the agent visits state-action pair

(xk,h, ak,h) for the ith time. Since in a given sample path, (k, h) can uniquely determine

(xk,h, ak,h), this notation introduces no ambiguity. Furthermore, we will replace∑TKα

k=(T−1)Kα+1 with
∑

k because we only consider episodes in frame T in this proof.

We note that

∑
k

Nk,h∑
i=1

αi
Nk,h

V
k
(k,h)
i ,h+1

(
x
k
(k,h)
i ,h+1

)
≤
∑
k

Vk,h+1(xk,h+1)
∞∑

t=Nk,h

α
Nk,h

t

≤
(
1 +

1

χ

)∑
k

Vk,h+1(xk,h+1), (2.43)

where the first inequality holds because because Vk,h+1(xk,h+1) appears in the sum-

mation on the left-hand side each time when in episode k′ > k in the same frame,

the environment visits (xk,h, ak,h) again, i.e. (xk′,h, ak′,h) = (xk,h, ak,h), and the second

inequality holds due to the property of the learning rate proved in Lemma A.1-(d).

By substituting (2.43) into (2.42) and noting that
∑Nk,h(x,a)

i=1 αi
Nk,h

= 1 according to

Lemma A.1-(b), we obtain

∑
k

Qk,h(xk,h, ak,h)

≤
∑
k

α0
tH +

∑
k

(rh(xk,h, ak,h) + Vk,h+1(xk,h+1))

+
1

χ

∑
k

Vk,h+1(xk,h+1) +
∑
k

Nk,h∑
i=1

αi
Nk,h

bi

≤
∑
k

(rh(xk,h, ak,h) + Vk,h+1(xk,h+1)) +HSA+
H2
√
ιKα

χ
+

1

2

√
H2SAιKα(χ+ 1),

37



where the last inequality holds because (i) we have

∑
k

α0
Nk,h

H =
∑
k

HI{Nk,h=0} ≤ HSA,

(ii) Vk,h+1(xk,h+1) ≤ H2
√
ι by using Lemma A.2, and (iii) we know that

∑
k

Nk,h∑
i=1

αi
Nk,h

bi =
1

4

TKα∑
k=(T−1)Kα+1

Nk,h∑
i=1

αi
Nk,h

√
H2ι(χ+ 1)

χ+ i

≤1

2

TKα∑
k=(T−1)Kα+1

√
H2ι(χ+ 1)

χ+Nk,h

=
1

2

∑
x,a

NTKα,h(x,a)∑
n=1

√
H2ι(χ+ 1)

χ+ n
≤ 1

2

∑
x,a

NTKα,h(x,a)∑
n=1

√
H2ι(χ+ 1)

n
(1)

≤
√
H2SAιKα(χ+ 1),

where the last inequality above holds because the left hand side of (1) is the summation

of Kα terms and
√

H2ι(χ+1)
χ+n

is a decreasing function of n.

Therefore, it is maximized when NTKα,h = Kα/SA for all x, a, i.e. by picking the

largest Kα terms. Thus we can obtain

∑
k

Qk,h(xk,h, ak,h)−
∑
k

Qπk
h (xk,h, ak,h)

≤
∑
k

(
Vk,h+1(xk,h+1)− PhV

πk
h+1(xk,h, ak,h)

)
+HSA+

H2
√
ιKα

χ
+
√

H2SAιKα(χ+ 1)

≤
∑
k

(
Vk,h+1(xk,h+1)− PhV

πk
h+1(xk,h, ak,h) + V πk

h+1(xk,h+1)− V πk
h+1(xk,h+1)

)
+HSA+

H2
√
ιKα

χ
+
√

H2SAιKα(χ+ 1)

=
∑
k

(
Vk,h+1(xk,h+1))− V πk

h+1(xk,h+1)− PhV
πk
h+1(xk,h, ak,h) + P̂k

hV
πk
h+1(xk,h, ak,h)

)
+HSA+

H2
√
ιKα

χ
+
√

H2SAιKα(χ+ 1)
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=
∑
k

(
Qk,h+1(xk,h+1, ak,h+1)−Qπk

h+1(xk,h+1, ak,h+1)− PhV
πk
h+1(xk,h, ak,h)

+ P̂k
hV

πk
h+1(xk,h, ak,h

)
+HSA+

H2
√
ιKα

χ
+
√

H2SAιKα(χ+ 1).

Taking the expectation on both sides yields

E

[∑
k

Qk,h(xk,h, ak,h)−
∑
k

Qπk
h (xk,h, ak,h)

]

≤E

[∑
k

(
Qk,h+1(xk,h+1, ak,h+1))−Qπk

h+1(xk,h+1, ak,h+1)
)]

+HSA

+
H2
√
ιKα

χ
+
√

H2SAιKα(χ+ 1).

Then by using the inequality repeatably, we obtain for any h ∈ [H],

E

[∑
k

Qk,h(xk,h, ak,h)−
∑
k

Qπk
h (xk,h, ak,h)

]

≤H2SA+
H3
√
ιKα

χ
+
√

H4SAιKα(χ+ 1),

so the lemma holds.

From the lemma above, we can immediately conclude:

E

[
K∑
k=1

{Qk,1 −Qπk
1 } (xk,1, ak,1)

]
≤ H2SAK1−α +

H3
√
ιK

χ
+
√

H4SAιK2−α(χ+ 1)

E

[
K∑
k=1

{Ck,1 − Cπk
1 } (xk,1, ak,1)

]
≤ H2SAK1−α +

H3
√
ιK

χ
+
√

H4SAιK2−α(χ+ 1).

We now focus on (2.34), and further expand it as follows:

(2.34) = E

[
K∑
k=1

(∑
a

{Qϵ,∗
1 qϵ,∗1 } (xk,1, a)−Qk,1(xk,1, ak,1)

)]
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=E

[∑
k

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗1

}
(xk,1, a)

]
(2.44)

+ E

[∑
k

(∑
a

{Qk,1q
ϵ,∗
1 } (xk,1, a)−Qk,1(xk,1, ak,1)

)]

+ E

[∑
k

Zk

η

∑
a

{(Ck,1 − Cϵ,∗
1 ) qϵ,∗1 } (xk,1, a)

]
, (2.45)

where

Fk,h(x, a) = Qk,h(x, a) +
Zk

η
Ck,h(x, a)

F ϵ,∗
h (x, a) = Qϵ,∗

h (x, a) +
Zk

η
Cϵ,∗

h (x, a).

We first show (2.44) can be bounded using the following lemma. This result holds

because the choices of the UCB bonuses and the reset at the beginning of each frame

guarantee that Fk,h(x, a) is an over-estimate of F ϵ,∗
h (x, a) for all k, h and (x, a) with a

high probability.

Lemma II.5. With probability at least 1− 1
K3 , the following inequality holds simulta-

neously for all (x, a, h, k) ∈ S ×A× [H]× [K] :

{Fk,h − F π
h } (x, a) ≥ 0, (2.46)

which further implies that

E

[
K∑
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗1

}
(xk,1, a)

]
≤ 4H4ι

ηK
. (2.47)

Proof. Consider frame T and episodes in frame T. Define Z = Z(T−1)Kα+1 because the

value of the virtual queue does not change during each frame. We further define/recall

40



the following notations:

Fk,h(x, a) = Qk,h(x, a) +
Z

η
Ck,h(x, a), Uk,h(x) = Vk,h(x) +

Z

η
Wk,h(x),

F π
h (x, a) = Qπ

h(x, a) +
Z

η
Cπ

h (x, a), Uπ
h (x) = V π

h (x) +
Z

η
W π

h (x).

According to Lemma A.3 in the appendix, we have

{Fk,h − F π
h }(x, a)

=α0
t

{
F(T−1)Kα+1,h − F π

h

}
(x, a)

+
t∑

i=1

αi
t

({
Uki,h+1 − Uπ

h+1

}
(xki,h+1) + {(P̂ki

h − Ph)U
π
h+1}(x, a) +

(
1 +

Z

η

)
bi

)

≥(a)α
0
t

{
F(T−1)Kα+1,h − F π

h

}
(x, a) +

t∑
i=1

αi
t

{
Uki,h+1 − Uπ

h+1

}
(xki,h+1)

=(b)α
0
t

{
F(T−1)Kα+1,h − F π

h

}
(x, a)

+
t∑

i=1

αi
t

(
max

a
Fki,h+1(xki,h+1, a)− F π

h+1(xki,h+1, π(xki,h+1))
)

≥α0
t

{
F(T−1)Kα+1,h − F π

h

}
(x, a) +

t∑
i=1

αi
t

{
Fki,h+1 − F π

h+1

}
(xki,h+1, π(xki,h+1)), (2.48)

where inequality (a) holds because of the concentration result in Lemma A.4 in the

appendix and

t∑
i=1

αi
t(1 +

Z

η
)bi =

1

4

t∑
i=1

αi
t(1 +

Z

η
)

√
H2ι(χ+ 1)

χ+ t
≥ η + Z

4η

√
H2ι(χ+ 1)

χ+ t

by using Lemma A.1-(c), and equality (b) holds because Triple-Q selects the action

that maximizes Fki,h+1(xki,h+1, a) so Uki,h+1(xki,h+1) = maxa Fki,h+1(xki,h+1, a).

The inequality above suggests that we can prove {Fk,h − F π
h }(x, a) for any (x, a) if

(i) {
F(T−1)Kα+1,h − F π

h

}
(x, a) ≥ 0,
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i.e. the result holds at the beginning of the frame and (ii)

{
Fk′,h+1 − F π

h+1

}
(x, a) ≥ 0 for any k′

and (x, a), i.e. the result holds for step h+ 1 in all the episodes in the same frame.

It is straightforward to see that (i) holds because all reward and cost Q-functions

are set to H at the beginning of each frame (line 20 in Algorithm 1).

We now prove condition (ii) using induction, and consider the first frame, i.e.

T = 1. The proof is identical for other frames. Consider h = H i.e. the last step. In

this case, inequality (2.48) becomes

{Fk,H − F π
H}(x, a) ≥ α0

t

{
H +

Z1

η
H − F π

H

}
(x, a) ≥ 0, (2.49)

i.e. condition (ii) holds for any k in the first frame and h = H. By applying induction

on h, we conclude that

{Fk,h − F π
h }(x, a) ≥ 0. (2.50)

holds for any k, h, and (x, a), which completes the proof of (2.46).

Let E denote the event that (2.46) holds for all k, h and (x, a). Then based on

Lemma A.2, we conclude that

E

[
K∑
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗1

}
(xk,1, a)

]

=E

[
K∑
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗1

}
(xk,1, a)

∣∣∣∣∣ E
]
Pr(E)

+ E

[
K∑
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗1

}
(xk,1, a)

∣∣∣∣∣ Ec
]
Pr(Ec)

≤2K
(
1 +

K1−αH2
√
ι

η

)
H2
√
ι
1

K3
≤ 4H4ι

ηK
. (2.51)
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Next, we bound (2.45) using the Lyapunov drift analysis on virtual queue Z. Since

the virtual queue is updated every frame, we abuse the notation and define ZT to be

the virtual queue used in frame T. In particular, ZT = Z(T−1)Kα+1. We further define

C̄T =
TKα∑

k=(T−1)Kα+1

Ck,1(xk,1, ak,1). (2.52)

Therefore, under Triple-Q, we have

ZT+1 =

(
ZT + ρ+ ϵ− C̄T

Kα

)+

(2.53)

Define the Lyapunov function to be

LT =
1

2
Z2

T . (2.54)

The next lemma bounds the expected Lyapunov drift conditioned on ZT .

Lemma II.6. Assume ϵ ≤ δ. The expected Lyapunov drift satisfies

E [LT+1 − LT |ZT = z]

≤ 1

Kα

TKα∑
k=(T−1)Kα+1

(
−ηE

[∑
a

{Qk,1q
ϵ,∗
1 } (xk,1, a)−Qk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+zE

[∑
a

{(Cϵ,∗
1 − Ck,1) q

ϵ,∗
1 } (xk,1, a)

∣∣∣∣∣ZT = z

])
+H4ι+ ϵ2. (2.55)

Proof. Based on the definition of LT , the Lyapunov drift is

LT+1 − LT ≤ZT

(
ρ+ ϵ− C̄T

Kα

)
+

(
C̄T

Kα + ϵ− ρ
)2

2

≤ZT

(
ρ+ ϵ− C̄T

Kα

)
+H4ι+ ϵ2

43



≤ZT

Kα

(T+1)Kα∑
k=TKα+1

(ρ+ ϵ− Ck,1(xk,1, ak,1)) +H4ι+ ϵ2

where the first inequality is a result of the upper bound on |Ck,1(xk,1, ak,1)| in Lemma

A.2.

Let {qϵh}Hh=1 be a feasible solution to the tightened LP (2.31). Then the expected

Lyapunov drift conditioned on ZT = z is

E [LT+1 − LT |ZT = z]

≤ 1

Kα

TKα∑
k=(T−1)Kα+1

(E [z (ρ+ ϵ− Ck,1(xk,1, ak,1))− ηQk,1(xk,1, ak,1)|ZT = z]

+ ηE [Qk,1(xk,1, ak,1)|ZT = z]) +H4ι+ ϵ2. (2.56)

Now we focus on the term inside the summation and obtain that

(E [z (ρ+ ϵ− Ck,1(xk,1, ak,1))− ηQk,1(xk,1, ak,1)|ZT = z]

+ ηE [Qk,1(xk,1, ak,1)|ZT = z])

≤(a)z(ρ+ ϵ)− E

[
η

(∑
a

{
z

η
Ck,1q

ϵ
1 +Qk,1q

ϵ
1

}
(xk,1, a)

)∣∣∣∣∣ZT = z

]

+ ηE [Qk,1(xk,1, ak,1)|ZT = z]

=E

[
z

(
ρ+ ϵ−

∑
a

Ck,1(xk,1, a)q
ϵ
1(xk,1, a)

)∣∣∣∣∣ZT = z

]

− E

[
η
∑
a

Qk,1(xk,1, a)q
ϵ
1(xk,1, a)− ηQk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

=E

[
z

(
ρ+ ϵ−

∑
a

Cϵ
1(xk,1, a)q

ϵ
1(xk,1, a)

)∣∣∣∣∣ZT = z

]

− E

[
η
∑
a

Qk,1(xk,1, a)q
ϵ
1(xk,1, a)− ηQk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+ E

[
z
∑
a

{(Cϵ
1 − Ck,1)q

ϵ
1} (xk,1, a)

∣∣∣∣∣ZT = z

]
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≤− ηE

[∑
a

Qk,1(xk,1, a)q
ϵ
1(xk,1, a)−Qk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+ E

[
z
∑
a

{(Cϵ
1 − Ck,1)q

ϵ
1} (xk,1, a)

∣∣∣∣∣ZT = z

]
,

where inequality (a) holds because ak,h is chosen to maximizeQk,h(xk,h, a)+
ZT

η
Ck,h(xk,h, a)

under Triple-Q, and the last equality holds due to that {qϵh(x, a)}Hh=1 is a feasible

solution to the optimization problem (2.31), so

(
ρ+ ϵ−

∑
a

Cϵ
1(xk,1, a)q

ϵ
1(xk,1, a)

)
=

(
ρ+ ϵ−

∑
h,x,a

gh(x, a)q
ϵ
h(x, a)

)
≤ 0.

Therefore, we can conclude the lemma by substituting qϵh(x, a) with the optimal

solution qϵ,∗h (x, a).

After taking expectation with respect to Z, dividing η on both sides, and then

applying the telescoping sum, we obtain

E

[
K∑
k=1

(∑
a

{Qk,1q
ϵ,∗
1 } (xk,1, a)−Qk,1(xk,1, ak,1)

)]

+ E

[
K∑
k=1

Zk

η

∑
a

{(Ck,1 − Cϵ,∗
1 ) qϵ,∗1 } (xk,1, a)

]

≤KαE [L1 − LK1−α+1]

η
+

K (H4ι+ ϵ2)

η
≤ K (H4ι+ ϵ2)

η
, (2.57)

where the last inequality holds because that L1 = 0 and LT+1 is non-negative.

Now combining Lemma II.5 and inequality (2.57), we conclude that

(2.34) ≤ K (H4ι+ ϵ2)

η
+

4H4ι

ηK
.
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Further combining inequality above with Lemma II.3 and Lemma II.4,

Regret(K) ≤KHϵ

δ
+H2SAK1−α +

H3
√
ιK

χ

+
√
H4SAιK2−α(χ+ 1) +

K (H4ι+ ϵ2)

η
+

4H4ι

ηK
. (2.58)

By choosing α = 0.6, i.e each frame has K0.6 episodes, χ = K0.2, η = K0.2,

and ϵ = 8
√
SAH6ι3

K0.2 , we conclude that when K ≥
(

8
√
SAH6ι3

δ

)5
, which guarantees that

ϵ < δ/2, we have

Regret(K) ≤ 13

δ
H4
√
SAι3K0.8 +

4H4ι

K1.2
= Õ

(
1

δ
H4S

1
2A

1
2K0.8

)
. (2.59)

2.5.2 Constraint Violation

Outline of the Constraint Violation Analysis

Again, we use ZT to denote the value of virtual-Queue in frame T. According to

the virtual-Queue update defined in Triple-Q, we have

ZT+1 =

(
ZT + ρ+ ϵ− C̄T

Kα

)+

≥ ZT + ρ+ ϵ− C̄T

Kα
,

which implies that

TKα∑
k=(T−1)Kα+1

(−Cπk
1 (xk,1, ak,1) + ρ) ≤Kα (ZT+1 − ZT )

+
TKα∑

k=(T−1)Kα+1

({Ck,1 − Cπk
1 } (xk,1, ak,1)− ϵ) .
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Summing the inequality above over all frames and taking expectation on both sides,

we obtain the following upper bound on the constraint violation:

E

[
K∑
k=1

ρ− Cπk
1 (xk,1, ak,1)

]
≤−Kϵ+KαE [ZK1−α+1]

+ E

[
K∑
k=1

{Ck,1 − Cπk
1 } (xk,1, ak,1)

]
, (2.60)

where we used the fact Z1 = 0.

In Lemma II.4, we already established an upper bound on the estimation error of

Ck,1 :

E

[
K∑
k=1

{Ck,1 − Cπk
1 } (xk,1, ak,1)

]
≤ H2SAK1−α +

H3
√
ιK

χ
+
√

H4SAιK2−α(χ+ 1).

(2.61)

Next, we study the moment generating function of ZT , i.e. E
[
erZT

]
for some r > 0.

Based on a Lyapunov drift analysis of this moment generating function and Jensen’s

inequality, we will establish the following upper bound on ZT that holds for any

1 ≤ T ≤ K1−α + 1

E[ZT ] ≤
54H4ι

δ
log

(
16H2

√
ι

δ

)
+

16H2ι

K2δ
+

4η
√
H2ι

δ
. (2.62)

Under our choices of ϵ, α, χ, η and ι, it can be easily verified that Kϵ dominates the

upper bounds in (2.61) and (2.62), which leads to the conclusion that the constraint

violation because zero when K is sufficiently large in Theorem II.2.

Detailed Proof

To complete the proof, we need to establish the following upper bound on E[ZT+1]

based on a bound on the moment generating function.
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Lemma II.7. Assuming ϵ ≤ δ
2
, we have for any 1 ≤ T ≤ K1−α

E[ZT ] ≤
54H4ι

δ
log

(
16H2

√
ι

δ

)
+

16H2ι

K2δ
+

4η
√
H2ι

δ
. (2.63)

The proof will also use the following lemma from [62].

Lemma II.8. Let St be the state of a Markov chain, Lt be a Lyapunov function with

L0 = l0, and its drift ∆t = Lt+1 − Lt. Given the constant γ and v with 0 < γ ≤ v,

suppose that the expected drift E[∆t|St = s] satisfies the following conditions:

(1) There exists constant γ > 0 and θt > 0 such that E[∆t|St = s] ≤ −γ when

Lt ≥ θt.

(2) |Lt+1 − Lt| ≤ v holds with probability one.

Then we have

E[erLt ] ≤ erl0 +
2er(v+θt)

rγ
,

where r = γ
v2+vγ/3

. □

Proof of Lemma II.7. We apply Lemma II.8 to a new Lyapunov function:

L̄T = ZT .

To verify condition (1) in Lemma II.8, consider L̄T = ZT ≥ θT =
4( 4H

2ι
K2 +η

√
H2ι+H4ι+ϵ2)

δ

and 2ϵ ≤ δ. The conditional expected drift of

E [ZT+1 − ZT |ZT = z]

=E
[√

Z2
T+1 −

√
z2
∣∣∣∣ZT = z

]
≤ 1

2z
E
[
Z2

T+1 − z2
∣∣ZT = z

]
≤(a) −

δ

2
+

4H2ι
K2 + η

√
H2ι+H4ι+ ϵ2

z

48



≤− δ

2
+

4H2ι
K2 + η

√
H2ι+H4ι+ ϵ2

θT

=− δ

4
,

where inequality (a) is obtained according to Lemma A.5; and the last inequality

holds given z ≥ θT .

To verify condition (2) in Lemma II.8, we have

ZT+1 − ZT ≤ |ZT+1 − ZT | ≤
∣∣ρ+ ϵ− C̄T

∣∣ ≤ (H2 +
√
H4ι) + ϵ ≤ 2

√
H4ι,

where the last inequality holds because 2ϵ ≤ δ ≤ 1.

Now choose γ = δ
4
and v = 2

√
H4ι. From Lemma II.8, we obtain

E
[
erZT

]
≤ erZ1 +

2er(v+θT )

rγ
, where r =

γ

v2 + vγ/3
. (2.64)

By Jensen’s inequality, we have

erE[ZT ] ≤ E
[
erZT

]
,

which implies that

E[ZT ] ≤
1

r
log

(
1 +

2er(v+θT )

rγ

)
=
1

r
log

(
1 +

6v2 + 2vγ

3γ2
er(v+θT )

)
≤1

r
log

(
1 +

8v2

3γ2
er(v+θT )

)
≤1

r
log

(
11v2

3γ2
er(v+θT )

)
≤4v2

3γ
log

(
11v2

3γ2
er(v+θT )

)
≤3v2

γ
log

(
2v

γ

)
+ v + θT
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≤3v2

γ
log

(
2v

γ

)
+ v +

4(4H
2ι

K2 + η
√
H2ι+H4ι+ ϵ2)

δ

=
48H4ι

δ
log

(
16H2

√
ι

δ

)
+ 2
√
H4ι+

4(4H
2ι

K2 + η
√
H2ι+H4ι+ ϵ2)

δ

≤54H4ι

δ
log

(
16H2

√
ι

δ

)
+

16H2ι

K2δ
+

4η
√
H2ι

δ
= Õ

(
ηH

δ

)
, (2.65)

which completes the proof of Lemma II.7.

Substituting the results from Lemmas II.4 and II.7 into (2.60), under assumption

K ≥
(

16
√
SAH6ι3

δ

)5
, which guarantees ϵ ≤ δ

2
. Then by using the facts that ϵ = 8

√
SAH6ι3

K0.2 ,

we can easily verify that

Violation(K) ≤ 54H4ιK0.6

δ
log

16H2
√
ι

δ
+

4
√
H2ι

δ
K0.8 − 5

√
SAH6ι3K0.8.

If further we have K ≥ e
1
δ , we can obtain

Violation(K) ≤ 54H4ιK0.6

δ
log

16H2
√
ι

δ
−
√
SAH6ι3K0.8 = 0.

Now to prove the high probability bound, recall that from inequality (2.53), we

have

K∑
k=1

ρ− Cπk
1 (xk,1, ak,1) ≤ −Kϵ+KαZK1−α+1 +

K∑
k=1

{Ck,1 − Cπk
1 } (xk,1, ak,1). (2.66)

According to inequality (2.64), we have

E
[
erZT

]
≤ erZ1 +

2er(v+θT )

rγ
≤ 11v2

3γ2
er(v+θT ),

which implies that

Pr

(
ZT ≥

1

r
log

(
11v2

3γ2

)
+ 2(v + θT )

)
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=Pr(erZT ≥ e
log

(
11v2

3γ2

)
+2r(v+θT )

)

≤ E[erZT ]
11v2

3γ2 e2r(v+θT )

≤ 1

er(v+θT )
= Õ

(
e−η
)
, (2.67)

where the first inequality is from the Markov inequality.

In the proof of Lemma II.4, we have shown

∣∣∣∣∣∣
TKα∑

k=(T−1)Kα+1

Ck,h(xk,h, ak,h)− Cπk
h (xk,h, ak,h)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
TKα∑

k=(T−1)Kα+1

Ck,h+1(xk,h+1, ak,h+1)− Cπk
h+1(xk,h+1, ak,h+1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
TKα∑

k=(T−1)Kα+1

(P̂k
h − Ph)V

πk
h+1(xk,h, ak,h)

∣∣∣∣∣∣
+HSA+

H2
√
ιKα

χ
+
√

H2SAιKα(χ+ 1) (2.68)

Following a similar proof as the proof of Lemma A.4, we can prove that

∣∣∣∣∣∣
TKα∑

k=(T−1)Kα+1

(P̂k
h − Ph)V

πk
h+1(xk,h, ak,h)

∣∣∣∣∣∣ ≤ 1

4

√
H2ιKα

holds with probability at least 1 − 1
K3 . By iteratively using inequality (2.68) over

h and by summing it over all frames, we conclude that with probability at at least

1− 1
K2 ,

∣∣∣∣∣
K∑
k=1

{Ck,1 − Cπk
1 }(xk,1, ak,1)

∣∣∣∣∣
≤K1−αH2SA+

H3
√
ιK

χ
+
√

H4SAιK2−α(χ+ 1) +
1

4

√
H4ιK2−α

≤4
√
H4SAιK0.8, (2.69)
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where the last inequality holds because α = 0.6 and χ = K0.2.

Now, by combining inequalities (2.67) and (2.69), and using the union bound,

we can show that when K ≥ max

{(
8
√
SAH6ι3

δ

)5
, e

1
δ

}
, with probability at least

1− Õ
(
e−K0.2

+ 1
K2

)
K∑
k=1

ρ− Cπk
1 (xk,1, ak,1)

≤ −Kϵ+Kα

(
1

r
log

(
11v2

3γ2

)
+ 2(v + θT )

)
+ 4
√
H4SAιK0.8

≤ −
√
SAH6ι3K0.8 ≤ 0, (2.70)

which completes the proof of our main result.

2.6 Summary

In this chapter, we considered CMDPs and proposed a model-free RL algorithm

without a simulator, named Triple-Q. From a theoretical perspective, Triple-Q achieves

sublinear regret and zero constraint violation. We believe it is the first model-free RL

algorithm for CMDPs with provable sublinear regret without a simulator. From an

algorithmic perspective, Triple-Q has similar computational complexity with SARSA,

and can easily incorporate recent deep Q-learning algorithms to obtain a deep Triple-Q

algorithm, which makes our method particularly appealing for complex and challenging

CMDPs in practice. While we only considered a single constraint in the chapter, it

is straightforward to extend the algorithm and the analysis to multiple constraints.

Assuming there are J constraints in total, Triple-Q can maintain a virtual queue and

a utility Q-function for each constraint, and then selects an action at each step by
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solving the following problem:

max
a

(
Qh(xh, a) +

1

η

J∑
j=1

Z(j)C
(j)
h (xh, a)

)
.
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CHAPTER III

A Provably-Efficient Model-Free Algorithm for

Infinite-Horizon Average-Reward CMDPs

3.1 Introduction

In the previous chapter, we discussed designing model-free algorithms in episodic

finite-horizon CMDPs. In general, learning CMDPs in the infinite horizon average-

reward setting, where the learner-environment interaction never ends or resets and

the goal is to achieve optimal long-term average-reward under constraints, appears to

be much more challenging.

For the episodic CMDPs, two very recent works [20; 28] show that sublinear regret

bound and zero violation are possible for episodic CMDPs without simulators. In

particular, [20] proposes a model-based algorithm and [29] presents a model-free

algorithm, and [31] proves that it is possible to achieve zero violation during training

given a safe baseline policy based on a model-based approach. Despite these significant

developments, we seek to answer the following question:

Can we design efficient RL algorithms for infinite-horizon, average-

reward CMDPs with provable regret and constraint violation guarantees?

We answer this question affirmatively in this chapter and present a model-free

RL algorithm Tiple-QA that achieves sub-linear regret and zero constraint violation.
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Algorithm Regret Constraint Violations

Known Model C-UCRL [13] Õ(SA
√
K1.5) 0

Model-based UCRL-CMDP [14] Õ(S
√
AK

2
3 ) Õ(S

√
AK

2
3 )

Known Model CMDP-PSRL [32] Õ(poly(SAD)
√
K) Õ(poly(SA)

√
K)

Model-free Triple-QA Õ
(√

SA
δ K

5
6

)
0

Table 3.1:
Regrets and constraint violations of RL algorithms for infinite-horizon
average-reward CMDPs. S is the number of states, A is the number of
actions, K is the number of steps, D is the diameter of the CMDP whose
definition can be found in the appendix, δ is the slackness that will be
defined later (Eq. (3.13)), and poly(X) denotes a polynomial function of
x. Throughout this chapter, we use the notation Õ to suppress log terms.
Õ(f(K)) denotes O(f(K) lognK) with n > 0.

Table 3.1 compares the results in this chapter with those in the literature. We remark

that the proposed algorithm synthesizes the Triple-Q algorithm in [29] for episodic

CMDPs and Optimistic Q-Learning [45] that reduces the average-reward problem to

a discounted reward problem.

3.2 Preliminaries

An infinite-horizon average-reward CMDP can be defined as (S,A, r, g, p), where

S is the finite state space, A is the finite action space, r(g) : S × A → [0, 1] is the

unknown reward (utility) function, and p : S ×A× S → [0, 1] is the transition kernel

such that p(s′|s, a) := P(sk+1 = s′|sk = s, ak = a) for sk ∈ S, ak ∈ A. A stationary

policy is a mapping π : S → A, the long-term average reward (reward rate) of a

stationary policy π with initial state s ∈ S is defined as

Jπ
r (s) := lim

K→∞

1

K
E

[
K∑
k=1

r(sk, π(sk))

∣∣∣∣∣ s1 = s

]
, (3.1)
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and the long-term average utility (utility rate) is defined as

Jπ
g (s) := lim

K→∞

1

K
E

[
K∑
k=1

g(sk, π(sk))

∣∣∣∣∣ s1 = s

]
. (3.2)

We assume that under any stationary policy, sk is an irreducible aperiodic Markov

chain, so it has a unique stationary distribution, and the limits above are well-defined.

Letting sπ∞ denote the Markov chain at steady-state under policy π, we have

Jπ
r = E [r(sπ∞, π(sπ∞))] and Jπ

g = E [g(sπ∞, π(sπ∞))] , (3.3)

where we removed the dependence on the initial condition s because the stationary

distribution is independent of the initial condition for a finite-state, irreducible, and

aperiodic Markov chain.

An optimal stationary policy π∗ is defined to be the solution to the following

problem:

max
π

Jπ
r s.t. Jπ

g ≥ ρ. (3.4)

We consider a constrained RL problem with K steps. At each step k, the agent

observes state sk, takes an action ak, and receives reward r(sk, ak) and utility g(sk, ak).

The next state sk+1 is sampled according to the probability distribution p(·|sk, ak).

Our goal is to develop an online RL algorithm, which may be nonstationary, that

minimizes both the regret and the constraint violation defined below.

Regert(K) = E

[
K∑
k=1

(
Jπ∗

r − r(sk, ak)
)]

, (3.5)

Violation(K) = E

[
K∑
k=1

(ρ− g(sk, ak))

]
. (3.6)

When the transition kernel p(s′|s, a) is known, the optimal stationary policy that
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solves problem (3.4) can be obtained by solving the following LP problem [11]:

max
{q(s,a):(s,a)∈S×A}

∑
s,a

q(s, a)r(s, a) (3.7)

s.t.
∑
s,a

q(s, a)g(s, a) ≥ ρ, ∀s ∈ S,∀a ∈ A (3.8)

q(s, a) ≥ 0,∀s ∈ S,∀a ∈ A (3.9)∑
s,a

q(s, a) = 1 (3.10)

∑
a

q(s, a) =
∑
s′,a′

p(s|s′, a′)q(s′, a′), (3.11)

where the q(s, a) is called the occupancy measure, which is defined as the set of

distributions generated by executing the associated induced policy π in the infinite-

horizon CMDP.
∑

a q(s, a) represents the probability the system is in state s, and

q(s,a)∑
a′ q(s,a

′)
is the probability of taking action a in state s. The utility constraint is

represented in (3.8). More details can be found in [11].

To analyze the performance of our algorithm, we need to consider a tightened

version of the above LP problem later, which is defined below:

max
{q(s,a):(s,a)∈S×A}

∑
s,a

q(s, a)r(s, a) (3.12)

s.t.
∑
s,a

q(s, a)g(s, a) ≥ ρ+ ϵ,∀s ∈ S,∀a ∈ A

(3.9)− (3.11),

where ϵ > 0 is called a tightness constant. As in previous works [19; 25; 17; 53], we

make the following standard assumption of Slater’s condition.

Assumption III.1. (Slater’s Condition). There exist δ > 0 and a feasible solution
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q(s, a) to the LP such that

∑
s,a

q(s, a)g(s, a)− ρ ≥ δ. (3.13)

It is obvious that when ϵ < δ the problem (3.12) has a feasible solution due to

Slater’s condition. The Slater’s condition is commonly assumed in previous works

to ensure the LP problem has strong duality, see proofs in [53; 63]. Unlike [19; 17],

which assume δ is known, and [54; 20; 31], where a strictly feasible policy is given,

our assumption is less restrictive. Let

J∗
r =

∑
s,a

q∗(s, a)r(s, a), (3.14)

J∗
g =

∑
s,a

q∗(s, a)g(s, a). (3.15)

be the optimal reward rate and utility rate, where q∗(s, a) is the optimal solution

obtained by solving the LP problem (3.7). Moreover it is obvious that J∗
r and J∗

g are

independent of the initial state and we have J∗
r = Jπ∗

r and J∗
g = Jπ∗

g .

In the following, we use superscript ∗ to denote the optimal policy achieved by

solving the LP (3.7) of the original CMDP, and superscript ϵ,∗ to denote the optimal

policy related to the ϵ-tightened version of LP (3.12).

3.3 Algorithm

In this section, we introduce our algorithm Triple-QA (see Algorithm 3 for pseudo-

code) which achieves sub-linear regret and zero constraint violation. The algorithm is

inspired by Triple-Q, an algorithm for episodic CMDPs in [28]. Triple-QA is for the

infinite-horizon average-reward CMDPs with a different update rule. The algorithm

further solves the discounted CMDPs with the discount factor γ close to one, an idea

used in [45]. The discounted CMDP is defined on the same state space, action space,
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reward/utility functions, the transition kernel. The intuition is that the reward of

the discounted problem (scaled by 1− γ)) approaches to that of the average reward

problem as γ goes to 1.

Algorithm 3: Triple-QA

1 Initialize Q1(s, a) = Q̂1(s, a)← H = K
1
6

n1(s, a)← 0, ∀(s, a) ∈ S ×A, γ = 1− 1
H
, V̂1(s) = H,∀s ∈ S ;

2 Choose χ = K
1
3 , η = K

1
6 , ι = 8 log(

√
2K), β = 2

3
.;

3 Choose ϵ = 9κ
√
SAι

K
1
6

, κ(Eq.(3.29))}. ;
4 Initialize C̄ ← 0, Z1 ← 0. ;

5 Define , ατ = χ+1
χ+τ

, bτ = κ
√

(χ+1)ι
χ+τ

. ;

6 for episode k = 1, . . . , K do

7 Take ak = argmaxa

(
Q̂k(sk, a) +

Z
η
Ĉk(sk, a)

)
.;

8 Observe sk+1.;
9 nk+1(sk, ak)← nk(sk, ak) + 1, τ ← nk+1(sk, ak).;

10 Update Qk+1(sk, ak)← (1− ατ )Qk(sk, ak) + ατ [r(sk, ak) + γV̂k(sk+1) + bτ ],;

11 Update Ck+1(sk, ak)← (1−ατ )Ck(sk, ak)+ατ [g(sk, ak)+ γŴk(sk+1)+ bτ ].;

12 if Qk+1(sk, ak) ≤ Q̂k(sk, ak) and Ck+1(sk, ak) ≤ Ĉk(sk, ak) then

13 Q̂k+1(sk, ak)← Qk+1(sk, ak);

14 Ĉk+1(sk, ak)← Ck+1(sk, ak);

15 else

16 Q̂k+1(sk, ak)← Q̂k(sk, ak);

17 Ĉk+1(sk, ak)← Ĉk(sk, ak);

18 C̄ ← C̄ + (1− γ)Ĉk(sk, ak);

19 a′ = argmaxa

(
Q̂k+1(sk, a) +

Z
η
Ĉk+1(sk, a)

)
;

20 V̂k+1(sk)← Q̂k+1(sk, a
′);

21 Ŵk+1(sk)← Ĉk+1(sk, a
′);

22 if k mod Kβ = 0 then

23 Z ←
(
Z + ρ+ ϵ− C̄

Kβ

)
;

24 Reset C̄ ← 0, nt(s, a)← 0.;

25 Reset Q̂k+1(s, a), Qk+1(s, a), Vk+1(s) to H ;

26 Reset Ĉk+1(s, a), Ck+1(s, a),Wk+1(s) to H;

Under the discounted CMDP setting, given a policy π, the reward value function
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V π
k at step k is the expected cumulative rewards from step k under policy π :

V π
k (s) = E

[
∞∑
i=k

γi−kr(si, π(si))

∣∣∣∣∣ sk = s

]
. (3.16)

The reward Q-function Qπ
k(s, a) at step k is the expected cumulative reward when an

agent starts from a state-action pair (s, a) at step k and then follows policy π :

Qπ
k(s, a) = r(s, a) + E

[
∞∑
i=k

γi−kr(si, π(si))

∣∣∣∣∣ sk = s, ak = a

]
. (3.17)

Similarly, we use W π
k (s) : S → R+ and Cπ

k (s, a) : S × A → R+ to denote the utility

value function and utility Q-function at step k:

W π
k (x) = E

[
∞∑
i=k

γi−kg(si, πi(si))

∣∣∣∣∣ sk = s

]
, (3.18)

Cπ
k (s, a) = g(s, a) + E

[
∞∑
i=k

γi−kg(si, π(si))

∣∣∣∣∣ sk = s, ak = a

]
. (3.19)

It is obvious that all the reward and utility value (Q-value) functions are bounded

by 1
1−γ

because the reward and utility are bounded by 1. We define H = 1
1−γ

. Then

given a state-action pair (s, a) at step k, our algorithm updates the estimate of reward

(utility) Q−value functions of the discounted CMDP setting instead.

The design of the algorithm is based on the primal-dual approach for constrained

optimization problems. Suppose that V π(s) (W π(s)) is an accurate estimate of Jπ
r

1−γ(
Jπ
g

1−γ

)
. The formal proof is deferred to the next section. Given Lagrangian multiplier

µ, we consider the following problem:

max
π

Jπ
r (s) + µ(Jπ

g (s)− ρ) ≈max
π

(1− γ)(V π(s) + µW π(s))− µρ (3.20)
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which can be interpreted as an unconstrained MDP with a modified reward function

(1− γ)(r + µg).

The algorithm is an extension of Triple-Q [28] for episodic CMDPs by including the

discount factor and replacing episode-by-episode updates with step-by-step updates.

We adopt the same notations used in [45]. Same as Triple-Q, the algorithm maintains

an estimate V̂k(s) (Ŵk(s)) for the optimal value function V ∗(s)(W ∗(s)) and Q̂k(s, a)

(Ĉk(s, a)) for the optimal Q-function Q∗(s, a) (C∗(s, a)). At each step k, after observing

state s, the agent selects action a∗k based on the combined Q-value:

a∗k ∈ argmax
a

Q̂k(s, a) +
Z

η
Ĉk(s, a), (3.21)

where Z
η
can be treated as an estimate of the Lagrange multiplier µ. Similar to [28], we

need to carefully tune the frequency of updating the Lagrange multiplier to balance

the convergence and optimality. Updating it too frequently would lead to divergence

and too infrequent would result in a large regret and large constraint violation. The

algorithm tackles this difficulty by updating Z at a slow time-scale, i.e., every Kβ

steps in line 25− 26 in Algorithm 3, with the following update

Z ←
(
Z + ρ+ ϵ− C̄

Kβ

)+

, (3.22)

where (x)+ = max{x, 0}, and C̄ is the summation of all (1− γ)Ĉk(sk, ak) of the steps

in the previous frame, where each frame consists of Kβ consecutive steps.

During each frame, the algorithm learns the combined Q functions for fixed Z at a

fast time scale. The estimates of reward and utility value functions are updated after

observing a new state-action pair.

It is important to note that for a CMDP,

V ∗(s) ̸= max
a

Q∗(s, a). (3.23)
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This means optimistic Q-learning algorithms for unconstrained MDPs (e.g. [34; 45; 64])

cannot be used for estimating the optimal value functions of CMDPs. Instead,

Algorithm 3 uses a SARSA-type updating rule, as shown in lines 11− 14.

We note that the optimal policy for a CMDP is stochastic in general. The policy

under our algorithm is a stochastic policy because the virtual queue Z varies during

and after the learning process, which results in a stochastic policy.

We further introduce additional notations before presenting our main theorem.

Let vπ(s) and wπ(s) denote the reward and utility relative value functions for state s

under average-reward setting, and qπ(s, a), cπ(s, a) be the reward and utility Q value

functions for any state-action pair (s, a). Based on the Bellman equation, we have

Jπ
r + qπ(s, a) = r(s, a) + Es′∼p(·|s,a)[v

π(s′)] (3.24)

vπ(s) =
∑
a

qπ(s, a)P(π(s) = a) (3.25)

Jπ
g + cπ(s, a) = g(s, a) + Es′∼p(·|s,a)[w

π(s′)] (3.26)

wπ(s) =
∑
a

cπ(s, a)P(π(s) = a) (3.27)

Define

sp(f) = max
s∈S

f(s)−min
s∈S

f(s) (3.28)

to be the span of the function f. It is well known that the span of the optimal reward

relative value function sp(v∗) and utility relative value function sp(w∗) are bounded

for weakly communication or ergodic MDPs. In particular, they are bounded by the

diameter of the MDP [65].

Let

κ = max
0≤ϵ≤ρ/2

(max{sp(vϵ,∗), sp(wϵ,∗), 1}) (3.29)

and assume that κ which is used in the algorithm is known beforehand as in [45; 66].
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We can always substitute them with any upper bound (e.g. the diameter) when it is

unknown.

3.3.1 Main Results

We now state the main results in the following theorem.

Theorem III.2. Assume K ≥
(

18κ
√
SAι

δ

)6
and let ϵ = 9κ

√
SAι

K
1
6

such that ϵ ≤ δ
2
. By

choosing m = K
1
6 logK, H = K

1
6 , η = K

1
6 , χ = K

1
3 , and β = 2

3
, Algorithm 3

guarantees

Regret(K) ≤ Õ

(√
SAκ

δ
K

5
6

)
(3.30)

Violation(K) ≤ 92K
2
3

δ
log

(
24

δ

)
−
√
SAιK

5
6 = 0, (3.31)

where ι = 32 log(
√
2K).

3.3.2 The Choices of the Hyper-parameters

The regret bound and constraint violation bound are

Regret(K) =Õ
(
Kϵ+ γmK +

Km

χ
+
√

K2−βχ+mK1−β +
K

η
+

K

H

)
(3.32)

Violation(K) =−Kϵ+ Õ
(
Kβη +

Km

χ
+
√

K2−βχ+mK1−β

)
. (3.33)

We need to choose all the parameters ϵ, η,m, β, χ, and H carefully in order to

balance each term and all the parameters should be functions of K. Let χ = Kζ and

m = Õ(Kν). We have β = 3ζ − 2ν in order to ensure Km
χ

and
√

K2−βχ are of the

same order. Since m and H are of the same order, substituting ζ and ν yields

Regret(K) =Õ
(
Kϵ+K1−ζ+ν +K1−3ζ+3ν +

K

η
+K1−ν

)
(3.34)
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Figure 3.1: A Grid World with Safety Constraints

Violation(K) =−Kϵ+ Õ
(
K3ζ−2νη +K1−ζ+ν +K1−3ζ+3ν

)
, (3.35)

where the term γmK is omitted because the choice of m ensures γm ≤ 1
K

(Eq.(3.66)).

To make sure 1 > 1− ζ + ν > 0, we need to have ν < ζ. Then the bounds become

Regret(K) =Õ
(
Kϵ+K1−ζ+ν +

K

η
+K1−ν

)
(3.36)

Violation(K) =−Kϵ+ Õ
(
K3ζ−2νη +K1−ζ+ν

)
. (3.37)

To guarantee zero violation, Kϵ, K3ζ−2νη, and K1−ζ+ν should be of the same order,

which means ϵ = Õ(K−ζ+ν) and η = K1−4ζ+3ν . To optimize the regret bound, we

need to balance K1−ζ+ν , K
η
= K4ζ−3ν and K1−ν . Solving the equations we finally have

ζ = 1
3
, ν = 1

6
, β = 3ζ − 2ν = 2

3
, which leads to the choices of χ = K

1
3 , m = Õ(K

1
6 ),

H = K
1
6 , ϵ = Õ(K− 1

6 ), and η = Õ(K
1
6 ).

3.4 Simulation

In this section, we present simulation results that evaluate our algorithm using

the 2D safety grid-world exploration problem [13; 67]. Figure 3.1 shows the map of a

10× 10 grid-world with a total of 100 states. We chose an error probability 0.03 which
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means with probability 0.03 the agent will choose an action uniformly at random

to make the environment stochastic. The objective of the agent is to travel to the

destination (the red star) from the original position (the blue triangle) as quickly as

possible while limiting the number of times hitting the obstacles (the yellow squares).

Hitting an obstacle incurs a cost 1 and otherwise, there is no cost. The reward for

the destination is 1, and for others the normalized Euclidean distance between them

and the destination times a scaled factor of 0.1. We set the constraint limit as 0.15

through the simulation which means the expected cost rate should be below the limit.

To account for statistical significance, the results of each experiment are averaged over

5 trials. We remark that in the simulation we consider the following constraint

lim inf
K→∞

1

K
Eπ

[
K∑
k=1

g(sk, ak)

]
≤ ρ, (3.38)

which is similar to the constraint that the average utility needs to be above a threshold.

Figure 3.2 shows the performance comparison of our algorithm in terms of average

reward and average cost during training compared with the algorithm in [45]. We

can see that our algorithm is able to learn a policy that achieves a high reward while

satisfying the safety constraint very quickly. The optimistic Q-learning algorithm [45]

was for unconstrained MDPs, so it yields a higher reward but also violates the safety

constraint.

Figure 3.2:
Average reward and cost of our algorithm and Optimistic Q-learning
during training. The shaded region represents the standard deviations.
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3.5 Proof of the Main Theorem

In the following, we use shorthand notation

{f − g}(x) = f(x)− g(x),

where f(·) and g(·) the the same argument value. Similarly,

{(f − g)q}(x) = (f(x)− g(x))q(x).

3.5.1 Regret Analysis

We start the proof by adding and subtracting the corresponding terms to the

regret defined in (3.5), and we obtain

Regret(K) = E

[
K∑
k=1

(J∗
r − r(sk, ak))

]

=E

[
K∑
k=1

(J∗
r − J ϵ,∗

r )

]
(3.39)

+E

[
K∑
k=1

(J ϵ,∗
r − (1− γ)V ϵ,∗(sk))

]
(3.40)

+E

[
K∑
k=1

(1− γ)
(
V ϵ,∗(sk)− Q̂k(sk, ak)

)]
(3.41)

+E

[
K∑
k=1

(
(1− γ)Q̂k(sk, ak)− r(sk, ak)

)]
. (3.42)

We will bound each of the four terms above in the following sequence of lemmas.

The term (3.39) is the difference between the original CMDP and its corresponding

ϵ−tighten version, which is a perturbation of the original problem. We establish a

bound by using the following lemma.
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Lemma III.3. Under assumption III.1, given ϵ ≤ δ, we have

K∑
t=1

(J∗
r − J ϵ,∗

r ) ≤ ϵK

δ
(3.43)

For the second term (3.40), we establish a bound by using Lemma III.4, which

shows the difference between value functions of the average-reward problem and the

value functions of the discounted setting problem is small. The proof is based on the

Bellman equations under the two settings. The proof follows Lemma 2 in [45] closely.

Lemma III.4. For an arbitrary policy π, we have

Jπ
r − (1− γ)V π(s) ≤ (1− γ)sp(vπ(s)), (3.44)

|V π(s1)− V π(s2)| ≤ 2sp(vπ(s)); (3.45)

Jπ
g − (1− γ)W π(s) ≤ (1− γ)sp(wπ(s)), (3.46)

|W π(s1)−W π(s2)| ≤ 2sp(wπ(s)), (3.47)

where V π(s) is the value function for the discounted setting under policy π, and Jπ
r (J

π
g )

is the reward (utility) rate under policy π.

Then it is easy to obtain

J ϵ,∗
r − (1− γ)V ϵ,∗(s) ≤ (1− γ)κ, (3.48)

Next, we establish a bound on term (3.41) by using the Lyapunov-drift analysis. In

unconstrained MDPs, the bound is established by showing that optimistic Q-learning

guarantees that Q̂k(s, a) is an overestimate of Q∗(s, a). However this does not hold in

CMDPs because the algorithm needs to consider reward and utility simultaneously so

Q̂k(s, a) is not necessarily an overestimate of Q∗(s, a). To bound this term, we first
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add and subtract some additional terms to obtain

K∑
k=1

(1− γ)
(
V ϵ,∗(sk)− Q̂k(sk, ak)

)
=

K∑
k=1

(1− γ)
∑
a

{
Qϵ,∗qϵ,∗ +

Zk

η
Cϵ,∗qϵ,∗

}
(sk, a) (3.49)

−
K∑
k=1

(1− γ)
∑
a

{
Q̂kq

ϵ,∗ +
Zk

η
Ĉkq

ϵ,∗
}
(sk, a) (3.50)

+
K∑
k=1

(1− γ)

(∑
a

{
Q̂kq

ϵ,∗
}
(sk, a)− Q̂k(sk, ak) (3.51)

+
Zk

η

∑
a

{
Ĉkq

ϵ,∗ − Cϵ,∗qϵ,∗
}
(sk, a)

)
. (3.52)

We can see (3.49) + (3.50) is the difference between the two combined Q functions.

We will show that
{
Q̂k +

Zk

η
Ĉk,h

}
(s, a) is always an over-estimate of

{
Qϵ,∗ + Zk

η
Cϵ,∗

}
(s, a)

(i.e. (3.49) + (3.50) ≤ 0) for all (s, a, k) simultaneously with a high probability in

Lemma III.5. This result further implies an upper bound in expectation

E [(3.49) + (3.50)] ≤ (1− γ)
3H

ηK
. (3.53)

Lemma III.5. With probability at least 1− 1
K3 , the following inequality holds simul-

taneously for all (s, a, k) ∈ S ×A× [K] :

{(
Q̂k −Qϵ,∗

)
+

Zk

η

(
Ĉk − Cϵ,∗

)}
(s, a) ≥ 0, (3.54)

Then for the term (3.51) + (3.52), we can bound it by using the following lemma.

Lemma III.6. Assuming ϵ < δ, we have

E

[
K∑
k=1

(1− γ)

(∑
a

{
Q̂kq

ϵ,∗
}
(sk, a)− Q̂k(sk, ak)
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+
Zk

η

∑
a

{
Ĉkq

ϵ,∗ − Cϵ,∗qϵ,∗
}
(sk, a)

)]

≤2K

η
+

K1−β∑
T=1

E [ZT ]
(1− γ)κ

η
. (3.55)

To see the idea behind Lemma III.6, we need to consider the Lyapunov function

LT = 1
2
Z2

T , where T is the frame index and ZT is the virtual-queue length at the

beginning of T th frame. Recall that each frame contains Kβ consecutive steps. In the

proof of Lemma III.6, we will show that the Lyapunov-drift satisfies

E[LT+1 − LT ] ≤ a negative drift

+ 2 + E [ZT ]
(1− γ)κ

Kβ
− η

Kβ

(T+1)Kβ∑
k=TKβ+1

Φk, (3.56)

where

Φk =(1− γ)

(∑
a

{
Q̂kq

ϵ,∗
}
(sk, a)− Q̂k(sk, ak)

+
Zk

η

∑
a

{
Ĉkq

ϵ,∗ − Cϵ,∗qϵ,∗
}
(sk, a)

)
. (3.57)

Then summing both sides of the equation overall K1−β frames, we can obtain

E[L1 − LK1−β+1]

≤2K1−β +
K1−β∑
T=1

E [ZT ]
(1− γ)κ

Kβ
− η

Kβ

∑
k

Φk. (3.58)

Therefore

(3.51) + (3.52) =
∑
k

Φk
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≤KβE[L1 − LK1−β+1]

η
+

2K

η
+

K1−β∑
T=1

E [ZT ]
(1− γ)κ

η

≤2K

η
+

K1−β∑
T=1

E [ZT ]
(1− γ)κ

η
, (3.59)

where the last inequality holds because L1 = 0 and LT ≥ 0 for all T.

Then combining the result form (3.53) and Lemma III.6, we can obtain

K∑
k=1

((1− γ)
(
V ϵ,∗(sk)− Q̂k(sk, ak))

)
≤2K

η
+

K1−β∑
T=1

E [ZT ]
(1− γ)κ

η
+

3H

ηK
. (3.60)

The term E[ZT ] is proved uniformly bounded in Lemma III.7 by using the Lyapunov-

drift analysis on the moment generating function of Z i.e. E[erZ] can be bounded by

a constant uniformly over the entire learning horizon. The reason is that when the

virtual queue Z is large, our algorithm takes actions to almost greedily reduce the

virtual queue.

Lemma III.7. Assuming ϵ ≤ δ
2
and H ≥ 6κ

δ
, we have for any 1 ≤ T ≤ K1−β,

E[ZT ] ≤
92

δ
log

(
24

δ

)
+

6η

δ
. (3.61)

We apply the following lemma to bound the last term (3.42).

Lemma III.8. For any T ∈ [K1−β] and any m ∈ Z+,

E

 TKβ∑
k=(T−1)Kβ+1

({
(1− γ)Q̂k − r

}
(sk, ak)

) ≤ 2mS

+ γmKβ +
Kβm

χ
+ 4(1− γ)mκ

√
(χ+ 1)SAKβι (3.62)

E

 TKβ∑
k=(T−1)Kβ+1

({
(1− γ)Ĉk − g

}
(sk, ak)

) ≤ 2mS
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+ γmKβ +
Kβm

χ
+ 4(1− γ)mκ

√
(χ+ 1)SAKβι. (3.63)

This lemma is one of our key technical contributions, which shows that the

cumulative estimation error over one frame (Kβ consecutive episodes) between weighted

reward(utility) Q-value functions and average reward (utility) is upper bounded. From

the lemma above, we can immediately conclude that:

E

[
K∑
k=1

({
(1− γ)Q̂t − r

}
(sk, ak)

)]
≤ γmK +

Km

χ

+ 4(1− γ)mκ
√
(χ+ 1)SAK2−βι+ 2mSK1−β (3.64)

To balance the terms in regret, we carefully select that

m = H logK = K
1
6 logK, χ = K

1
3 , β =

2

3
. (3.65)

Then we have

γm =

(
1− 1

H

)H logK

≤ 1

K
, (3.66)

and the order of the second and third terms in the above equation (3.64) is Õ(K
5
6 ),

which is also the dominant term in our regret bound.

Then by appropriately choosing other parameters ϵ, ι and η, to balance the terms

and combining the results from (3.60), (3.64), Lemma III.3, Lemma III.4, and Lemma

III.7, we finish the proof for the regret bound.
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3.5.2 Constraint Violation Analysis

Recall that we use ZT to denote the value of the virtual queue in frame T. According

to the update of virtual-queue length, we have

ZT+1 =

(
ZT + ρ+ ϵ− C̄T

T β

)+

≥ ZT + ρ+ ϵ− C̄T

Kβ
, (3.67)

which implies that

TKβ∑
k=(T−1)Kβ+1

(−g(sk, ak) + ρ) ≤ Kβ (ZT+1 − ZT )

+
TKβ∑

k=(T−1)Kβ+1

(
(1− γ)Ĉk(sk, ak)− g(sk, ak)− ϵ

)
. (3.68)

Summing the inequality above over all frames and taking expectation on both sides,

we obtain the following upper bound on the constraint violation:

E

[
T∑
t=1

ρ− g(sk, ak)

]
≤ −Kϵ+KβE [ZK1−β+1]

+ E

[
K∑
k=1

(1− γ)Ĉk(sk, ak)− g(sk, ak)

]
, (3.69)

where we used the fact Z1 = 0. Combining the upper bound on the estimation error of

Ĉk in Lemma III.8 and the upper bound on E[ZT ] in Lemma III.7 yields the constraint

violation bound. Furthermore, under our careful choices of m, γ, ϵ, η, α, β and ι, it can

be easily verified that Kϵ dominates the upper bounds in (3.69), which leads to the

fact that constraint violation because zero when K is sufficiently large. In particular,

under our assumption on K, which implies that ϵ ≤ δ
2
, and leads to

Violation(K) = 0.
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3.5.3 Detailed Proofs

We provide the detailed proof in this section. A notation table and some supporting

lemmas can be found in Appendix B.

3.5.3.1 Proof of Lemma III.3.

Proof. Given q∗(x, a) is the optimal solution, we have

∑
s,a

q∗(s, a)g(s, a) ≥ ρ.

Under Assumption 1, we know that there exists a feasible solution qξ1(s, a) such that

∑
s,a

qξ1(s, a)g(s, a) ≥ ρ+ δ.

We construct qξ2(s, a) = (1− ϵ
δ
)q∗(s, a) + ϵ

δ
qξ1(s, a), which satisfies that

∑
x,a

qξ2(s, a)g(s, a) =
∑
s,a

(
(1− ϵ

δ
)q∗(s, a) +

ϵ

δ
qξ1(s, a)

)
g(s, a) ≥ ρ+ ϵ,

∑
s,a

qξ2(s, a) =
∑
x′,a′

p(s|s′, a′)qξ2(s′, a′),

∑
s,a

qξ2(s, a) = 1. (3.70)

Also we have qξ2(s, a) ≥ 0 for all (s, a). Thus qξ2(s, a) is a feasible solution to the

ϵ-tightened optimization problem. Then given qϵ,∗(s, a) is the optimal solution to the

ϵ-tightened optimization problem, we have

∑
s,a

(q∗(x, a)− qϵ,∗(s, a)) r(s, a)

≤
∑
s,a

(
q∗(s, a)− qξ2(s, a)

)
r(s, a)
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≤
∑
s,a

(
q∗(s, a)−

(
1− ϵ

δ

)
q∗(s, a)− ϵ

δ
qξ1(s, a)

)
r(s, a)

≤
∑
s,a

(
q∗(s, a)−

(
1− ϵ

δ

)
q∗(s, a)

)
r(s, a)

≤ ϵ

δ

∑
s,a

q∗(s, a)r(s, a)

≤ ϵ

δ
, (3.71)

where the last inequality holds because 0 ≤ r(s, a) ≤ 1 under our assumption.

Therefore the result follows because

J∗
r =

∑
s,a

q∗(s, a)r(s, a), (3.72)

J ϵ,∗
r =

∑
s,a

qϵ,∗(s, a)r(s, a). (3.73)

3.5.3.2 Proof of Lemma III.4

Proof. We only prove the result for the reward value functions. The proof for the

utility function is almost identical. Let π be an arbitrary policy. The proof follows

Lemma 2 in [45] closely. According to the Bellman equation, we have

V π(s) =E

[
∞∑
k=1

γk−1r(sk, π(sk))|s1 = s, π

]

=E

[
∞∑
k=1

γk−1
(
Jπ
r + vπ(sk)− Es′∼p(·|sk,π(sk))v

π(s′)
)
|s1 = s, π

]

=E

[
∞∑
k=1

γk−1 (Jπ
r + vπ(sk)− vπ(sk+1)) |s1 = s, π

]

=
Jπ
r

1− γ
+ vπ(s)− E

[
∞∑
k=2

(γk−2 − γk−1)vπ(sk)|s1 = s, π

]
. (3.74)
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Then

V π(s) ≥ Jπ
r

1− γ
+min

s
vπ(s)−max

s
vπ(s)

∞∑
k=2

(γk−2 − γk−1)

=
Jπ
r

1− γ
− sp(vπ), (3.75)

and

V π(s) ≤ Jπ
r

1− γ
+max

s
vπ(s)−min

s
vπ(s)

∞∑
k=2

(γk−2 − γk−1)

=
Jπ
r

1− γ
+ sp(vπ). (3.76)

Therefore we can conclude that

Jπ
r − (1− γ)V π(s) ≤ (1− γ)sp(vπ). (3.77)

For any s1, s2 ∈ S, we have

|V π(s1)− V π(s2)| ≤
∣∣∣∣V π(s1)−

Jπ
r

1− γ

∣∣∣∣+ ∣∣∣∣V π(s2)−
Jπ
r

1− γ

∣∣∣∣ ≤ 2sp(vπ) (3.78)

3.5.3.3 Proof of Lemma III.5

Proof. The proof follows Lemma 3 in [28] but for the discounted case. Consider frame

T and episodes in frame T. Define Z = Z(T−1)Kβ+1 because the value of the virtual

queue does not change during each frame. We further define/recall the following

notations:

Fk(s, a) = Qk(s, a) +
Z

η
Ck(s, a), Uk(s) = Vk(s) +

Z

η
Wk(s),
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F̂k(s, a) = Q̂k(s, a) +
Z

η
Ĉk(s, a), Ûk(s) = V̂k(s) +

Z

η
Ŵk(s),

F π(s, a) = Qπ(s, a) +
Z

η
Cπ(s, a), Uπ(s) = V π(s) +

Z

η
W π(s).

In the following, we use π to denote the policy ϵ, ∗ without obscurity. Then following

a similar proof of Lemma B.3, we have

{Fk+1 − F π}(s, a)

=α0
t

{
F(T−1)Kβ+1 − F π

}
(s, a)

+
t∑

i=1

αi
t

({
Ûki − Uπ

}
(ski+1) + γ

(
Uπ(ski+1)− Es′∼p(·|s,a)U

π(s′)
)
+

(
1 +

Z

η

)
bi

)

≥(a)α
0
t

{
F̂(T−1)Kβ+1 − F π

}
(s, a) +

t∑
i=1

αi
t

{
Ûki − Uπ

}
(ski+1)

=(b)α
0
t

{
F̂(T−1)Kβ+1 − F π

}
(s, a) +

t∑
i=1

αi
t

(
max

a
F̂ki(ski+1, a)− F π(ski , π(ski))

)
≥α0

t

{
F̂(T−1)Kβ+1 − F π

}
(s, a) +

t∑
i=1

αi
t

{
F̂ki − F π

}
(ski+1, π(ski+1)), (3.79)

where inequality (a) holds because of the concentration result in Lemma B.4 and

t∑
i=1

αi
t(1 +

Z

η
)bi =

t∑
i=1

αi
t(1 +

Z

η
)κ

√
(χ+ 1)ι

χ+ i
=

η + Z

η
κ

√
(χ+ 1)ι

χ+ t
, (3.80)

where the last equality comes from the properties of the learning rate (Lemma A.1).

Equality (b) holds because our algorithm selects the action that maximizes F̂ki(ski+1, a)

so Ûki(ski+1) = maxa F̂ki(ski+1, a). The inequality above suggests that we can prove

{Fk+1 − F π}(s, a) is an overestimation for any (s, a) if (i)

{
F̂(T−1)Kβ+1 − F π

}
(s, a) ≥ 0,
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i.e. the result holds at the beginning of the frame and (ii)

{
F̂k′ − F π

}
(s, a) ≥ 0 ∀k′ ≤ k

i.e. the result holds for all aforementioned steps in the same frame. Furthermore,

because that

F̂k+1(s, a) =Q̂k+1(s, a) +
Z

η
Ĉk+1(s, a) (3.81)

and the update rule of Q̂k+1, Ĉk+1 in Line 12− 17 in Algorithm 3, we have

F̂k+1(s, a)− F π(s, a) ≥ 0.

Then we only need to prove at the beginning of each frame,
{
F̂(T−1)Kβ+1 − F π

}
(s, a) ≥

0, which is obviously true because all reward and cost Q-functions are reset to H at

the beginning of each frame (line 27,28 in Algorithm 3). Let E denote the event that

{F̂k − F ϵ,∗}(s, a) ≥ 0 for all k. Then we conclude that

E

[
K∑
k=1

∑
a

{(
F π − F̂k

)
qπ
}
(sk, a)

]

=E

[
K∑
k=1

∑
a

{(
F π − F̂k

)
qπ
}
(sk, a)

∣∣∣∣∣ E
]
Pr(E)

+ E

[
K∑
k=1

∑
a

{(
F π − F̂k

)
qπ
}
(sk, a)

∣∣∣∣∣ Ec
]
Pr(Ec)

≤(a)K

(
1 +

2K1−β

η

)
H

1

K3
≤ 3H

ηK
, (3.82)

where inequality (a) holds because at any timestep k, we have

(F π − F̂k) ≤
(
1 +

2K1−β

η

)
H.
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3.5.3.4 Porrf of Lemma III.6

Proof. Consider Lyapunov function LT = 1
2
Z2

T , where T is the frame index and ZT is

the length of the virtual queue at the beginning of the T th frame. Firstly, we have

LT+1 − LT ≤ZT

(
ρ+ ϵ− C̄T

Kβ

)
+

(
ρ+ ϵ− C̄T

Kβ

)2
2

≤ZT

Kβ

(T+1)Kβ∑
k=TKβ+1

(ρ+ ϵ− (1− γ)Ĉk(sk, ak)) + 2. (3.83)

Then adding and subtracting additional terms,

E [LT+1 − LT |ZT = z]

≤ 1

Kβ

(T+1)Kβ∑
k=TKβ+1

(
E[z(ρ+ ϵ− (1− γ)Ĉk(sk, ak))− η(1− γ)Q̂k(sk, ak)|ZT = z]

+ η(1− γ)E[Q̂k(sk, ak)|ZT = z]
)
+ 2. (3.84)

Specifically, for the term inside the summation, we have

(
E[z(ρ+ ϵ− (1− γ)Ĉk(sk, ak))− η(1− γ)Q̂k(sk, ak)|ZT = z]

+η(1− γ)E[Q̂k(sk, ak)|ZT = z]
)

≤z(ρ+ ϵ)− E

[
η(1− γ)

(∑
a

{
z

η
Ĉkq

ϵ + Q̂kq
ϵ

}
(sk, a)

)∣∣∣∣∣ZT = z

]

+ η(1− γ)E[Q̂k(sk, ak)|ZT = z]

=E

[
z

(
ρ+ ϵ−

∑
s,a

g(s, a)qϵ(s, a)

)∣∣∣∣∣ZT = z

]

+ E

[
z

(∑
s,a

g(s, a)qϵ(s, a)− (1− γ)
∑
a

Cϵ(sk, a)q
ϵ(sk, a)

)∣∣∣∣∣ZT = z

]
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− η(1− γ)E

[∑
a

Q̂k(sk, a)q
ϵ(sk, a)− Q̂k(sk, ak)

∣∣∣∣∣ZT = z

]

+ (1− γ)E

[
z
∑
a

{
(Cϵ − Ĉk)q

ϵ
}
(sk, a)

∣∣∣∣∣ZT = z

]

≤− η(1− γ)E

[∑
a

Q̂k(sk, a)q
ϵ(sk, a)− Q̂k(sk, ak)

∣∣∣∣∣ZT = z

]

+ (1− γ)E

[
z
∑
a

{
(Cϵ − Ĉk)q

ϵ
}
(sk, a)

∣∣∣∣∣ZT = z

]

+ E

[
z

(
J ϵ
g − (1− γ)

∑
a

Cϵ(sk, a)q
ϵ(sk, a)

)∣∣∣∣∣ZT = z

]
, (3.85)

where the first inequality holds because ak is chosen to maximize Q̂k(sk, a)+
Zk

η
Ĉk(sk, a),

and the last inequality is true because qϵ(s, a) is a feasible solution to the optimization

problem (3.12) such that

ρ+ ϵ−
∑
s,a

g(s, a)qϵ(s, a) ≤ 0

Therefore by replacing qϵ(s, a) with the optimal solution qϵ,∗(s, a), we have

E [LT+1 − LT |ZT = z]

≤− η(1− γ)E

[∑
a

Q̂k(sk, a)q
ϵ,∗(sk, a)− Q̂k(sk, ak)

∣∣∣∣∣ZT = z

]

+ (1− γ)E

[
z
∑
a

{
(Cϵ,∗ − Ĉk)q

ϵ,∗
}
(sk, a)

∣∣∣∣∣ZT = z

]

+ E

[
z

(
J ϵ,∗
g − (1− γ)

∑
a

Cϵ,∗(sk, a)q
ϵ,∗(sk, a)

)∣∣∣∣∣ZT = z

]
+ 2 (3.86)

After taking expectation with respect to Z, dividing η on both sides, reorganizing

the terms, and then applying the telescoping sum, we get

E

[
K∑
k=1

(1− γ)

(∑
a

{
Q̂kq

ϵ,∗
}
(sk, a)− Q̂k(sk, ak)
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+
Zk

η

∑
a

{
Ĉkq

ϵ,∗ − Cϵ,∗qϵ,∗
}
(sk, a)

)]

≤2K

η
+

K1−β∑
T=1

E [ZT ]
(1− γ)

η
sp(wϵ,∗) +

KβE [L1 − LK1−β+1]

η

≤2K

η
+

K1−β∑
T=1

E [ZT ]
(1− γ)κ

η
, (3.87)

where the first inequality comes from Lemma III.4, and the last inequality comes from

the fact that κ = max0≤ϵ≤ρ/2 (max{sp(vϵ,∗), sp(wϵ,∗), 1}) is non-negative.

3.5.3.5 Proof of Lemma:III.7

Proof. The proof will also use the following lemma from [59].

Lemma III.9. Let St be the state of a Markov chain, Lt be a Lyapunov function with

L0 = l0, and its drift ∆t = Lt+1 − Lt. Given the constant γ and v with 0 < γ ≤ v,

suppose that the expected drift E[∆t|St = s] satisfies the following conditions:

(1) There exists constant γ > 0 and θt > 0 such that E[∆t|St = s] ≤ −γ when

Lt ≥ θt.

(2) |Lt+1 − Lt| ≤ v holds with probability one.

Then we have

E[erLt ] ≤ erl0 +
2er(v+θt)

rγ
,

where r = γ
v2+vγ/3

. □

We apply Lemma III.9 to a new Lyapunov function:

L̄T = ZT .

To verify condition (1) in Lemma III.9, consider L̄T = ZT ≥ θT =
6(η+2+ 3H

K2 )

δ
and
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2ϵ ≤ δ. The conditional expected drift of L̄T is

E [ZT+1 − ZT |ZT = z]

=E
[√

Z2
T+1 −

√
z2
∣∣∣∣ZT = z

]
≤ 1

2z
E
[
Z2

T+1 − z2
∣∣ZT = z

]
≤(a) −

δ

2
+

(η + 2 + 3H
K2 )

z

≤−
(η + 2 + 3H

K2 )

θT
(3.88)

=− δ

6
, (3.89)

where inequality (a) is obtained according to Lemma A.5; and the last inequality

holds given z ≥ θT .

To verify condition (2) in Lemma III.9, we have

ZT+1 − ZT ≤ |ZT+1 − ZT | ≤
∣∣ρ+ ϵ− C̄T

∣∣ ≤ 2. (3.90)

Now choose γ = δ
6
and v = 2. From Lemma III.9, we obtain

E
[
erZT

]
≤ erZ1 +

2er(v+θT )

rγ
, where r =

γ

v2 + vγ/3
. (3.91)

By Jensen’s inequality, we have

erE[ZT ] ≤ E
[
erZT

]
,

which implies that

E [ZT ] ≤
1

r
log

(
1 +

2er(v+θT )

rλ

)
≤1

r
log

(
11v2

3λ2
er(v+θT )

)
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≤3v2

λ
log

(
2v

λ

)
+ v + θT

≤72

δ
log

(
24

δ

)
+ 2 +

6(η + 3)

δ

≤92

δ
log

(
24

δ

)
+

6η

δ
(3.92)

3.5.3.6 Proof of Lemma III.8

Proof. we have for any K ′ within a frame,

K′∑
k=1

(
(1− γ)Q̂k(sk, ak)− r(sk, ak)

)
=γ

K′∑
k=1

nk∑
i=1

αi
nk

[
−γr(sk, ak) + (1− γ)V̂ki(sk,ak)(ski(sk,ak)+1)

]
+ 2(1− γ)κ

K′∑
k=1

√
(χ+ 1)ι

χ+ nk

, (3.93)

where the equality comes from the updating rule of Q̂k(s, a) and the fact
∑τ

i=1 α
i
τ = 1.

We use nk denotes nk+1(sk, ak) for short, that is the number of visits to state-action

pair (sk, ak) by timestep k (including k) within the same frame. Note that α0
nk

= 0 by

definition since nk ≥ 1. For the second term, we further have

γ(1− γ)
K′∑
k=1

nk∑
i=1

αi
nk
V̂ki(sk,ak)(ski(sk,ak)+1)

=γ(1− γ)
K′∑
k=1

∑
s,a

I{sk=s,ak=a}

nk+1(s,a)∑
i=1

αi
nk+1(s,a)

V̂ki(sk,ak)(ski(sk,ak)+1)

=γ(1− γ)
∑
s,a

nK′+1(s,a)∑
j=1

j∑
i=1

αi
jV̂ki(sk,ak)(ski(sk,ak)+1)

=(a)γ(1− γ)
∑
s,a

nK′+1(s,a)∑
i=1

nK′+1(s,a)∑
j=i

αi
jV̂ki(sk,ak)(ski(sk,ak)+1)
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=γ(1− γ)
∑
s,a

nK′+1(s,a)∑
i=1

V̂ki(sk,ak)(ski(sk,ak)+1)

nK′+1(s,a)∑
j=i

αi
j, (3.94)

where the equality (a) is true due to the changing of the order of summation on

i and j. Since we have a upper bound that
∑nT ′+1(s,a)

j=i αi
j ≤

∑∞
j=i α

i
j = 1 + 1

χ
and

V̂ki(sk,ak)(ski(sk,ak)+1) >= 0, then we can obtain

γ(1− γ)
K′∑
k=1

nk∑
i=1

αi
nk+1(s,a)

V̂ki(sk,ak)(ski(sk,ak)+1)

≤γ(1− γ)
∑
s,a

nK′+1(s,a)∑
i=1

V̂ki(sk,ak)(ski(sk,ak)+1)
∞∑
j=i

αi
j

=γ(1− γ)
∑
s,a

nK′+1(s,a)∑
i=1

V̂ki(sk,ak)(ski(sk,ak)+1)

(
1 +

1

χ

)

=γ(1− γ)

(
1 +

1

χ

) K′∑
k=1

V̂k(sk+1). (3.95)

Substituting in (3.93), we have

K′∑
k=1

(
(1− γ)Q̂k(sk, ak)− r(sk, ak)

)
≤− γ

K′∑
k=1

r(sk, ak) + γ(1− γ)

(
1 +

1

χ

) K′∑
k=1

V̂k(sk+1)

+ 2(1− γ)κ
K′∑
k=1

√
(χ+ 1)ι

χ+ nk

≤(a) − γ
K′∑
k=1

r(sk, ak) + γ(1− γ)
K′∑
k=1

V̂k(sk+1) +
K ′

χ
(1− γ)γH

+ 2(1− γ)κ
K′∑
k=1

√
(χ+ 1)ι

χ+ nk

=− γ
K′∑
k=1

r(sk, ak) + γ(1− γ)
K′∑
k=1

(
V̂k(sk+1)− V̂k+1(sk+1)

)
+ γ(1− γ)

K′∑
k=1

V̂k+1(sk+1)

+
K ′

χ
(1− γ)γH
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+ 2(1− γ)κ
K′∑
k=1

√
(χ+ 1)ι

χ+ nk

(3.96)

≤(b) − γ

K′∑
k=1

r(sk, ak) + γ(1− γ)
K′+1∑
k=2

V̂k(sk) +
K ′

χ
(1− γ)γH

+ 2(1− γ)κ
K′∑
k=1

√
(χ+ 1)ι

χ+ nk

+ γ(1− γ)SH

≤γ
K′∑
k=1

(
(1− γ)Q̂k(sk, ak)− r(sk, ak)

)
+

K ′

χ
(1− γ)γH + 2(1− γ)κ

K′∑
k=1

√
(χ+ 1)ι

χ+ nk

+ 2γ(1− γ)SH (3.97)

≤γmK ′(1− γ)H +
K ′m

χ
(1− γ)γH + 2m(1− γ)κ

K′∑
k=1

√
(χ+ 1)ι

χ+ nk

+ 2mγ(1− γ)SH

( repeatedly use the inequality m times)

≤(c)γ
mK ′(1− γ)H +

K ′m

χ
(1− γ)γH

+ 4γ(1− γ)mκ
√

(χ+ 1)SAT ′ι+ 2mγ(1− γ)SH, (3.98)

where the inequality (a) holds because V̂k(s) is bounded by H, inequality (b) is true

because that for any state s, V̂k(s) ≥ V̂t+1(s) and the value can decrease by at most

H. Inequality (c) is by nothing but that

K′∑
k=1

√
(χ+ 1)ι

χ+ nk

=
K′∑
k=1

∑
s,a

√
I{sk=s,ak=a}(χ+ 1)ι

χ+ nk

=
∑
s,a

nT ′+1(s,a)∑
j=1

√
(χ+ 1)ι

χ+ j

≤
∑
s,a

nK′+1(s,a)∑
j=1

√
(χ+ 1)ι

j
≤ 2

∑
s,a

√
(χ+ 1)ιnT ′+1(s, a)

(1)

≤ 2
√

(χ+ 1)SAK ′ι,

where the last inequality above holds because the left-hand side of (1) is the summation

of K ′ terms and it is maximized when nK′+1 = K ′/SA for all s, a, i.e. by picking the

largest K ′ terms. We finish the proof by substituting 1− γ with 1
H
.
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3.6 Summary

In this chapter, we proposed the first model-free RL algorithm for infinite-horizon

average-reward CMDPs. The design of the algorithm is based on the primal-dual

approach. By using the Lyapunov drift analysis, we proved that our algorithm achieves

sublinear regret and zero constraint violation. Our regret bound scales as Õ(K
5
6 ) and is

suboptimal compared to model-based approaches. However, this is the first model-free

and simulator-free algorithm with sub-linear regret and optimal constraint violation.

It is still an interesting open problem how to achieve Õ(
√
K) regret bound via model-

free algorithms. The algorithm is also computationally efficient from an algorithmic

perspective because it is model-free. The simulation result also demonstrates the good

performance of our algorithm.
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CHAPTER IV

Provably Efficient Model-Free Algorithms for

Non-stationary CMDPs

4.1 Introduction

Safe reinforcement learning (RL) studies how to apply RL algorithms in real-world

applications [68; 69; 70] that can operate under safety-related constraints. In classical

safe-RL and CMDP problems, an agent is assumed to interact with a stationary

environment. However, stationary models cannot capture the time-varying real-world

applications where safety is critical such that the transition functions and reward/utility

functions are non-stationary. For example, in autonomous driving [71], collisions must

be avoided while modeling and tracking time-varying environments such as traffic

conditions; in an automated medical system [72], it is essential to guarantee patient

safety under varying patients’ behavior.

Learning in a stationary CMDP is a long-standing topic and has been heavily

studied recently, including using both model-based and model-free approaches [15; 17;

29; 30; 20; 39; 14; 19; 73]. RL in non-stationary CMDPs is more challenging since

the rewards/utilities and dynamics are time-varying and probably unknown a priori.

On the one hand, an agent has to handle the non-stationarity properly to guarantee

a sublinear regret and a small or zero constraint violation. On the other hand, the

86



agent also needs to forget the past data samples since they become less useful due

to the dynamic of the system. The only existing work of which we are aware that

studies non-stationary CMDPs is [74], via a model-based approach assuming a priori

knowledge of the total variation budgets, which is far less computationally efficient

compared with model-free approaches and where knowing the variation budgets is less

desirable in practice.

In this chapter, we manage to overcome these challenges and focus on designing

model-free algorithms with sublinear regret and zero constraint violation guarantees

for non-stationary CMDPs, especially for the scenario when the total variation budget

is unknown. Our contributions are as follows:

• Our work contributes to the theoretical understanding of non-stationary episodic

CMDPs. We develop different types of model-free algorithms for non-stationary

CMDP settings– one is tailored for tabular CMDPs and has low memory and

computational complexity, another one is computationally more intensive, however,

can be applied to linear function approximation for large, possibly infinite, state

and action spaces.

• For the tabular setting, our algorithm adopts a periodic restart strategy and utilizes

an extra optimism bonus term to counteract the non-stationarity of the CMDP

that an overestimate of the combined objective is guaranteed during learning and

exploration. For the case when the budget variation is known, our theoretical result

Õ(K4/5) matches the best existing result for stationary CMDPs in terms of the

total number of episodes K, and non-stationary MDPs in term of the variation

budget B. For linear CMDP, we propose the first model-free, value-based algorithm

which obtains Õ(K3/4) regret and zero constraint violation using the same strategy.

Our result, in fact, improves the dependency with respect to the budget variation

and the episode length H compared to [74].
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• We develop, for the first time, a general double restart method for non-stationary

CMDPs based on the “bandit over bandit” idea. This method can be used for other

non-stationary constrained learning problems which aim to achieve zero constraint

violation. The method removes the need to have a priori knowledge of the variation

budget, an open problem raised in [74] for non-stationary CMDPs. While the

“bandit over bandit” has been widely used and studied for unconstrained MDPs,

adopting it for CMDPs is nontrivial due to multiple challenges that do not exist in

unconstrained settings. For example, one needs to account for the constraints. We

overcome these difficulties with a new design of the bandit reward function for each

arm. We show that the approach can be used in conjunction with the algorithms

for the tabular and linear function approximation cases.

Related Work

Non-stationary MDP. Non-stationary unconstrained MDPs have been mostly

studied recently [75; 76; 77; 78; 79; 80; 81; 82; 83; 84]. [75] consider a setting where

the MDP is allowed to change for fixed number of times. When the variation budget

is known a priori, [78] propose a policy-based algorithm in the setting where they

assume stationary transitions and adversarial full-information rewards. [82; 84; 80; 83]

consider a more general setting that both transitions and rewards are time-varying.

A more recent work [81] introduces a procedure that can be used to convert any

upper-confidence-bound-type stationary RL problem to a non-stationary RL algorithm

to relax the assumption of having a priori knowledge on the variation budget.

CMDP. Stationary CMDPs with provable guarantees have been heavily studied

in recent years. In particular, [15; 17; 14] propose model-based approaches for tabular

CMDPS. [85; 19] extend the results to the linear and linear kernel CMDPs. [20; 39]

also provide efficient algorithms with a zero constraint violation guarantee. Besides

using an estimated model, [25; 27] leverage a simulator for policy evaluation to

88



achieve provable regret guarantees. Moreover, [29; 30] propose the first model-free

and simulator-free algorithms for CMDPs with sublinear regret and zero constraint

violation. However, the studies on non-stationary CMDPs are limited. For non-

stationary CMDPs, [18] consider CMDPs that assume that only the rewards vary

over episodes. A concurrent work [74], which is most related to ours, focuses on the

same setting where the transitions and rewards/utilities vary over episodes under a

linear kernel CMDP assumption. They also assume that the budget is known a priori.

The method proposed is a model-based approach, but we instead consider a more

challenging setting where the algorithm is model-free and the budget is not known.

Fortunately, we answer the open problem affirmatively raised in [74].

4.2 Problem Formulation

We consider an episodic CMDP where an agent interacts with a non-stationary

system for K episodes. The CMDP is denoted by (S,A, H,P, r, g), where S is the

state space with |S| = S, A is the action space with |A| = A, H is the fixed

length of each episode, P = {Pk,h}k∈[K],h∈[H] is a collection of transition kernels, and

r = {rk,h}k∈[K],h∈[H](g = {gk,h}k∈[K],h∈[H]) is the set of reward (utility) functions. In

Section 4.4, we extend our analysis to potentially infinite state space.

At the beginning of an episode k, an initial state xk,1 is sampled from the dis-

tribution µ0. Then at step h, the agent takes action ak,h ∈ A after observing state

xk,h ∈ S. Then the agent receives a reward rk,h(xk,h, ak,h) and incurs a utility

gk,h(xk,h, ak,h). The environment transitions to a new state xk,h+1 following from the

distribution Pk,h(·|xk,h, ak,h). It is worth emphasizing that the transition kernels, re-

ward functions, and utility functions all depend on the episode index k and time h,

and hence the system is non-stationary. For simplicity of notation, we assume that

rk,h(x, a)(gk,h(x, a)) : S × A → [0, 1], are deterministic for convenience. Our results

generalize to the setting where the reward and utility functions are random. Given a
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policy π, which is a collection of H functions π : [H]× S → A, where [H] represents

the set {1, 2, . . . , H}. Define the reward value function V π
k,h(x) : S → R+ at episode k

and step h to be the expected cumulative rewards from step h to the end under the

policy π :

V π
k,h(x) = E

[
H∑
i=h

rk,i(xk,i, π(xk,i))

∣∣∣∣∣xk,h = x

]
. (4.1)

The (reward) Q-function Qπ
k,h(x, a) : S ×A → R+ is the expected cumulative reward

when an agent starts from a state-action pair (x, a) at episode k and step h following

the policy π :

Qπ
k,h(x, a) = rk,h(x, a) + E

[
H∑

i=h+1

rk,i(xk,i, π(xk,i))

∣∣∣∣∣xk,h = x, ak,h = a

]
. (4.2)

Similarly, we use W π
k,h(x) : S → R+ to denote the utility value function

W π
k,h(x) = E

[
H∑
i=h

gk,i(xk,i, π(xk,i))

∣∣∣∣∣xk,h = x

]
, (4.3)

and we use

Cπ
k,h(x, a) : S ×A → R+ to denote the utility Q-function at episode k, step h:

Cπ
k,h(x, a) = gk,h(x, a) + E

[
H∑

i=h+1

gk,i(xk,i, π(xk,i))

∣∣∣∣∣xk,h = x, ak,h = a

]
. (4.4)

For simplicity, we adopt the following notations:

Pk,hV
π
k,h+1(x, a) =Ex′∼Pk,h(·|x,a)V

π
k,h+1(x

′), (4.5)

Pk,hW
π
h+1(x, a) =Ex′∼Pk,h(·|x,a)W

π
k,h+1(x

′). (4.6)
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We also denote the empirical counterparts as

P̂k,hV
π
k,h+1(x, a) =V π

k,h+1(xk+1,h), (4.7)

P̂k,hW
π
k,h+1(x, a) =W π

k,h+1(xk+1,h), (4.8)

and is only defined for (x, a) = (xk,h, ak,h). Given the model defined above, the

objective of the episode k is to find a policy that maximizes the expected cumulative

reward subject to a constraint on the expected utility:

max
πk∈Π

E
[
V πk
k,1(x1)

]
subject to: E

[
W πk

k,1(x1)
]
≥ ρ, (4.9)

where we assume ρ ∈ [0, H] to avoid triviality, and the expectation is taken with respect

to the initial distribution and the randomness of π. Let π∗
k denote the optimal solution

to the CMDP problem defined in (4.9) for episode k. We evaluate our model-free RL

algorithms using dynamic regret R(K) and constraint violation V(K) defined below:

R(K) = E

[
K∑
k=1

(
V

π∗
k

k,1(xk,1)− V πk
k,1(xk,1)

)]
, (4.10)

V(K) = E

[
K∑
k=1

(
ρ−W πk

k,1(xk,1)
)]

, (4.11)

where πk is the policy used in episode k. Note that here we use the dynamic regret

concept as the optimal policy may be different. We further make the following standard

assumption [17; 19; 18; 29].

Assumption IV.1. (Slater’s Condition). Given initial distribution µ0, for any episode

k ∈ [K], there exist δ > 0 and at least a policy π such that E
[
W π

k,1(xk,1)
]
− ρ ≥ δ.

Variation: The non-stationary of the CMDP is measured according to the variation
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budgets in the reward/utility functions and the transition kernels:

Br :=
K−1∑
k=1

H∑
h=1

max
x,a
|rk,h(x, a)− rk+1,h(x, a)| (4.12)

Bg :=
K−1∑
k=1

H∑
h=1

max
x,a
|gk,h(x, a)− gk+1,h(x, a)| (4.13)

Bp :=
K−1∑
k=1

H∑
h=1

max
x,a
∥Pk,h(·|x, a)− Pk+1,h(·|x, a)∥1. (4.14)

We further let B = Br +Bg +Bp to represent the total variation. To bound the

regret, we consider the following offline optimization problem at episode k as our

regret baseline:

max
qk,h

∑
h,x,a

qk,h(x, a)rk,h(x, a) (4.15)

s.t.:
∑
h,x,a

qk,h(x, a)gk,h(x, a) ≥ ρ (4.16)

∑
a

qk,h(x, a) =
∑
x′,a′

Pk,h−1(x|x′, a′)qk,h−1(x
′, a′) (4.17)

∑
x,a

qk,h(x, a) = 1,∀h ∈ [H] (4.18)

∑
a

qk,1(x, a) = µ0(x) (4.19)

qk,h(x, a) ≥ 0,∀x ∈ S,∀a ∈ A,∀h ∈ [H]. (4.20)

To analyze the performance, we need to consider a tightened version of the LP, which

is defined below:

max
qk,h

∑
h,x,a

qk,h(x, a)rk,h(x, a) (4.21)

s.t.:
∑
h,x,a

qk,h(x, a)gk,h(x, a) ≥ ρ+ ϵ, and (4.17)− (4.20),
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where ϵ > 0 is called a tightness constant. When ϵ ≤ δ, this problem has a feasible

solution due to Slater’s condition. We use superscript ∗ to denote the optimal

value/policy related to the original CMDP (4.9) or the solution to the corresponding

LP (4.15) and superscript ϵ,∗ to denote the optimal value/policy related to the ϵ-

tightened version of CMDP.

4.3 Model-free Algorithms for the Tabular CMDP Setting

Next, we will start with presenting our algorithm Non-stationary Triple-Q in

Algorithm 4 for the scenario when the variation budget is known. Our algorithm uses

a restart strategy that divides the total episode K into frames, which is commonly

used in both non-stationary bandits and RL to address non-stationarity. We remark

that in unconstrained RL, the restarting results in a worse regret. For example, the

regret bound is Õ(
√
K) [34] in the stationary setting but becomes Õ(K 2

3 ) [84] when

the system is non-stationary. However, the order of regret achieved by our Algorithm

1 matches the best existing result in stationary CMDPs obtained by the model-free

algorithm Triple-Q [29] under the same setting. That is because Triple-Q itself is built

on top of a two-time-scale scheme for balancing the estimation error and tracking the

constraint violation, which shares the same insights as the restart strategy for dealing

with non-stationarity. Therefore, by appropriately designing the frame size (restarting

period), Algorithm 1 can achieve the same order as that in unconstrained CDMPs as

well as the optimal order in terms of variation budget.

We first divide the total K episodes into frames, where each frame contains

Kα/Bc episodes. Define B
(T )
r , B

(T )
g , B

(T )
p to be the local variation budget of the reward

functions, utility functions, and transition kernels within the T th frame, let NT denote
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the set of all the episodes in frame T, then

B(T )
r :=

∑
k∈NT

H∑
h=1

max
x,a
|rk,h(x, a)− rk+1,h(x, a)| (4.22)

B(T )
g :=

∑
k∈NT

H∑
h=1

max
x,a
|gk,h(x, a)− gk+1,h(x, a)| (4.23)

B(T )
p :=

∑
k∈NT

H∑
h=1

max
x,a
∥Pk,h(·|s, a)− Pk+1,h(·|x, a)∥1. (4.24)

Let the total local variation budget B(T ) = B
(T )
r + B

(T )
g + B

(T )
p , then by definition

we have
∑K1−αBc

T=1 B(T ) ≤ B. Our algorithm uses two bonus terms bt and b̃ to update

Q values (Line 10 − 11 in Algorithm 4), where bt is the standard Hoeffding-based

bonus in upper confidence bounds, and b̃ is the extra bonus to take into account the

non-stationarity of the environment. We assume that b̃ is a uniform upper bound on

the total local variation budget BT for any T, and satisfies K1−αBcb̃ ≤ B which is an

assumption commonly seen in the literature on non-stationary RL [79; 84; 83].

4.3.1 Results of Tabular CMDPs

We now present our main results of the Non-stationary Triple-Q.

Theorem IV.2. Assume K ≥ max

{(
16

√
SAH6ι3

δ

)5
, e

1
δ

}
, where ι = 128 log(

√
2SAHK).

Algorithm 1 achieves the following regret and constraint violation bounds:

R(K) =Õ(H4S
1
2A

1
2B

1
3K

4
5 ) (4.25)

V(K) =0 (4.26)
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Algorithm 4: Non-stationary Triple-Q

1 Input: Total Budget B;

2 Choose α = 0.6, η = K
1
5B

1
3 , χ = K

1
5 , c = 2

3
, ϵ = 8

√
SAH6ι3B1/3

K0.2 , and

ι = 128 log(
√
2SAHK) ;

3 Initialize Qh(x, a) = Ch(x, a)← H and
Z = C̄ = Nh(x, a) = VH+1(x) = WH+1(x)← 0 for all (x, a, h) ∈ S ×A× [H];

4 for episode k = 1, . . . , K do
5 Sample the initial state for episode k : xk,1 ∼ µ0;
6 for step h = 1, . . . , H do

7 Take action ah ← argmaxa

(
Qh(xk,h, a) +

Z
η
Ch(xk,h, a)

)
;

8 Observe rk,h(xk,h, ak,h), gk,h(xk,h, ak,h), and
xk,h+1, Nh(xk,h, ak,h)← Nh(xk,h, ak,h) + 1;

9 Set t = Nh(xk,h, ak,h), bt =
1
4

√
H2ι(χ+1)

χ+t
, αt =

χ+1
χ+t

;

10 Qh(xk,h, ak,h)←
(1− αt)Qh(xk,h, ak,h) + αt

(
rk,h(xk,h, ak,h) + Vh+1(xk,h+1) + bt + 2Hb̃

)
;

11 Ch(xk,h, ak,h)←
(1−αt)Ch(xk,h, ak,h)+αt

(
gk,h(xk,h, ak,h) +Wh+1(xk,h+1) + bt + 2Hb̃

)
;

12 a′ = argmaxa

(
Qh(xk,h, a) +

Z
η
Ch(xk,h, a)

)
,

Vh(xk,h)← Qh(xk,h, a
′) Wh(xk,h)← Ch(xk,h, a

′) ;
13 if h = 1 then
14 C̄ ← C̄ + C1(xk,1, ak,1)

15 if k mod (Kα/Bc) = 0 ; // reset visit counts and Q-functions

16 then
17 Nh(x, a)← 0, Qh(x, a) = Ch(x, a) = Qh(x, a) = Ch(x, a)← H,

Z ←
(
Z + ρ+ ϵ− C̄·Bc

Kα

)+
, C̄ ← 0

Dynamic Regret

As shown in Algorithm 4, let Qk,h(x, a), Ck,h(x, a) denote the estimate Q values at

the beginning of the k−th episode. The dynamic regret can be decoupled as:

R(K) = E

[
K∑
k=1

(∑
a

{
Q∗

k,1q
∗
k,1 −Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)

)]
+ (4.27)

E

[
K∑
k=1

(∑
a

{
Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ (4.28)
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E

[
K∑
k=1

{
Qk,1 −Qπk

k,1

}
(xk,1, ak,1)

]
, (4.29)

here we use the shorthand notation {f − g}(x) = f(x) − g(x). Before bounding

each term, we first show that for any triple (x, a, h), the difference of two different

reward/utility Q-value functions within the same frame are bounded by the local

variation bound in that frame.

Lemma IV.3. Given any frame T, for any (x, a, h), and (T − 1)Kα/Bc ≤ k1 ≤ k2 ≤

TKα/Bc, we have

|Qπ
k1,h

(x, a)−Qπ′

k2,h
(x, a)| ≤ Hb̃ (4.30)

|Cπ
k1,h

(x, a)− Cπ′

k2,h
(x, a)| ≤ Hb̃ (4.31)

Then we will show that in Lemma IV.12 the first term (4.27) can be bounded by

comparing the original LP associated with the tightened LP such that (4.27) ≤ KHϵ
δ

.

The term (4.29) is the estimation error between Qk,h and the true Q value under

policy πk at episode k. This estimation error can be bounded by our choice of

the learning rate (Line 8 in Algorithm 4) and the added bonus. Then (4.29) ≤

H2SAK1−αBc + 2(H3√ι+2H2b̃)K
χ

+
√

H4SAιK2−α(χ+ 1)Bc + 2b̃H2K.

For the remaining term (4.28), we need to add and subtract additional terms to

construct a difference between the optimal combined Q value {Q∗
k,h +

Z
η
}C∗

k,h(x, a)

and the estimated counterpart {Qk,h +
Z
η
Ck,h}(x, a). We will show in Lemma IV.10

that the estimation is always an overestimation for all (x, a, h, k) due to the added

bonus when the virtual “queue” ZT is fixed with high probability, which implies

that the difference is negative with high probability. Then in Lemma IV.13 we

leverage Lyapunov-drift method and consider the Lyapunov function LT = 1
2
Z2

T to

show that the redundant term can also be bounded. Combining the bounds on

the estimation and the redundant term we can obtain (4.28) ≤ K(2H4ι+4H2b̃2+ϵ2)
η

+

96



(η+K1−α)H2Bc

ηK
. Then combining inequalities (4.27),(4.28),(4.29) above we can obtain for

K ≥
(

16
√
SAH6ι3B1/3

δ

)5
, applying the condition K1−αBcb̃ ≤ B, along with our choices

of parameters (Line 2 in Algorithm 4) for balancing each terms, we conclude that

R(K) = Õ(H4S
1
2A

1
2B

1
3K

4
5 ).

Constraint Violation

According to the virtual-Queue update, we have

ZT+1 =

(
ZT + ρ+ ϵ− C̄TB

c

Kα

)+

≥ZT + ρ+ ϵ− C̄TB
c

Kα
, (4.32)

which implies that for (T − 1)Kα/Bc ≤ k ≤ TKα/Bc,

∑
k

(
−Cπk

k,1(xk,1, ak,1) + ρ
)
≤ Kα

Bc
(ZT+1 − ZT )

+
∑
k

({
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)− ϵ

)
. (4.33)

Summing the inequality above over all frames and taking expectation on both sides,

we obtain the following upper bound on the constraint violation:

E

[
K∑
k=1

ρ− Cπk
k,1(xk,1, ak,1)

]
≤ −Kϵ+

Kα

Bc
E [ZK1−αBc+1]

+ E

[
K∑
k=1

{
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)

]
, (4.34)

where the inequality is true due to the fact Z1 = 0. In Lemma IV.11, we will establish

an upper bound on the estimation error of E
[∑K

k=1 {Ck,1 − Cπk
1 } (xk,1, ak,1)

]
.

Next, we study the moment generating function of ZT , i.e. E
[
erZT

]
for some

r > 0. In Lemma IV.14, based on a Lyapunov drift analysis of this moment generating
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function and Jensen’s inequality, we will establish the following upper bound on ZT

that holds for any 1 ≤ T ≤ K1−αBc,

E[ZT ] ≤
100(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H)

δ

)

+
4H2Bc

Kδ
+

4H2Bc

ηKαδ
+

4η(
√
H2ι+ 2H2b̃)

δ
. (4.35)

Substituting the results from Lemma IV.11 and (4.35) into (4.34), using the choice that

ϵ = 8
√
SAH6ι3B1/3

K0.2 , we can easily verify that when K ≥ max

{(
16

√
SAH6ι3B1/3

δ

)5
, e

1
δ

}
,

we have

V(K) ≤100(H4ι+ b̃2H2)K0.6

δB2/3
log

16(H2
√
ι+Hb̃)

δ
−
√
SAH6ι3K0.8B

1
3 ≤ 0. (4.36)

4.3.2 Unknown Variation Budgets

The design of the Algorithm 4 relies on the knowledge of the total variation budget

B to set the frame size to be Kα/Bc. When an upper bound on the total variation

budget is not given, we propose the Algorithm 5 that adaptively learns the variation

budget B based on the “Bandit over Bandit” algorithm [86]. Algorithm 5 uses an

outer loop “bandit algorithm” as a master to learn the true value B, and use the

inner loop Algorithm 4 to learn the optimal policy. We first need to divide total

K episodes into K
W

epochs, which contain W = Kζ episodes. Each epoch contains

multiple frames. In each epoch, we run an instance of Algorithm 4. Given a candidate

set J of the total budget B, we choose “arms” (estimated budget) using the bandit

adversarial bandit algorithm Exp3 [87]. If the optimal “arm” from the candidate J

can be learned efficiently, we expect that the cumulative reward and utility collected

under that arm should be close to the performance of using the best-fixed candidate

(closest to true Budget) from J in hindsight. We remark that although the “Bandit

over Bandit” approach is well studied in both unconstrained non-stationary bandit
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Algorithm 5: Double Restart Non-stationary Triple-Q

1 Choose W = K5/9,J defined in Eq. (4.43)

, γ0 = min
{
1,
√

(K/W ) log (K/W )
(e−1)KH

}
, λ = 1/9 ;

2 Initialize weights of the bandit arms s1(j) = 1,∀j = 0, 1, . . . , J ;

3 for epoch i = 1, . . . , K
W

do

4 Update pi(j)← (1− γ0)
si(j)∑J

j′=0 si(j
′)
+ γ0

J+1
,∀j = 0, 1, . . . , J ;

5 Draw an arm Ai ∈ [J ] randomly according to the probabilities
pi(0), . . . , pi(J) ;

6 Set the estimated budget Bi ← K1/3W
Ai
J

∆3/2W
;

7 Run a new instance of Algorithm 4 for W episodes with parameter value

B ← Bi, b̃ = B1−c
i Kα−1;

8 Observe the cumulative reward Ri and utility Gi.;
9 for arm j=0,1,. . . ,J do

10 R̂i(j) =

{
(Gi/K

λ)I{j=Ai}/(WH(1 + 1/Kλ)pi(j)) if Gi < Wρ

(Ri +Gi/K
λ)I{j=Ai}/(WH(1 + 1/Kλ)pi(j)) if Gi ≥ Wρ

;

// normalization

11 si+1 ← si(j) exp(γ0R̂i(j)/(J + 1));

and RL, however, adopting it in CMDPs is nontrivial and new. We now describe the

main challenge in adapting the idea to the constrained scenario and how we overcome

the challenge.

In particular, given a choice of arm Bi in the unconstrained version, one considers

the cumulative reward Ri(Bi) over the epoch W to guide the EXP-3 algorithm

towards selecting the optimal arm. The cumulative reward proves to be enough for

the unconstrained case, as the optimal arm would correspond to close to the true

budget. This can be reflected as the following regret decomposition,

R(K) =E

 K∑
k=1

V
π∗
k

k,1(xk,1)−
K/W∑
i=1

Ri(B̂)

 (4.37)

+E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 , (4.38)

where B̂ is the optimal candidate from J (i.e., the true budget). We can show that
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the term (4.37) can be bounded since this corresponds to regret when the true budget

is known (which we have already bounded). However, the problem becomes how to

bound the term (4.38). In the unconstrained case, one can employ the result of the

EXP-3 algorithm to bound that. The main challenge in extending the above approach

to the CMDP is that considering only the reward may lead to a larger violation since

we need to balance both the reward and utility. Thus, one needs to judiciously select

the reward based on the total observed reward and utility corresponding to a drawn

arm so that the EXP-3 algorithm can choose the arm closest to the optimal one. The

natural idea is to set the reward to zero if the observed utility over the epoch does not

satisfy the constraint, i.e., if Gi(Bi) is the cumulative utility received after selecting

the arm Bi, then one can set


R̂i(Bi) = 0 if Gi(Bi) < Wρ

R̂i(Bi) = Ri(Bi) if Gi(Bi) ≥ Wρ.

(4.39)

Even though it is intuitive, it is not sufficient as it does not distinguish between small

and large violation. Thus, we consider the following bandit reward function


R̂i(Bi) =

Gi(Bi)

Kλ
if Gi(Bi) < Wρ

R̂i(Bi) = Ri(Bi) +
Gi(Bi)

Kλ
if Gi(Bi) ≥ Wρ.

(4.40)

If Gi(Bi) < Wρ, then choosing the arm Bi may lead to violating the constraint, hence,

we penalize such arm. On the other hand, if Gi(Bi) ≥ Wρ, the arm may lead to a

feasible policy. We thus consider the reward as Ri(Bi) +Gi(Bi)/K
λ, i.e., the reward

is dominated by the accumulated reward. However, the accumulated utility is also

considered (albeit with a weight 1/Kλ). Note that since λ > 0, the weight factor is

small as the main focus is to maximize the reward when the constraint is satisfied.

Later, we show how we select λ to balance the regret and the violation. Hence, the
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weight factor is critical in obtaining sub-linear regret and zero violation.

Next, we present a lemma to show the upper bound of the bandit algorithm using

our design of the bandit reward function (4.40).

Lemma IV.4. Let Ri(Bi)(Gi(Bi)) be the cumulative reward(utility) collected in epoch

i by any learning algorithm after running for W episodes with the estimated value

Bi chosen using the Exp3 bandit algorithm. If we have E[Gi(B̂)] ≥ Wρ then we can

obtain

E

K/W∑
i=1

(Ri(B̂)−Ri(Bi))

 =Õ(H
√
KW +HK1−λ) (4.41)

E

K/W∑
i=1

Gi(B̂)−Gi(Bi)

 =Õ(HKλ
√
KW ). (4.42)

Note that the above lemma bounds (4.38). Further, it also bounds the utilities for

the choice of B̂ and Bi, which will be useful to obtain violation.

Next, we will formally define the set J . Subsequently, we will present the results of

using “bandit over bandit” with our designing bandit reward function on the Algorithm

4 for the tabular setting. Then we will discuss how to apply it to the linear function

approximation setting. We define set J as

J =

{
K1/3

∆3/2W
,
K1/3W

1
J

∆3/2W
, . . . ,

K1/3W

∆3/2W

}
, (4.43)

as the candidate value for B and we can see that |J | = log(W ) + 1 = J + 1, where

∆ =
(

40
√
SAH6ι3

δ

)2
. After an estimated budget Bi for each epoch i is selected. Then

we run a new instance of Algorithm 4 for consecutive W = Kζ episodes. Each epoch

contains WBc
i /K

αζ frames. We remark here that when using the Algorithm 4 we

need a local budget information, but under assumption K1−αBcb̃ ≤ B, we can simply

choose b̃ = B1−c
i Kα−1 with an estimated Bi. The following Theorem states that the
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Algorithm 5 achieves a sublinear regret and zero constraint violation without the

knowledge of the total variation budget B.

Theorem IV.5. Algorithm IV.5 achieves the following regret and constraint vio-

lation bounds with no prior knowledge of the total variation budget B when K =

Ω
(
(40

√
SAH6ι3B1/3

δ
)9
)
, and K ≥ e

1
δ :

R(K) = Õ(H4S
1
2A

1
2B

1
3K8/9) (4.44)

V(K) = 0 (4.45)

4.3.3 Simulation

We compare Algorithm 4 with two baseline algorithms: an algorithm [84] for

non-stationary MDPs, and an algorithm [29] for stationary constrained MDPs using a

grid-world environment, which is shown in Figure. 4.1. The objective of the agent is

to travel to the destination as quickly as possible while avoiding obstacles for safety.

Hitting an obstacle incurs a cost of 1. The reward for the destination is 1. Denote the

Euclidean distance from the current location x to the destination as d0(x), the longest

Euclidean distance is denoted by dmax, then the reward function for a locations x

is defined as 0.1∗(dmax−d0)
dmax

. The cost constraint is set to be 5 (we used cost instead of

utility in this simulation), which means the agent is only allowed to hit the obstacles

at most five times. To account for the statistical significance, all results were averaged

over 10 trials. To test the algorithms in a non-stationary environment, we gradually

vary the transition probability, reward, and cost functions. In particular, the reward

is added an additional variation of ±0.1
K
, where the sign is uniformly sampled, the

cost varies 0.1
K

at all the locations. We vary the transitions in a way that the intended

transition “succeeds” with probability 0.95 at the beginning; that is, even if the agent

takes the correct action at a certain step, there is still a 0.05 probability that it will

take an action randomly. The probability is increased with 0.1
K

at each iteration.
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As shown in Figure. 4.2, we can observe that our Algorithm 4 can quickly learn

a well-performed policy while satisfying the safety constraint (below the threshold),

while other methods all fail to satisfy the constraint.

Figure 4.1: Grid World

Figure 4.2: Average Reward and Cost during training

Figure 4.3:
Performance of the three algorithms under a non-stationary environment

4.4 Model-free Algorithms For the Linear CMDP Setting

In this section, we consider linear CMDP, which can potentially model infinite

state space. In particular, we consider reward, utility, and transition probability can

be modeled as linear in known feature space [85]. The formal definition is given below

Definition IV.6. The CMDP is a linear MDP with feature map ϕ : S ×A → Rd, if

for any h and k, there exists d unknown signed measures µk,h = {µ1
k,h, . . . , µ

d
k,h} over
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S such that any (x, a, x′) ∈ S ×A× S,

Pk,h(x
′|x, a) = ⟨ϕ(x, a), µk,h(x

′)⟩ (4.46)

and there exists (unknown) vectors θk,r,h, θk,g,h ∈ Rd such that for any (x, a) ∈ S ×A,

rk,h(x, a) =⟨ϕ(x, a), θk,r,h⟩, (4.47)

gk,h(x, a) =⟨ϕ(x, a), θk,g,h⟩ (4.48)

Without loss of generality, we assume ||ϕ(x, a)||2 ≤ 1, max{||µk,h||2, ||θk,r,h||2, ||θk,g,h||2} ≤
√
d.

We adapt the stationary version of the linear CMDP in the non-stationary setup by

considering time-varying µk,h, and θk,j,h. It extends the non-stationary unconstrained

linear MDP [83] to the constrained case. We remark that despite being linear,

Pk,h(·|x, a) can still have infinite degrees of freedom since µk,h(·) is unknown. Note

that [19; 74] studied another related concept known as linear kernel MDP. In general,

linear MDP and linear kernel MDPs are two different classes of MDP [88].

Similar to budget variations in the tabular case, we define the total (global)

variations on µk,h and θk,j,h for j = r, g and the total variations as

Bj =
K∑
k=2

H∑
h=1

||θk,j,h − θk−1,j,h||2, (4.49)

Bp =
K∑
k=2

H∑
h=1

||µk,h − µk−1,h||F , (4.50)

and B = Br +Bg +Bp is the global budget variation.

Algorithm: [85] proposed an algorithm for the stationary setup. It is a primal-dual

adaptation of the unconstrained version [74]. However, there are some key differences

with respect to the unconstrained case. For example, instead of a greedy policy with
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Algorithm 6: Model Free Primal-Dual Algorithm for Linear Function Ap-
proximation for Non-stationary Setting

1 Initialization: Y1 = 0, wj,h = 0, α =
log(|A|)K

2(1 + ξ +H)
, η = ξ/

√
KH2,

β = dH
√
log(2 log |A|dT/p), D = B−1/2H−1/2d1/2K1/2.

2 for frames E = 1, . . . , K/D do
3 for episodes k = 1, . . . , D do
4 Receive the initial state xk

1. for step h = H,H − 1, . . . , 1 do

5 Λk
h ←

∑k−1
τ=1 ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

T + λI;
6 wk

r,h ← (Λk
h)

−1[
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)[rh(x

τ
h, a

τ
h) + V k

r,h+1(x
τ
h+1)]] ;

7 wk
g,h ← (Λk

h)
−1[
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)[gh(x

τ
h, a

τ
h) + V k

g,h+1(x
τ
h+1)]] ;

8 Qk
r,h(·, ·)← min{⟨wk

r,h, ϕ(·, ·)⟩+ β(ϕ(·, ·)T (Λk
h)

−1ϕ(·, ·))1/2, H} ;
9 Qk

g,h(·, ·)← min{⟨wk
g,h, ϕ(·, ·)⟩+ β(ϕ(·, ·)T (Λk

h)
−1ϕ(·, ·))1/2, H} ;

10 πh,k(a|·) =
exp(α(Qk

r,h(·, a) + YkQ
k
g,h(·, a)))∑

a exp(α(Q
k
r,h(·, a) + YkQk

g,h(·, a)))
;

11 V k
r,h(·) =

∑
a πh,k(a|·)Qk

r,h(·, a) ;
12 V k

g,h(·) =
∑

a πh,k(a|·)Qk
g,h(·, a) ;

13 for step h = 1, . . . , H do
14 Compute Qk

r,h(x
k
h, a), Q

k
g,h(x

k
h, a), π(a|xk

h) for all a ;

15 Take action akh ∼ πh,k(·|xk
h) and observe xk

h+1 ;

16 Yk+1 = max{min{Yk + η(ρ− V k
g,1(x1)), ξ}, 0}

respect to the combined state-action value function one needs the soft-max policy.

We adapt the algorithm in the non-stationary case (Algorithm 6. In particular, we

employ the restart strategy to adapt to the non-stationary environment. We divide

the total episodes K in K/D frames where each frame consists of D episodes. We

employ the algorithm proposed in [85] at each frame. Note that such type of restart

strategy is already proposed for the unconstrained version as well [83]. However, the

algorithm for the constrained linear MDP differs from the unconstrained version, thus,

the analysis also differs.

Tabular v.s. Linear Approximation: We remark that although linear CMDPs

include tabular CMDPs as a special case [34]. Directly applying the algorithm to

a tabular CMDP will result in higher memory and computational complexity than

Nonstationary Triple-Q.
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We now flesh out Algorithm 6 for the tabular case which will clarify the memory

and computational requirement. We can revert back to the tabular case by setting

ϕ(s, a) = es,a where es,a is a d-dimensional (here d = |S||A|) vector where es,a = 1 for

state-action pair (s, a) and zero for other values of state and action. The wr,h vector

update becomes as the following

wk
r,h(x, a) =

1

(nk
h(x, a) + λ)

nk
h(x,a)∑
τ=1

(rh(x
τ
h, a

τ
h) + V k

r,h+1(x
τ
h+1)) (4.51)

where nk
h(x, a) is the number of times the state-action pair (x, a) has been encountered

at step h till episode k. The Qk
r,h update will be

Qk
r,h(x, a) = min{⟨wk

r,h(x, a), ϕ(x, a)⟩+ β
√

1/(nk
h(x, a) + λ), H}. (4.52)

In a similar manner, we can update Qk
g,h. Note that we need to update this table for

every state-action pair at each step and use all the samples generated so far. Using

this, one can update V k
r,h, and V k

g,h using the soft-max policy.

We further remark that if we maintain nk
h(x, a, x̃) to be the number of times the

state-action-next state (x, a, x̃) has been encountered at step h till episode k. Then

wk
r,h(x, a) =

1

(nk
h(x, a) + λ)

·

(
nk
h(x, a)rh(x, a) +

∑
x̃

nk
h(x, a, x̃)V

k
r,h+1(x̃)

)
. (4.53)

In this case, we do not need to go through all samples at each iteration and do not

even need to store the old samples. The memory complexity of maintaining the

counts {nh(x, a, x̃)} is O (H|S|2|A|), which is higher than the memory complexity and

computational complexity of non-stationary Triple-Q, which are O (H|S||A|) , but

matches model-based algorithms for tabular settings.
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4.4.1 Main Results

Theorem IV.7. With D = B−1/2d1/2K1/2H−1/2, Algorithm 6 achieves the following

regret and constraint violation bounds:

R(K) =O(1 + δ

δ
K3/4H9/4d5/4B1/4ι) (4.54)

V(K) =
2(1 + ξ)

ξ
O(K3/4H9/4d5/4B1/4ι) (4.55)

where ι = log(2 log(|A|)dT/p), and ξ = 2H/δ.

Our algorithm provides a regret guarantee of Õ(d5/4K3/4H9/4B1/4) and the same

order on violation. ξ arises since we truncate the dual variable at ξ in Algorithm 6.

Note that regret and violation only scale with d rather than the cardinality of the

state space.

Compared to [74], which also considers linear function approximation (however,

it considers linear kernel CMDP rather linear CMDP), we improve their result by a

factor of H
1
4 . We also improve the dependence on B and d. Further, we do not need

to know the total variations in the optimal solution (B∗), unlike in [74]. The algorithm

proposed in [74] is a model-based policy-based algorithm; ours is a model-free value-

based algorithm. Thus, our algorithm enjoys an easy implementation and improved

computation efficiency since it does not estimate the next step expected value function

as in [74], which requires an integration oracle to compute a d-dimensional integration

at every step.

Zero Violation: Similar to the tabular setup, we obtain zero violation by consid-

ering a tighter optimization problem. In particular, if we consider ϵ-tighter constraint

where ϵ = min{2(1 + ξ)

ξ
Õ(d5/4B1/4H9/4K3/4)/K, δ/2}, the violation is 0. Thus, if

K1/4 ≥ 4(1 + ξ)

ξδ
Õ(d5/4B1/4H9/4), we could obtain zero violation while maintaining

the same order of regret with respect to K.
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Remark IV.8. Our algorithm 6 doesn’t require the information of the local budget.

In the unconstrained version [83] achieves Õ(T 2/3) regret if local budget variation is

known. We can also achieve Õ(T 2/3) regret and Õ(T 2/3) violation if we assume local

budget variation is known.

4.4.2 Unknown Variation Budgets

Our idea of designing the “bandit over bandit” algorithm can still be applied to

the linear CMDPs, We propose an Algorithm 7, which can achieve the following result.

Theorem IV.9. Let D = B−1/2d1/2K1/2H−1/2,W =
√
K, Algorithm 7 achieves the

following regret and constraint violation bounds:

R(K) = O(1 + δ

δ
K7/8H9/4d5/4B1/4ι)

V(K) =
2(1 + ξ)

ξ
O(1 + δ

δ
K7/8H9/4d5/4B1/4ι) (4.56)

We can further achieve zero constraint violation by choosing

ϵ = min{3(1 + ξ)

ξ
Õ((1 + 1/δ)d5/4B̂1/4H9/4K1−ζ/4)/K, δ/2},

when

K8 ≥ 6(1 + ξ)

ξδ
Õ(d5/4B1/4H9/4).

4.4.3 Another approach for unknown budget

We provide an approach based on convex optimization to further reduce the order

from Õ(K7/8) to Õ(K3/4), for both regret and violation. We consider a primal-dual

adaptation in the outer loop as well. In particular, after collecting Ri(Bi) and Gi(Bi)

under the selected epoch length Bi, the bandit reward is Ri(Bi) + YiGi(Bi), where

Yi = min{max{Yi−1+η(ρ−Gi(Bi)/W ), 0}, ξ}. Then line 10 in Algorithm 7 is replaced
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Algorithm 7: Model Free Primal-Dual Algorithm for Linear Function Ap-
proximation for Non-stationary Setting without knowing the variation budget

1 Choose W = K1/2,J (defined in Eq. (4.148)),

γ0 = min
{
1,
√

(K/W ) log(K/W )
(e−1)KH

}
, λ = 1/8 ;

2 Initialize weights of the bandit arms s1(j) = 1,∀j = 0, 1, . . . , J ;

3 for epoch i = 1, . . . , K
W

do

4 Update pi(j)← (1− δ) si(j)∑J
j′=0 si(j

′)
+ γ0

J+1
, ∀j = 0, 1, . . . , J ;

5 Draw an arm Ai ∈ [J ] randomly according to the probabilities
pi(0), . . . , pi(J) ;

6 Set the estimated budget Bi ←
√
KW

Ai
J

∆W
;

7 Run a new instance of Algorithm 6 for W episodes with parameter value
B ← Bi;

8 Observe the cumulative reward Ri and utility Gi.;
9 for arm j=0,1,. . . ,J do

10 R̂i(j) =

{
(Gi/K

λ)I{j=Ai}/(WH(1 + 1/Kλ)pi(j)) if Gi < Wρ

(Ri +Gi/K
λ)I{j=Ai}/(WH(1 + 1/Kλ)pi(j)) if Gi ≥ Wρ

;

// normalization

11 si+1 ← si(j) exp(γ0R̂i(j)/(J + 1));

with

R̂i(j) = (Ri(Bi) + YiGi(Bi))/(WH + ξWH)

Let W = d1/2H−1/2K1/2 be the epoch length, and

J =
{
1,W

1
J , . . . ,W

}
,

where J = logW as the candidate sets for D in the linear CMDPs. We still use Exp-3

to choose an arm. From the Exp-3 analysis we know for any D†

∑
m

(Rm(D
†) + YmGm(D

†))− (Rm(Dm) + YmGm(Dm))

≤2
√
e− 1WH(1 + ξ)

√
(K/W )(J + 1) ln(J + 1) = Õ(Hξ

√
KW ), (4.57)
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Now, from the dual domain analysis, we obtain a similar to (Lemma IV.17)

∑
m

(Y − Ym)(Wρ−Gm(Dm)) ≤
Y 2W

2η
+

ηH2K

2
(4.58)

We note that η =
√
ξ2W/(KH2), then the upper bound is ξ

√
WKH2. From the

results analysis of the constraint violation from Theorem IV.7, we have for the optimal

choice of D† from J

∑
m

(Wρ−Gm(D
†)) ≤Õ(K

√
d3H4/D† +D†

√
dD†H2B). (4.59)

K∑
k

V
π∗
k

k,1(xk,1)−
∑
m

Ri(D
†) ≤Õ(K

√
d3H4/D† +D†

√
dD†H2B). (4.60)

Hence, we have

∑
m

−Ym(Gm(D
†)−Gm(Dm))

=
∑
m

−Ym(Gm(D
†)−Wρ) +

∑
m

−Ym(Wρ−Gm(Dm))

≤Õ
(
K
√
d3H4/D†ξ +D†

√
dD†H2Bξ + ξ

√
WKH2

)
(4.61)

where we use (4.58) (with Y = 0) for the first inequality, and (4.59) (where we use

|Ym| ≤ ξ) for the second term.

Hence, from (4.57)

∑
m

(Rm(D
†)−Rm(Dm))

≤Õ(Hξ2
√
e− 1WH(1 + ξ)

√
(K/W )(J + 1) ln(J + 1)

+
∑
m

−Ym(Gm(D
†)−Gm(Dm))

≤Õ
(
K
√
d3H4/D†ξ +D†

√
dD†H2Bξ + ξ

√
WKH2 +Hξ

√
KW

)
(4.62)
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Now, suppose that optimal D exists in the range, thus, D† ≤ D ≤ D†W 1/J =

eD†. Hence, from D = B−1/2W , and (4.60) we have the regret bound of Õ((1 +

1/δ)H9/4d5/4B1/4K3/4).

If D is not covered – if D < 1, then B−1/2d1/2H−1/2K1/2 ≤ 1, thus, B ≥ O(K)

which will make the regret and violation bound vacuous. Thus, we consider D > W .

Hence, B−1/2d1/2H−1/2K1/2 > d1/2H−1/2K1/2, thus, we have B < 1. Hence, the

optimal D† = d1/2H−1/2K1/2 by balancing the terms in (4.62). Thus, the regret bound

again follows, i.e., the regret bound is Õ((1 + 1/δ)H9/4d5/4B1/4K3/4).

Now, we bound the constraint violation. Note that

K∑
k

V
π∗
k

k,1(xk,1)−
∑
m

Rm(Dm) + Y
∑
m

(Wρ−Gm(Dm))

=
K∑
k

V
π∗
k

k,1(xk,1)−
∑
m

Rm(D
†) +

∑
m

Ym(Wρ−Gm(D
†))

+
∑
m

Ym(Gm(D
†)−Gm(Dm)) +

∑
m

(Rm(D
†)−Rm(Dm))

+
∑
m

(Y − Ym)(Wρ−Gm(Dm))

≤Õ
(
K
√
d3H4/D†ξ +D†

√
dD†H2Bξ + ξ

√
WKH2 +Hξ

√
KW

)
(4.63)

where we use (4.60), (4.59), (4.57), and (4.58) to bound each term in the right-hand

side respectively.

By using lemma C.6, we can have

∑
m

Wρ−Gm(Dm) ≤Õ
(
K
√

d3H4/D† +D†
√
dD†H2B +

√
WKH2 +H

√
KW

+
1

ξ
(K
√

d3H4/D†) +D†
√
dD†H2B)

)
(4.64)

From a similar argument (for regret) where optimal D is covered within the range or

not, we bound D† and obtain the result for constraint violation. We prove the results
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by substituting ξ = 2H
γ
.

4.5 Proofs for the Tabular Setting

4.5.1 Proof of Theorem IV.2

Dynamic Regret

Recall that the regret can be decoupled as

Regret(K)

=E

[
K∑
k=1

(∑
a

{
Q∗

k,1q
∗
k,1 −Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)

)]
+ (4.65)

E

[
K∑
k=1

(∑
a

{Qϵ,∗
1 qϵ,∗1 } (xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ (4.66)

E

[
K∑
k=1

{
Qk,1 −Qπk

k,1

}
(xk,1, ak,1)

]
. (4.67)

Firstly, in lemma IV.12, we will show that the first term can be bounded by

comparing the original LP associated with the tightened LP such that

(4.65) ≤ KHϵ

δ
. (4.68)

By using Lemma IV.11, we can show that:

(4.67) ≤ H2SAK1−αBc +
2(H3

√
ι+ 2H4b̃)K

χ
+
√

H4SAιK2−α(χ+ 1)Bc + 2b̃H2K

For the last term 4.66, we first add and subtract additional terms to obtain

E

[
K∑
k=1

(∑
a

{
Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
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=E

[∑
k

∑
a

({
Qϵ,∗

k,1q
ϵ,∗
k,1 +

Zk

η
Cϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)−

{
Qk,1q

ϵ,∗
k,1 +

Zk

η
Ck,1q

ϵ,∗
k,1

}
(xk,1, a)

)]
(4.69)

+ E

[∑
k

(∑
a

{
Qk,1q

ϵ,∗
k,1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]

+ E

[∑
k

Zk

η

∑
a

{(
Ck,1 − Cϵ,∗

k,1

)
qϵ,∗k,1

}
(xk,1, a)

]
. (4.70)

We can see (4.69) is the difference between two combined Q functions. In Lemma

IV.10 we show that
{
Qk,h +

Zk

η
Ck,h

}
(x, a) is an overestimate of

{
Qϵ,∗

k,h +
Zk

η
Cϵ,∗

k,h

}
(x, a)

(i.e. (4.69) ≤ 0) with high probability. To bound (4.70), we use the Lyapunov-drift

method and consider Lyapunov function LT = 1
2
Z2

T , where T is the frame index and

ZT is the value of the virtual queue at the beginning of the T th frame. We show that

in Lemma IV.13 that the Lyapunov-drift satisfies

E[LT+1 − LT ] ≤ a negative drift + 2H4ι+ 4H4b̃2 + ϵ2 − ηBc

Kα

(T+1)Kα/Bc∑
k=TKα/Bc+1

Φk, (4.71)

where

Φk =E

[(∑
a

{
Qk,1q

ϵ,∗
k,1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]

+ E

[
Zk

η

∑
a

{(
Ck,1 − Cϵ,∗

k,1

)
qϵ,∗k,1

}
(xk,1, a)

]
,

So we can bound (4.70) by applying the telescoping sum over the K1−α frames on

the inequality above:

(4.70) =
∑
k

Φk ≤
KαBcE [L1 − LK1−α+1]

η
+

K(2H4ι+ 4H4b̃2 + ϵ2)

η

≤K(2H4ι+ 4H4b̃2 + ϵ2)

η
, (4.72)
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where the last inequality holds because L1 = 0 and LT ≥ 0 for all T. Now combining

Lemma IV.10 and inequality (4.72), we conclude that

(4.66) ≤ K(2H4ι+ 4H4b̃2 + ϵ2)

η
+

(η +K1−α)H2Bc

ηK
. (4.73)

Further combining inequality above we can obtain for K ≥
(

16
√
SAH6ι3B1/3

δ

)5
,

Regret(K) ≤ KHϵ

δ
+H2SAK1−αBc +

2(H3
√
ι+ 2H4b̃)K

χ

+
√

H4SAιK2−α(χ+ 1)Bc + 2b̃H2K

+
K(2H4ι+ 4H4b̃2 + ϵ2)

η
+

(η +K1−α)H2Bc

ηK
. (4.74)

We conclude that under our choices of ι = 128 log(
√
2SAHK), ϵ = 8

√
SAH6ι3B1/3

K0.2 and

α = 0.6, η = K
1
5B

1
3 , χ = K

1
5 , c = 2

3
, and K1−αBcb̃ ≤ B,

Regret(K) = Õ(H4S
1
2A

1
2B

1
3K

4
5 ). (4.75)

Constraint Violation

Again, we use ZT to denote the value of the virtual Queue in frame T. According

to the virtual-Queue update, we have

ZT+1 =

(
ZT + ρ+ ϵ− C̄TB

c

Kα

)+

≥ ZT + ρ+ ϵ− C̄TB
c

Kα
, (4.76)

which implies that

TKα/Bc∑
k=(T−1)Kα/Bc+1

(
−Cπk

k,1(xk,1, ak,1) + ρ
)

≤Kα

Bc
(ZT+1 − ZT ) +

TKα/Bc∑
k=(T−1)Kα/Bc+1

({
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)− ϵ

)
. (4.77)
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Summing the inequality above over all frames and taking expectation on both sides,

we obtain the following upper bound on the constraint violation:

E

[
K∑
k=1

ρ− Cπk
k,1(xk,1, ak,1)

]

≤−Kϵ+
Kα

Bc
E [ZK1−αBc+1] + E

[
K∑
k=1

{
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)

]
, (4.78)

where we used the fact Z1 = 0.

In Lemma IV.11, we established an upper bound on the estimation error of Ck,1 :

E

[
K∑
k=1

{Ck,1 − Cπk
1 } (xk,1, ak,1)

]

≤H2SAK1−αBc +
2(H3

√
ι+ 2H4b̃)K

χ
+
√

H4SAιK2−α(χ+ 1)Bc + 2b̃H2K. (4.79)

In Lemma IV.14, based on a Lyapunov drift analysis of this moment-generating

function and Jensen’s inequality, we establish the following upper bound on ZT that

holds for any 1 ≤ T ≤ K1−αBc + 1

E[ZT ] ≤
100(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H2)

δ

)

+
4H2Bc

Kδ
+

4H2Bc

ηδKα
+

4η(
√
H2ι+ 2H2b̃)

δ
. (4.80)

Substituting the results from Lemmas IV.11 and (4.80) into (4.78), under assump-

tion K ≥
(

16
√
SAH6ι3B1/3

δ

)5
, which guarantees ϵ ≤ δ

2
. Then by using the choice that

ϵ = 8
√
SAH6ι3B1/3

K0.2 , we can easily verify that

Violation(K) ≤100(H4ι+ b̃2H2)K0.6

δB2/3
log

16(H2
√
ι+ b̃H2)

δ
+

4(H2
√
ι+ 2H2b̃)

δB1/3
K0.8

−5
√
SAH6ι3K0.8B

1
3 . (4.81)
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If further we have K ≥ e
1
δ , we can obtain

Violation(K) ≤ 100(H4ι+ b̃2H2)K0.6

δB2/3
log

16(H2
√
ι+H2b̃)

δ
−
√
SAH6ι3K0.8B

1
3 = 0.

4.5.2 Proof of Theorem IV.5

Let B̂ be the optimal candidate value in J that leads to the lowest regret while

achieving zero constraint violation. Let Ri(Bi) be the expected cumulative reward

received in epoch i with the estimated budget Bi. Then the regret can be decomposed

into:

Regret(K) =E

[
K∑
k=1

(
V

π∗
k

k,1(xk,1)− V πk
k,1(xk,1)

)]

=E

 K∑
k=1

V
π∗
k

k,1(xk,1)−
K/W∑
i=1

Ri(B̂)

+ E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 .

The first term is the regret of using the optimal candidate B̂ from J ; the second

term is the difference between using B̂ and Bi which is selected by Exp3 algorithm.

Applying the analysis of the Exp3 algorithm, we know that by using Lemma IV.4 for

any choice of B̂, the second term is upper bounded:

E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 ≤ Õ(H√KW +HK1−λ). (4.82)

For the first term, according to the regret bound analysis of Algorithm 4, we have that

E

 K∑
k=1

V
π∗
k

k,1(xk,1)−
K/W∑
i=1

Ri(B̂)

 ≤ Õ(H4S
1
2A

1
2K1−0.2ζ

(
B̂
) 1

3

)
. (4.83)

We need to consider whether B is covered in the range of J to further obtain the

bound of (4.83). First we assume that K = Ω

((
40

√
SAH6ι3B1/3

δ

)9)
, which implies
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B ≤ K1/3W
∆3/2W

. Then we need to consider the following two cases:

• The first case is that B is covered in the range of J . Note that two consecutive

values in J only differ from each other by a factor of W
1
J , then there exists a

value B̂ ∈ J such that B ≤ B̂ ≤ W 1/JB. Therefore we can bound the RHS of

(4.83) by

Õ
(
H4S

1
2A

1
2K1−0.2ζ

(
B̂
) 1

3

)
≤Õ

(
H4S

1
2A

1
2K1−0.2ζ

(
BW 1/J

) 1
3

)
≤Õ

(
H4S

1
2A

1
2B

1
3K1−0.2ζ

)
, (4.84)

where the last step comes from the fact W 1/J = W 1/(lnW+1) ≤ e.

• The second case is that B is not covered in the range of J , i.e., B < K1/3

∆3/2W
. The

optimal candidate in J is the smallest such that one B̂ = K1/3

∆3/2W
, then we can

bound the RHS of (4.83) by

Õ
(
H4S

1
2A

1
2K1−0.2ζ

(
B̂
) 1

3

)
≤Õ

(
H4S

1
2A

1
2K1−0.2ζ

(
K1/3

∆3/2W

) 1
3

)

≤Õ
(
HK10/9−0.2ζ 1

Kζ/3

)
. (4.85)

For the constraint violation, according to Lemma IV.4 we have

E

[
K∑
k=1

ρ− Cπk
k,1(xk,1, ak,1)

]
= E

K/W∑
i=1

(Wρ−Gi(Bi))


=E

K/W∑
i=1

(
Wρ−Gi(B̂)

)+ E

K/W∑
i=1

(
Gi(B̂)−Gi(Bi)

) (4.86)

For the first term, according to Theorem IV.2, by selecting ϵ as ϵ = 20
√
SAH6ι3B̂1/3

K0.2ζ . we
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have

E

K/W∑
i=1

(
Wρ−Gi(B̂)

) ≤100(H4ι+ b̃2H2)K0.6ζ

δB̂2/3
log

16(H2
√
ι+H2b̃)

δ

− 13
√
SAH6ι3K1−0.2ζB̂

1
3 . (4.87)

For the second term, we are able to obtain an upper bound by using Lemma IV.4

E

K/W∑
i=1

(Gi(B̂)−Gi(Bi))

 ≤ 12KλH
√

K1+ζ(J + 1) ln(J + 1) (4.88)

By balancing the terms Õ(K1−0.2ζ), Õ(Kλ+(1+ζ)/2) and K1−λ, the best selection are

ζ = 5/9 and λ = 1/9. Therefore we further obtain when K ≥ e
1
δ ,

Violation(K) ≤ 100(H4ι+ b̃2H2)K1/3

δB̂2/3
log

16(H2
√
ι+H2b̃)

δ
−
√
SAH6ι3K8/9B̂

1
3 ≤ 0.

(4.89)

We finish the proof of Theorem IV.5.

4.5.3 Detailed Proofs

We provide the detailed proof in this section. A notation table and some supporting

lemmas can be found in Appendix C.

4.5.3.1 Proof of Lemma IV.3

Proof. First, define Br
h, B

g
h, B

p
h to be the variation of reward, utility functions, and

transitions at step h within frame T.

Br
h =

TKα/Bc∑
k=(T−1)Kα/Bc+1

sup
x,a
|rk,h(x, a)− rk+1,h(x, a)| (4.90)
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Bg
h =

TKα/Bc∑
k=(T−1)Kα/Bc+1

sup
x,a
|gk,h(x, a)− gk+1,h(x, a)| (4.91)

Bp
h =

TKα/Bc∑
k=(T−1)Kα/Bc+1

sup
x,a
∥Pk,h(·|x, a)− Pk+1,h(·|x, a)∥1 (4.92)

We will prove the following statement by induction.

|Qπ
k1,h

(x, a)−Qπ′

k2,h
(x, a)| ≤

H∑
h′=h

Br
h′ +H

H∑
h′=h

Bp
h′

For step H, the statement holds because for any (x, a),

|Qπ
k1,H

(x, a)−Qπ′

k2,H
(x, a)| =|rk1,H(x, a)− rk2,H(x, a)|

≤
k2−1∑
k=k1

|rk,H(x, a)− rk+1,H(x, a)| ≤ Br
H

Now suppose the statement holds for h+ 1, then

Qπ
k1,h

(x, a)−Qπ′

k2,h
(x, a)

=Pk1,hV
π
k1,h+1(x, a)− Pk2,hV

π′

k2,h+1(x, a) + rk1,h(x, a)− rk2,h(x, a)

≤Pk1,hV
π
k1,h+1(x, a)− Pk2,hV

π′

k2,h+1(x, a) +Br
h

=
∑
x′

Pk1,h(x
′|x, a)V π

k1,h+1(x
′)−

∑
x′

Pk2,h(x
′|x, a)V π′

k2,h+1(x
′) +Br

h

=
∑
x′

Pk1,h(x
′|x, a)Qπ

k1,h+1(x
′, πh+1(x

′))−
∑
x′

Pk2,h(x
′|x, a)Qπ′

k2,h+1(x
′, π′

h+1(x
′)) +Br

h

According to the hypothesis on h+ 1, we have

Qπ
k1,h+1(x

′, πh+1(x
′)) ≤ Qπ′

k2,h+1(x
′, π′

h+1(x
′)) +

H∑
h′=h+1

Br
h′ +H

H∑
h′=h+1

Bp
h′ (4.93)
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Therefore

Qπ
k1,h

(x, a)−Qπ′

k2,h
(x, a)

≤
∑
x′

(Pk1,h(x
′|x, a)− Pk2,h(x

′|x, a))Qπ′

k2,h+1(x
′, πh+1(x

′)) +
H∑

h′=h

Br
h′ +H

H∑
h′=h+1

Bp
h′

≤∥Pk1,h(·|x, a)− Pk2,h(·|x, a)∥1 ·H +
H∑

h′=h

Br
h′ +H

H∑
h′=h+1

Bp
h′

≤Bp
hH +

H∑
h′=h

Br
h′ +H

H∑
h′=h+1

Bp
h′

≤
H∑

h′=h

Br
h′ +H

H∑
h′=h

Bp
h′ (4.94)

where the last inequality comes from the assumption on b̃. The same analysis can

be applied to |Cπ
k1,h

(x, a) − Cπ
k2,h

(x, a)|. We finish the proof by using the fact that∑H
h′=h B

r
h′ +H

∑H
h′=h B

p
h′ ≤ Hb̃.

Lemma IV.10. With probability at least 1− 1
K3 , the following inequality holds simul-

taneously for all (x, a, h, k) ∈ S ×A× [H]× [K] :

{
Fk,h − F π

k,h

}
(x, a) ≥ 0, (4.95)

Let π be a joint policy such that π is the optimal policy for the ϵ-tight problem at

episode k, whose reward (utility) Q value functions at step h are denoted by Qϵ,∗
k,h(C

ϵ,∗
k,h).

Then we can further obtain

E

[
K∑
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a)

]
≤ (η +K1−α)H2Bc

ηK
. (4.96)

The function F will be defined in Eq.(4.97).

Proof. Consider frame T and episodes in frame T. Define Z = Z(T−1)Kα/Bc+1 because

the value of the virtual queue does not change during each frame. We further
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define/recall the following notations:

Fk,h(x, a) = Qk,h(x, a) +
Z

η
Ck,h(x, a), Uk,h(x) = Vk,h(x) +

Z

η
Wk,h(x)

F π
k,h(x, a) = Qπ

k,h(x, a) +
Z

η
Cπ

k,h(x, a), Uπ
k,h(x) = V π

k,h(x) +
Z

η
W π

k,h(x).

(4.97)

From the updating rule of Q functions, we first know that

{Qk,h −Qπ
k,h}(x, a) = α0

t{Q(T−1)Kα/Bc+1,h −Qπ
k,h}(x, a)

+
t∑

i=1

αi
t

(
{Vki,h+1 − V π

k,h+1}(xki,h+1) + {(P̂ki
k,h − Pk,h)V

π
k,h+1}(x, a) + bi + 2Hb̃

)
(4.98)

Then we have with probability at least 1− 1
k3

{Fk,h − F π
k,h}(x, a)

=α0
t

{
F(T−1)Kα/Bc+1,h − F π

k,h

}
(x, a)

+
t∑

i=1

αi
t

({
Uki,h+1 − Uπ

k,h+1

}
(xki,h+1) + {(P̂ki

k,h − Pk,h)U
π
k,h+1}(x, a)

+

(
1 +

Z

η

)
(bi + 2Hb̃)

)
=α0

t

{
F(T−1)Kα/Bc+1,h − F π

k,h

}
(x, a) +

t∑
i=1

αi
t

(
{(P̂ki

k,h − Pki,h)U
π
k,h+1}

)
+

t∑
i=1

αi
t

({
Uki,h+1 − Uπ

k,h+1

}
(xki,h+1) + {(Pki,h − Pk,h)U

π
k,h+1}(x, a)

+

(
1 +

Z

η

)
(bi + 2Hb̃)

)
≥(a)α

0
t

{
F(T−1)Kα/Bc+1,h − F π

k,h

}
(x, a)

+
t∑

i=1

αi
t

({
Uki,h+1 − Uπ

k,h+1

}
(xki,h+1) + {(Pki,h − Pk,h)U

π
k,h+1}(x, a)

+

(
1 +

Z

η

)
(bi +Hb̃)

)
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≥(b)α
0
t

{
F(T−1)Kα/Bc+1,h − F π

k,h

}
(x, a) +

t∑
i=1

αi
t

({
Uki,h+1 − Uπ

k,h+1

}
(xki,h+1)

+

(
1 +

Z

η

)
Hb̃

)
=α0

t

{
F(T−1)Kα/Bc+1,h − F π

k,h

}
(x, a) +

t∑
i=1

αi
t

{
Uki,h+1 − Uπ

ki,h+1

}
(xki,h+1)

+
t∑

i=1

αi
t

{
Uπ
ki,h+1 − Uπ

k,h+1

}
(xki,h+1) +

(
1 +

Z

η

)
Hb̃

=(c)α
0
t

{
F(T−1)Kα/Bc+1,h − F π

k,h

}
(x, a)

+
t∑

i=1

αi
t

(
max

a
Fki,h+1(xki,h+1, a)− F π

ki,h+1(xki,h+1, π(xki,h+1))
)

+
t∑

i=1

αi
t

{
Uπ
ki,h+1 − Uπ

k,h+1

}
(xki,h+1) +

(
1 +

Z

η

)
Hb̃

≥(d)α
0
t

{
F(T−1)Kα/Bc+1,h − F π

k,h

}
(x, a)

+
t∑

i=1

αi
t

(
max

a
Fki,h+1(xki,h+1, a)− F π

ki,h+1(xki,h+1, π(xki,h+1))
)

−
t∑

i=1

αi
t|(1 +

Z

η
)Hb̃|+ (1 +

Z

η
)Hb̃

≥α0
t

{
F(T−1)Kα/Bc+1,h − F π

ki,h

}
(x, a) +

t∑
i=1

αi
t

{
Fki,h+1 − F π

ki,h+1

}
(xki,h+1, π(xki,h+1)),

(4.99)

where inequality (a) holds because that

∣∣∣∣∣
t∑

i=1

αi
t

{
(Pki,h − Pk,h)V

π
k,h+1

}
(x, a)

∣∣∣∣∣ =
∣∣∣∣∣

t∑
i=1

k−1∑
j=ki

αi
t

{
(Pj,h − Pj+1,h)V

π
k,h+1

}
(x, a)

∣∣∣∣∣ ≤ b̃H,

and the same analysis can be applied to
∣∣∑t

i=1 α
i
t

{
(Pki,h − Pk,h)W

π
k,h+1

}
(x, a)

∣∣ . The
inequality (b) is true due to the concentration result in Lemma C.2 and

t∑
i=1

αi
t(1 +

Z

η
)bi =

1

4

t∑
i=1

αi
t(1 +

Z

η
)

√
H2ι(χ+ 1)

χ+ t
≥ η + Z

4η

√
H2ι(χ+ 1)

χ+ t
. (4.100)

122



Equality (c) holds an action is selected by maximizing Fki,h+1(xki,h+1, a), so

Uki,h+1(xki,h+1) = max
a

Fki,h+1(xki,h+1, a),

and inequality (c) is obtained by using Lemma IV.3 and the property (d) of the

learning rate.

The inequality above suggests that we can prove {Fk,h − F π
k,h}(x, a) for any (x, a)

if (i) {
F(T−1)Kα/Bc+1,h − F π

k,h

}
(x, a) ≥ 0,

i.e. the result holds at the beginning of the frame and (ii)

{
Fk′,h+1 − F π

k′,h+1

}
(x, a) ≥ 0 for any k′ ≤ k

and (x, a), i.e. the result holds for step h+ 1 in all the episodes in the same frame.

It is straightforward to see that (i) holds because all reward and cost Q-functions

are set to H at the beginning of each frame.

We now prove condition (ii) using induction and consider the first frame, i.e. T = 1.

The proof is identical to other frames.

Consider h = H i.e. the last step. In this case, inequality (4.99) becomes

{Fk,H − F π
k,H}(x, a) ≥ α0

t

{
H +

Z1

η
H − F π

k,H

}
(x, a) ≥ 0, (4.101)

i.e. condition (ii) holds for any k in the first frame and h = H. By applying induction

on h, we conclude that

{Fk,h − F π
k,h}(x, a) ≥ 0. (4.102)

holds for any k, h, and (x, a), which completes the proof of (4.95). Since Eq. (4.95)
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can only be applied to a single policy, in order to have a bound on

K∑
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a),

we first need to substitute F π
k,1 with F ϵ,∗

k,1 in Eq. (2.46), and use a union bound over

all the episodes, which means with probability at least 1− 1
K2 that Fk,1 − F ϵ,∗

k,1 ≥ 0.

Let E denote such event that Fk,h − F ϵ,∗
k,h ≥ 0 holds for all k, h and (x, a). Then we

conclude that

E

[
K∑
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a)

]

=E

[
K∑
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a)

∣∣∣∣∣ E
]
Pr(E)

+ E

[
K∑
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a)

∣∣∣∣∣ Ec
]
Pr(Ec)

≤KH

(
1 +

K1−αBcH

η

)
1

K2
≤ (η +K1−α)H2Bc

ηK
. (4.103)

Lemma IV.11. Under Algorithm 4, we have for any T ∈ [K1−α ·Bc],

E

 TKα/Bc∑
k=(T−1)Kα/Bc+1

{
Qk,1 −Qπk

k,1

}
(xk,1, ak,1)


≤H2SA+

2(H3
√
ι+ 2H3b̃)Kα

Bcχ
+

√
H4SAιKα(χ+ 1)

Bc
+

2KαH2b̃

Bc
(4.104)

E

 TKα/Bc∑
k=(T−1)Kα/Bc+1

{
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)


≤H2SA+

2(H3
√
ι+ 2H3b̃)Kα

Bcχ
+

√
H4SAιKα(χ+ 1)

Bc
+

2KαH2b̃

Bc
. (4.105)

Proof. We prove this lemma for the first frame such that 1 ≤ k ≤ kα/Bc. By using
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the update rule recursively, we have

Qk,h(x, a) ≤α0
tH +

t∑
i=1

αi
t

(
rki,h(x, a) + Vki,h+1(xki,h+1) + bi + 2Hb̃

)
, (4.106)

where α0
t =

∏t
j=1(1− αj) and αi

t = αi

∏t
j=i+1(1− αj). From the inequality above, we

further obtain

Kα/Bc∑
k=1

Qk,h(x, a) ≤
Kα/Bc∑
k=1

α0
tH

+

Kα/Bc∑
k=1

Nk,h(x,a)∑
i=1

αi
Nk,h

(
rki,h(x, a) + Vki,h+1(xki,h+1) + bi + 2Hb̃

)
.

(4.107)

We simplify our notation in this proof and use the following notations:

Nk,h = Nk,h(xk,h, ak,h), k
(k,h)
i = ki(xk,h, ak,h),

where k
(k,h)
i is the index of the episode in which the agent visits state-action pair

(xk,h, ak,h) for the ith time. Since in a given sample path, (k, h) can uniquely determine

(xk,h, ak,h), this notation introduces no ambiguity. We note that

Kα/Bc∑
k=1

Nk,h∑
i=1

αi
Nk,h

V
k
(k,h)
i ,h+1

(
x
k
(k,h)
i ,h+1

)
≤

Kα/Bc∑
k=1

Vk,h+1(xk,h+1)
∞∑

t=Nk,h

α
Nk,h

t

≤
(
1 +

1

χ

)∑
k

Vk,h+1(xk,h+1), (4.108)

Then we obtain

Kα/Bc∑
k=1

Qk,h(xk,h, ak,h)

≤
Kα/Bc∑
k=1

α0
tH + (1 +

1

χ
)

Kα/Bc∑
k=1

(rk,h(xk,h, ak,h) + Vk,h+1(xk,h+1))
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+

Kα/Bc∑
k=1

Nk,h∑
i=1

αi
Nk,h

bi +Kαb̃/Bc

≤
Kα/Bc∑
k=1

(rk,h(xk,h, ak,h) + Vk,h+1(xk,h+1)) +HSA+
2(H2

√
ι+ 2H2b̃)Kα

Bcχ

+
1

2

√
H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc, (4.109)

where the last inequality holds because (i) we have

Kα/Bc∑
k=1

α0
Nk,h

H =
∑
k

HI{Nk,h=0} ≤ HSA,

(ii) Vk,h+1(xk,h+1) ≤ (H2
√
ι+ b̃), rk,h(xk,h, ak,h) ≤ 1, and (iii) we know that

Kα/Bc∑
k=1

Nk,h∑
i=1

αi
Nk,h

bi =
1

4

Kα/Bc∑
k=1

Nk,h∑
i=1

αi
Nk,h

√
H2ι(χ+ 1)

χ+ i
≤ 1

2

Kα/Bc∑
k=1

√
H2ι(χ+ 1)

χ+Nk,h

=
1

2

∑
x,a

NKα/Bc,h(x,a)∑
n=1

√
H2ι(χ+ 1)

χ+ n

≤1

2

∑
x,a

NKα/Bc,h(x,a)∑
n=1

√
H2ι(χ+ 1)

n

(1)

≤
√
H2SAιKα(χ+ 1)/Bc, (4.110)

where the last inequality above holds because the left-hand side of (1) is the summation

of Kα/Bc terms and
√

H2ι(χ+1)
χ+n

is a decreasing function of n.

Therefore, it is maximized when NKα/Bc,h = Kα/BcSA for all x, a. Thus we can

obtain

Kα/Bc∑
k=1

Qk,h(xk,h, ak,h)−
∑
k

Qπk
k,h(xk,h, ak,h)

≤
Kα/Bc∑
k=1

(
Vk,h+1(xk,h+1)− Pk,hV

πk
k,h+1(xk,h, ak,h)

)
+HSA+

2(H2
√
ι+ 2H2b̃)Kα

Bcχ

+
√

H2SAιKα(χ+ 1)/Bc +
2KαHb̃

Bc
(4.111)
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≤
Kα/Bc∑
k=1

(
Vk,h+1(xk,h+1)− Pk,hV

πk
h+1(xk,h, ak,h) + V πk

k,h+1(xk,h+1)− V πk
k,h+1(xk,h+1)

)
(4.112)

+HSA+
2(H2

√
ι+ 2H2b̃)Kα

Bcχ
+
√
H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc

=

Kα/Bc∑
k=1

(
Vk,h+1(xk,h+1))− V πk

k,h+1(xk,h+1)

−Pk,hV
πk
k,h+1(xk,h, ak,h) + P̂k,hV

πk
k,h+1(xk,h, ak,h)

)
+HSA+

2(H2
√
ι+ 2H2b̃)Kα

Bcχ
+
√
H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc

=

Kα/Bc∑
k=1

(
Qk,h+1(xk,h+1, ak,h+1)−Qπk

k,h+1(xk,h+1, ak,h+1)

− PhV
πk
k,h+1(xk,h, ak,h) + P̂k,hV

πk
k,h+1(xk,h, ak,h

)
+HSA+

2(H2
√
ι+ 2H2b̃)Kα

Bcχ

+
√
H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc. (4.113)

Taking the expectation on both sides yields

E

Kα/Bc∑
k=1

Qk,h(xk,h, ak,h)−
∑
k

Qπk
k,h(xk,h, ak,h)


≤E

Kα/Bc∑
k=1

(
Qk,h+1(xk,h+1, ak,h+1)−Qπk

k,h+1(xk,h+1, ak,h+1)
)

+HSA+
2(H2

√
ι+ 2H2b̃)Kα

Bcχ
+
√

H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc.

Then by using the inequality repeatably, we obtain for any h ∈ [H],

E

Kα/Bc∑
k=1

(
Qk,h(xk,h, ak,h)−Qπk

k,h(xk,h, ak,h)
)

≤H2SA+
2(H3

√
ι+ 2H3b̃)Kα

Bcχ
+
√
H4SAιKα(χ+ 1)/Bc + 2KαH2b̃/Bc. (4.114)
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We finish the proof.

Lemma IV.12. Given ϵ ≤ δ, we have

E

[∑
a

{
Q∗

k,1q
∗
k,1 −Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)

]
≤ Hϵ

δ
. (4.115)

□

Proof. Given q∗k,h(x, a) is the optimal solution for episode k, we have

∑
h,x,a

q∗k,h(x, a)gk,h(x, a) ≥ ρ.

Under Assumption IV.1, we know that there exists a feasible solution {qξ1k,h(x, a)}Hh=1

such that ∑
h,x,a

qξ1k,h(x, a)gk,h(x, a) ≥ ρ+ δ.

We construct qξ2k,h(x, a) = (1− ϵ
δ
)q∗k,h(x, a) +

ϵ
δ
qξ1k,h(x, a), which satisfies that

∑
h,x,a

qξ2k,h(x, a)gk,h(x, a) =
∑
h,x,a

(
(1− ϵ

δ
)q∗k,h(x, a) +

ϵ

δ
qξ1k,h(x, a)

)
gk,h(x, a) ≥ ρ+ ϵ,

∑
h,x,a

qξ2k,h(x, a) =
∑
x′,a′

Pk,h−1(x|x′, a′)qξ2k,h−1(x
′, a′),

∑
h,x,a

qξ2k,h(x, a) = 1. (4.116)

Also we have qξ2k,h(x, a) ≥ 0 for all (h, x, a). Thus {qξ2k,h(x, a)}Hh=1 is a feasible solution to

the ϵ-tightened optimization problem (4.21). Then given {qϵ,∗k,h(x, a)}Hh=1 is the optimal

solution to the ϵ-tightened optimization problem, we have

∑
h,x,a

(
q∗k,h(x, a)− qϵ,∗k,h(x, a)

)
rk,h(x, a)

≤
∑
h,x,a

(
q∗k,h(x, a)− qξ2k,h(x, a)

)
rk,h(x, a)
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≤
∑
h,x,a

(
q∗k,h(x, a)−

(
1− ϵ

δ

)
q∗k,h(x, a)−

ϵ

δ
qξ1k,h(x, a)

)
rk,h(x, a)

≤
∑
h,x,a

(
q∗k,h(x, a)−

(
1− ϵ

δ

)
q∗k,h(x, a)

)
rk,h(x, a)

≤ ϵ

δ

∑
h,x,a

q∗k,h(x, a)rk,h(x, a) ≤
Hϵ

δ
, (4.117)

where the last inequality holds because 0 ≤ rk,h(x, a) ≤ 1 under our assumption.

Therefore the result follows because

∑
a

Q∗
k,1(xk,1, a)q

∗
k,1(xk,1, a) =

∑
h,x,a

q∗k,h(x, a)rk,h(x, a) (4.118)

∑
a

Qϵ,∗
k,1(xk,1, a)q

ϵ,∗
k,1(xk,1, a) =

∑
h,x,a

qϵ,∗k,h(x, a)rk,h(x, a). (4.119)

Lemma IV.13. Assume ϵ ≤ δ. The expected Lyapunov drift satisfies

E [LT+1 − LT |ZT = z]

≤ Bc

Kα

TKα∑
k=(T−1)Kα+1

(
−ηE

[∑
a

{
Q̂k,1q

ϵ,∗
1

}
(xk,1, a)− Q̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+zE

[∑
a

{(
Cϵ,∗

k,1 − Ck,1

)
qϵ,∗k,1

}
(xk,1, a)

∣∣∣∣∣ZT = z

])
+ 2H4ι+ 4H4b̃+ ϵ2. (4.120)

Proof. Assume ϵ ≤ δ. The expected Lyapunov drift satisfies

E [LT+1 − LT |ZT = z]

≤ Bc

Kα

TKα∑
k=(T−1)Kα+1

(
−ηE

[∑
a

{
Q̂k,1q

ϵ,∗
1

}
(xk,1, a)− Q̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+zE

[∑
a

{(
Cϵ,∗

k,1 − Ck,1

)
qϵ,∗k,1

}
(xk,1, a)

∣∣∣∣∣ZT = z

])
+ 2H4ι+ 4H4b̃+ ϵ2. (4.121)
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Based on the definition of LT = 1
2
Z2

T , the Lyapunov drift is

LT+1 − LT ≤ZT

(
ρ+ ϵ− C̄TB

c

Kα

)
+

(
C̄TBc

Kα + ϵ− ρ
)2

2

≤ZT

(
ρ+ ϵ− C̄TB

c

Kα

)
+ 2H4ι+ 4H4b̃+ ϵ2

≤ZTB
c

Kα

(T+1)Kα/Bc∑
k=TKα/Bc+1

(
ρ+ ϵ− Ĉk,1(xk,1, ak,1)

)
+ 2H4ι+ 4H4b̃+ ϵ2 (4.122)

where the first inequality is because the upper bound on |Ĉk,1(xk,1, ak,1)| is H2(
√
ι+2b̃)

from Lemma C.1. Let {qϵk,h}Hh=1 be a feasible solution to the tightened LP (4.21) at

episode k. Then the expected Lyapunov drift conditioned on ZT = z is

E [LT+1 − LT |ZT = z]

≤ Bc

Kα

TKα/Bc∑
k=(T−1)Kα+1

(
E
[
z
(
ρ+ ϵ− Ĉk,1(xk,1, ak,1)

)
− ηQ̂k,1(xk,1, ak,1)

∣∣∣ZT = z
]

+ ηE
[
Q̂k,1(xk,1, ak,1)

∣∣∣ZT = z
])

+ 2H4ι+ 4H4b̃+ ϵ2. (4.123)

Now we focus on the term inside the summation and obtain that

(
E
[
z
(
ρ+ ϵ− Ĉk,1(xk,1, ak,1)

)
− ηQ̂k,1(xk,1, ak,1)

∣∣∣ZT = z
]

+ ηE
[
Q̂k,1(xk,1, ak,1)

∣∣∣ZT = z
])

≤(a)z(ρ+ ϵ)− E

[
η

(∑
a

{
z

η
Ĉk,1q

ϵ
k,1 + Q̂k,1q

ϵ
k,1

}
(xk,1, a)

)∣∣∣∣∣ZT = z

]

+ ηE
[
Q̂k,1(xk,1, ak,1)

∣∣∣ZT = z
]

=E

[
z

(
ρ+ ϵ−

∑
a

Ĉk,1(xk,1, a)q
ϵ
k,1(xk,1, a)

)∣∣∣∣∣ZT = z

]

− E

[
η
∑
a

Q̂k,1(xk,1, a)q
ϵ
k,1(xk,1, a)− ηQ̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]
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=E

[
z

(
ρ+ ϵ−

∑
a

Cϵ
k,1(xk,1, a)q

ϵ
k,1(xk,1, a)

)∣∣∣∣∣ZT = z

]

− E

[
η
∑
a

Q̂k,1(xk,1, a)q
ϵ
k,1(xk,1, a)− ηQ̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+ E

[
z
∑
a

{
(Cϵ

k,1 − Ĉk,1)q
ϵ
k,1

}
(xk,1, a)

∣∣∣∣∣ZT = z

]

≤− ηE

[∑
a

Q̂k,1(xk,1, a)q
ϵ
k,1(xk,1, a)− Q̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+ E

[
z
∑
a

{
(Cϵ

k,1 − Ĉk,1)q
ϵ
k,1

}
(xk,1, a)

∣∣∣∣∣ZT = z

]
, (4.124)

where inequality (a) holds because ak,h is chosen to maximize Q̂k,h(xk,h, a)+
ZT

η
Ĉk,h(xk,h, a).

and the last equality holds due to that {qϵk,h(x, a)}Hh=1 is a feasible solution to the

optimization problem (4.21), so

(
ρ+ ϵ−

∑
a

Cϵ
k,1(xk,1, a)q

ϵ
k,1(xk,1, a)

)
=

(
ρ+ ϵ−

∑
h,x,a

gk,h(x, a)q
ϵ
k,h(x, a)

)
≤ 0.

Therefore, we can conclude the lemma by substituting qϵk,h(x, a) with the optimal

solution qϵ,∗k,h(x, a).

Lemma IV.14. Assuming ϵ ≤ δ
2
, we have for any 1 ≤ T ≤ K1−α ·Bc

E[ZT ] ≤
100(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H2)

δ

)
+

4H2Bc

Kδ

+
4H2Bc

ηδKα
+

4η(
√
H2ι+ 2H2b̃)

δ
. (4.125)

The proof will also use the following lemma from [62].

Lemma IV.15. Let St be the state of a Markov chain, Lt be a Lyapunov function

with L0 = l0, and its drift ∆t = Lt+1−Lt. Given the constant δ and v with 0 < δ ≤ v,

suppose that the expected drift E[∆t|St = s] satisfies the following conditions:
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(1) There exists constant γ > 0 and θt > 0 such that E[∆t|St = s] ≤ −γ when

Lt ≥ θt.

(2) |Lt+1 − Lt| ≤ v holds with probability one.

Then we have

E[erLt ] ≤ erl0 +
2er(v+θt)

rγ
,

where r = γ
v2+vγ/3

. □

Proof of Lemma IV.14. We apply Lemma IV.15 to a new Lyapunov function:

L̄T = ZT .

To verify condition (1) in Lemma IV.15, consider

L̄T = ZT ≥ θT =
4( (η+K1−α)H2Bc

ηK
+ η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2)

δ

and 2ϵ ≤ δ. The conditional expected drift of

E [ZT+1 − ZT |ZT = z]

=E
[√

Z2
T+1 −

√
z2
∣∣∣∣ZT = z

]
≤ 1

2z
E
[
Z2

T+1 − z2
∣∣ZT = z

]
≤(a) −

δ

2
+

4( (η+K1−α)H2Bc

ηK
+ η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2)

z

≤ −δ

2
+

4( (η+K1−α)H2Bc

ηK
+ η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2

θT

= −δ

4
, (4.126)

where inequality (a) is obtained according to Lemma IV.16; and the last inequality

holds given z ≥ θT .
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To verify condition (2) in Lemma IV.15, we have

ZT+1 − ZT ≤ |ZT+1 − ZT | ≤
∣∣ρ+ ϵ− C̄T

∣∣
≤(H +H2

√
ι+ 2b̃H2) + ϵ ≤ 2(H2

√
ι+ b̃H2), (4.127)

where the last inequality holds because 2ϵ ≤ δ ≤ 1.

Now choose γ = δ
4
and v = 2(

√
H4ι+ b̃H2). From Lemma IV.15, we obtain

E
[
erZT

]
≤ erZ1 +

2er(v+θT )

rγ
, where r =

γ

v2 + vγ/3
. (4.128)

By Jensen’s inequality, we have

erE[ZT ] ≤ E
[
erZT

]
,

which implies that

E[ZT ] ≤
1

r
log

(
1 +

2er(v+θT )

rγ

)
=
1

r
log

(
1 +

6v2 + 2vγ

3γ2
er(v+θT )

)
≤1

r
log

(
1 +

8v2

3γ2
er(v+θT )

)
≤1

r
log

(
11v2

3γ2
er(v+θT )

)
≤4v2

3γ
log

(
11v2

3γ2
er(v+θT )

)
≤3v2

γ
log

(
2v

γ

)
+ v + θT

≤3v2

γ
log

(
2v

γ

)
+ v

+
4( (η+K1−α)H2Bc

ηK
+ η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2)

δ

=
96(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H2)

δ

)
+ 2(H2

√
ι+ b̃H2)

133



+
4( (η+K1−α)H2Bc

ηK
+ η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2)

δ

≤100(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H2)

δ

)
+

4H2Bc

Kδ
+

4H2Bc

ηδKα
+

4η(
√
H2ι+ 2H2b̃)

δ
,

(4.129)

which completes the proof of Lemma IV.14.

Lemma IV.16. Given δ ≥ 2ϵ, under our algorithm 4, the conditional expected drift is

E [LT+1 − LT |ZT = z] ≤− δ

2
z +

(η +K1−α)H2Bc

ηK

+ η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2 (4.130)

Proof. Recall that LT = 1
2
Z2

T , and the virtual queue is updated by using

ZT+1 =

(
ZT + ρ+ ϵ− C̄TB

c

Kα

)+

.

From inequality (4.123), we have

E [LT+1 − LT |ZT = z]

≤ Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E [ZT (ρ+ ϵ− Ck,1(xk,1, ak,1))− ηQk,1(xk,1, ak,1)

+ηQk,1(xk,1, ak,1)|ZT = z] +H4ι+ 2H4b̃2 + ϵ2

≤(a)
Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E

[
ZT

(
ρ+ ϵ−

∑
a

{
Ck,1q

π
k,1

}
(xk,1, a)

)

−η
∑
a

{Qk,1q
π
k,1}(xk,1, a) + ηQk,1(xk,1, ak,1)|ZT = z

]

+ ϵ2 +H4ι+ 2H4b̃2
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≤ Bc

Kα

TKα/Bc∑
k=(T−1)/BcKα+1

E

[
ZT

(
ρ+ ϵ−

∑
a

{
Cπ

k,1q
π
k,1

}
(xk,1, a)

)

−η
∑
a

{Qk,1q
π
k,1}(xk,1, a) + ηQk,1(xk,1, ak,1)|ZT = z

]

+
Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E

[
ZT

∑
a

{
Cπ

k,1q
π
k,1

}
(xk,1, a)

−ZT

∑
a

{
Ck,1q

π
k,1

}
(xk,1, a)|ZT = z

]

+
Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E

[
η
∑
a

{
Qπ

k,1q
π
k,1

}
(xk,1, a)− η

∑
a

{
Qπ

k,1q
π
k,1

}
(xk,1, a)|ZT = z

]

+H4ι+ ϵ2 + 2H4b̃2

≤(b) −
δ

2
z +

Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E

[
η
∑
a

{
(F π

k,1 − Fk,1)q
π
k,1

}
(xk,1, a)

+ηQk,1(xk,1, ak,1)|ZT = z]

+H4ι+ ϵ2 + 2H4b̃2

≤(c) −
δ

2
z +

(η +K1−α)H2Bc

ηK
+ η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2. (4.131)

Inequality (a) holds because of our algorithm. Inequality (b) holds because of the fact

that
∑

a

{
Qπ

k,1q
π
k,1

}
(xk,1, a) is non-negative, and under Slater’s condition, we can find

policy π such that

ϵ+ ρ− E

[∑
a

Cπ
k,1(xk,1, a)q

π
k,1(xk,1, a)

]

=ρ+ ϵ− E

[∑
h,x,a

qπk,h(x, a)gk,h(x, a)

]
≤ −δ + ϵ ≤ −δ

2
. (4.132)

Finally, inequality (c) is obtained due to the fact that Qk,1(xk,1, ak,1) is bounded
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by using Lemma C.1, and the fact that

E

 TKα/Bc∑
k=(T−1)Kα/Bc+1

∑
a

{
(F π

k,1 − Fk,1)q
π
k,1

}
(xk,1, a)

∣∣∣∣∣∣ZT = z

 (4.133)

can be bounded as (4.103) (note that the overestimation result and the concentration

result in frame T hold regardless of the value of ZT ).

4.5.3.2 Proof of Lemma IV.4

Proof. Let Ri(Bi)(Gi(Bi)) be the cumulative reward(utility) collected in epoch i by

the given algorithm with the estimated value Bi chosen using Exp3 Algorithm. Let B̂

be the optimal candidate from J that leads to the lowest regret while achieving zero

constraint violation. Then we have

E

K/W∑
i=1

(Ri(B̂)−Ri(Bi))

 =Õ(H
√
KW +HK1−λ) (4.134)

E

K/W∑
i=1

Gi(B̂)−Gi(Bi)

 =Õ(HKλ
√
KW ) (4.135)

Apply the regret bound of the Exp3 algorithm, we have

E

K/W∑
i=1

(fr(Ri(B̂)) + fg(Gi(B̂))−
K/W∑
i=1

(fr(Ri(Bi)) + fg(Gi(Bi))


≤2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1) = Õ(H

√
KW ), (4.136)

Recall that E[Wρ−Gi(B̂)] ≤ 0. Then it is easy to obtain

E

K/W∑
i=1

(Ri(B̂)−Ri(Bi))

 ≤ E

K/W∑
i=1

(fr(Ri(B̂))− fr(Ri(Bi)))


≤2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1)
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+ E

K/W∑
i=1

(fg(Gi(Bi))− fg(Gi(B̂)))


≤2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1) +

WH

Kλ
· K
W

=Õ(H
√
KW +HK1−λ), (4.137)

where the last inequality due to the fact that the term E
[∑K/W

i=1 (−fg(Gi(B̂)))
]
is

always non-positive. Furthermore, we have

E

K/W∑
i=1

Gi(B̂)−Gi(Bi)

 = KλE

K/W∑
i=1

Gi(B̂)−Gi(Bi)

Kλ


=KλE

K/W∑
i=1

fg(Gi(B̂))− fg(Gi(Bi))


≤Kλ

(
2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1)

+ E

K/W∑
i=1

(fr(Ri(Bi))− fr(Ri(B̂)))

)

≤Kλ
(
2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1)

)
=Õ(HKλ

√
KW ), (4.138)

where the last inequality is true because the second term is always non-positive.

The reason is that when E[Gi(Bi)] ≥ Wρ, E[fr(Ri(Bi))] ≤ E[fr(Ri(B̂))] because

E[fr(Ri(B̂))] = E[Ri(B̂)] is the largest return, and when E[Gi(Bi)] < Wρ, we have

E[fr(Ri(Bi))] = 0.
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4.6 Proofs for the Linear Apprroximation Setting

4.6.1 Proof of Theorem IV.7

Notations: We describe the specific notations we have used in this section. With

slight abuse of notations, in this section, we denote V π
k,r,h as the value function at step

h for policy π at episode k. We denote V π
k,g,h as the utility value function at step h of

episode k. We denote Qπ
k,j,h, j = r, g as the state-action value function at step j for

policy π.

Throughout this section, we denote Qk
r,h, Q

k
g,h, w

k
r,h, w

k
g,h,Λ

k
h as the Q-value and the

parameter values estimated at the episode k. V k
j,h(·) = ⟨πh,k(·|·), Qk

j,h(·, ·)⟩A. πh,k(·|x)

is the soft-max policy based on the composite Q-function at the k-th episode as

Qk
r,h + YkQ

k
g,h. To simplify the presentation, we denote ϕk

h = ϕ(xk
h, a

k
h).

Outline of Proof of Theorem IV.7

Step 1: The key to proving both the dynamic regret and violation is to show the

following

Lemma IV.17. For any Y ∈ [0, ξ],

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk
k,r,1(x1)) + Y

K∑
k=1

(ρ− V πk
k,g,1(x1)) ≤

1

2η
Y 2 +

η

2
H2K+

K∑
k=1

(
V

π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1)
)
−
(
V k
r,1(x1) + YkV

k
g,1(x1)

)
︸ ︷︷ ︸

T1

+

K∑
k=1

(
V k
r,1(x1)− V πk

k,r,1(x1)
)
+ Y

K∑
k=1

(
V k
g,1(x1)− V πk

k,g,1(x1)
)

︸ ︷︷ ︸
T2

(4.139)

Note that when Y = 0, we recover the dynamic regret.

Step-2: In order to bound T1, and T2, we use the following result
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Lemma IV.18. With probability 1− 2p,

T1 ≤ H3(1 + 2/δ)BD3/2
√
d+

KH log(|A|)
α

(4.140)

T2 ≤ (1 + Y )(O(
√

H4d3K2ι2/D) +
√
dD3/2BH2) (4.141)

Step-3: The final result is obtained by combining all the pieces.

Note from Lemma IV.17 we have

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk
k,r,1(x1)) + Y (ρ− V πk

k,g,1(x1)) ≤
Y 2

2η
+

ηKH2

2
+ T1 + T2

From Lemma IV.18, we obtain

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk
k,r,1(x1)) + Y (ρ− V πk

k,g,1(x1)) ≤
Y 2

2η
+

ηKH2

2
+

HK log(|A|)
α

+H3(1 + 2/δ)BD3/2
√
d+ (1 + Y )(O(

√
H4d3K2ι2/D) +

√
dD3/2BH2)

(4.142)

Since η =
ξ√
KH2

,α =
log(|A|)K

2(1 + ξ +H)
, D = B−1/2H−1/2d1/2K1/2, we obtain

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk
k,r,1(x1)) + Y (b− V πk

k,g,1(x1)) ≤ ξ
√
KH2

+H2(1 + ξ +H) +H9/4(1 + 2/δ)B1/4K3/4d5/4

+ (Y + 1)(O(H9/4d5/4K3/4B1/4ι2) +H5/4d5/4K3/4) (4.143)

Since the above expression is true for any Y ∈ [0, ξ], thus, plugging Y = 0, we obtain

Regret(K) ≤ O(H9/4d5/4K3/4B1/4ι2) +O((1 + 1/δ)H9/4d5/4K3/4B1/4) (4.144)

For the constraint violation bound, we use the following Lemma IV.19 (Lemma J.10
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in [74]).

Lemma IV.19. Let C̄∗ ≥ 2maxk µ
k,∗, then, if

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk
k,r,1(x1)) + 2C̄∗

K∑
k=1

(bk − V πk
k,g,1(x1)) ≤ δ (4.145)

, then

K∑
k=1

(bk − V πk
k,g,1(x1)) ≤

2δ

C̄∗ (4.146)

Note that ξ ≥ 2maxk µ
k,∗. Thus, we replace Y = ξ in (4.143). Thus, from (4.143)

and Lemma IV.19, we obtain

K∑
k=1

(ρ− V π
k,g,1(x1)) ≤

2(1 + ξ)

ξ
(O(H9/4d5/4K3/4B1/4ι2) +O(H5/4d5/4K3/4B1/4))

(4.147)

Hence, the result follows.

4.6.2 Proofs of TheoremIV.9

Let W = Kζ and

J =

{√
K

∆W
,

√
KW

1
J

∆W
,

√
KW

2
J

∆W
, . . . ,

√
KW

∆W

}
,∆ =

(
6(1 + ξ)

ξδ
Õ((1 + δ)d5/4H9/4)

)4

(4.148)

where J = logW as the candidate sets for B in the linear CMDPs. Under assumption

K1/8 ≥ 6(1 + ξ)

ξδ
Õ((1 + 1/δ)d5/4B1/4H9/4 we know the optimal budget B ∈ J . Let

B̂ be any candidate value in J that leads to the lowest regret while achieving zero

constraint violation. Let Ri(Bi) be the expected cumulative reward received in epoch
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i with the estimated epoch length B. Then the regret can be decomposed into:

Regret(K) =E

[
K∑
k=1

(
V

π∗
k

k,1(xk,1)− V πk
k,1(xk,1)

)]

=E

 K∑
k=1

V
π∗
k

k,1(xk,1)−
K/W∑
i=1

Ri(B̂)

+ E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 .

The first term is the regret of using the candidate B̂ from J ; the second term is the

difference between using B̂ and Bi which is selected by Exp3 algorithm. Applying the

analysis of the Exp3 algorithm, we know that by using Lemma IV.4 for any choice of

B̂, the second term is upper bounded:

E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 ≤ Õ(H√KW +HK1−λ).

For the first term, according to the regret bound analysis of Algorithm 6, we have for

the W episodes

E

[
W∑
k=1

(
V

π∗
k

k,1(xk,1)−Ri(D̂)
)]
≤ Õ

(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4B̂1/4

)
. (4.149)

We need to consider whether B̂ is covered in the range of J to further obtain the

bound of (4.149). We consider the following two cases

• The first case is that optimal B is covered in the range of J . Note that two

consecutive values in J only differ from each other by a factor of W
1
J , then

there exists a value B̂ ∈ J such that B ≤ B̂ ≤ W 1/JB. Therefore we can bound

the RHS of (4.149) by

Õ
(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4B̂1/4

)
≤ Õ

(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4W 1/JB
1/4
)

≤Õ
(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4eB1/4

)
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=Õ
(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4B1/4

)

• The second case is that B is not covered in the range of J ,i.e., B ≤
√
K

∆W
, then

the optimal candidate value in J is
√
K

∆W
,we can bound the RHS of (4.149) by

Õ
(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4B̂1/4

)
≤Õ

(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4(

√
K

∆W
)1/4

)

For the constraint violation, according to Lemma IV.4 we have

E

[
K∑
k=1

ρ− Cπk
k,1(xk,1, ak,1)

]
= E

K/W∑
i=1

(Wρ−Gi(Bi))


=E

K/W∑
i=1

(
Wρ−Gi(B̂)

)+ E

K/W∑
i=1

(
Gi(B̂)−Gi(Bi)

) (4.150)

For the first term, according to Theorem IV.7, by selecting ϵ =
3(1 + ξ)

ξ
Õ((1 +

1/δ)d5/4B̂1/4H9/4K1−ζ/4)/K, we have

E

K/W∑
i=1

(
Wρ−Gi(B̂)

) ≤ −(1 + ξ)

ξ
Õ((1 + 1/δ)K1−ζ/4H9/4d5/4B̂1/4). (4.151)

For the second term, we are able to obtain an upper bound by using Lemma IV.4

E

K/W∑
i=1

(Gi(B̂)−Gi(Bi))

 ≤ 12KλH
√

K1+ζ(J + 1) ln(J + 1) (4.152)

By balancing the terms Õ(K1−ζ/4), Õ(Kλ+(1+ζ)/2) and K1−λ, the best selection are
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ζ = 1/2 and λ = 1/8. Therefore we further obtain

Violation(K) = 0. (4.153)

We finish the proof of Theorem IV.9.

4.6.3 Detailed Proofs

Notations: We describe the specific notations we have used in this section. A

detailed notation table and some supporting lemmas can be found in Appendix C.

With slight abuse of notations, in this section, we denote V π
k,r,h as the value function

at step h for policy π at episode k. We denote V π
k,g,h as the utility value function at

step h of episode k. We denote Qπ
k,j,h, j = r, g as the state-action value function at

step j for policy π.

Throughout this section, we denote Qk
r,h, Q

k
g,h, w

k
r,h, w

k
g,h,Λ

k
h as the Q-value and the

parameter values estimated at the episode k. V k
j,h(·) = ⟨πh,k(·|·), Qk

j,h(·, ·)⟩A. πh,k(·|x)

is the soft-max policy based on the composite Q-function at the k-th episode as

Qk
r,h + YkQ

k
g,h. To simplify the presentation, we denote ϕk

h = ϕ(xk
h, a

k
h).

4.6.3.1 Proof of Lemma IV.17

We first state and prove the following result which is similar to the one proved in

[85].

Lemma IV.20. For Y ∈ [0, ξ],

K∑
k=1

(Y − Yk)(ρ− V k
g,1(x1)) ≤

Y 2

2η
+

ηH2K

2
(4.154)

Proof.

|Yk+1 − Y |2 = |Proj[0,ξ](Yk + η(ρ− V k
g,1(x1)))− Proj[0,ξ](Y )|2
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≤ (Yk + η(ρ− V k
g,1(x1)))− Y )2

≤ (Yk − Y )2 + η2H2 + 2ηYk(ρ− V k
g,1(x1)) (4.155)

Summing over k, we obtain

0 ≤ |YK+1 − Y |2 ≤ |Y1 − Y |2 + 2η
K∑
k=1

(ρ− V k
g,1(x1))(Yk − Y ) + η2H2K

K∑
k=1

(Y − Yk)(ρ− V k
g,1(x1)) ≤

|Y1 − Y |2

2η
+

ηH2K

2
(4.156)

Since Y1 = 0, we have the result.

Now, we prove Lemma IV.17.

Proof. Note that

Y
K∑
k=1

(ρ− V πk
k,g,1(x1))

=
∑
k

(Y − Yk)(ρ− V k
g,1(x1)) + Yk(ρ− V k

g,1) + Y (V k
g,1(x1)− V πk

k,g,1(x1))

≤ 1

2η
Y 2 +

η

2
H2K +

K∑
k=1

(Ykρ− YkV
k
g,1(x1)) + Y (V k

g,1(x1)− V πk
g,1 (x1))

≤ 1

2η
Y 2 +

η

2
H2K +

K∑
k=1

(YkV
π∗
k

k,g,1(x1)− YkV
k
g,1(x1)) +

K∑
k=1

Y (V k
g,1(x1)− V πk

k,g,1(x1))

where the first inequality follows from Lemma IV.20, and the second inequality follows

from the fact that V
π∗
k

k,g,1(x1) ≥ ρ. Hence, the result simply follows from the above

inequality.

4.6.3.2 Proof of Lemma IV.18

We now move on to bound T1 and T2. First, we state and prove Lemmas IV.21,

IV.22, IV.23, IV.24,IV.26, and IV.27.
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Lemma IV.21. There exists a constant C2 such that for any fixed p ∈ (0, 1), if we

let E be the event that

∥
k−1∑
τ=1

ϕτ
j,h[V

k
j,h+1(x

τ
h+1)− Pk,hV

k
j,h+1(x

τ
h, a

τ
h)]∥(Λk

h)
−1 ≤ C2dH

√
χ (4.157)

for all j ∈ {r, g}, χ = log[2(C1 + 1) log(|A|)dT/p], for some constant C2, then

Pr(E) = 1− 2p.

This result is similar to the concentration lemma, which is crucial in controlling

the fluctuations in least-squares value iteration as done in [58]. The proof relies on the

uniform concentration lemma similar to [58]. However, there is an additional log(|A|)

in χ. This arises due to the fact that the policy (Algorithm 6) is soft-max, unlike the

greedy policy in [58]. [85] shows that greedy policy is unable to prove the uniform

concentration lemma. The proof is similar to Lemma 8 in [85], thus, we remove it.

Now, we introduce some notations. For any k ∈ E ,i.e., any episode k within the

frame E , we define the variation as the following

Bk
j,E =

k∑
τ=2

H∑
h=1

||θτ,j,h − θτ−1,j,h||,BE
j =

E∑
τ=2

H∑
h=1

||θτ,j,h − θτ−1,j,h||

Bk
p,E =

k∑
τ=2

H∑
h=1

||µτ,h − µτ−1,h||,BE
p =

E∑
τ=2

H∑
h=1

||µτ,h − µτ−1,h||

These are local budget variations. Note that |E| = D.

Now, we are bound the difference between our estimated Qk
j,h and Qπ

k,j,h. Using

the Lemma IV.21, we show the following

Lemma IV.22. There exists an absolute constant β = C1dH
√
ι, ι = log(log(|A|)2dT/p),

and for any fixed policy π, on the event E defined in Lemma IV.21, we have

⟨ϕ(x, a), wk
j,h⟩ −Qπ

k,j,h(x, a)

=Pk,h(V
k
j,h+1 − V π

k,j,h+1)(x, a) + ∆k
h(x, a) + +BE

j

√
dD +HBE

p

√
dD (4.158)
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for some ∆k
h(x, a) that satisfies |∆k

h(x, a)| ≤ β
√

ϕ(x, a)T (Λk
h)

−1ϕ(x, a), for any k ∈ E .

Proof. We only prove for j = r, the proof for j = g is similar.

Note that Qπ
k,r,h(x, a) = ⟨ϕ(x, a), wπ

r,h⟩ = rk,h(x, a) + Pk,hV
π
k,r,h+1(x, a).

Hence, we have

wk
r,h − wπ

k,r,h = (Λk
h)

−1

k−1∑
τ=1

ϕτ
h[r

τ
h + V k

r,h+1(x
τ
h+1)]− wπ

k,r,h

= −λ(Λk
h)

−1(wπ
k,r,h) + (Λk

h)
−1

k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h) + V k

r,h+1 − rk,h(x
τ
h, a

τ
h)− Pk,hV

π
k,r,h+1]

(4.159)

In the above expression, the second term of the right-hand-side can be written as

(Λk
h)

−1

k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h) + V k

r,h+1 − rk,h(x
τ
h, a

τ
h)− Pk,hV

π
k,r,h+1]

= (Λk
h)

−1

k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h) + V k

r,h+1 − rk,h(x
τ
h, a

τ
h)− Pk,hV

k
r,h+1]

+ (Λk
h)

−1

k−1∑
τ=1

ϕτ
h[Pk,hV

k
r,h+1 − Pk,hV

π
k,r,h+1]

= (Λk
h)

−1

k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h)− rk,h(x

τ
h, a

τ
h)] + (Λk

h)
−1

k−1∑
τ=1

[V k
r,h+1 − Pτ,hV

k
r,h+1]

+ (Λk
h)

−1

k−1∑
τ=1

[Pτ,hV
k
r,h+1 − Pk,hV

k
r,h+1] + (Λk

h)
−1

k−1∑
τ=1

ϕτ
h[Pk,hV

k
r,h+1 − Pk,hV

π
k,r,h+1]

(4.160)

By plugging in the above in (4.159) we obtain

wk
r,h − wπ

k,r,h

=−λ(Λk
h)

−1(wπ
k,r,h)︸ ︷︷ ︸

q1

+(Λk
h)

−1

k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h)− rk,h(x

τ
h, a

τ
h)]︸ ︷︷ ︸

q2

(4.161)
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+(Λk
h)

−1

k−1∑
τ=1

[V k
r,h+1 − Pτ,hV

k
r,h+1]︸ ︷︷ ︸

q3

+ (Λk
h)

−1

k−1∑
τ=1

[Pτ,hV
k
r,h+1 − Pk,hV

k
r,h+1]︸ ︷︷ ︸

q4

+(Λk
h)

−1

k−1∑
τ=1

ϕτ
h[Pk,hV

k
r,h+1 − Pk,hV

π
k,r,h+1]︸ ︷︷ ︸

q5

(4.162)

For the first term,

|⟨ϕ(x, a), q1⟩| ≤ ϕ(x, a)T (Λk
h)

−1λwπ
k,r,h ≤ ||wπ

k,r,h||||ϕ(x, a)||(Λk
h)

−1 (4.163)

For the second term we have

ϕ(x, a)T (Λk
h)

−1

k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h)− rk,h(x

τ
h, a

τ
h)]

≤ ϕ(x, a)T (Λk
h)

−1

k−1∑
τ=1

ϕτ
h||ϕτ

h||||θτ,r,h − θk,r,h||

≤ ϕ(x, a)T (Λk
h)

−1

k−1∑
τ=1

ϕτ
h||ϕτ

h||||
k−1∑
s=τ

θs,r,h − θs+1,r,h||

≤ Bk
r

√
dk||ϕ(x, a)||(Λk

h)
−1

The last inequality follows from Lemma C.4 in [58]. Since

||ϕ(x, a)||(Λk
h)

−1 ≤
√

1/λ

and D ≥ k. We have

|⟨ϕ(x, a), q2⟩| ≤ BE
r

√
dD (4.164)
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Similarly, we can bound

ϕ(x, a)T (Λk
h)

−1

k−1∑
τ=1

ϕτ
h[Pτ,hV

k
r,h+1 − Pk,hV

k
r,h+1] ≤ HBk

p

√
dk||ϕ(x, a)||(Λk

h)
−1 (4.165)

Again since D ≥ k, and ||ϕ(x, a)||(Λk
h)

−1 ≤
√
1/λ, we have

|⟨ϕ(x, a), q3⟩| ≤ HBE
p

√
dD (4.166)

From Lemma, the fourth term can be bounded as

|⟨ϕ(x, a), q4⟩| ≤ CdH
√
χ (4.167)

For the fifth term, note that

⟨ϕ(x, a), q5⟩ = ⟨ϕ(x, a), (Λk
h)

−1

k−1∑
τ=1

ϕτ
h[Ph(V

k
r,h+1 − V π

k,r,h+1)(x
τ
h, a

τ
h)]⟩

= ⟨ϕ(x, a), (Λk
h)

−1

k−1∑
τ=1

ϕτ
h(ϕ

τ
h)

T

∫
(V k

r,h+1 − V π
k,r,h+1)(x

′)dµk,h(x
′)⟩

= ⟨ϕ(x, a),
∫

(V k
r,h+1 − V π

k,r,h+1)(x
′)dµk,h(x

′)⟩

− ⟨ϕ(x, a), λ(Λk
h)

−1

∫
(V k

r,h+1 − V π
r,h+1)(x

′)dµk,h(x
′)⟩ (4.168)

The last term in (4.168) can be bounded as the following

|⟨ϕ(x, a), λ(Λk
h)

−1

∫
(V k

r,h+1 − V π
k,r,h+1)(x

′)dµk,h(x
′)⟩| ≤ 2H

√
dλ
√

ϕ(x, a)T (Λk
h)

−1ϕ(x, a)

(4.169)

since ||
∫
(V k

r,h+1 − V π
r,h+1)(x

′)dµk,h(x
′)||2 ≤ 2H

√
d as ||µk,h(S)|| ≤

√
d. The first term
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in (4.168) is equal to

Pk,h(V
k
r,h+1 − V π

r,h+1)(x, a) (4.170)

Note that ⟨ϕ(x, a), wk
r,h⟩−Qπ

k,r,h(x, a) = ⟨ϕ(x, a), wk
r,h−wπ

k,r,h⟩ = ⟨ϕ(x, a), q1+ q2+ q3+

q4 + q5⟩, we have

⟨ϕ(x, a), wk
j,h⟩ −Qπ

k,j,h =Pk,h(V
k
j,h+1 − V π

k,j,h+1)(x, a) + ∆k
h +BE

r

√
dD +HBE

p

√
dW

(4.171)

where |∆k
h| ≤ β

√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a).

Using Lemma IV.22, we also bound the difference between the combined Q-function

(estimated) and the actual Q-function.

Lemma IV.23. With probability 1− 2p,

Qπ
k,r,h + YkQ

π
k,g,h ≥Qk

r,h + YkQ
k
g,h + Pk,h(V

π
k,r,h+1 + YkV

π
k,g,h+1 − V k

r,h+1 − YkV
k
g,h+1)

+BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD (4.172)

Proof. From Lemma IV.22, we have

Qπ
k,r,h ≤ ⟨ϕ(x, a), wk

r,h⟩+ Pk,h(V
π
k,r,h+1 − V k

r,h) + β||ϕ(x, a)||Λ−1
k,h

+BE
r

√
dD +HBE

p

√
dD

(4.173)

From the definition of Qk
j,h, we have

Qπ
k,r,h ≤ Pk,h(V

π
k,r,h+1 − V k

r,h) +Qk
r,h +BE

r

√
dD +HBE

p

√
dD (4.174)

149



Similarly,

YkQ
π
k,g,h ≤ YkPk,h(V

π
k,g,h+1 − V k

g,h) + YkQ
k
g,h + YkB

E
g

√
dD + YkHBE

p

√
dD (4.175)

We now show that using the soft-max parameter α, one can bound the difference

between the best estimated value function and the one achieved using the soft-max

policy.

Lemma IV.24. Then, V̄ k
h (x)− V k

h (x) ≤
log |A|

α

where

Definition IV.25. V̄ k
h (·) = maxa[Q

k
r,h(·, a) + YkQ

k
g,h(·, a)].

V̄ k
h (·) is the value function that corresponds to the greedy policy with respect to

the composite Q-function.

Proof. Note that

V k
h (x) =

∑
a

πh,k(a|x)[Qk
r,h(x, a) + YkQ

k
g,h(x, a)] (4.176)

where

πh,k(a|x) =
exp(α[Qk

r,h(x, a) + YkQ
k
g,h(x, a)])∑

a exp(α[Q
k
r,h(x, a) + YkQk

g,h(x, a)])
(4.177)

Denote ax = argmaxa[Q
k
r,h(x, a) + YkQ

k
g,h(x, a)]

Now, recall from Definition IV.25 that V̄ k
h (x) = [Qk

r,h(x, ax) +YkQ
k
g,h(x, ax)]. Then,

V̄ k
h (x)− V k

h (x) = [Qk
r,h(x, ax) + YkQ

k
g,h(x, ax)]

−
∑
a

πh,k(a|x)[Qk
r,h(x, a) + YkQ

k
g,h(x, a)]
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≤

(
log(

∑
a exp(α(Q

k
r,h(x, a) + YkQ

k
g,h(x, a))))

α

)

−
∑
a

πh,k(a|x)[Qk
r,h(x, a) + YkQ

k
g,h(x, a)]

≤ log(|A|)
α

(4.178)

where the last inequality follows from Proposition 1 in [89].

Using the above result, we bound the difference T1 (albeit for each episode).

Lemma IV.26. With probability 1− 2p,

(V
π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1))− (V k
r,1(x1) + YkV

k
g,1(x1))

≤H log(|A|)
α

+H(BE
r

√
D + YkB

E
g

√
D + (1 + Yk)HBE

p

√
D)

Proof. First, we prove for the step H.

Note that Qk
j,H+1 = 0 = Qπ

j,H+1.

Under the event in E as described in Lemma IV.21 and from Lemma IV.22, we

have for j = r, g,

|⟨ϕ(x, a), wk
j,H(x, a)⟩ −Qπ

j,H(x, a)| ≤ β
√
ϕ(x, a)T (Λk

H)
−1ϕ(x, a) +BE

j

√
dD +HBE

p

√
dD

Hence, for any (x, a),

Qπ
j,H(x, a) ≤ min{⟨ϕ(x, a), wk

j,H⟩+ β
√

ϕ(x, a)T (Λk
H)

−1ϕ(x, a) +BE
j

√
dD +HBE

p

√
dD,H}

≤ Qk
j,H(x, a) +BE

j

√
dD +HBE

p

√
dD (4.179)

Hence, from the definition of V̄ k
h ,

V̄ k
H(x) = max

a
[Qk

r,H(x, a) + YkQ
k
g,h(x, a)]
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≥
∑
a

π(a|x)[Qπ
r,H(x, a) + YkQ

π
g,H(x, a)]

− (BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD)

≥ V π,Yk

H (x)− (BE
r

√
dD + YkB

E
g

√
dD +H(1 + Yk)B

E
p

√
dD) (4.180)

for any policy π. Thus, it also holds for π∗
k, the optimal policy. Hence, from

Lemma IV.24, we have

V
π∗
k,Yk

H (x)− V k
H(x) ≤

log(|A|)
α

+ (BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD)

Now, suppose that it is true till the step h+ 1 and consider the step h.

Since, it is true till step h+ 1, thus, for any policy π,

Pk,h(V
π,Yk

h+1 − V k
h+1)(x, a) ≤

(H − h) log(|A|)
α

+ (H − h)(BE
r

√
dW + YkB

E
g

√
dW + (1 + Yk)HBE

p

√
dW )

(4.181)

From Lemma IV.22 we have for any (x, a)

Qπ
k,r,h(x, a) + YkQ

π
k,g,h(x, a) ≤ Qk

r,h(x, a) + YkQ
k
g,h(x, a) +

(H − h) log(|A|)
α

+ (H − h+ 1)(BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD) (4.182)

Hence,

V π,Yk

h (x) ≤ V̄ k
h (x) +

(H − h) log(|A|)
α

+ (H − h+ 1)(BE
r

√
dW

+ YkB
E
g

√
dD + (1 + Yk)HBE

p

√
dD)
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Now, again from Lemma IV.24, we have V̄ k
h (x)− V k

h (x) ≤
log(|A|)

α
. Thus,

V π,Yk

h (x)− V k
h (x) ≤

(H − h+ 1) log(|A|)
α

+ (H − h+ 1)(BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD) (4.183)

Now, since it is true for any policy π, it will be true for π∗
k. From the definition of

V π,Yk , we have

(
V π∗

r,h (x) + YkV
π∗

g,h(x)
)
−
(
V k
r,h(x) + YkV

k
g,h(x)

)
≤ (H − h+ 1) log(|A|)

α

+ (H − h+ 1)(BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD) (4.184)

Hence, the result follows by summing over K and considering h = 1.

We now focus on bounding T2. First, we introduce some notations.

Let

Dk
j,h,1 = ⟨(Qk

j,h(x
k
h, ·)−Qπk

j,h(x
k
h, ·)), πh,k(·|xk

h)⟩ − (Qk
j,h(x

k
h, a

k
h)−Qπk

j,h(x
k
h, a

k
h))

Dk
j,h,2 = Pk,h(V

k
j,h+1 − V πk

j,h+1)(x
k
h, a

k
h)− [V k

j,h+1 − V πk
j,h+1](x

k
h+1) (4.185)

Lemma IV.27. On the event defined in E in Lemma IV.21, we have

V k
j,1(x1)− V πk

k,j,1 ≤
H∑

h=1

(Dk
j,h,1 +Dk

j,h,2) +
H∑

h=1

2β
√

ϕ(xk
h, a

k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h)

+H(BE
j

√
dD +HBE

p

√
dD) (4.186)

Proof. By Lemma IV.22, for any x, h, a, k

⟨wk
j,h(x, a), ϕ(x, a)⟩+ β

√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a)−Qπk

j,h

≤ Pk,h(V
k
j,h+1 − V πk

k,j,h+1)(x, a) + 2β
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a)
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+H(BE
j

√
dD +HBE

p

√
dD)

Thus,

Qk
j,h(x, a)−Qπk

j,h(x, a) ≤ Pk,h(V
k
j,h+1 − V πk

k,j,h+1)(x, a) + 2β
√

ϕ(x, a)T (Λk
h)

−1ϕ(x, a)

+H(BE
r

√
dD +BE

g

√
dD +HBE

p

√
dD)

Pk,h(V
k
j,h+1 − V πk

k,j,h+1)(x, a) + 2β
√

ϕ(x, a)T (Λk
h)

−1ϕ(x, a)+

BE
j

√
dD +HBE

p

√
dD − (Qk

j,h(x, a)−Qπk
k,j,h(x, a)) ≥ 0 (4.187)

Since

V k
j,h(x) =

∑
a

πh,k(a|x)Qk
j,h(x, a)

and

V πk
k,j,h(x) =

∑
a

πh,k(a|x)Qπk
k,j,h(x, a)

where

πh,k(a|·) = Soft-Maxa
α(Q

k
r,h + YkQ

k
g,h), ∀a

.

Thus, from (4.187),

V k
j,h(x

k
h)− V πk

k,j,h(x
k
h) =

∑
a

πh,k(a|xk
h)[Q

k
j,h(x

k
h, a)−Qπk

k,j,h(x
k
h, a)]

≤
∑
a

πh,k(a|xk
h)[Q

k
j,h(x

k
h, a)−Qπk

k,j,h(x
k
h, a)] + (BE

j

√
dD +HBE

p

√
dD)

+ 2β
√
ϕ(xk

h, a
k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h) + Pk,h(V

k
j,h+1 − V πk

j,h+1)(x
k
h, a

k
h)

− (Qk
j,h(x

k
h, a

k
h)−Qπk

k,j,h(x
k
h, a

k
h)) (4.188)
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Thus, from (4.188), we have

V k
j,h(x

k
h)− V πk

j,h (x
k
h) ≤Dk

j,h,1 +Dk
j,h,2 + [V k

j,h+1 − V πk
j,h+1](x

k
h+1)

+ 2β
√

ϕ(xk
h, a

k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h) + (BE

j

√
dD +HBE

p

√
dD)

(4.189)

Hence, by iterating recursively, we have

V k
j,1(x1)− V πk

j,1 ≤
H∑

h=1

(Dk
j,h,1 +Dk

j,h,2) +
H∑

h=1

2β
√

ϕ(xk
h, a

k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h)

+H(BE
j

√
dD +HBE

p

√
dD) (4.190)

The result follows.

Now, we are ready to prove Lemma IV.18.

Proof of Lemma IV.18

Proof. First, from Lemma IV.26,

(V
π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1))− (V k
r,1(x1) + YkV

k
g,1(x1))

≤H log(|A|)
α

+H(BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD) (4.191)

Note that Yk = 2H/δ. Now, summing over k within frame E we obtain

D∑
k=1

(V
π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1))− (V k
r,1(x1) + YkV

k
g,1(x1)) ≤

HD log(|A|)
α

+H
√
d(BE

rD
3/2 + 2H/δBE

gD
3/2 + (1 + 2H/δ)HBE

pD
3/2) (4.192)

155



Now, summing over the epochs E , we obtain

K/D∑
E=1

D∑
k=1

(V
π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1))− (V k
r,1(x1) + YkV

k
g,1(x1)) ≤

HK log(|A|)
α

+

K/D∑
E=1

H
√
d(BE

rD
3/2 + 2H/δBE

gD
3/2 + (1 + 2H/δ)HBE

pD
3/2)

≤ HK log(|A|)
α

+H2(1 + 2H/δ)
√
dBD3/2 (4.193)

where we have used the fact that
∑

E(B
E
r + BE

g + BE
p ) = Br + Bg + Bp = B. This

gives the bound for T1. Now, we bound T2.

From Lemma IV.27,

D∑
k=1

(V k
j,1(x1)− V πk

j,1 (x1))

≤
D∑

k=1

H∑
h=1

(Dk
j,h,1 +Dk

j,h,2) +
D∑

k=1

H∑
h=1

2β
√

ϕ(xk
h, a

k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h)

+

K/D∑
E=1

D∑
k=1

H(BE
j

√
dD +HBE

p

√
dD) (4.194)

We, now, bound the individual terms of the right-hand side in (4.194). First, we show

that the first term corresponds to a Martingale difference.

For any (k, h) ∈ [E ]× [H], we define Fk
h,1 as σ-algebra generated by the state-action

sequences, reward, and constraint values, {(xτ
i , a

τ
i )}(τ,i)∈[k−1]×[H] ∪ {(xk

i , a
k
i )}i∈[h].

Similarly, we define the Fk
h,2 as the σ-algebra generated by {(xτ

i , a
τ
i )}(τ,i)∈[k−1]×[H]∪

{(xk
i , a

k
i )}i∈[h] ∪ {xk

h+1}. xk
H+1 is a null state for any k ∈ [K].

A filtration is a sequence of σ-algebras {Fk
h,m}(k,h,m)∈[E]×[H]×[2] in terms of time

index

t(k, h,m) = 2(k − 1)H + 2(h− 1) +m (4.195)
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which holds that Fk
h,m ⊂ Fk′

h′,m′ for any t ≤ t′.

Note from the definitions in (4.185) that Dk
j,h,1 ∈ Fk

h,1 and Dk
j,h,2 ∈ Fk

h,2. Thus, for

any (k, h) ∈ [K]× [H],

E[Dk
j,h,1|Fk

h−1,2] = 0, E[Dk
j,h,2|Fk

h,1] = 0 (4.196)

Notice that t(k, 0, 2) = t(k− 1, H, 2) = 2(H − 1)k. Clearly, Fk
0,2 = Fk−1

H,2 for any k ≥ 2.

Let F1
0,2 be empty. We define a Martingale sequence

Mk
j,h,m =

k−1∑
τ=1

H∑
i=1

(Dτ
j,i,1 +Dτ

j,i,2) +
h−1∑
i=1

(Dk
j,i,1 +Dk

j,i,2) +
m∑
l=1

Dk
j,h,l

=
∑

(τ,i,l)∈[E]×[H]×[2],t(τ,i,l)≤t(k,h,m)

Dτ
j,i,l (4.197)

where t(k, h,m) = 2(k−1)H+2(h−1)+m is the time index. Clearly, this martingale

is adopted to the filtration {Fk
h,m}(k,h,m)∈[D]×[H]×[2], and particularly

D∑
k=1

H∑
h=1

(Dk
j,h,1 +Dk

j,h,2) = MD
j,H,2 (4.198)

Thus,MK
j,H,2 is a Martingale difference satisfying |MD

j,H,2| ≤ 4H since |Dk
j,h,1|, |Dk

j,h,2| ≤

2H From the Azuma-Hoeffding inequality, we have

Pr(MD
j,H,2 > s) ≤ 2 exp(− s2

16DH2
) (4.199)

With probability 1− p/2 at least for any j = r, g,

∑
k

∑
h

MD
j,H,2 ≤

√
16DH2 log(4/p) (4.200)

Now, we bound the second term of the right-hand side of (4.194). Note that the

minimum eigenvalue of Λk
h is at least λ = 1 for all (k, h) ∈ [D]× [H]. By Lemma C.5
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in the appendix,

K∑
k=1

(ϕk
h)

T (Λk
h)

−1ϕk
h ≤ 2 log

[
det(Λk+1

h )

det(Λ1
h)

]
(4.201)

Moreover, note that ||Λk+1
h || = ||

∑k
τ=1 ϕ

k
h(ϕ

k
h)

T + λI|| ≤ λ+ k, hence,

D∑
k=1

(ϕk
h)

T (Λk
h)

−1ϕk
h ≤ 2d log

[
λ+ k

λ

]
≤ 2dι (4.202)

Now, by Cauchy-Schwartz inequality, we have

D∑
k=1

H∑
h=1

√
(ϕk

h)
T (Λk

h)
−1ϕk

h ≤
H∑

h=1

√
W [

K∑
k=1

(ϕk
h)

T (Λk
h)

−1ϕk
h]

1/2

≤ H
√
2dDι (4.203)

Note that β = C1dH
√
ι. Hence, the second term is bounded by

O(
√
H4d3Dι2) (4.204)

The third term of (4.194) is bounded by

D∑
k=1

H(BE
j

√
dD +HBE

p

√
dD) =

√
dD3/2H(BE

j +HBE
p ) (4.205)

Hence, summing (4.194) over the epochs we obtain

K/D∑
E=1

D∑
k=1

(V k
j,1(x1)− V πk

j,1 (x1)) ≤
K/D∑
E=1

O(
√
H4d3Dι2) +

K/D∑
E=1

√
dD3/2H(BE

j +HBE
p )

(4.206)
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Replacing
∑

E B
E
j = Bj, and

∑
E B

E
p = Bp, we obtain

K/D∑
E=1

D∑
k=1

(V k
j,1(x1)− V πk

k,j,1(x1)) ≤ O(
√

H4d3K2ι2/D) +
√
dD3/2BH2 (4.207)

Thus,

K∑
k=1

(V k
r,1(x1)− V πk

k,r,1(x1)) + Y (V k
g,1(x1)− V πk

k,g,1(x1))

≤(1 + Y )(O(
√

H4d3K2ι2/D) +
√
dD3/2BH2) (4.208)

Hence, the result follows.

4.7 Summary

We have studied model-free reinforcement learning algorithms in non-stationary

episodic CMDPs. In particular, we consider two settings, one is computationally less

intensive for the tabular setting, and another one is computationally more intensive

but can be applied to a more general linear approximation setup. We have further

presented a general framework for applying any algorithms with zero constraint

violation to a more practical scenario where the total variation budget is unknown.

Whether we can tighten the bounds for model-free algorithms remains an important

future research direction. Whether we can design an approach for using any learning

algorithms for CMDPs in a non-stationary environment without the knowledge of the

budget also constitutes a future research direction.
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CHAPTER V

Conclusion and Future Work

Reinforcement Learning (RL) has gained significant attention due to its successes

in several domains. However, applying RL to real-world applications raises concerns

regarding safety, e.g., the consequences of actions in engineering systems can be

catastrophic. Therefore, it is critical to strike a balance between reward maximization

and safety in real-world applications. This dissertation investigated designing efficient

model-free, simulator-free algorithms for different CMDP settings with provable safety

guarantees. In what follows, we summarize the main contributions.

This dissertation starts with the episodic CMDP setting in Chapter II. We develop

the first model-free RL algorithm for CMDPs with sublinear regret and zero constraint

violation. The algorithm is named Triple-Q, and it has three key components: (i) a Q-

function for the expected cumulative reward, denoted by Qh(x, a), (ii) a Q-function for

the expected cumulative utility for the constraint, and (iii) a virtual-Queue, denoted by

Z, which overestimates the cumulative constraint violation so far. Triple-Q uses UCB

exploration when learning the Q-values to ensure an overestimation of the combined

objective. Triple-Q is a two-time-scale algorithm where the virtual queue is updated

at a slow time scale, and Triple-Q learns the pseudo-Q-value for fixed virtual queue

length at a fast time scale within each frame. We prove Triple-Q achieves Õ
(
K

4
5

)
reward regret and guarantees zero constraint violation when the total number of
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episodes K is large enough.

In Chapter III, we consider a more advanced and challenging setting, the infinite-

horizon average-reward CMDPs. The agent-environment interaction never ends, or

resets, and the goal is to achieve optimal long-term average reward under constraints,

which appears to be much more challenging. We also proposed the first model-free RL

algorithm for infinite-horizon average-reward CMDPs. The design of the algorithm is

based on the primal-dual approach. By using the Lyapunov drift analysis, we proved

that our algorithm achieves sublinear regret and zero constraint violation. Our regret

bound scales as Õ
(
K

5
6

)
and is suboptimal compared to model-based approaches.

However, this is the first model-free and simulator-free algorithm with sub-linear regret

and optimal constraint violation.

Learning in a stationary CMDP is a long-standing topic and has been heavily

studied recently, including using both model-based and model-free approaches. RL in

non-stationary CMDPs is more challenging since the rewards/utilities and dynamics

are time-varying and probably unknown a priori. On the one hand, an agent has to

handle the non-stationarity properly to guarantee a sublinear regret and a small or zero

constraint violation. On the other hand, the agent also needs to forget the past data

samples since they become less useful due to the dynamic of the system. In Chapter IV,

we manage to overcome these challenges and focus on designing model-free algorithms

with sublinear regret and zero constraint violation guarantees for non-stationary

CMDPs, especially for the scenario when the total variation budget is unknown. We

develop different types of model-free algorithms for non-stationary CMDP settings.

One is tailored for tabular CMDPs and has low memory and computational complexity;

another one is computationally more intensive. However, it can be applied to linear

function approximation for large, possibly infinite, state and action spaces. For

the tabular setting, our algorithm adopts a periodic restart strategy and utilizes an

extra optimism bonus term to counteract the non-stationarity of the CMDP that an
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overestimate of the combined objective is guaranteed during learning and exploration.

For the case when the budget variation is known, our theoretical result Õ(K4/5)

matches the best existing result for stationary CMDPs in terms of the total number

of episodes K, and non-stationary MDPs in term of the variation budget B. For

linear CMDPs, we propose the first model-free, value-based algorithm, which obtains

Õ(K3/4) regret and zero constraint violation using the same strategy. We develop,

for the first time, a general double restart method for non-stationary CMDPs based

on the “bandit over bandit” idea. This method can be used for other non-stationary

constrained learning problems which aim to achieve zero constraint violation. The

method eliminates the need to have a priori knowledge of the variation budget.

All of our algorithms are computationally efficient from an algorithmic perspective

because they are model-free, which means that it is possible to apply our method to

complex and challenging CMDPs in practice. The simulation results also demonstrate

the good performance of our algorithm.

There are still many open problems in safe-RL, for example, how to satisfy

stochastic and adversarial hard constraints under both model-based and model-free

algorithms, how to leverage the benefits from offline RL to design a more efficient

online RL algorithm for CMDPs, how to design efficient and provable algorithms for

multi-agent CMDPs, and what are the fundamental sample complexity and regret

bounds remain to be developed.
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APPENDIX A

Appendix for Chapter II

A.1 Notation Table for Chapter II

The notations used throughout this report are summarized in Table A.1.

A.2 Supporting Lemmas for Chapter II

In this section, we state several lemmas that are used in our analysis. The first

lemma establishes some key properties of the learning rates used in Triple-Q. The

proof closely follows the proof of Lemma 4.1 in [34].

Lemma A.1. Recall that the learning rate used in Triple-Q is αt =
χ+1
χ+t

, and

α0
t =

t∏
j=1

(1− αj) and αi
t = αi

t∏
j=i+1

(1− αj). (A.1)

The following properties hold for αi
t :

(a) α0
t = 0 for t ≥ 1, α0

t = 1 for t = 0.

(b)
∑t

i=1 α
i
t = 1 for t ≥ 1,

∑t
i=1 α

i
t = 0 for t = 0.
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Table A.1: Notation Table

Notation Definition

K The total number of episodes
S The number of states
A The number of actions
H The length of each episode
[H] Set {1, 2, . . . ,H}

Qk,h(x, a) The estimated reward Q-function at step h in episode k
Qπ

h(x, a) The reward Q-function at step h in episode k under policy π
Vk,h(x) The estimated reward value-function at step h in episode k
V π
h (x) The value-function at step h in episode k under policy π

Ck,h(x, a) The estimated utility Q-function at step h in episode k
Cπ

h (x, a) The utility Q-function at step h in episode k under policy π
Wk,h(x) The estimated utility value-function at step h in episode k
Wπ

h (x) The utility value-function at step h in episode k under policy π

Fk,h(x, a) Fk,h(x, a) = Qk,h(x, a) +
Zk

η Ck,h(x, a)

Uk,h(x) Uk,h(x) = Vk,h(x) +
Zk

η Wk,h(x)

rh(x, a) The reward of (state, action) pair (x, a) at step h.
gh(x, a) The utility of (state, action) pair (x, a) at step h.

Nk,h(x, a) The number of visits to (x, a) when at step h in episode k (not including k)
Zk The dual estimation (virtual queue) in episode k.
q∗h The optimal solution to the LP of the CMDP (2.24).
qϵ,∗h The optimal solution to the tightened LP (2.31).
δ Slater’s constant.
bt the UCB bonus for given t
I(·) The indicator function

(c) 1√
χ+t
≤
∑t

i=1
αi
t√

χ+i
≤ 2√

χ+t
.

(d)
∑∞

t=i α
i
t = 1 + 1

χ
for every i ≥ 1.

(e)
∑t

i=1(α
i
t)

2 ≤ χ+1
χ+t

for every t ≥ 1.

□

Proof. The proof of (a) and (b) are straightforward by using the definition of αi
t. The

proof of (d) is the same as that in [34].

(c): We next prove (c) by induction.

For t = 1, we have
∑t

i=1
αi
t√

χ+i
=

α1
1√

χ+1
= 1√

χ+1
, so (c) holds for t = 1.
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Now suppose that (c) holds for t− 1 for t ≥ 2, i.e.

1√
χ+ t− 1

≤
t−1∑
i=1

αi
t√

χ+ i− 1
≤ 2√

χ+ t− 1
.

From the relationship αi
t = (1− αt)α

i
t−1 for i = 1, 2, . . . , t− 1, we have

t∑
i=1

αi
t

χ+ i
=

αt√
χ+ t

+ (1− αt)
t−1∑
i=1

αi
t−1√
χ+ i

.

Now we apply the induction assumption. To prove the lower bound in (c), we have

αt√
χ+ t

+(1−αt)
t−1∑
i=1

αi
t−1√
χ+ i

≥ αt√
χ+ t

+
1− αt√
χ+ t− 1

≥ αt√
χ+ t

+
1− αt√
χ+ t

≥ 1√
χ+ t

.

To prove the upper bound in (c), we have

αt√
χ+ t

+ (1− αt)
t−1∑
i=1

αi
t−1√
χ+ i

≤ αt√
χ+ t

+
2(1− αt)√
χ+ t− 1

=
χ+ 1

(χ+ t)
√
χ+ t

+
2(t− 1)

(χ+ t)
√
χ+ t− 1

,

=
1− χ− 2t

(χ+ t)
√
χ+ t

+
2(t− 1)

(χ+ t)
√
χ+ t− 1

+
2√
χ+ t

≤ −χ− 1

(χ+ t)
√
χ+ t− 1

+
2√
χ+ t

≤ 2√
χ+ t

. (A.2)

(e) According to its definition, we have

αi
t =

χ+ 1

i+ χ
·
(

i

i+ 1 + χ

i+ 1

i+ 2 + χ
· · · t− 1

t+ χ

)
=
χ+ 1

t+ χ
·
(

i

i+ χ

i+ 1

i+ 1 + χ
· · · t− 1

t− 1 + χ

)
≤ χ+ 1

χ+ t
. (A.3)

Therefore, we have
t∑

i=1

(αi
t)

2 ≤ [max
i∈[t]

αi
t] ·

t∑
i=1

αi
t ≤

χ+ 1

χ+ t
,
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because
∑t

i=1 α
i
t = 1.

The next lemma establishes upper bounds on Qk,h and Ck,h under Triple-Q.

Lemma A.2. For any (x, a, h, k) ∈ S ×A× [H]× [K], we have the following bounds

on Qk,h(x, a) and Ck,h(x, a) :

0 ≤ Qk,h(x, a) ≤ H2
√
ι

0 ≤ Ck,h(x, a) ≤ H2
√
ι.

Proof. We first consider the last step of an episode, i.e. h = H. Recall that Vk,H+1(x) =

0 for any k and x by its definition and Q0,H = H ≤ H
√
ι. Suppose Qk′,H(x, a) ≤ H

√
ι

for any k′ ≤ k − 1 and any (x, a). Then,

Qk,H(x, a) = (1−αt)Qkt,H(x, a)+αt (rH(x, a) + bt) ≤ max

{
H
√
ι, 1 +

H
√
ι

4

}
≤ H
√
ι,

where t = Nk,H(x, a) is the number of visits to state-action pair (x, a) when in step

H by episode k (but not include episode k) and kt is the index of the episode of the

most recent visit. Therefore, the upper bound holds for h = H.

Note that Q0,h = H ≤ H(H − h+ 1)
√
ι. Now suppose the upper bound holds for

h+ 1, and also holds for k′ ≤ k − 1. Consider step h in episode k :

Qk,h(x, a) =(1− αt)Qkt,h(x, a) + αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt) ,

where t = Nk,h(x, a) is the number of visits to state-action pair (x, a) when in step

h by episode k (but not include episode k) and kt is the index of the episode of the

most recent visit. We also note that Vk,h+1(x) ≤ maxa Qk,h+1(x, a) ≤ H(H − h)
√
ι.

Therefore, we obtain

Qk,h(x, a) ≤ max

{
H(H − h+ 1)

√
ι, 1 +H(H − h)

√
ι+

H
√
ι

4

}
≤ H(H − h+ 1)

√
ι.
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Therefore, we can conclude that Qk,h(x, a) ≤ H2
√
ι for any k, h and (x, a). The proof

for Ck,h(x, a) is identical.

Next, we present the following lemma from [34], which establishes a recursive

relation between Qk,h and Qπ
h for any π. We include the proof so the report is self-

contained.

Lemma A.3. Consider any (x, a, h, k) ∈ S ×A× [H]× [K], and any policy π. Let

t=Nk,h(x, a) be the number of visits to (x, a) when at step h in frame T before episode

k, and k1, . . . , kt be the indices of the episodes in which these visits occurred. We have

the following two equations:

(Qk,h −Qπ
h)(x, a) = α0

t

{
Q(T−1)Kα+1,h −Qπ

h

}
(x, a)

+
t∑

i=1

αi
t

({
Vki,h+1 − V π

h+1

}
(xki,h+1) +

{
P̂ki
h V

π
h+1 − PhV

π
h+1

}
(x, a) + bi

)
, (A.4)

(Ck,h − Cπ
h )(x, a) = α0

t

{
C(T−1)Kα+1,h − Cπ

h

}
(x, a)

+
t∑

i=1

αi
t

({
Wki,h+1 −W π

h+1

}
(xki,h+1) +

{
P̂ki
h W

π
h+1 − PhW

π
h+1

}
(x, a) + bi

)
, (A.5)

where P̂k
hVh+1(x, a) := Vh+1(xk,h+1) is the empirical counterpart of PhV

π
h+1(x, a) =

Ex′∼Ph(·|x,a)V
π
h+1(x

′). This definition can also be applied to W π
h as well.

Proof. We will prove (A.4). The proof for (A.5) is identical. Recall that under

Triple-Q, Qk+1,h(x, a) is updated as follows:

Qk+1,h(x, a)

=


(1− αt)Qk,h(x, a) + αt (rh(x, a) + Vk,h+1(xh+1,k) + bt) if (x, a) = (xk,h, ak,h)

Qk,h(x, a) otherwise

.
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From the update equation above, we have in episode k,

Qk,h(x, a) =(1− αt)Qkt,h(x, a) + αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt) .

Repeatedly using the equation above, we obtain

Qk,h(x, a) =(1− αt)(1− αt−1)Qkt−1,h(x, a)

+(1− αt)αt−1

(
rh(x, a) + Vkt−1,h+1(xkt−1,h+1) + bt−1

)
+ αt (rh(x, a) + Vkt,h+1(xkt,h+1) + bt)

= · · ·

=α0
tQ(T−1)Kα+1,h(x, a) +

t∑
i=1

αi
t (rh(x, a) + Vki,h+1(xki,h+1) + bi) , (A.6)

where the last equality holds due to the definition of αi
t in (A.1) and the fact that all

Q1,h(x, a)s are initialized to be H. Now applying the Bellman equation Qπ
h(x, a) ={

rh + PhV
π
h+1

}
(x, a) and the fact that

∑t
i=1 α

i
t = 1, we can further obtain

Qπ
h(x, a) = α0

tQ
π
h(x, a) + (1− α0

t )Q
π
h(x, a)

= α0
tQ

π
h(x, a) +

t∑
i=1

αi
t

(
r(x, a) + PhV

π
h+1(x, a) + V π

h+1(xki,h+1)− V π
h+1(xki,h+1)

)
= α0

tQ
π
h(x, a) +

t∑
i=1

αi
t

(
rh(x, a) + PhV

π
h+1(x, a) + V π

h+1(xki,h+1)− P̂ki
h V

π
h+1(x, a)

)
= α0

tQ
π
h(x, a) +

t∑
i=1

αi
t

(
rh(x, a) + V π

h+1(xki,h+1) +
{
PhV

π
h+1 − P̂ki

h V
π
h+1

}
(x, a)

)
.

(A.7)

Then subtracting (A.7) from (A.6) yields

(Qk,h −Qπ
h)(x, a) = α0

t

{
Q(T−1)Kα+1,h −Qπ

h

}
(x, a)
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+
t∑

i=1

αi
t

({
Vki,h+1 − V π

h+1

}
(xki,h+1) +

{
P̂ki
h V

π
h+1 − PhV

π
h+1

}
(x, a) + bi

)
.

Lemma A.4. Consider any frame T. Let t=Nk,h(x, a) be the number of visits to (x, a)

at step h before episode k in the current frame and let k1, . . . , kt < k be the indices

of these episodes. Under any policy π, with probability at least 1− 1
K3 , the following

inequalities hold simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K]

∣∣∣∣∣
t∑

i=1

αi
t

{
(P̂ki

h − Ph)V
π
h+1

}
(x, a)

∣∣∣∣∣ ≤1

4

√
H2ι(χ+ 1)

(χ+ t)
,∣∣∣∣∣

t∑
i=1

αi
t

{
(P̂ki

h − Ph)W
π
h+1

}
(x, a)

∣∣∣∣∣ ≤1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Proof. Without loss of generality, we consider T = 1. Fix any (x, a, h) ∈ S ×A× [H].

For any n ∈ [Kα], define

X(n) =
n∑

i=1

αi
τ · I{ki≤K}

{
(P̂ki

h − Ph)V
π
h+1

}
(x, a).

Let Fi be the σ−algebra generated by all the random variables until step h in episode

ki. Then

E[X(n+ 1)|Fn] = X(n) + E
[
αn+1
τ I{kn+1≤K}

{
(P̂kn+1

h − Ph)V
π
h+1

}
(x, a)|Fn

]
= X(n),

which shows that X(n) is a martingale. We also have for 1 ≤ i ≤ n,

|X(i)−X(i− 1)| ≤ αi
τ

∣∣∣{(P̂kn+1

h − Ph)V
π
h+1

}
(x, a)

∣∣∣ ≤ αi
τH

Then let σ =

√
8 log

(√
2SAHK

)∑τ
i=1(α

i
τH)2. By applying the Azuma-Hoeffding
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inequality, we have with probability at least 1− 2 exp
(
− σ2

2
∑τ

i=1(α
i
τH)2

)
= 1− 1

SAHK4 ,

|X(τ)| ≤

√√√√8 log
(√

2SAHK
) τ∑

i=1

(αi
τH)2 ≤

√√√√ ι

16
H2

τ∑
i=1

(αi
τ )

2 ≤ 1

4

√
H2ι(χ+ 1)

χ+ τ
,

where the last inequality holds due to
∑τ

i=1(α
i
τ )

2 ≤ χ+1
χ+τ

from Lemma A.1.(e). Because

this inequality holds for any τ ∈ [K], it also holds for τ = t = Nk,h(x, a) ≤ K,

Applying the union bound, we obtain that with probability at least 1 − 1
K3 the

following inequality holds simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K],:

∣∣∣∣∣
t∑

i=1

αi
t

{
(P̂ki

h − Ph)V
π
h+1

}
(x, a)

∣∣∣∣∣ ≤ 1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Following a similar analysis we also have that with probability at least 1 − 1
K3 the

following inequality holds simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K],:

∣∣∣∣∣
t∑

i=1

αi
t

{
(P̂ki

h − Ph)W
π
h+1

}
(x, a)

∣∣∣∣∣ ≤ 1

4

√
H2ι(χ+ 1)

(χ+ t)
.

This lemma bound the conditional expected Lyapunov drift.

Lemma A.5. Given δ ≥ 2ϵ, under Triple-Q, the conditional expected drift is

E [LT+1 − LT |ZT = z] ≤ −δ

2
ZT +

4H2ι

K2
+ η
√
H2ι+H4ι+ ϵ2 (A.8)

Proof. Recall that LT = 1
2
Z2

T , and the virtual queue is updated by using

ZT+1 =

(
ZT + ρ+ ϵ− C̄T

Kα

)+

.
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From inequality (2.56), we have

E [LT+1 − LT |ZT = z]

≤ 1

Kα

TKα∑
k=(T−1)Kα+1

E [ZT (ρ+ ϵ− Ck,1(xk,1, ak,1))− ηQk,1(xk,1, ak,1)

+ηQk,1(xk,1, ak,1)|ZT = z] +H4ι+ ϵ2

≤(a)
1

Kα

TKα∑
k=(T−1)Kα+1

E

[
ZT

(
ρ+ ϵ−

∑
a

{Ck,1q
π
1 } (xk,1, a)

)

−η
∑
a

{Qk,1q
π
1 }(xk,1, a) + ηQk,1(xk,1, ak,1)|ZT = z

]

+ ϵ2 +H4ι

≤ 1

Kα

TKα∑
k=(T−1)Kα+1

E

[
ZT

(
ρ+ ϵ−

∑
a

{Cπ
1 q

π
1 } (xk,1, a)

)

−η
∑
a

{Qk,1q
π
1 }(xk,1, a) + ηQk,1(xk,1, ak,1)|ZT = z

]

+
1

Kα

TKα∑
k=(T−1)Kα+1

E

[
ZT

∑
a

{Cπ
1 q

π
1 } (xk,1, a)− ZT

∑
a

{Ck,1q
π
1 } (xk,1, a)|ZT = z

]

+
1

Kα

TKα∑
k=(T−1)Kα+1

E

[
η
∑
a

{Qπ
1q

π
1 } (xk,1, a)− η

∑
a

{Qπ
1q

π
1 } (xk,1, a)|ZT = z

]

+H4ι+ ϵ2

≤(b) −
δ

2
z +

1

Kα

TKα∑
k=(T−1)Kα+1

E

[
η
∑
a

{(F π
1 − Fk,1)q

π
1 } (xk,1, a)

+ηQk,1(xk,1, ak,1)|ZT = z

]
+H4ι+ ϵ2

≤(c) −
δ

2
z +

4H2ι

K2
+ η
√
H2ι+H4ι+ ϵ2.

Inequality (a) holds because of our algorithm. Inequality (b) holds because the fact

that
∑

a {Qπ
1q

π
1 } (xk,1, a) is non-negative, and under Slater’s condition, we can find
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policy π such that

ϵ+ρ−E

[∑
a

Cπ
1 (xk,1, a)q

π
1 (xk,1, a)

]
= ρ+ϵ−E

[∑
h,x,a

qπh(x, a)gh(x, a)

]
≤ −δ+ϵ ≤ −δ

2
.

Finally, inequality (c) is obtained due to the fact that Qk,1(xk,1, ak,1) is bounded by

using Lemma A.2, and the fact that

E

 TKα∑
k=(T−1)Kα+1

∑
a

{(F π
1 − Fk,1)q

π
1 } (xk,1, a)

∣∣∣∣∣∣ZT = z


can be bounded as (2.51) (note that the overestimation result and the concentration

result in frame T hold regardless of the value of ZT ).
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APPENDIX B

Appendix for Chapter III

B.1 Notation Table for Chapter III

We summarize notations used throughout this chapter in Table B.1.

Table B.1: Notation Table

Notation Definition

K The total number of episodes.
Jπ
r The reward rate under policy π.

Jπ
r The utility rate under policy π.

V π(s) The cumulative discounted reward under policy π and initial state s.
Qπ(s) The cumulative discounted reward under policy π and initial state action pair (s, a).
Wπ(s) The cumulative discounted utility under policy π and initial state s.
Cπ(s) The cumulative discounted utility under policy π and initial state action pair (s, a).
vπ(s) The relative reward value function for state s.
wπ(s) The relative utility value function for state s.
sp(vπ) Span of relative reward value function: sp(vπ) = maxs v

π(s)−mins v
π(s).

sp(wπ) Span of relative utility value function: sp(wπ) = maxs w
π(s)−mins w

π(s).
κ max{sp(vϵ,∗), sp(wϵ,∗), 1}

Definition B.1 (Diameter). The diameter of an MDPM is defined as:

D(M) = max
s′ ̸=s

min
π

E[min{t ≥ 1 : St = s′}|S1 = s]− 1, (B.1)
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where the expectation is taken with respect to the Markov chain (St)
∞
t=1 induced by

the policy π andM.

B.2 Supporting Lemmas for Chapter III

Lemma B.2. (Azuma’s inequality) Let X1, X2, . . . be a martingale difference with

|Xi| ≤ ci for all i. Then for any 0 < δ < 1,

P

(
N∑
i=1

Xi ≥
√

2c̄2N ln
1

δ

)
≤ δ,

where c2N :=
∑N

i=1 c
2
i .

Lemma B.3. For any k = 1, . . . , Kβ − 1 in frame T and state-action pair (s, a), the

following holds:

Qk+1(s, a)−Qπ(s, a) =α0
τ (Q̂(T−1)kβ+1(s, a)−Qπ(s, a))

+γ
τ∑

i=1

αi
τ

[
V̂ki(ski+1)− V π(ski+1)

]
+γ

τ∑
i=1

αi
τ

[
V π(ski+1)− Es′∼p(·|s,a)V

π(s′)
]
+

τ∑
i=1

αi
τbi, (B.2)

where τ = nk+1(s, a), is the total number of visits to (s, a) for the first k timesteps.

Proof. By recursively using the updating rule for Qk+1(s, a), we have

Qk+1(s, a) = Q̂1(s, a)α
0
t +

τ∑
i=1

αi
τ

[
r(s, a) + γV̂ki(ski + 1)

]
+

τ∑
i=1

αi
τbi. (B.3)

According to the Bellman equation Qπ(s, a) = r(s, a) + γEs′∼p(·|s,a)V
π(s′) and the fact∑τ

i=1 α
i
τ = 1, we have

Qπ(s, a) = α0
τQ

π(s, a) +
τ∑

i=1

αi
τ

[
r(s, a) + γEs′∼p(·|s,a)V

π(s′)
]
, (B.4)
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which finishes the proof.

Lemma B.4. Consider any frame T. Let t=Nk,h(s, a) be the number of visits to (s, a)

before timestep k in the current frame and let k1, . . . , kt < k be the indices of these

steps. Under any policy π, with probability at least 1− 1
K3 , the following inequalities

hold simultaneously for all (s, a, k) ∈ S ×A× [K]

∣∣∣∣∣
τ∑

i=1

αi
τ

[
V ϵ,∗(ski+1)− Es′∼p(·|s,a)V

ϵ,∗(s′)
]∣∣∣∣∣ ≤κ

√
(χ+ 1)ι

χ+ τ
, (B.5)∣∣∣∣∣

τ∑
i=1

αi
τ

[
W ϵ,∗(ski+1)− Es′∼p(·|s,a)W

ϵ,∗(s′)
]∣∣∣∣∣ ≤κ

√
(χ+ 1)ι

χ+ τ
. (B.6)

Proof. Note that
τ∑

i=1

αi
τ

[
V ϵ,∗(ski+1)− Es′∼p(·|s,a)V

ϵ,∗(s′)
]

is a martingale, and each term in the summation belongs to [−αi
τsp(V

ϵ,∗), αi
τsp(V

ϵ,∗)]

according to Lemma III.4.

Define σ =
√

8 log
(√

2K
)∑τ

i=1(α
i
τsp(V

ϵ,∗))2. By using Azuma’s inequality (Lemma

B.2), we obtain that the following inequality holds

∣∣∣∣∣
τ∑

i=1

αi
τ

[
V ϵ,∗(ski+1)− Es′∼p(·|s,a)V

ϵ,∗(s′)
]∣∣∣∣∣ ≤ σ

=sp(V ϵ,∗)

√√√√8
τ∑

i=1

(αi
τ )

2 log
√
2K ≤ κ

√
(χ+ 1)ι

χ+ τ
(B.7)

with probability at least

1− 2 exp

(
− σ2

2
∑τ

i=1(α
i
τsp(V

ϵ,∗))2

)
≥ 1− 1

K3
. (B.8)

Lemma B.5. Given δ ≥ 2ϵ,H ≥ 6κ
δ
, under our algorithm, the conditional expected
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drift of L is

E [LT+1 − LT |ZT = z] ≤ −δ

3
ZT +

3H

K2
+ η + 2. (B.9)

Proof. Recall that LT = 1
2
Z2

T and the virtual queue is updated by using

ZT+1 =

(
ZT + ρ+ ϵ− C̄T

Kβ

)+

.

Then we have

E [LK+1 − LK |ZT = z]

≤ 1

Kβ

TKβ∑
k=(T−1)Kβ+1

E
[
ZT

(
ρ+ ϵ− (1− γ)Ĉk(sk, ak)

)
− η(1− γ)Q̂k(sk, ak)

+ η(1− γ)Q̂k(sk, ak)
∣∣∣ZT = z

]
+ 2

≤(a)
1

Kβ

TKβ∑
k=(T−1)Kβ+1

E

[
ZT

(
ρ+ ϵ− (1− γ)

∑
a

{
Ĉkq

π
}
(sk, a)

)

−η(1− γ)
∑
a

{Q̂kq
π}(sk, a)

∣∣∣∣∣Zk = z

]
+ E

[
η(1− γ)Q̂k(sk, ak)

∣∣∣ZT = z
]
+ 2

≤ 1

Kβ

TKβ∑
k=(T−1)Kβ+1

E

[
ZT

(
ρ+ ϵ−

∑
s,a

{gqπ} (s, a)

)

− η(1− γ)
∑
a

{Q̂kq
π}(sk, a) + η(1− γ)Q̂k(sk, ak)

∣∣∣∣∣ZT = z

]

+
1

Kβ

TKβ∑
k=(T−1)Kβ+1

E

[
ZT

(∑
s,a

{gqπ}(s, a)−
∑
a

(1− γ) {Cπ
k q

π} (sk, a)

)∣∣∣∣∣ZT = z

]

+
1

Kβ

TKβ∑
k=(T−1)Kβ+1

E

[
ZT (1− γ)

∑
a

{Cπ
k q

π} (sk, a)
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−ZT (1− γ)
∑
a

{
Ĉkq

π
}
(sk, a) |ZT = z

]

+
1

Kβ

TKβ∑
k=(T−1)Kβ+1

E

[
η(1− γ)

∑
a

{Qπ
kq

π} (sk, a)−

η(1− γ)
∑
a

{Qπ
kq

π} (sk, a)

∣∣∣∣∣ZT = z

]
+ 2

≤(b) −
δ

2
z + (1− γ)sp(vπ) +

1

Kβ

TKβ∑
k=(T−1)Kβ+1

E

[
η(1− γ)

∑
a

{
(F π

k − F̂k)q
π
1

}
(sk, a)

+η(1− γ)Q̂k(sk, ak)
∣∣∣ZT = z

]
+ 2 (B.10)

Inequality (a) holds because of our algorithm. Inequality (b) holds because of the fact

that
∑

a {Qπ
t q

π} (st, a) is non-negative, under Slater’s condition, we can find policy π

such that

ϵ+ ρ− E

[∑
s,a

g(sk, a)q
π(sk, a)

]
≤ −δ + ϵ ≤ −δ

2
,

and according to Lemma III.4

∑
s,a

{gqπ}(s, a)−
∑
a

(1− γ) {Cπ
k q

π} (sk, a)

=Jπ − (1− γ)V π(sk)

≤(1− γ)sp(vπ). (B.11)

Note that when K is sufficiently large, (1− γ)sp(vϵ,∗) ≤ κ
H
≤ δ

6
. By applying π = ϵ, ∗

we obtain

E [LK+1 − LK |ZT = z]

≤− δ

2
z +

δ

6
+

1

Kβ

TKβ∑
k=(T−1)Kβ+1

E

[
η(1− γ)

∑
a

{
(F π

k − F̂k)q
π
1

}
(sk, a)

+ η(1− γ)Q̂k(sk, ak)
∣∣∣ZT = z

]
+ 2
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≤− δ

3
z +

3H

K2
+ η + 2, (B.12)

where the last inequality holds due to (i) the overestimation established in Lemma

III.5 and (ii) Q̂(·, ·) is bounded by 1
1−γ

. We remark that the overestimation result and

the concentration result in frame T hold regardless of the value of ZT .
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APPENDIX C

Appendix for Chapter IV

C.1 Notation Table for Chapter IV

The notations used throughout this chapter are summarized in Table C.1.

C.2 Supporting Lemmas for Chapter IV

Lemma C.1. For any (x, a, h, k) ∈ S ×A× [H]× [K], we have the following bounds

on Qk,h(x, a) and Ck,h(x, a) :

0 ≤ Qk,h(x, a) ≤ H2(
√
ι+ 2b̃) (C.1)

0 ≤ Ck,h(x, a) ≤ H2(
√
ι+ 2b̃). (C.2)

Proof. We first consider the last step of an episode, i.e., h = H. Recall that Vk,H+1(x) =

0 for any k and x by its definition and Q0,H = H ≤ H(
√
ι+2b̃). Suppose Qk′,H(x, a) ≤

H(
√
ι+ 2b̃) for any k′ ≤ k − 1 and any (x, a). Then,

Qk,H(x, a) = (1− αt)Qkt,H(x, a) + αt

(
rk,H(x, a) + bt + 2Hb̃

)
(C.3)
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Table C.1: Notation Table

Notation Definition

K total number of episodes
S number of states
A number of actions
H length of each episode
B total variation budget
W number of episodes in one epoch.
D number of episodes in one frame.
Bi arm selected by the bandit algorithm.
αt learning rate

Ri(Bi)(Gi(Bi)) reward/utility collected at the epoch i under selected estimate value Bi

Qk,h(x, a)(Ck,h(x, a)) estimated reward (utility) Q-function at step h in episode k
Qπ

k,h(x, a)(C
π
k,h(x, a)) reward (utility) Q-function at step h in episode k under policy π.

Vk,h(x)(Wk,h(x)) estimated reward (utility) value-function at step h in episode k
V π
k,h(x)(W

π
k,h(x)) reward (utility) value-function at step h in episode k under policy π

Fk,h(x, a) Fk,h(x, a) = Qk,h(x, a) +
Zk

η Ck,h(x, a).

Uk,h(x) Uk,h(x) = Vk,h(x) +
Zk

η Wk,h(x).

rk,h(x, a)(gk,h(x, a)) reward (utility) of (state, action) pair (x, a) at step h in episode k
Nk,h(x, a) number of visits to (x, a) when at step h in episode k (not including k)

Zk dual estimation (virtual queue) in episode k.
q∗k,h The optimal solution to the LP (4.15) in episode k

qϵ,∗k,h optimal solution to the tightened LP (4.21) in episode k

π∗
k optimal policy in episode k
δ Slater’s constant.
d dimension of the feature vector.
bt the UCB bonus for given t
I(·) indicator function
Pk,h transition kernel at step h in episode k

P̂k,h empirical transition kernel at step h in episode k
Br, Bg, Bp variation budget for reward, utility, and transition

B
(T )
r , B

(T )
g , B

(T )
p variation budget for reward, utility, and transition in frame T

ϕ(x, a) feature map for the linear MDP
θk,r,h, θk,g,h, µk,h underlying parameters for the linear MDP

≤ max

{
H
√
ι+ 2b̃H, 1 +

H
√
ι

4
+ 2Hb̃

}
≤ H
√
ι+ 2b̃H, (C.4)

where t = Nk,H(x, a) is the number of visits to state-action pair (x, a) when in step

H by episode k (but not include episode k) and kt is the index of the episode of

the most recent visit. Therefore, the upper bound holds for h = H. Note that

Q0,h = H ≤ H(H − h+ 1)(
√
ι+ 2b̃). Now suppose the upper bound holds for h+ 1,

181



and also holds for k′ ≤ k − 1. Consider step h in episode k :

Qk,h(x, a) =(1− αt)Qkt,h(x, a) + αt

(
rk,h(x, a) + Vkt,h+1(xkt,h+1) + bt + 2b̃H

)
,

where t = Nk,h(x, a) is the number of visits to state-action pair (x, a) when in step h

by episode k (but not include episode k) and kt is the index of the episode of the most

recent visit. We also note that Vk,h+1(x) ≤ maxa Qk,h+1(x, a) ≤ H(H − h)(
√
ι+ 2b̃).

Therefore, we obtain

Qk,h(x, a) ≤max

{
H(H − h+ 1)(

√
ι+ 2b̃), 1 +H(H − h)(

√
ι+ 2b̃) +

H
√
ι

4
+ 2b̃H

}
≤H(H − h+ 1)(

√
ι+ 2b̃).

Therefore, we can conclude that Qk,h(x, a) ≤ H2(
√
ι+2b̃) for any k, h and (x, a). The

proof for Ck,h(x, a) is identical.

Lemma C.2. Consider any frame T, any episode k′. Let t=Nk,h(x, a) be the number

of visits to (x, a) at step h before episode k in the current frame and let k1, . . . , kt < k

be the indices of these episodes. Under any policy π, with probability at least 1− 1
K3 ,

the following inequalities hold simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K],

∣∣∣∣∣
t∑

i=1

αi
t

{
(P̂ki,h − Pki,h)V

π
k,h+1

}
(x, a)

∣∣∣∣∣ ≤1

4

√
H2ι(χ+ 1)

(χ+ t)
,∣∣∣∣∣

t∑
i=1

αi
t

{
(P̂ki,h − Pki,h)W

π
k,h+1

}
(x, a)

∣∣∣∣∣ ≤1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Proof. Without loss of generality, we consider T = 1. Fix any (x, a, h) ∈ S ×A×H,

a fixed episode k, and any n ∈ [Kα/Bc], define

X(n) =
n∑

i=1

αi
τ · I{ki≤K}

{
(P̂ki,h − Pki,h)V

π
k,h+1

}
(x, a).
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Let Fi be the σ−algebra generated by all the random variables until step h in episode

ki. Then

E[X(n+1)|Fn] = X(n)+E
[
αn+1
τ I{kn+1≤K}

{
(P̂kn+1,h − Pkn+1,h)V

π
k,h+1

}
(x, a)|Fn

]
= X(n),

which shows that X(n) is a martingale. We also have for 1 ≤ m ≤ n,

|X(m)−X(m− 1)| ≤ αm
τ

∣∣∣{(P̂km,h − Pkm,h)V
π
k,h+1

}
(x, a)

∣∣∣ ≤ αm
τ H

Let ki = K + 1 if it is taken for fewer than i times, and let

σ =

√√√√8 log
(√

2SAHK
) τ∑

i=1

(αi
τH)2.

Then by applying the Azuma-Hoeffding inequality, we have with probability at least

1− 2 exp
(
− σ2

2
∑τ

i=1(α
i
τH)2

)
≥ 1− 1

2S2A2H2K4 ,

|X(τ)| ≤

√√√√8 log
(√

2SAHK
) τ∑

i=1

(αi
τH)2 ≤

√√√√ ι

16
H2

τ∑
i=1

(αi
τ )

2 ≤ 1

4

√
H2ι(χ+ 1)

χ+ τ
,

Because this inequality holds for any τ ∈ [K], it also holds for τ = t = Nk,h(x, a) ≤ K.

Applying the union bound, we obtain that with probability at least 1− 1
2SAHK3 the

following inequality holds simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K],:

∣∣∣∣∣
t∑

i=1

αi
t

{
(P̂ki,h − Pki,h)V

π
k,h+1

}
(x, a)

∣∣∣∣∣ ≤ 1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Following a similar analysis, we also have that with probability at least 1− 1
2SAHK3
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the following inequality holds simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K],:

∣∣∣∣∣
t∑

i=1

αi
t

{
(P̂ki,h − Pki,h)W

π
k,h+1

}
(x, a)

∣∣∣∣∣ ≤ 1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Therefore applying a union bound on the two events, we finish proving the lemma.

Lemma C.3. Under Definition IV.6, for any fixed policy π, let wπ
k,j,h be the corre-

sponding weights such that Qπ
k,j,h = ⟨ϕ(x, a), wπ

k,j,h⟩, for j ∈ {r, g}, then we have for

all h ∈ [H] and k ∈ [K]

||wπ
k,j,h|| ≤ 2H

√
d (C.5)

Proof. From the linearity of the action-value function, we have

Qπ
k,j,h(x, a) = jk,h(x, a) + Pk,hV

π
k,j,h(x, a)

= ⟨ϕ(x, a), θj,h⟩+
∫
S

V π
k,j,h+1(x

′)⟨ϕ(x, a), dµk,h(x
′)⟩

= ⟨ϕ(x, a), wπ
k,j,h⟩ (C.6)

where wπ
j,h = θj,h +

∫
S V

π
j,h+1(x

′)dµh(x
′).

Now, ||θj,h|| ≤
√
d, and ||

∫
S V

π
j,h+1(x

′)dµh(x
′)|| ≤ H

√
d. Thus, the result follows.

Lemma C.4. For any (k, h), the weight wk
j,h satisfies

||wk
j,h|| ≤ 2H

√
dk/λ (C.7)
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Proof. For any vector v ∈ Rd we have

|vTwk
j,h| = |vT (Λk

h)
−1

k−1∑
τ=1

ϕτ
h(x

τ
h, a

τ
h)(jh(x

τ
h, a

τ
h) +

∑
a

πh+1,k(a|xτ
h+1)Q

k
j,h+1(x

τ
h+1, a))|

(C.8)

here πh,k(·|x) is the Soft-max policy.

Note that Qk
j,h+1(x, a) ≤ H for any (x, a). Hence, from (C.8) we have

|vTwk
j,h| ≤

k−1∑
τ=1

|vT (Λk
h)

−1ϕτ
h|.2H

≤

√√√√k−1∑
τ=1

vT (Λh
k)

−1v

√√√√k−1∑
τ=1

ϕτ
h(Λ

k
h)

−1ϕτ
h.2H

≤ 2H||v||
√
dk√
λ

(C.9)

Note that ||wk
j,h|| = maxv:||v||=1 |vTwk

j,h|. Hence, the result follows.

The following result is shown in [90] and in Lemma D.2 in [58].

Lemma C.5. Let {ϕt}t≥0 be a sequence in Rd satisfying supt≥0 ||ϕt|| ≤ 1. For any

t ≥ 0, we define Λt = Λ0 +
∑t

j=0 ϕjϕ
T
j . Then if the smallest eigen value of Λ0 be at

least 1, we have

log

[
det(Λk+1

h )

det(Λ1
h)

]
≤

K∑
k=1

(ϕk
h)

T (Λk
h)

−1ϕk
h ≤ 2 log

[
det(Λk+1

h )

det(Λ1
h)

]
(C.10)

We use the following result (Lemma J.10 in [74]).

Lemma C.6. Let C̄∗ ≥ 2maxk µ
k,∗, then, if

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk
k,r,1(x1)) + 2C̄∗

K∑
k=1

(bk − V πk
k,g,1(x1)) ≤ δ (C.11)
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, then

K∑
k=1

(bk − V πk
k,g,1(x1)) ≤

2δ

C̄∗ (C.12)
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and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,”
IEEE Transactions on Intelligent Transportation Systems, 2021.

[72] A. Coronato, M. Naeem, G. De Pietro, and G. Paragliola, “Reinforcement
learning for intelligent healthcare applications: A survey,” Artificial Intelligence
in Medicine, vol. 109, p. 101964, 2020.

[73] L. Chen, R. Jain, and H. Luo, “Learning infinite-horizon average-reward markov
decision process with constraints,” in icml, pp. 3246–3270, PMLR, 2022.

[74] Y. Ding and J. Lavaei, “Provably efficient primal-dual reinforcement learn-
ing for cmdps with non-stationary objectives and constraints,” arXiv preprint
arXiv:2201.11965, 2022.

[75] P. Auer, T. Jaksch, and R. Ortner, “Near-optimal regret bounds for reinforcement
learning,” NeurIPS, vol. 21, 2008.

[76] W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Reinforcement learning for non-
stationary markov decision processes: The blessing of (more) optimism,” in icml,
pp. 1843–1854, PMLR, 2020.

193



[77] O. D. Domingues, P. Ménard, M. Pirotta, E. Kaufmann, and M. Valko, “A
kernel-based approach to non-stationary reinforcement learning in metric spaces,”
in aistats, pp. 3538–3546, PMLR, 2021.

[78] Y. Fei, Z. Yang, Z. Wang, and Q. Xie, “Dynamic regret of policy optimization in
non-stationary environments,” NeurIPS, vol. 33, pp. 6743–6754, 2020.

[79] R. Ortner, P. Gajane, and P. Auer, “Variational regret bounds for reinforcement
learning,” in Uncertainty in Artificial Intelligence, pp. 81–90, PMLR, 2020.

[80] A. Touati and P. Vincent, “Efficient learning in non-stationary linear markov
decision processes,” arXiv preprint arXiv:2010.12870, 2020.

[81] C.-Y. Wei and H. Luo, “Non-stationary reinforcement learning without prior
knowledge: An optimal black-box approach,” in colt, pp. 4300–4354, PMLR,
2021.

[82] H. Zhong, Z. Yang, and Z. W. C. Szepesvári, “Optimistic policy optimization
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