
Generalization of System Identification Objective
Functions Through Stochastic Hidden Markov Models

for Regularization, Smoothness, and Uncertainty
Quantification

by

Nicholas Galioto

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)
University of Michigan

2023

Doctoral Committee:

Assistant Professor Alex Arkady Gorodetsky, Chair
Professor Dennis S. Bernstein
Assistant Professor Xun Huan
Associate Professor Necmiye Ozay

Nicholas Galioto

ngalioto@umich.edu

ORCID iD: 0000-0001-8213-2442

© Nicholas Galioto 2023

Dedication

To those who dedicate their lives to the pursuit of knowledge...

ii

Acknowledgments

This work is the culmination of many years of diligent study and persevering effort that would

not be possible without the support of numerous people. Notably, I would like to thank my

adviser Alex Gorodetsky for his guidance, mentorship, and inspirational passion for research.

My gratitude further extends to all of the Computational Autonomy lab members that I have

had the pleasure of meeting and getting to know throughout the years. I would also like

to express my appreciation to Dr. Harsh Sharma and Professor Boris Kramer of University

of California San Diego for their collaboration in researching identification of nonseparable

Hamiltonian systems. Last, but not least, I am grateful to my family and friends for their

encouragement and support.

The funding for this research comes from the DARPA Physics of AI Program under the

grant “Physics Inspired Learning and Learning the Order and Structure of Physics,” Agree-

ment No. HR00111890030, the DARPA Artificial Intelligence Research Associate under

the grant “Artificial Intelligence Guided Multi-scale Multi-physics Framework for Discover-

ing Complex Emergent Materials Phenomena,” Agreement No. HR00111990028, and the

AFOSR Computational Mathematics Program (P.M. Fariba Fahroo).

iii

Table of Contents

Dedication . ii

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

List of Appendices . xiii

List of Abbreviations . xiv

Abstract . xvi

Chapter

I Introduction . 1
1.1 Design considerations in system identification 3

1.1.1 Model class . 3
1.1.2 Objective function . 5

1.2 Shortcomings of existing objectives . 6
1.2.1 Fundamental objectives . 7
1.2.2 Quantitative assessment . 8
1.2.3 Qualitative assessment . 10
1.2.4 Discussion on state-of-the-art . 11

1.3 Contributions . 12
1.4 Outline . 14

II Probabilistic Problem Formulation . 17
2.1 Notation . 18
2.2 Probabilistic perspective . 18
2.3 Algorithm . 19

2.3.1 Special noise forms . 21
2.3.1.1 Additive Gaussian noise . 22
2.3.1.2 General additive/multiplicative noise 23

2.3.2 Computational complexity . 24
2.3.3 Uncertainty quantification . 27

iv

2.3.3.1 Sampling strategy . 29
2.3.3.2 Prediction strategies . 30

2.4 Comparison to fundamental objective functions 32
2.4.1 Simulation least squares . 32
2.4.2 Propagator least squares . 33

2.5 Summary . 34

IIILinear Time-Invariant System Identification 35
3.1 Marginal likelihood evaluation of LTI systems 35

3.1.1 State-space approach . 36
3.1.2 Input-output Markov parameter approach 36

3.2 Theoretical foundations and analysis . 38
3.2.1 Dynamic mode decomposition . 38
3.2.2 Markov parameter estimation . 40

3.2.2.1 Numerical comparison . 43
3.3 Numerical experiments . 44

3.3.1 Linear pendulum, linear model 45
3.3.2 Nonlinear pendulum, linear model 48

3.3.2.1 Discussion on diagnostics 50
3.3.3 Linear pendulum with control . 52

3.4 Summary . 56

IV Nonlinear System Identification . 57
4.1 Theoretical foundations and analysis . 57

4.1.1 Regularized regression for nonlinear models 58
4.1.2 Multiple shooting objective . 59

4.1.2.1 Relation to probabilistic approach 60
4.1.2.2 Comparison of smoothing effects 61

4.2 Numerical experiments . 62
4.2.1 Vector field estimation . 62

4.2.1.1 Van der Pol oscillator . 63
4.2.1.2 Lorenz 63 . 64
4.2.1.3 Reaction diffusion . 68

4.2.2 Discrete-time neural network mappings 71
4.2.2.1 Wiener-Hammerstein benchmark 71
4.2.2.2 Forced Duffing oscillator . 72
4.2.2.3 Allen-Cahn equation with forcing 74

4.3 Summary . 77

V Hamiltonian System Identification . 78
5.1 Hamiltonian mechanics . 79
5.2 Explicit symplectic integrators . 79

5.2.1 Leapfrog integration . 79
5.2.2 Tao’s explicit symplectic integrator 80

5.3 Probabilistic learning of Hamiltonian systems 82

v

5.3.1 Parameterizing the Hamiltonian 82
5.3.1.1 Polynomial approximations 83
5.3.1.2 Nonseparable symplectic neural networks 84

5.3.2 Embedding learning with explicit symplectic integrators 85
5.3.3 Discussion and analysis . 86

5.4 Numerical experiments . 86
5.4.1 Hénon-Heiles system . 87
5.4.2 Cherry problem . 90

5.4.2.1 Training with a single initial condition 92
5.4.2.2 Training with multiple initial conditions 93

5.4.3 Tao’s example . 95
5.4.4 Double pendulum . 100

5.5 Summary . 102

VI Conclusions and Future Work . 105

Appendices

A Pseudocode . 108

B Eigensystem Realization Algorithm . 110

C Proof of Proposition 3 . 112

Bibliography . 114

vi

List of Tables

2.1 Tally of matrix and vector operations of Algorithms 4 and 5. VEW and
MEW are element-wise vector and matrix operations, respectively, such as
addition, subtraction, and element-wise multiplication and division. MV is
a matrix-vector or vector-vector multiplication, and MM is matrix-matrix
multiplication. Inv is a matrix inversion, Det a determinant, and Chol a
Cholesky decomposition. 26

2.2 Flop count of Algorithms 4 and 5 . 26
2.3 The computational complexity added by including multiplicative noise. . . . 27

4.1 RMSE values of the posterior predictive mean (Bayes) and deterministic LS
estimate (LS) on the training data and on the noiseless QoI values during the
training/testing periods. 77

vii

List of Figures

1.1 System ID flow chart. 3
1.2 Illustration of how the simulation (1.2) and propagator (1.3) objectives behave

on qualitatively different models. 10
1.3 Comparison of three optimization objectives for the identification of a linear

pendulum. The rows correspond to the objective functions obtained after 20,
40, and 80 data points are taken at 0.1 second intervals from top to bottom.
White crosses indicate true parameters. Neglecting process noise in the left
column results in many local minima. Neglecting measurement noise in the
middle column results in an objective insensitive to the number of data. The
Bayesian approach in the right column results in the ideal scenario where the
objective becomes steeper in the direction of the minimum as the amount of
data increases. 15

1.4 Flow chart showing how different assumptions on the negative log posterior
can lead to popular system ID objectives. For brevity, this chart shows only
the most notable assumptions and omits the remainder. 16

2.1 Bayesian network representation of the system ID problem. 19
2.2 2D marginal distributions and chains from MCMC sampling System (3.21).

Figs. 2.2a and 2.2b show samples drawn using DRAM, and Figs. 2.2c and 2.2d
show samples drawn using a DRAM within Gibbs procedure. 30

3.1 A comparison of the spectral norm of the Markov parameters estimation error
for n̄ = 18 using the LS, GLS, and MAP estimates at varying noise levels. The
lines represent mean error values and the shaded regions represent plus-minus
one standard deviation. 44

3.2 log10 ratio of the MSE obtained by the proposed Bayesian approach to that
obtained by (T)DMD for the linear pendulum model. In all cases, this value
is less than zero signifying that our proposed approach outperforms (T)DMD
in all cases considered. Also observe in the high noise regime, TDMD can
begin to lose stability. 46

viii

3.3 Comparison of reconstruction error amongst the Bayesian and (T)DMD algo-
rithms for the linear pendulum truth model. Top row corresponds to a low-
noise/sparse-data case and the bottom row corresponds to a high-noise/dense-
data case. Left column corresponds to the first state (angular position) and
right column corresponds to the second state (angular velocity). For low-
noise, the algorithms perform similarly; however, the (T)DMD approaches
underestimate the amplitude. For the high-noise case, DMD fails and TDMD
misfits the amplitude. The Bayesian approach is able to recognize greater
uncertainty for the high-noise case. 47

3.4 Comparison of prediction error amongst the Bayesian and (T)DMD algo-
rithms for the linear pendulum truth model. Left panel corresponds to a low-
noise/sparse-data case and the right panel corresponds to a high-noise/dense-
data case. Both panels show the angular velocity of the pendulum. For
low-noise, the algorithms perform similarly. For the high-noise case, DMD
fails and TDMD can be seen to be out of phase and have a smaller ampli-
tude. The Bayesian approach is able to recognize greater uncertainty for the
high-noise case. 48

3.5 Eigenvalue distributions for the estimators of the linear pendulum. The mean
value here represents the mean of the eigenvalues. All three algorithms come
very close to learning the true eigenvalues in the low noise case, but Bayes is
able to outperform the other two in both the high and low noise cases. DMD
achieves significant error when the data are noisy. 49

3.6 Marginal and joint posterior distributions of the process and measurement
noise variance parameters during the recovery of the linear pendulum. In
the left panel, 8 measurements are not enough for the Bayesian estimator
to unambiguously determine the measurement noise, but its best guess (the
mode) aligns with the truth. On the right, we see that 40 measurements
are enough to define a distinct mode within the joint distribution, which also
aligns with the truth. 50

3.7 Contours of the ratios from the nonlinear pendulum experiments. The ex-
periment is the same as in Fig. 3.2. A detailed explanation for the low noise
regime where it appears (T)DMD outperforms Bayes is given in Section 3.3.2.1. 51

3.8 Reconstruction performance for low-noise (top row) and high-noise (bottom
row) datasets for the nonlinear pendulum using a linear model. All three es-
timates capture the truth closely in the low noise case, but only the Bayesian
algorithm performs well (it is in phase and approximately the correct ampli-
tude) for the high noise case. 51

3.9 Comparison shown here is the same as in Fig. 3.4, but this time for a nonlinear
pendulum truth model. In the low noise case, the estimates are all visually
aligned with the truth. In the high noise case, DMD fails and TDMD falls
out of phase, but the Bayesian algorithm remains robust and produces an
accurate estimate. 52

ix

3.10 Marginal and joint posterior distributions of the process and measurement
noise variance parameters during the recovery of the nonlinear pendulum. In
the left panel, the joint distribution is bimodal, offering two possible models
with the true case being strongly preferred. In the right panel, all of the
distributions are unimodal and in alignment with the truth. 53

3.11 Posterior samples from the dataset with n = 26, σ = 0.1 that produced
the worst mean estimate out of the 500 with respect to MSE. This figure
illustrates that the mean deviates from the truth at the extrema of the curve
where samples are skewed toward larger magnitudes. Using a decision rule
that selects the mode here would give a much better estimate. 54

3.12 Contour plots of the log10(MSE) of the LS+ERA and MAP estimates on
System 3.20. Fig. 3.12a and 3.12c are the training MSE and Figs. 3.12b and
3.12d are the testing MSE. 55

3.13 The Bayesian estimate is compared to the LS+ERA with n̄ = 18. The top
row shows the LS+ERA estimate, deterministic simulations of 100 posterior
samples, and the mean of the sample outputs. The bottom row shows the
impulse response of each of these estimates. The left column shows the high
noise, low sparsity case. The right column is the low noise, high sparsity case. 56

4.1 Comparison of the log marginal likelihood and MS objective as Σ and T ,
respectively, vary. 63

4.2 Comparison of reconstruction error amongst the Bayesian and SINDy algo-
rithms for the Van der Pol system. Top row corresponds to a low-noise/dense-
data case, and the bottom row corresponds to a high-noise/sparse-data case.
Left column corresponds to the first state (position), and right column cor-
responds to the second state (velocity). The Bayesian estimator is able to
accurately reconstruct the dynamics, even in the presence of high noise. . . . 65

4.3 Comparison of prediction error amongst the Bayesian and SINDy algorithms
for the Van der Pol system. The meaning of the figures is the same as described
in Fig. 4.2. The model learned by the Bayesian estimator is still accurate at
a different initial condition. 65

4.4 Phase-diagram reconstruction for the Van der Pol oscillator under the two
indicated data conditions. In the low-noise and frequent data domain, both
the Bayesian and SINDy estimates lie directly on the truth. In the high
noise-case, the Bayesian posterior is wider, but is still visually aligned with
the truth. The SINDy estimate is unable to recover the limit cycle, and the
large “x” marks the equilibrium point to which SINDy converges, as shown
in Fig. 4.3. 66

4.5 Lorenz 63 prediction posteriors. Although the trajectories become misaligned
rather quickly due to the chaotic nature of the system, the posterior phase
diagram 4.6 reveals that the algorithm has discovered that the dynamics exist
on a low-dimensional attractor. 67

x

4.6 Reconstruction and prediction of the Lorenz 63 attractor. The right panel
compares the predicted and true trajectories up to 200s using the mode of the
parameter posterior distribution. The proposed approach is able to success-
fully discover the Lorenz attractor from sparse, noisy data. 67

4.7 Posterior of the Lorenz 63 dynamics parameters. The distributions are rela-
tively wide due to the high amount of noise in the data but still encompass
the truth values, indicated by the dashed red line. 68

4.8 Posterior of the Lyapunov exponent estimation of the Lorenz 63 system. The
distribution of λ3 is wider than the other two because the behavior of the
system is dominated by the first two exponents, making the third difficult to
estimate with high certainty. 69

4.9 Reconstruction and prediction of the observables of the reaction diffusion
system. The top row shows the reconstruction, and the bottom row shows
the prediction for an alternate initial condition. The left column is the first
measurement state (first moment), and the right column is the second mea-
surement state (second moment). The estimates are very close to the truth,
demonstrating the generality of the learned model. 70

4.10 The experiment is the same as in Fig. 4.9. The top row shows the true contours
of C1 and C2. The bottom row shows the contours of C1 and C2 reconstructed
using the mode of the parameter posterior distribution. Visually, the two rows
appear very similar, reflecting the strong performance of the Bayesian algorithm. 70

4.11 The top row shows the trajectory estimates of the MS and Bayesian methods
over the duration of the training data in Fig. 4.11a and over the last 1,000
testing data in Fig. 4.11b. The bottom row shows the error between the unal-
tered data and the estimates in the time, Fig. 4.11c, and frequency, Fig. 4.11d,
domains. 73

4.12 Figs. 4.12a and 4.12b compare the posterior predictive distribution and MAP
to the truth, where the posterior samples and MAP are generated using
stochastic and deterministic simulation respectively, and Fig. 4.12c shows de-
terministic simulations of the MS and LS estimates. Figs. 4.12d, 4.12e, and
4.12f show the phase space of the MAP, MS, and truth, respectively, over 600s. 75

4.13 The estimates of the Allen-Cahn QoI over the 10s training period and the
subsequent 10s testing period. 76

5.1 Phase diagrams of the Hénon-Heiles system. The top row shows the models
learned by the approaches equipped with the leapfrog and Runge-Kutta in-
tegrators. All trajectories were integrated with the leapfrog method with the
fine timestep for 200s, except for the bottom right, which was only integrated
for the 100s period of data collection. 89

xi

5.2 The learned Hénon-Heiles Hamiltonians. The lighter blue and red lines are
samples from the posteriors from the symplectic and non-symplectic learning
approaches. The dark lines represent the MAP of the respective parameter
posterior, and the subcaptions denote the integrator used to integrate each
solution post-learning, e.g. the two dark red lines are the same model inte-
grated with different methods. The vertical magenta line indicates the end of
the data collection period. 90

5.3 Hénon-Heiles reconstructed trajectories using the MAP point and samples
from the posterior. The top row shows the results from the symplectic ap-
proach and the bottom row shows results from the non-symplectic approach,
each integrated with leapfrog. The vertical magenta line indicates the end of
the data collection period. 91

5.4 Marginal posteriors of the process noise. Due to the symplectic nature of the
leapfrog integrator, the process noise is reduced by an order of magnitude. . 91

5.5 The learned Hamiltonians. The lighter blue and red lines in (a) and (b) are
the samples from the posteriors from the symplectic and non-symplectic learn-
ing approaches. Both approaches estimate the true Hamiltonian accurately
with an absolute energy error of less than 10−3. However, the non-symplectic
approach has much greater uncertainty. 93

5.6 Reconstruction error comparison for the training with single IC case. The
MAP estimate for the symplectic approach captures the nonseparable Hamil-
tonian dynamics accurately at t = 16 which is 100% outside the training data
whereas the MAP estimate for the non-symplectic approach yields inaccu-
rate predictions outside the training data. The posterior for both approaches
grows as the system evolves further in time. The purple line indicates the end
of the data collection period. 94

5.7 Left: The training data from 3 different ICs are shown alongside the point
estimates from the LS [107] and Bayesian methods. The Bayesian method is
more robust to the noisiness/sparsity of the data. Right: The posterior pre-
dictive distribution and its mean are compared to the LS point on a trajectory
outside the training set. The Bayesian method gives a good prediction over
t = 20, while the LS estimate deteriorates rapidly after about t = 5. 96

5.8 log10 MSE of models trained using − log π(θ|Yn) and the L1 norm as objective
functions. 98

5.9 Estimated trajectories from the median MSE models. 98
5.10 Estimated trajectories from the min. MSE models. 99
5.11 log10 Hamiltonian MSE of the minimum MSE models learned by the− log π(θ|Yn)

and L1 norm objectives. 100
5.12 Comparison of the MAP and L1 estimates on the double pendulum. 101
5.13 Realizations of the MAP dynamics with the nominal MAP estimate, truth,

and data overlaid. 102
5.14 Absolute Hamiltonian error in phase and time domains. 104

xii

List of Appendices

A Pseudocode . 108
B Eigensystem Realization Algorithm . 110
C Proof of Proposition 3 . 112

xiii

List of Abbreviations

DMD dynamic mode decomposition

DRAM delayed rejection adaptive Metropolis

ERA eigensystem realization algorithm

GLS generalized least squares

HMM hidden Markov model

IC initial condition

ID identification

KF Kalman filter

LS least squares

LTI linear time-invariant

MAP maximum a posteriori

MCMC Markov chain Monte Carlo

MMSE minimum mean squared error

MS multiple shooting

MSE mean squared error

NEM negative energy mode

NSSNN nonseparable symplectic neural network

ODE ordinary differential equation

PCA principal component analysis

xiv

PDE partial differential equation

pdf probability density function

QoI quantity of interest

RMSE root mean squared error

SINDy sparse identification of nonlinear dynamics

TDMD total dynamic mode decomposition

TV total variation

UKF unscented Kalman filter

xv

Abstract

With the growing availability of computational resources, the interest in learning models of

dynamical systems has grown exponentially over the years across many diverse disciplines. As

a result of this growth, objective functions for model estimation have been rapidly developed

independently across fields such as fluids, control, and machine learning. Theoretical justifi-

cations for these objectives, however, have lagged behind. In this dissertation, we provide a

unifying theoretical framework for some of the most popular of these objectives, specifically

dynamic mode decomposition (DMD), single rollout Markov parameter estimation, sparse

identification of nonlinear dynamics (SINDy), and multiple shooting.

In this framework, we model a general dynamical system using a hidden Markov model

and derive a marginal likelihood that can be used for estimation. The key difference between

this and most existing likelihood estimators is that rather than simply modeling the esti-

mation error in the output of the system, we additionally model the error in the dynamics

through the inclusion of a process noise term. Not only does this process noise term pro-

vide the flexibility needed to generalize many existing objectives, but it also provides three

significant advantages in the marginal likelihood. The first is that it generates an explicit reg-

ularization term that arises directly from the model formulation without the need for adding

heuristic priors onto the parameters. Furthermore, this regularization term is over the out-

put, rather than the parameters, of the model and is therefore applicable to any arbitrary

parameterization of the dynamics. Secondly, the process noise term provides smoothing of

the marginal likelihood optimization surface without having to discount the information in

the data through tempering methods or abbreviated simulation lengths. Lastly, estimation

of the process noise term can give a quantification of the uncertainty of the estimated model

without necessarily requiring expensive Markov chain Monte Carlo (MCMC) sampling.

To evaluate this proposed marginal likelihood, we present an efficient recursive algorithm

for linear-Gaussian models and an approximation to this algorithm for all remaining models.

We discuss how simplifications to the approximate algorithm can be made when the noise is

additive Gaussian and derive simplifications for when it is arbitrary additive/multiplicative

xvi

noise. Next, we provide theoretical results proving that the considered objectives are spe-

cial cases of a posterior that uses the proposed marginal likelihood. These results uncover

the sets of assumptions needed to transform the negative log posterior into each of the ob-

jective functions that we consider. We then present numerical experiments that compare

the (approximate) marginal likelihood to each of the considered objectives on a variety of

systems. These experiments include linear, chaotic, partial differential equation, limit cy-

cle, and Hamiltonian systems. Additionally, we include a novel comparison of Hamiltonian

estimation using symplectic and non-symplectic dynamics propagators. This comparison

uses uncertainty quantification both in the form of MCMC sampling and process noise co-

variance estimation to show that embedding the symplectic propagator into the objective

delivers more precise estimates than embedding the objective with the non-symplectic prop-

agator. Overall, the results of this dissertation demonstrate that the marginal likelihood

is able to produce more accurate estimates on problems with high amounts of uncertainty

in the forms of measurement noise, measurement sparsity, and model expressiveness than

comparable objective functions.

xvii

CHAPTER I

Introduction

The study of dynamical systems is as old a pursuit as human civilization itself, beginning

with attempts at predicting seasonal change by studying celestial bodies. In fact, lunar

cycles were being noted on bones and caves as early as 25,000 years ago [63]. In ancient

civilization, there were two competing approaches for explaining motion and change: (1) a

geometric perspective that asserted that the cosmos moved in accordance with principles of

mathematical order and (2) a mechanical perspective that sought to explain the underlying

causes that lead to motion [103]. During this time, astronomy was a central area of study

due to beliefs that astronomical events directly impacted human affairs and terrestial events.

The geometric perspective was forefront in astronomy in ancient and medieval times, using

proportions and circles to create some of the first mathematical models describing natural

phenomena. In the 17th century, however, there was a critical paradigm shift in modeling

the solar system caused by the publication of Newton’s Principia, in which the discovery

of the universal law of gravitation was presented. This law was the first mathematical

decription of an underlying cause of motion and unified the phenomenon of gravity that had

been observed on Earth with the observations of celestial bodies. Also in Principia, Newton

published his laws of motion, creating the basis for classical mechanics as we know it today.

The discovery of these laws of motion and gravitation allowed for mathematical models of

mechanical systems to be derived directly from physical quantities such as force and mass.

As the field of mechanics progressed over the following centuries, additional physical laws

were discovered, such as the principle of least action, that created increasingly powerful

modeling techniques.

As models of dynamical systems became more advanced and widespread, new uses for

these models began to arise beyond only prediction. Control theory is one such example.

The field is considered to have begun in 1868 with the publication of James Clark Maxwell’s

manuscript On Governors, which provided modeling and analysis of a centrifugal governor

based on mechanics principles. Broadly speaking, control theory requires mathematical mod-

1

els of dynamical systems in order to design control laws that evoke a desired behavior from

the system of interest. Another example is the qualitative theory of differential equations,

which was born out of a series of memoirs published by Poincaré in 1881-1882 titled “On

curves defined by differential equations.” These writings showed that many of the important

dynamical properties of a system could be derived from its equations of motion without

needing a closed-form solution. Poincaré’s work on dynamical systems served as the basis

for study of many interesting dynamical behaviors such as chaos and bifurcations. Thus,

having a model of a dynamical system at hand can allow for meaningful analysis and control

of the system behavior.

Creating a model for a dynamical system of interest, however, is not always straight-

forward. Although the known laws of physics are able to provide simple, reliable, and

interpretable equations of motion, their application requires significant knowledge on the

system, such as the generalized coordinates, the full system state, or the external forces.

Moreover, many systems whose dynamics are of interest are non-physical systems such as

financial markets or traffic patterns that are not governed by known scientific laws. In these

cases where physical laws cannot be applied, models must be estimated, either purely or

partially, with data collected from the system. This process of estimating the dynamics of

a system of interest using measurements is known as system identification (ID), and it has

been used in a range of applications such as forecasting the weather and climate [18, 88],

predicting traffic flow [61], and enabling adaptive control [57, 20].

The process of system ID begins with collecting a set of data D ⊂ Y from the system

of interest, where Y is the set containing all possible measurements. If the user has control

over the experiment that generates these data, then the experimental design is sometimes

considered to be part of the system ID procedure. For this dissertation, we will assume that

the data have already been collected and given to us. The next step is to define a model class

M of candidate models. To identify the best model within M, an ordering of the models

based on their quality must be induced by some objective or figure of merit. Letting R be

the real line, an objective function J : Y ×M 7→ R assigns a value to each candidate model

given a collection of data. For a given (D,M,J) triple, the set of optimal modelsM∗ ⊆M
are those that yield the lowest objective value, i.e.,M∗ = arg minM J (D,M). Once a model

belonging toM∗ is found, it can be used in various applications such as prediction, filtering,

and control. This description of the system ID process is summarized in the flow chart in

Fig. 1.1.

2

Data D ⊂ Y

Model Class M

Objective
J : Y×M 7→ R

Estimate
M∗ ∈ M∗ Application

Optimization

Figure 1.1: System ID flow chart.

1.1 Design considerations in system identification

Broadly speaking, the goal of system ID is to find a mathematical model that can produce

an estimate ŷ ∈ Ŷ for any y ∈ Y such that the expectation Eπ(y)[`(y, ŷ)] is minimized,

where Ŷ is the range of the model, π(y) is the probability density function (pdf) of y, and

` : Y ×Ŷ 7→ R is a measure of model error. In the previous discussion, we described how the

optimal model setM∗ depends on the specification of the (D,M,J) triple. Consequently,M
and J must be properly designed such thatM∗ minimizes the expected model error as much

as possible with the data D provided. In this section, we discuss important considerations

that go into this design and identify the merits and drawbacks of some of the most common

choices.

Before we begin, we must point out that the main challenge in minimizing the expected

model error is that in all practical applications, the available training data are only a small

subset of Y . Therefore, the values of ` over the training data are not necessarily representative

of the values of ` over unseen data. Consequently, one must be concerned not only with the

training model fit, but also with the model generalizability. A model is said to “generalize”

if the distribution of ` values over the training data is similar to that over unseen data. If

the user is unduly concerned with only one of these aspects, it is typically the case that

the other will suffer. Thus, system ID is often a tradeoff between the model’s fit and its

generalizability. This tradeoff is also known as the bias-variance tradeoff since good model fit

and generalizability tend to yield low bias and variance, respectively. Managing this tradeoff

is a key aspect of proper design of the model class and objective function.

1.1.1 Model class

The first design point within system ID that we discuss is the model class selection. At the

heart of this design is the decision on how “complex” the candidate models should be. There

are different ways of quantifying the complexity of a model, but the idea is that complexity

refers to the diversity of output behavior from a given model or set of models. Often,

one would like a model class that is broad enough to include the dynamics of the system

3

of interest, but there are a number of reasons why making the model class as complex as

possible may be undesirable. The first ties back to the bias-variance tradeoff. The more

flexible a model is, the more likely it is to overfit and display unexpected behavior once it

leaves the domain of the training data. Another consideration is the available computational

resources to run the model. This becomes a concern if the model needs to be evaluated in

time-constrained environments such as real-time control or if the system of interest is high-

dimensional such as spatio-temporal systems. In the former case, the model class should

contain only cheap to evaluate models, which are usually less expressive, and in the latter

case, the model class is typically constrained to contain only reduced-order models. The

last consideration is that models in the model class should not violate known information

about the system. For example, if the system is known to behave as a mass-spring-damper

system, then the model form can be fixed and only physical quantities such as stiffness

need be estimated. Grey-box models such as this have the added benefit of being more

interpretable and easier to analyze. Another example is if the system demonstrates certain

physical phenomena such as stability or energy conservation, then models that do not share

these characteristics would ideally be excluded from the model class.

A natural starting point when selecting a model class is the set of linear systems. This

group of models comes with the benefit of decades, if not centuries, worth of theoretical

research that make them interpretable and easy to work with. For example, it is straight-

forward to switch between continuous and discrete time, and the stability properties of the

system can be found directly from the eigenvalues of the dynamics matrix. This inter-

pretability also allows for restricting the model space to only stable models by projecting

arbitrary matrices into the stable set using decomposition methods [62]. Additionally, linear

models are cheap to evaluate and sometimes even to estimate. Evaluation requires only a

matrix-vector multiplication, and for certain objectives, estimation only requires solving a

linear least squares problem. A possible drawback to using linear models, however, is that

their dynamic behavior is significantly limited. Chaos, limit cycles, and finite escape times

are all examples of dynamic behavior that cannot be produced by linear systems. Com-

mon examples of linear systems used in system ID include autoregressive models, such as

ARX [39] and ARMAX [5], and linear state-space models [94].

If more model flexibility is desired than that which is afforded by linear models, the next

step up in complexity is a basis expansion. Basis expansions take the form
∑p

i=1 αiψi, where

αi ∈ R are unknown scalar coefficients and ψi are nonlinear basis functions. The left-hand

side and the inputs to ψi are omitted as they are problem-dependent. These models have

the option of tuning the model complexity by increasing or decreasing the number of basis

functions p. They also allow for nonlinear behavior while remaining linear with respect to

4

the unknown coefficients, which simplifies optimization for certain objective functions. The

choice of basis function is left to the user, but common choices are polynomials [67] and

radial basis functions [104].

Basis expansions unfortunately have the disadvantage of being increasingly sensitive to

different inputs outside the training set as p increases. Therefore, they are not well-suited

for complex system behavior when the training data do not adequately cover the operating

regime. Instead, the usual choice for modeling complicated dynamics is a neural network [79,

109]. Neural networks can also have varying levels of complexity by altering the number of

hidden layers and the number of nodes in each layer. Although they are the most expensive

models to train and run out of the ones we have discussed, they can still be used in certain

real-time applications [110, 45]. The dynamical properties, however, are difficult to interpret

from the network parameters.

1.1.2 Objective function

The second design point that we consider is how to design an objective function that can

properly discern “good” models within the chosen model class. Again, the main considera-

tion is balancing the fit and generalizability of the model. To address the fitting concerns,

every objective function includes at least one term that penalizes some notion of model error.

Most often, this term is chosen to be the average model error over the training data, i.e.,
1
n

∑n
i=1 `(y

(i), ŷ(i)), where i indexes the training data. The justification for this choice comes

from the law of large numbers, which states that under certain conditions, the average value

of a population of samples from a random variable will converge to the random variable’s

expected value as the number of samples approaches infinity. Therefore, the objective func-

tion can be seen as an approximation of the expected value Eπ(y)[`(y, ŷ)] that the user seeks

to minimize. However, in many problems, the assumptions of the law of large numbers are

not met. One such assumption is that the samples should be independent and identically

distributed. Since the state of a dynamical system depends on previous states, data collected

from a single, uninterrupted experiment will not be independent. Secondly, the result of the

law of large numbers only applies to the asymptotic behavior of the sample mean and makes

no statement on how close the sample mean is to the expected value for finite samples.

Therefore, the sample mean could be quite far from the expected value. If the variance of

` is bounded, then a probabilistic bound could be set on the deviation of the sample mean

from the expected value using Chebyshev’s inequality, but the number of samples would still

need to be relatively large to achieve a meaningful bound. Thus, for small training sets, this

objective function could be a very poor approximation of the expected model error.

5

Although fit is usually the primary concern, the generalizability of a model is often just

as important. In fact, recent trends in the literature have moved toward more flexible model

classes such as neural networks, and, as a result, generalization has increasingly become

a concern for system ID. Addressing generalizability in the objective function involves in-

corporating a preference for “simpler” or less complex models through a process known

as regularization. Regularization can either be explicit by adding a penalty or constraint

directly into the objective function, or it can be implicit by any other means that avoids

overfitting. In system ID, a common form of explicit regularization includes adding a norm

on the parameter vector to penalize large or high-order parameter values. Examples include

the L0 norm as in sparse regression [36], the L1 norm as in lasso regression [55], the L2

norm as in ridge regression [15], and the Hankel nuclear norm for Markov parameter esti-

mation [76]. Another form of explicit regularization is adding a physics-informed term as

in physics-informed neural networks [81]. Examples of implicit regularization are ubiquitous

in training neural networks and include stochastic optimization methods such as stochastic

gradient descent [95], early stopping [72], and dropout [97]. Though these methods have

shown to improve estimation on a variety of problems, they are largely ad hoc and lack

rigorous theoretical justification.

In addition to these concerns relating to the bias-variance tradeoff and the lack of the-

oretical justification supporting many of the proposed solutions, there is also the practical

consideration pertaining to the ease of optimization of the objective. Specifically, the ob-

jective surface should not trap optimizers in local minima, and the optimization should be

computationally tractable. The most reliable way to ensure the objective can be optimized is

by formulating the optimization as a linear least squares problem. In this case, a closed-form

solution exists and can be computed simply by solving a linear system of equations. This

approach is applicable whenever the parameters enter linearly into the objective and can

therefore sometimes be used in nonlinear system ID as in sparse identification of nonlinear

dynamics (SINDy). Also, L2 regularization can be added to this approach while still preserv-

ing the existence of a closed-form solution. This formulation, however, is quite restrictive,

and objective functions other than linear least squares are often needed.

1.2 Shortcomings of existing objectives

Now that we have discussed the high-level considerations of properly designing an objective

function, we turn to a more detailed discussion of the specific challenges that are most

commonly encountered in practice. Often, objective functions are designed with the optimal

model in mind, but for practical purposes, the behavior of the objective on non-optimal

6

models is just as important. The reason for this is that the objective function value of each

model in M determines the topology of the objective surface over which we must optimize.

In order for this surface to be amenable to efficient optimization, we would intuitively like for

the objective to (1) assign a “proper” ordering of the models inM, and (2) better distinguish

between models as more data are added.

What constitutes as a “proper” ordering of the models will differ among users. From

our perspective, we argue that models that deliver accurate short-term predictions but later

become significantly inaccurate are preferable to models that consistently deliver mildly

inaccurate predictions over any time period. This perspective originates from the fact that

in many control and forecasting contexts, the estimated state can be adjusted as more

measurements are acquired. Therefore, predictions at future times can also be adjusted as

they draw closer in time. Moreover, virtually every model contains some amount of error,

and the longer a model is simulated, the more time that error has to accumulate. As a

result, the predictions of these models almost always degrade the farther they are into the

future. The accuracy of these long-term predictions should not be given equal weight in

evaluating a model’s performance as predictions in the short-term. If models are ordered

properly, then the optimizer will be making meaningful progress as it moves toward lower

objective function values.

Secondly, measurements carry information on the system from which they are collected,

and we would like an objective function that use this information as efficiently as possible.

To tell if an objective function is effectively extracting information from new data, one

must look at how its assignment of objective values changes with added data. A good

objective should not only update its assignments with new data, but it should do so in a way

that increasingly exaggerates the difference between good and bad models. If the relative

difference between the objective values of good and bad models remains nearly constant, or

in the worst case becomes smaller, with additional data, then the objective is not properly

utilizing the data. Furthermore, how well an objective performs in this regard can have

optimization implications. If the difference between good and bad models shrinks with more

data, then an optimizer will have greater difficulty finding its way toward good models.

1.2.1 Fundamental objectives

Next, let us introduce two fundamental objectives so that we may assess their quality in

regard to these considerations. By far, the most common objective function in system ID is

the MSE objective defined as

J =
1

n

n∑
i=1

(yi − ŷi)
2, (1.1)

7

where the data yi ∈ D come from a single trajectory, and i indexes time within this trajectory.

This objective is ubiquitous throughout estimation communities, and many variations of it

simply change how the estimate ŷ is evaluated. In system ID, ŷ tends to be evaluated in

one of two ways. For expositional purposes, let us define a propagator Ψ : Y 7→ Y that

takes an element in Y and maps it forward one step in time to another element in Y . One

approach takes an initial condition y0 ∈ D and repeatedly applies Ψ to estimate each yi.

The objective for this approach is defined as

J =
1

n

n∑
i=1

(yi −Ψi(y0))2, (1.2)

where Ψi denotes i compositions of Ψ. This objective is used to train a number of machine

learning models [16, 59, 80]. The error term in this objective is sometimes referred to as the

simulation error, so we refer to this objective throughout the dissertation as the simulation

objective.

The other common approach is to use the last measurement as the input to Ψ and only

predict one step into the future. This objective is defined as

J =
1

n

n∑
i=1

(yi −Ψ(yi−1))2, (1.3)

and it is used within popular system ID algorithms [101, 10] and for training certain neural

networks [35]. The error in models like this that use past data in their estimates is sometimes

referred to as prediction error. Since this objective only uses the most recent data point, we

refer to it throughout the dissertation with the more specific term propagator objective.

1.2.2 Quantitative assessment

To investigate the behavior of these two fundamental objectives, consider a simple setting

where the underlying system is the sinusoid sin(t), for t ∈ [0,∞). Suppose our model is

sin(ωt), and our goal is to estimate ω. We have collected a set of noiseless data at times ti

for i = 1, 2, . . . , n separated by intervals ∆t = 0.1. To assess the quality of a proposed value

of ω, we define the following versions of the simulation and propagator objectives (in the

8

time-domain1):

Jsim(ω) =
1

n

n∑
i=1

(
sin(ti)− sin(ωti)

)2

, (1.4)

and

Jprop(ω) =
1

n

n∑
i=1

(
sin(ti)− sin(ti−1 + ω∆t)

)2

, (1.5)

respectively.

For the sake of illustration, let us consider two candidate values: ω = 0.95 and ω = 0.50.

With the knowledge that the true value is ω = 1.0, we understand that ω = 0.95 should

clearly be the better model. The outputs of the two models are plotted in Fig. 1.2a, and the

value of the two objectives are plotted over time in Fig. 1.2b. First, let us consider the short-

term behavior of the two models. The ω = 0.95 model begins very close to the truth, while

the ω = 0.50 model immediately begins to deviate. In our previous discussion, we argued

that models with good short-term predictions should be preferred, and the performance of

these two models clearly support that argument. Looking at the simulation MSE, we see

that although the objective function for ω = 0.5 quickly becomes much larger than that of

ω = 0.95, by the end of time span of the data, the objective value for ω = 0.95 has actually

surpassed that of ω = 0.5! Because the simulation objective weighs all errors equally in

time, it ends up assigning a better objective value to a much worse model. In contrast, the

propagator objective only considers short-term, specifically one-step, prediction. Therefore,

it can properly distinguish between the models regardless of how much time has passed.

Next, let us consider the behavior of the objectives as the number of data increases.

Recall that we would like an objective that becomes increasingly better at distinguishing

between good and bad models as more data become available. In the simulation objective,

we see that the opposite is the case. As more data arrive, the objective values of the two

models come closer together. In fact, if we take the limit of the continuous-time simulation

objective as t → ∞, we see that the objective for every single model other than ω ≡ 1

approaches 1. That is,

lim
t→∞

1

t

∫ t

0

(sin(t)− sin(ωt))2dt = 1, ∀ω 6= 1. (1.6)

Although the propagator objective does not push the objective values of the two models

closer together, it also does not push them farther apart. This observation reflects the fact

1For this linear problem, it is more appropriate to consider frequency-domain system ID, which would
not encounter the problems described here. However, these types of time-domain system ID procedures
using least squares-based regression/machine learning approaches are increasingly being used for complex
nonlinear systems, and we seek to show that they can be limited in an extremely simple setting.

9

that the propagator objective does not assess long-term prediction, and it therefore receives

no new information from increasing the time span of the data beyond a single period. Aside

from this shortcoming, it may seem like the propagator objective can reliably distinguish

good and bad models. However, we will later show that this objective quickly breaks down

once noise is added to the data.

(a) Comparison of model estimates to truth

(b) Mean squared error vs. time

Figure 1.2: Illustration of how the simulation (1.2) and propagator (1.3) objectives behave
on qualitatively different models.

1.2.3 Qualitative assessment

In addition to the ability to properly order the model space, we are also interested qual-

itatively in an objective function’s optimization surface. To investigate the fundamental

objectives’ merits in this regard, let us consider the case of learning a continuous-time linear

pendulum [
ẋ1

ẋ2

]
=

[
0 θ1

θ2 0

][
x1

x2

]
, (1.7)

10

where the true parameters are θ1 = 1 and θ2 = −g/L. Here, g = 9.81 is the acceleration due

to gravity and L = 1 is the pendulum length. Data are obtained in 0.1 second increments

with noise standard deviation of 0.1. In addition to the two fundamental objectives, we

include an objective in the form of a negative log posterior in this comparison. This is the

objective that will be presented in Chapter II and discussed thoroughly in this dissertation.

The surfaces of the simulation, propagator, and negative log posterior objectives are shown

in Fig. 1.3. The first column of this figure corresponds to the simulation objective, the second

column corresponds to the propagator objective, and the third column corresponds to the

negative log posterior. The rows of this figure from top to bottom correspond to 20, 40, and

80 data points, respectively, collected in 0.1 second increments.

In the left panel, we see the effect of being unable to properly order the model space.

There are multiple local minima in the objective function, and as more data are added, the

surface becomes flatter and even more local minima arise. In the middle column, we see that

focusing only on one-step-ahead prediction can create a very smooth surface, but adding more

data has almost no effect on the objective whatsoever. In this case, finding the minimum

of the objective is fast, but the estimated model might not display the proper long-term

behavior. Lastly, the third column represents the objective arising from the probabilistic

approach discussed in the next chapter. In this objective, the surface is smooth like the

propagator objective, but adding more data actually has a beneficial effect. As the number

of data increases, the objective function becomes steeper in the direction of the minimum,

which is advantageous for efficient optimization. This effect is a result of the posterior being

able to better distinguish between the models. Lastly, the negative log posterior has a similar

curved shape as the simulation objective, suggesting that it is still able to assess long-term

behavior as well.

1.2.4 Discussion on state-of-the-art

The issue of creating an objective function that is amenable to optimization is a well-known

problem in system ID [77]. As a result, many methods for system ID possess a component

meant to smooth the objective in one form or another. As we saw in the previous sections,

having a large number of data can complicate the objective function surface and exacerbate

optimization difficulties. Consequently, many of the smoothing techniques center around

discounting the data in one form or another. In this section, we will discuss the state-of-

the-art approaches for objective function smoothing and why they are still insufficient for

managing error accumulation.

The first example is simulated annealing [52], which smooths the posterior by scaling

11

down the influence of the likelihood by a discount factor. As optimization progresses, the

likelihood is gradually scaled up to its full weight according to a “cooling schedule.” This

algorithm can be difficult to use in practice since its effectiveness strongly depends on the

cooling schedule, which must be chosen by the user and is largely problem-dependent. Fur-

thermore, the algorithm addresses only the effects of error accumulation and not the under-

lying cause, and as a result, the posterior is still filled with local minima. A variation known

as data annealing [34] starts with training data from a short time period and introduces more

data over a gradually increasing time period. This has a similar “cooling” effect of incremen-

tally increasing the influence of the likelihood on the posterior. Using data from a shorter

training period at the early iterations can prevent the large error accumulation associated

with long simulation times, but it still lacks a mechanism for handling error accumulation

once the full dataset has been introduced.

Other algorithms [9] directly address error accumulation by simulating the system output

at many different initial times and using only the data within a specified time horizon of

the initial times to evaluate the fit of each trajectory. An example of an extreme case of

this is standard and exact dynamic mode decomposition (DMD) [101]. In these algorithms,

the Koopman operator is estimated by finding the best linear mapping of the data forward

only one step in time, leading to a convex optimization problem. Algorithms that use a time

horizon greater than one fall generally under the category of multiple shooting (MS). In such

algorithms, the selected time horizon usually depends on the approximate time scale of the

system. The main issue with these algorithms is that they do not allow for flexibility in the

case that the state components have different time scales.

1.3 Contributions

The goal of this work is to present an objective function that can address many of the

concerns stated in the previous sections. Specifically, we would like an objective function that

incorporates regularization, properly manages error accumulation, and is derived directly

from the dynamics model such that it is theoretically justifiable and interpretable within the

perspective of the model formulation. Moreover, this objective should be general enough that

it contains many other objectives as special cases, thereby lending a new perspective from

which to understand these existing objectives. Lastly, we would like a quantification of the

uncertainty of the estimates produced by this objective, further increasing interpretability by

signalling when to be confident and when to be cautious in trusting the model predictions.

To create a general objective function requires modeling all sources of uncertainty of

the estimation problem in the dynamics model formulation. We identify three such sources

12

that enter into most system ID problems: model, measurement, and parameter uncertainty.

Notably, we will show that accounting for model uncertainty can actually be a unifying

solution for both the issues of regularization and error accumulation. Next, an objective can

be derived directly from the dynamics formulation in the form of a negative log likelihood by

using probabilistic first principles. Theoretical comparisons to other objective functions are

then as straightforward as discovering what simplifying assumptions must be made in the

dynamics model and what prior distributions must be placed on the parameters to yield a

certain objective as its negative log posterior. Finally, the uncertainty of a given estimate can

be found through the quantification of each individual source of uncertainty. For the model

and measurement uncertainty, this usually takes the form of an estimated covariance matrix,

and for parameter uncertainty, this requires sampling from the posterior distribution.

Following this approach, we arrive at a negative log likelihood that can be used in a

wide array of system ID problems. The algorithm for evaluating this likelihood has been

described in [21, 87], and its development is therefore not claimed by this work. Rather, the

contributions of this dissertation center around the novel way in which we use the algorithm

and the original insights into the likelihood’s behavior that we provide. Specifically, the

contributions are the following:

• A new perspective on the optimality of common objectives including DMD (Theo-

rem 3), single rollout Markov parameter estimation (Proposition 2), SINDy (Theo-

rem 4), and MS (Proposition 4) objectives by proving that they are special cases of

the more general negative log posterior. This contribution is summarized in Fig. 1.4;

• Identification of explicit regularization that arises in the likelihood independent of

model parameterization (Eq. (3.2)), and experimental evidence that this regularization

is effective at preventing overfitting;

• Demonstration that the parameters used to specify the process noise can be used as

hyperparameters for managing error accumulation, resulting in improved smoothness

of the optimization surface (Fig. 1.3 and Section 4.1.2.2). Moreover, these hyperpa-

rameters can be continuous and tuned automatically, unlike the time horizon in MS;

• Novel use of the process noise for quantifying uncertainty in the model estimate without

requiring simulation of the model itself (Section 5.4.1) and in the model predictions

without requiring Markov chain Monte Carlo (MCMC) sampling (Fig. 5.13);

• Experimental analysis showing that enforcing symplecticity within the training pro-

cess when learning Hamiltonian systems reduces data requirements and estimation

uncertainty in Sections 5.4.1 and 5.4.2;

13

• Experimental evidence of the broad applicability of the likelihood across different model

classes including linear models, partially-known models, and neural networks and across

different types of noise including additive, multiplicative, Gaussian, and uniform in

Sections 3.3, 4.2, and 5.4.

These contributions have led to a number of publications in peer-reviewed journals and

conference proceedings. The relevant publications pertain to the following bibliography

entries listed in reverse chronological order: [30, 92, 29, 27, 28].

1.4 Outline

The rest of this dissertation is organized into five additional chapters. In Chapter II, we

present a general hidden Markov model (HMM) of dynamical systems and utilize probabilis-

tic first principles to derive the marginal likelihood from this formulation. Then, we discuss

an algorithm for computing the likelihood and give an analysis of its computational complex-

ity. We finish this chapter by showing how the fundamental objectives are special cases of

this marginal likelihood. Chapter III considers linear system ID. We describe two overarch-

ing approaches for estimating state-space realizations and give DMD and Markov parameter

estimation as examples of each one. This chapter also gives theoretical analysis showing

how each example is contained within the marginal likelihood. The chapter concludes by

comparing the robustness of each approach for varying amounts of data and measurement

noise. In Chapter IV, we consider more complicated systems that require nonlinear system

ID methods for estimation. We specifically present SINDy and MS as nonlinear system ID

methods and once again show them as special cases of the marginal likelihood. We conclude

the chapter by comparing the methods to the likelihood on a number of numerical experi-

ments that include chaos, limit cycles, and partial differential equations (PDEs). The final

form of system ID we consider is learning Hamiltonians through physics-informed system ID

in Chapter V. In this chapter, we present the basics of Hamiltonian mechanics and symplectic

integrators for both separable and non-separable Hamiltonians. We discuss how knowledge

of Hamiltonian systems can be embedded into the learning process and show how it leads

to improved estimation. Then, we provide numerical experiments showing how the marginal

likelihood is not only still applicable in these formulations, but can outperform approaches

based on least squares objectives. This dissertation is brought to an end in Chapter VI with

a discussion on our conclusions and directions for future work.

14

(a) Simulation objective (b) Propagator objective (c) Negative log posterior

Figure 1.3: Comparison of three optimization objectives for the identification of a linear
pendulum. The rows correspond to the objective functions obtained after 20, 40, and 80
data points are taken at 0.1 second intervals from top to bottom. White crosses indicate
true parameters. Neglecting process noise in the left column results in many local minima.
Neglecting measurement noise in the middle column results in an objective insensitive to the
number of data. The Bayesian approach in the right column results in the ideal scenario
where the objective becomes steeper in the direction of the minimum as the amount of data
increases.

15

Least squares for
propagators
(DMD [89])

Least squares for
vector fields
(SINDy [10])

Multiple shooting [9] Single rollout Markov
parameter estimation [71]

Zero measurement noise Zero process noise Conditionally
independent data

Negative log posterior

Figure 1.4: Flow chart showing how different assumptions on the negative log posterior can
lead to popular system ID objectives. For brevity, this chart shows only the most notable
assumptions and omits the remainder.

16

CHAPTER II

Probabilistic Problem Formulation

A Bayesian persepctive on system ID was first offered in 1981 by [74] in an effort to make

the field “a consistent theory with formal structure.” In that work, it was shown that many

of the objective functions used in system ID could be formulated as negative log likelihoods

or negative log posteriors through the use of probability and Bayesian inference. Notably,

they showed that the simulation objective could be derived as a likelihood by modeling the

entirety of the problem uncertainty as an additive Gaussian random variable in the output

equation. As we saw in the last chapter, however, the simulation objective can be quite

difficult to optimize. As a result, the popular set of objectives has started to trend away

from this approach, and the recently developed objectives have evolved significantly. Despite

this, the dominant likelihood used for Bayesian system ID largely remains unchanged [69],

and Bayesian interpretations of objective functions have not kept pace.

In this section we present an alternative probabilistic problem formulation that has seen

use in certain applications [50, 70, 24] but mainly remains neglected in the field of system ID.

We will show in later chapters, however, that this formulation is flexible enough to include

many of the system ID objectives that are currently popular and is therefore applicable to

a wide range of problems. This formulation differs from the usual approach by including

a process noise term in the dynamics model in addition to the usual measurement noise

term. We derive the likelihood from this formulation and present a recursive algorithm for

its evaluation. Then, we discuss approximations that can be made to save on computational

expense and provide an analysis of the computational complexity of these approximations.

Additionally, we include a discussion on our approach to quantifying the uncertainty in the

parameters and considerations for selecting a point estimate for prediction. The chapter

concludes by showing that the two fundamental objectives are the limiting cases of this

proposed likelihood.

17

2.1 Notation

The following notation is used throughout this dissertation. Matrices are represented with

uppercase and bold font A and vectors with lowercase and bold font x. Matrices and vectors

are indexed with square brackets, e.g., the (i, j)th element of A is denoted A[i, j]. The norm

of a vector x weighted by a positive definite matrix W is defined as ‖x‖2
W := x>W−1x,

where > denotes the transpose. The L2 norm of a vector and the induced L2 matrix norm

are denoted as ‖·‖2. The norm |·| represents the element-wise absolute value.

The notationN (m,P) denotes a normal distribution with mean m and covariance P, and

the notation U [a,b] denotes a uniform distribution with lower bound a and upper bound b.

If y = |x| and x is distributed as N (0,P), then y follows a half-normal distribution denoted

as half–N (0,P). Pdfs are usually represented as the function π(·) when confusion with the

mathematical constant π is not possible.

2.2 Probabilistic perspective

Our approach to modeling the system dynamics is a probabilistic one in which we take

the perspective that unknown quantities are best described by distributions rather than

hidden values. To this end, we begin by defining the probability triple (Ω,F ,P), where

the set Ω is a sample space, the collection of sets F ⊆ 2Ω is a σ-algebra, and the set

function P : F 7→ [0, 1] is a probability measure. We model the states xk ∈ Rdx and

the outputs yk ∈ Rdy as stochastic processes indexed by k ∈ Z+ ∪ {0} corresponding to

time tk ∈ [0,∞). Some systems also depend on control inputs, which we model as the

deterministic process uk ∈ Rdu with the same index set. Our modeling framework follows

a discrete-time HMM [25]. However, the model may still be applied to continuous-time

dynamics by discretizing differential equations in time through numerical integration. The

model is defined generally as

xk+1 = S(xk,uk,θ, ω), (2.1a)

yk =M(xk,uk,θ, ω), (2.1b)

where S : Rdx × Rdu × Rdθ × Ω 7→ Rdx and M : Rdx × Rdu × Rdθ × Ω 7→ Rdy are the state-

transition and measurement functions, respectively, and are parameterized by the uncertain

variable θ ∈ Rdθ . Both operators are functions of ω ∈ Ω to represent that their outputs

are random variables. The system is therefore characterized by the sequences of transitional

pdfs π(xk+1|xk,θ) and output pdfs π(yk|xk,θ) induced by S and M, respectively. A visual

18

representation of this model, in the form of a Bayesian network, is provided in Fig. 2.1.

y0 y1 y2 · · ·

x1 x2 x3x0 · · ·

u0 u1 u2 · · ·

θ

Figure 2.1: Bayesian network representation of the system ID problem.

2.3 Algorithm

The aim of Bayesian inference is to quantify the uncertainty in the parameters θ given a col-

lection of measurements Yn := (y0, . . . ,yn) through computation of the posterior distribution

π(θ|Yn). To begin, we factorize the posterior into the computable terms L(θ;Yn) := π(Yn|θ)

and π(θ) known as the likelihood and prior, respectively, and a normalizing constant π(Yn)

known as the evidence. This factorization is given by Bayes’ rule

π(θ|Yn) =
L(θ;Yn)π(θ)

π(Yn)
. (2.2)

The HMM, however, has the additional collection of random variables Xn = (x0, . . . ,xn) that

does not appear in this factorization. Taking these variables into account yields the likelihood

L(θ;Yn,Xn) := π(Yn,Xn|θ), which can be computed with the following factorization

L(θ;Yn,Xn) = π(y0|x0,θ)π(x0|θ)
n∏
k=1

π(yk|xk,θ)π(xk|xk−1,θ). (2.3)

This formulation introduces the states into the estimation problem, but we are only interested

in learning the model parameters. We would therefore like to avoid the added difficulty

that comes with estimating the parameters and states simultaneously. To do this requires

marginalizing out Xn through evaluation of the integral
∫
L(θ;Yn,Xn)dXn. On its face, this

marginalization requires a costly dx(n + 1)-dimensional integration. However, the integral

can be broken into n + 1 integrals of the more manageable dimension dx by the following

19

decomposition

L(θ;Yn) = π(y0|θ)
n∏
k=1

π(yk|,Yk−1,θ), (2.4)

where π(yk|,Yk−1,θ) =
∫
π(yk,xk|Yk−1,θ)dxk. Each term in this product can be efficiently

computed using recursion, as shown in Algorithm 1 [87, Th. 12.3].

Algorithm 1 Recursive marginal likelihood evaluation [87, Th. 12.3]

Require: π(x0|θ), Yn
Ensure: L(θ;Yn)

1: Initialize π(x0|Y−1,θ) := π(x0|θ) and L(θ;Y−1) := 1
2: for k = 0, . . . n do
3: Marginalize: π(yk|Yk−1,θ)←

∫
π(yk|xk,θ)π(xk|Yk−1,θ)dxk

L(θ;Yk)← L(θ;Yk−1)π(yk|Yk−1,θ)
4: if k < n then

5: Update: π(xk|Yk,θ)← π(yk|xk,θ)

π(yk|Yk−1,θ)
π(xk|Yk−1,θ)

6: Predict: π(xk+1|Yk,θ)←
∫
π(xk+1|xk,θ)π(xk|Yk,θ)dxk

7: end if
8: end for

Applying Algorithm 1 requires a computable form of the pdf π(yk|Yk−1,θ). One ap-

proach for computing this pdf is to use particle methods, which provide an approximation of

the exact distribution [2], but this solution can be extremely costly. Another approach is to

assume that the pdf is Gaussian and approximate its mean and covariance. This approach

requires computing mean and covariance integrals, which is often also expensive, but numer-

ical techniques can be used to approximate these integrals in an efficient manner. The usual

techniques perform this approximation through linearization of S or M using Taylor series

expansion or through Gaussian integration, e.g., the unscented transform or Gauss-Hermite

cubature. Though these schemes yield (generally) biased estimates, they are nevertheless

more computationally tractable than particle methods and have empirically shown good

performance.

To use these integral approximation techniques on π(yk|Yk−1,θ) requires also keeping

track of the mean and covariance of the distributions π(xk|Yk,θ) and π(xk+1|Yk,θ). Since

π(xk+1|Yk,θ) is induced by the function S, its first two moments can be found through

integral approximation. These methods, however, cannot be applied to find the first two

moments of the update distribution π(xk|Yk,θ) because a function mapping realizations of

π(xk|Yk−1,θ) to realizations of π(xk|Yk,θ) is not available. To address this issue, the cost-

effective solution is to use the linear minimum mean squared error (MMSE) estimator, also

20

known as the Kalman update. This approach requires only E [yk|Yk−1,θ], Var [yk|Yk−1,θ],

and Cov [xk,yk|Yk−1,θ], which are all computable with integral approximation. The algo-

rithm for computing a Gaussian approximation of the marginal likelihood L̂(θ;Yn) using

these simplifying approximations is given in Algorithm 2. Although we keep this discussion

general, we note that the integral approximation method that we use throughout this dis-

sertation is the unscented transform in the form of the unscented Kalman filter (UKF) [49].

Algorithm 2 Recursive approximate marginal likelihood evaluation

Require: π(x0|θ), Yn
Ensure: L̂(θ;Yn)

1: Initialize π(x0|Y−1,θ) := π(x0|θ) and L̂(θ;Y−1) := 1
2: for k = 0, . . . n do
3: Marginalize: µk ← Eπ(xk|Yk−1,θ) [M(xk,uk,θ, ω)]

Sk ← Varπ(xk|Yk−1,θ) [M(xk,uk,θ, ω)]

Uk ← Covπ(xk,xk−1|Yk−1,θ) [S(xk−1,uk,θ, ω),M(xk,uk,θ, ω)]

L̂(θ;Yk)← L̂(θYk−1)
1√

(2π)dy det(Sk)
exp

(
−1

2
‖yk − µk‖Sk

)
4: if k < n then
5: Update: Kk ← UkS

−1
k ,

m+
k ←mk + Kk(yk − µk), P+

k ← Pk −KkU
>
k

6: Predict: mk+1 ← Eπ(xk|Yk,θ) [S(xk,uk,θ, ω)]

Pk+1 ← Varπ(xk|Yk,θ) [S(xk,uk,θ, ω)]

7: end if
8: end for

2.3.1 Special noise forms

If more is known about the forms of S and M, integral approximation can sometimes be

replaced by closed-form solutions. To this end, it is useful to separate the dynamics and

output functions into deterministic and stochastic components. Let Ψ : Rdx × Rdu × Rdθ 7→
Rdx and h : Rdx × Rdu × Rdθ 7→ Rdy represent deterministic dynamics and measurement

functions, respectively, and let their stochastic counterparts be represented by stochastic

processes ξk(ω) ∈ Rdx and ηk(ω) ∈ Rdy , respectively. For simplicity, we assume that these

stochastic processes are stationary.

Realizations of the random variable ξk are known as process noise. We interpret this term

as accounting for all forms of model uncertainty such as numerical inaccuracies or insufficient

model expressiveness, and it can also partially account for the uncertainty pertaining to

the dynamics model parameters. Similarly, ηk is the measurement noise and can hold the

21

modeling and parameter uncertainties of the observation model h. In addition, ηk can also

contain sensor noise. We interpret this term as representing the measurement uncertainty.

With our division of S and M into deterministic and stochastic components, the choice

of how to model the process and measurement noise will fully determine the forms of the

three distributions from Algorithm 1: π(yk|Yk−1,θ), π(xk|Yk,θ), and π(xk+1|Yk,θ). In the

following sections, we look at how two noise forms in particular simplify the approximating

computations in Algorithm 2.

2.3.1.1 Additive Gaussian noise

The first noise form that we consider is a widely used and highly versatile form that serves as

the model for the majority of the numerical examples in this dissertation. This noise model

is additive Gaussian noise, and the system model for this noise is defined as

S(xk,uk,θ, ω) = Ψ(xk,uk,θΨ) + ξk(ω), ξk ∼ N (0,Σ(θΣ)), (2.5a)

M(xk,uk,θ, ω) = h(xk,uk,θh) + ηk(ω), ηk ∼ N (0,Γ(θΓ)), (2.5b)

with uncertain initial condition x0(θx0). For ease of reference throughout the dissertation, the

uncertain parameters are partitioned as θ =
[
θ>x0

θ>Ψ θ>h θ>Σ θ>Γ

]>
∈ Rdθ corresponding

to the initial condition, dynamics, observation function, process noise covariance Σ ∈ Rdx×dx ,

and measurement noise covariance Γ ∈ Rdy×dy , respectively. Although this noise form is

often chosen for convenience, the choice of a Gaussian distribution to model ξk and ηk is

theoretically justified by the Principle of Maximum Entropy. This principle states that for a

given mean and covariance, the Gaussian distribution assumes the least amount of additional

information beyond these first two moments [44]. The mean is assigned to be zero under

the assumption that the optimal estimate will be close to unbiased, and the values of the

covariances are left as part of the estimation problem.

For additive Gaussian noise, there are a number of simplifications that can be made in the

equations of Algorithm 2. Many of these simplified equations require statistics of a function

output, so for representational purposes, we denote Ψ(xk,uk,θ) and h(yk,uk,θ) as Ψk and

hk, respectively. The first two moments of the three pdfs of interest for this noise model are

given by the following equations. The mean mk and covariance Pk of π(xk|Yk−1,θ):

mk = E [Ψk] , (2.6a)

Pk = Var [Ψk] + Σ. (2.6b)

22

The mean µk and covariance Sk of π(yk|Yk−1,θ):

µk = E [hk] , (2.7a)

Sk = Var [hk] + Γ, (2.7b)

Uk = Cov [Ψk, hk] . (2.7c)

The mean m+
k and covariance P+

k of π(xk|Yk,θ):

Kk = UkS
−1
k , (2.8a)

m+
k ≈mk + Kk(yk − µk), (2.8b)

P+
k ≈ Pk −KkU

>
k . (2.8c)

These last three equations represent the linear MMSE estimator. Therefore, the right-hand

sides are approximations of m+
k and P+

k and are only exact if xk and yk are jointly Gaussian.

We remark that this model form contains the special case of linear-Gaussian systems,

which are defined by linear representations of Ψ and h and additive Gaussian forms of ξk

and ηk. Linear-Gaussian systems are notable because in such a formulation, all three pdfs of

interest are Gaussian. As a result their means and covariances can be computed analytically

with the Kalman filter (KF).

2.3.1.2 General additive/multiplicative noise

The other noise model that we consider is additive and multiplicative noise with arbitrary

distributions. This noise model is defined as

S(xk,uk,θ, ω) = Ψ(xk,uk,θ)�wk(ω) + ξk(ω), (2.9a)

M(xk,uk,θ, ω) = h(xk,uk,θ)� vk(ω) + ηk(ω), (2.9b)

where � represents element-wise multiplication. The � operation is defined when the dimen-

sions of the operands match or when the operands are a matrix and a vector whose length

equals the number of matrix columns. In the latter case, � multiplies the i-th column of

the matrix by the i-th element of the vector. The multiplicative noise terms wk and vk

are defined to have means w̄ and v̄ and covariances Q and R, respectively. The additive

noise terms ξk and ηk are defined to have zero means and covariances Σ and Γ, respectively.

Since we are interested in only the first two moments of the pdfs of interest, the higher order

moments of these noise terms are not needed and can be arbitrary. However, it is worth

noting that the closer the higher moments are to zero, the better the approximation of the

23

marginal likelihood.

Similarly to the additive Gaussian noise case, there are a number of simplifications that

can be made to the equations of Algorithm 2 when the noise is multiplicative. These equa-

tions were first derived in 1971 by [82] for linear systems with multiplicative scalar-valued

Gaussian noise. Here, we extend these equations to the case of vector-valued noise and

provide the results as follows. The mean mk and covariance Pk of π(xk|Yk−1,θ):

mk = E [Ψk]� w̄, (2.10a)

Pk = E
[
ΨkΨ

>
k

]
�Q + Var [Ψk]� (w̄w̄>) + Σ. (2.10b)

The mean µk and covariance Sk of π(yk|Yk−1,θ):

µk = E [hk]� v̄, (2.11a)

Sk = E
[
hkh

>
k

]
�R + Var [hk]� (v̄v̄>) + Γ, (2.11b)

Uk = Cov [Ψk, hk]� v̄k. (2.11c)

The mean m+
k and covariance P+

k of π(xk|Yk,θ) are given by the same Kalman update

equations in Eq. 2.8.

Notice that E
[
ΨkΨ

>
k

]
and E

[
hkh

>
k

]
are required when multiplicative noise is present.

These quantities could be computed with the usual integral approximation methods, but for

computational efficiency, we assume that the function outputs are Gaussian. This assump-

tion allows Eqs. (2.10b) and (2.11b) to be computed in the following respective forms:

Pk = Var [Ψk]� (Q + w̄w̄>) + (E [Ψk]E [Ψk]
>)�Q + Σ, (2.12a)

Sk = Var [hk]� (R + v̄v̄>) + (E [hk]E [hk]
>)�R + Γ. (2.12b)

Once again, if Ψ or h are linear functions, then the expectation and variance terms containing

Ψk or hk, respectively, can be found in closed form.

2.3.2 Computational complexity

Now that we have the equations needed for computing Algorithm 2, we turn our attention

towards the computational requirements of this algorithm. We will show in the following

chapters that Algorithm 2 yields more flexible and robust estimators than competing system

ID approaches, but this robustness will be at the cost of increased computational complexity.

In this section, we assess the cost of the algorithm for the additive Gaussian noise model

from Eq. (2.5), both in the linear and nonlinear cases, by counting the number of floating-

24

point operations (flops) required by each algorithm. We conclude this subsection by tallying

the additional number of flops required if multiplicative noise is added to the model as in

Eq. (2.9).

For this analysis, addition, subtraction, multiplication, and division of two floating point

numbers and the logarithm of one floating point number all count as one flop. The multipli-

cation of an dy×n matrix by an n×dθ matrix then counts as dydθ(2n−1) flops because each

of the dydθ entries of the product matrix requires n multiplications and n − 1 additions.1

Similarly, the multiplication of an dy × n matrix by an n× 1 vector requires n(2n− 1) flops.

Additionally, we approximate the cost of a Cholesky decomposition, matrix inversion, and

determinant performed on an n×n matrix all to be n3/3 flops. Furthermore, the complexity

of these algorithms strongly depends on the complexity of the dynamical and measurement

models used, which will vary from problem to problem. For the sake of generality, we define

the computational complexity of the dynamical model Ψ and measurement model h to be

denoted as F and H, respectively. Clearly in the linear case, these variables will not be

needed as the dynamical and measurement models are matrices, and the number of flops can

be calculated without loss of generality. The number of flops for each algorithm will be given

in terms of the problem dimensions, so recall the following notation: dx is the dimension of

the state, dy is the dimension of the measurements, dθ is the number of parameters, and n

is the total number of measurements available.

Although we need to evaluate the full posterior pdf for estimation, our analysis focuses

entirely on the computation of the marginal likelihood since this is the dominant cost in the

unnormalized posterior. The prior distribution is chosen by the user and its cost is typically

orders of magnitude lower than that of the likelihood computation. Recall that the KF

can be used when distributions are Gaussian and that we have chosen to use the unscented

transform to approximate the mean and covariance of all other distributions. Therefore, the

following analysis provides results for the Kalman filtering algorithm, the unscented Kalman

filtering algorithm, and their prediction and update subcomponents. The full algorithms

off which we base this analysis can be found in the appendix as Algorithms 4 and 5 for

the KF and UKF, respectively. Table 2.1 shows the number of different types of operations

required by each algorithm, and Table 2.2 shows the number of flops for each algorithm.

Note that although the mean and covariance of the marginal likelihood are computed in the

update step of the Bayesian algorithms, the computation of the log of this distribution is

excluded from this step and is instead included only in the total. Lastly, the 18 flops outside

the parentheses in the UKF total count comes from the formation of the weights, which is

1We only consider the naive matrix-multiplication scheme, not the asymptotically more optimal ap-
proaches such as Strassens algorithm.

25

Table 2.1: Tally of matrix and vector operations of Algorithms 4 and 5. VEW and MEW are
element-wise vector and matrix operations, respectively, such as addition, subtraction, and
element-wise multiplication and division. MV is a matrix-vector or vector-vector multiplica-
tion, and MM is matrix-matrix multiplication. Inv is a matrix inversion, Det a determinant,
and Chol a Cholesky decomposition.

Algorithm VEW MEW MV MM Inv Det Chol

KF Prediction 0 1 1 2 0 0 0
KF Update 2 2 3 6 1 0 0
KF Total 4n 3n 6n 8n 2n n 0

UKF Prediction 4dx 8 0 1 0 0 1
UKF Update 4dx + 2 14 1 5 1 0 1
UKF Total (8dx + 4)n 22n 3n 6n 2n n 2n

Table 2.2: Flop count of Algorithms 4 and 5

Algorithm Flop Count

KF Prediction 4dx
3 + dx

2 − dx
KF Update 2dx

3 + 1
3
dy

3 + 6dx
2dy + 4dxdy

2 − dx2 − dy2 + 3dxdy − 1

KF Total n(6dx
3 + dy

3 + 6dx
2dy + 4dxdy

2 + dy
2 + 3dxdy − dx + 3dy + 8)

UKF Prediction 13
3
dx

3 + 17dx
2 + 4dx + 2 + (2dx + 1)F

UKF Update 1
3
dx

3 + 1
3
dy

3 + 6dx
2dy + 8dxdy

2 + 9dx
2 + 4dy

2 + 13dxdy+
2dx + 6dy + 2 + (2dx + 1)H

UKF Total n

(
14
3
dx

3 + dy
3 + 6dx

2dy + 8dxdy
2 + 26dx

2 + 6dy
2 + 13dxdy+

6dx + 9dy + 13 + (2dx + 1)(F +H)

)
+ 18

required only once at the beginning of the algorithm.

The computational costs of the Bayesian algorithms are on the order O(n(dx
3 + dy

3)).

Typically the dimension dy of the observations is small, so this algorithm is primarily limited

by the dimension dx of the state vector. Furthermore, the dimension dθ of the parameter

vector only affects the evaluation of the prior, which is usually chosen so as to be easy to

compute. Therefore, this algorithm is most efficient for problems where the state dimension

is low and the parameter dimension is high, such as in nonlinear regression problems.

Next, we analyze the additional computational complexity of this filtering procedure

when multiplicative noise is also considered. The equations used for this algorithm and

their marginal flop counts are shown in Table 2.3. Because we assumed that the noise

is stationary, the outer products w̄w̄> and v̄v̄> from Eqs. (2.12a) and (2.12b) need only

be evaluated once. All other operations scale linearly with the number of data n. The

order of the added expense is O(n(dx
2 + dy

2)), which is negligible in comparison to the

26

complexity O(n(dx
3 + dy

3)) of the additive Gaussian system. Therefore, the additional

computation required when multiplicative noise is added to the model does not affect the

order of complexity of the overall algorithm.

Table 2.3: The computational complexity added by including multiplicative noise.

Equation Added flops

Dyn.
Eq. (2.10a) ndx
Eq. (2.12a) 5ndx

2 + dx
2

Obs.
Eq. (2.11a) ndy
Eq. (2.12b) 5ndy

2 + dy
2

Eq. (2.11c) ndxdy
Total: n(5dx

2 + 5dy
2 + dxdy + dx + dy) + dy

2 + dx
2

2.3.3 Uncertainty quantification

The final aspect of the algorithm that we consider in this chapter is how to quantify the

uncertainty in the model’s parameters and its predictions. Traditional system ID approaches

focus on finding a single, optimal point-estimate of the parameters. They must then rely on

a validation subset of the available data disjoint from the training set to assess the quality of

this singular model. In contrast, Bayesian approaches consider a set of parameter values that

have a high probability with respect to the posterior distribution. The validity of the model’s

predictions can then be assessed through analysis of the distribution of outputs generated

by the set of model parameters. If this output distribution is low-variance, then the model

has high certainty, but if the model outputs are more spread out, then the model is unsure

where the best estimate lies.

To utilize this Bayesian approach, we therefore require parameter samples from the poste-

rior distribution. In general, this posterior is non-Gaussian and does not have a closed-form

expression, which can make efficient sampling difficult. One approach is to approximate the

posterior using easy-to-sample distributions such as Gaussians. This is the approach used in

Laplace approximations and variational inference. The other approach is to draw samples

from the exact posterior at the cost of additional computational expense. Certain forms

of variational inference such as normalizing flows are theoretically able to sample from the

exact posterior by transforming samples from a simple distribution – usually Gaussian – to

samples from the posterior. The challenge, however, is learning a mapping between the two

distributions, which includes all the difficulties involved with trying to learn complicated

functions. Additionally, the samples generated are only from the exact posterior if the func-

tion mapping is perfectly accurate, which can almost never be achieved in practice. The

27

other solution to sampling directly from the posterior is MCMC sampling. This approach

constructs a Markov chain that converges to the posterior as its stationary distribution. One

of the difficulties in this approach is achieving convergence of the Markov chain. Although

asymptotic convergence is theoretically guaranteed, in practice, convergence can consume a

large amount of time and computational expense. The other main difficulty of this approach

is that the drawn samples are correlated, which can greatly increase the required number

of samples needed to achieve a target effective sample size. Nevertheless, we opt for using

MCMC sampling for its convergence guarantees at the cost of time and computation spent

tuning the sampler and drawing large numbers of samples for the sake of convergence and

effective sample size.

Every MCMC algorithm involves two steps: (1) draw a sample from a proposal distri-

bution and (2) accept or reject that sample according to a probability that conserves the

posterior as the chain’s stationary distribution. Often, this second step uses the Metropolis-

Hastings probability, which is defined as

α = min

(
1,

π(θ∗|Yn)

π(θ(k−1)|Yn)

ϕ(θ(k−1))

ϕ(θ∗)

)
, (2.13)

where ϕ is the proposal distribution, θ∗ is the proposed sample, and θ(k−1) is the current

position of the Markov chain. Note that the acceptance probability only requires the ratio

between the posterior pdf of two samples. Importantly, this allows us to circumvent the

computation of the normalizing constant π(Yn).

Next, if we insert Algorithm 2 into the described sampling scheme, we arrive at the

approximate marginal MCMC scheme provided in Algorithm 3. The function L̂(θ;Yn) is

the likelihood estimator using the UKF, and we restate that pseudocode for its evaluation

can be found in the appendix as Algorithm 5. In the case of linear-Gaussian systems,

Algorithm 4 can be used to evaluate the exact likelihood using the KF, and as a result,

Algorithm 3 becomes an exact marginal MCMC sampling scheme.

The final requirement to run this algorithm is a starting point for sampling. In MCMC

sampling, it is good practice to start the sampler at a high probability point to reduce the

convergence time. For this reason, we select the maximum a posteriori (MAP) estimate of

the parameter posterior

θmap = arg max
θ

π(θ|Yn). (2.15)

To find this point, we simply treat the negative log posterior as an objective function and

use available optimization techniques to minimize it.

28

Algorithm 3 Approximate marginal MCMC for Bayesian inference

Require: Prior distribution π(θ)
UKF-based likelihood estimator L̂(θ;Yn)
Proposal distribution ϕ(θ)
Initial sample θ(0)

Ensure: Samples from stationary distribution π(θ|Yn)
1: Compute ẑ(0) = L̂(θ(0);Yn)
2: for k = 1 to N do
3: θ∗ ∼ ϕ Sample from proposal
4: z∗ = L̂(θ∗;Yn) Compute estimated likelihood
5: Compute acceptance probability

α = min

(
1,

z∗π(θ∗)

z(k−1)π(θ(k−1))

ϕ(θ(k−1))

ϕ(θ∗)

)
(2.14)

6: Accept θ(k) = θ∗ and z(k) = z∗ with probability α
Otherwise θ(k) = θ(k−1) and z(k) = z(k−1)

7: end for

2.3.3.1 Sampling strategy

Even with a good starting point, however, achieving good mixing of the Markov chain can

be challenging when the parameters are non-identifiable. A state-space dynamics model is at

best unique up to a change of coordinates transformation, and in overparameterized cases,

models are not even unique for a fixed coordinate frame. We attempt to address this issue

by fixing the observation parameters θh (and the control-input matrix parameters in linear

time-invariant (LTI) models) at the MAP and then sampling the remaining parameters. The

rationale behind this approach is to constrain the coordinate frame as a means to mitigate

one of these sources of non-identifiability. Fixing parameters runs the risk of neglecting

uncertainty, but we are primarily concerned with the uncertainty in the output behavior,

not in the parameters. This constraint should theoretically not restrict the behavior of the

model dynamics nor the uncertainty in the output, so we consider this an acceptable tradeoff.

To perform sampling, we use an MCMC within Gibbs sampling scheme. In the Gibbs

sampler, the parameters are separated into groups {θx0}, {θΨ}, and {θΣ,θΓ} and sampled

sequentially from their corresponding conditional distributions using the delayed rejection

adaptive Metropolis (DRAM) algorithm [38]. To show how fixing θh and using the DRAM

within Gibbs approach improves sampling compared to basic DRAM, Fig. 2.2 shows samples

drawn from the A matrix of the linear system in Section 3.3.3 using both approaches.

Figs. 2.2a and 2.2b show the samples drawn when using DRAM without Gibbs and without

fixing any parameters at the MAP. With this approach, 107 samples were drawn, the first

29

106 discarded as burn-in, and every 1,000th remaining sample was plotted. Figs. 2.2c and

2.2d show samples drawn with the DRAM within Gibbs approach with matrices B and H

fixed at the MAP. For this method, 106 samples were drawn, 105 were discarded as burn-in,

and every 1,000th remaining sample was plotted. Despite the former approach drawing 10

times as many samples, we observe that the latter approach covers more of the posterior.

Moreover, the mixing of the chain in the DRAM within Gibbs approach appears much better.

(a) (b) (c) (d)

Figure 2.2: 2D marginal distributions and chains from MCMC sampling System (3.21).
Figs. 2.2a and 2.2b show samples drawn using DRAM, and Figs. 2.2c and 2.2d show samples
drawn using a DRAM within Gibbs procedure.

2.3.3.2 Prediction strategies

After completing sampling, we are now ready to make predictions. Whereas traditional

system ID approaches define the problem through an optimization objective, the Bayesian

approach separates learning and decision making. In effect, it provides a way of generating

new optimization objectives and interpreting existing ones. Here, we briefly comment on

the fact that this separation comes in the form of a two step procedure: (1) computing

the posterior and (2) extracting a goal-oriented estimator through the specification of a loss

function. For detailed discussion of these topics we refer the reader to [7].

First note that we have considered θ to contain all uncertain parameters in the problem.

For prediction, however, it is standard to make predictions into the future using deterministic

models based on Ψ. As a result, we will only need to use the dynamics parameters θΨ. To

describe the evolution of the state xk, we introduce the following notation

Ψk(x0,u0:k,θ) := Ψ(Ψ(· · ·Ψ(x0,u0,θ),u1,θ) . . .),uk,θ), (2.16)

which denotes k compositions of the dynamics propagator. Next, we define the posterior

predictive distribution of the states as an average over all possible values of the dynamics

30

parameters conditioned on the observations

π(xk | Yn) =

∫
π(xk|θΨ)π(θΨ|Yn)dθΨ, (2.17)

where we will use a deterministic prediction that discards the process noise

π(xk|θΨ) = δΨk(x0,u0:k,θΨ)(xk). (2.18)

This restriction is not explicitly necessary, but it is representative of how learned models are

used in practice. We will sometimes refer to Eq. (2.18) as a deterministic simulation when

we want to distinguish from a stochastic simulation in which realizations of process noise are

added to the dynamics.

Then, we extract an estimator to use as the “point estimate” from the posterior. In this

dissertation, we primarily rely on two different estimators unless otherwise noted. The mean

estimator

xavg
k = Eπ(θΨ|Yn) [π(xk|Yn)] , (2.19)

and the parameter MAP estimator

xθmap

k = δΨk(x0,u0:k,θ
map
Ψ)(xk). (2.20)

The decision between these two estimators is problem-dependent, and we will note the choice

we make in each experiment.

Finally, an evaluation metric must be selected to compare the chosen point estimate

to other methods. The specific metric will depend on the system’s characteristics and the

desired utility of the model. More often than not, the model is intended to be used for

prediction. In this case, the MSE of the deterministic simulation with respect to the system

ground truth is typically used. Although we noted earlier that the simulation objective

is not well-suited for the evaluation of long-time model performance, this metric can still

be applicable if the evaluation time span is kept to a reasonable length, i.e., one in which

small errors do not have a chance to heavily accumulate. For certain systems, however,

finding a reasonable evaluation length is extremely challenging. As an example, in systems

where errors grow rapidly, such as chaotic and unstable systems, predictions quickly diverge

from the ground truth, and an evaluation window that ends before this divergence occurs is

usually not large enough to meaningfully capture the system behavior. Therefore, alternative

methods are needed to compare estimates of such systems. These methods tend to be

more heavily problem-dependent and will therefore be introduced as needed throughout the

31

dissertation.

2.4 Comparison to fundamental objective functions

Now we turn to comparing the marginal likelihood to the two fundamental objectives de-

scribed in Section 1.2.1. In the literature, there have been several comparisons between

the simulation and propagator objectives [21, 1, 83] that have shown that the simulation

objective yields better estimates when measurement noise is present and process noise is

omitted, and the propagator objective yields better estimates when process noise is present

and measurement noise is omitted. In this section, we review the theory that explains these

observations by specializing the marginal likelihood to two special cases. These cases are

(1) zero process noise (model error is ignored) and (2) noiseless, invertible measurements

(measurement error is ignored).

2.4.1 Simulation least squares

The simulation objective (1.2) uses a deterministic model, discarding process noise. This

objective will be useful when discussing MS later on in Section 4.1.2. In this setting, the

distribution π(xk|xk−1,θΨ,θΣ) reduces to the Dirac delta function δxk(Ψ(xk−1,uk−1,θΨ)).

The assumption of zero process noise leads to the marginal likelihood given in Theorem 1.

Theorem 1 (Marginal likelihood – zero process noise). Let the dynamics model be deter-

ministic. Then, the marginal likelihood (2.4) is defined recursively as

L(θ;Yk) =
exp

(
−1

2
‖yk − h(Ψk(x0,u0:k,θΨ),θh)‖2

Γ(θΓ)

)
√

2π
dy |Γ(θΓ)| 12

(2.21)

for k = 1, . . . , n. Moreover the log marginal likelihood becomes

logL(θ;Yn) =
n∑
k=1

(
−1

2
‖yk − h(Ψk(x0,u0:k,θΨ),θh)‖2

Γ(θΓ)

)
− ndy

2
log 2π − n

2
log|Γ(θΓ)|.

(2.22)

Proof. The proof follows from the fact that a deterministic system must follow a fixed trajec-

tory defined entirely by the parameters. In other words, we have π(Xn|θΨ,Yn) = π(Xn|θΨ) =

δΨ(x0,u0,θΨ),...,Ψn(x0,u0:n,θΨ)(Xn). As a result, the second term of the joint likelihood 2.3 drops

32

out, and we are left with

L(θ;Xn,Yn) =
n∏
k=1

exp
(
−1

2
‖yk − h(xk,uk,θh)‖2

Γ(θΓ)

)
√

2π
dy |Γ(θΓ)| 12

.

Because the dynamics are deterministic, we have xk = Ψk(x0,u0:k,θΨ). Thus the likelihood

no longer depends on the states other than the known initial state, and what remains is the

marginal likelihood as stated

L(θ;Yn) =
n∏
k=1

exp
(
−1

2
‖yk − h(Ψk(x0,θΨ),θh)‖2

Γ(θΓ)

)
√

2π
dy |Γ(θΓ)| 12

.

Taking the log of this expression completes the proof.

2.4.2 Propagator least squares

Next, we consider the ramifications on the posterior of assuming no measurement noise. We

will later show that the DMD and SINDy objectives correspond to this case in Sections 3.2.1

and 4.1.1.

Consider an invertible observation operator so that the states are uniquely determined

xk = h−1(yk). Using this assumption in System (2.5) leads to a Markovian system for the

system observables

yk+1 = h
(
Ψ
(
h−1(yk),uk,θΨ

)
+ ξk,θh

)
(2.23)

for k = 1, . . . , n− 1 where ξk ∼ N (0,Σ(θΣ)).

This assumption yields the marginal likelihood given in Theorem 2 below.

Theorem 2 (Marginal likelihood – noiseless, invertible observations). Let h be an invertible

operator and the measurements be noiseless. Then, the marginal likelihood (2.4) is defined

recursively as

L(θ;Yk) = |∇h−1(yk)|
exp

(
−1

2
‖h−1(yk)−Ψ (h−1 (yk−1) ,uk−1,θΨ)‖2

Σ(θΣ)

)
√

2π
dx|Σ(θΣ)| 12

(2.24)

for k = 2, . . . , n and

logL(θ;Y1) = log

∫
exp

(
‖h−1(y1)−Ψ(x0,u0,θΨ)‖2

Σ(θΣ)

)
π(x0|θ)dx0

− dx
2

log 2π − 1

2
log|Σ(θΣ)|.

(2.25)

33

Together, the log marginal likelihood becomes

logL(θ;Yn) =
n∑
k=2

(
log|∇h−1(yk)| −

1

2
‖h−1(yk)−Ψ

(
h−1 (yk−1) ,uk−1,θΨ

)
‖2

Σ(θΣ)

)
− ndx

2
log 2π − n

2
log|Σ(θΣ)|+ logL(θ;Y1).

(2.26)

Proof. Noiseless observations yk = h(xk,θh) imply that ‖yk − h(xk,θh)‖2
Γ(θΓ) = 0 such that

the first term of the joint likelihood 2.3 drops out. Second, we notice that we can rewrite

the second term in terms of yk rather than xk by using the change of variables formula

L(θ;Yn) =
n∏
k=1

|∇h−1(yk)|
exp

(
−1

2
‖h−1(yk)−Ψ(h−1(yk−1),uk−1,θΨ)‖2

Σ(θΣ)

)
√

2π
dx|Σ(θΣ)| 12

.

The likelihood no longer depends on the states and thus the given result is the marginal

likelihood.

As we intuitively expected, there is no marginalization over states under this assumption

because the learning problem effectively “resets” after every data point. After the reset,

the states are at their true value, and optimization progresses to ensure that the residual of

propagation between true values is small.

Remark 1 (Data on initial condition). If the initial condition is treated as beginning when

the data are obtained, then the log likelihood for the first data point becomes independent of

the parameters and we can set it to an arbitrary constant.

2.5 Summary

In this chapter, we have presented a proposed probabilistic formulation of the system ID

problem. In contrast to the dominant modeling approach, we included process noise in the

dynamics to account for the model uncertainty present during estimation. We then derived

a marginal likelihood from this model and provided a recursive algorithm for evaluating

this likelihood. We showed how the cost of the algorithm can be reduced through certain

approximations and discussed how the algorithm can be simplified further for certain noise

forms. Then we discussed how to use the algorithm for uncertainty quantification and

identified useful estimators for prediction. Finally, we provided derivations showing how the

simulation and propagator objectives are contained within this broader marginal likelihood.

34

CHAPTER III

Linear Time-Invariant System Identification

Linear models of dynamical systems are desirable for a number of reasons. They are cheap to

evaluate, admit closed-form solutions, and analyzing their qualitative behavior is as straight-

forward as finding their eigenvalues and eigenvectors. Furthermore, there is a rich pool of

control theory dedicated to the control of linear systems that can be utilized for such models.

In this chapter, we concern ourselves strictly with learning state-space representations of

linear systems. The two primary avenues for this are either to estimate a realization of the

state-space matrices directly or to estimate the Markov parameters and use the eigensys-

tem realization algorithm (ERA) to find a state-space realization. Within the state-space

matrices approach, we consider the DMD algorithm, and within the Markov parameter ap-

proach, we consider one such algorithm that estimates the Markov parameters from a single

trajectory. We present the methodology for each algorithm and then prove that they fit in-

side the marginal likelihood formulation under certain assumptions. The chapter concludes

with a set of numerical experiments in which the marginal likelihood is compared to these

algorithms on datasets with varying numbers of data and amounts of measurement noise.

These experiments will demonstrate the marginal likelihood’s robustness to various amounts

of uncertainty and reveal where the other algorithms begin to break down.

3.1 Marginal likelihood evaluation of LTI systems

For certain systems, the marginal likelihood is analytically tractable. Here we show the

approach in the context of LTI models defined as

xk+1 = A(θ)xk + B(θ)uk + ξk, ξk ∼ N (0,Σ(θ)),

yk = H(θ)xk + D(θ)uk + ηk, ηk ∼ N (0,Γ(θ)).
(3.1)

35

In this system, if x0 is either given or Gaussian-distributed, then the system is linear-

Gaussian, and the equations in Algorithm 1 have closed-form solutions. Next, we consider

two different, but technically equivalent, approaches for evaluating the closed-form marginal

likelihood.

3.1.1 State-space approach

The first approach uses the state-space models with a KF to evaluate the marginal likeli-

hood. Following [87], let mk(θ) and Pk(θ) denote the mean and covariance of the Gaussian

distribution π(xk | Yk−1,θ), i.e., π(xk | Yk−1,θ) = N (mk(θ),Pk(θ)), at time tk. The value

of the mean mk and covariance Pk can be found via a KF. Then, each term in Eq. (2.4)

becomes π(yk | Yk−1,θ) = N (µk(θ),Sk(θ)), where µk(θ) = H(θ)mk(θ) + D(θ)uk and

Sk(θ) = H(θ)Pk(θ)H(θ)> + Γ(θ). The log marginal likelihood from line 3 of Algorithm 1

becomes

logL(θ;Yn) = −1

2

n∑
k=0

(
‖yk − µk(θ)‖2

Sk(θ) + log det (Sk(θ)) + dy log(2π)
)
. (3.2)

The form of the marginal likelihood (3.2) resembles a least squares (LS) metric plus a

regularization term log det (Sk). The inclusion of this term differs from the typical approach

in which regularization is introduced through a prior distribution or heuristic penalty placed

on the parameters (e.g., the L2 norm used in ridge regression). Here, the regularization term

has arisen in the likelihood directly from the probabilistic model of the dynamical system

and does not require any assumptions on the parameters. The effect of this additional

term is a penalty on systems where the estimated output has a large covariance. A large

Sk can arise when the output is sensitive to the model parameters, which is undesirable

as it is commonly a sign of overfitting. The regularization term log det (Sk) encodes this

dispreference automatically in the likelihood.

3.1.2 Input-output Markov parameter approach

The other common approach to LTI system ID is to first estimate the Markov parameters

and then use the ERA [48] to extract a realization of the system matrices (A,B,H,D). The

ERA procedure is provided in Appendix B. Here we discuss how the Markov parameters can

be obtained from data.

The Markov parameters are obtained by rewriting the linear system (3.1) in a form that

removes the states through recursive substitution into the observation equations. Let the

Markov parameters be G0 = D and Gk = HAk−1B for k = 1, 2, . . ., and define a new

36

random variable νk =
∑k

i=1 HAi−1ξk−i. Then we obtain

yk = HAkx0 +
k∑
i=0

Giuk−i + νk,νk ∼ N (0,Λk), (3.3)

where Λk =
∑k

i=1 HAi−1Σ(HAi−1)> + Γ if k > 0, and Λk = Γ if k = 0. The νk are

not independent due to their sharing of the process noise ξk. The covariance is defined as

Λj,k := Cov[νj,νk] for 0 < j < k. If j = 0 and j 6= k, then Λj,k = 0. Lastly, if k < j, then

Λj,k = Λ>k,j.

The task then is to learn the Markov parameters for use within the ERA. One can use

Bayesian inference again to learn a posterior over the Markov parameters. Assuming x0 = 0,

the likelihood model implied by Eq. (3.3) is

p(Yn | G0:n,U0:n) = N (G0:nU0:n,Λ) , (3.4)

where G0:n =
[
G0 G1 · · · Gn

]
and

Λ =

Λ0 Λ0,1 · · · Λ0,n

Λ1 · · · ...
. . .

...

Sym Λn

 ,U0:n =

u0 u1 · · · un

0 u0 · · · un−1

...
...

...
...

0 0 · · · u0

 . (3.5)

The log of this likelihood (3.4) is equivalent to the state-space log likelihood (3.2) in the

following sense: if we evaluate (3.4) with matrices G0:n and Λ determined by a set of state-

space matrices, the result equals the evaluation of (3.2) using that same set of state-space

matrices.

For comparisons in Section 3.2.2, it is useful to consider a maximum likelihood estimate

(MLE) obtained as:

Ĝ0:n = arg min
G0:n

‖vec (Y0:n −G0:nU0:n)‖2
Λ , (3.6)

where vec(·) denotes the vectorization of a matrix, and Y0:n =
[
y0 y1 · · · yn

]
. The

generalized LS solution is vec(Ĝ0:n) = (V>Λ−1V)†V>Λ−1vec(Y0:n), where † denotes the

pseudo-inverse, and V> := U0:n ⊗ Idy , where ⊗ is the Kronecker product.

There are two main issues with the MLE approach: (1) the covariance matrix Λ depends

on the unknown state-space matrices and is therefore itself unknown, and (2) the Markov

parameters are dramatically overparameterized since they are direct functions of the system

matrices (A,B,H,D). The usual solutions for the first issue include either removing the

37

weighting and using the standard L2 norm or estimating a realization of the state-space

matrices directly. The second issue of overparameterization arises when ndydu > dx
2 +

dxdu + dxdy + dydu, as is typical. As a result, the number of data points (ndy) is typically

smaller than the number of unknowns (ndydu), – except in the case where du = 1 – and the

optimum is not unique. Moreover, any optimum found with this approach, including when

du = 1, will necessarily overfit the data when there is noise.

This second issue motivates approaches that either use multiple trajectories/rollouts with

differing inputs1 to increase the number of data points, or break a single trajectory into

multiple ones to decrease the effective number of Markov parameters. Nevertheless, we will

show that these existing works use implicit simplifying assumptions and are still at risk of

underdetermination for certain input signals. The Bayesian state-space approach, on the

other hand, makes all assumptions explicit and is viable regardless of the type of control

inputs. These details are futher described in Section 3.2.2.

3.2 Theoretical foundations and analysis

In this section, we analyze two popular system ID methods. The first takes the state-space

approach and is known as DMD. The other takes the input-output Markov parameter ap-

proach for single-trajectory data. After introducing each method, we derive assumptions

that can be placed on the HMM formulation such that the negative log marginal likelihood

reduces to that methods’s objective function. We additionally include a numerical compar-

ison between the marginal likelihood and the Markov parameter approach that shows the

accuracy of each method in estimating the Markov parameters at varying noise and number

of data.

3.2.1 Dynamic mode decomposition

DMD is a data-driven method for system ID that is used to identify the ‘dynamic modes’ of

a dynamical system [89]. These modes reveal characteristics such as unstable growth modes,

resonance, and spectral properties [78]. DMD is favorable when the system at hand is high

dimensional but has some hidden low-dimensional structure, as is the case in many fluids

problems. Although extensions of DMD to systems with control inputs have been made, the

standard DMD does not consider control inputs. We therefore restrict the analysis of this

algorithm to autonomous systems.

The process of DMD starts with organizing a series of measurements at regular time

1The inputs must differ by more than a scalar multiplier to avoid underdetermination.

38

intervals into two matrices: Y0:n−1 and Y1:n. Then, it seeks a linear operator A which maps

the observables from one time step to the next i.e., Y1:n = AY0:n−1. To find A, one simply

minimizes the Frobenius norm of AY0:n−1 −Y1:n by solving the least squares problem

A = arg min
Ã

n∑
k=1

‖yk − Ãyk−1‖2. (3.7)

The solution is given by A = Y1:nY
†
0:n−1, where † denotes the pseudo-inverse.

The method given above may at first appear only applicable to linear systems, but [84]

showed that in the nonlinear case, the approximated operator A and its corresponding modes

are approximations to the linear but infinite-dimensional Koopman operator and Koopman

modes respectively, thus revealing its applicability to nonlinear systems.

Next we show the LS procedure for DMD can also be derived directly from the general

probabilistic system (2.5) under certain assumptions.

Theorem 3 (DMD as a maximum likelihood of system (2.5)). Assume a linear model

Ψ(xk,θΨ) = θΨxk; identity observation operator h = Idx; noiseless measurements Γ(θΓ) = 0;

and identity process noise Σ(θΣ) = Idx. Then, the maximum marginal likelihood estimator

corresponding to System (2.5) is equivalent to the LS objective of the DMD problem (3.7).

Proof. This result uses a straightforward application of Theorem 2. Without loss of gen-

erality, we use the fact that the first measurement is of the initial condition, and therefore

we can ignore L(θ;Y0). Here, we have an identity observation operator, and therefore the

inverse and Jacobian are also the identity. The dynamics are linear and unknown so we can

write A ≡ θΨ. With these substitutions, the log marginal likelihood (2.26) becomes

logL(θ;Yn) =
n∑
k=1

(
log|Idx| −

1

2
‖yk −Ayk−1‖2

Idx

)
−

ndx
2

log 2π − n

2
log|Idx|.

(3.8)

After evaluating log|Idx| = 0, we arrive at our stated result

logL(θ;Yn) = −
n∑
k=1

1

2
‖yk −Ayk−1‖2 − ndx

2
log 2π. (3.9)

Clearly, the maximizer of this function is equivalent to the minimizer of (3.7).

While the invertible measurement operator is not a restrictive assumption because DMD

is only concerned with mapping observables and not underlying states, Theorem 3 shows

39

why DMD may not be appropriate for cases where the observations are noisy. This fact

has been recognized in the literature and several procedures for rectifying this issue have

been proposed. For instance, [41] showed that total least squares is a more appropriate

algorithm to identify A when measurement noise is present, a method known as total DMD

(total dynamic mode decomposition (TDMD)). For a full analysis of the total least squares

problem, see [32, 102]. We will empirically compare TDMD to our approach in Section 3.3,

where we see that it also performs worse than the posterior predictive mean.

In [98], another connection between the Bayesian approach to DMD was developed that

infers the Koopman modes and eigenfunctions of the Koopman operator directly, rather than

learning the dynamical operator itself. That work showed that when the measurements are

noiseless, the maximum likelihood estimate of their Bayesian model, TDMD, and DMD all

provide the same estimate. In contrast, here we have provided our result in terms of the

underlying hidden state dynamics rather than explicitly assuming observation dynamics.

One benefit of the analysis in our context is that our use of an underlying state-space

model makes the framework valid even when the observations cannot be written using a

Markovian (zero-lag) model as in Eq. (2.23), which was required for the approach developed

in [98]. In fact, this result can be interpreted to indicate that zero-lag DMD is most effective

if the observation operator is invertible.

3.2.2 Markov parameter estimation

Next, we consider the Markov parameter estimation approach to learning state-space realiza-

tions of stochastic LTI systems, including different approaches for addressing the challenges

raised in Section 3.1.2. First, we analyze how existing algorithms approach the problem of

unknown covariance Λ. Second, we describe how single and multiple rollout resolve the issue

of overparameterized Markov parameters that leads to the aforementioned underdetermined

system. Finally, we demonstrate how learning the system matrices rather than the Markov

parameters leads to faster convergence.

Many existing approaches avoid knowledge of Λ by minimizing an LS objective with an

unweighted L2 norm. Here, we explain this approach as assuming conditionally independent

data – given parameters, inputs, and initial conditions – within the setup provided in Sec-

tion 3.1.2. This assumption sets Λj,k = 0 for j 6= k. The resulting estimator is provided

below.

Proposition 1. Assume that x0 = 0, the inputs uk are known, and the outputs yk are

conditionally independent given G0:n and U0:n, ∀k = 0, 1, . . . , n. Then, the MLE of an LTI

40

system’s Markov parameters is

Ĝ0:n = arg min
{Gi}ni=0

n∑
k=0

∥∥∥∥∥yk −
k∑
i=0

Giuk−i

∥∥∥∥∥
2

Λk

. (3.10)

Proof. Conditional independence implies π(Yn|G0:n,U0:n) =
∏n

k=0 π(yk|G0:n,U0:n). With

x0 = 0, the marginal distributions follow from the input-output relation in Eq. (3.3) as

π(yk|G0:n,U0:n) = N (
∑k

i=0 Giuk−i,Λk). Then, taking the negative log yields the MLE of

the Markov parameters (3.10).

The independence assumption, however, is not sufficient to convert Eq. (3.6) to the LS

objectives commonly used in the literature. The additional assumption that Λk ∝ I is

needed to convert the weighted norm to a scalar multiple of the L2 norm. This assumption

holds trivially if dy = 1. Otherwise, there is no reasonable assumption to enable Λk ∝ I.

Nevertheless, if one considers an approximate objective where this is assumed to be so, one

obtains

Ĝ0:n = arg min
{Gi}ni=0

n∑
k=0

∥∥∥∥∥yk −
k∑
i=0

Giuk−i

∥∥∥∥∥
2

2

. (3.11)

This approximate objective no longer requires knowledge of the system matrices and is

used as the basis for a number of approaches [100, 86, 111] for both single and multiple

rollout data. This work considers learning from single trajectories, so we focus only on single

rollout.

For the single rollout procedure, the data are divided into K overlapping subtrajectories

of length n̄ such that n = n̄+K − 2. To address underdetermination, one must also require

n̄ < n+1
du

. After dividing the single trajectory into multiple trajectories, the final output of

each subtrajectory follows the same form as Eq. (3.3),

yk = HAn̄−1xk−n̄+1 +
n̄−1∑
i=0

Giuk−i + νk, (3.12)

for k = n̄, . . . , n. Assuming that the inputs are zero-mean, then the expected value of each

xk−n̄+1 is zero with respect to the inputs and noise variables. This is sometimes used as

justification to eliminate xk−n̄+1 from the estimation problem [71], and we therefore also

adopt this ansatz. Adding the approximation that Λk ∝ I yields the following optimization

problem

Ĝ0:n̄−1 = arg min
{Gi}n̄−1

i=0

n∑
k=n̄

∥∥∥∥∥yk −
n̄−1∑
i=0

Giun̄−i

∥∥∥∥∥
2

2

. (3.13)

41

The number of unknown Markov parameters is now only n̄ rather than n+ 1, mitigating the

problem of underdetermination. The LS solution is Ĝ0:n̄−1 = Yn̄:nŪ
†
n̄:n, where

Ūn̄:n =

un̄ un̄+1 · · · un
...

... · · · ...

u1 u2 · · · uK

 . (3.14)

This formulation is equivalent to the slightly different form provided by [71]2. Although

the system of equations now has more equations than unknowns for proper choice of n̄,

the system can still suffer from underdetermination for certain input signals. For example,

sinusoidal inputs generate a Ūn̄:n with rank of only 2. Additionally, each estimated data

point requires exactly n̄ inputs. Consequently, the outer sum skips the first n̄ data points

since the inputs u0,u−1, . . . are typically assumed unknown.

This L2 optimization problem (3.13) is equivalent to the weighted L2 optimization prob-

lem (3.10) under additional assumptions stated in Proposition 2.

Proposition 2. Assume the assumptions of Proposition 1 are met and additionally that∑k
i=n̄ Giuk−i = 0, AkΣ(Ak)> = 0 for k ≥ n̄, and Λn̄ ∝ I. If the first n̄ outputs are

discarded, then the MLE in Eq. (3.10) is equivalent to the estimator in Eq. (3.13).

Proof. If
∑k

i=n̄ Giuk−i = 0, then in Eq. (3.10)
∑k

i=0 Giuk−i =
∑n̄−1

i=0 Giuk−i. Lastly if

AkΣ(Ak)> = 0 for k ≥ n̄, then Λk =
∑n̄

i=1 HAi−1Σ(HAi−1)> + Γ = Λn̄, for k ≥ n̄. By

assumption, Λn̄ ∝ I, so the weighted norm is equivalent to the standard L2 norm.

The assumptions
∑k

i=n̄ Giuk−i = 0 and AkΣ(Ak)> = 0 for k ≥ n̄ can be satisfied if the

system has finite impulse response. Alternatively, these two assumptions can be achieved

asymptotically under the much weaker assumption that ρ(A) < 1, where ρ(·) denotes the

spectral radius of a matrix. Such a result is given in Proposition 3.

Proposition 3. Let ρ(A) < 1, the inputs uk be independent realizations of a real-valued

random variable, and Λn̄ ∝ I. As n̄→∞, the negative log likelihood of Eq. (3.10) approaches

the single rollout LS objective of Eq. (3.13) with probability 1. Moreover, it converges at least

linearly.

The proof is in Appendix C.

For systems where Λk ∝ I approximately holds for k > n̄, this result implies that even

if Λk varies, a good approximation can be achieved for reasonably small n̄. However, for

systems where ρ(A) ≥ 1, the conditions of this proposition no longer hold, e.g., periodic

systems have ρ(A) = 1.

2The unlabeled equation following Eq. 5 in [71].

42

3.2.2.1 Numerical comparison

We now perform a comparison between three approaches using the same numerical experi-

ment from [71]. The first approach is the LS approach (3.13) used in single rollout in [71].

In the second approach, we assume that Λk is given, e.g., by an oracle, so we minimize the

same objective as Eq. (3.13), but with a different weighted norm

Ĝ0:n̄−1 = arg min
{Gi}n̄−1

i=0

n∑
k=n̄

∥∥∥∥∥yk −
n̄−1∑
i=0

Giuk−i

∥∥∥∥∥
2

Λk

. (3.15)

This objective is henceforth referred to as generalized least squares (GLS). Finally, we com-

pare with the MAP estimate of the Bayesian approach described in Section 3.1. The state-

space approach is used numerically, though it is theoretically equivalent to the input-output

approach.

This experiment was performed as follows. A random state-space system was generated

by independently sampling the entries of H and D fromN (0, 1/dy) and of B fromN (0, 1/dx).

The dimensions of the system were dy = 2, dx = 5, and du = 3, and the noise covariances were

Σ = σ2
ξI and Γ = σ2

ηI. To highlight the difference between LS and GLS, A was set as the

identity matrix to ensure that ρ(A) = 1 and consequently that the covariance Λk would vary

significantly over time. To avoid having priors give the Bayesian algorithm an edge, improper

uniform priors were placed on the state-space matrices, and only weakly informative priors

of half-N (0, 1) were placed on the parameters σξ and ση to enforce positivity and improve

convergence as recommended in [31]. Then, data were generated by simulating the system

with inputs sampled from a standard normal, i.e., uk ∼ N (0, I). For this experiment,

a subtrajectory length of n̄ = 18 was considered for a total of dydun̄ = 108 parameters.

The Markov parameters were estimated using the first K subtrajectories of the simulated

trajectory where K = dun̄, . . . , 2000. Optimizing over the posterior is significantly more

expensive than solving a linear LS problem, so for computational feasibility, this optimization

was only performed at K = dun̄, dun̄+ 100, . . . , 2000. Since the LS methods do not use the

first n̄ data points, these data were also removed from MAP estimation for consistency.

To assess the accuracy of the estimate, the spectral norm of the estimation error ‖Ĝ0:n̄−1−
G0:n̄−1‖2 was evaluated. This experiment was repeated 50 times, and the top row of Fig. 3.1

shows the average error norm plotted as a solid line with a shaded region representing plus-

minus one standard deviation against the number of data used in each estimate. The figure

also compares the LS, GLS, and MAP estimates at various noise levels σξ,η = 1/4, 1/2, 1. The

weighting used by GLS yielded lower error mean and variance at all noise levels compared

to the LS estimate. The MAP estimate produced the lowest mean error and error variance

43

of all by a significant margin. The same experiment was repeated with larger dimensions of

dy = 8, dx = 10, and du = 5 for a total 720 parameters, and the results are shown in the

bottom row of Fig. 3.1. Again, the ranking of the performance of the estimates is the same,

but in the larger system, the improvement achieved by the MAP estimate is even greater.

We also observe very little degradation of the MAP estimate when the system dimensions

increase other than in convergence rate, which can be attributed to the greater number of

parameters. The results of these experiments illustrate the performance costs incurred by

adding simplifying assumptions into the objective.

(a) σξ,η = 0.25, θΨ ∈ R108 (b) σξ,η = 0.50, θΨ ∈ R108 (c) σξ,η = 1.0, θΨ ∈ R108

(d) σξ,η = 0.25, θΨ ∈ R720 (e) σξ,η = 0.50, θΨ ∈ R720 (f) σξ,η = 1.0, θΨ ∈ R720

Figure 3.1: A comparison of the spectral norm of the Markov parameters estimation error for
n̄ = 18 using the LS, GLS, and MAP estimates at varying noise levels. The lines represent
mean error values and the shaded regions represent plus-minus one standard deviation.

3.3 Numerical experiments

In this section, we compare the negative log marginal likelihood to DMD and Markov pa-

rameter estimation methods on a number of numerical experiments. Specifically, we will

consider three different versions of a pendulum with varying numbers of data and levels of

noise. The first example is a linear pendulum, the second example is a nonlinear pendulum,

and the third example is a linear pendulum with control inputs. In the first two examples,

we compare to DMD and in the third example, we compare to the Markov parameter ap-

proach. In each example, we will show that while these other methods break down quickly

44

when measurement noise is added, the estimates produced by the marginal likelihood de-

grade more gradually as different sources of uncertainty are added such as measurement

noise, model mismatch, and sparse data. The code for these experiments can be found at

https://github.com/ngalioto/BayesID.

3.3.1 Linear pendulum, linear model

For this experiment, we consider learning a linear model under an identity observation oper-

ator h = I when the truth model is also linear. We show that that the proposed probabilistic

approach is more robust to sparse observations and measurement noise than the LS-based

DMD and TDMD.

Consider the linear model (1.7) for which the exact propagator is

xk = exp

([
0 1

− g
L

0

]
∆t

)
xk−1, x0 =

[
0.1

−0.5

]
(3.16)

where g = 9.81 is the acceleration due to gravity and L = 1 is the length of the pendulum.

We are learning an unknown linear model A(θΨ), and we assume that the process noise

and measurement noise is also uncertain. Under this setting, System (2.5) becomes

xk = A(θΨ)xk−1 + ξk, ξk ∼ N (0,Σ(θΣ))

yk = xk + ηk, ηk ∼ N (0,Γ(θΓ)),
(3.17)

for k = 1, . . . , n where

A(θΨ) =

[
θ1 θ2

θ3 θ4

]
, Σ(θΣ) = θ5I2, Γ(θΓ) = θ6I2. (3.18)

Because this setup is precisely the one corresponding to DMD, we seek to compare the

performance of our approach to DMD and TDMD. Our comparison takes the form of av-

erage performance over 500 different realizations of the datasets for different combinations

of training data sizes n and true measurement noise standard deviation σ. The data points

are spread out over a simulation period of four seconds, so increasing n indicates increasing

density of data per time.

The results, shown in Fig. 3.2, provide (log10) ratios of the expected error of the posterior

predictive mean (computed with 1000 posterior samples) to the (T)DMD estimators. The

squared errors were calculated only at the times of observations, and the largest MSE from

each dataset for each algorithm was discarded to prevent biasing from outliers. We see

45

https://github.com/ngalioto/BayesID

that the biggest gains in using the probabilistic Bayesian approach come in the low noise

regime. At first this seems surprising, but in the low noise regime, this is likely the result

of the scale of the errors being so small. As the noise increases, we see the ratio increasing

even though we would expect DMD to break down much more quickly than the Bayesian

approach. The reason this occurs is because DMD predictions decay to zero after a certain

level of noise (shown in Fig. 3.2a), effectively placing an upper bound on the MSE of the

algorithm. Regardless, the contour plots show that the Bayesian algorithm outperforms both

DMD and TDMD at every measurement frequency and noise pair considered.

(a) DMD Pred. MSE (b) Bayes/DMD Pred. (c) Bayes/TDMD Pred.

Figure 3.2: log10 ratio of the MSE obtained by the proposed Bayesian approach to that
obtained by (T)DMD for the linear pendulum model. In all cases, this value is less than zero
signifying that our proposed approach outperforms (T)DMD in all cases considered. Also
observe in the high noise regime, TDMD can begin to lose stability.

Next we provide a detailed look at two specific points on these contour plots to demon-

strate the mechanism by which DMD/TDMD decline. The first case is a low-noise/sparse-

data case of σ = 10−2 and n = 8, and the second case is for a higher noise case σ = 10−1

with more data n = 40 .

The reconstruction results for each state are compared in Fig. 3.3. The prediction (fore-

casting) results for just the second state are shown in Fig. 3.4. The mean here refers to the

posterior predictive mean given in 2.19. The shaded area represents the region between the

97.5th and 2.5th quantiles of the Bayesian posterior. In the low noise case, we see that all

three algorithms perform essentially equally – though the DMD-based approaches slightly

underestimate the amplitude. In other words, even in the case for which DMD was designed

to perform well, the Bayesian approach performs slightly better. In the high noise case,

we see that the TDMD predictions become completely out of phase with increasingly small

amplitude, and the DMD estimator smooths out the data too much and rapidly converges

to zero. Not only does the Bayesian approach provide the most accurate estimate, but it

also gives a quantification of the certainty of its estimate in the form of its posterior, which

(T)DMD is unable to provide.

46

(a) σ = 10−2, n = 8 (b) σ = 10−2, n = 8 (c) σ = 10−1, n = 40 (d) σ = 10−1, n = 40

Figure 3.3: Comparison of reconstruction error amongst the Bayesian and (T)DMD algo-
rithms for the linear pendulum truth model. Top row corresponds to a low-noise/sparse-data
case and the bottom row corresponds to a high-noise/dense-data case. Left column corre-
sponds to the first state (angular position) and right column corresponds to the second state
(angular velocity). For low-noise, the algorithms perform similarly; however, the (T)DMD
approaches underestimate the amplitude. For the high-noise case, DMD fails and TDMD
misfits the amplitude. The Bayesian approach is able to recognize greater uncertainty for
the high-noise case.

Fig. 3.5 shows the estimated eigenvalues of the system by the Bayesian and (T)DMD

algorithms. In the low noise case, Fig. 3.5a shows that the Bayesian approach is slightly

more accurate than the (T)DMD approaches, though they all perform well. For the high

noise case, Fig. 3.5b shows that DMD is unable to provide a reasonable estimate of the

eigenvalues. TDMD gives a close estimate, but the estimated eigenvalues are too far in

the left-hand plane, causing the gradual decay seen in Fig. 3.4. The Bayesian estimate lies

almost exactly on top of the truth.

Finally, Fig. 3.6 shows the marginal and joint distributions of the process and measure-

ment noise variances for these two cases. The process noise is very close to zero because we

are using a linear model for a linear system, and thus the system learns that the dynamics

can be captured exactly. These plots also indicate that we have learned the measurement

noise, as the mode aligns closely with the true value shown in red. Note also that the joint

distribution in this figure shows that the two noise variances are negatively correlated, con-

veying the fact that the estimator does not yet have enough data to determine if the model

is off and the measurements are accurate, or if the model is accurate and the measurements

are noisy. As more data are collected, however, one of these scenarios can usually be ruled

out and the distribution becomes unimodal.

47

(a) x2, σ = 10−2, n = 8 (b) x2, σ = 10−1, n = 40

Figure 3.4: Comparison of prediction error amongst the Bayesian and (T)DMD algorithms
for the linear pendulum truth model. Left panel corresponds to a low-noise/sparse-data
case and the right panel corresponds to a high-noise/dense-data case. Both panels show the
angular velocity of the pendulum. For low-noise, the algorithms perform similarly. For the
high-noise case, DMD fails and TDMD can be seen to be out of phase and have a smaller
amplitude. The Bayesian approach is able to recognize greater uncertainty for the high-noise
case.

3.3.2 Nonlinear pendulum, linear model

Next we consider a problem where the model class within which we are learning does not

encompass the true underlying dynamical system. This is the most realistic situation that

would be encountered in practice, and avoids the so-called “inverse crime” [105].

Consider a nonlinear pendulum[
ẋ1

ẋ2

]
=

[
x2

− g
L

sin(x1)

]
, x0 =

[
2.5

0

]
(3.19)

to be the truth model. We have changed the initial condition to ensure that we are operating

in the nonlinear regime.

The learning setup is identical to that provided in Section 3.3.1; we learn a linear model,

and the same validation experiments are performed. These experimental results are shown in

Fig. 3.7. We are able to clearly see here that, although the three algorithms are comparable in

the low noise regime, the strength of the Bayesian approach increases with the measurement

noise. A discussion on why (T)DMD may outperform the mean estimator from the Bayesian

approach in the low noise regime is provided later in Section 3.3.2.1.

We again present more detailed results for two representative cases. Both cases have

n = 24 data points, but the first case is a low noise case of σ = 10−1 and the second case is

a higher noise case of σ = 1.

48

(a) Lower n, σ (b) Higher n, σ

Figure 3.5: Eigenvalue distributions for the estimators of the linear pendulum. The mean
value here represents the mean of the eigenvalues. All three algorithms come very close to
learning the true eigenvalues in the low noise case, but Bayes is able to outperform the other
two in both the high and low noise cases. DMD achieves significant error when the data are
noisy.

The resulting reconstructions are shown in Fig. 3.8, and the predictions are given in

Fig. 3.9. Note that the variances of the posterior distributions in both cases grow much more

quickly than in either of the linear pendulum examples as a consequence of increased model

uncertainty (process noise). The posterior distribution can therefore be used to qualitatively

assess not only how informative the data are, but also how appropriate the chosen model is

for the system at hand. In the low noise case, the performances of the three estimates are

virtually indistinguishable, once again demonstrating that even in systems that are ideal for

(T)DMD, there is no loss of performance when using the Bayesian estimator. In the high

noise case, DMD struggles with noisy measurements and settles on quickly decaying to zero,

similar to what we observed in the linear case. TDMD, on the other hand, comes closer but

is noticeably out of phase with the truth. The Bayesian approach is able to reconstruct the

signal very closely, at least within the constraints imposed by using a linear model.

Next we investigate what the Bayesian approach learns for the process and measurement

noise in the case where there is a model error. The marginal and joint posterior distributions

for both measurement noise cases are shown in Fig. 3.10. We observe that in the low noise

case 3.10a, the joint distribution is bimodal. The smaller mode corresponds to a model with

low process noise and high measurement noise, and the larger mode corresponds to a model

with high process noise and low measurement noise. The algorithm has effectively uncovered

that the data can be explained in one of two ways: either the model fits the true system well,

but the data are very noisy, or the measurement noise is low and the model is not capable of

properly capturing the dynamics. In this case, the latter is true and is also the much more

likely option based on posterior density. For the high noise case 3.10b, the joint distribution

49

(a) Lower n, σ (b) Higher n, σ

Figure 3.6: Marginal and joint posterior distributions of the process and measurement noise
variance parameters during the recovery of the linear pendulum. In the left panel, 8 mea-
surements are not enough for the Bayesian estimator to unambiguously determine the mea-
surement noise, but its best guess (the mode) aligns with the truth. On the right, we see
that 40 measurements are enough to define a distinct mode within the joint distribution,
which also aligns with the truth.

is unimodal, conveying the possibility of only one process-measurement noise pairing. Once

again, the modes of both the measurement noise marginal distributions align closely with

the truth shown in red. Finally, we see that the process noise magnitudes in both cases are

much larger than those seen in the linear pendulum examples (Fig. 3.6) as a consequence of

trying to capture nonlinear dynamics with a linear model.

3.3.2.1 Discussion on diagnostics

One of the strengths of the Bayesian approach is that it separates the learning stage from the

decision making stage, so if the initial decision rule yields an unsatisfactory estimate, one can

go back and analyze the posterior distribution to devise an improved decision rule. It was

noted earlier in Fig. 3.7 that the average MSE of (T)DMD is lower than that of the average

MSE of the Bayesian estimator over 500 datasets when the measurement noise is low. This

observation likely implies that there is a better decision rule that can be used to achieve

performance at least as strong as DMD. To understand how to best select a point from the

posterior to be our estimate, we first look at the posterior over the states. Fig. 3.11 shows

samples from the posterior predictive distribution for a single dataset containing n = 26

measurements with noise standard deviation of σ = 0.1. The mean deviates from the truth

near the peaks and valleys of the trajectory between about 2.5 and 4s. This is the same

50

(a) Bayes/DMD Pred. MSE (b) Bayes/TDMD Pred. MSE

Figure 3.7: Contours of the ratios from the nonlinear pendulum experiments. The experiment
is the same as in Fig. 3.2. A detailed explanation for the low noise regime where it appears
(T)DMD outperforms Bayes is given in Section 3.3.2.1.

(a) n = 24, σ = 10−1 (b) n = 24, σ = 1

Figure 3.8: Reconstruction performance for low-noise (top row) and high-noise (bottom row)
datasets for the nonlinear pendulum using a linear model. All three estimates capture the
truth closely in the low noise case, but only the Bayesian algorithm performs well (it is in
phase and approximately the correct amplitude) for the high noise case.

location in which the posterior appears to be significantly spread in possible predictions.

This presence of significant outliers is a result of the bimodal noise distribution previously

discussed. Furthermore, it is clear that the mean is not a good estimator in the case of

bimodal distributions; however, we see that there exists a mode in alignment with the truth.

Upon this realization, we can then craft a decision rule that selects this mode rather than

the mean for improved performance. In this case, the mode-based rule would result in

the Bayesian approach being 1.3 times better than the TDMD estimator. Moreover, this

entire analysis can be done a posteriori and therefore uses no additional assumptions or

requirements on our approach.

We also note that the effect this has on the MSE ratio appears more strongly in this

nonlinear case for two reasons. The first reason is that the higher process noise due to the

model error and low measurement noise can create a bimodal distribution because of the

alternate possibility of a good model with noisy data as shown earlier. The second reason is

51

(a) n = 24, σ = 10−1 (b) n = 24, σ = 1

Figure 3.9: Comparison shown here is the same as in Fig. 3.4, but this time for a nonlinear
pendulum truth model. In the low noise case, the estimates are all visually aligned with the
truth. In the high noise case, DMD fails and TDMD falls out of phase, but the Bayesian
algorithm remains robust and produces an accurate estimate.

that the ratio of process noise to measurement noise is higher than that in the linear case.

As we have shown in Theorem 3, the (T)DMD approaches effectively assume the existence

of process noise but no measurement noise. In cases where the linear and nonlinear models

are mismatched this becomes a better assumption.

In summary, for cases where the model error can be significant, a non-mean estimator

should be extracted from the Bayesian posterior. This estimator should be chosen by con-

sidering the bimodality of the learned process/measurement noise estimator, and can often

be the peak of one of the modes. If this is done (it is an a posteriori procedure), we have

seen that it yields improved performance compared to (T)DMD.

3.3.3 Linear pendulum with control

This last example demonstrates that as the noisiness and sparsity of data increase, the

performance of the Bayesian method decays at a slower rate than the LS+ERA method

from Section 3.2.2.

Consider a pendulum with unit length and mass with damping and random inputs. The

dynamics of such a system are given as

xk+1 = expm

([
0 1

− g
L
−1

]
∆t

)
xk +

[
0

1

]
uk,

yk =
[
1 0

]
xk + ηk; x0 = 0,

(3.20)

where expm is the matrix exponential and the inputs are Gaussian-distributed as uk ∼
N (0,∆t). The damping term is included to ensure that the A matrix is asymptotically stable

52

(a) True σΓ = 0.1 (b) True σΓ = 1.0

Figure 3.10: Marginal and joint posterior distributions of the process and measurement noise
variance parameters during the recovery of the nonlinear pendulum. In the left panel, the
joint distribution is bimodal, offering two possible models with the true case being strongly
preferred. In the right panel, all of the distributions are unimodal and in alignment with the
truth.

at all ∆t considered. This damping term ensures ρ(A) < 1, so the theoretical requirements

in [71] for the LS+ERA are met.

Data were collected from this system over a 20s training period at various timesteps

and noise levels. For this experiment, timesteps of ∆t = 0.10, 0.15, . . . , 0.50 and noise

ratios of σ = 0.00, 0.025, . . . , 0.200 were considered. Here, the noise ratio is defined as

σ := ση/max(x[1]), where ση is the standard deviation of the measurement noise. For

each noise-timestep pair, 100 realizations of data were generated, and every realization was

trained on separately such that each method estimated a set of 100 models per pair. Note

that since the inputs are random, the system behavior is also random and the noise ratio of

each dataset therefore varies, even within a given noise-timestep pair.

The model parameterization is

x0 =

[
θ1

θ2

]
; xk+1 =

[
θ3 θ5

θ4 θ6

]
xk +

[
θ7

θ8

]
uk + ξk, ξk ∼ N

(
0,

[
θ11 0

0 θ12

])
yk =

[
θ9 θ10

]
xk + ηk, ηk ∼ N (0, θ13).

(3.21)

The priors half-N (0, 10−6) and half-N (0, 1) were placed on θΣ and θΓ, respectively, and

an improper uniform prior was placed on the remaining 10 parameters. The LS+ERA and

MAP estimates were compared with respect to the log10 of the average MSE at each noise-

timestep pair. For a given value of σ and ∆t, let i = 1, . . . , 100 index the data realizations.

53

Figure 3.11: Posterior samples from the dataset with n = 26, σ = 0.1 that produced the
worst mean estimate out of the 500 with respect to MSE. This figure illustrates that the
mean deviates from the truth at the extrema of the curve where samples are skewed toward
larger magnitudes. Using a decision rule that selects the mode here would give a much better
estimate.

Then, the MSE on the ith dataset is defined as 1
n

∑n
k=1(xk[1]− ŷk(θi))2, where θi represents

the parameter estimate on the given dataset. Additionally, the MSE on a testing period of

20s beyond the training data was also calculated over time indices k = n+ 1, . . . , 2n. There

were a handful of outliers in the LS+ERA MSE that significantly skewed the average value,

so only the lowest 99 MSE values were used to compute the average MSE of the LS+ERA

estimate. The average MSE of the MAP estimate retains all 100 MSE values.

Contour plots of the log10 average MSE of the LS+ERA and MAP estimates are given

in Fig. 3.12. We observe that the LS+ERA performance degrades most significantly as the

timestep increases as a consequence of having fewer data available for estimation. The MAP

estimate, on the other hand, appears to degrade more as the noise ratio is decreased, but

its degradation due to increasing timestep is of similar magnitude. The slower degradation

along the timestep axis suggests that the Bayesian approach has low data requirements,

especially when the data are low-noise. Based on the colorbars of each set of plots, the MAP

estimate gives at least an order of magnitude of improvement over the LS+ERA estimate.

To get a better understanding of how each method performs when the data are noisy or

sparse, two datasets from different (noise-timestep) pairs were chosen on which to examine

the estimated output from each method. The selected pairs are the high noise, low sparsity

case (0.20, 0.1), and the low noise, high sparsity case (0.00, 0.5). These two pairs were chosen

so that the effect of high noise and high sparsity could be studied separately. Within each

pair, the data realization chosen was the dataset for which the LS+ERA method had the

lowest training MSE so that its peformance was fairly represented. The estimated outputs

of the two estimates are shown in Figs. 3.13a and 3.13b for the high noise and high sparsity

54

(a) LS+ERA Training (b) LS+ERA Testing (c) MAP Training (d) MAP Testing

Figure 3.12: Contour plots of the log10(MSE) of the LS+ERA and MAP estimates on Sys-
tem 3.20. Fig. 3.12a and 3.12c are the training MSE and Figs. 3.12b and 3.12d are the
testing MSE.

cases, respectively. Furthermore, we examine the impulse response to check whether the

model only learned how to produce sinuoids at a given frequency or if the estimated system

actually approximates a realization of the state-space matrices as desired. The impulse

response for the models in the high noise and high sparsity cases are shown in Figs. 3.13c

and 3.13d, respectively.

To represent the posterior predictive distribution, 106 samples were drawn using the

DRAM within Gibbs procedure described earlier in Section 2.3.3.1, the first 105 were dis-

carded as burn-in, and 100 samples selected at regular intervals were simulated and plotted.

The blue ‘mean’ line indicates the mean of these posterior predictive samples.

In the high noise, low sparsity case (Figs. 3.13a and 3.13c), the mean estimate and

LS+ERA estimate both appear to fit the truth fairly well, despite the noisiness of the data.

The MSE of the LS+ERA estimate over the full 40s is 2.86 × 10−4 and the MSE of the

mean estimate is 4.74 × 10−4. This was the only dataset on which the LS+ERA MSE was

less than that of the MAP estimate. In fact, the next lowest LS+ERA training MSE was

4.68×10−4, which is larger than the average MAP training MSE of 4.47×10−4. Furthermore,

the standard deviations of the LS+ERA training and testing MSE over all 100 datasets are

1.72× 10−2 and 2.58× 10−2 respectively, while the training and testing standard deviations

of the MAP are 3.65 × 10−4 and 5.56 × 10−4, respectively. The fact that the standard

deviation of the LS+ERA MSE is about 100 times greater than that of the MAP MSE

indicates that there are far worse LS+ERA estimates than the one presented here, but the

MAP estimates likely all resemble the one shown in the figure. In the impulse response, the

LS+ERA estimate is also closer to the truth than the mean estimate, but the posterior is

wide and encompasses the truth. Therefore, the Bayesian method is ‘aware’ of the error and

gives a reasonable quantification of the estimate uncertainty. In the low noise, high sparsity

case (Figs. 3.13b and 3.13d), the posterior is so narrow that it visually appears as a single

line, indicating low uncertainty. In both the output and impulse response plots, the mean is

55

directly on top of the truth, and the LS+ERA estimate has large discrepancies between its

output and the truth. In contrast to the Bayesian estimate, the LS+ERA method has no

way to identify this larger error/uncertainty.

(a) σ = 0.2, ∆t = 0.1 (b) σ = 0.0, ∆t = 0.5 (c) σ = 0.2, ∆t = 0.1 (d) σ = 0.0, ∆t = 0.5

Figure 3.13: The Bayesian estimate is compared to the LS+ERA with n̄ = 18. The top row
shows the LS+ERA estimate, deterministic simulations of 100 posterior samples, and the
mean of the sample outputs. The bottom row shows the impulse response of each of these
estimates. The left column shows the high noise, low sparsity case. The right column is the
low noise, high sparsity case.

3.4 Summary

In this chapter, we considered the problem of learning state-space realizations of linear

systems. Specifically, we considered DMD and single rollout Markov parameter estimation

algorithms. We showed that the marginal likelihood reduces down to the DMD objective

if we assume that there is no measurement noise and that the process noise covariance

matrix is proportional to the identity matrix. We also showed that the single rollout Markov

parameter estimation objective is equivalent to the marginal likelihood under the assumption

of conditionally independent data. Finally, we provided numerical experiments showing how

the flexibility of the marginal likelihood allows it to outperform these other two objectives

at varying levels of data noise and sparsity.

56

CHAPTER IV

Nonlinear System Identification

In nonlinear system ID, there are certain behaviors that the models and underlying systems

can exhibit that make many LS objectives unsuitable for estimation. For example, many

nonlinear models can have their states go to infinity in finite time depending on the model

parameters. Therefore, if the objective requires the model to be simulated over a relatively

long period of time, the optimizer will likely run into this diverging behavior often. When

the states diverge, the objective function value and gradients are undefined, which makes

optimization especially difficult. Another example is chaos. In a chaotic system, arbitrarily

small perturbations to the state grow exponentially over time. Thus, even small errors in the

model’s simulated state can quickly lead to large errors, making it difficult to discern good

models. Mechanically, these issues lead to objectives that are multi-modal and difficult to

optimize.

In this chapter, we consider two popular methods for addressing these optimization dif-

ficulties. The first approach uses a basis expansion to model a vector field and then poses

the estimation problem as a linear least squares problem to find the basis coefficients. When

this approach additionally includes threshholding as a form of sparsification, it is known as

SINDy [10]. The second approach introduces a simulation length into the objective as a hy-

perparameter as a means to avoid the excessive error growth common in nonlinear systems.

Using such an objective is known as MS [9], and it has been shown to create smoother, and

therefore easier to optimize, objective function surfaces.

4.1 Theoretical foundations and analysis

We begin by presenting the objective functions for SINDy and MS. Similarly to the previous

chapter, we will then derive the assumptions required for the marginal likelihood to take the

form of each objective. This section concludes with a numerical comparison showing that,

much like the time horizon parameter in MS, the process noise variance parameter in the

57

marginal likelihood can deliver similar smoothing effects to the objective function surface.

4.1.1 Regularized regression for nonlinear models

For computational efficiency and ease of optimization, it is often convenient to formulate

nonlinear system ID as a linear least squares problem. If a parsimonious solution is desired,

as is often the case, regularization can also be added. One such approach that uses sparsity-

enhancing regularization is the method of sparse regression or SINDy. These approaches

organize a library of candidate functions (linear and nonlinear) into a matrix. They then

aim to approximate the time derivative, or vector field, in the span of this library. For

instance,

ẋ = f(x) ≈
[
1 x x2 . . . xdθ

] [
θ1 θ2 . . . θdθ

]>
. (4.1)

This example uses monomial candidate functions, but any basis (wavelets, orthogonal poly-

nomials, empirical bases) can be used.

Suppose that the general dictionary of terms is given by Ξ : Rdx → Rdx so that the

deterministic portion of some continuous-time autonomous dynamics can be written as a

linear system with respect to the parameters/coefficients of the functions in the dictionary

ẋ = Ξ(x)θΨ. If direct data were available on the states and derivatives, one might then try

to solve a (regularized) linear least squares problem for the parameters

θΨ = arg min
θ̃

n∑
k=0

‖ẋk − Ξ(xk)θ̃‖2
2 + λ‖θ̃‖, (4.2)

where λ is a regularization weight, and the norm can be chosen by the user. If the L1 norm

is chosen, this becomes a sparse regression problem.

Practical applications, however, do not have data on the derivative of each state. As a

result, various numerical approximations can be made, and this is the approach taken by

the SINDy algorithm. Here, we will consider one type of numerical approximation to the

derivative, but our analysis can be extended to others. If a forward-difference approximation

to the time derivative is taken, then the SINDy objective function is

θΨ = arg min
θ̃

n∑
k=1

∥∥∥∥yk − yk−1

∆t
− Ξ(yk−1)θ̃

∥∥∥∥2

2

+ λ‖θ̃‖1. (4.3)

Notice that this approach requires direct observation of the states. Next we show that this

estimate is equivalent to the MAP of our target conditional distribution under more strict

58

assumptions.

Theorem 4 (SINDy as a MAP estimate of system (2.5)). Let Ξ(x) : Rdx → Rdx denote a

library of candidate functions for continuous time drift dynamics. Let Ψ(x;θΨ) denote the

resulting discrete-time operator that uses a forward-Euler integration scheme

Ψ(x,θΨ) = x + ∆tΞ(x)θΨ. (4.4)

Furthermore, assume an identity observation operator h = I; noiseless measurements Γ(θΓ) =

0; identity process noise Σ(θΣ) = I; and a Laplace prior π(θΨ) ∝ exp
(
−λ̃|θΨ|

)
. Then, the

MAP estimate of the posterior distribution (2.2) is equivalent to the SINDy estimator ob-

tained by minimizing (4.3).

Proof. This proof is again a straightforward application of Theorem 2. Recall that the

data are taken on the initial condition, and note that we have yk = xk. The log marginal

likelihood (2.26) is then

logL(θ;Yn) =
n∑
k=1

(
− 1

2
‖yk − (yk−1 + ∆tΞ(yk−1)θΨ)‖2

Idx

+ log|Idx|
)
− ndx

2
log 2π − n

2
log|Idx|

(4.5)

= −∆t

2

n∑
k=1

∥∥∥∥yk − yk−1

∆t
− Ξ(yk−1)θΨ

∥∥∥∥2

2

− ndx
2

log 2π. (4.6)

Then we can drop the parameter-independent term and add the log prior to obtain a posterior

that is proportional to

log π(θ;Yn) ∝ −∆t

2

n∑
k=1

∥∥∥∥yk − yk−1

∆t
− Ξ(yk−1)θΨ

∥∥∥∥2

2

− λ̃|θΨ| (4.7)

= −∆t

2

(
n∑
k=1

∥∥∥∥yk − yk−1

∆t
− Ξ(yk−1)θΨ

∥∥∥∥2

2

+
2λ̃

∆t
|θΨ|

)
. (4.8)

Maximizing the posterior is equivalent to minimizing the term in the parentheses. By setting

λ ≡ 2λ̃
∆t

, we see that this is the exact form of the SINDy objective (4.3).

4.1.2 Multiple shooting objective

Next, we turn to an approach that does not admit a closed-form solution, but instead

tries to balance ease of optimization with noise-robust estimation: MS. In MS, the output

59

trajectory is divided into L disjoint subtrajectories with initial times {t`i}Li=1 such that the

ith subtrajectory has length ∆`i := `i+1 − `i. Then the output at time tk contained within

the ith subtrajectory is estimated as ŷk = f(x`i ,u`i:k, tk;θ). Such an objective function

requires the estimation of the set of subtrajectory initial conditions ZL := {x`i}Li=1, which

can be done by adding the initial conditions as parameters [83], training an encoder [66, 6],

or, if the system is fully observed, simply using the data x`i = y`i [112]. In effect, this

method introduces additional parameters (the initial conditions) as the cost for an improved

estimate.

The MS objective function is defined as

J (θ) =
L∑
i=1

`i+1−1∑
k=`i

‖yk − ŷk‖2
2, (4.9)

where `L+1 := n + 1. Oftentimes, a constant length of T = ∆`i for all i = 1, . . . , L is used

for simplicity. In the case T = n, the objective is equivalent to the deterministic LS, and if

T = 1, the objective is equivalent to the propagator LS. Therefore, when 1 < T < n, MS

can be seen as a combination of these two objectives. In the original paper [9], the objective

additionally had the constraint that x`i+1
= Ψ∆`i(x`i ,u`i:`i+1

,θΨ), but this constraint is

sometimes removed to simplify optimization. We will distinguish between the objectives

with and without the constraints by referring to them as the constrained and unconstrained

MS objectives, respectively.

4.1.2.1 Relation to probabilistic approach

From a probabilistic perspective, the MS objective amounts to a joint parameter-state es-

timation problem. Rather than estimating the state at every timestep, however, only the

subset of subtrajectory initial conditions ZL ⊆ Xn are estimated. The posterior of such a

problem can be factorized with Bayes’ rule as

π(ZL,θ|Yn) ∝ L(θ,ZL;Yn)π(ZL,θ). (4.10)

Factorizing further, the likelihood can be decomposed as L(θ,ZL;Yn) =
∏`i+1−1

k=`i
π(yk|x`i ,θ)

and the prior as π(ZL,θ) = π(θ)
∏L

i=1 π(x`i |x`i−1
,θ), where π(x`1|x`0 ,θ) := π(x`1|θ). Each

term in the likelihood π(yk|x`i ,θ) can still be evaulated with Algorithm 1 using data from

only a single trajectory.

The most significant difference is that the prior has the added terms π(x`i |x`i−1
,θ), which

can be evaluated as π(x`i |x`i−1
,θ) =

∫ ∏`i
k=`i−1+1 π(xk|xk−1)×dx`i−1dx`i−2 . . . dx`i−1+1. This

60

equation shows that π(x`i |x`i−1
,θ) can be seen as representing the probability of x`i aver-

aged over all trajectories that start at x`i−1
with dynamics determined by θ. Alternatively,

this term can be viewed as a soft constraint enforcing the estimated initial conditions to

be connected by a single trajectory with initial condition x`1 . Under certain conditions,

this constraint is equivalent to the MS constraints. Furthermore, estimators based on the

posterior (4.10) are equivalent to estimators using the (un)constrained MS objective (4.9)

under certain assumptions. This result is stated in Proposition 4.

Proposition 4. Assume an improper uniform prior distribution on the parameters θ and

zero process noise Σ = 0. Then, the negative log marginal likelihood of the joint parameter-

state estimation problem (4.10) is equivalent to the unconstrained MS objective (4.9). More-

over, the negative log posterior is equivalent to the constrained MS objective.

Proof. According to Theorem 2 in [28], each term π(yk|x`i ,θ) in the marginal likelihood is

equivalent to a deterministic LS objective when Σ = 0. Then, taking the negative log of this

product gives the unconstrained MS objective. When the prior over the states is added, each

term π(x`i |x`i−1
,θ) approaches the Dirac delta function δ

Ψ
∆`i (x`i−1

,u`i−1:`i
,θΨ)

(x`i) as Σ→ 0.

These delta functions are equivalent to the constraints in the constrained MS objective. The

prior over the parameters is constant, so taking the negative log of the posterior yields the

constrained MS objective.

4.1.2.2 Comparison of smoothing effects

Now that it is understood that the MS objective is equivalent to an objective of a joint

parameter-state estimation problem, we demonstrate empirically that the additional ex-

pense of inferring the subtrajectory initial conditions is not computationally necessary. More

specifically, we demonstrate that the proposed marginal likelihood improves the optimization

surface in a similar fashion to the MS objective, and we provide a brief discussion on the

advantages of the proposed approach.

To show the similarity of the smoothing effects in MS and the marginal likelihood, the

logistic map example from [83] is considered. The logistic map is defined as

yk+1 = θyk(1− yk). (4.11)

This system exhibits chaotic behavior when θ is within the range [3.57, 4]. For this example,

θ was set to 3.78, an initial condition of y0 = 0.5 was used, and 200 noiseless data points

were collected. To show how the objective surfaces vary with θ, all other parameters must

be fixed. For the MS objective, the initial conditions were set to the true values, and for the

61

marginal likelihood, we set Γ = 10−16 to maintain positive definiteness. Then, the objectives

were compared at different time horizons T and variance ratios Σ/Γ. The ratio Σ/Γ is used

because in this problem, the shape of the objective did not appear to change for a fixed

ratio, regardless of the Σ and Γ values. Note that the validity of using this ratio is only

possible since the full state is observed, meaning that Σ and Γ are represented in the same

coordinate frame.

Both surfaces were normalized to equal 1.0 at θ = 2, and the results are shown in Fig. 4.1.

There is no exact mapping between T and Σ/Γ, so the values of Σ/Γ were chosen such that

the smoothness of the marginal likelihood roughly matched that of the MS objective by visual

comparison. Fig. 4.1a shows values of T and Σ/Γ where MS is equivalent to and the marginal

likelihood approximates the deterministic LS. Due to the chaotic nature of this system, the

deterministic LS objective is filled with local minima that make optimization extremely

difficult. As T is decreased and Σ is increased, both surfaces show increasing smoothness,

demonstrating the similar effect these variables have on their respective objectives. An

important difference to note between T and Σ is that T is a discrete scalar variable, whereas

Σ is a positive definite matrix of continuous values. Therefore, Σ gives the user greater

flexibility when tuning the marginal likelihood, including the ability to use different variance

values for different components of the state.

4.2 Numerical experiments

We now seek to compare SINDy and MS objectives on a number of different numerical ex-

periments that include chaotic systems, PDEs, and physical data. We will show that SINDy

can be very sensitive to measurement noise and timestep since it relies on time derivative

estimation. The marginal likelihood, however, is robust to noise and can outperform SINDy

even when the model form is known. Then, we show that that although MS can achieve

lower MSE on training data than the marginal likelihood, it usually performs worse on test-

ing data. This is a consequence of the fact that it has no method of regularization, whereas

the log det Sk in the marginal likelihood can effectively prevent overfitting. The code for

these experiments can be found at https://github.com/ngalioto/BayesID.

4.2.1 Vector field estimation

In the first set of numerical experiments, our aim is to estimate the set of differential equa-

tions, or vector field, governing the system of interest. Modeling the vector field of a system

is often more general than learning a discrete mapping since it can be applied to different

62

https://github.com/ngalioto/BayesID

(a) T = n, Σ/Γ = 10−10 (b) T = 10, Σ/Γ = 0.5

(c) T = 5, Σ/Γ = 0.7 (d) T = 2, Σ/Γ = 1.0

Figure 4.1: Comparison of the log marginal likelihood and MS objective as Σ and T , respec-
tively, vary.

time discretizations. Differential equations also have the added benefit of being more inter-

pretable than discrete maps. In fact, models derived from physics are typically found in the

form of differential equations. As a result, grey-box models often fall under this category of

vector field estimation.

The first system that we consider is the Van der Pol oscillator, which displays nonlinear

behavior in the form of a limit cycle. We then consider two known model forms in which

we attempt to estimate the unknown parameters. The first of these systems is the chaotic

Lorenz 63 system, and the second is a reaction-diffusion PDE. Since we are attempting to

estimate a vector field, we will compare to SINDy in all experiments in this section.

4.2.1.1 Van der Pol oscillator

Consider the nonlinear Van der Pol oscillator[
ẋ1

ẋ2

]
=

[
x2

µ(1− x2
1)x2 − x1

]
, x0 =

[
0

2

]
, (4.12)

63

where µ = 3. For both the Bayesian and SINDy algorithms, we consider a subspace of right

hand sides that is spanned by a set of candidate functions. We choose monomial candidates

up to third degree and their interacting terms. As a result, each algorithm seeks to learn

20 dynamics parameters (10 for each state). The Bayesian algorithm is additionally tasked

with learning the covariance matrices parameterized as follows:

Σ(θΣ) =

[
θ21 0

0 θ22

]
, Γ(θΓ) = θ23I2. (4.13)

The priors on the dynamics parameters are Laplace distributions with zero mean, and the

variance parameters priors are once again half-normal distributions.

We consider two cases: one where SINDy shows strong performance, and one in which

SINDy struggles, and we show that the Bayesian algorithm yields an accurate estimate in

both cases. The case in which SINDy excels is frequent and low noise data. Here, n = 2000

measurements were taken over the course of 20s with measurement noise standard deviation

of σ = 10−3. In the opposing case, we collect only n = 200 measurements over 20s with

measurement noise standard deviation of σ = 2.5× 10−1.

The reconstructions from these experiments are shown in Fig. 4.2, predictions are given

in Fig. 4.3, and the phase plots over 200s are given in Fig. 4.4. Here, the mode represents the

mode of the posterior predictive distribution. In the low noise case, we see that the Bayesian

algorithm and SINDy both capture the dynamics very closely. We see that SINDy agrees

slightly more closely with the trajectory as a result of its hard threshold regularization. Note

that the posterior in this case is very small because the high number of data points and low

measurement noise gives us high certainty in our estimate. In the high noise case, we see

that SINDy gives a similar result to what DMD gave when the measurements were noisy:

the trajectory immediately flatlines. When the data are noisy like this, the procedure for

SINDy is to denoise the data using total variation (TV) regularization [14] before executing

the algorithm. However, the increased timestep between data makes it difficult to accurately

denoise the data, and when the TV regularization is performed, SINDy ends up giving an

unstable estimate. The Bayesian approach, however, is still able to identify the dynamics of

the Van der Pol system. The posterior in this high noise case is wider, signifying that the

estimate holds more uncertainty than the low noise and frequent measurements case.

4.2.1.2 Lorenz 63

Next, we consider the case where the model form is known, for instance from physical

laws, but the parameters are uncertain. This is the classical inference setting and has seen

64

(a) Reconstruction (b) Reconstruction

Figure 4.2: Comparison of reconstruction error amongst the Bayesian and SINDy algorithms
for the Van der Pol system. Top row corresponds to a low-noise/dense-data case, and the
bottom row corresponds to a high-noise/sparse-data case. Left column corresponds to the
first state (position), and right column corresponds to the second state (velocity). The
Bayesian estimator is able to accurately reconstruct the dynamics, even in the presence of
high noise.

(a) Prediction (b) Prediction

Figure 4.3: Comparison of prediction error amongst the Bayesian and SINDy algorithms for
the Van der Pol system. The meaning of the figures is the same as described in Fig. 4.2.
The model learned by the Bayesian estimator is still accurate at a different initial condition.

a lot of development [53, 22, 65, 64], including in the computational physics community.

However, much of this literature either only considers deterministic dynamics according to

some variation of Eq. (1.2) or only static problems. In this section, we show that we are

able to effectively learn chaotic dynamics by imposing process noise in the estimation with

a much smaller amount of data than observed in the literature.

Consider the chaotic Lorenz 63 system [60]ẋ1

ẋ2

ẋ3

 =

 θ1(x2 − x1)

x1(θ2 − x3)− x2

x1x2 − θ3x3

 , x0 =

 2.0181

3.5065

11.8044

 . (4.14)

The initial condition of this system was chosen so as to sit on the attractor. We attempt

65

(a) σ = 10−3, n = 2000 (b) σ = 2.5× 10−1, n = 200

Figure 4.4: Phase-diagram reconstruction for the Van der Pol oscillator under the two indi-
cated data conditions. In the low-noise and frequent data domain, both the Bayesian and
SINDy estimates lie directly on the truth. In the high noise-case, the Bayesian posterior is
wider, but is still visually aligned with the truth. The SINDy estimate is unable to recover
the limit cycle, and the large “x” marks the equilibrium point to which SINDy converges, as
shown in Fig. 4.3.

only to learn the parameters θΨ = (θ1, θ2, θ3), where the ground truth values are θΨ =

(10, 8/3, 28). Computing the likelihood for chaotic systems can be difficult. Since filtering

chaotic systems is well-known to be challenging, it may seem that our approach would

breakdown. Here we show that our Gaussian filtering approach is still able to learn an

approximate dynamical system without resorting to more complicated likelihood building

processes, e.g., using correlation integrals [37, 96].

The priors on the dynamics parameters are once again improper and uniform. In addition

to learning the model parameters in this example, we also learn the process noise variance

for each state and the measurement noise variance for a total of seven parameters. The

parameterizations of the covariance matrices are shown:

Σ(θΣ) =

θ4 0 0

0 θ5 0

0 0 θ6

 , Γ(θΓ) = θ7I3, (4.15)

with half-normal priors as before.

We collect 100 data points uniformly spaced over 10s with a true measurement noise

standard deviation of 2.0. The predicted state trajectories after 10s of simulation using the

parameter posterior mode are shown in Fig. 4.5. Similar to the Van der Pol oscillator, the

dynamics exist on a low-dimensional attractor in phase space, and the wide, but constant,

posterior distribution once again reflects this fact. Fig. 4.6 shows the reconstructed and

66

predicted attractors from the Bayesian algorithm. These figures show that while we cannot

accurately capture the state, indeed all methods would eventually break down due to the

chaotic nature of the system, we do predict a qualitatively similar attractor. As such, one

would expect that most post-processing of these attractors, e.g., for control, would yield

similar results.

(a) Prediction of x (b) Prediction of y (c) Prediction of z

Figure 4.5: Lorenz 63 prediction posteriors. Although the trajectories become misaligned
rather quickly due to the chaotic nature of the system, the posterior phase diagram 4.6 reveals
that the algorithm has discovered that the dynamics exist on a low-dimensional attractor.

(a) Reconstruction (b) Prediction

Figure 4.6: Reconstruction and prediction of the Lorenz 63 attractor. The right panel
compares the predicted and true trajectories up to 200s using the mode of the parameter
posterior distribution. The proposed approach is able to successfully discover the Lorenz
attractor from sparse, noisy data.

In addition to assessing the model’s predictive ability, we can also use the posterior

samples to estimate the value of the parameters themselves. Fig. 4.7 shows the marginal

distributions of the parameter posterior with the truth values marked by the dashed red

67

line. These distributions are relatively wide as a result of the large amount of noise in the

data but are still able to encompass the truth values, demonstrating the robustness of the

approach. We can also infer from these distributions that the model is more sensitive to the

value of θ2 since the marginal distribution of this parameter is much more narrow than the

other two.

Similar to the eigenvalues of the linear pendulum in Section 3.3.1, the samples collected

here can be used to investigate the probability distribution of any dynamical quantity of

interest. Fig. 4.8 shows the estimation of the three Lyapunov exponents of the Lorenz system.

Lyapunov exponents are a measure of the exponential growth rates of generic perturbations

of a system. A positive Lyapunov exponent implies that an arbitrarily small perturbation

will grow exponentially large over time. Such systems are considered to be chaotic [75]. Here,

the Lyapunov exponents are computed using a function from MATLAB file exchange [33]

that uses the algorithm proposed in [106]. The red line denotes the approximated value of

the Lorenz system’s Lyapunov exponents using the truth values of the parameters. When

approximating the Lyapunov exponents of a system, the growth of the intial perturbation

is dominated by the largest Lyapunov exponents, making the smaller Lyapunov exponents

more difficult to estimate precisely. This fact is reflected in the distribution of λ3, which is

much wider than the other two. We see that for each exponent, the truth value is contained

in its respective distribution at a relatively high probability value.

(a) θ1 Estimate (b) θ2 Estimate (c) θ3 Estimate

Figure 4.7: Posterior of the Lorenz 63 dynamics parameters. The distributions are relatively
wide due to the high amount of noise in the data but still encompass the truth values,
indicated by the dashed red line.

4.2.1.3 Reaction diffusion

In the final vector field example, we aim to show that the marginal likelihood is applicable to

spatial problems. This experiment considers both a PDE and a case where the measurement

68

(a) λ1 Estimate (b) λ2 Estimate (c) λ3 Estimate

Figure 4.8: Posterior of the Lyapunov exponent estimation of the Lorenz 63 system. The
distribution of λ3 is wider than the other two because the behavior of the system is dominated
by the first two exponents, making the third difficult to estimate with high certainty.

operator h is not the identity. The reaction diffusion PDE is given by

∂C1

∂t
= θ1

∂2C1

∂x2
+ 0.1− C1 + θ3C

2
1C2,

∂C2

∂t
= θ2

∂2C2

∂x2
C2 + 0.9− C2

1C2,

(4.16)

where C1 and C2 specify the concentrations. A one-dimensional spatial grid was selected to

have regular intervals of 0.4 units between boundaries of -40 and 40 for a total of 201 grid

points for each of the two states. The boundary conditions at x = ±40 are

∂C1

∂x
=
∂C2

∂x
= 0, (4.17)

and the initial condition of the system was drawn from a uniform distribution as shown

(Ci)j ∼ U [0.4, 0.6], for t = 0; ∀i = 1, 2; ∀j = 1, . . . , 201. (4.18)

Similar to the Lorenz example, we attempt to learn only the model parameters θ1, θ2,

and θ3 rather than the complete model. The measurement covariance matrix is assumed to

be known, and the process noise covariance is fixed to be 1e-8 such that the total number

of parameters that we are learning remains only three. The observation operator indirectly

measures the concentration through only the first two moments of the concentration of the

69

first species at certain time intervals:

y1(t) =

∫ 40

−40

C1(t) dx,

y2(t) =

∫ 40

−40

C2
1(t) dx.

(4.19)

We collect measurements every 0.5s for 15s with noise standard deviation of 10−2. The

reconstructions and predictions of the moments from these data using the mode of the pa-

rameter posterior distribution are shown in Fig. 4.9. Additionally, the true and reconstructed

contours of C1 and C2 are shown in Fig. 4.10. The Bayesian estimate shows close agreement

with the truth.

(a) n = 30, σ = 10−2 (b) Prediction

Figure 4.9: Reconstruction and prediction of the observables of the reaction diffusion system.
The top row shows the reconstruction, and the bottom row shows the prediction for an
alternate initial condition. The left column is the first measurement state (first moment),
and the right column is the second measurement state (second moment). The estimates are
very close to the truth, demonstrating the generality of the learned model.

(a) True (b) Reconstructed

Figure 4.10: The experiment is the same as in Fig. 4.9. The top row shows the true contours
of C1 and C2. The bottom row shows the contours of C1 and C2 reconstructed using the
mode of the parameter posterior distribution. Visually, the two rows appear very similar,
reflecting the strong performance of the Bayesian algorithm.

70

4.2.2 Discrete-time neural network mappings

The goal of the second set of experiments is to estimate a discrete-time mapping of the system

dynamics using a neural network. Working with discrete-time mappings rather than vector

fields can be advantageous for the sake of numerical stability and efficiency. No numerical

integration is needed, so one does not need to worry about stiffness or numerical error (other

than machine precision). Also, only one evaluation of the estimated model is needed to step

forward in time.

We use a similar neural network architecture throughout these experiments, changing

only the dimensions of the input and output layers to match the dimensions of the system

at hand. Following the approach of [6], the neural network has a single hidden layer with 15

nodes and tanh activation functions. Additionally, a linear transformation from the input of

the network directly to the output is included such that the network form is

zout = A1(θ) tanh(A2(θ)zin + b2(θ)) + A3(θ)zin + b3(θ), (4.20)

where zin =
[
x>k uk

]>
. If the network parameterizes the dynamics function Ψ, then zout =

xk+1, and if it parameterizes the observation function h, then zout = yk.

In this section, we will consider learning a Wiener-Hammerstein system using data col-

lected from a physical system. This dataset is considered to be a benchmark problem in

system ID. Then we consider the forced Duffing oscillator in the chaotic regime. Lastly,

we consider learning the dynamics of a quantity of interest from a PDE system. In each

example, we compare the negative log marginal likelihood to the MS objective.

4.2.2.1 Wiener-Hammerstein benchmark

First, experimental data collected from a nonlinear system is considered. For this example,

the proposed Bayesian method is tested on the Wiener-Hammerstein benchmark [90], which

is a standard dataset that has been used to compare the performances of different nonlinear

system ID methods. The benchmark dataset is composed of 188,000 low-noise input-output

data points, with a suggested training/testing split of 100,000/88,000. The best performance

to date on this benchmark to the authors’ knowledge comes from [6], which uses the MS

objective. In this experiment, the method of [6] will be compared to the Bayesian method.

Because the dataset has such a high number of data points with low measurement noise,

the advantages of the Bayesian approach are not nearly as evident. It will be shown, however,

that methods that work well with a large amount of low-noise data are not necessarily best-

suited for estimation when the data are few and noisy. To this end, only the first 1,000

71

data points of the original 100,000 point training set were used for training. Furthermore,

zero-mean Gaussian noise with standard deviation σ = 0.0178 was added to these training

data. This standard deviation is equal to 1% of (ymax − ymin).

Both the dynamics model Ψ and measurement model h are parameterized by neural

networks with the form in Eq. 4.20. The latent dimension of the state space is dx = 6, which

results in a total number of 401 parameters in Ψ and h combined. The one difference between

our model and that of [6] is that rather than learning an encoder function to estimate the

current state, the initial condition is estimated directly. The priors used for this model were

half–N (0, 10) on θΣ, half–N (0, 0.01) on θΓ, and N (0, 0.2) on the remaining parameters.

Before training, the input and output data were both normalized to have zero means

and standard deviations of one. The comparison method was trained with Adam batch

optimization using the available code in the repository linked by [6]: https://github.com/

GerbenBeintema/SS-encoder-WH-Silver. The batch size was reduced from 1,024 to 256 to

handle the smaller dataset, but the number of epochs was kept at 100,000. The time horizon

was also kept at T = 80 since it was chosen according to the time scale of the system, which

does not change. The Bayesian method was trained for 10,000 iterations. Then, 105 samples

were drawn from the posterior, and 2× 104 were discarded as burn-in.

Figs. 4.11a and 4.11b show the estimated output of the Bayesian and MS estimates in the

time domain during the training period and during the last 1,000 iterations of the testing

period, respectively. The posterior predictive distribution is represented by 100 samples

drawn at regular intervals from the collected samples and simulated deterministically. ‘Mean’

refers to the mean of these 100 posterior predictive samples. In Fig. 4.11a, the estimates look

nearly identical. In Fig. 4.11b, some noisiness has appeared in the MS estimate indicative

of overfitting, but the Bayesian estimate remains smooth due to its inherent regularization.

Figs. 4.11c and 4.11d show the errors during the testing period in the time and frequency

domain, respectively. The MSE values of the MS and mean estimates on the testing data

are 1.0948 × 10−3 and 1.2546 × 10−4, respectively. The posterior predictive mean MSE is

over 8.7 times lower than that of MS, demonstrating that even state-of-the-art methods can

rapidly degrade in the presence of noise.

4.2.2.2 Forced Duffing oscillator

Next, the utility of the proposed Bayesian method for learning chaotic behavior will be

demonstrated. For this example, the Duffing oscillator is considered. The governing equation

72

https://github.com/GerbenBeintema/SS-encoder-WH-Silver
https://github.com/GerbenBeintema/SS-encoder-WH-Silver

(a) Training period (b) Testing period subset

(c) Time domain error (d) Freq. domain error

Figure 4.11: The top row shows the trajectory estimates of the MS and Bayesian methods
over the duration of the training data in Fig. 4.11a and over the last 1,000 testing data in
Fig. 4.11b. The bottom row shows the error between the unaltered data and the estimates
in the time, Fig. 4.11c, and frequency, Fig. 4.11d, domains.

of the Duffing oscillator is[
ẋ

ẍ

]
=

[
0 1

α δ

][
x

ẋ

]
+ β

[
0

x3

]
+

[
0

1

]
γ cos(ωt). (4.21)

Depending on the values of the parameters, the solution of this system can be periodic or

chaotic. In this example, the parameter values are α = 1, δ = −0.3, β = −1, ω = 1.2, and

γ = 0.65 following an example in [47] that yields chaotic behavior. To generate the data

for this problem, an initial condition of (x, ẋ) = (0, 0) is used, and the system is simulated

for 600s before data collection to eliminate any initial transient behavior. After this initial

period, the position x of the system is measured every ∆t = 0.25s for 300s for a total of 1,200

data points, each with additive noise drawn fromN (0, 10−6). The observation operator h and

measurement noise covariance Γ are assumed to be known, and the dynamics model is the

73

neural network architecture (4.20) from the previous example with latent space dimension

dx = 2. The priors are half–N (0, 10−4) on θΣ, and N (0, 0.2) on the remaining parameters.

For sampling, 106 samples are drawn and half are discarded as burn-in.

The Bayesian posterior is compared to the deterministic LS and MS objectives, and the

results are shown in Fig. 4.12. For the MS objective, a time horizon of T = 200 was used.

Smaller values of T in the range [30, 80] were tried but were found to give worse estimates.

Figs. 4.12a and 4.12b show 25 posterior samples and the estimated MAP point simulated

stochastically and deterministically, respectively. Fig. 4.12c shows the LS and MS estimates.

The truth is plotted alongside the estimates in each figure for comparison. The LS estimate

is clearly the worst in these figures out of the three, but the MSE of the LS estimate is

actually lower than that of the MAP estimate. The LS estimate has an MSE of 0.7419, and

the MAP estimate has an MSE of 1.2791. This shows that for certain system ID problems,

especially ones including chaotic behavior, the LS objective induces a nonsensical ranking

within the model space.

Although it is difficult to identify any sort of structure in the time domain of a chaotic

system, the Duffing oscillator possesses an invariant set known as an attractor in phase space.

Therefore, one way to assess how similar a model is to the underlying system is by comparing

the phase space of the two systems. Figs. 4.12d, 4.12e, and 4.12f show the phase space of

the MAP model, MS model, and truth system, respectively, over 600s. The MS and MAP

models have similar shapes to the truth attractor, and both have foci near ±(1, 1) around

which their outputs rotate. The MS model’s attractor, however, becomes larger around its

−(1, 1) focus compared to both its +(1, 1) focus and the truth attractor. In contrast, the

structure of the MAP model visibly appears consistent with the truth attractor, suggesting

that it is a more accurate representation of the truth despite its high MSE.

4.2.2.3 Allen-Cahn equation with forcing

In certain applications involving PDEs, one is not interested in the full-field solution but

only in certain statistics of the full field [68, 13]. In this experiment, the goal is to learn

a dynamical model of a PDE quantity of interest (QoI) that can be used for forecasting.

Continuing with a focus on non-autonomous systems, we consider an example of the Allen-

Cahn equation with forcing that was used in [23]. The system uses Neumann boundary

conditions, and its dynamics are given as

∂

∂t
w(ξ, t) = σ

∂2w

∂ξ2
+ w(1− w2) + χδ(ξ)u(t), (4.22)

74

(a) Stoch. sim. (b) Det. sim. (c) Det. sim.

(d) MAP phase (e) MS phase (f) Truth phase

Figure 4.12: Figs. 4.12a and 4.12b compare the posterior predictive distribution and MAP
to the truth, where the posterior samples and MAP are generated using stochastic and
deterministic simulation respectively, and Fig. 4.12c shows deterministic simulations of the
MS and LS estimates. Figs. 4.12d, 4.12e, and 4.12f show the phase space of the MAP, MS,
and truth, respectively, over 600s.

where w is the flow, ξ ∈ [−1, 1] is the spatial coordinate, t ∈ [0,∞) is the time coordinate,

u is the control input, and χ is an indicator function that takes the value one when ξ ∈ δ =

[−0.5, 0.2] and zero otherwise. The control inputs are sampled as u(tk) ∼ N (0, 10−2) for

k = 0, . . . , n, and a zero-order hold is assumed for intermediate time values. To generate the

data for this system, a spatial mesh with 256 cells and a time discretization with ∆t = 0.1s

are used. Then at each timestep tk, Eq. (4.22) is solved for w(ξi, tk) at each vertex ξi using

the solve function in FEniCS [58]. The output of this system is the approximated second

moment of the flow

yk =
1

257

256∑
i=0

w2(ξi, tk) + ηk, (4.23)

where ηk ∼ N (0, 0.22) represents sensor noise. The system is simulated using an initial

condition of w(ξi, 0) = 0, ∀i = 0, . . . , 256, and training data collection begins at t = 20s since

the first 20s contain a transient period where the system moves toward a stable equilibrium

at ±1. After this initial period, data are collected for 10s at ∆t = 0.1s intervals for a total

101 data points. The next 10s following data collection are used as a testing period.

The posterior predictive distribution is compared to a model trained using the deter-

75

(a) Stochastic simulation (b) Deterministic simulation

Figure 4.13: The estimates of the Allen-Cahn QoI over the 10s training period and the
subsequent 10s testing period.

ministic LS objective in Fig. 4.13. The dynamics model used by both algorithms is the

neural network (4.20) used in previous examples with dx = 8. The neural network has 350

parameters and there are only 101 data points, which puts many system ID algorithms at

risk of overfitting. The observation operator is fixed as H =
[
1 01×7

]
. The priors are

half–N (0, 10−6) on θΣ, half–N (0, 1) on θΓ, and N (0, 4) on the remaining parameters. The

data were normalized before training to have zero mean and standard deviation of one. In

this experiment, 105 samples were drawn from the posterior, and half were discarded as

burn-in.

Figs. 4.13a and 4.13b show 100 samples simulated stochastically and deterministically,

respectively, and the ‘mean’ represents the mean of these sample trajectories. The LS es-

timate matches the data closely during the training period, but performs poorly beyond

this period due to overfitting. In constrast, the mean provides a good estimate of the truth

throughout the 20s time period.

The root mean squared error (RMSE) values of the mean and LS estimates on the training

data and on the noiseless QoI values during the training and testing periods are given in

Table 4.1. The LS estimate has a training data RMSE two orders of magnitude smaller than

that of the mean estimate, but the noiseless training QoI RMSE of the LS estimate is actually

worse than that of the mean estimate, indicating overfitting. Moreover, the noiseless testing

QoI RMSE of the LS estimate is an order of magnitude worse than the mean estimate. Also

note that the RMSE of the mean estimate on the noiseless training and testing QoIs are

very similar, indicating good generalizability of the estimate. Recall that the prior used on

the dynamics parameters was only weakly informative, so the improved generalizability of

the mean estimate over the LS estimate comes nearly entirely from the inclusion of process

noise in the likelihood. The LS objective, on the other hand, does not account for model

uncertainty and implicitly assumes that the model that most closely fits the data is the best,

making it prone to overfit when the model form is very expressive, as is the case here.

76

Table 4.1: RMSE values of the posterior predictive mean (Bayes) and deterministic LS
estimate (LS) on the training data and on the noiseless QoI values during the training/testing
periods.

Training data Training QoI Testing QoI
RMSE RMSE RMSE

Bayes 7.10× 10−4 3.74× 10−4 3.77× 10−4

LS 3.43× 10−6 8.18× 10−4 1.46× 10−3

4.3 Summary

In this chapter, we considered the identification of nonlinear systems, which can display a

wide range of interesting dynamical behavior. We presented the SINDy and MS objectives

and proved that they can be contained within the marginal likelihood formulation under

certain assumptions. Specifically, the likelihood is equivalent to SINDy if we assume zero

measurement noise and use a numerical integrator, and it is equivalent to MS if we assume

zero process noise and perform joint parameter-state estimation. Notably, we showed that

the smoothness properties of MS that often motivate its use can also be achieved in the

marginal likelihood through proper tuning of the process noise covariance term. Moreover,

the process noise covariance is a continuous and multi-dimensional parameter that therefore

allows for greater flexibility in tuning.

Lastly, we showed improved estimation using the marginal likelihood over these other two

objectives on a set of numerical experiments. These experiments included chaotic systems

where we showed that the marginal likelihood could properly account for the exponential

growth of errors, whereas SINDy could not. MS was able to account for error accumula-

tion to a certain extent, but did not have the same flexibility as the likelihood to deliver

accurate estimates. Additionally, we considered neural network parameterizations where, in

some cases, there were more parameters than data points. In these examples, we demon-

strated that the regularization that arises in the marginal likelihood is effective at resisting

overfitting, whereas LS objectives have no means to avoid overfitting.

77

CHAPTER V

Hamiltonian System Identification

In some cases, we have more information available to us on the system than just the train-

ing data, and we would like to find a way to incorporate that added information into the

system ID procedure. Doing so restricts the model space and improves the generalizability

of estimated systems on data outside of the training set. One example of a class of systems

on which we have substantial knowledge is Hamiltonian systems. These systems are defined

by a Hamiltonian function from which the system’s vector field can be derived. Hamiltonian

systems arise as models in many science and engineering applications such as multibody dy-

namics and control in robotics [91], the Kozai-Lidov mechanism in astrophysics [56], particle

accelerators in accelerator physics [26], 3D vortex dynamics in fluid mechanics [85], and the

nonlinear Schrödinger equation in quantum mechanics [19]. Although these systems display

complex nonlinear behavior, they possess an underlying highly structured geometry encoded

by a Hamiltonian. Uncovering a system’s Hamiltonian can reveal key insights into its phys-

ical properties such as mass or energy conservation. Learning Hamiltonian models directly

from data is becoming increasingly important in diverse areas such as astrophysics, robotics,

fluid dynamics, plasma physics, and quantum mechanics where first-principle modeling can

yield highly complex model structures or such models are not available.

In this chapter, we consider the problem of learning Hamiltonian systems using both

training data and physical knowledge. We begin by presenting the background knowledge

available on these systems including Hamiltonian mechanics and their symplectic structure.

Then, we cover special integrators that are able to conserve important physical properties in

the evolution of a Hamiltonian system. Next, we discuss how to incorporate this background

knowledge into the learning procedure and demonstrate how this knowledge improves the

accuracy and precision of estimation. Additionally, we apply the marginal likelihood to

a deep learning context and exhibit its robustness to different types of noise, specifically

multiplicative and uniform noise.

78

5.1 Hamiltonian mechanics

Here we introduce the definition of a Hamiltonian system and identify numerous physical

phenomena that such systems display. For a mechanical system, the Hamiltonian is defined

as the total energy in the system, and it is a function of the generalized position q ∈ Rd,

generalized momentum p ∈ Rd, and possibly time t. Because we are interested here in

conservative systems, the Hamiltonian will be independent of time and take the form

H(q,p) =
1

2
p>M−1(q)p + U(q,p), (5.1)

where M is the inertia matrix and U the potential energy. Time derivatives of the position

and momentum can be derived from the Hamiltonian according to Hamilton’s equations

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

. (5.2)

These governing equations possess physically meaningful geometric properties that can be

described in the form of reversibility, symplecticity, first integrals, and energy conserva-

tion [3]. Preservation of these qualitative features in a numerical simulation is crucial for

accurate long-time prediction of Hamiltonian dynamics.

5.2 Explicit symplectic integrators

The goal of our estimation is to learn discrete-time propagators that conserve the aforemen-

tioned physical properties. As the name suggests, reversible symplectic integrators preserve

reversibility and symplecticity and will serve as one basis of our learning approach. Using

ideas from geometric mechanics, the field of geometric numerical integration has developed

a variety of structure-preserving time integrators for Lagrangian/Hamiltonian systems, e.g.,

[40, 93]. We first focus on a basic model structure that can be integrated with the particu-

larly simple leapfrog integration method, which enables us to focus on the contributions of

our proposed learning approach. Then, we move to the more general case of nonseparable

Hamiltonians and show similar results using the explicit symplectic integrator developed

in [99].

5.2.1 Leapfrog integration

The model structure we use here assumes an autonomous system, a constant and known

inertia matrix, and a potential energy function independent of the momentum. Without

79

loss of generality, we set the inertia matrix to be the identity. These assumptions admit

Hamiltonians of the form

H(q,p) =
1

2
p>p + U(q), (5.3)

allowing the following simplification of Hamilton’s equations:

q̇ = p, ṗ = −∂U
∂q

. (5.4)

Hamiltonians of this form are separable and therefore compatible with leapfrog integra-

tion. The leapfrog method is traditionally defined in half-step intervals for the momentum,

but here we provide the equations at integer steps, which is more useful to our setting:

qk+1 = qk + ∆tpk −
∆t2

2

∂U

∂q

∣∣∣∣
qk

, (5.5)

pk+1 = pk −
∆t

2

(
∂U

∂q

∣∣∣∣
qk

+
∂U

∂q

∣∣∣∣
qk+1

)
. (5.6)

These update equations form a symplectic integrator that is also reversible [43]. As a result,

they ensure that an approximate (there is an error due to discretization) Hamiltonian is

conserved along the the trajectory of the dynamics.

5.2.2 Tao’s explicit symplectic integrator

Many Hamiltonian systems of interest to engineers and scientists (e.g., [91, 56, 26, 85, 19]),

however, do not admit this separable form. Such Hamiltonian systems are said to be nonsep-

arable. Unlike the separable Hamiltonian systems, the governing equations in (5.2) cannot

be further simplified for nonseparable Hamiltonians.

While explicit symplectic integration has been extensively studied for separable Hamil-

tonian systems and specific subclasses of nonseparable Hamiltonian systems, explicit sym-

plectic approximations of general nonseparable Hamiltonian systems H(q,p) is an active

research topic. Recently, explicit symplectic integrators for arbitrary nonseparable Hamil-

tonian systems were presented in [99]. The derivation of these integrators is based on the

idea of an extended phase space. For an arbitrary nonseparable Hamiltonian H(q,p), we

first introduce fictitious position q̃ and fictitious momentum p̃ corresponding to q and p,

respectively. Next, we define an augmented Hamiltonian

H̄(q,p, q̃, p̃) := H(q, p̃)︸ ︷︷ ︸
Ha

+H(q̃,p)︸ ︷︷ ︸
Hb

+ω ·
(
‖q− q̃‖2

2/2 + ‖p− p̃‖2
2/2
)︸ ︷︷ ︸

Hc

, (5.7)

80

where Ha := H(q, p̃) and Hb := H(q̃,p) correspond to two copies of the original nonsepara-

ble Hamiltonian system with mixed-up positions and momenta; Hc is an artificial restraint;

and ω is a constant that controls the binding of the two copies. The governing equations for

the augmented Hamiltonian system (5.7) are

q̇ = ∇pH(q̃,p) + ω(p− p̃), ṗ = −∇qH(q, p̃)− ω(q− q̃),

˙̃q = ∇p̃H(q, p̃) + ω(p̃− p), ˙̃p = −∇q̃H(q̃,p)− ω(q̃− q).

The introduction of fictional variables q̃ and p̃ along with a specific choice for the aug-

mented Hamiltonian in (5.7) decouples the position q and p in the extended phase space,

i.e., q̇ and ṗ are independent of q and p, respectively. Unlike the original nonseparable

Hamiltonian H(q,p), the augmented Hamiltonian H̄(q,p, q̃, p̃) is amenable to explicit sym-

plectic integration. In this work, we use second-order explicit symplectic method ψ∆t based

on Strang splitting

ψ∆t := ψ
∆t/2
Ha ◦ ψ

∆t/2
Hb ◦ ψ

∆t
ωHc ◦ ψ

∆t/2
Hb ◦ ψ

∆t/2
Ha , (5.8)

where ψ∆t
Ha , ψ

∆t
Hb , and ψ∆t

ωHc are the time-∆t flow of Ha,Hb, and ωHc. This allows us to

obtain an explicit symplectic integrator for the augmented Hamiltonian H̄ via composition

of explicit symplectic Euler substeps with step size ∆t/2. Explicit update equations for these

individual flows can be written as

ψ∆t
Ha :

q

p

q̃

p̃

→

q

p−∆tHq(q, p̃)

q̃ + ∆tHp̃(q, p̃)

p̃

 ,

ψ∆t
Hb :

q

p

q̃

p̃

→

q + ∆tHp(q̃,p)

p

q̃

p̃−∆tHq̃(q̃,p)

 ,

ψ∆t
ωHc :

q

p

q̃

p̃

→ 1

2

(

q + q̃

p + p̃

)
+ R(∆t)

(
q− q̃

p− p̃

)
(

q + q̃

p + p̃

)
−R(∆t)

(
q− q̃

p− p̃

)
 ,

where R(∆t) :=

[
cos(2ω∆t)I sin(2ω∆t)I

− sin(2ω∆t)I cos(2ω∆t)I

]
. Given a nonseparable Hamiltonian H(q,p)

with initial condition [q(0)>,p(0)>]> = [q>0 ,p
>
0]>, we obtain explicit symplectic approx-

81

imations of the dynamics by integrating the augmented Hamiltonian H̄(q,p, q̃, p̃) with

[q(0)>,p(0)>, q̃(0)>, p̃(0)>]> = [q>0 ,p
>
0 ,q

>
0 ,p

>
0]>. This integration method will henceforth

be referred to as Tao’s integrator.

5.3 Probabilistic learning of Hamiltonian systems

Next, we describe an algorithm that adapts the probabilistic approach of Chapter II to

the context of Hamilton’s equations. As previously mentioned, the motivation is to encode

additional structure into the learning problem, when it is available, to both reduce data

requirements and enforce physical constraints on the predictions.

Our goal is to design a propagator Ψ(θΨ) used in the objective that conserves certain

phenomena in our problem. We achieve this goal primarily through two methods: (1)

parameterizing the Hamiltonian rather than the ordinary differential equations (ODEs) so

that the form of all models in our search space conserves the Hamiltonian properties, and

(2) embedding the propagator with a explicit symplectic integrator so as not to violate these

properties during the numerical integration necessary for training.

5.3.1 Parameterizing the Hamiltonian

First we consider how to utilize prior knowledge of the underlying system to inform the

parametrization of a model. Recall from Section 5.1 that a Hamiltonian system is defined

by a function of the generalized position and momentum known as the Hamiltonian. To

leverage this fact, we assume that the generalized coordinate frame is known and attempt to

directly learn the Hamiltonian. By estimating a model of the Hamiltonian and deriving the

dynamics from this model according to (5.2), we guarantee that the predicted flow will also

be Hamiltonian. This modeling choice makes the predictions more physically meaningful

and also serves to restrict the model search space, which can aid optimization.

As we previously mentioned, we first restrict ourselves in this work to considering Hamil-

tonians of the form H(q,p,θΨ) = 1
2
p>p + U(q,θΨ), where only the parameters of the

potential energy function must be learned. Then, we remove this simplification and consider

nonseparable Hamiltonians. In this case, the Hamiltonian is parameterized as a general func-

tion H(q,p,θ). In this section, we use polynomial and neural network parameterizations,

but any other nonlinear approximation approach can also be applied. We do not intend to

advocate for a specific type of parameterization but rather to show how any approach can

be embedded in our proposed framework.

82

5.3.1.1 Polynomial approximations

For separable Hamiltonians, we need only parameterize the potential energy function. Here

we parameterize the potential as U(q,θΨ) = f`(q;θΨ), where f is a polynomial up to order

` – terms whose exponents add to greater than ` are not included – and θΨ are the term

coefficients. Although the choice of polynomial sequence does not affect the representational

capacity of a polynomial, it does affect the numerical conditioning of the estimation prob-

lem. For this reason, orthogonal polynomials are commonly chosen to express high degree

polynomials [4].

Let us denote the approximate Hamiltonian by the function H̃(p,q,θ). In the separable

case, this function becomes

H̃(q,p,θΨ) =
1

2
p>p + f`(q;θΨ) + C, (5.9)

where C is an arbitrary additive constant. Differentiating the potential energy to obtain the

negative generalized forces we obtain ∂U(q,θΨ)
∂qi

= ∂f`(q;θΨ)
∂qi

.

In the general case, the approximate Hamiltonian becomes

H̃(q,p,θΨ) = Φ>(q,p)θΨ + C, (5.10)

where Φ(q,p) ∈ RN is a vector whose ith component is the differentiable basis function

φi : R2d → R for i = 1, . . . , N . The gradient of the Hamiltonian follows

∇H̃(q,p,θΨ) = ∇Φ>(q,p)θΨ, (5.11)

where ∇Φ(q,p) ∈ RN×2d is a matrix where the ith column is the gradient ∇φi with respect

to the state [q>,p>]>.

This parameterization is also considered in [107]. We provide their methodology here so

that we may compare it to the marginal likelihood later on. Similarly to SINDy, this method

estimates the basis coefficients by solving the linear least squares problem

min
c∈RN
‖Ac− b‖2, (5.12)

83

where each element of A and b is defined as

a[i, j] =
1

K

K∑
k=1

(
∇φi(qk,pk) · ∇φj(qk,pk)

)
, (5.13)

b[i] =
1

K

K∑
k=1

([
ṗ>k −q̇>k

]>
· ∇φi(qk,pk)

)
, (5.14)

for 1 ≤ i, j ≤ N . Typically, data of q̇ and ṗ are not available and must therefore be

numerically approximated. Following the approach of [107], we use a second-order finite

difference method for this approximation. Since this method solves a linear least-squares

problem, we will henceforth refer to it in this chapter as the LS method.

5.3.1.2 Nonseparable symplectic neural networks

As mentioned earlier, our learning approach is compatible with arbitrary model parameteri-

zations. We now present a neural network architecture known as a nonseparable symplectic

neural network (NSSNN) that was presented in [108] for learning nonseparable Hamiltonians

from data. In that work, the Hamiltonian model was parameterized using a neural network,

allowing the position and momentum time derivatives to be computed easily and efficiently

with the automatic differentiation capabilities of PyTorch [73]. The idea of leveraging au-

tomatic differentiation for gradient evaluation of a Hamiltonian has previously been applied

in other inference [8] and also Hamiltonian Monte Carlo [11] algorithms. The NSSNN dis-

tinguishes itself from these other methods by embedding the neural network within Tao’s

integrator to allow for inference of nonseparable Hamiltonians.

The NSSNN architecture and training procedure used in this work follows that which

is described in the original paper. The neural network parameterizing the Hamiltonian is

composed of six linear layers with sigmoid activation functions following all but the last

layer. The training data is a set of input-target pairs. The inputs (q
(j)
0 ,p

(j)
0) are a collection

of measurements at times t
(j)
0 , and the targets (q(j),p(j)) are measurements at times t(j) =

t
(j)
0 +T for j = 1, . . . n. Since the integrator returns both the physical and auxiliary position

and momentum, the loss function contains a term corresponding to each of these variables.

An L1 loss is used since it was empirically shown to yield better results:

J =
1

n

n∑
j=1

∥∥q(j) − q̂(j)
∥∥

1
+
∥∥p(j) − p̂(j)

∥∥
1

+
∥∥q(j) − x̂(j)

∥∥
1

+
∥∥p(j) − ŷ(j)

∥∥
1
. (5.15)

To train the NSSNN, the weights of each layer are initialized with Xavier initialization,

and the Adam optimizer is used to minimize the loss. The optimizer’s hyperparameters

84

are problem-dependent, and the selected values will be discussed for each experiment in

Section 5.4.

5.3.2 Embedding learning with explicit symplectic integrators

To complete our learning setup, we incorporate the parameterized Hamiltonian into the

Bayesian system ID framework. The key idea is to exploit knowledge of Hamiltonian systems

and their structure-preserving time integrators to inform the design of the state propaga-

tor Ψ(qk,pk;θΨ). For separable systems, we do this by combining the leapfrog integrator

equations (5.5) and (5.6) with the Hamiltonian parameterization (5.9) to obtain

Ψ(qk,pk;θΨ) =

 qk + ∆tpk − ∆t2

2
∂U(q,p,θΨ)

∂q

∣∣∣
qk

pk − ∆t
2

(
∂U(q,p,θΨ)

∂q

∣∣∣
qk

+ ∂U(q,p,θΨ)
∂q

∣∣∣
qk+1

)
 , (5.16)

where each time that Ψ needs to be evaluated, the derivative of U(q,p,θΨ) must be eval-

uated at both the current and the updated coordinate. Eq. (5.16) essentially embeds the

learning problem within a structure that implicitly enforces that the learned model will be

conservative, symplectic, and reversible – thus consistent with the true process.

For nonseparable systems, we apply the second-order explicit symplectic integrator ψ∆t

from (5.8) to the parameterized nonseparable Hamiltonian (5.10) to obtain

ψ∆t
θ := ψ

∆t/2

H̃a(θ)
◦ ψ∆t/2

H̃b(θ)
◦ ψ∆t

ωH̃c ◦ ψ
∆t/2

H̃b(θ)
◦ ψ∆t/2

H̃a(θ)
, (5.17)

where H̃a(θ) := H̃(q, p̃,θ) and H̃b(θ) := H̃(q̃,p,θ) correspond to two copies of the param-

eterized nonseparable Hamiltonian model with mixed-up positions and momenta, and ωH̃c

is an artificial restraint that controls the binding of the two parameterized copies. We use

ψ∆t
θ to encode Hamiltonian structure into the propagator, i.e.,

Ψ(qk,pk;θΨ) := L† ◦ ψ∆t
θ ◦ L, (5.18)

where L : [q>k ,p
>
k]> → [q>k ,p

>
k ,q

>
k ,p

>
k]> duplicates the state to obtain the augmented state,

and L† : [q>k ,p
>
k , q̃

>
k , p̃

>
k]> → [q>k ,p

>
k]> operates on the augmented state to yield the state

in the original phase space. These physics-informed propagators in Eqs. (5.16) and (5.18)

for separable and nonseparable Hamiltonians, respectively, ensures that the learned models

will respect the geometric properties of the true process, i.e., the learned model will be a

canonical Hamiltonian system.

85

5.3.3 Discussion and analysis

In this section, we comment and analyze the effect of the structure of Eqs. (5.16) and (5.18)

on the observed dynamics. First and foremost, these propagators are structurally designed

so that they are symplectic and reversible. Specifically, the learning is embedded within a

symplectic integrator. This directly contrasts with similar approaches [107, 35, 8] that focus

on learning a Hamiltonian but do not actually account for data generated by a conservative

process. In our setting, the integrators are symplectic and reversible, and therefore, so too

are the propagators within the objectives. This proves the following main result.

Theorem 5 (Symplectic and reversible). Consider the propagator Ψ parameterized according

to Eq. (5.16). Then the mapping xk = (qk,pk) = Ψk(q0,p0;θΨ) = Ψk(x0;θΨ) is symplectic

and reversible.

The ramification of this result is that the objective can more accurately assess the per-

formance of the model because the propagator enforces phenomena that are also enforced in

nature.

Next, it is interesting to consider how the chosen propagator affects the marginal likelihod

calculation. Primarily, it enters through the prediction step in Algorithm 1, where the

probability of a future state xk+1 is the probability of its deviation from Ψ(xk,θΨ) weighted

by the previous probability π(xk|θ,Yk). The deviations from Ψ(xk,θΨ) are weighted by the

process covariance Σ(θΣ). This process covariance represents model error; in our setting

this model error is a combination of the integration error of the numerical integrator and the

error of the estimated Hamiltonian H̃.

In another black-box approach where some non-symplectic integrator was chosen [28],

there would be an additional source of error whereby the propagator would not respect the

solution manifold. This source of error would grow with time, and therefore yield significant

deviations causing an overestimation of the process noise covariance. In our approach, this

source of deviation does not exist, and therefore we are able to learn a much smaller process

noise when the model form H̃(q,p,θ) is appropriate. We show this feature in Section 5.4.

5.4 Numerical experiments

In this section, we draw comparisons between the marginal likelihood with the physics-

informed propagator and other methods for learning Hamiltonian systems. These compari-

son methods include the marginal likelihood with a propagator that is not physics-informed,

the LS method of Section 5.3.1.1, and the NSSNN with the L1 objective (5.15) from Sec-

tion 5.3.1.2. The first example is the separable Hénon-Heiles system, in which we show that

86

we achieve greater estimation accuracy and precision using the marginal likelihood with

the physics-informed propagator compared to without. Then we consider the nonseparable

Cherry problem in which we show a similar result using Tao’s integrator. On this system,

we also show that the marginal likelihood can outperform the LS method. Additionally, we

demonstrate that we can achieve robust estimation with the additive Gaussian noise model

of Eq. (2.5) even when the actual noise form is not additive Gaussian.

On the final two experiments, we consider multiplicative uniform noise and implement

the filtering equations for the more general noise model of Eq. (2.9). The first of these final

experiments is a toy problem that we refer to as Tao’s problem. For this example, we compare

using the L1 and marginal likelihood objectives for learning a NSSNN. We will show that

although the two objectives are comparable in the low noise case, the marginal likelihood

delivers much better estimates once noise is introduced. Finally, we compare the L1 and

marginal likelihood objectives on the chaotic double pendulum. Despite the complexity of

the system, we show the marginal likelihood can still accurately identify dynamics that evolve

on the system manifold.

5.4.1 Hénon-Heiles system

The first system that we provide numerical results for is the canonical Hénon-Heiles Hamil-

tonian system. The Hamiltonian of this system is separable, and we use this simplified form

to highlight the value of embedding physical knowledge about the data into the learning pro-

cess. We will compare the approach in the previous section to a ‘physics-ignorant’ approach

where the propagator is equipped with a non-symplectic integrator that does not conserve

the Hamiltonian. This approach is akin to the derivative reconstruction approaches used by,

for example, Hamiltonian neural networks [35]. We modify this physics-ignorant approach

to use a classical second-order Runge-Kutta integrator to match our second-order accurate

leapfrog integrator. We will sometimes refer to these approaches as the symplectic and non-

symplectic approaches, respectively. We also point out that one can learn a Hamiltonian

with the physics-ignorant approach and then predict with it using a symplectic integrator.

Indeed this is the approach that seems to be espoused by a majority of the literature earlier

in this chapter. Here we will show that this approach leads to a poorer reconstruction of the

Hamiltonian because it neglects the symplectic process actually generating the data.

For generating the “true” data in each simulation, we use a leapfrog integrator with

conservatively fine timestep ∆t = 10−3 to minimize integration error. For training, we use

a large timestep of ∆tt = 0.25 to reduce computation time and demonstrate the robustness

of our approach. In the results that follow, we will refer to the timestep ∆tt = 0.25 used

87

for learning as the ‘learning timestep,’ and the finer timestep ∆tf = 0.01 used for prediction

after learning as the ‘fine timestep.’1 Using a smaller timestep during testing ensures that

the learned models have captured the continuous dynamics of the system and not only a

discrete mapping at a single timestep [54].

The Hénon and Heiles [42] potential is given as

U(q1, q2) =
1

2
q2

1 +
1

2
q2

2 + q2
1q2 −

1

3
q3

2. (5.19)

After differentiation, we obtain the momentum derivatives

ṗ1 = −q1 − 2q1q2, ṗ2 = −q2 − q2
1 + q2

2. (5.20)

For the initial condition, we select the point (q1, q2, p1, p2)(0) =
(

1
5
, −1

4
, 0.3,−−1

4

)
.

During learning, we parameterize the unknown potential with monomials up to total

order three such that Hamilton’s equations for the momenta in the learning system are

ṗ1 = θ1 + 2θ3q1 + θ4q2 + 3θ6q
2
1 + 2θ7q1q2 + θ8q

2
2, (5.21)

ṗ2 = θ2 + θ4q1 + 2θ5q2 + θ7q
2
1 + 2θ8q1q2 + 3θ9q

2
2. (5.22)

Note that these equations share parameters because they are derived from a single param-

eterized potential function. We also parameterize the process and measurement noise as

Σ(θ) = θ10I4 and Γ(θ) = θ11I4. Finally, data are collected on the full state n = 20 times at

regular intervals over 100 seconds with noise standard deviation of σ = 0.05.

The MAP points from each posterior are used to simulate the system for 200 seconds

using the leapfrog integrator with the fine timestep, and the resulting phase plots are shown

alongside the truth and the data points in Fig. 5.1. We see that both approaches learn that

the system evolves on a manifold because the parameterization discussed in 5.3 restricts

the model search space to Hamiltonian systems, each of which possesses a corresponding

manifold.

From visual inspection, it first appears that the manifolds learned by both the symplectic

and non-symplectic approaches are virtually identical. Fig. 5.2a, however, reveals that the

system learned by the non-symplectic approach exists on a lower energy manifold than that

learned by the symplectic approach. The true Hamiltonian is 0.1227, and the Hamiltonian

learned by the symplectic approach is 0.1219 and by the non-symplectic approach is 0.1211.

The explanation for this discrepancy is shown in Fig. 5.2b, where we see that the Hamil-

tonian of the system grows very quickly when the Runge-Kutta integrator with the learning

1After learning a Hamiltonian, any relevant numerical scheme can be used for prediction.

88

(a) Leapfrog (b) Runge-Kutta

(c) True (d) Position Data

Figure 5.1: Phase diagrams of the Hénon-Heiles system. The top row shows the models
learned by the approaches equipped with the leapfrog and Runge-Kutta integrators. All
trajectories were integrated with the leapfrog method with the fine timestep for 200s, except
for the bottom right, which was only integrated for the 100s period of data collection.

timestep is used. To compensate for this growth, the non-symplectic approach learns a lower

energy system such that in the time it takes to integrate from one data point to the next,

the energy added by the integrator has now pushed the Hamiltonian up to its true value.

Overall, the Hamiltonian learned by the symplectic approach is closer to the truth than that

learned by the non-symplectic approach.

In addition to accuracy, the second main benefit to using a symplectic integrator is a

reduction of uncertainty in one’s estimate. To quantify the uncertainty in our estimates, we

run MCMC sampling on each posterior for 200,000 iterations and discard the first 100,000

samples as a conservative burn-in period. Fig. 5.3 shows the estimates of the trajectory of the

system’s first state and their corresponding posteriors. For the sake of direct comparison,

each trajectory is integrated using the leapfrog method with the fine timestep. In this

figure, the region between the 2.5% and 97.5% quantiles of the posterior is shaded and 100

individual samples have been overlaid. The posterior from the non-symplectic approach

grows much more quickly than the posterior from the symplectic approach as the system

evolves, reflecting greater uncertainty in the estimate of the non-symplectic approach.

To understand this discrepancy in the variance of the estimates, we turn to the shape of

the log posterior. The inability of the Runge-Kutta integrator to preserve the Hamiltonian

89

(a) Leapfrog Integrator (b) Runge-Kutta Integrator

Figure 5.2: The learned Hénon-Heiles Hamiltonians. The lighter blue and red lines are
samples from the posteriors from the symplectic and non-symplectic learning approaches.
The dark lines represent the MAP of the respective parameter posterior, and the subcaptions
denote the integrator used to integrate each solution post-learning, e.g. the two dark red lines
are the same model integrated with different methods. The vertical magenta line indicates
the end of the data collection period.

of the system introduces error into the system learning process not present in the process

using the leapfrog integrator. This additional error increases the process noise of the system,

shown in Fig. 5.4, and, as discussed in [28], this order of magnitude difference in the process

noise can introduce significant bias. Indeed, we see in Fig. 5.3 that the MAP estimate

from the symplectic approach aligns closely with the truth for about 150 seconds, while the

non-symplectic approach can only last about 20 seconds.

5.4.2 Cherry problem

Next, we apply the Bayesian learning method to the Cherry problem [17], which has a

nonseparable Hamiltonian of the form

H(q1, q2, p1, p2) =
1

2
(q2

1 + p2
1)− (q2

2 + p2
2) +

1

2
p2(p2

1 − q2
1)− q1q2p1. (5.23)

This four-dimensional dynamical system is a challenging example because it possesses a neg-

ative energy mode (NEM) that leads to an explosive nonlinear growth of perturbations for

arbitrarily small disturbances. These NEMs occur in several important infinite-dimensional

dynamical systems, e.g., gravitational instability of interpenetrating fluids [12] and magne-

tosonic waves in the solar atmosphere [46].

Similar to the Hénon-Heiles example, we will begin by comparing the symplectic and

90

Figure 5.3: Hénon-Heiles reconstructed trajectories using the MAP point and samples from
the posterior. The top row shows the results from the symplectic approach and the bottom
row shows results from the non-symplectic approach, each integrated with leapfrog. The
vertical magenta line indicates the end of the data collection period.

(a) Leapfrog (b) Runge-Kutta

Figure 5.4: Marginal posteriors of the process noise. Due to the symplectic nature of the
leapfrog integrator, the process noise is reduced by an order of magnitude.

non-symplectic Bayesian approaches, where this time, the symplectic integrator is now Tao’s

integrator. Since this integrator is also second-order, we keep the second-order Runge-Kutta

integrator for the non-symplectic approach. The results of this comparison are provided in

Section 5.4.2.1 and show the improvements in accuracy gained by using a structure-preserving

symplectic integrator over a non-symplectic integrator of equivalent order accuracy. Sec-

tion 5.4.2.2, gives a comparison between the proposed method and the LS method described

in 5.3.1.1. This section demonstrates the greater robustness of the proposed approach to

noisy data.

In both sections, we parameterize the Hamiltonian with polynomials up to total order

three for a total of N = 34 basis functions. The type of polynomials used in each example is

given in the corresponding section. Each covariance matrix is parameterized as an identity

matrix scaled by an unknown parameter: Σ(θΣ) = θ35I4 and Γ(θΓ) = θ36I4. Once again,

91

we place a Laplacian prior on θΨ for sparsity and half-normal priors on θΣ and θΓ. The

observation operator h is the identity such that we measure the full state. The data and

predictions are both generated using the explicit symplectic integrator using a time step of

∆tf = 0.01.

5.4.2.1 Training with a single initial condition

In this study, we consider the case where noisy data from a single initial condition are used

to learn the model, and we compare numerical results far outside the training data regime

to demonstrate the generalizability of the presented Bayesian learning algorithm.

We select the initial condition [q1(0), q2(0), p1(0), p2(0)]> = [0.15, 0.1,−0.05, 0.1]> for

training and integrate the nonseparable Hamiltonian system up to t = 8. We collect the data

on the full state every 0.4 time units for a total of 21 data points with zero-mean Gaussian

noise with standard deviation of σ = 0.01. For the learning problem, we parameterize the

nonseparable Hamiltonian using monomial basis functions. To ensure proper convergence,

we draw 2× 105 samples, and discard the first 105 samples as a conservative burn-in period.

Both symplectic and non-symplectic approaches in this study use a learning time step

of ∆tt = 0.05 (five times the time step used for prediction) to reduce computational time.

Despite the large learning step, the symplectic approach gives accurate predictions far outside

the training data regime, see Fig. 5.6a. For the non-symplectic approach, we use a second-

order Runge-Kutta integrator that does not preserve the underlying Hamiltonian structure.

The MAP parameters of each posterior are used to simulate for t = 16 (100 % out-

side the training data regime) using the explicit symplectic integrator. Fig. 5.5 shows the

learned Hamiltonian values for the MAP point and their corresponding posteriors for both

symplectic and non-symplectic approaches. The true Hamiltonian is −0.78× 10−2, and the

value of the Hamiltonian learned by the symplectic approach is approximately −0.68×10−2.

The Hamiltonian learned by the non-symplectic approach is approximately −0.81 × 10−2.

Compared to the posterior from the symplectic approach in Fig. 5.5a, the posterior from

the non-symplectic approach in Fig. 5.5b reflects greater uncertainty in the Hamiltonian

estimate.

Fig. 5.6 compares the reconstructed trajectories of the system’s first state using the MAP

point and the samples from the posterior. For a fair comparison between the symplectic

and non-symplectic approaches, each trajectory is integrated using the explicit symplectic

integrator.2 We see in Fig. 5.6 that the MAP estimate from the symplectic approach aligns

2We assume that a non-symplectic learning approach would still integrate the learned model with a sym-
plectic integrator. This setting is similar to the approaches considered in [35] or [112] where the authors use
non-symplectic integrators for training structure-preserving neural networks and then integrate the learned

92

closely with the truth for the entire length of the simulation, while the MAP point from the

non-symplectic approach gives inaccurate results after the end of the training time interval

at t = 8.

We also compute the following relative state error for both the training data regime and

testing data regime

e(i : j) =
‖x̂i:j − xi:j‖F
‖xi:j‖F

(5.24)

for positive integers i ≤ j where xi:j ∈ R2dx×(j−i+1) is the true state trajectory at times

ti, . . . , tj, and x̂i:j is the estimate of this trajectory. In the training data regime (t = 0 to

t = 8), the relative state error, e(1 : n), for the symplectic approach is 0.0877 whereas the

relative state error for the non-symplectic approach is 0.1307. In the testing data regime

(t = 8 to t = 16), the relative state error, e(n + 1 : 2n), for the symplectic approach is

0.2173 whereas the relative state error for the non-symplectic approach is 0.3326. Thus,

the symplectic approach achieves approximately 30% reduction in state error over the non-

symplectic approach.

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4 ·10−2

Time t

H
am

il
to

n
ia

n

Symplectic MAP Truth

(a) Symplectic approach

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4 ·10−2

Time t

Non-symplectic MAP Truth

(b) Non-symplectic approach

Figure 5.5: The learned Hamiltonians. The lighter blue and red lines in (a) and (b) are the
samples from the posteriors from the symplectic and non-symplectic learning approaches.
Both approaches estimate the true Hamiltonian accurately with an absolute energy error of
less than 10−3. However, the non-symplectic approach has much greater uncertainty.

5.4.2.2 Training with multiple initial conditions

In this subsection, we consider the case where data are collected from a number of different

trajectories with independent initial conditions (ICs), and our goal is to estimate a model of

the system that can give good prediction for an arbitrary IC.

To gather the training data, we first randomly sample M = 5 ICs from a Gaussian

centered at the testing IC with standard deviation 0.05. The testing IC is the same IC used

Hamiltonian models using symplectic integrators.

93

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

−0.2

0

0.2

Time t

q 1
(t

)
Symplectic MAP Data Truth

(a) Symplectic approach

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

−0.2

0

0.2

q 1
(t

)

Non-symplectic MAP Data Truth

(b) Non-symplectic approach

Figure 5.6: Reconstruction error comparison for the training with single IC case. The
MAP estimate for the symplectic approach captures the nonseparable Hamiltonian dynamics
accurately at t = 16 which is 100% outside the training data whereas the MAP estimate for
the non-symplectic approach yields inaccurate predictions outside the training data. The
posterior for both approaches grows as the system evolves further in time. The purple line
indicates the end of the data collection period.

in the previous example. For each training IC, we integrate the system for up to t = 8 and

measure the state every 0.4 time units for a total of 21 data points per trajectory including

the IC. Any trajectories that diverged during this time period had their IC resampled. To

complete the training dataset, we add 10% relative noise, i.e., Yk = Xk(1 + uk) where

uk ∼ U [−0.10, 0.10] and U is the uniform distribution. This is the same noise form used

by [107]. Note that although we are adding multiplicative noise here, we are still using the

additive Gaussian model from Eq. (2.5) to show the algorithm’s robustness in the event that

the actual noise does not match our model.

We parameterize the Hamiltonian for the learning problem with Legendre polynomials as

basis functions and integrate with the symplectic integrator with ∆tt = 0.01 during training.

To find the MAP, we use the LS estimate as the optimization starting point for θΨ and the

starting point 10−6 for variance parameters θΣ and θΨ. Then we draw 104 samples from the

posterior.

94

We compare the proposed structure-preserving learning method to the LS method and

present the results in Fig. 5.7, where every learned model was integrated with the explicit

symplectic integrator. Note that although [107] suggested a method for denoising the data,

we found that using the raw data gave a better LS estimate in this problem. The training

data and ground truth are shown alongside the point estimates from the LS and Bayesian

methods in Fig. 5.7a. Even though the training ICs are all near the testing IC, we observe

that the testing trajectory in Fig. 5.7b differs significantly from the training trajectories.

Fig. 5.7a also shows that the mean estimate is able to fit the training data fairly well, whereas

the LS estimate struggles due to the noisiness/sparsity of the data. The fact that the mean

estimate can fit the training data even when the measurement noise is non-Gaussian further

demonstrates the robustness of the proposed approach.

Next, we illustrate the posterior predictive distribution on the test IC in Fig. 5.7b by

plotting the trajectory estimate from every 200th MCMC sample for a total of 50 samples.

We see that as time increases, the posterior starts to widen, reflecting the growing uncertainty

in the state with time. We also observe that although both the LS and posterior predictive

mean match the truth very closely through t = 4, the LS estimate deviates from the truth

much earlier and much more drastically than the mean estimate. Fig. 5.7b demonstrates

that the Bayesian method is able to find models that generalize well outside of the training

set of the data.

To compare the methods quantitatively, consider the relative error (5.24) over the first k

time steps, i.e., e(1 : k). The relative error of the mean estimate on the test IC stays under

10% for t = 18.22, while the LS estimate stays under this threshold for only t = 1.49. The

Bayesian method therefore yields better long-time prediction performance.

5.4.3 Tao’s example

We now turn to neural network parameterizations. Due to their large numbers of parameters,

deep neural networks are often at risk of overfitting training data. This risk is especially

problematic when the size of the training dataset is small and the data are significantly noisy.

In the previous chapters, it was shown that Algorithm 1 can help counteract overfitting by

penalizing models that have large output covariances. In contrast, objectives that do not

account for a model’s output covariance, like Eq. (5.15), have no way of distinguishing

between high and low variance models without a sufficiently large number of data. In

this experiment, we assess the potential of the negative log posterior for extending the

applicability of the NSSNN into problems where the available data are few and noisy. Similar

to the previous example, we will demonstrate the negative log posterior’s robustness to non-

95

0 2 4 6 8
−0.2

−0.1

0

0.1

0.2

Time t

q 1
(t

)
Mean 1

LS 1

Truth 1

Data 1

Mean 2

LS 2

Truth 2

Data 2

Mean 3

LS 3

Truth 3

Data 3

(a) Training set

0 5 10 15 20
−0.2

0

0.2

0.4

Time t

q 1
(t

)

Posterior

Mean

LS

Truth

19 20
0.1

0.2

(b) Testing set

Figure 5.7: Left: The training data from 3 different ICs are shown alongside the point
estimates from the LS [107] and Bayesian methods. The Bayesian method is more robust
to the noisiness/sparsity of the data. Right: The posterior predictive distribution and its
mean are compared to the LS point on a trajectory outside the training set. The Bayesian
method gives a good prediction over t = 20, while the LS estimate deteriorates rapidly after
about t = 5.

Gaussian noise by using measurements with uniformly-distributed noise. In this experiment,

however, we use the multiplicative noise model given in Eq. (2.9) and its associated filtering

equations.

For this analysis, we would like to to eliminate as many sources of difficulty for the

training as possible in an effort to isolate the effects that the noise and dataset size have

on training. We therefore consider a Hamiltonian with one of the simplest nonseparable

forms [99]:

H(q, p) =
1

2
(q2 + 1)(p2 + 1). (5.25)

Next, we generate the training data using Tao’s integrator with initial condition x0 =[
0 −3

]>
and timesteps ∆tf = 10−3 and ∆tt = 10−2. The number of data points n takes

the values n = 300, 400, . . . , 1000. The period for this system is approximately 3.26, so at

this ∆tt, the dataset timespans range from slightly under a single period to just over three

periods. Then, we corrupt the datasets with multiplicative noise vk ∼ U [1 − a, 1 + a] for

a = 0.00, 0.01, . . . , 0.10. The mean and variance of this noise are v̄ = 1 and R = a2

3
I2d. The

final collection of datasets includes every (a, n) combination for a total 88 datasets.

To train the NSSNN, we use the Adam optimizer [51] with an initial learning rate of 0.05

and beta values β1 = 0.9 and β2 = 0.999. Each model is trained for 400 epochs with the

learning rate multiplied by 0.8 every 20 epochs. Following the approach presented in the

original NSSNN paper, a batch size of 512 is used with the L1 objective whenever applicable.

96

For the negative log posterior, the process noise variance is parameterized as Σ(θ) = θqI2dx ,

and the output model and measurement noise variance are assumed to be known. The

parameter θq is initialized at a value of 10−3, and a learning rate of 0.5θq and beta values

β1, β2 = 0.1 are used for optimization. To encourage small values, the prior half-N (0, 10−12)

is placed on θq. The positivity constraint is enforced by setting θq to be 0.9 times its previous

value whenever the optimizer places θq below zero. For the sake of direct comparison, we

place an improper uniform prior on the dynamics model parameters.

Once training is completed, each model is simulated starting at x0 for twice the timespan

of the training data using timestep ∆tf . The accuracy of the model is then assessed by

computing the MSE defined as

MSE =
1

2n

2n−1∑
k=0

(q̂k − qk)2 + (p̂k − pk)2, (5.26)

where the hatˆdenotes an estimated value.

The results of the training can vary due to the randomness in the initialization of the

NSSNN parameters, in the mini-batching procedure, and in the measurement noise. Some-

times, the optimizer can even get stuck at poor model estimates that yield very high MSE.

To mitigate the effect of these outliers in our analysis, 20 models are trained at each (a, n)

pair, and we compare the two methods using the median and minimum MSEs. Each of

these 20 rounds of training has different realizations of initial parameters, mini-batches, and

measurement noise.

The log10 of the median and minimum MSEs are presented as heatmaps in Figs. 5.8a and

5.8b, respectively. We see that using the negative log posterior to train the NSSNN results in

lower median and minimum MSE at nearly every (a, n) pair. The primary exception is the

minimum MSE in the 0% noise column in which the posterior yields lower MSE at roughly

half of the n values. Moreover, in both figures the MSE of models trained with L1 loss

increases much more steeply once noise is added compared to the MSE of models trained

with the posterior. These results demonstrate that the posterior is much more robust to

noise than the L1 loss. Additionally, the median MSE shows that even in the low noise case,

the posterior can more reliably find good model estimates, especially when a smaller number

of data are available.

To get a sense of how the model behavior varies with the noise and number of data, we plot

the estimated trajectories of models corresponding to the four corners of the heatmaps. The

estimated output of the median and minimum MSE models are shown in Figs. 5.9 and 5.10,

respectively. The fuchsia line corresponds to the time t2n at which the MSE evaluation ends.

Visually, we see that the estimate produced with the negative log posterior can accurately

97

0 1 2 3 4 5 6 7 8 9 10
Noise (%)

300
400
500
600
700
800
900

1000
N

um
be

r
of

 D
at

a

-2.56 -2.04 -1.32 -0.79 -0.68 -0.68 -0.33 0.13 -0.22 0.32 0.75

-2.56 1.06 -1.65 -1.21 0.32 -0.05 -0.69 -0.79 -1.00 -1.15 -0.31

-2.76 -2.60 -1.37 -1.35 -1.04 -0.81 -0.29 -0.27 -0.12 0.33 0.36

-2.44 -2.12 -1.45 -0.49 -0.65 -0.28 0.05 -0.49 -0.33 -0.04 0.70

-2.86 -2.02 -1.42 -1.70 -0.79 -1.12 -0.30 -0.17 -0.03 0.46 0.26

-2.28 -1.31 -1.29 -1.55 -0.94 -0.91 -0.34 -0.29 0.40 0.10 0.32

-1.96 -1.43 -1.87 -1.29 -0.67 -0.40 -0.59 -0.27 -0.14 -0.14 0.63

-2.62 -1.71 -1.82 -0.63 -0.68 -0.46 0.14 0.16 -0.31 0.71 0.57

(| n)

0 1 2 3 4 5 6 7 8 9 10
Noise (%)

300
400
500
600
700
800
900

1000

N
um

be
r

of
 D

at
a

1.22 0.09 0.53 1.00 0.50 1.12 1.05 1.22 1.22 1.22 1.22

-1.52 1.18 0.28 0.71 1.17 1.12 0.97 1.14 1.31 1.18 1.78

-1.91 -0.36 0.01 0.92 -0.01 1.12 0.73 0.96 1.15 1.15 1.18

1.14 -0.03 -0.15 0.62 0.26 1.20 1.16 1.31 1.51 1.21 2.33

-2.41 -0.32 -0.41 0.06 0.06 0.75 0.57 0.81 0.96 1.25 1.23

-1.86 -0.62 -0.14 0.53 0.17 0.32 1.05 1.03 0.99 0.98 1.19

-2.25 -0.07 0.17 0.30 0.56 0.55 0.97 1.16 1.22 1.18 1.12

-1.65 -0.97 -0.09 0.13 0.29 0.42 0.93 1.02 1.12 1.16 1.10

L1

(a) Median

0 1 2 3 4 5 6 7 8 9 10
Noise (%)

300
400
500
600
700
800
900

1000

N
um

be
r

of
 D

at
a

-3.42 -3.67 -2.65 -2.58 -3.21 -2.66 -2.43 -2.40 -2.03 -1.45 -2.39

-3.90 -3.29 -3.61 -3.56 -3.32 -3.21 -2.36 -3.06 -2.51 -2.95 -2.36

-3.92 -3.48 -2.35 -2.36 -2.78 -3.32 -3.39 -3.10 -2.09 -2.88 -2.29

-4.04 -3.25 -3.59 -3.60 -2.38 -2.66 -3.04 -2.42 -2.30 -1.93 -1.05

-3.94 -3.23 -3.65 -3.76 -3.53 -3.23 -3.37 -1.85 -2.04 -1.27 -2.66

-4.01 -3.38 -3.15 -3.52 -2.20 -2.94 -2.45 -1.55 -2.81 -2.60 -1.90

-3.86 -3.47 -3.45 -2.41 -3.40 -2.66 -2.17 -1.69 -3.09 -2.68 -1.26

-3.76 -3.43 -3.22 -2.46 -2.70 -3.39 -3.18 -2.21 -3.39 -1.77 -0.55

(| n)

0 1 2 3 4 5 6 7 8 9 10
Noise (%)

300
400
500
600
700
800
900

1000

N
um

be
r

of
 D

at
a

-2.30 -1.09 -2.00 -1.12 -0.80 -1.03 -1.05 -0.59 -0.22 0.31 0.30

-3.97 -1.09 -0.79 -0.81 -1.25 -0.68 -0.71 -0.54 -0.06 -0.58 0.72

-4.16 -2.36 -1.57 -0.79 -1.30 -0.91 -0.95 -0.39 -0.36 0.07 0.55

-3.15 -1.10 -1.55 -1.04 -1.29 -1.08 -0.23 -0.24 0.09 0.06 -0.40

-4.02 -2.71 -2.04 -1.51 -1.22 -0.80 -1.10 -1.16 -0.04 0.03 0.53

-4.01 -2.49 -2.15 -1.47 -1.57 -1.12 -0.14 -0.00 -0.93 -0.62 1.08

-4.64 -2.93 -1.31 -1.67 -0.64 -1.09 -1.22 -0.01 0.43 -0.04 0.83

-2.99 -2.11 -1.58 -1.12 -1.79 -1.05 -1.02 0.64 -0.66 0.15 0.74

L1

(b) Minimum

Figure 5.8: log10 MSE of models trained using − log π(θ|Yn) and the L1 norm as objective
functions.

reconstruct the phase manifold in all eight of the figures. Where this estimate noticeably

struggles is in the oscillation frequency of its median MSE estimates when the noise is high.

However, the minimum MSE estimates at high noise do not have this issue.

The L1 objective struggles in two main areas: identifying good models with high noise

data and reliable optimization with low number of data. We see that in the high noise case,

both the median and minimum MSE estimates produced by the L1 objective struggle to

accurately reconstruct the phase manifold. In the low number of data case, the minimum

MSE estimate matches the true output closely when there is not any noise. However, the

median MSE estimate produces a flat line in the time domain. The fact that there is such

a big difference in the median and minimum MSE estimates suggests that although the L1

objective is able to produce good estimates with a small number of data, optimization is

challenging and will likely take multiple tries.

0

10

20

t

2.5 0.0 2.5
q

2.5

0.0

2.5

p

0 10 20
t

(a) a = 0%, n = 1000

0

10

20

t

2.5 0.0 2.5
q

2.5

0.0

2.5

p

0 10 20
t

(b) a = 10%, n = 1000

0

10

20

t

2.5 0.0 2.5
q

2.5

0.0

2.5

p

0 10 20
t

(c) a = 0%, n = 300

0

10

20

t

2.5 0.0 2.5
q

2.5

0.0

2.5

p

0 10 20
t

(| n)
L1
Truth
t2n

(d) a = 10%, n = 300

Figure 5.9: Estimated trajectories from the median MSE models.

In Fig. 5.9b, we noted that the posterior estimate appears to match the true output

closely in phase space but produces large errors in the time domain. One way to assess

how closely the estimates match the system behavior in phase space is by looking at the

98

0

10

20

t

2.5 0.0 2.5
q

2.5

0.0

2.5

p

0 10 20
t

(a) a = 0%, n = 1000

0

10

20

t

2.5 0.0 2.5
q

2.5

0.0

2.5

p

0 10 20
t

(b) a = 10%, n = 1000

0

10

20

t

2.5 0.0 2.5
q

2.5

0.0

2.5

p

0 10 20
t

(c) a = 0%, n = 300

0

10

20

t

2.5 0.0 2.5
q

2.5

0.0

2.5

p

0 10 20
t

p(|y)
L1
Truth
t2n

(d) a = 10%, n = 300

Figure 5.10: Estimated trajectories from the min. MSE models.

Hamiltonian MSE of the models defined as

1

2n

2n−1∑
k=0

(
H(q̂k, p̂k)−H(q0, p0)

)2

, (5.27)

where H is the Hamiltonian function (5.25). This metric gives a quantification for how close

the energy levels of the estimates are to the true system’s energy. Since some of the median

MSE estimates, such as that in Fig. 5.9c, remain extremely close to the initial point, we will

only asses the minimum MSE estimates with this metric. The log10 values of the Hamiltonian

deviation for the minimum MSE estimates are shown in as a heatmap in Fig. 5.11. From this

figure, we can see a clear trend that the Hamiltonian deviation grows as noise increases and

as the number of data decreases in both objective’s estimates. The estimates produced by

the L1 objective outperform those produced by the posterior at almost all n values when the

data are noiseless – the notable exception being when the number of data is smallest. Once

noise is added, however, we once again see a sharp increase in the MSE from the estimates

found with the L1 objective. The MSE values of the estimates produced with the negative

log posterior, in contrast, increase gradually as the noise increases.

Overall, we conclude that if the data are truly noiseless, then the L1 objective is likely the

better option because it gives time domain MSE comparable to the negative log posterior at

a lower computational cost. When the number of data is low, however, the negative posterior

could be more cost efficient since it appears to require fewer training restarts than when the

L1 objective is used. For data that are noisy, the negative log posterior is the clear choice.

Although the cost is higher, the negative log posterior produces significantly more accurate

estimates when the data have as little as 1% noise.

99

0 1 2 3 4 5 6 7 8 9 10
Noise (%)

300
400
500
600
700
800
900

1000

N
um

be
r

of
 D

at
a

-2.64 -2.36 -1.94 -1.26 -2.17 -1.92 -1.43 -1.16 -0.60 -0.75 -0.87

-2.54 -2.52 -1.98 -2.16 -1.84 -1.74 -1.34 -1.93 -1.65 -1.39 -1.44

-2.80 -2.66 -2.35 -2.10 -2.05 -1.91 -1.93 -1.78 -1.56 -1.62 -1.48

-2.85 -2.61 -2.38 -2.56 -1.88 -2.30 -1.66 -1.15 -1.69 -1.65 -1.52

-2.78 -2.67 -2.48 -2.40 -2.43 -2.26 -2.15 -1.86 -1.96 -0.93 -1.53

-2.92 -2.68 -2.64 -2.37 -2.38 -2.24 -1.45 -1.99 -2.23 -1.96 -1.68

-2.98 -2.66 -2.83 -2.19 -2.60 -2.50 -2.03 -1.54 -2.00 -2.67 -1.82

-3.04 -3.05 -2.44 -2.98 -2.62 -2.52 -2.34 -2.18 -2.60 -2.22 -2.15

(| n)

0 1 2 3 4 5 6 7 8 9 10
Noise (%)

300
400
500
600
700
800
900

1000

N
um

be
r

of
 D

at
a

-1.80 -0.03 -0.46 0.32 0.03 0.29 0.40 0.83 0.81 1.41 1.08

-3.42 -0.89 -0.26 0.20 0.24 0.44 0.42 0.52 1.01 0.56 1.31

-3.55 -1.14 -0.88 0.62 -0.20 0.16 -0.17 0.54 0.69 1.02 1.38

-3.84 -1.37 -0.31 0.03 -0.02 0.05 -0.02 0.42 1.33 0.92 0.51

-3.93 -2.02 -1.07 -0.52 -0.11 0.38 -0.08 -0.15 0.25 -0.04 1.14

-3.29 -1.85 -1.29 -0.69 -0.94 -0.18 -0.53 -0.02 -0.03 -0.05 0.63

-4.20 -1.88 -1.17 -0.83 -0.03 -0.42 -0.21 0.16 0.65 0.51 0.38

-4.39 -1.63 -0.79 -0.78 -0.90 -0.23 -0.45 -0.15 0.01 0.25 0.37

L1

Figure 5.11: log10 Hamiltonian MSE of the minimum MSE models learned by the
− log π(θ|Yn) and L1 norm objectives.

5.4.4 Double pendulum

The next system that we consider is the double pendulum, which has the following Hamil-

tonian:

H(q,p) =
m2`

2
2p

2
1 + (m1 +m2)`2

1p
2
2 − 2m2`1`2p1p2 cos(q1 − q2)

2`1`2m2

(
m1 +m2 sin2(q1 − q2)

)
− (m1 +m2)g`1 cos(q1)−m2g`2 cos(q2).

(5.28)

We choose this system because it pertains to a physical mechanical system and therefore holds

relevance to fields that design and study mechanical systems such as robotics. Additionally,

the Hamiltonian is much more complex, and the behavior displayed by the double pendulum

is chaotic in certain regions of the phase space. These two aspects make the system much

more challenging to learn and allow us to test the limits of the NSSNN and the two objective

functions.

For this experiment, we use an initial condition of x0 =
[
1 0 0 0

]>
and collect n =

2000 measurements of the full state using timesteps ∆tf = 10−3 and ∆tt = 10−2. Then,

we corrupt the measurements using multiplicative noise vk ∼ U [0.99, 1.01]. The training

procedure uses 1,000 epochs with an initial learning rate of 0.05 that is multiplied by 0.8

every 50 epochs. To learn the process noise covariance, we use the parameterization Σ =

diag(
[
θq1 θq2 θq3 θq4

]
). The learning rate for each parameter equals the parameter value

and is also multiplied by 0.8 every 50 epochs. Any remaining aspects of the training follow

the procedure described in the previous example.

First, we examine the time-domain estimates, plotted in Fig. 5.12. Since the double

pendulum is a chaotic system, long-term prediction is incredibly difficult. We see that

neither estimate can follow the truth for more than about 5s. We also examine the log

100

posterior estimate with a quantification of uncertainty. Quantifying the uncertainty in deep

neural networks is notoriously difficult, but with an estimated process noise available, we

can run a stochastic simulation that gives us uncertainty quantification without the immense

expense of MCMC sampling. The stochastic simulation is shown in Fig. 5.13. We see that

the spread of samples begins to grow as the MAP estimate begins to deviate from the truth.

This suggests that the process noise can give a reliable estimate of how the uncertainty in

an estimated model changes over time. Notably, non-Bayesian approaches have no such

resource for assessing the reliability of their estimates.

0 5 10 15 20 25 30 35 40
1.0

0.5

0.0

0.5

1.0

q 1

0 5 10 15 20 25 30 35 40

1

0

1

q 2

0 5 10 15 20 25 30 35 40
Time

5.0

2.5

0.0

2.5

5.0

p 1

0 5 10 15 20 25 30 35 40
Time

4

2

0

2

4
p 2

(| n) L1 Truth

Figure 5.12: Comparison of the MAP and L1 estimates on the double pendulum.

Next, we look at the accuracy of the two estimates in phase space. Specifically, we

quantify this accuracy by evaluating the absolute Hamiltonian error defined as

1

2n

2n−1∑
k=0

∣∣H(q̂k, p̂k)−H(q0,p0)
∣∣. (5.29)

Fig. 5.14a shows the estimates in phase space. The color of the line denotes the value of the

absolute Hamiltonian error at that point. The absolute Hamiltonian error is also plotted

over time for reference in Fig. 5.14b. We see that both qualitatively and quantitatively, the

MAP estimate is much closer to the true Hamiltonian. Moreover, the absolute Hamiltonian

error of the MAP estimate is lower on average and does not display sudden spikes in error

like the L1 estimate. This is possibly due to the inherent regularization in the marginal

likelihood that penalizes large output covariance. Overall on this example, we see that the

negative log posterior is better able to capture the underlying Hamiltonian manifold of the

101

0 5 10 15 20 25 30 35 40
1.0

0.5

0.0

0.5

1.0
q 1

0 5 10 15 20 25 30 35 40

1

0

1

q 2

0 5 10 15 20 25 30 35 40
Time

5

0

5

p 1

0 5 10 15 20 25 30 35 40
Time

5.0

2.5

0.0

2.5

5.0

p 2

Sample (| n) Truth Data

Figure 5.13: Realizations of the MAP dynamics with the nominal MAP estimate, truth, and
data overlaid.

chaotic double pendulum.

5.5 Summary

In this chapter, we considered learning Hamiltonian systems using not only data, but also

prior knowledge from physics. We began by introducing background on Hamiltonians that

explained that such systems conserve a function of the generalized position and momentum,

known as the Hamiltonian, from which the time derivatives can be derived. As a result, we are

able to restrict the model space to Hamiltonian systems by parameterizing the Hamiltonian

directly. Then we presented two numerical integration schemes that preserve symplecticity –

one for separable and one for nonseparable Hamiltonians. We discussed how many learning

frameworks for Hamiltonians will use non-symplectic integrators during training and then

switch to a symplectic integrator during testing. Then, we proposed embedding the marginal

likelihood with a symplectic integrator and compared this approach to the marginal likeli-

hood without a symplectic integrator. This comparison differed from previous comparisons

in that we ensured both integrators had the same order of accuracy to isolate the benefits

of preserving symplecticity. This comparison showed that by enforcing symplecticity during

training, the resulting estimates were more accurate and precise compared to estimates that

were found using a non-symplectic integrator. The improved precision manifested itself in

lower process noise values, demonstrating how the process noise can be used to quantify the

uncertainty in an estimated model without requiring simulation.

102

Then, we turned to demonstrating the robustness of the marginal likelihood for noise

forms other than additive Gaussian noise. We showed that even when the actual noise is not

additive Gaussian, the additive Gaussian noise model can still deliver acceptable estimates,

even outperforming a LS method. After this comparison, we implemented the filter for mul-

tiplicative noise described in Section 2.3.1.2. We compared the marginal likelihood with this

filter to the L1 objective for learning NSSNNs on data with uniform, multiplicative noise.

This comparison showed that the marginal likelihood still demonstrates strong noise robust-

ness with this other filter compared to the L1 objective. Lastly, we applied the marginal

likelihood to learning the chaotic double pendulum. This example showed that although

long-term prediction on chaotic systems is extremely difficult, the marginal likelihood was

able to identify a model whose solution remained close to the true manifold of the system.

103

1 0 1
q1

1

0

1

q 2

(| n)

1 0 1
q1

L1

1 0 1
q1

Truth

5 0 5
p1

4

2

0

2

4

p 2

5 0 5
p1

5 0 5
p1

0.0

0.5

1.0

1.5

2.0

2.5

(a) MAP and L1 estimates in phase space, where the color denotes the absolute Hamiltonian error.

0 10 20 30 40
Time

0.0

0.5

1.0

1.5

2.0

2.5

Ab
so

lu
te

 e
rr

or

(| n)
L1

(b) Absolute Hamiltonian error over time.

Figure 5.14: Absolute Hamiltonian error in phase and time domains.

104

CHAPTER VI

Conclusions and Future Work

In this dissertation, we have proposed a framework with the potential for unifying many

system ID objective functions. This framework considers a HMM that not only models the

output error, but also models the dynamics error in the form of process noise. From this

formulation, we derived a marginal likelihood that, when paired with a prior distribution, can

be shown to contain many other popular objectives. Specifically, we proved that the following

four objective functions can be viewed as special cases of the negative log posterior that uses

this proposed marginal likelihood: DMD (Theorem 3), single rollout Markov parameter

estimation (Proposition 2), SINDy (Theorem 4), and MS (Proposition 4).

In addition to increased generality, the process noise term was shown to also provide three

main benefits. The first is adding regularization into the marginal likelihood directly from

the model formulation (Eq. (3.2)). Since this regularization is placed over the output space

of the system, it is more interpretable than heuristic parameter priors, and it is applicable to

arbitrary model parameterizations. The second benefit is that it can smooth the optimization

surface to improve ease of optimization (Fig. 1.3). It was shown that this smoothing is similar

to that touted by the MS objective (Section 4.1.2.2). The process noise covariance, however,

has the added advantages of being continuous and multi-dimensional for greater flexibility

and being able to be tuned automatically. Lastly, we showed that the estimated process

noise term can be used as a proxy for estimating the quantity of uncertainty in a model

estimate (Section 5.4.1). This is useful when one wants to avoid additional simulations of

the model or to avoid the cost of MCMC sampling (Section 5.3.1.2).

We also tested the marginal likelihood on many numerical experiments. We showed that

the marginal likelihood is robust to different forms of noise (Section 5.4.2), even forms that do

not match the modeling assumptions (Sections 5.4.3 and 5.3.1.2). Additionally, we provided

a novel analysis using process noise covariance and MCMC sampling to show how physics-

informed estimation can improve the accuracy and precision of estimates (Section 5.4.1).

Despite all of these advantages, the method still has a number of limitations that can

105

be addressed through future work. For example, the Bayesian algorithm is significantly

more expensive than other system ID approaches, making it infeasible for computationally

intensive problems. Therefore, lowering its computation time could facilitate its application

to larger, more complicated problems and could even enable online inference. The com-

putational cost of the algorithm can be prohibitively expensive in two main scenarios: (1)

the system state or the measurements are high-dimensional, and (2) the model parameters

are unidentifiable, resulting in complex relationships between parameters that significantly

extend the convergence time of MCMC sampling.

This first scenario commonly arises in the study of spatio-temporal systems such as fluid

flow and time-dependent materials phenomena. These systems are infinite-dimensional and

discretizations of the spatial domain often use thousands of nodes. For many LS objectives,

the dominant cost of the objective computation for these systems is evaluation of the forward

model. In comparison, the marginal likelihood computation not only needs to evaluate the

forward model, but it must also compute time-varying covariance matrices, which incurs

additional cost. As was shown in Section 2.3.2, this additional cost scales cubically with the

dimensions of the state and measurements. Therefore, the computational cost of marginal

likelihood evaluation can become prohibitive as state or output dimension increases.

One approach to lowering the cost of marginal likelihood evaluation for high-dimensional

systems is to reduce the dimension of the model. Often, the dynamics of a spatio-temporal

system can be modeled on a low-dimensional manifold while retaining relatively high repre-

sentation accuracy. Common methods for dimension reduction include principal component

analysis (PCA), kernel PCA, and diffusion maps. By replacing the high-dimensional data

in the marginal likelihood with low-dimensional data, the negative log marginal likelihood

becomes a feasible option for an objective function. It is important to note, however, that

the reduced data do not represent the system behavior as accurately as the full-dimensional

data, so the mapping to the low-dimensional space will add greater error/uncertainty into

the system ID problem. Proper quantification of this uncertainty will significantly impact

the accuracy of the learned model and should be a central area of focus within this research

direction.

The second scenario pertains to the cost of MCMC sampling. Even when the cost of

marginal likelihood evaluation is reasonable, the computational resources required for quan-

tifying parameter uncertainty through MCMC sampling can be exorbitant in some cases.

Specifically, when the parameters are correlated through complex relationships, it can be

very difficult to efficiently sample from the posterior distribution. These complicated rela-

tions often arise due to non-identifiability in the parameters, but for black-box modeling,

the parameter values are not of interest. Instead, the uncertainty in the model outputs is

106

the target of sampling. As a consequence of the non-uniqueness of parameter values, the

parameter posterior can theoretically be greatly simplified without any loss in the represen-

tation accuracy of the output posterior. Thus, approximate inference approaches for the

parameter posterior have the potential to drastically reduce computational requirements for

uncertainty quantification with minimal loss in the accuracy of the output posterior. One

example of such an approach is variational inference, which is commonly used for efficient

uncertainty quantification, usually in return for lower representational accuracy. Successful

approximation of the posterior through variational inference can allow for fast, independent

sampling and drastically reduce the expense of the most costly aspect of the system ID

algorithm.

A final possible direction for future work is developing methods for tuning the process and

measurement noise covariance matrices. These hyperparameters determine the topology of

the marginal likelihood surface and are therefore critically important for efficient optimization

and sampling. In fact, the success of the optimizer is often sensitive to the initial values of

and priors placed on the covariance parameters. Achieving successful optimization usually

requires significant hand-tuning of these parameters by the user, which can take a substantial

amount of time given the computational requirements of the algorithm discussed earlier. An

algorithm that could automatically tune these parameters for the user would be beneficial

for the sake of time and ease of application. There are many objectives in the literature that

balance fit and regularization with a tuning parameter, and the approaches used in these

works could be potentially applicable to the marginal likelihood. One example of such a

technique is the homotopy analysis method. Alternatively, there are also adaptive methods

in the filtering literature that seek to properly tune the process and measurement noise

covariances.

In conclusion, the algorithm presented in this dissertation was shown to be a powerful

method for system ID problems that possess substantial amounts of uncertainty, but issues

of computational expense and tuning difficulties can significantly impede its widespread

application. Addressing the method’s limitations through the research directions discussed

in this chapter can augment the algorithm’s power and flexibility, leading to the subsumption

of ever more challenging problems into its domain of applicability.

107

APPENDIX A

Pseudocode

In this appendix we provide the pseudocode for both the linear Kalman filter and nonlinear

unscented Kalman filter algorithms. In the UKF algorithm, α and κ are parameters that

determine the spread of the sigma points around the mean, β is a parameter used for in-

corporating prior information on the distribution of x, and the notation [·]i denotes the i-th

row of the matrix [87].

Algorithm 4 Kalman filtering for evaluating π(θ|Yn) (exact for linear models)

Require: System parameters θ = (θΨ,θh,θΣ,θΓ);
Prior distribution π(θ);
Distribution on initial condition m0, P0;
Linear dynamical model parameterization A(θΨ);
Linear observation model parameterization H(θh);
Covariance matrices Σ(θΣ) and Γ(θΓ)

Ensure: Posterior evaluation π(θ|Yn)
1: Compute the prior π(θ|Y0) = π(θ)
2: for k = 1 to n do
3: Predict π(xk|θ,yk−1) = N (m−k ,P

−
k)

m−k (θ) = A(θΨ)mk−1

P−k (θ) = A(θΨ)Pk−1A
>(θΨ) + Σ(θΣ)

4: Compute the Evidence π(yk|θ,Yk−1) = N (µk,Sk)
µk(θ) = H(θh)m

−
k

Sk(θ) = H(θh)P
−
k H>(θh) + Γ(θΓ)

5: Update π(xk|θ,Yk) = N (mk,Pk)
mk(θ) = m−k + P−k H>(θh)S

−1
k (yk − µk)

Pk(θ) = P−k −P−k H>(θh)S
−1
k H(θh)P

−
k

6: Update π(θ|Yk) ∝ π(yk|θ,Yk−1)π(θ|Yk−1)
7: end for

108

Algorithm 5 Unscented Kalman filtering algorithm for approximating π(θ|Yn)

Require: System parameters θ = (θΨ,θh,θΣ,θΓ);
Prior distribution π(θ);
Distribution on initial condition m0, P0;
Dynamical model parametrization Ψ(θΨ);
Observation model parameterization h(θh);
Covariance matrices Σ(θΣ) and Γ(θΓ);
UKF parameters α, κ, β

Ensure: Approximate evaluation of the posterior π(θ|Yn)
1: Calculate λ = α2(dx + κ)− dx
2: Compute the weights

W
(m)
0 = λ

dx+λ

W
(c)
0 = λ

dx+λ + (1− α2 + β)

W
(m)
i = W

(c)
i = 1

2(dx+λ) , ∀i = 1, . . . , 2dx
3: Compute the prior π(θ | Y0) = π(θ)
4: for k = 1 to n do
5: Predict π(xk|θ,Yk−1) ≈ N (m−k ,P

−
k)

6: Form the sigma points

X (0)
k−1(θ) = mk−1

X (i)
k−1(θ) = mk−1 +

√
dx + λ

[√
Pk−1

]
i

X (i+dx)
k−1 (θ) = mk−1 −

√
dx + λ

[√
Pk−1

]
i
, ∀i = 1, . . . , dx

7: Propagate the sigma points through the dynamical model

X̂ (i)
k (θ) = Ψ(X (i)

k ,θΨ), ∀i = 0, . . . , 2dx
8: Compute the mean and covariance

m−k (θ) =
∑2dx

i=0W
(m)
i X̂ (i)

k

P−k (θ) =
∑2dx

i=0W
(c)
i (X̂ (i)

k −m−k)(X̂ (i)
k −m−k)> + Σ(θΣ)

9: Compute the Evidence π(yk|θ,Yk−1) ≈ N (µk,Sk)
10: Update the sigma points

X (0)
k−1(θ) = mk−1

X (i)
k−1(θ) = mk−1 +

√
dx + λ

[√
Pk−1

]
i

X (i+dx)
k−1 (θ) = mk−1 −

√
dx + λ

[√
Pk−1

]
i
, ∀i = 1, . . . , dx

11: Propagate the sigma points through the observation model

Ŷ(i)
k (θ) = h(X (i)

k ,θh), ∀i = 0, . . . , 2dx
12: Compute the mean and covariance

µk(θ) =
∑2dx

i=0W
(m)
i Ŷ(i)

k

Sk(θ) =
∑2dx

i=0W
(c)
i (Ŷ(i)

k − µ−k)(Ŷ(i)
k − µ−k)T + Γ(θΓ)

13: Update π(xk|θ,yk) ≈ N (mk,Pk)

Uk(θ) =
∑2dx

i=0W
(c)
i (X (i)

k −m
−
k)(Ŷ(i)

k − µk)
>

mk(θ) = m−k + (UkS
−1
k)(yk − µk)

Pk(θ) = P−k − (UkS
−1
k)S−1

k (UkS
−1
k)>

14: Update π(θ|Yk) ∝ π(yk|θ,Yk−1)π(θ|Yk−1)
15: end for

109

APPENDIX B

Eigensystem Realization Algorithm

The ERA is a subspace identification algorithm that is commonly paired with Markov param-

eter estimation methods, such as those described in Section 3.2.2, to procure an estimated

realization of the state-space matrices. The implementation of this algorithm is detailed

here.

Assume that a subset of the Markov parameters {Gi}ni=0 are available and the state

dimension dx is known. The first step of the ERA is to form these n+ 1 Markov parameters

into a Hankel matrix as shown

E =

G0 G1 · · · Gd2

G1 G2 · · · Gd2+1

...
...

...
...

Gd1−1 Gd1 · · · Gd1+d2

 , (2.1)

where d1, d2 ∈ N determine the shape of the Hankel matrix and must satisfy the inequalities

d1 + d2 ≤ n and min{dyd1, dud2} ≥ dx. Choosing balanced dimensions dyd1 ≈ dud2 can

possibly improve noise robustness.

The ERA uses this Hankel matrix to construct an estimate of the system’s observability

and controllability matrices from which a realization of the state-space matrices can be

extracted. Define the observability and controllability matrices

O =
[
H> (HA)> · · · (HAd2)>

]>
, C =

[
B AB · · · Ad1−1B

]
,

respectively. Define the Hankel submatrices E− = E[:, 1 : d2du] and E+ = E[:, du + 1 : (d2 +

1)du]. Taking the SVD of the Hankel submatrix E− yields the decomposition E− = USV>.

The rank-dx approximation of E− can be decomposed as ŨS̃Ṽ>, where Ũ = U[:, 1 : dx],

S̃ = S[1 : dx, 1 : dx], and Ṽ = V[:, 1 : dx]. Next, O and C can be estimated as Ô = ŨS̃
1
2

and Ĉ = S̃
1
2 Ṽ>. The ERA estimate of the state-space matrices are then B̂ = Ĉ[:, 1 : du],

110

Ĥ = Ô[1 : dy, :], and Â = Ô†Ê+Ĉ†.

Algorithm 6 Least squares + eigensystem realization algorithm (LS+ERA) [71]

Require: Observations Y
Inputs U
State-space dimension dx
Hankel shape parameters d1,d2

Ensure: Â, B̂, Ĥ
1: Estimate Markov parameters: Ĝ = (U†Y)>

2: Ê− = Ĝ[:, 1 : d2du] and Ê+ = Ĝ[:, (du + 1) : (d2 + 1)du]
3: U,S,V = SVD(Ê−)
4: Ũ = U[:, 1 : dx], S̃ = S[1 : dx, 1 : dx], and Ṽ = V[:, 1 : dx]

5: Ô = ŨS̃
1
2 and Ĉ = S̃

1
2 Ṽ>

6: B̂ = Ĉ[:, 1 : du], Ĥ = Ô[1 : dy, :], and Â = Ô†Ê+Ĉ†

111

APPENDIX C

Proof of Proposition 3

Our goal is to show that the assumptions introduced in Proposition 2 that lead to equiv-

alency hold asymptotically. That is, we want to show limn̄→∞
∑k

i=n̄ Giuk−i = 0 and

limn̄→∞AkΣ(Ak)> = 0 for k ≥ n̄. Let N = k − n̄ + 1 be the number of terms in the

sum. We assume N is bounded such that it cannot grow arbitrarily large.

To show limn̄→∞
∑k

i=n̄ Giuk−i = 0, it suffices to show limn̄→∞
∑k

i=n̄|Gi[j, :]uk−i| = 0 for

any j ∈ {1, . . . , dy}. By assumption, the inputs ui[j] ∈ R are independent realizations of the

random variable u for i = 0, 1, . . . and j = 1, . . . , du. Recall that for any real-valued random

variable z, lima→∞
∫ a
−a π(z)dz = 1, where the integral represents the probability that |z| < a.

This implies that for any 0 < ε < 1, ∃a ∈ Rdu such that |u[j]| < a[j] for j = 1, . . . , du with

probability (w.p.) 1− ε. Then, upper and lower bounds can be established as

0 ≤
k∑
i=n̄

|Gi[j, :]uk−i| <
k∑
i=n̄

|Gi[j, :]| a, (3.1)

w.p. at least (1−ε)N . Next we prove that the upper bound goes to zero as n̄→∞ regardless

of a by showing that limn̄→∞
∑k

i=n̄ Gi[j, :] = 0. Recall that when ρ(A) < 1, the LTI system

is exponentially stable. Specifically, there exist constants c > 0 and λ ∈ (0, 1) such that

‖Akx0‖2 ≤ cλk‖x0‖2, ∀x0 ∈ Rdx . We can therefore bound the norm of the columns of Gi as

follows:

‖Gi[:, j]‖2 = ‖HAi−1B[:, j]‖2 (3.2a)

≤ ‖H‖2‖Ai−1B[:, j]‖2 (3.2b)

≤ ‖H‖2cλ
i−1‖B[:, j]‖2. (3.2c)

Noting that the quantity c‖H‖2‖B[:, j]‖2 is constant, we see that ‖Gi‖2 is bounded above

by an exponentially decaying function of timestep i. This leads us to the following bound

112

on the norm of the sum: ∥∥∥∥∥
k∑
i=n̄

Gi[:, j]

∥∥∥∥∥
2

≤
k∑
i=n̄

‖Gi[:, j]‖2 (3.3a)

≤
k∑
i=n̄

cλi−1‖H‖2‖B[:, j]‖2 (3.3b)

≤ Ncλn̄−1‖H‖2‖B[:, j]‖2. (3.3c)

Since 0 < λ < 1, limn̄→∞‖
∑k

i=n̄ Gi[:, j]‖2 = 0, and consequently limn̄→∞
∑k

i=n̄ Gi[:, j] = 0 as

well, each w.p. at least (1 − ε)N . The variable ε is arbitrary, so limn̄→∞
∑k

i=n̄ Giuk−i → 0

w.p. 1. Moreover, the rate of convergence of the upper bound can be found as follows:

lim
n̄→∞

Ncλn̄‖H‖2‖B[:, j]‖2

Ncλn̄−1‖H‖2‖B[:, j]‖2

= lim
n̄→∞

λn̄

λn̄−1
= λ. (3.4)

Therefore, the upper bound converges to zero linearly with rate λ, and the sum
∑k

i=n̄ Giuk−i

must converge at least as fast. When A is diagonalizable, λ can be chosen to be ρ(A) such

that the convergence rate is bounded above by the maximum eigenvalue of A.

The proof for the covariance term is similar. To show limn̄→∞An̄Σ(An̄)> = 0, we

begin by decomposing the covariance matrix Σ = Σ
1
2 (Σ

1
2)>. Then, the norm An̄Σ(An̄)> is

bounded above as follows:

‖An̄Σ(An̄)>‖2 ≤
∥∥∥An̄Σ

1
2

∥∥∥
2

∥∥∥∥(An̄Σ
1
2

)>∥∥∥∥
2

=
∥∥∥An̄Σ

1
2

∥∥∥2

2
. (3.5)

It suffices to show limn̄→∞An̄Σ
1
2 [:, j] = 0 for columns j ∈ {1, . . . , dx}. To begin, we derive

an upper bound: ∥∥∥An̄Σ
1
2 [:, j]

∥∥∥2

2
≤
(
cλn̄

∥∥∥Σ 1
2 [:, j]

∥∥∥
2

)2

. (3.6)

The fact that limn̄→∞ c
2λ2n̄‖Σ 1

2 [:, j]‖2
2 = 0 implies that limn̄→∞An̄Σ

1
2 [:, j] = 0. Lastly, the

rate of convergence of the upper bound is as follows:

lim
n̄→∞

c2λ2n̄
∥∥∥Σ 1

2 [:, j]
∥∥∥2

2

c2λ2(n̄−1)

∥∥∥Σ 1
2 [:, j]

∥∥∥2

2

= lim
n̄→∞

λ2n̄

λ2n̄−2
= λ2. (3.7)

Then ‖An̄Σ
1
2‖2

2, and consequently ‖An̄Σ(An̄)>‖2, converges at least as fast. Therefore, we

have shown that
∑k

i=n̄ Giuk−i and An̄Σ(An̄)> both converge to zero as n̄ → ∞ with rate

no greater than λ.

113

Bibliography

[1] Luis A Aguirre, Bruno HG Barbosa, and Antônio P Braga. Prediction and simulation
errors in parameter estimation for nonlinear systems. Mechanical Systems and Signal
Processing, 24(8):2855–2867, 2010.

[2] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain
monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 72(3):269–342, 2010.

[3] Vladimir Igorevich Arnol’d. Mathematical methods of classical mechanics, volume 60.
Springer Science & Business Media, 2013.

[4] Richard Askey and James Arthur Wilson. Some basic hypergeometric orthogonal poly-
nomials that generalize Jacobi polynomials, volume 319. American Mathematical Soc.,
1985.

[5] Shivam Bang, Rajat Bishnoi, Ankit Singh Chauhan, Akshay Kumar Dixit, and Indu
Chawla. Fuzzy logic based crop yield prediction using temperature and rainfall parame-
ters predicted through arma, sarima, and armax models. In 2019 Twelfth International
Conference on Contemporary Computing (IC3), pages 1–6. IEEE, 2019.

[6] Gerben Beintema, Roland Toth, and Maarten Schoukens. Nonlinear state-space iden-
tification using deep encoder networks. In Learning for dynamics and control, pages
241–250. PMLR, 2021.

[7] James O Berger. Statistical decision theory and Bayesian analysis. Springer Science
& Business Media, 2013.

[8] Tom Bertalan, Felix Dietrich, Igor Mezić, and Ioannis G Kevrekidis. On learning
Hamiltonian systems from data. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 29(12):121107, 2019.

[9] Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct solu-
tion of optimal control problems. IFAC Proceedings Volumes, 17(2):1603–1608, 1984.

[10] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equa-
tions from data by sparse identification of nonlinear dynamical systems. Proceedings
of the national academy of sciences, 113(15):3932–3937, 2016.

114

[11] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan:
A probabilistic programming language. Journal of statistical software, 76(1), 2017.

[12] ARR Casti, PJ Morrison, and EA Spiegel. Negative energy modes and gravitational
instability of interpenetrating fluids. Annals of the New York Academy of Sciences,
867(1):93–108, 1998.

[13] Julio E Castrillon-Candas, Fabio Nobile, and Raul F Tempone. Analytic regularity
and collocation approximation for elliptic pdes with random domain deformations.
Computers & Mathematics with Applications, 71(6):1173–1197, 2016.

[14] Rick Chartrand. Numerical differentiation of noisy, nonsmooth data. International
Scholarly Research Notices, 2011, 2011.

[15] Lennart Ljung Tianshi Chen. What can regularization offer for estimation of dynamical
systems? IFAC Proceedings Volumes, 46(11):1–8, 2013.

[16] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing systems, 31,
2018.

[17] Thomas Macfarland Cherry. V. On periodic solutions of Hamiltonian systems differ-
ential equations. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 227(647-658):137–221,
1928.

[18] Mohammad Amin Chitsazan, M Sami Fadali, and Andrzej M Trzynadlowski. Wind
speed and wind direction forecasting using echo state network with nonlinear functions.
Renewable energy, 131:879–889, 2019.

[19] James Colliander, Markus Keel, Gigiola Staffilani, Hideo Takaoka, and Terence Tao.
Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger
equation. Inventiones Mathematicae, 181(1):39–113, 2010.

[20] Rongxin Cui, Chenguang Yang, Yang Li, and Sanjay Sharma. Adaptive neural network
control of auvs with control input nonlinearities using reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 47(6):1019–1029, 2017.

[21] Perry De Valpine and Alan Hastings. Fitting population models incorporating process
noise and observation error. Ecological Monographs, 72(1):57–76, 2002.

[22] Socrates Dokos and Nigel H Lovell. Parameter estimation in cardiac ionic models.
Progress in biophysics and molecular biology, 85(2-3):407–431, 2004.

[23] Sergey Dolgov, Dante Kalise, and Karl K Kunisch. Tensor decomposition methods
for high-dimensional hamilton–jacobi–bellman equations. SIAM Journal on Scientific
Computing, 43(3):A1625–A1650, 2021.

115

[24] Christopher Drovandi, Richard G Everitt, Andrew Golightly, and Dennis Prangle.
Ensemble MCMC: accelerating pseudo-marginal MCMC for state space models using
the ensemble Kalman filter. Bayesian Analysis, 17(1):223–260, 2022.

[25] Robert J Elliott, Lakhdar Aggoun, and John B Moore. Hidden Markov models: esti-
mation and control, volume 29. Springer Science & Business Media, 2008.

[26] Etienne Forest. Geometric integration for particle accelerators. Journal of Physics A:
Mathematical and General, 39(19):5321, 2006.

[27] Nicholas Galioto and Alex A Gorodetsky. Bayesian identification of hamiltonian dy-
namics from symplectic data. In 2020 59th IEEE Conference on Decision and Control
(CDC), pages 1190–1195. IEEE, 2020.

[28] Nicholas Galioto and Alex Arkady Gorodetsky. Bayesian system ID: optimal man-
agement of parameter, model, and measurement uncertainty. Nonlinear Dynamics,
102(1):241–267, 2020.

[29] Nicholas Galioto and Alex Arkady Gorodetsky. A new objective for identification of
partially observed linear time-invariant dynamical systems from input-output data. In
Learning for Dynamics and Control, pages 1180–1191. PMLR, 2021.

[30] Nicholas Galioto and Alex Arkady Gorodetsky. Likelihood-based generalization of
Markov parameter estimation and multiple shooting objectives in system identification.
arXiv preprint arXiv:2212.13902, 2022.

[31] Andrew Gelman. Prior distributions for variance parameters in hierarchical models.
Bayesian Analysis, 1(3):515–533, 2006.

[32] Gene H Golub and Charles F Van Loan. An analysis of the total least squares problem.
SIAM journal on numerical analysis, 17(6):883–893, 1980.

[33] Vasiliy Govorukhin. Calculation lyapunov exponents for ode. MATLAB File Exchange,
2020. Retrieved June 29, 2020.

[34] Peter L Green. Bayesian system identification of a nonlinear dynamical system using
a novel variant of simulated annealing. Mechanical Systems and Signal Processing,
52:133–146, 2015.

[35] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks.
Advances in neural information processing systems, 32, 2019.

[36] Yuantao Gu, Jian Jin, and Shunliang Mei. l {0} norm constraint lms algorithm for
sparse system identification. IEEE Signal Processing Letters, 16(9):774–777, 2009.

[37] Heikki Haario, Leonid Kalachev, and Janne Hakkarainen. Generalized correlation
integral vectors: A distance concept for chaotic dynamical systems. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 25(6):063102, 2015.

116

[38] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. Dram: efficient
adaptive mcmc. Statistics and computing, 16:339–354, 2006.

[39] Baya Hadid, Eric Duviella, and Stéphane Lecoeuche. Data-driven modeling for river
flood forecasting based on a piecewise linear arx system identification. Journal of
Process Control, 86:44–56, 2020.

[40] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integra-
tion: Structure-Preserving Algorithms for Ordinary Differential Equations, volume 31.
Springer Science & Business Media, 2006.

[41] Maziar S Hemati, Clarence W Rowley, Eric A Deem, and Louis N Cattafesta. De-
biasing the dynamic mode decomposition for applied koopman spectral analysis of
noisy datasets. Theoretical and Computational Fluid Dynamics, 31:349–368, 2017.

[42] Michel Hénon and Carl Heiles. The applicability of the third integral of motion: some
numerical experiments. Astronomical Journal, Vol. 69, p. 73 (1964), 69:73, 1964.

[43] Roger W Hockney and James W Eastwood. Computer simulation using particles. crc
Press, 2021.

[44] Edwin T Jaynes. Probability theory: The logic of science. Cambridge university press,
2003.

[45] Shang Jiang and Jian Zhang. Real-time crack assessment using deep neural networks
with wall-climbing unmanned aerial system. Computer-Aided Civil and Infrastructure
Engineering, 35(6):549–564, 2020.

[46] PS Joarder, VM Nakariakov, and B Roberts. A manifestation of negative energy waves
in the solar atmosphere. Solar Physics, 176(2):285–297, 1997.

[47] Dominic Jordan and Peter Smith. Nonlinear ordinary differential equations: an intro-
duction for scientists and engineers. OUP Oxford, 2007.

[48] Jer-Nan Juang and Richard S Pappa. An eigensystem realization algorithm for modal
parameter identification and model reduction. Journal of guidance, control, and dy-
namics, 8(5):620–627, 1985.

[49] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to nonlinear
systems. In Signal processing, sensor fusion, and target recognition VI, volume 3068,
pages 182–193. Spie, 1997.

[50] Mohammad Khalil, Abhijit Sarkar, Sondipon Adhikari, and Dominique Poirel. The
estimation of time-invariant parameters of noisy nonlinear oscillatory systems. Journal
of Sound and Vibration, 344:81 – 100, 2015.

[51] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

117

[52] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

[53] G. A. Kivman. Sequential parameter estimation for stochastic systems. Nonlinear
Processes in Geophysics, 10(3):253–259, 2003.

[54] Aditi S Krishnapriyan, Alejandro F Queiruga, N Benjamin Erichson, and Michael W
Mahoney. Learning continuous models for continuous physics. arXiv preprint
arXiv:2202.08494, 2022.

[55] Zhilu Lai and Satish Nagarajaiah. Sparse structural system identification method for
nonlinear dynamic systems with hysteresis/inelastic behavior. Mechanical Systems and
Signal Processing, 117:813–842, 2019.

[56] Gongjie Li, Smadar Naoz, Matt Holman, and Abraham Loeb. Chaos in the test particle
eccentric Kozai–Lidov mechanism. The Astrophysical Journal, 791(2):86, 2014.

[57] Yan-Jun Liu, Jing Li, Shaocheng Tong, and CL Philip Chen. Neural network control-
based adaptive learning design for nonlinear systems with full-state constraints. IEEE
transactions on neural networks and learning systems, 27(7):1562–1571, 2016.

[58] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential
equations by the finite element method: The FEniCS book, volume 84. Springer Science
& Business Media, 2012.

[59] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from
data. In International conference on machine learning, pages 3208–3216. PMLR, 2018.

[60] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences,
20(2):130–141, 1963.

[61] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow
prediction with big data: A deep learning approach. IEEE Transactions on Intelligent
Transportation Systems, 16(2):865–873, 2014.

[62] Giorgos Mamakoukas, Orest Xherija, and Todd Murphey. Memory-efficient learning
of stable linear dynamical systems for prediction and control. Advances in Neural
Information Processing Systems, 33:13527–13538, 2020.

[63] Alexander Marshack. The roots of civilization: The cognitive beginnings of man’s first
art, symbol and notation. Moyer Bell Limited, 1991.

[64] Youssef M Marzouk and Habib N Najm. Dimensionality reduction and polynomial
chaos acceleration of bayesian inference in inverse problems. Journal of Computational
Physics, 228(6):1862–1902, 2009.

[65] Youssef M Marzouk, Habib N Najm, and Larry A Rahn. Stochastic spectral methods
for efficient bayesian solution of inverse problems. Journal of Computational Physics,
224(2):560–586, 2007.

118

[66] Daniele Masti and Alberto Bemporad. Learning nonlinear state–space models using
autoencoders. Automatica, 129:109666, 2021.

[67] Alexandre Mauroy and Jorge Goncalves. Koopman-based lifting techniques for nonlin-
ear systems identification. IEEE Transactions on Automatic Control, 65(6):2550–2565,
2019.

[68] Giovanni Migliorati, Fabio Nobile, Erik von Schwerin, and Raúl Tempone. Approxima-
tion of quantities of interest in stochastic pdes by the random discrete lˆ2 projection
on polynomial spaces. SIAM Journal on Scientific Computing, 35(3):A1440–A1460,
2013.

[69] Brett Ninness and Soren Henriksen. Bayesian system identification via markov chain
monte carlo techniques. Automatica, 46(1):40–51, 2010.

[70] Sanha Noh. Posterior inference on parameters in a nonlinear DSGE model via
Gaussian-based filters. Computational Economics, pages 1–47, 2019.

[71] Samet Oymak and Necmiye Ozay. Non-asymptotic identification of lti systems from a
single trajectory. In 2019 American control conference (ACC), pages 5655–5661. IEEE,
2019.

[72] Shaowu Pan and Karthik Duraisamy. Long-time predictive modeling of nonlinear
dynamical systems using neural networks. Complexity, 2018:1–26, 2018.

[73] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural in-
formation processing systems, 32, 2019.

[74] Václav Peterka. Bayesian approach to system identification. In Trends and Progress
in System identification, pages 239–304. Elsevier, 1981.

[75] Arkady Pikovsky and Antonio Politi. Lyapunov exponents: a tool to explore complex
dynamics. Cambridge University Press, 2016.

[76] Gianluigi Pillonetto, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and
Lennart Ljung. Regularized linear system identification using atomic, nuclear and
kernel-based norms: The role of the stability constraint. Automatica, 69:137–149,
2016.

[77] Luigi Piroddi and William Spinelli. An identification algorithm for polynomial narx
models based on simulation error minimization. International Journal of Control,
76(17):1767–1781, 2003.

[78] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decom-
position with control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161,
2016.

119

[79] Tong Qin, Kailiang Wu, and Dongbin Xiu. Data driven governing equations approxi-
mation using deep neural networks. Journal of Computational Physics, 395:620–635,
2019.

[80] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov,
Rohit Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal dif-
ferential equations for scientific machine learning. arXiv preprint arXiv:2001.04385,
2020.

[81] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational physics,
378:686–707, 2019.

[82] PK Rajasekaran, N Satyanarayana, and MD Srinath. Optimum linear estimation
of stochastic signals in the presence of multiplicative noise. IEEE Transactions on
Aerospace and Electronic Systems, AES-7(3):462–468, 1971.

[83] Antônio H Ribeiro, Koen Tiels, Jack Umenberger, Thomas B Schön, and Luis A
Aguirre. On the smoothness of nonlinear system identification. Automatica,
121:109158, 2020.

[84] Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Hen-
ningson. Spectral analysis of nonlinear flows. Journal of fluid mechanics, 641:115–127,
2009.

[85] Rick Salmon. Hamiltonian fluid mechanics. Annual Review of Fluid Mechanics,
20(1):225–256, 1988.

[86] Tuhin Sarkar, Alexander Rakhlin, and Munther A Dahleh. Finite time lti system
identification. The Journal of Machine Learning Research, 22(1):1186–1246, 2021.

[87] Simo Särkkä. Bayesian filtering and smoothing. Cambridge University Press, 2013.

[88] Sebastian Scher. Toward data-driven weather and climate forecasting: Approximating
a simple general circulation model with deep learning. Geophysical Research Letters,
45(22):12–616, 2018.

[89] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of fluid mechanics, 656:5–28, 2010.

[90] Johan Schoukens and Lennart Ljung. Wiener-hammerstein benchmark, 2009.

[91] Diana Serra, Fabio Ruggiero, Alejandro Donaire, Luca Rosario Buonocore, Vincenzo
Lippiello, and Bruno Siciliano. Control of nonprehensile planar rolling manipulation:
A passivity-based approach. IEEE Transactions on Robotics, 35(2):317–329, 2019.

120

[92] Harsh Sharma, Nicholas Galioto, Alex A Gorodetsky, and Boris Kramer. Bayesian
identification of nonseparable hamiltonian systems using stochastic dynamic models.
In 2022 IEEE 61st Conference on Decision and Control (CDC), pages 6742–6749.
IEEE, 2022.

[93] Harsh Sharma, Mayuresh Patil, and Craig Woolsey. A review of structure-preserving
numerical methods for engineering applications. Computer Methods in Applied Me-
chanics and Engineering, 366:113067, 2020.

[94] Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht.
Learning without mixing: Towards a sharp analysis of linear system identification. In
Conference On Learning Theory, pages 439–473. PMLR, 2018.

[95] Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of
implicit regularization in stochastic gradient descent. In International Conference on
Learning Representations, 2021.

[96] Sebastian Springer, Heikki Haario, Vladimir Shemyakin, Leonid Kalachev, and Denis
Shchepakin. Robust parameter estimation of chaotic systems. Inverse Problems &
Imaging, 13(6):1189, 2019.

[97] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[98] Naoya Takeishi, Yoshinobu Kawahara, Yasuo Tabei, and Takehisa Yairi. Bayesian
dynamic mode decomposition. In IJCAI, pages 2814–2821, 2017.

[99] Molei Tao. Explicit symplectic approximation of nonseparable Hamiltonians: Algo-
rithm and long time performance. Physical Review E, 94(4):043303, 2016.

[100] Anastasios Tsiamis and George J Pappas. Finite sample analysis of stochastic system
identification. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages
3648–3654. IEEE, 2019.

[101] Jonathan H Tu, Clarence W Rowley, Dirk M Luchtenburg, Steven L Brunton, and
J Nathan Kutz. On dynamic mode decomposition: theory and applications. Journal
of Computational Dynamics, 1(2), 2014.

[102] Sabine Van Huffel and Joos Vandewalle. Analysis and properties of the generalized
total least squares problem ax ≈ b when some or all columns in a are subject to error.
SIAM Journal on Matrix Analysis and Applications, 10(3):294, 1989.

[103] Richard S Westfall. The construction of modern science: Mechanisms and mechanics.
Cambridge University Press, 1977.

[104] Matthew O Williams, Maziar S Hemati, Scott TM Dawson, Ioannis G Kevrekidis, and
Clarence W Rowley. Extending data-driven koopman analysis to actuated systems.
IFAC-PapersOnLine, 49(18):704–709, 2016.

121

[105] Armand Wirgin. The inverse crime. arXiv preprint math-ph/0401050, 2004.

[106] Alan Wolf, Jack B. Swift, Harry L. Swinney, and John A. Vastano. Determining
lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3):285–
317, 1985.

[107] Kailiang Wu, Tong Qin, and Dongbin Xiu. Structure-preserving method for recon-
structing unknown Hamiltonian systems from trajectory data. SIAM Journal on Sci-
entific Computing, 42(6):A3704–A3729, 2020.

[108] Shiying Xiong, Yunjin Tong, Xingzhe He, Shuqi Yang, Cheng Yang, and Bo Zhu.
Nonseparable symplectic neural networks. In International Conference on Learning
Representations, 2021.

[109] Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network rep-
resentations for koopman operators of nonlinear dynamical systems. In 2019 American
Control Conference (ACC), pages 4832–4839. IEEE, 2019.

[110] Jinghui Yuan, Mohamed Abdel-Aty, Yaobang Gong, and Qing Cai. Real-time crash
risk prediction using long short-term memory recurrent neural network. Transportation
research record, 2673(4):314–326, 2019.

[111] Yang Zheng and Na Li. Non-asymptotic identification of linear dynamical systems
using multiple trajectories. IEEE Control Systems Letters, 5(5):1693–1698, 2020.

[112] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ode-net:
Learning hamiltonian dynamics with control. In International Conference on Learning
Representations, 2019.

122

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	Abstract
	Introduction
	Design considerations in system identification
	Model class
	Objective function

	Shortcomings of existing objectives
	Fundamental objectives
	Quantitative assessment
	Qualitative assessment
	Discussion on state-of-the-art

	Contributions
	Outline

	Probabilistic Problem Formulation
	Notation
	Probabilistic perspective
	Algorithm
	Special noise forms
	Additive Gaussian noise
	General additive/multiplicative noise

	Computational complexity
	Uncertainty quantification
	Sampling strategy
	Prediction strategies

	Comparison to fundamental objective functions
	Simulation least squares
	Propagator least squares

	Summary

	Linear Time-Invariant System Identification
	Marginal likelihood evaluation of LTI systems
	State-space approach
	Input-output Markov parameter approach

	Theoretical foundations and analysis
	Dynamic mode decomposition
	Markov parameter estimation
	Numerical comparison

	Numerical experiments
	Linear pendulum, linear model
	Nonlinear pendulum, linear model
	Discussion on diagnostics

	Linear pendulum with control

	Summary

	Nonlinear System Identification
	Theoretical foundations and analysis
	Regularized regression for nonlinear models
	Multiple shooting objective
	Relation to probabilistic approach
	Comparison of smoothing effects

	Numerical experiments
	Vector field estimation
	Van der Pol oscillator
	Lorenz 63
	Reaction diffusion

	Discrete-time neural network mappings
	Wiener-Hammerstein benchmark
	Forced Duffing oscillator
	Allen-Cahn equation with forcing

	Summary

	Hamiltonian System Identification
	Hamiltonian mechanics
	Explicit symplectic integrators
	Leapfrog integration
	Tao's explicit symplectic integrator

	Probabilistic learning of Hamiltonian systems
	Parameterizing the Hamiltonian
	Polynomial approximations
	Nonseparable symplectic neural networks

	Embedding learning with explicit symplectic integrators
	Discussion and analysis

	Numerical experiments
	Hénon-Heiles system
	Cherry problem
	Training with a single initial condition
	Training with multiple initial conditions

	Tao's example
	Double pendulum

	Summary

	Conclusions and Future Work
	Pseudocode
	Eigensystem Realization Algorithm
	Proof of Proposition 3
	Bibliography

