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ABSTRACT

Accelerometry data collected by high-capacity sensors present a primary data type in smart

mobile health. Such data enable scientists to extract personal digital features that are useful

for precision health decision making. Existing methods in accelerometry data analysis typi-

cally begin with discretizing summary single-axis counts by certain fixed cutoffs into several

activity categories, such as Vigorous, Moderate, Light, and Sedentary. One well-known limi-

tation is that the chosen cutoffs have often been validated under restricted settings, and thus

they cannot be generalizable across populations, devices, or studies. Motivated by the Early

Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) research cohort, in this

dissertation I develop data-driven approaches to overcome this bottleneck in the analysis of

physical activity data.

In Chapter 2, I propose to holistically summarize an individual subject’s activity pro-

file using Occupation Time curves (OTCs). Being a functional predictor, OTCs describe

the percentage of time spent at or above a continuum of activity count levels. The result-

ing functional curve is informative to capture time-course individual variability of physical

activities. I develop a multi-step adaptive learning algorithm, termed FRACT (Functional

Regularized Adaptive Changepoint-detection Technique), to perform supervised learning via

scalar-on-function regression modeling that involves OTC as the functional predictor of in-

terest as well as other scalar covariates. This learning analytic first incorporates a hybrid

approach of fused lasso for clustering and Hidden Markov Model for change-point detection,

and then executes a few refinement procedures to determine activity windows of interest.

Through extensive simulation experiments I show the proposed FRACT performs well in both

changepoint detection and regression coefficient estimation. In application of this method

on real world data, I analyze 354 adolescent subjects from the ELEMENT cohort to assess

the influence of physical activity on two different biological aging outcomes. I find that

the different biological aging outcomes are each associated with different activity window of

interest, demonstrating the flexibility of the method to determine data-driven associations

based both on the underlying functional variables of interest, as well as the specific health

outcomes.

In Chapter 3, I investigate functional analytics under an 𝐿0 regularization approach that
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enables the handling of highly correlated micro-activity windows that serve as predictors in

the scalar-on-function regression model proposed in Chapter 2. Relatively recent advances

in 𝐿0 regularization and discrete optimization have promoted this powerful optimization

paradigm making it computationally viable. Utilizing such recent algorithmic and numeric

capabilities, I develop a new one-step method that can simultaneously conduct fusion via

change-point detection and parameter estimation through a new 𝐿0 constraint formulation.

This new approach is not only computationally efficient but also avoids propagation of sub-

jective errors incurred in a multi-stage analytic. I implement a new algorithm via GUROBI, a

modern optimization solver that provides a fast one-stage analytic for both parameter fusion

and changepoint detection. I evaluate and illustrate the performance of the proposed learn-

ing analytics through simulation experiments and a reanalysis of the relationship between

physical activity and biological aging.

In Chapter 4, I extend the previous 𝐿0 regularization framework of Chapter 3 to a lon-

gitudinal functional framework with repeated wearable data to understand the influence of

serially measured functional accelerometer data on longitudinal health outcomes. The sta-

tistical methodological extension invokes the means of Quadratic Inference Functions (QIF),

with an aim to detect physical activity intensity windows and assess their population-average

effects on children health outcomes. I consider a population-average effects model, and de-

velop a regularized QIF via mixed integer optimization to carry out longitudinal data analy-

sis. In contrast to the previous chapters, which considered the physical activity data during

a seven-day period, with the repeated measurements taken approximately two years after

the first, I focus on a longitudinal study of physical activity patterns from late-adolescence

into early adulthood on sub-scapular skin thickness (SSST). SSST is a measure of truncal

fat distribution; changes in SSST diverge dramatically in boys and girls as they undergo

puberty. SSST is among the measures of body composition that can be influenced by PA

behaviors, which decline and vary in adolescents. To our knowledge, this is the first study

to consider a longitudinal functional measure of PA in relation to changes in SSST in male

and female adolescents.
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CHAPTER 1

Introduction

1.1 Motivation

Physical Activity (PA) plays a crucial role in promoting overall health and well-being [Soares-

Miranda et al., 2016, Shook et al., 2015, Hallal et al., 2006, Wu et al., 2020, Aljahdali et al.,

2022]. In the modern era of mobile health, advancements in technology have allowed us to

monitor PA more comprehensively and effortlessly [Trost, 2001, Troiano et al., 2014, Liu

et al., 2021]. Advances in wearable devices have revolutionized the way we monitor and

quantify PA in individuals. These devices, such as fitness trackers and smartwatches, collect

vast amounts of data on movement patterns and energy expenditure [Freedson et al., 2005,

Crouter et al., 2015, Chandler et al., 2016]. In recent years, Functional Data Analysis (FDA)

techniques have emerged as a powerful tool to analyze and interpret these data streams. By

treating PA data as functional data, researchers can explore the dynamics and patterns of

movement over time, gaining insights into activity profiles and fluctuations [Ramsay, 2004,

Goldsmith et al., 2012]. This deeper understanding of activity patterns can help identify

optimal exercise regimes, track changes in health-related behaviors, and detect early signs

of health issues. Integrating PA, mobile health, and functional data analysis opens up

new avenues for promoting healthier lifestyles, facilitating personalized interventions, and

advancing our understanding of the complex relationship between PA and health. Here we

introduce and explore these concepts in greater detail.

1.1.1 Physical Activity and Health

Physical Activity has an undeniable impact on overall health; numerous studies [Soares-

Miranda et al., 2016, Shook et al., 2015, Hallal et al., 2006, Wu et al., 2020, Aljahdali

et al., 2022] have pointed to the strong and varied relationships between the two. Among

the myriad of findings, researchers have shown that increases in physical inactivity and

sedentary behavior increases the risk of cardiovascular disease and strokes in older adults
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[Soares-Miranda et al., 2016], as well as the risks of over 25 chronic conditions and overall

mortality [Warburton and Bredin, 2016]. In a similar vein, additional research has suggested

that low levels of PA are a risk factor for fat mass gain in young adults [Shook et al., 2015],

and that increased PA in adolescence has both short- and long-term benefits for physical

and mental health [Hallal et al., 2006]. Thus overall, increased PA has shown to reduce the

risk of diseases, promote healthy weight management, and improve mental health.

While researchers agree that PA has an important impact on health, important questions

remain regarding the importance of specific intensity, types, and bouts of activity [Warburton

and Bredin, 2016]. Some studies suggest that the cumulative effect of low-to-moderate

activity levels have beneficial health impacts, while others promote shorter bouts of high-

intensity activity [Jakicic et al., 2019]. Another field of research investigates whether the

timing PA is important, assessing if the health benefits of PA differ based on when during the

day it was performed [Janssen et al., 2022]. Previously, the field of PA and health research

has relied on self-reported data; however, the more recent rise in popularity and reliability

of wearable devices are providing new opportunities to explore these important questions.

1.1.2 Mobile Health and Wearable Devices

Wearable technologies are devices worn over continuous time-periods, which are designed to

collect subjects’ personal data. Notably, these devices can conduct automatic data collection

in high frequency and track physiological variables and clinical symptoms outside of clini-

cal environments. In providing this high-frequency, personalized time-series data, wearable

devices are promising technologies to promote smart-Health care management and precision

medicine. Additionally, the data collection can be relatively cheap, convenient, and flexible

in variable environments, which increases their popularity in both research and personal use.

The increased use of wearable devices in both research and personal use has given rise to

objective large-scale time-series datasets, providing unique opportunities and challenges in

data analytics. Now, researchers have the opportunity to collect repeated measurements of

functional digital features from wearable devices, and must determine how best to leverage

such data to answer scientific questions of interest. While their popularity and potential

usefulness are growing quickly, the ability to efficiently and effectively glean statistically-

robust information from wearable devices is slower to catch up. The data retrieved from these

technologies present challenges in data analysis, due to their inherent noisy nature, the non-

generalizability of methodologies, and high computational requirements. These challenges

motivate the need for statistical innovations in data analysis, machine learning, and data

science, to enable the wide-scale use of such wearable smart-Health devices in research amd
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clinical practice.

Accelerometers are a type of sensor available in wearable devices that captures continuous

PA and movement data, providing real-time, large-scale, personalized information on an in-

dividual’s PA patterns. Accelerometer sensors measure how speed changes over time through

electrical signals representing the volume and intensity of movement. Such data are recorded

in high resolutions of sampling frequencies (Hz), and then processed via proprietary software,

such as ActiLife LLC. With the ability to provide high-frequency measurements (example

frequency: 60Hz, or 60 data points per second), the technical challenge becomes how to

retrieve useful information from this high-frequency time-series data type. For example, in

a tri-axial accelerometer, data is collected along three orthogonal axes, deemed Axis 1, Axis

2, and Axis 3. Each axis provides different information on PA, though the measurements

are correlated. Typically, the processed data describing PA levels at each axis are expressed

as activity “counts” over specific periods of time known as “epochs” [Chen and Bassett,

2005]. While some researchers [Naiman and Song, 2022] have recently proposed methods to

analyze the three-dimensional time-series counts directly, many researchers often summarize

the three-dimensional count information at each time-point into a one-dimensional summary

value of Vector Magnitude (VM), with 𝑉𝑀 =
√
𝑎𝑥𝑖𝑠12 + 𝑎𝑥𝑖𝑠22 + 𝑎𝑥𝑖𝑠32 [Liu et al., 2021].

Figure 1.1 depicts 24 hours of tri-axial accelerometer data from a single individual, with

the collected time-series data from each of the three different axes, as well as the summarized

VM. We can see that, while each time-series follows similar macro patterns, the different

measurements provide different micro patterns and magnitudes over time. From such count

level data, researchers need to decide not only which measurement to analyze, but also the

means of summarizing the high-frequency time-series data into a feasible summarized format

for analysis. The latter is deemed for dimension reduction in order to apply existing data

analytics to the analysis.

Previous research has emphasized easy-to-understand summary statistics in order to ob-

tain dimension reduction and reduce data complexity. These measurement include classifica-

tion of raw accelerometry into PA intensity levels based on pre-defined cutpoints, as well as

daily/weekly activity count averages or totals. In the case of the latter, the summarizing suf-

fers from a significant loss of information and the deterioration of the functional nature of the

data [Lin et al., 2023]. In the case of the former, a researcher must rely on pre-determined

categorization thresholds. Specifically, a popular method of analyzing accelerometer data

involves specifying activity level “cutoffs” to discretize activity counts into categories, such

as Sedentary, Light, and Moderate-to-Vigorous [Freedson et al., 2005, Crouter et al., 2015,

Chandler et al., 2016, Troiano et al., 2008]. While categorization is a useful approach, the

cutoffs must be pre-specified by the researcher. There are many potential cutoffs published
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Figure 1.1: 24 hours of accelerometer data from a tri-axial wrist-worn device, collected
from a single subject from the motivating data set. Each panel deptics the time-series
data from a different axis, or direction of acceleration, with Vector Magnitude representing a
summary of the three-dimensional axis data. Each time-series demonstrates slightly different
activity patterns, illustrating that different activity information is captured by the unique
measurements.
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Figure 1.2: 24 hours of accelerometer data summarized by 1-minute epoch of Vector Magni-
tude counts. This data was collected from a wrist-worn accelerometer device adorned by an
adolescent from the motivating data set. The horizontal lines represent two different sets of
previously published cutoffs, both of which have been validated for wrist-worn accelerometer
devices for children. The blue horizontal lines depict the Chandler cutoffs [Chandler et al.,
2016], while the red horizontal lines depict the Crouter cutoffs [Crouter et al., 2015]. Each
set of activity cutoffs classify the data into 4 activity categories: Sedentary, Light, Moderate,
and Vigorous.

in the literature, each validated against different narrowly focused studies with small sub-

group populations. These cutoffs may be affected by many personal-level variables, including

what device was used (e.g. Actigraph GT3X, Actigraph GT9X, Fitbit), the placement of

the device (e.g. hip, wrist, ankle), or characteristics of the study population (e.g. age, sex,

race) [Freedson et al., 2005].

Figures 1.2 and 1.3 depict 24 hours of accelerometry data with different set of cutoff

thresholds applied. While each set of cutoffs classifies the data into the four physical activ-

ity categories of Sedentary, Light, Moderate, and Vigorous activity, the sets of cutoffs do

not always agree on the specific classification at each time epoch. Figure 1.2 demonstrates

cutpoint thresholds from the Chandler [Chandler et al., 2016] and Crouter [Crouter et al.,

2015] thresholds, which were validated against a similar underlying population as our moti-
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Figure 1.3: 24 hours of accelerometer data summarized by 1-minute epoch of Axis 1 counts.
This data was collected from a wrist-worn accelerometer device adorned by an adolescent
from the motivating data set. The horizontal lines represent two different sets of previously
published cutoffs validated against a specific population, neither of which align with the
motivating dataset. The blue horizontal lines depict the Freedson Child [Freedson et al.,
2005] and the red horizontal lines depict the Troiano Adult cutoffs [Troiano et al., 2008],
both of which were validated with Axis 1 Counts on waist-worn devices. Each set of activity
cutoffs classify the data into 4 activity categories: Sedentary, Light, Moderate, and Vigorous.

vating dataset; that is, the Chandler and Crouter cutpoints were created for accelerometer

data summarized into one-minute epoch Vector Magnitude counts collected from adolescent

subjects with wrist-worn tri-axial accelerometer devices. Even in this “ideal” case, in which

the motivating data set aligns with the cutoff validation data set, it is clear that the choice

between the Chandler and Crouter cutoffs impacts PA classification and subsequent data

analyses. Figure 1.3, where the Freedson Child [Freedson et al., 2005] and Troiano Adult

[Troiano et al., 2008] cutoffs are depicted, demonstrates the more problematic scenario in

which the applied cutoffs were validated with underlying characteristics that do not align

with the motivating dataset. These cutoffs were validated for Axis 1 accelerometer counts

collected from waist-worn devices, and clearly do not provide appropriate distinction be-

tween the time-series accelerometer data. In summary, a clear bottleneck in the analysis of
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accelerometer data pertains to the utility of prefixed cutoffs that may produce misleading

results.

Given the multitude benefits of PA on health as described in Section 1.1.1, and the new

wealth of data researchers are now able to collect from wearable devices, it is becoming

increasingly vital to further develop novel statistical models that are both robust and infor-

mative. These models can be leveraged to explore the relationship between varying aspects

of PA with health outcomes of interest. Motivated by the Early Life Exposure in Mexico

to ENvironmental Toxicants (ELEMENT) research cohort, this dissertaion plans to develop

data-driven approaches within the functional data framework to over-come the bottleneck

in the analysis of PA data from wearable devices. While this dissertation focuses on PA

collected from wearable accelerometer devices, the proposed methodologies can be applied

to alternative types of wearable devices that collect high-frequency time-series data, such

as continuous glucose monitoring (CGM) devices, heart rate monitors, and toxicant sensors,

among others.

1.1.3 Functional Data Analysis

Functional data analysis (FDA) is a statistical analysis framework that addresses the chal-

lenges of analyzing functional data, which itself consists of a set of curves, surfaces, or other

types of data observed over a continuum, such as time or space [Ramsay, 2004]. By analyz-

ing functional data collected from wearable devices, researchers can gain valuable insights

into how an individual’s physiological patterns affect health outcomes, monitor health condi-

tions, track changes over time, and make informed decisions regarding lifestyle, fitness, and

healthcare management. At a high level, characteristics of functional data include being (i)

high-dimensional (ii) temporal or structural in nature (iii) recorded over a continuous do-

main [Ramsay, 2005]. Compared to traditional statistics, where data is typically represented

as a set of discrete observations, functional data considers the function as a whole as the

primary unit of analysis. In our case, the PA serves as a functional predictor in the analysis.

Considering the data in this way enables the extraction of valuable information regarding

the overall shape, trends, and patterns present in the data [Chen and Müller, 2012]. As a

relatively new and growing field, comprehensive reviews of Functional Data and their uses

are provided by, Ramsay & Silverman (2005) [ram, 2005], Ferraty & Vieu (2006) [fer, 2006],

and Horvath & Kokoszka (2012) [Horváth and Kokoszka, 2012], among others.

As discussed above, wearable devices often include sensors that can capture various

physiological signals continuously over time, so the collected data are good candidates for

Functional Data Analysis (FDA); in particular, they are used as functional predictors in
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this dissertation. The signals captured from the devices can be represented as functions

that describe the changes in physiological measurements over a continuous domain, such as

time. That is, each observation represents a function that describes the values of a variable

at different time points. An example of functional data from a wearable device is that of

Continuous Glucose Monitoring (CGM). The CGM device records glucose readings at reg-

ular intervals, capturing an individual’s glucose levels and fluctuations throughout the day.

Each observation in this hypothetical dataset would consist of a function that represents

the glucose levels over the course of a single day. That is, the observation for individual

𝑖 over continuous time 𝑡 for 𝑡 ∈ (0, 𝑇), represented as 𝐺𝑖(𝑡), could be sampled at discrete

time points, such that: 𝐺𝑖(𝑡) = (𝑔𝑖1, 𝑔𝑖2, . . . , 𝑔𝑖𝑡 , . . . , 𝑔𝑖𝑇). The observation 𝐺𝑖(𝑡) represents
the glucose function recorded from individual 𝑖 wearing the continuous glucose monitoring

device. The time points 𝑡 = 1, 2, . . . , 𝑇 represent the discrete time instances at which the

glucose level was measured in high frequency, and the values 𝑔𝑖1, 𝑔𝑖2, . . . , 𝑔𝑖𝑇 represent the

glucose concentration at each time point.

There are many FDA techniques that can be used to explore various aspects of such

functional data sets. Some analytic methods within this framework include: functional

regression [Ramsay, 2005, Reiss et al., 2017], which can be used to model the relationship

between the functional data and other variables; functional principal component analysis

(FPCA) [Ramsay, 2004, 2005, Goldsmith et al., 2015, Yao et al., 2005, Nwanaji-Enwerem

et al., 2021, Chen and Müller, 2012], which can help in dimension reduction and identifying

dominant patterns variation; and functional classification and clustering [Heinzl and Tutz,

2014], which involve grouping functional data based on similarity or dissimilarity measures.

This dissertation will focus functional linear regression techniques with functional predic-

tors. These techniques extend the concept of linear regression to functional predictors and

responses. More specifically, it allows for modeling the relationship between functional vari-

ables, such as predicting a response curve based on a set of predictor curves. In the following

chapters we will focus on a subset of functional linear regression, deemed scalar-on-function

regression, in which the relationship between scalar outcomes and functional predictors is

assessed.

1.2 Contribution

In the first project, I develop a more holistic, generalized, functional-focused approach to

analyze PA data. Specifically, the proposed approach aims to free the dependence on subjec-

tive choices of pre-determined PA categorizations, and instead allow the data to adapatively

determine the change-points and different activity ranges of interest. In this way, I utilize the
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supervised learning paradigm to assess the association of PA ranges with health outcomes of

interest. I propose to holistically summarize an individual subject’s activity profile using Oc-

cupation Time curves (OTCs). Being a functional predictor, OTCs describe the percentage

of time spent at or above a continuum of activity count levels. The resulting functional curve

is informative to capture time-course individual variability of PA. Utilizing the OTCs as a

functional variable in the supervised learning paradigm leads us to a FDA approach, specifi-

cally a scalar-on-function model. I develop a multi-step adaptive learning algorithm, termed

Functional Regularized Adaptive Changepoint-detection Technique (FRACT), to perform

supervised learning via a scalar-on-function regression model. FRACT involves OTCs as the

functional predictor of interest as well as other scalar covariates.

This learning analytic first incorporates a hybrid approach of fused lasso for clustering

and Hidden Markov Model for change-point detection, and then executes a few refinement

procedures to determine activity windows of interest. The multi-step nature of the proposed

analytic provides some benefits versus one-step estimation alternatives, such as integer pro-

gramming approaches proposed in Chapters 3 and 4. With its multiple estimation iterations,

FRACT mines various relevant features in the data, providing useful insights into the inter-

mediary steps of the data-learning process as well as the data quality and data structure.

This attribute is particularly important when collaborating with non-statisticians who have

limited training in data analytics and want to understand and cross-validate the analytic

steps. Thus, the proposed methodology in Chapter 2 is more digestible to practitioners who

may then prefer a deep dive into complex data and take a more understandable approach

when conducting their scientific studies.

In the second project, I investigate functional associations between health outcomes and

PA under an 𝐿0 regularization approach. 𝐿0 regularization is a type of regularization tech-

nique used in machine learning and optimization to add a penalty for the number of non-zero

coefficients or variables in a model [Bertsimas et al., 2016]. It is typically applied in the con-

text of linear regression or other linear models to promote sparsity; that is, it encourages

the model to use fewer features or variables. Until relatively recently, 𝐿0 regularization and

discrete optimization has been less of a focus verses the 𝐿1-related continuous optimization

approaches as it was deemed computationally impractical. However, with recent advances

in algorithmic and numeric capabilities, discrete optimization is a feasible and powerful tool

[Bertsimas et al., 2016, Bertsimas and Shioda, 2009, Bertsimas et al., 2020].

I implement the modern optimization methods to functional analysis, by means of Mixed

Integer Optimization (MIO) and Mixed Integer Programming (MIP)[Wolsey, 2008], to detect

critical activity windows of interest again leveraging the information inherent in OTCs. In

MIP, the objective is to optimize a linear or nonlinear function subject to a combination of
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continuous and discrete variables, with the goal of finding optimal values for all variables that

satisfy the given constraints [Wolsey, 2008]. By formulating an 𝐿0 regularization problem

using binary variables, or by introducing additional binary variables to represent the sparsity

pattern, one can incorporate 𝐿0 regularization into MIP. In this formulation, the 𝐿0 regular-

ization penalty is transformed into a linear combination of binary variables and continuous

variables, which makes it compatible with MIP solvers [Bertsimas et al., 2016]. In this case,

rather than considering sparsity in terms of the number of individual variables, we consider

the sparsity of differences between sequential variables, thereby proposing a fusion-adapted

𝐿0 regularized learning method with MIP and MIO. To the best of my knowledge, I am the

first to consider MIO methodologies both to conduct fusion as well as in a functional data

framework. I will demonstrate that this method is computationally feasible and scalable to

practically-sized problems of interest.

In the third project, I extend the previous 𝐿0 framework to a functional framework with

repeated measures to understand the population-average influence of repeatedly measured

functional accelerometer data on health outcomes. Such an informatics toolbox can be ap-

plied to analyze the relationship of longitudinal functional digital features with longitudinal

continuous outcomes; that is, this extension takes the form of longitudinal analysis with

repeat measurements in both PA and outcome. Specifically, I propose a methodology that

detects changepoints in serially measured functional accelerometer data to define critical

windows of activity intensity that impacts longitudinal health outcomes, while also account-

ing for covariates of interest. In my data analysis example, with the repeat measurement

taken approximately two years after the first, I study PA patterns from late-adolescence into

early adulthood, and their longitudinal association with certain health outcomes of interest.

This statistical methodological extension incorporates the framework of Quadratic Infer-

ence Functions (QIF), where longitudinal dependence is modeled by estimation of covariance

matrices [Song et al., 2009]. QIF offer several benefits in longitudinal data analysis. Im-

portantly, QIF provides a flexible and efficient framework to handle correlated data often

observed in longitudinal studies and can also accommodate different covariance structures,

allowing researchers to model complex dependencies between repeated measurements ac-

curately. Furthermore, QIF is robust to the mis-specification of the working covariance

structure, making it a reliable option when the true covariance model is unknown. Over-

all, QIF contributes to more accurate and robust longitudinal data analysis, enhancing the

validity of statistical inferences [Song et al., 2009]. Notably, the QIF framework does not

require subject-level detail to conduct consistent estimation. Rather, one can use summary

statistics from each time-point (or each correlated cluster) to conduct this analysis. This

aspect opens the possibility for federated learning extensions, in which summary statistics
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from different data sources (such as hospitals or research groups) are combined for analysis,

while still maintaining data privacy.

1.3 Organization of this Dissertation

This dissertation is organized into three distinct projects presented in Chapters 2, 3, and 4,

respectively. Each of these Chapters, outlined in Section 1.2 above, proposes a distinct FDA

framework methodology related to analysis of functional accelerometer data and follows a

consistent high-level structure comprising three key components: method development, sim-

ulation experiments, and data analysis. For the proposed frameworks, the new methodologies

are developed and justified based on their relevance to the specific problem, with theoreti-

cal guarantees introduced where appropriate. Simulation experiments are then presented to

evaluate the performance and effectiveness of the proposed method under various scenarios.

Data generated from these simulations are meticulously analyzed to draw meaningful con-

clusions and highlight the strengths and limitations of the approach. The proposed validated

methodologies are then utilized in a real data analysis to assess the functional association

between PA and health outcomes of interest, thereby examining the practical implications

of the proposed methods and drawing conclusions from the application to real data.

Finally, Chapter 5 includes a comprehensive Summary and Future Work section, where

the findings of each project are synthesized and compared. This section provides a cohesive

analysis of the overall research outcomes, highlighting the strengths and limitations of the

methodologies. Additionally, it identifies potential avenues for future research, discussing

novel extensions or refinements to the proposed approaches to further enhance their utility

and applicability. This culminating section provides a comprehensive reflection on the disser-

tation’s contributions to the field, paving the way for further advancements and applications

in the subject area.
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CHAPTER 2

Supervised Learning of Physical Activity

Features from Functional Accelerometer Data

2.1 Introduction

Physical Activity (PA) is of ubiquitous interest in smart-Health related research. One

question of great interest is whether a more physically active person would be biologically

“younger” than a less active person. In clinical lab settings researchers can directly observe

and measure PA by well-designed experiments and facilities. However, measuring PA levels

is more difficult to conduct in free-living populations outside of the lab setting. In the past,

PA for these populations was often measured via subjective methods such as self-reported

PA diaries. More recently, AI-guided sensors such as accelerometers have been utilized as

objective measures to provide continuous high-frequency PA data [Trost, 2001, Troiano et al.,

2014, Liu et al., 2021], giving rise to new technical needs and challenges in data analyses.

Accelerometer devices capture how speed changes over time through electrical signals rep-

resenting the volume and intensity of movement. Such data are recorded in high resolutions

of sampling frequencies (Hz), and then processed via proprietary software, such as ActiLife

LLC. Typically, the processed data describing PA levels are expressed as activity “counts”

over specific periods of time known as “epochs” [Chen and Bassett, 2005]. The count levels

reflect the relative intensity of activity, with higher values indicating more intense exertion.

For tri-axial accelerometers, the three-dimensional count information at each time point is

often summarized into a one-dimensional summary value of Vector Magnitude (VM), with

𝑉𝑀 =
√
𝑎𝑥𝑖𝑠12 + 𝑎𝑥𝑖𝑠22 + 𝑎𝑥𝑖𝑠32 [Liu et al., 2021].

With the ability to provide high-frequency measurements (example frequency: 60Hz, or 60

data points per second), the technical challenge becomes how to retrieve useful information

from this high-frequency time-series data type. A popular method of analyzing accelerom-

eter data involves specifying activity “cutoffs” to discretize activity counts into categories,

such as Sedentary, Light, and Moderate-to-Vigorous [Freedson et al., 2005, Crouter et al.,
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2015, Chandler et al., 2016]. Figure 2.1 illustrates an example of pre-specified cutoffs (the

horizontal lines) applied to 24-hours of accelerometer data for a subject from our motivating

dataset.

While the use of accelerometers provides a multitude of benefits, including reducing re-

porting bias found in subjective measures (e.g. self-reported PA surveys), and providing

a continuous account of activity over a wear-time period, their use in studies does present

some analytic challenges in data analysis [Troiano et al., 2014]. First, while categorization

is a useful approach, the cutoffs must be pre-specified by the researcher. There are many

potential cutoffs published in the literature, each validated against different narrowly focused

studies with small subgroup populations [Crouter et al., 2015, Chandler et al., 2016, Troiano

et al., 2014]. These cutoffs may be affected by many variables, including what device was

used (e.g. Actigraph GT3X, Fitbit), the placement of the device (e.g. hip, wrist, ankle),

or characteristics of the study population (e.g. age, sex, race) [Freedson et al., 2005]. For

example, in the software ActiLife, which is used to analyze actigraphy data from Actigraph

devices, there are over fifteen cutoff options. In addition, a researcher can choose to input

their own cutoffs in ActiLife (ActiLife software, v6.13.3), leading to subjectivity in data pro-

cessing. Such flexibility exposes analyses to the risk of applying pre-set cutoffs that do not

align with a specific study population, potentially resulting in incorrect or biased activity

classifications. Thus, it becomes important to call a new algorithm to adaptively choose

appropriate cutoffs tailored to different studies.

The goal of this chapter is to develop a more holistic, generalized, functional-focused ap-

proach to analyze PA data. Specifically, the proposed approach aims to free the dependence

on subjective choices of pre-determined PA categorizations, and instead allow the data to

adaptively determine the changepoints and different activity ranges of interest. In this way,

we utilize the supervised learning paradigm to assess the association of PA ranges with health

outcomes of interest.

To this end, we consider actigraphy data under the purview of Occupation Time Curves

(OTCs). This method of analyzing PA data involves a summary curve which describes the

proportion of time an individual spends at or above successive activity levels [Bogachev and

Ratanov, 2011]. The OTCs retain key features of the activity profile while greatly reducing

the background noise inherent to accelerometer devices. OTCs compute the empirical pro-

portional activity across possible activity levels for each individual, defined mathematically

by ℙ(𝑉𝑀(𝑡) ≥ 𝑐), where 𝑉𝑀(𝑡) is the time-series of Vector Magnitude counts (as defined

above), 𝑐 represents the sequential moving activity levels, and ℙ denotes an empirical prob-

ability measure defined by the proportion:
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 {𝑡:𝑉𝑀(𝑡)≥𝑐}
𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 𝑉𝑀(𝑡) [Chang and McKeague,

2022]. Figure 2.2a illustrates the construction of an OTC, and Figure 2.2b illustrates four
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Figure 2.1: Accelerometer Data for an individual over a 24 hour period. The horizontal
lines indicate PA categorization cutoffs based on Chandler Vector Magnitude cutoffs for 1-
minute epochs [Chandler et al., 2016]. These cutoffs are pre-determined by in-lab supervised
research, and now applied to a free-living subject.
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OTC plots over VM counts varying from 0 to 30,000. Notably, Figure 2.2b includes OTCs

for both more-active and less-active individuals, illustrating that the curves for more-active

people show a distinct shape from those of less-active people. We aim to utilize the features

inherent in the curves to assess the influence of PA profiles on a certain health outcome of in-

terest (e.g. biological aging). Refer to Section 2.2 for more details concerning the motivating

data and scientific research questions.

Utilizing the OTCs as a functional variable in the supervised learning paradigm leads

us to a Functional Data Analysis (FDA) approach. For the ease of exposition, suppressing

other covariates for the time being, we consider the following scalar-on-function regression

model:

𝑌 =< 𝑋, 𝛽 > + 𝜖 =

∫
𝒞
𝑋(𝑐)𝛽(𝑐)𝑑𝑐 + 𝜖, (2.1)

where 𝑌 is a scalar health outcome of interest, 𝑋(𝑐) is the functional OTC defined on 𝒞 ⊂ ℝ

and 𝜖 is the error term. Here, < 𝑎, 𝑏 > depicts the inner product of two square-integrable

functions, namely
∫
𝒞 𝑎(𝑐)𝑏(𝑐)𝑑𝑐 with

∫
𝒞 𝑎

2(𝑐)𝑑𝑐 < ∞ and
∫
𝒞 𝑏

2(𝑐)𝑑𝑐 < ∞. Categorization is

of specific interest in this field for interpretability. Thus, we aim to develop a changepoint

detection method that searches for the best segmentation of 𝑋(𝑐) by adaptively determining

both the number and location of cutoffs that align with the PA intensity patterns. In this way,

data-driven cutoffs are not only determined in a supervised fashion by the outcome of interest,

but are also tailored to a study population under investigation. The rationale behind the

goal of activity categorization is that not all PA ranges would impact a health outcome, and

influential windows of activity, if they exist, should be appealing for the sake of interpretation.

To address these technical needs, we develop a supervised learning analytic that incorporates

multi-step, adaptive, learning procedures to estimate the functional parameter 𝛽(𝑐) with

possible jump points representing activity ranges associated with the scalar health outcome.

The supervised learning aspect of this proposed methodology is due to the changepoint

detection and functional parameter estimation being outcome dependent, as is required to

address the scientific need of generalizability. The proposed method provides great flexibility

to study similar scientific questions in other populations with various underlying characteris-

tics and devices. This use of functional regression is notably different from current methods

of analyzing accelerometer activity and investigating windows of activity associated with

health outcomes. Unlike methods establishing fixed cutoff values regardless of specific out-

comes under investigation, our analysis takes a new supervised learning approach in which

changepoints and activity ranges are determined by the specific outcome of interest labelling

in the model, which may take different forms in different applications.

The multi-step nature of the proposed analytic is an additional benefit versus one-step
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estimation alternatives, such as integer programming. With its multiple estimation itera-

tions, the proposed method mines various relevant features in the data, providing useful

insights into the intermediary steps of the data-learning process as well as the data quality

and data structure. This is particularly important when collaborating with non-statisticians

who have limited training in data analytics and want to understand and cross-validate the

analytic steps. Thus, the proposed methodology is more digestible to practitioners who may

then prefer a deep dive into complex data and take a more understandable approach when

conducting their scientific studies.

This chapter is organized as follows. Section 2.2 introduces our motivating dataset from

the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) study, where

epigenetic age (a scalar outcome that reflects biological aging) is described, while Section

2.3 introduces Occupation Time Curves (OTCs). Section 2.4 concerns the development of

a multi-step supervised adaptive learning analytic that enables changepoint detection of

important activity ranges, whose implementation is detailed in Section 2.5 and performance

is evaluated and demonstrated through simulation experiments in Section 2.6. In Section

2.7, we apply our proposed method to assess the functional association between PA and

epigenetic age. Section 2.8 includes a few concluding remarks.

2.2 Motivating Study Data

This work is motivated by the Early Life Exposures in Mexico to Environmental Toxicants

(ELEMENT) cohort, which is a longitudinal birth cohort study involving mother/child dyads

from Mexico City. Details of this study have been discussed in a previously published review

paper [Perng et al., 2019], with details relevant to this research described below.

2.2.1 ELEMENT Actigraphy Data

As a part of this 2015 ELEMENT follow-up study, researchers collected actigraphy data

from 539 children (258 boys and 281 girls) with mean (SD) ages of 13.9 (2.2), ranging from

9 to 18 years old. The participants were provided a wrist-worn, tri-axial Actigraph GT3X+

(Actigraph LLC), which was worn for seven consecutive days with no interruption. The

Actigraph GT3X+ has an acceleration range of ±6𝑔(𝑔 = 9.81𝑚/𝑠2) with a default sampling

frequency of 30 Hz corresponding to a collection of 30 measurements per second. The raw

tri-axial data was processed and summarized into epochs of various lengths (i.e. 10 sec, 30

sec, 1 min). In this chapter, we focus on Vector Magnitude (VM) activity counts over one-

minute epochs, which is widely used in practice. This Actigraph device is water-resistant and

16



can be removed only when physically cut off. This warranted both high study compliance

and limited non-wear time during the consecutive seven days of actigraphy data collection.

In addition to PA, the ELEMENT cohort also collected DNA methylation data from

EPIC array (850K) that was used to calculated epigenetic age. In our study, we also consider

covariates, including chronological age, sex, lead exposure [Wu et al., 2019], and pubertal

status measured by a five-category ordinal variable of Tanner staging, and others.

2.2.2 Epigenetic Age

Biological aging rates are of great interest, but not well understood. There is significant

variation in how people visibly age or are affected by age-related disease. By quantifying

this characteristic, the biological aging rate can act as a biomarker of the overall state of

health, and allow for personalized or pre-emptive health interventions [Marioni et al., 2015].

Epigenetic Age is one such quantitative way to represent a person’s biological aging, and is

the outcome of interest in this chapter. Epigenetic Age Calculators hosted online [Horvath,

2013] receive inputs of DNA methylation (DNAm) alterations along different areas of the

genome and deliver an output of predicted Epigenetic Age; see Horvath (2013), among others.

Research in fetal origins of health and disease suggests that early life exposures could

form the foundation of health issues experienced by individuals in adulthood. After birth,

studies show that children and adolescents (age 0-18) undergo the fastest and most dynamic

rate of growth and DNAm changes [Wu et al., 2019, McEwen et al., 2020]. These childhood

environmental and experiential factors can be observed in changes in the the DNAmethalome

and thus reflected in epigenetic age. An important investigation of scientific interest is to

assess the association of epigenetic age with objectively measured functional PA (e.g. OTCs

shown in Figure 2.4).

Research has demonstrated the relationship between health and epigenetic age may not

be monotonic, motivating the use of different types of epigenetic ages to study the influence

of PA on different biological aging processes. Here, we focus on two biological ages for the

adolescents aged 9-18: Horvath’s Skin and Blood clock (DNAm AgeSkinBlood) [Horvath

et al., 2018] and Levine’s Phenotypic Age clock (DNAm PhenoAge) [Levine et al., 2018],

both calculated from the epigenetic age calculators [Horvath, 2013]. The former reflects

aging in skin and blood cells while the latter pertains to age-related disease/phenotypes.
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2.3 Occupation Time Curves: A Functional Predictor

The OTC [Bogachev and Ratanov, 2011] provides a useful way to summarize PA patterns

and represent data as an informative functional curve. OTCs summarize high-frequency

time-series accelerometer data by representing the empirical proportion of time an individual

spends at successive activity count levels. For a vector of VM time-series data 𝑉𝑀(𝑡), an
OTC can be calculated over a domain of count values 𝒞 by: 𝑂𝑇𝐶(𝑐) = ℙ(𝑉𝑀(𝑡) ≥ 𝑐) for
𝑐 ∈ 𝒞, where c represents the sequential moving activity levels, and ℙ denotes an empirical

probability measure defined by the proportion:
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 {𝑡:𝑉𝑀(𝑡)≥𝑐}
𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 𝑉𝑀(𝑡) .

Calculating an OTC is computationally straightforward. Take an example of a time-

series of Vector Magnitude (VM) counts 𝑉𝑀(𝑡). To yield the first data point of OTC, we

calculate the empirical proportion of time spent at or above count level of 0, (i.e. 𝑐 = 0), or

𝑂𝑇𝐶(0) = ℙ(𝑉𝑀(𝑡) ≥ 0), which is clearly 100%. We then vary 𝑐 in ascending order, such

as say 𝑐 = 100 and 𝑐 = 200, and calculate 𝑂𝑇𝐶(100) = ℙ(𝑉𝑀(𝑡) ≥ 100) and 𝑂𝑇𝐶(200) =
ℙ(𝑉𝑀(𝑡) ≥ 200), and so on. This calculation continues up to 𝑐 = 30, 000, or 300×102, which

appears as the largest ordered VM count in the data. Figure 2.2a illustrates this numerical

OTC construction procedure. The resulting OTC is denoted as 𝑋(𝑐), 𝑐 ∈ 𝒞 = [0, 300× 102]
throughout the rest of this chapter.

Figure 2.2a illustrates the construction of an OTC, with the successive increase in thresh-

old 𝑐 shown on the left panel, and the respective ℙ(𝑉𝑀(𝑡) ≥ 𝑐) shown in the resulting

continuous curve on the right panel. The shape of the OTCs reflect the relative amounts

of time an individual spends in different activity levels. For an inactive person, who spends

the majority of time in low-activity counts, their OTC curve would decay quickly, represent-

ing a high proportion of time in low activity levels and a small proportion of time in high

activity levels. However, the OTC of an individual with higher proportions of time spent

in high activity levels would appear more linear in nature at its start, before eventually

flattening. These differences are illustrated in Figure 2.2b. Thus, the OTCs reflect inherent

PA characteristics of each individual.

These OTCs provide a more flexible and generalizable PA summary variable than using

the standard “minutes per activity category” from continuous accelerometer data as shown

in Figure 2.1. In order to ensure comparable summary measures among subjects when using

the previously described standard approach, the data from each subject should reflect non-

missing continuous data over the same length of time. As subjects generally have different

lengths of “awake” (i.e. non-sleep) time, as well as different patterns of non-wear time (i.e.

missing data), these requirements are not often met in practice. In contrast, OTCs scale the

PA measures to the duration of time under consideration, providing more apt comparison
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(a) OTC Construction

(b) OTC Comparison

Figure 2.2: (a) The construction of an OTC from a time-series of VM counts. The left
panel represents accelerometer data, with an increasing bar of count cutoff indicated by
the horizontal lines with varying point-shapes. The corresponding proportion of time spent
at or above that level of activity is shown in the indicated point on the right panel with
the corresponding point shape. The grey continuous curve is the realized OTC for this
individual (b) Comparison of OTC shapes for More vs Less Active Individuals, with VM
count summarized over 1-min epochs varying over 0 to 30000. The distinctive shapes of
the curves represent the subject’s activity pattern. For example,curves of less active people
steeply drop in the beginning, signifying that a small percentage of their time is spent in
even mid-active regions.
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between individuals who have different lengths of time of continuous accelerometer data.

Utilizing the functional OTC curve also requires a different approach to estimating the

parameters of effect between PA and specific health outcomes of interest. While the standard

analysis approach illustrated in Figure 2.1 incorporates fixed coefficients relating Total Min-

utes in each pre-fixed activity window, the OTC requires a non-parametric coefficient. We

model the OTC as a functional covariate in a scalar-on-function regression model (described

further in Section 2.4.1) in which the goal is to estimate the non-constant 𝛽 parameter as

a function of activity count, and more specifically as a step-function. For example, Figure

3.1 illustrates a continuous 𝛽 estimation as a step-function of activity count, which reflects

specific activity windows in the OTC. This functional 𝛽 suggests that the proportion of time

spent in the three different segments of the OTC have different impact on the health outcome

of interest. We will develop this model formulation in Section 2.4.

2.4 Method

In this chapter we develop a holistic multi-step supervised learning approach to analyze

accelerometer data in that both changepoints and PA ranges are adaptively determined via

scalar-on-function regression model. A key aspect of the proposed method is to detect PA

ranges that impact the association between health outcomes of interest (e.g. epigenetic age)

and a functional covariate, OTC, adjusting for other variables. This proposed methodology

is considered supervised learning as the goal is to estimate changepoints that are outcome

dependent. That is, the activity windows are determined by the specific outcome labelling in

the model; this supervised-learning aspect is intrinsic to the generalizability of the proposed

method to a wide range of scientific problems that may use different wearable devices or

means of data collection for different study purposes.

2.4.1 Scalar-on-Function Regression and Changepoint Detection

It is natural to utilize such inherent variability in the curves to study the association between

PA and our outcome of interest, epigenetic age. Since OTCs present distinct informative

functional shapes on individual’s PA profile, it is desirable to take OTC as a functional

covariate in the association analysis through a scalar-on-function regression model within a

functional data analysis framework. Identifying PA ranges pertains to detection of change-

points or cutoffs on OTC 𝑋(𝑐). This sets up a different analytic goal than that of standard

PA analyses performed in literature. For the ease of exposition, we begin with a simple

scalar-on-function linear model with no covariates as described in Equation (2.1), in which
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the error terms 𝜖𝑖’s are assumed to be independent and identically normal distributed with

mean 0 and variance 𝜎2.

Our analytic goal is to estimate the functional parameter 𝛽(𝑐) with certain jump points,

which describes a piece-wise varying effect of the OTC 𝑋(𝑐) on epigenetic age 𝑌. Here, the

changepoints define the windows of PA, similar to the practice of activity categorization

widely considered in the literature for scientific interpretation. In other words, our proposed

approach focuses on changepoint detection, or grouping like activity count ranges with similar

effects on the outcome to gain better insights and interpretations for the functional associa-

tion. Our key idea is rooted in the utility of fused regularization technique that enables the

identification of jump points of functional parameter 𝛽(𝑐). This analytic task is technically

challenging as it involves both clustering and estimation of functional parameters. To pro-

ceed, we first discretize each OTC into many small segments so the integral
∫
𝒞 𝛽(𝑐)𝑋(𝑐)𝑑𝑐

can be approximated by a step-function over many small pieces. That is, we divide interval

𝒞 into 𝐽-many small successive intervals with a grid 𝑐0 = 0, 𝑐1, · · · , 𝑐𝐽 = 30, 000, namely

𝒞 = [0, 𝑐1] ∪𝐽𝑗=2 (𝑐 𝑗−1, 𝑐 𝑗], and assume 𝛽(𝑐) takes one parameter within one small interval.

Precisely, on the 𝑗𝑡ℎ interval (𝑐 𝑗−1, 𝑐 𝑗], we set constant parameters 𝛽 𝑗, 𝑗 = {1, · · · , 𝐽} resulting
in 𝛽(𝑐) ≈ ∑𝐽

𝑗=1
𝛽 𝑗𝐼

(
𝑋(𝑐) ∈ (𝑐 𝑗−1, 𝑐 𝑗]

)
. Consequently, we have

∫
𝒞
𝛽(𝑐)𝑋(𝑐) 𝑑𝑐 =

𝐽∑
𝑗=1

∫ 𝑐 𝑗

𝑐 𝑗−1

𝛽(𝑐)𝑋(𝑐) 𝑑𝑐

≈
𝐽∑
𝑗=1

𝛽 𝑗

∫ 𝑐 𝑗

𝑐 𝑗−1

𝑋(𝑐) 𝑑𝑐 :=
∑

𝛽 𝑗𝐴 𝑗 ,

(2.2)

where 𝐴 𝑗 denotes the Area Under the Curve (AUC) over interval (𝑐 𝑗−1, 𝑐 𝑗] or 𝐴 𝑗 =∫ 𝑐 𝑗

𝑐 𝑗−1
𝑋(𝑐) 𝑑𝑐. Of note, while 𝑋(𝑐) is monotonically decreasing due to nature or OTCs,

there is no restriction of monotonicity on 𝛽(𝑐). In preparation of regularized estimation, we

normalize individual 𝐴′
𝑗
𝑠 to mean 0 and variance 1, respectively. One key methodological

goal is to fuse similar 𝛽 𝑗’s into bigger segments to identify appropriate activity windows

affecting the outcome of interest. One challenge arising from the discretization strategy is

that 𝛽′
𝑗
𝑠 in Equation (2.2) may be high-dimensional, inevitably requiring a regularization

method (e.g. fused lasso). Unfortunately, the resulting 𝐴 𝑗 variables appear highly correlated,

essentially challenging existing high-dimensional regularization methods.

There are existing methods applicable to carry out the parameter fusion on 𝛽 𝑗, among

which fused lasso [Tibshirani et al., 2005] and Hidden Markov Model (HMM) [Rabiner and

Juang, 1986] are popular. However, these existent approaches do not perform well due to the
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high correlation of 𝐴 𝑗’s. As shown in Figure 2.3a from a simulation model, the regularized

estimates of 𝛽 𝑗’s are bifurcate, leading to a clearly poor parameter fusion on these estimates

and an inaccurate determination of changepoints.

To address the issue of high correlation, we propose a supervised learning analytic: the

Functional Regularized Adaptive Changepoint-detection Technique (FRACT), which pro-

vides more effective strategies via adaptive, multi-step learning algorithms. FRACT consists

of the following procedures: (i) Tuning J, the number of intervals, (ii) Initialization of 𝛽 𝑗’s,

(iii) Changepoint Detection, and (iv) Refinement Learning.

2.4.2 FRACT Methodology

Here we present the details of FRACT. The multi-step learning analytic encompasses two

penalization themes; strategies 1 and 2 deal with the first regularized estimation to generate

initial estimates of 𝛽 𝑗, while strategies 3 and 4 aim to group the initial 𝛽 𝑗 estimates to form

activity windows whose edges determine jump points. Algorithm 1 outlines these procedures,

with further detail in the FRACT Implementation Section 2.5.

Strategy 1: Tuning the number of intervals, J. The first strategy of FRACT is to alleviate

the high correlation among 𝐴′
𝑗
𝑠. This is achieved through tuning the number of intervals 𝐽

via a trade-off between pair-wise correlation levels and minimal loss of signal strength. Our

experience from simulation experiments suggests that selecting a 𝐽-partition of 𝒞 such that

𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+1) < 0.98, 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+5) < 0.90, and 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+10) < 0.80 is reasonable. Future

applications of this methodology should select the maximum 𝐽 such that the correlation

parameters remain below this suggested threshold. Such a selection minimizes the trade-off

between signal strength and multi-collinearity, resulting in a more stable and reliable data

analyses. Note that this tuning step is mostly responsible for ensuring the quality of initial

estimates �̂� 𝑗’s; that is, to avoid the bifurcate initial estimates in Figure 2.3a. However, this

tuning step may not be necessary if an algorithm more suited to high-correlation is used.

Strategy 2: 𝛽 𝑗 Initialization. This step is to generate initial regularized estimates of 𝛽′
𝑗
𝑠 in

Equation (2.2). To gain numeric stability we adopt the Minimax Convex Penalty (MCP)

that takes the form: 𝑝�(𝛽) = �|𝛽 | − 𝛽2

2𝑎 if |𝛽 | ≤ 𝑎�, and 𝑎�2

2 otherwise, with � ≥ 0, 𝑎 > 1, and

enjoys lower estimation bias [Zhang, 2010]. With this choice in parameter estimation, and

with tuning parameters � and 𝑎 selected via cross-validation, for model 𝑌 =
∑

𝛽𝑖𝐴𝑖+𝑍𝑇𝛼+𝜖

we obtain initial estimates by (�̂�, �̂�) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝛽,𝛼)
1
2 ∥𝑌 −𝐴𝛽 − 𝑍𝛼∥22 + 𝑝�(𝛽), where 𝑌 is the

outcome of interest, and 𝐴, 𝑍 are the relevant variables, covariates with respective parameters

𝛽, 𝛼.

Strategy 3: Changepoint Detection. The initial estimates �̂� 𝑗’s are then processed under
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Strategy 3 to perform a clustering analysis by means of Hidden Markov Modelling (HMM)

initialized by the results obtained by Fused Lasso. HMM contains a latent process that helps

group similar �̂� 𝑗 values, leading to the detection of jump points. An important element of

HMM is the transition matrix, which determines the probabilities of transitioning between

latent states, and which plays a two-fold role in the FRACT analytic. First, supplying HMM

with a smart initial estimated transition matrix provides useful “warm starting points” to

improve numeric stability of the EM algorithm used in HMM. These “warm starting points”

are estimated from initial clustering estimates obtained by fusing the initial �̂� 𝑗’s via Fused

Lasso. See Algorithm 2. Second, an evaluation of the final transition matrix from the fitted

HMM model facilitates tuning the ideal number of latent clusters 𝐾 (or, the number of

activity windows). Both the use of Fused Lasso-estimated “warm starting points” of the

initial transition matrix, and the evaluation of the fitted HMM transition matrix, improve

the FRACT analytic’s ability to correctly identify changepoints versus applying a one-step

algorithm alone, as discussed in detail in Section 2.5.

Strategy 4: Refinement Learning of Cutpoints. The final step in FRACT pertains to a Re-

finement Learning procedure to fine-tune the changepoint detection selections via supervised

learning techniques. This strategy allows us to systematically evaluate if micro-modifications

of changepoints in the fitted model result in improved goodness of fit, and addresses concerns

of potential over or under-fitting by comparing the current size 𝐾 model with those of size

𝐾 − 1 and 𝐾 + 1. See implementation details in Algorithms 3 and 4 in Section 2.5.

Notes on Regularization. In this analytic, the worry of over-fitting pertains to the number

of activity windows 𝐾; we do not want to estimate a higher 𝐾 than necessary. To control

this, we use the regularization methods of Fused Lasso, HMM, and goodness-of-fit measures

to learn, test, and calibrate the value 𝐾. Fused Lasso provides initial feature fusion as a

smoothing technique. These results provide some initial demonstration of group structures

as the so-called “warm starting points” of HMM’s initial transition matrix, thereby reducing

the sensitivity to individual data points and outliers. Within the HMM framework, regular-

ization focuses on controlling the complexity of the model via limiting the number of hidden

states to range of 𝐾 (between 2 − 4 here), and further data evidence is generated to test

and calibrate the group structure. Lastly, the goodness-of-fit measure of EBIC (Extended

Bayesian Information Criterion) is used as a regularization method to make a choice of par-

simonious models. EBIC is an extension of BIC that incorporates an additional penalty

term, the complexity parameter, which further controls the trade-off between model fit and

complexity. Thus, using EBIC for final-model selection helps to prevent overfitting and find

a parsimonious model that balances goodness of fit and complexity.
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Algorithm 1 FRACT for Changepoint and Activity Window Detection

Input: Time series accelerometer data of Vector Magnitude counts 𝑉𝑀(𝑡) with continuous
range of activity counts 𝒞
Output: Estimated activity window cutpoints, and estimated association parameters

1: procedure Calculate OTCs and AUCs
2: Set 𝒞 = (0, 𝑐𝑚𝑎𝑥), where 𝑐𝑚𝑎𝑥 = the maximum VM count observed
3: With 𝑉𝑀(𝑡), calculate OTC 𝑋(𝑐), 𝑐 ∈ 𝒞
4: Given partition 𝑐0 = 0, 𝑐1, · · · , 𝑐𝐽 , calculate the AUCs 𝐴 𝑗 =

∫ 𝑐 𝑗

𝑐 𝑗−1
𝑋(𝑐) 𝑑𝑐, 𝑗 ∈ 1, · · · , 𝐽

5: Normalize individual 𝐴 𝑗’s to have mean 0 and variance 1, respectively
6: end procedure

7: procedure Strategy 1: Tune J
8: Alleviate the high correlation among the AUCs 𝐴 𝑗, 𝑗 ∈ 1, · · · , 𝐽
9: Combine successive normalized integrals to reduce pairwise correlations so that

the resulting partition satisfies: 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+1) < 0.98, 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+5) < 0.90, and
𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+10) < 0.80

10: Note: If an using algorithm suited to correlated 𝐴′
𝑗
𝑠, Strategy 1 may be skipped

11: end procedure

12: procedure Strategy 2: Initialize Estimates of 𝛽′
𝑗
𝑠

13: Conduct high-dimensional linear regression with Minimax Convex Penalty (MCP)
14: Run linear Model: 𝑌 ∼ 𝐴1 + · · · + 𝐴𝐽 + 𝑍, where Z is a vector of scalar covariates
15: end procedure

16: procedure Strategy 3: Detect Changepoints
17: Set: 𝐾 = number of groups, with 𝐾 ≥ 2
18: Run 𝐾-size fused lasso for the initial �̂�′

𝑗
𝑠 obtained by MCP in Strategy 2 (lines 13-14)

19: Calculate an initial transition matrix from the group labels determined by fused lasso
⊲ See Algorithm 2

20: repeat
21: Fit 𝐾-state HMM with initial transition matrix
22: Calculate Extended BIC (EBIC)
23: Assess updated transition matrix to determine the convergence of the HMM
24: until Repeat HMM fit (lines 21-23) 𝑚 (say, 10) times for numeric stability
25: return Best model among the m fitted models selected based on EBIC and updated

transition matrix at convergence of HMM
26: Fit piecewise linear model for association parameter estimation and inference under

the HMM defined cutpoints from line 25, as well as vector of covariates 𝑍,
27: Continue to Strategy 4 to select final 𝐾
28: end procedure

29: procedure Strategy 4: Perform Refinement Learning
30: Edge-swapping ⊲ See Algorithm 3
31: Merging ⊲ See Algorithm 3
32: Breaking ⊲ See Algorithm 4
33: end procedure
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2.5 FRACT Implementation

2.5.1 Initial Clustering

All the line numbers in this section refer to Algorithm 1 unless specified otherwise. The

FRACT methodology begins with clustering the initial estimates �̂�1, · · · , �̂�𝐽 obtained from

the MCP regularized linear regression, where J is tuned in advance, if necessary, to satisfy the

correlation constraints among 𝐴′
𝑗
𝑠. This clustering analysis involves a step of fused lasso to

generate “warm starting points” for initial changepoints (Lines 18-19), followed by a HMM

fit to settle cutpoints and group membership (Lines 21-25). The “warm starting points” seem

useful to improve the numeric stability of the EM algorithm used in the subsequent HMM, as

well as provide the initial transition matrix in the HMM fit. With a given 𝐾 (the number of

categories in the latent process), a transition probability is estimated by the relative length

of a fused range of initial �̂� 𝑗’s (Line 19). Algorithm 2 gives an example calculation of initial

transition probability matrix. In Lines 21-25, clusters, cluster membership, and cutpoints

are determined by means of the HMM analysis in that one latent state corresponds to one

cluster of the initial estimates �̂� 𝑗.

2.5.2 Tuning 𝐾

For each scenario of 𝐾 clusters (e.g. the number of latent states in HMM), the HMM is

executed 𝑚 times (say, 10) to ensure numeric stability; among 𝑚 fitted HMMs, the one with

the smallest EBIC is selected. With the selected best HMM, the corresponding transition

probabilities are then used to assess viability of clusters. Here, a clustering result is deemed

“viable” if the last state in the latent process gets stabilized with no chance of jumping

between states, as judged by the diagonals of the estimated transition matrix at convergence.

If the probability of remaining in the final 𝑘 = 𝐾 state, defined as the diagonal element 𝑝𝐾𝐾 in

the estimated transition matrix, is 1 then the HMM is said to have “settled” in its final latent

state. This implies stable clustering results with reliable cutpoints and cluster membership.

In Line 26 of Algorithm 1, with clustering results from the 𝐾-state HMM, we fit a linear

model with a piece-wise mean function based on the estimated cutoffs of 𝑐1, · · · 𝑐𝐾:

𝑌 = 𝛽1�̃�1 + 𝛽2�̃�2 + · · · + 𝛽𝐾�̃�𝐾 + 𝑍𝑇𝛼 + 𝜖 (2.3)

where �̃�′
𝑗
𝑠 denote the AUCs over the updated partition intervals via merging smaller intervals

into a few big intervals or windows. Using EBIC again, we can determine the 𝐾 by directly

comparing the different size models, such as 2-state, 3-state, and 4-state models. The choice
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Algorithm 2 Example Calculation of Initial Transition Probabilities with 𝐾 = 3

Input: 𝐾 = 3 groups with cluster membership and cutpoints derived from fused lasso (Line

18 of Algorithm 1), and group cardinality 𝐽1, 𝐽2, 𝐽3 such that 𝐽1 + 𝐽2 + 𝐽3 = 𝐽. The groups

(1, 2, 3) are determined by the ordering of 𝐴 𝑗

Output: 3 × 3 initial Transition Probability Matrix

Note: Transitions between groups is allowed only between neighboring groups in a forward

direction. This results in a 𝐾-band transition matrix.

1: procedure Calculate Initial Probability Matrix(3 × 3 matrix)

2: for k=(1,2) do

3: Prob. of remaining in Group k = 𝑝𝑘𝑘 =
𝐽𝑘−1
𝐽𝑘

4: Prob. of transitioning from Group 𝑘 to Group 𝑘 + 1 = 𝑝𝑘,𝑘+1 =
1
𝐽𝑘

5: Note: 𝑝𝑘𝑘 + 𝑝𝑘,𝑘+1 = 1

6: end for

7: Prob. of transitioning from Group 3 = 𝑝33 = 1

8: 3 × 3 initial probability matrix:
𝑝11 𝑝12 0

0 𝑝22 𝑝23

0 0 1


9: end procedure

of potential 𝐾s is motivated by prior scientific knowledge; in this case, PA is classified

into 2 − 4 intensity levels in literature. Considering larger potential 𝐾 classifications risks

presenting results with statistical, but not clinical or scientific, significance.

2.5.3 Refinement Learning of Cutpoints

To further improve the analysis we propose a Refinement Learning procedure that refines the

cutoff selection via supervised learning techniques, summarized in Algorithms 3 and 4. We

suppose that cutoffs 𝑐1, · · · , 𝑐𝐾 and estimates �̂�1, · · · , �̂�𝐾 are available from previous steps.

Edge-Swapping and Merging Technique. Algorithm 3 aims to refine the cutoffs 𝑐1, · · · , 𝑐𝐾
and minimize over-fitting. For fixed 𝐾, the edge-swapping technique begins with identifying

the narrowest gap in adjacent estimates �̂�𝑘 and associated intervals: 𝑘𝑚𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘 |�̂�𝑘+1−
�̂�𝑘 |, 𝑘 ∈ {1, 2, · · · , 𝐾−1}. These two identified intervals 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑖𝑛+1 are considered for

edge-swapping; we systematically swap their window edge-points until the intervals become

completely merged. Each swap gives rise to a different 𝐾-group partition with different group

cardinality as well as different �̃� 𝑗 , 𝑗 = 𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑖𝑛 + 1. As a result of this edge-swapping, we
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create many 𝐾-group partitions as well as one 𝐾 − 1 partition under the two intervals being

fully merged. The EBIC from each linear regression model (2.3) is compared to make model

selection and thus further select a desirable partition.

Algorithm 3 Implementation: Edge-Swapping and Merging

Input: 𝐾 ≥ 2 number of intervals, with cutpoints (𝑐𝑘−1, 𝑐𝑘), and estimates �̂�′
𝑘
𝑠, 𝑘 =

1, · · · , 𝐾
1: Calculate 𝑘𝑚𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘 |�̂�𝑘+1− �̂�𝑘 |, 𝑘 ∈ {1, 2, · · · , 𝐾−1} and identify the left and right

intervals ⊲ Determine minimum gap in adjacent 𝛽′
𝑘
𝑠

2: procedure Edge-Swapping

3: for 𝑐∗ ∈ (𝑐𝑘𝑚𝑖𝑛−1 + 1, 𝑐𝑘𝑚𝑖𝑛 ) do ⊲ Swap edge-points between the two windows

4: Identify the left 𝐿(𝑐∗) = (𝑐𝑘𝑚𝑖𝑛 , 𝑐∗) and the right window 𝑅(𝑐∗) = (𝑐∗, 𝑐𝑘𝑚𝑖𝑛+1)
5: Fit a piecewise linear model (2.3) with the resulting partition from 𝑐∗

6: return EBIC

7: end for

8: return Best 𝐾-group model with the smallest EBIC among all models, including the

original K-group model and all K-group models with edge-swapping by 𝑐∗

9: end procedure

10: procedure Merging

11: Set merged window = (𝑐𝑘𝑚𝑖𝑛−1, 𝑐𝑘𝑚𝑖𝑛+1)
12: Fit a piecewise linear model with new partition

13: return EBIC of (𝐾 − 1)-group model

14: end procedure

Breaking by Exploration and Confirmation Steps. To address potential under-fitting, or a

current 𝐾 being smaller than desirable, we implement a “Breaking” strategy described in

Algorithm 4. This strategy attempts to create one more interval, forming a new piecewise

mean function in (2.3) in which one of the original windows (or intervals) is split into two

smaller windows. This splitting consists of two steps: Exploration and Confirmation. In the

Exploration step, we randomly choose a locality at which the target window is split into two

sub-windows, increasing the number of groups from 𝐾 to 𝐾 + 1. This splitting is repeated 𝑠

times (say, 10) at different random localities. Of the total number of 𝑠 breaks, the number

of break locations in interval𝑘, 𝑠𝑘 ,is determined by the proportional cardinality, 𝐽𝑘 , of that

window versus the total cardinality, 𝐽, of all the windows. Given an 𝑠𝑘 for a specific interval

𝑘, the exact break locations are determined randomly under a uniform distribution over that

interval. We use EBIC to determine if any of the resulting (𝐾+1)-group models has a better

fit than the original 𝐾-group model. If so, we moved to the subsequent Confirmation step.
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In the Confirmation step, we consider 𝑑 (say, 10) surrounding points as alternative break-

points. Based on these 𝑑 new cuptoints, we refit the (𝐾+1)-group model and calculate EBIC.

If over 50% of these (𝐾 + 1)-group models (2.3) have better fit than the original 𝐾-group

model, we accept the new partition of (𝐾 + 1)-groups and choose the best (𝐾 + 1)-group
model with the smallest EBIC. This Confirmation step is run with multiple flanking points

to ensure the augmented (𝐾 + 1)-group model is superior over the smaller 𝐾-group model,

i.e. the lower EBIC value is not simply a result of chance.

Up to now, a fixed 𝐾 is preset. The final choice of K is determined in the final step. We

run the above algorithms 1 − 4 over 𝐾 = 2, 3, 4, and more if needed, and use EBIC to select

the final model with the best goodness of fit among the candidates. At its end, the FRACT

analytic delivers both estimates of activity window cutpoints and their associated parameter

estimates, as well as the estimates of covariate effects for the included covariates of interest.

2.6 Simulation Experiments

We assessed the performance of the proposed FRACT analytic through extensive simula-

tion experiments under various effect sizes, window lengths, and number of windows (or

cutpoints). We focus on the performance of FRACT in determining the number of activity

windows 𝐾, estimating the cut-points (𝑐1, · · · , 𝑐𝐾) and effect sizes (𝛽1, · · · , 𝛽𝐾).

2.6.1 Simulation Setup

To simulate the functional OTC, we first simulated 6-hour time-series of VM counts by

linking many consecutive 10-minute intervals of accelerometer data from the 539 ELEMENT

children, whose individual 6-hour time-series of VM counts are divided into non-overlapping

10-minute segments. Each 10-minute interval is randomly drawn from a pool of 539 10-

minute candidate segments. To ensure that the variability in the simulated OTC curves

reflected the variability in the motivating dataset (Figure 2.4), we first classified the subjects

into three groups with low, medium, and high levels of PA respectively, as defined by tertiles

of “Moderate-to-Vigorous” VM counts using the pre-set Chandler cutoffs. We then simulated

the time-series data within each tertile. With the simulated VM counts, OTC curves were

calculated as described in Section 2.3.

Given true cutoffs 𝑐∗0 = 0, 𝑐∗1, · · · , 𝑐∗𝐾∗−1, 𝑐𝐾∗ = 30, 000, the successive integrals over 𝒞 were

specified, and the 𝐾∗-element vector of AUCs, (𝐴1, · · · , 𝐴∗
𝐾
)𝑇 , for each subject was calculated.

Outcome 𝑌 was simulated from a linear model 𝑌 =
∑𝐾∗

𝑘=1 𝛽
∗
𝑘
𝐴∗
𝑘
+𝑍𝛼∗+𝜖, with true effect sizes

𝛽∗1, · · · , 𝛽∗𝐾 and 𝛼∗, where single continuous covariate 𝑍 ∼ 𝑁(0, 1) and 𝜖 ∼ 𝑁(0, 10). The
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Algorithm 4 Implementation: Breaking via Exploration and Confirmation

Input: Let 𝐾 = number of activity windows, with window length 𝐽𝑘 = |𝑐𝑘−1 − 𝑐𝑘 |, end
cutpoint 𝑐𝑘 , and current estimates �̂�′

𝑘
𝑠, 𝐾 ≥ 2, 𝑘 ∈ {1, · · · , 𝐾}, 𝐽1 + · · · + 𝐽𝐾 = 𝐽

Define: 𝐸𝐵𝐼𝐶(𝐾) =EBIC of 𝐾-group model

1: procedure Exploration Step

2: Set: 𝑠 = total number of break locations

3: for 𝑘 ∈ (1, · · · , 𝐾) do
4: Calculate 𝑠𝑘 = 𝐽𝑘/𝐽×𝑠 = proportional number of potential breakpoints 𝑠 allocated

to Window k, (𝑐𝑘−1, 𝑐𝑘)
5: ℬ𝑘 = {𝑏1, · · · , 𝑏𝑠𝑘 } = Randomly selected 𝑠𝑘 break points from interval (𝑐𝑘−1, 𝑐𝑘)
6: With each element 𝑏 ∈ ℬ𝑘 , fit a piecewise linear model (2.3) with new partitions

7: return 𝐸𝐵𝐼𝐶(𝐾+1, 𝑏) = EBIC of (𝐾+1)-group model at break 𝑏, 𝑏 = 𝑏1, · · · , 𝑏𝑠𝑘
8: end for

9: if 𝑎𝑟𝑔𝑚𝑖𝑛𝑏∈ℬ𝐸𝐵𝐼𝐶(𝐾 + 1, 𝑏) < 𝐸𝐵𝐼𝐶(𝐾), with ℬ = {ℬ1, · · · ,ℬ𝐾} and 𝑏 ∈ ℬ then

10: Proceed to Confirmation step at a partition with 𝑏𝑚𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏∈ℬ𝐸𝐵𝐼𝐶(𝐾+1, 𝑏)
11: else

12: No breaking, and remain at 𝐾-group model

13: end if

14: end procedure

15: procedure Confirmation Step

16: For the 𝑏𝑚𝑖𝑛 partition select 𝑑 (say, 10) breakpoints around 𝑏𝑚𝑖𝑛 denoted by ℬ(𝑏𝑚𝑖𝑛)
17: for b ∈ ℬ(𝑏𝑚𝑖𝑛) do
18: Create a new partition with 𝑏, and fit 𝐾 + 1 model

19: return 𝐸𝐵𝐼𝐶(𝐾 + 1, 𝑏) = EBIC of 𝐾 + 1 model with breakpoint 𝑏

20: end for

21: if
∑
𝑏∈ℬ(𝑏𝑚𝑖𝑛) 𝐼[𝐸𝐵𝐼𝐶(𝐾 + 1, 𝑏) < 𝐸𝐵𝐼𝐶(𝐾)]/𝑑 ≥ 50% then

22: Keep the (𝐾 + 1) model with the partition at 𝑏𝑚𝑖𝑛

23: else

24: Reject breaking

25: end if

26: end procedure
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true model we specified as a 3-group model (𝐾∗ = 3) with (𝑐∗1, 𝑐∗2, 𝑐∗3) = (4000, 8000, 30000)
and effect sizes: (𝛽∗1, 𝛽∗2, 𝛽∗3) ∈

{
(4, 0,−4), (2, 0,−2), (4, 0,−2)

}
. These simulations were

conducted for three different sample sizes 𝑁 ∈ {100, 250, 500}, with results from 500 rounds

of simulations summarized in Table 2.1.

2.6.2 Simulation Performance

The proposed FRACT analytic and algorithms have shown both high sensitivity in selecting

the correct number of windows (𝐾∗ = 3) and small bias in the estimation of cutpoint and effect

size. For example, in considering Scenario 1 with model parameters (𝛽∗1, 𝛽∗2, 𝛽∗3) = (4, 0,−4),
FRACT selected a 3-group model 96% (N=500), 91% (N=250), and 88% (N=100) of the time

over 500 simulations. Additionally, the bias of all the effect size estimates �̂�′
𝑘
𝑠 and cutpoints

𝑐′
𝑘
𝑠 were low, with respective mean estimates of 3.99, 0.02, and -4.0 and cutpoints 49.92,

79.87, and 300 for the N=250 scenario (and similar strong results for N=500 and N=100).

Estimates �̂�2, however, do have increased variability around the truth in comparison to

estimates �̂�1 and �̂�3. In Table 2.1, the Empirical Standard Error (ESE) is reported to reflect

the precision and stability of the estimation. Average Standard Error (ASE) is not reported

since estimates �̂�𝑘 are dependent on �̃�𝑘 , which are related to estimates 𝑐𝑘 ’s. Because of this,

�̃�𝑘 ’s are moving across the 500 simulations and thus so are �̂�𝑘 ’s.

In each of the simulation scenarios, tuning 𝐽 was evaluated as part of the strategy to ad-

dress the high-correlation among AUC 𝐴′
𝑗
𝑠. With initial 𝐽 = 300, there were high mean pair-

wise correlations: 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+1) = 0.998, 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+5) = 0.985, 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+10) = 0.967. This

severe multi-collinearity impaired standard linear regression analysis, producing bifurcate ini-

tial estimates �̂� 𝑗 , 𝑗 = 1, · · · , 𝐽 as shown in Figure 2.3a. By merging every five successive 𝐴′
𝑗
𝑠,

the augmented 𝐴 𝑗 variables gave reduced mean pairwise correlations 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴 𝑗+1) < 0.98,

𝑐𝑜𝑟(𝐴 𝑗 , 𝐴 𝑗+5) < 0.90, 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴 𝑗+10) < 0.80. The resultant initial estimates �̂� 𝑗 unveil cleaner

patterns than those from non-augmented 𝐽. Refer to Figures 2.3b, 2.3d, which suggests that

the penalized regression improves separating the 𝛽(𝑐) function into pieces. The utilization of

the MCP penalty seems to help the lowering of estimation bias in the case of multicollinearity.

The Refinement Learning steps, i.e. Edge-Swapping, Merging, and Breaking, were evalu-

ated in the simulation as the sample size N decreases (Table 2.2). In the simulation scenario

of (𝛽∗1, 𝛽
∗
2, 𝛽

∗
3) = (4, 0,−2) with N=500, FRACT selected a final 3-group model in 94% of

the 500 replicates. This high sensitivity was achieved by the successive improvements given

by the sequential multi-step process: first, 58.6% sensitivity in the original 3-group model,

then adding 27.4% by Edge-Swapping, 0.6% by Merging, and 7.8% by Breaking. When

the sample size decreased to N=250, the sensitivity of the original 3-group model dropped
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(a) (b)

(c) (d)

Figure 2.3: Comparison of initial estimates obtained from a randomly selected simulation
dataset of 𝛽 𝑗 , 𝑗 = 1, · · · , 𝐽 with/without the MCP Penalty and with/without augmentation
by 5 intervals (J=300, 60 respectively). The true 𝛽(𝑐) is shown as the piece-wise horizontal
function, whose visually flat pattern in (a) is due to the scale of the beta values.
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Table 2.1: Simulation Results of 3-Group Model to Evaluate FRACT

Results summarized over 500 replicates including average (Mean) and median (Med.) es-
timate, empirical standard error (ESE), and percent of correctly selected 3-group models
(Sensitivity). Cutoff 𝑐3 is not estimated but included for completeness. Cutpoint values are
shown as VM/100 for ease of visualization.

Scenario 1 N = 500 N=250 N=100

Truth Mean Med. ESE Mean Med. ESE Mean Med. ESE

𝛽1 4 4.00 4.00 0.03 3.99 3.99 0.04 3.98 3.99 0.11

𝛽2 0 0.01 0.01 0.05 0.02 0.00 0.14 0.17 0.03 0.58

𝛽3 -4 -4.00 -4.00 0.00 -4.00 -4.00 0.00 -3.99 -3.99 0.01

𝑐1 40 39.98 40.00 0.32 39.92 40.00 0.84 39.27 40.00 3.66

𝑐2 80 79.99 80.00 0.23 79.87 80.00 0.8 79.14 80.00 3.96

𝑐3 300 300 300 0.00 300 300 0.00 300 300 0.00

Sensitivity: 96% 91% 88%

Scenario 2

𝛽1 2 2.00 2.00 0.04 1.99 1.99 0.08 1.94 1.94 0.19

𝛽2 0 0.06 0.01 0.20 0.10 0.03 0.42 -0.12 0.00 0.73

𝛽3 -2 -2.00 -2.00 0.00 -2.00 -2.00 0.00 -2.00 -2.00 0.01

𝑐1 40 39.53 40.00 2.53 39.03 40.00 5.51 42.05 40.00 10.48

𝑐2 80 79.42 80.00 2.25 78.88 80.00 5.01 82.12 80.00 11.05

𝑐3 300 300 300 0.00 300 300 0.00 300 300 0.00

Sensitivity: 92% 93% 85%

Scenario 3

𝛽1 4 4.00 4.00 0.04 3.99 3.99 0.08 3.95 3.95 0.16

𝛽2 0 0.02 0.01 0.13 0.01 0.00 0.30 -0.09 -0.03 0.62

𝛽3 -2 -2.00 -2.00 0.00 -2.00 -2.00 0.01 2.00 -2.00 0.01

𝑐1 40 39.96 40.00 0.92 40.20 40.00 2.12 40.97 40.00 4.51

𝑐2 80 79.85 80.00 1.29 80.34 80.00 4.28 82.11 80.00 8.37

𝑐3 300 300 300 0.00 300 300 0.00 300 300 0.00

Sensitivity: 94% 91% 91%

dramatically to 29.4%, but remarkably, Edge-Swapping added 31.6% sensitivity, Merging

contributed 1.6% sensitivity, and Breaking strikingly boosted sensitivity 28.0%, reaching the

final 91% sensitivity. The Refinement Learning steps increase the sensitivity of correctly

selecting the activity windows and determining the 𝑐∗1, · · · , 𝑐∗𝐾 cutpoints.
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Table 2.2: Sensitivity Simulation Results for 3-Group Model

Results summarized over 500 replicates and signify the importance of FRACT’s multiple
steps. The percentages represent the added sensitivity based on the corresponding Refinement
Learning process. E.g., the row “3 Gps: Swapping” represents the percent of 3-group models
selected after undergoing systematic swapping of the cutpoints, as described in Algorithm 3
in Section 2.4.

𝛽 = (4, 0,-4) 𝛽 = (2, 0,-2) 𝛽 = (4, 0,-2)

Selection 500 250 100 500 250 100 500 250 100

2 Groups 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

2 Gps: Swapping 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 Gps: Merging 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 Groups 79.6 58.8 22.6 36.4 18.2 3.6 58.6 29.4 2.8

3 Gps: Swapping 13.4 23.6 41.2 37.2 44.0 23.8 27.4 31.6 25.4

3 Gps: Merging 0.0 0.6 1.2 0.2 1.4 2.0 0.6 1.6 0.4

3 Gps: Breaking 3.4 7.6 22.6 17.8 29.4 55.8 7.8 28.0 62.2

4 Groups 0.2 0.8 0.2 0.4 0.4 0.2 0.4 0.4 0.2

4 Gps: Swapping 0.2 0.6 3.4 2.2 1.0 1.4 1.4 2.4 1.6

4 Gps: Merging 0.2 0.0 0.4 0.2 0.4 0.2 0.0 0.4 0.4

4 Gps: Breaking 3 7.6 8.2 5.6 5.2 11.8 3.8 6.2 6.8

5 Groups 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 Gps: Swapping 0.0 0.4 0.2 0.0 0.0 0.2 0.0 0.0 0.2

5 Gps: Breaking 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Figure 2.4: OTCs for 354 ELEMENT subjects, representing functional covariates. The ver-
tical lines represent Chandler’s cutoffs (Chandler et al., 2016) for activity levels (Sedentary,
Light, Moderate, Vigorous). The relative shape of these OTCs reflect the subject’s activity
profile.

2.7 Data Analysis

We now apply the proposed FRACT methodology to investigate the functional association

between PA and epigenetic age (DNAm). As discussed in Section ??, this analysis incor-

porated a vector of covariates (𝑍) with centered chronological age, sex, pubertal status

(based on Tanner staging) and lead exposure (measured in micrograms of lead per deciliter

of blood, or �𝑔/𝑑𝐿) for each subject. We had complete accelerometry and covariate data for

354 ELEMENT subjects (172 male, 182 female), with mean(SD) age of 13.7(1.9) years and

mean(SD) lead exposure of 3.17(3.33) �𝑔/𝑑𝐿.The majority, 332, of the subjects completed

puberty based on Tanner staging standards. Figure 2.4 shows OTCs for the 354 subjects,

representing PA profiles during weekends between 4:00PM - 10:00PM, selected with the ra-

tionale that this period reflects a block of time they have more control over their activities.

Among multiple epigenetic age clocks [Horvath, 2013] we are interested in two specific ones:

Horvath’s AgeSkinBlood Clock [Horvath et al., 2018], and Levine’s PhenoAge Clock [Levine

et al., 2018]. For each of these outcomes, we fit a scalar-on-function regression model with

scalar covariates.
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The FRACT analytic began the analysis by setting 𝐽 = 300, each interval covering 100

VM counts. We detected two activity windows of interest for each of the epigenetic age

outcomes, albeit with different cutpoints and effect sizes. Association parameters, standard

errors, and p-values are estimated from the final linear model. Of note, the p-values are

conditioned on the cutoffs found by the FRACT analytic. Table 2.3 summarizes the data

analysis results. In considering Levine’s PhenoAge epigenetic clock, we detected activity

window VM > 8000 count to have a significantly negative association with epigenetic age;

the higher the AUC in the VM > 8000 range, the lower the PhenoAge. As higher AUC at the

end of an OTC represents more activity within that range, this finding may be interpreted

as: more activity in VM > 8000 range is related to younger epigenetic age, i.e. more time

in higher PA levels is related to slower biological aging.

In considering Horvarth’s AgeSkinBlood clock, our method identified other important

activity windows. Specifically, Table 2.3 suggests that FRACT determined a window of

activity VM ≤ 1500 counts to be positively associated with this epigenetic age. As larger

AUCs at the beginning of the OTC reflect more time spent above that activity level, this

positive association implies that: less time spent in VM range ≤ 1500 counts is associated

with a higher epigenetic age. Correspondingly, more time in the low-activity time window

is related to lower epigenetic age, or slower biological aging. As the epigenetic age clocks

are calculated from different sets of methylation variables, reflecting different aspects of

biological aging, these differences are biologically meaningful and not surprising.

Encouragingly, as shown in Tables 2.3(a)-(c), there are agreements between our detected

cutoffs and the previously published Crouter [Crouter et al., 2015] and Chandler [Chandler

et al., 2016] cutoffs. The changepoint for “Moderate” activity using Chandler or Crouter

cutoffs are 9805 and 7320 respectively; notably, our PhenoAge detected changepoint of 8000

is within this range. The SkinBloodAge activity range of VM counts ≤ 1500 is similar to

Crouter’s cutpoint for Sedentary behavior (VM ≤ 1200).

While the FRACT-identified cutpoints enjoyed some agreement with the Chan-

dler/Crouter pre-determined cutpoints, the proposed FRACT methodology did result in

stronger statistical results. As seen in Tables 2.3(b)-(c), the Chandler cutpoints detected

no significant associations with Levine’s PhenoAge, nor Crouter with Horvath’s AgeBlood-

Skin, at a significance level of 𝑝 = .05. In the instances where the pre-determined cutpoints

do detect significant associations, the FRACT-determined activity windows demonstrate

more statistically significant associations than their Crouter/Chandler counterparts. For

example, while Crouter’s “Moderate-to-Vigorous” activity window, with VM count interval

(7400,30000) was negatively associated with PhenoAge (𝑝 = .04), the FRACT-determined

window covering VM counts (8100 − 30000) was more strongly negatively associated with
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Table 2.3: FRACT Data Analysis Results

(a) FRACT results in the scalar-on-function regression model. (b-c) Results if use published
adolescent cutoffs from Chandler and Crouter. Standard analyses with these cutoffs consider
3 activity windows for “Sedentary” Physical Activity (PA), “Light” PA, and Moderate-to-
Vigorous PA “MVPA”.

(a) FRACT
PhenoAge Cutpoints/100 Coef SE p-value
Window 1 (0-80) 0.86 1.42 0.55
Window 2 (81-300) −1.23 0.54 0.02
Sex (Base: Male) 296.20 185.22 0.11
Chronological Age 1.67 0.14 <.001
Lead Exposure 25.54 27.17 0.35
Pubertal Status 154.53 335.71 0.66
AgeBloodSkin
Window 1 (0-15) 4.73 1.90 0.01
Window 2 (16-300) −0.11 0.12 0.33
Sex (Base: Male) 6.67 51.40 0.90
Chronological Age 0.86 0.04 <.001
Lead Exposure −6.32 7.54 0.40
Pubertal Status −96.39 92.94 0.30

(b) Chandler Pre-set Cutoffs
PhenoAge Cutpoints/100 Coef SE p-value
Window 1 (Sedentary) (0-36) 1.22 4.32 0.77
Window 2 (Light) (37-98) 0.06 2.96 0.98
Window 3 (MVPA) (99-300) −1.23 0.65 0.06
Sex (Base: Male) 297.30 186.75 0.11
Chronological Age 1.67 0.14 <.001
Lead Exposure 25.63 27.27 0.35
Pubertal Status 153.81 337.44 0.65
AgeBloodSkin
Window 1 (Sedentary) (0-36) 2.74 1.19 0.02
Window 2 (Light) (37-98) −0.94 0.28 0.25
Window 3 (MVPA) (99-300) −0.01 0.18 0.94
Sex (Base: Male) 3.39 51.69 0.93
Chronological Age 0.86 0.04 <.001
Lead Exposure −6.34 7.55 0.40
Pubertal Status −89.42 93.41 0.34

(c) Crouter Pre-set Cutoffs
PhenoAge Cutpoints/100 Coef SE p-value
Window 1 (Sedentary) (0-12) 5.36 12.75 0.67
Window 2 (Light) (13-73) 0.14 2.87 0.96
Window 3 (MVPA) (74-300) −1.14 0.55 0.04
Sex (Base: Male) 291.89 185.90 0.12
Chronological Age 1.67 0.14 <.001
Lead Exposure 26.33 27.28 0.33
Pubertal Status 161.11 336.40 0.63
AgeBloodSkin
Window 1 (Sedentary) (0-12) 6.64 3.53 0.06
Window 2 (Light) (13-73) −0.35 0.79 0.65
Window 3 (MVPA) (74-300) −0.07 0.15 0.60
Sex (Base: Male) 8.77 51.48 0.86
Chronological Age 0.86 0.04 <.001
Lead Exposure −6.21 7.55 0.41
Pubertal Status −95.13 93.15 0.31
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PhenoAge (𝑝 = .02).
To assess the stability of this supervised learning, we conducted 5-fold cross-validation.

To achieve this, we split the ELEMENT data into five equally sized subsets. We trained the

cutpoints with four subsets and then fit the associated step-wise model with the remaining

testing subset. Both epigenetic age clocks demonstrated stable results, with the results

for the AgeBloodSkin clock discussed here. In this case, all training models detected a 2-

group model, with the end cutpoint of Window 1 at (25, 15, 15, 15, 15) demonstrating strong

stability in changepoint detection. In the associated parameter estimations of Window 1

and Window 2 in the testing datasets, the mean (sd) parameter estimates are 5.19(1.45)
and −1.13(2.40) respectively. This assessment demonstrates that the significant association

between Window 1 and the AgeBloodSkin clock shown in Table 2.3 is stable.

2.8 Discussion and Conclusion

In this chapter we developed the Functional Regularized Adaptive Changepoint-detection

Technique (FRACT), to transform functional accelerometer data collected from wearable

devices into knowledge on PA’s effect on human biological aging. This learning analytic

detects changepoints to define critical windows of activity, while accounting for covariates of

interest. Such an informatics toolbox can be applied to analyze the relationship of functional

digital features with outcomes.

It is worth highlighting a key technical advance FRACT’s supervised learning: unlike

methods discretizing functional features via existing cutoffs regardless of specific outcomes,

FRACT provides a simultaneous operation of supervised changepoint detection and func-

tional association parameter estimation. Thus, this data analytic is adaptive to data collec-

tions and populations under investigation. In the investigation for the influence of PA on

biological aging, when applied to different study populations (e.g. adolescent or adult) or to

different wearable devices (e.g. Actigraph or Fitbits), FRACT provides data-driven solutions

tailored to characteristics of the study. This avoids potential bias in data processing and data

analyses by applying some pre-set cutoffs (e.g. Chandler’s values for children) to different

populations. Additionally, this flexibility demonstrates the value of the FRACT analytic in

the analysis of future wearable devices. In the ever-evolving world of wearable devices, there

are constantly new devices or sensors available. The applications of the proposed FRACT

methodology are not restricted to accelerometer sensors; rather it can easily be applied to

other devices including biomedical/smart-Health devices and be used as a decision process

in biomedical engineering devices. In such a role, it can help translate data collected from

existent/future sensors into decision-making knowledge. As such physiological sensors can
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have a great potential impact the future of health-monitoring and intervention, the trans-

lational role FRACT plays in turning high-frequency time-series data into decision-making

knowledge is invaluable to practitioners.

FRACT has demonstrated flexibility and reliability in identifying changepoints/critical

windows, and estimating functional association parameters. This greatly benefits our anal-

ysis of detecting critical changepoints of PA related to epigenetic age. When Levine’s Phe-

noAge clock was used as the age outcome, we found that an increase in mid-range PA is

associated with younger epigenetic age. This epigenetic clock was specifically created to

reflect age and disease-related phenotypes, such as inflammation and physical functioning

[Levine et al., 2018]. In this, the direction of association of increased PA and lower epigenetic

age makes intuitive sense. On the other hand, when the AgeSkinBlood clock was used in

the analysis, we detected the benefit of sedentary PA, which could reflect more time spent

indoors versus outdoors in the sun, which in a warm geographical area such as Mexico City

could have a beneficial effect on skin aging. This latter analysis focuses on epigenetic vari-

ables in skin/blood cells including fibroblasts, which deal with the structural components

of skin cells. It is interesting to reach an agreement between the FRACT-identified cutoffs

and the Chandler/Crouter adolescents cutoffs. As Chandler, Crouter and FRACT investi-

gated populations with similar underlying characteristics, the agreement among identified

cutpoints signify FRACT’s reliability.

FRACT requires careful tuning steps in order to achieve optimal performance. Assess-

ing the level of multi-collinearity when calculating initial parameter estimates is critical to

overall performance. Our experience with simulation experiments demonstrated that ig-

noring the high correlation among AUCs in initialization steps has a detrimental effect on

overall performance. However, when 𝐽 is tuned such that the correlations are below the

threshold provided in Section 2.4, the issues with multi-collinearity are mitigated. These

simulations also highlighted the importance of the Refinement Learning steps, particularly

Edge-Swapping, especially with decreasing sample size. While the Refinement Learning

strategies of Edge-Swapping, Merging, and Breaking can be conducted in any order, we rec-

ommend first focusing on Edge-Swapping, leading to the most favorable increase in FRACT’s

sensitivity. From a computational standpoint, FRACT is fast. The most time-consuming

step is conducting the initial changepoint estimation via HMM due to the need of repeated

fitting to aid numeric stability. We found 10 repetitions of HMM fitting to be sufficient,

though if multi-collinearity is less of an issue in a specific analysis the number of repetitions

may be reduced. In the data analysis, computation time for determining the final model

using 1 CPU was less than 15 seconds, with a sample size of 𝑁 = 354 and potential model

sizes of 𝐾 = (2, 3, 4).
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While wearable accelerometer devices provide many advantages to measuring objective

PA, particularly versus self-reported data, there are some inherent limitations. First, though

single-sensor accelerometer devices are informative on PA intensities, they are less equipped

to differentiate between specific activity types than multi-sensor devices. Such multi-sensor

devices can provide valuable additional measurements such as skin temperature, heart rate,

and blood volume. If using a device with these additional variables, FRACT could either

utilize a new functional covariate or include the data as covariates of interest. However,

these devices, while useful, are more expensive and can be barriers in scientific study and

personal use. Additionally, while wrist-worn devices are often used in studies of PA due

to high-compliance and feasibility, they have some disadvantages versus devices worn on

other body location, such as ankle or hip. For example, wrist-worn devices can capture arm

movement during sedentary activities as PA, whereas it could fail to identify activity such as

biking as PA due to the stationary placement of wrists during this activity [Liu et al., 2021,

Gao et al., 2021]. Lastly, some studies that aim to classify PA will validate their method

with in-lab studies, aligning wearable device readings with observed PA intensities. [Sevil

et al., 2020, van Loo et al., 2017]. Future research in this FRACT methodology could aim

to further validate the analytic by such a clinical setting.

A limitation in our current application of FRACT is that it focused on PA over a single

time frame. Some research has shown that the timing of activity, not just the magnitude,

can impact certain health outcomes [Minaeva et al., 2020]. Future work may extend this

analysis by considering time-specific OTCs and adaptively detecting corresponding activity

ranges associated with the health outcome of interest. Additionally, time of year may impact

the effect of functional PA levels on health outcomes. For example, in geographic areas with

significant seasonal weather differences, it may be important to account for these changes

[Garriga et al., 2021]. While this study considered subjects living in a limited weather vari-

ability area, for studies with variable weather patterns a researcher can include a covariate

or interaction term between PA and season to address the different functional relationships

to account for seasonal impact. Another extension could involve a functional longitudinal

framework to understand the influence of repeatedly measured functional accelerometer data

on longitudinal health outcomes. The previous methodological advancements considered PA

data in a seven-day period; with repeated measurements we can study how changing PA pat-

terns from late-adolescence into early adulthood affects certain longitudinal health outcomes

of interest. While this chapter focused on linear relationship, FRACT could be extended

to non-normal and non-linear models, such as logistic regression with binary outcomes, and

Cox regressions with time-to-event outcomes.
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CHAPTER 3

Regularized One-Step Estimation of

Changepoint and Functional Parameter in

Functional Accelerometer Data Analysis

3.1 Introduction

3.1.1 Biological Aging and Epigenetic Age

Biological aging is a growing area of research that seeks to understand the variation in how

people age biologically, as opposed to chronologically, or are affected by age-related diseases.

Epigenetic age is a biological concept that refers to the biological age of an individual, as

determined by the epigenetic modifications that occur on their DNA [Horvath, 2013]. The

term “epigenetic” refers to modifications that occur on the DNA molecules that do not

change the actual DNA code sequence, but can alter the way genes are expressed. This is an

emerging field of research that has gained much attention in recent years due to its potential

to provide insight into the aging process and the development of age-related diseases. Thus,

epigenetic age can act as a useful biomarker of an individual’s overall state of health and allow

for personalized or preemptive health interventions [Marioni et al., 2015]. Various epigenetic

age calculators consider different groups of DNA methylation (DNAm) alterations along

different areas of the genome to deliver a predicted epigenetic age, and are hosted online

[Horvath, 2013]; see Horvath, 2013, among others.

While much of the research into epigenetic age has focused on adults, there is also in-

terest in studying epigenetic age in children. This is because epigenetic modifications can

be influenced by a range of environmental factors, including prenatal and early life experi-

ences, which may impact later-life health outcomes. As these childhood environmental and

experiential factors can be observed in changes in the the DNA methalome, they are thus

reflected in epigenetic age. Studies show that children and adolescents (age 0-18) undergo
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the fastest and most dynamic rate of growth and DNAm changes [Wu et al., 2019, McEwen

et al., 2020]. As these childhood environmental and experiential factors can be observed in

changes in the the DNA methalome, they are thus reflected in epigenetic age. One study

[Wiklund et al., 2019] found that maternal smoking during pregnancy was associated with

accelerated epigenetic aging in offspring. In this study, data from five prospective birth

cohorts were used to examine the relationship between maternal smoking during pregnancy

and DNA methylation patterns in offspring, and children whose mothers smoked during

pregnancy were found to have their DNA methylation patterns consistent with accelerated

epigenetic aging. Research into epigenetic age in children has also shown that it may be a

useful tool for predicting future health outcomes. For example, [Huang et al., 2019] found

that epigenetic age acceleration in adolescents was associated with risk of cardiovascular

disease in middle-age.

By better understanding the relationship between epigenetic modifications and childhood

experiences, researchers may be able to develop interventions to prevent or mitigate the

negative health effects of early life stressors. However, further research is needed to fully

understand the complex relationship between genetics, epigenetics, and environmental fac-

tors in shaping health outcomes across the lifespan. An important investigation of scientific

interest is to assess the relationship between the experiential determinant of PA in adoles-

cence with biological aging. Research and conventional wisdom suggest that increased PA

may slow epigenetic aging [Kankaanpää et al., 2022, Quach et al., 2017]. By promoting PA

in children, we may be able to improve not only their current health outcomes but also their

long-term health outcomes by slowing down the aging process. The focus of this chapter is

to investigate the association of epigenetic age with objectively measured functional PA as

captured by wearable devices.

3.1.2 Wearable Devices and Accelerometer Data

Wearable technologies use sensors worn over continuous time-periods to collect subjects’ per-

sonal data. Notably, these devices can conduct automatic real-time data collection in high

frequency and track physiological variables and clinical symptoms outside of clinical environ-

ments. In providing this high-frequency, personalized time-series data, wearable devices are

promising technologies to promote smart-Health care management and precision medicine.

Additionally, the data collection can be relatively cheap, convenient, and flexible in variable

environments, which increases their popularity in both research and personal use.

While their popularity and potential usefulness are growing quickly, the ability to effi-

ciently and effectively glean statistically-robust information from wearable devices is slower
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to catch up. The data retrieved from these technologies present challenges in data analy-

sis, due to their inherent noisy nature, the non-generalizability of methodologies, and high

computational requirements. These challenges motivate the need for statistical innovations

to enable the wide-scale use of such wearable smart-Health devices in research related to

improving quality of life.

Accelerometers are a type of wearable device that measures continuous PA and movement

data, providing real-time, large-scale, personalized information on an individual’s PA pat-

terns. They capture raw gravitational acceleration data that are then processed into activity

“counts” over specific “epochs”, or lengths of time [Chen and Bassett, 2005]. The count

levels reflect the relative intensity of activity, with higher values indicating more intense

exertion. For tri-axial accelerometers, the three-dimensional count information at each time

point is often summarized into a one-dimensional summary value of Vector Magnitude (VM),

with 𝑉𝑀 =
√
𝑎𝑥𝑖𝑠12 + 𝑎𝑥𝑖𝑠22 + 𝑎𝑥𝑖𝑠32. Figure 2.1 depicts continuous time-series VM count

data for an individual from our motivating data detailed in Section 2.2. A typical analysis

may then categorize these count values into activity levels of interest, such as Sedentary,

Light, and Moderate-to-Vigorous Activity (MVPA), based on certain pre-specified activity

thresholds, and assess the association between amount of time spent in each activity level

and a health outcome of interest [Freedson et al., 2005, Crouter et al., 2015, Chandler et al.,

2016]. As these types of analyses are dependent on pre-specified threshold values, which in

turn need to be validated for each specific device type (e.g. Fitbit, Apple Watch) and un-

derlying population characteristics (e.g. age, sex), they suffer from a lack of generalizability

and flexibility. Such shortcomings make them impractical within a smart-Health setting.

Thus, it is beneficial to conduct feature extraction from PA accelerometer data using a more

generalizabale approach to relax or even eliminate the dependence on pre-fixed cutoffs.

3.1.3 Study Objectives

This need of data-adaptive cutoffs motivates the statistical objective of this chapter: to

develop a generalized, functional-focused approach to analyze PA data with the aim to free

the dependence on pre-determined PA categorizations. Our new approach will allow the data

to adaptively determine the change-points and different PA ranges of interest together with

our primary task of assessing the association of detected PA ranges with health outcomes

of interest. To this end, we consider actigraphy data under the purview of OTCs. This

method of analyzing activity data involves a summary curve which describes the proportion

of time an individual spends at or above successive activity levels [Bogachev and Ratanov,

2011]. Introduced in Section 2.3, these OTCs act as functional predictors in a Functional
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Data Analysis (FDA) paradigm.

We consider a supervised learning framework of scalar-on-function models in which we

develop a simultaneous operation of estimation and changepoint detection (or clustering).

The scalar-on-function regression allows us to investigate functional associations between

health outcomes, specifically epigenetic age, and OTCs adjusted by confounding factors. In

particular, we propose an 𝐿0 regularization approach to determine cutoff points adaptively.

Until relatively recently, 𝐿0 regularization and discrete optimization has been less of a focus

verses the 𝐿1-related continuous optimization approaches as it was deemed computationally

impractical. However, with recent advances in algorithmic and numeric capabilities, discrete

optimization is a feasible and powerful tool [Bertsimas et al., 2016]. We implement the mod-

ern optimization methods to functional analysis, by means of Mixed Integer Optimization

(MIO), to accurately detect critical activity windows of interest, conducting regularization

in a supervised learning framework. This MIO-based optimization is demonstrated to be

computationally feasible and scalable to practically-sized problems of interest.

The organization of this chapter is as follows. We review the motivating cohort study and

functional OTC variables in Section 3.2, while Section 3.3 compares existing and proposed

functional model formulations. Section 3.4 introduces MIO and presents its formulation

for our scalar-on-function statistical analysis, with a discussion of theoretical guarantees in

Section 3.5. In Section 3.6 we explore numeric experiments illustrating the capabilities of this

approach, while Section 3.7 provides a detailed analysis with our motivating data, exploring

the functional associations between OTCs and epigenetic age. Lastly, we discuss the merits,

limitations, and potential extensions of this discrete optimization approach in Section 3.8.

Some additional numerical results are included in Appendix A.

3.2 Motivating Cohort Study

This work is motivated by the Early Life Exposures in Mexico to Environmental Toxicants

(ELEMENT) longitudinal birth cohort study involving mother/child dyads in Mexico City.

Refer to a review paper by [Perng et al., 2019] for details regarding the study as a whole,

and Chapter 2 Section 2.2 for specific details related to accelerometry and epigenetic age.

3.2.1 Occupation Time Curves (OTCs)

The subject’s PA profile may be summarized by an OTC that entirely translates the high-

frequency time-series data to a single functional curve. OTCs greatly reduce the device’s

inherent noise while retaining key features of activity. A detailed description of OTCs and

43



their construction is included in Chapter 2, with related Figure 2.2a illustrating the numerical

OTC construction procedure. The resulting OTC is denoted as 𝑋(𝑐), 𝑐 ∈ 𝒞 = [0, 300× 102]
throughout the rest of this chapter.

As shown in Figure 2.2b, the OTC’s shape provides key information of variability on

the subjects’ PA profiles, with the curves of more and less active individuals taking distinct

shapes. Here, “more” or “less” active is determined by relative levels of high activity counts.

Figure 3.3 illustrates OTC variability in its representation of 354 OTCs from ELEMENT.

3.3 Model Formulations

3.3.1 Scalar-on-Function Analysis with OTC Functional Predictor

Motivated by the inherent variability of the OTCs, it is natural to analyze the features

under the auspices of FDA, considering the OTCs as a functional covariate with a varying

association on a health outcome of interest. The goal of such an analysis is to understand the

functional association between OTC and a health outcome, particularly identifying critical

changepoints and critical activity windows. For a certain scalar outcome 𝑌, the standard

scalar-on-function model is expressed as:

𝑌 =< 𝑋, � > +𝑍𝑇𝛼 + 𝜖 =

∫
𝒞
�(𝑐)𝑋(𝑐) 𝑑𝑐 + 𝑍𝑇𝛼 + 𝜖, (3.1)

where 𝑌 ∈ ℝ𝑛×1; 𝑋(𝑐) is the functional OTC defined on 𝒞 ⊂ ℝ; Z is a 𝑞-dimensional vector

of confounders with corresponding parameter vector 𝛼; 𝜖 is the error term with mean 0

and variance 𝜎2; and < 𝑎, 𝑏 > depicts the inner product of two square-integrable functions,

namely
∫
𝒞 𝑎(𝑐)𝑏(𝑐)𝑑𝑐 with

∫
𝒞 𝑎

2(𝑐)𝑑𝑐 < ∞ and
∫
𝒞 𝑏

2(𝑐)𝑑𝑐 < ∞.

The goal of a scalar-on-function model as defined above is to estimate the functional

parameter �(𝑐). In this case, our goal is to discretize the continuous functional parameter

estimate �(𝑐) as a piece-wise function with jump points, thereby effectively defining windows

of PA levels by fusing the �(𝑐) of adjacent count ranges with similar effects on the outcome.

Figure 3.1 illustrates this goal.

In other words, for a given 𝐾 number of PA windows (e.g. 𝐾 = 3), we aim to estimate

both the jump points 𝑐1, · · · , 𝑐𝐾−1 and step-function parameter values simultaneously. In

this way, we reparamaterize the functional parameter �(𝑐) into a step-function parameter

represented with 𝛽1, · · · , 𝛽𝐾 as the respective coefficients for activity windows [0, 𝑐1], (𝑐1 +
1, 𝑐2], · · · , (𝑐𝐾−1, 𝑐𝑚𝑎𝑥]. Here, 𝑐𝑚𝑎𝑥 denoted the maximum activity count considered in the

analysis.
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Figure 3.1: Left panel: Two realized OTCs with vertical dashed lines representing the cutoffs
for activity window ranges of interest. Right panel: Example of a non-constant functional
𝛽− parameter as a step-function to estimate the association of PA in selected activity-count
windows with a health outcome of interest

To achieve this goal, we first discretize each OTC into many small segments by dividing

the interval 𝒞 into 𝐽-many small successive intervals with a grid 𝑐0 = 0, 𝑐1, · · · , 𝑐𝐽 = 30, 000,

with 𝒞 = [0, 𝑐1]∪𝐽𝑗=2 (𝑐 𝑗−1, 𝑐 𝑗]. Within each interval 𝑗, we treat �(𝑐) as a constant parameter

�𝑗, which leads to Equation (3.2) given as follows:∫
𝒞
�(𝑐)𝑋(𝑐) 𝑑𝑐 + 𝑍𝑇𝛼 =

𝐽∑
𝑗=1

∫ 𝑐 𝑗

𝑐 𝑗−1

�(𝑐)𝑋(𝑐) 𝑑𝑐 + 𝑍𝑇𝛼

≈
𝐽∑
𝑗=1

�𝑗

∫ 𝑐 𝑗

𝑐 𝑗−1

𝑋(𝑐) 𝑑𝑐 + 𝑍𝑇𝛼

:=

𝐽∑
𝑗=1

�𝑗𝐴 𝑗 + 𝑍𝑇𝛼,

(3.2)

where 𝑋(𝑐) is defined as above; 𝐴 𝑗 denotes the Area Under the Curve (AUC) over inter-

val (𝑐 𝑗−1, 𝑐 𝑗] or 𝐴 𝑗 =
∫ 𝑐 𝑗

𝑐 𝑗−1
𝑋(𝑐) 𝑑𝑐; and Z is a 𝑞-dimensional vector of confounders with

corresponding parameter vector 𝛼. Of note, while 𝑋(𝑐) is monotonically decreasing due

to the inherent structure of OTCs, there is no restriction of monotonicity on �(𝑐). Unlike

the conventional functional regression analysis, in the same spirit of categorization shown in

Figure 3.1, our analytic aim is to fuse similar adjacent parameter �𝑗’s together in order to

estimate a 𝐾-group sized step function with parameters 𝛽𝑘 for 𝑘 = 1, · · · , 𝐾. This results
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in a final estimate model:
∑𝐾
𝑘=1 𝛽𝑘𝐴𝑘 + 𝑍𝑇𝛼, with 𝐴𝑘 denoting AUC over interval (𝑐𝑘−1, 𝑐𝑘)

or 𝐴𝑘 =
∫ 𝑐𝑘

𝑐𝑘−1
𝑋(𝑐)𝑑𝑐. The resulting step function for �(𝑐) is deemed for desirable results of

scientific interest, including both critical activity windows and assessing their influence on

the outcome, as well as and their interpretability.

3.3.2 Existing 𝐿1 Regularization Approaches

There are existing methods applicable to carry out the parameter fusion on �𝑗, among which

Fused Lasso [Tibshirani et al., 2005] and Hidden Markov Model (HMM) [Rabiner and Juang,

1986] are of great popularity. However, such an 𝐿1 penalization approach, like Fused Lasso,

have known computational issues especially when faced with high multi-collinearity. 𝐿1

penalization is known to induce bias in the estimation due to its nature of penalizing larger

coefficients more than smaller coefficients [Bertsimas et al., 2016]. While this bias often can

be controlled via various correction methods (such as adaptive lasso) [Candès et al., 2008,

Candès and Plan, 2009, Zou, 2006], when there is severe multi-collinearity among predictors

the bias can become out of control and may produce misleading results. Indeed, with the

OTCs, the 𝐴 𝑗 variables experience severe multi-collinearity; for example, the mean pairwise

correlations between AUC variables 𝐴′
𝑗
𝑠 under 𝐽 = 300 from our motivating data were:

𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+1) = 0.998, 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+5) = 0.985, 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+10) = 0.967. This unduly high

multi-collinearity presents a great challenge to the Fused Lasso approach and introduces

mis-specifications in both changepoint detection and parameter estimation.

To demonstrate the inability of the 𝐿1 regularization approach, which fails to accurately

conduct changepoint and parameter estimation, we consider a simulation experiment with

functional OTC variables with 𝐽 = 300 and correlation patterns as described above, analyzed

under a scalar-on-function linear model as described in Equation (3.2) with a null covariate

matrix Z. This simulation experiment used three activity windows (𝐴∗
1, 𝐴

∗
2, 𝐴

∗
3) with corre-

sponding end cutpoints (𝑐∗1, 𝑐∗2, 𝑐∗3)) = (40, 80, 300) and parameters (𝛽∗1, 𝛽∗2, 𝛽∗3) = (4, 0,−4), as
well as normally distributed error term with mean 0 and variance 1. Given this relatively easy

case (i.e. big between-window gaps), when conducting changepoint detection and parameter

estimation of the piece-wise functional �(𝑐) under the fused lasso approach using the R pack-

age glasso, both estimates of the changepoints and the associated parameters are severely

biased, as shown in Figure 3.2 (the right panel) and Table 3.1. We obtain similar poor

results even when reducing the collinearity to 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+1) = 0.98, 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+5) = 0.90,

and 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+10) = 0.80 by setting 𝐽 = 60; see Table 3.1. In this example, it is clear

that we have undesirable results; the cutpoint 𝑐1 is over-estimated, leading to mis-specified

cardinalities of activity intervals �̂�1 and �̂�2 as well as negatively-biased estimates of both
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Figure 3.2: Estimates of �𝑗 coefficients from two different standard analysis approaches
including multiple linear regression (left) and an 𝐿1 Regularization approach of Fused Lasso
(right). The respective model parameter estimates are represented by the black circles, while
the true �𝑗 values are represented as the red step function.

�̂�1 and �̂�2. Additionally, the left panel of Figure 3.2 shows the performance multiple linear

regression using the R package lm where unduly large discrepancies from the true values are

apparent due to the curse of highly correlated predictors. Note that in this case we a large

sample size with 𝑁 > 𝐽 so we are able to conduct the multiple regression analysis for this

comparison. This motivates us to consider an alternative solution, and after analyzing the

same model using an 𝐿0 penalization approach, we find that such bias can be reduced to

almost zero. The detail is included in Section 3.4.

3.3.3 Integer Programming and 𝐿0 Penalization

Under a modified 𝐿0 optimization strategy, we can simultaneously conduct fusion via change-

point detection and parameter estimation in a one-step approach. Based on a repertoire of

literature, the 𝐿0 approach has been shown to be robust against bias and multi-collinearity

[Bertsimas et al., 2016, Bertsimas and Shioda, 2009, Bertsimas et al., 2020]. The standard 𝐿0

penalization with constraints on the number of non-zero parameters is not flexible enough to

solve our dual analytic goals of changepoint detection and parameter fusion in our analysis;

rather, we propose a modified 𝐿0-fusion method for constrained optimization.

A straightforward explanation of standard discrete optimization using 𝐿0 penalization
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Table 3.1: Simulation Results of a 3-group Model with 𝑁 = 500 and number of intervals
𝐽 = 60, 300 demonstrate the performance of Fused Lasso, summarized over 500 replicates.
Results include average estimate (Mean), median estimate (Med.), and empirical standard
error (ESE). Cutpoint values are represented as VM/100.

J = 60 J = 300

Truth Mean Med. ESE Mean Med. ESE

𝛽1 4 2.97 2.83 0.46 2.87 2.77 0.41
𝛽2 0 −0.58 −0.31 0.98 −0.79 −0.41 1.19
𝛽3 −4 −3.98 −3.99 0.01 −3.98 −3.98 0.01
𝑐1 40 57.75 60.00 9.50 59.47 60.00 9.04
𝑐2 80 78.40 80.00 2.45 78.47 79.00 2.22

is by means of the the best subset problem. Suppose we have a linear regression model:

𝒚 = 𝑨𝜽 + 𝒁𝜶 + 𝝐 where 𝒚 is an 𝑛 × 1 response vector, 𝑨 is an 𝑛 × 𝐽 design matrix ∈ ℝ𝑛×𝐽 ,

and 𝜽 is a 𝐽×1 vector of regression coefficients ∈ ℝ𝐽×1. It is often advantageous, particularly

in cases of 𝐽 > 𝑛, to estimate a sparse parameter vector 𝜽. The best subset problem

constrains the level of sparsity by restricting the set of non-zero regression estimates to a

maximum cardinality, of say 𝑘 [Miller, 2002]. This can be expressed as:

min
𝜽

∥𝒀 − 𝑨𝜽 − 𝒁𝜶∥2
2
, subject to ∥𝜽∥0 ≤ 𝒌 , (3.3)

where ∥𝜽∥0 =
∑𝐽

𝑖=1
1(�𝑖) ≠ 0, or the 𝐿0-norm of 𝜽, with 1(·) representing an indicator

function. Thus, ∥𝜽∥0 effectively counts the number of non-zero regression coefficients, and

is constrained to maximum cardinality 𝑘. As this formulation with discrete constraints has

historically been considered computationally intractable in standard approaches [Natarajan,

1995], the best subset problem is often estimated via continuous constraint surrogates, such

as Tibshirani’s Lasso [Tibshirani, 1996].

3.4 Mixed Integer Optimization

This section details the utility of mixed integer optimization (MIO) to achieve the follow-

ing analytic goals by one-step operation in a supervised learning paradigm: (i) Fusion (or

clustering) and (ii) estimation. Its application in our study results in critical windows of

physical activity.
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3.4.1 Proposed Fusion-Adapted MIO Formulation

Bertismas et al [Bertsimas et al., 2016] offered an MIO formulated-solution to address the

best subset problem in Equation (3.3) using Specially Ordered Sets of Type 1 (SOS-1).

In this chapter, we propose an adaptation of this MIO framework with new 𝐿0 constraint

formulations to conduct concurrent parameter fusion and changepoint detection to analyze

Equation (3.2). The number of groupings is controlled by setting the number of desired

clusters 𝐾, which is tuned by goodness-of-fit measures such as BIC. Before formalizing the

MIO constraints, we first introduce variable 𝜻 identifying group membership such that:

𝜻𝑘 = (�1𝑘 , �
2
𝑘 , · · · , �

𝐽

𝑘
) ∈ {0, 1}𝐽×1, 𝑘 = 1, · · · , 𝐾 (3.4)

where �
𝑗

𝑘
= 1 corresponds to the case of 𝛽 𝑗 belonging in activity window 𝑘. Given cutoffs or

edges of windows, 𝑐1, . . . , 𝑐𝐾 with 𝑐𝐾 = 𝐽, such binary group labels take values:

�
𝑗

1 =


1, 𝑗 = 1, · · · , 𝑐1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, �
𝑗

𝑘
=


1, 𝑗 = 𝑐𝑘−1, · · · , 𝑐𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, · · · , � 𝑗
𝐾
=


1, 𝑗 = 𝑐𝐾−1 + 1, · · · , 𝐽
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

(3.5)

For a 𝐾-group model, a fusion-adapted 𝐿0 constrained optimization with 𝐽 original inter-

vals and 𝑞 covariates is represented as:

min
𝜽,𝜻,𝜷,𝒄,𝜶

∥𝒀 − 𝑨𝜽 − 𝒁𝜶∥22

subject to 𝜽 = (�1, · · · , �𝐽)𝑇 ∈ ℝ𝐽×1, 𝜶 = (𝛼1, · · · , 𝛼𝑞)𝑇 ∈ ℝ𝑞×1;

c = (𝑐1, · · · , 𝑐𝐾−1) ∈ ℕ1×(𝐾−1)

𝑐1 ≥ 1, 𝑐𝑘 ≥ 𝑐𝑘−1 + 1, 𝑐𝐾−1 ≤ 𝐽 − 1, 𝑘 = 1, · · ·𝐾 − 1;

𝜻 = (�𝑘𝑗 )𝐽×𝐾 ∈ ℝ𝐾×𝐽

�𝑗 − 𝛽1 = 0, 𝑗 = 1, · · · , 𝑐1;
�𝑗 − 𝛽2 = 0, 𝑗 = 𝑐1 + 1, · · · , 𝑐2;
...

�𝑗 − 𝛽𝐾 = 0, 𝑗 = 𝑐𝐾−1 + 1, · · · , 𝐽 ,

(3.6)

where 𝒀 ∈ ℝ𝑛×1, 𝑨 ∈ ℝ𝑛×𝐽 , and 𝒁 ∈ ℝ𝑛×𝑞. The above optimization is operated via

augmented parameters where labels 𝜻 and cutpoints 𝒄 = (𝑐1, . . . , 𝑐𝐾−1)𝑇 do not exist in the

original model (3.2) but are added for parameter fusion. Obviously, group labels 𝜻 and

cutpoints 𝒄 are determined in a one-to-one correspondence fashion, which will be enforced
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via adequate constraints given below in Section 3.4.2. As mentioned in Section 3.3, there is

no restriction of monotonicity on �(𝑐); however, if researchers were interested in a monotonic

structure for association parameter �(𝑐), this could be enforced via the inclusion of additional

constraints relating the relative values of parameters 𝛽1, . . . , 𝛽𝐾.

3.4.2 MIO Implementation

This MIO model can be solved via numerical software such as GUROBI under a system of

constraints. These constraints are set to minimize the objective function by optimizing cut-

points 𝑐1, · · · , 𝑐𝐾−1 and thus the cluster labels represented by the variable �𝑘 , , 𝑘 = 1, · · · , 𝐾
defined in Equations (4.8) and (4.9). This set of linear constraints for the 𝐾-group model is

specified as follows:

�
𝑗

𝑘
(�𝑗 − 𝛽𝑘) = 0, 𝑗 = 1, · · · , 𝐽 , 𝑘 = 1, · · · , 𝐾 (SOS-1 constraints);

𝐾∑
𝑘=1

�
𝑗

𝑘
= 1, 𝑗 = 1, · · · , 𝐽;

𝑐0 = 0, 𝑐1 ≥ 1; 𝑐𝑘 ≥ 𝑐𝑘−1 + 1; and 𝑐𝐾−1 ≤ 𝐽 − 1, for 𝑘 = 2, · · · , 𝐾 − 1;

𝑐𝑘 − 𝑗

𝐽
≤ 1 − �

𝑗

𝑘+1, 𝑗 = 1, · · · , 𝐽 , for 𝑘 = 0, · · · , 𝐾 − 1;

𝑐𝑘+1 − 𝑗

𝐽
×
(𝑗 − 𝑐𝑘)

𝐽
≤ �𝑘+1, 𝑗 = 1, · · · , 𝐽 , for 𝑘 = 0, · · · , 𝐾 − 1;

𝑗 − 𝑐𝑘+1 + 1

𝐽
≤ 1 − �𝑘+1, 𝑗 = 1, · · · , 𝐽 , for 𝑘 = 0, · · · , 𝐾 − 1;

(3.7)

These constraints determine the locality of changepoints and grouping in the fusion-

adapted MIO formulation for the 𝐿0-type analysis of a K-group model. In this chapter, the

constraints are implemented in GUROBI numerical solver package in Python. In a recent

paper [Wang et al., 2022] show that the MIO GUROBI optimization solvers provide the

global optimal solutions for a similar homogeneity fusion problem.

3.5 Theoretical Guarantees

Here we discuss the selection consistency of the MIO estimator of the parameter 𝜽 =

(�1, . . . , �𝐽)𝑇 obtained by the constrained optimization given in Equations (3.6) and (3.7)

under some mild regularity conditions. This paves the theoretical basis for large-sample

statistical inference. Wang et al. [Wang et al., 2022] considered a more general version of

an MIO optimization problem than ours, where their group parameters �1, . . . , �𝐽 are not
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sequentially ordered. In other words, the MIO optimization given in Equations (3.6) and

(3.7) is a special case of the setting studied by [Wang et al., 2022], and thus, we can establish

relevant theoretical guarantees by arguments given in [Wang et al., 2022].

To present the sufficient conditions for selection consistency, we first introduce the oracle

estimators that represent the parameter estimates under the true number of clusters 𝐾∗ and

cutpoints 𝑐∗ = (𝑐∗1, · · · , 𝑐∗𝐾). We denote the oracle estimates of 𝜷 and 𝜶 as �̂�
𝑜𝑙

and �̂�𝑜𝑙

respectively, which are obtained through the ordinary least squares (LS) estimation:

(�̂�𝑜𝑙 , �̂�𝑜𝑙) := argmin
𝜷,𝜶

∥𝒀 − 𝑨𝜷 − 𝒁𝜶∥22. (3.8)

When these cutpoints are unknown, we propose to use the MIO approach to obtain

consistent estimators of the model parameters and the cutoff values in one step. In order to

achieve this, we aim to minimize our constrained objective function in Equations (3.6) and

(3.7) where cutpoints 𝒄 are determined when 𝐽 individual-level parameters �𝑗’s are reduced to

𝐾 group-level parameters 𝛽𝑘 via suitable constraints. To quantify the sensitivity of the model

to the precision of clustering, we follow [Zhu et al., 2013]’s work with simultaneous grouping

and feature selection and adopt a measure of Mean Squared Error (MSE) sensitivity deemed

𝑐𝑚𝑖𝑛. This measurement quantifies the minimum increase of MSE due to an inaccurately

determined set of cutpoints 𝒄. That is,

𝑐𝑚𝑖𝑛 ≡ 𝑐𝑚𝑖𝑛(𝝃∗,𝑨, 𝒁) = min
𝝃

∥𝑨(𝜽 − 𝜷∗) + 𝒁(𝜶 − 𝜶∗)∥22
𝑛 max(𝑑(𝜽, 𝜷∗), 1) ,

subject to Equations (3.6) and (3.7).

(3.9)

with the true values 𝝃∗ = (𝜷∗⊤, 𝜶∗⊤, 𝒄∗)⊤ ∈ ℝ2𝐾−1+𝑞, 𝝃 = (𝜽⊤, 𝜶⊤, 𝒄)⊤ ∈ ℝ𝐽+𝐾+𝑞−1, and

𝑑(𝜽, 𝜷∗) represents a grouping incongruity measure reflective of the accuracy of the cutpoint

estimation. See more details in [Wang et al., 2022]. In addition, we assume that errors 𝜖 in

the scalar-on-function model are normally distributed with mean 0 and variance 𝜎2.

To present selection consistency, for any MIO estimator �̂�𝑴𝑰𝑶 = (�̂�𝑀𝐼𝑂⊤
, �̂�𝑀𝐼𝑂⊤)⊤ of 𝝃∗

with true number of windows 𝐾∗, and associated estimated cutpoints �̂�𝑀𝐼𝑂 of 𝒄∗, we define

a loss function 𝐿(�̂�𝑴𝑰𝑶 ; 𝝃∗) as the grouping risk associated with inaccurate grouping and

estimates of 𝒄∗ in the form of 𝐿(�̂�𝑴𝑰𝑶 ; 𝝃∗) ≡ ℙ(�̂�𝑴𝑰𝑶 ≠ 𝝃∗). Under the condition of random

errors 𝜖 that are independent sub-Gaussian with mean zero and variance 𝜎2 < ∞, when

𝐾 = 𝐾∗ < ∞ and for any 𝐽, we show the finite sample error bound is given by:

𝐿(�̂�𝑴𝑰𝑶 ; 𝝃∗) ≤ 4𝑒𝑥𝑝

[
− 3𝑁

200𝜎2

{
𝑐𝑚𝑖𝑛 −

𝜎2

𝑁
(134 log(𝐽𝐾∗) + 220)

} ]
. (3.10)
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This bound in (3.10) implies that when 𝑐𝑚𝑖𝑛 > 𝜎2

𝑁 (134 log(𝐽𝐾∗) + 220), �̂�𝑴𝑰𝑶 consistently

reconstructs 𝝃∗ because 𝑁, 𝐽 → ∞, ℙ(�̂�𝑴𝑰𝑶 ≠ 𝝃∗) → 0. Thus for any finite fixed 𝐽, or for

𝐽 → ∞, �̂�𝑴𝑰𝑶 consistently reconstructs 𝝃∗ as 𝑁 → ∞. In particular, in the former case

of fixed 𝐽, the above condition for 𝑐𝑚𝑖𝑛 holds automatically as 𝑁 → ∞, and therefore the

selection consistency is warranted under very mild regularity conditions. The proof of this

sufficient condition result can be carried out by following the lines of arguments given in the

proof of Theorem 3.4 in [Wang et al., 2022] and thus is omitted in this chapter.

3.6 Simulation Experiments

Simulation experiments demonstrate robust, reliable performance of the proposed MIO

paradigm. Here we discuss the setup of the conducted numerical experiments, report on

their results, and comment on computational performance comparing to Fused Lasso.

3.6.1 Simulation Setup

We first simulated 6-hour time-series of VM counts by linking many consecutive 10-minute

intervals of the ELEMENT accelerometer data. To achieve this, the individual 6-hour time-

series of VM counts for the 539 subjects from the ELEMENT dataset were divided into

non-overlapping 10-minute segments. Each 10-minute interval was randomly drawn from a

pool of 539 10-minute candidate segments. To ensure that the variability in the simulated PA

reflected the variability of the ELEMENT dataset as shown in Figure 3.3, we first classified

these 539 subjects into three groups with low, medium, and high levels of PA respectively,

as defined by tertiles of “Moderate-to-Vigorous” VM counts using the pre-set Chandler

cutoffs [Chandler et al., 2016]. We then simulated the time-series data within each tertile.

With the simulated VM counts, OTC curves were calculated as described in Section 2.3.

For the 500 simulated OTCs, we calculated the 𝐽 = 300 successive integrals (i.e. AUCs)

over domain 𝒞 = (0, 30, 000), with each interval covering 100 VM counts: (𝑐0 = 0, 𝑐1 =

100, · · · , 𝑐𝐽 = 30, 000). For ease of exposition, we will refer to the 𝑉𝑀/100 values, i.e.

𝑐 = (0/100, · · · , 30000/100)⊤ or 𝑐 = (0, · · · , 300)⊤.
To assess the fusion-adapted 𝐿0 approach’s ability to detect the true cutoffs and parameter

estimates, we specified 𝐾∗ = 3 groups and corresponding true cutoffs (𝑐∗1, 𝑐∗2, 𝑐∗3) in addition

to 𝑐∗0 = 0, and calculated the vector of AUCs, (𝐴∗
1, 𝐴

∗
2𝐴

∗
3)𝑇 with 𝐴∗

𝑘
=

∫ 𝑐𝑘

𝑐𝑘−1
𝑂𝑇𝐶(𝑐)𝑑𝑐.

Finally, we generated outcome 𝑌 from the zero-intercept linear model 𝑌 =
∑3
𝑘=1 𝐴

∗
𝑘
𝛽∗
𝑘
+

𝑍𝛼∗ + 𝜖, with true effect sizes (𝛽∗1, 𝛽∗2, 𝛽∗3) and 𝛼∗, where single continuous covariate 𝑍 ∼
𝑁(0, 1) and 𝜖 ∼ 𝑁(0, 10). We specified various 3-group models (𝐾∗ = 3) with VM count
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changepoints (𝑐∗1, 𝑐∗2, 𝑐∗3) ∈
{
(40, 80, 300), (20, 120, 300)

}
to evaluate the performance under

various window sizes. Here, we specified two different scenarios of effect size (𝛽∗1, 𝛽∗2, 𝛽∗3) ∈{
(4, 0,−4), (1, 0,−1)

}
. These simulations were conducted for two different specifications of 𝐽,

the number of intervals to fuse over, 𝐽 ∈ {60, 300}, representing two different levels of multi-

collinearity with 𝐽 = 300 encompassing the most severe multi-collinearity among the 𝐴 𝑗’s.

Additionally, we conducted scenarios with three different sample sizes 𝑁 ∈ {100, 250, 500}
with 𝐽 = 60, and 𝑁 = 500 when 𝐽 = 300. Note that when 𝐽 = 300, the method is limited

to scenarios with 𝐽 < 𝑁 as the fusion-adapted 𝐿0 formulation does not introduce the true

sparsity into the model that allows for 𝐽 > 𝑁 . With these simulated 3-group models, we

applied the new fusion-adapted 𝐿0 constraint method using GUROBI to fit models with

𝐾 = 2, 3, 4, and used BIC to select the final model with the best goodness of fit among

the candidates in order to determine the method’s sensitivity in selecting the right-sized

model. Additionally, we conducted simulation experiments for the 𝐾∗ = 4−group model

with corresponding true cutoffs (𝑐∗1, 𝑐∗2, 𝑐∗3, 𝑐∗4) and true effect sizes (𝛽∗1, 𝛽∗2, 𝛽∗3, 𝛽∗4) (refer to

Appendix A).

3.6.2 Simulation Results

The simulation results produced by the fusion-adapted 𝐿0 constraint model demonstrated

that this new approach has high sensitivity to select the right-sized model, produces reliable

change-point detection and parameter estimation, and is robust to handle highly correlated

AUCs. Tables 3.2 and 3.3 summarize the results from 500 rounds of simulations of the

3−group model for the 𝐽 = 300 and 𝐽 = 60 settings, respectively.

Table 3.2: Simulation Results of the 3-group model with number of micro-intervals 𝐽 = 300
and sample size of 𝑁 = 500 summarized over 500 replicates, including average estimate (𝐿0
Mean), empirical standard error (𝐿0 ESE), and average estimate from an 𝐿1 Fused Lasso
analysis (FL Mean) using R package glasso. Cutpoint values are represented as VM/100.

Scenario A Scenario B Scenario C

Truth 𝐿0 Mean 𝐿0 ESE FL Mean Truth 𝐿0 Mean 𝐿0 ESE FL Mean Truth 𝐿0 Mean 𝐿0 ESE FL Mean

𝛽1 4 4.00 0.04 2.87 1 1.00 0.04 0.71 1 1.01 0.09 0.31

𝛽2 0 −0.01 0.11 −0.79 0 −0.01 0.11 −0.22 0 < 0.01 0.02 −0.17
𝛽3 −4 −4.00 0.00 −3.98 −1 −1.00 0.00 −0.99 −1 −1.00 0.01 −0.98
𝑐1 40 40.04 0.75 59.47 40 39.95 3.49 60.45 20 19.80 2.10 76.83

𝑐2 80 80.05 0.63 78.47 80 80.28 2.65 79.50 120 119.92 1.38 118.65

𝛼 1 0.98 0.44 0.94 1 0.98 0.44 1.20 1 0.98 0.44 1.16

This method demonstrated high sensitivity, selecting the correct sized model in over 99%
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of simulations in all Scenarios 𝐴, 𝐵, 𝐶, for both 𝐽 = 300 and 60. Among these correctly

specified models, the fusion-adapted constraint model correctly identified the changepoints

(𝑐∗1, 𝑐∗2, 𝑐∗3) =
{
(40, 80, 300), (20, 120, 300)

}
and estimated the 𝛽 parameters (𝛽∗1, 𝛽∗2, 𝛽∗3) ∈{

(4, 0,−4), (1, 0,−1)
}
with minimal bias.

The method maintained its ability to reliably identify changepoints and estimate parame-

ters as the sample size N decreased from 𝑁 = 500 to 𝑁 = 250 and even 𝑁 = 100. For Scenario

B with (𝛽∗1, 𝛽∗2, 𝛽∗3) = (1, 0,−1) and 𝑁 = 250, the mean (ESE) estimates of 𝛽∗1, 𝛽
∗
2, and 𝛽∗3

from this 𝐿0 constrained approach are 1.00(0.06), −0.02(0.17), and −1.00(0.01). Similar

strong results are repeated in the second window size scenario of (𝑐∗1, 𝑐∗2, 𝑐∗3) = (20, 120, 300).
In contrast, the 𝐿1 fused lasso approach via the R package glasso had undesirable sen-

sitivity, ranging from 0-30% across the different Scenarios and sample size combinations.

Furthermore, even if the number of windows is correctly specified in advance, namely

𝐾∗ = 3, the performance of Fused Lasso analysis exhibited high bias in both coefficient

and changepoint detection, as shown in the “FL Mean” columns of Tables 3.2 and 3.3. The

proposed MIO formulation can produce desirable results even in scenarios of severe multi-

collinearity. In fact, in the 𝐽 = 300 setting, the pairwise correlation was extremely high with

𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+1) = 0.998, 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+5) = 0.985, and 𝑐𝑜𝑟(𝐴 𝑗 , 𝐴𝑗+10) = 0.967. Even in this very

challenging scenario, the parameter and changepoint estimates have been estimated well

with remarkably low bias and variance. Results for the 𝐾∗ = 4 simulation experiments were

similarly strong for the proposed MIO approach, and weak for an 𝐿1 Fused Lasso approach,

as shown in the Appendix A Tables.

3.6.3 Computation Time

The fused-adapted MIO solver via GUROBI is also computationally efficient. A 3-group

simulation model with 𝑁 = 500, 𝐽 = 60 computes in 10 seconds, with 𝐽 = 300 scenario

completing in 10 minutes. The method is scalable to a reasonable number of windows, with

computation time for a 4-group model taking 30 seconds and 30 minutes for 𝐽 = 60, 300

scenarios respectively. These simulation scenarios represent instances of defined signal for

the 𝐾 = 3, 4 number of groups. However, it is possible that in scenarios of low signal or

inappropriate number of groups 𝐾 that the computation would take longer. Thus in the

simulation and data analysis, we implement a computation budget of 20 hours to control

the run time. If the analysis does not complete within this time frame, the MIO model is

terminated and the combination of (𝐽 , 𝐾) deemed an inappropriate model representation.
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Table 3.3: Simulation Results of the 3-group model with number of micro-intervals 𝐽 = 300
and sample size of 𝑁 ∈ {500, 250, 100} summarized over 500 replicates, including average
estimate (𝐿0 Mean), empirical standard error (𝐿0 ESE), and average estimate from an 𝐿1
Fused Lasso analysis (FL Mean) using R package glasso. Cutpoint values are represented
as VM/100. Sensitivity for selecting 3-group model based on goodness-of-fit comparisons
was greater than 99% in all scenarios.

N = 500 N=250 N=100

Truth 𝐿0 Mean 𝐿0 ESE FL Mean 𝐿0 Mean 𝐿0 ESE FLMean 𝐿0 Mean 𝐿0 ESE FL Mean

Scenario A

𝛽1 4 4.00 0.03 2.97 3.99 0.04 2.87 4.00 0.09 2.79

𝛽2 0 0.00 0.05 −0.58 0.00 0.06 −0.69 −0.01 0.22 −0.96
𝛽3 −4 −4.00 0.00 −3.98 −4.00 0.00 −3.98 −4.00 0.01 −3.97
𝑐1 40 40.01 0.22 57.75 40.06 0.54 59.44 40.02 1.64 60.83

𝑐2 80 80.01 0.22 78.40 80.01 0.22 78.44 80.13 1.28 80.12

𝛼 1 0.98 0.44 0.98 1.04 0.66 0.92 1.01 1.04 1.07

Scenario B

𝛽1 1 1.00 0.04 0.69 1.00 0.06 0.69 1.03 0.19 0.68

𝛽2 0 −0.01 0.12 −0.18 −0.02 0.17 −0.21 −0.06 0.30 −0.28
𝛽3 −1 −1.00 0.00 −0.99 −1.00 0.01 −0.99 −1.00 0.02 −0.96
𝑐1 40 39.94 3.59 61.63 39.98 5.38 61.51 39.73 9.75 61.89

𝑐2 80 80.28 2.85 78.24 80.84 5.08 80.27 84.93 21.07 84.73

𝛼 1 0.98 0.44 1.20 1.00 0.67 1.11 1.00 1.04 1.46

Scenario C

𝛽1 1 1.00 0.10 0.29 1.01 0.14 0.28 1.05 0.28 0.27

𝛽2 0 −0.001 0.02 −0.16 0.001 0.03 −0.19 −0.002 0.05 −0.25
𝛽3 −1 −1.00 0.005 −0.98 −1.00 0.01 −0.98 −1.00 0.01 −0.97
𝑐1 20 20.14 2.21 79.36 20.09 3.50 81.25 20.22 5.98 80.47

𝑐2 120 120.02 1.27 118.27 119.94 2.33 118.73 120.31 3.60 120.88

𝛼 1 0.98 0.44 1.15 1.00 0.66 1.09 1.00 1.02 1.41
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Figure 3.3: OTCs for 354 ELEMENT subjects stratified by boys and girls. The vertical lines
represent Chandler’s cutoffs [Chandler et al., 2016] for prefixed activity levels (Sedentary,
Light, Moderate, Vigorous). The relative shape of OTC reflects the subject’s activity profile.

3.7 Data Analysis

The primary objective of this data analysis was to investigate whether physically more

active individuals are biologically younger or older. To do this, we focused on assessing

the functional relationship between PA and biological aging through a scalar-on-function

regression model. Introduced in Section 2.2, we had complete accelerometry and covariate

data for 354 subjects from our motivating dataset (172 male, 182 female), with mean(SD)

age of 13.7(1.9) years and mean(SD) lead exposure of 3.17(3.33) �𝑔/𝑑𝐿. The majority

(332) of subjects had completed puberty in terms of Tanner staging standards. Figure 3.3

illustrates the functional predictors of OTCs representing the subjects’ activity profiles fom

4:00PM - 10:00PM on weekends; this block was chosen with the rationale that it is reflective

of time when the children have more control over their activities. Our choice of outcome was

Horvath’s AgeSkinBlood Clock [Horvath et al., 2018] that primarily targets DNAm changes

in skin and blood cells that undergo rapid changes during adolescence, including fibroblasts

that help with the structural components of skin.

To use the fusion-adapted 𝐿0 analytic in Section 3.4, we began setting 𝐽 = 300, with each

interval covering 100 VM counts, followed by an augmentation scenario of 𝐽 = 60 by summing

every five successive intervals. For ease of interpretation, we considered 𝐾 ∈ {2, 3, 4} PA
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windows, in which the final selection of 𝐾 was determined by BIC. Each setting was given

a budget of 20 hours runtime; if the search did not converge within this time, the attempt

was terminated and the respective combination of (𝐽 , 𝐾) disregarded from reporting.

Table 3.4 shows the results, among which the 3-group model demonstrated the best fit in

both the 𝐽 = 300 and the 𝐽 = 60 scenarios according to BIC. In the scenario 𝐽 = 300, 𝐾 = 4

the MIO search did not complete within the budgeted 20 hours, and was thus terminated.

As the scenario of 𝐾 = 4, 𝐽 = 60 was inferior over the scenario of 𝐾 = 3, 𝐽 = 60, the chance

of 𝐾 = 4, 𝐽 = 300 scenario being the best seemed to be rather low and thus the decision

of termination was not concerning. P-values and BIC are determined by fitting a resulting

linear model with the detected cutpoints.

To assess the validity of the 𝑝-values used in the above discovery we conducted a permuta-

tion analysis. To do so, we randomly permuted the epigenetic age outcomes to be misaligned

with the original covariates and extracted the 𝑝-values from the refit linear model. Using 1000

permutations, we established a null distribution, and then compared the analytic 𝑝-values

with those determined by the permutation-derived null distribution, termed as “permuted 𝑝-

value”. We found that the permuted 𝑝-values follow an approximately uniform distribution

on (0, 1), and are remarkably similar to the original analytic 𝑝-values, as evident in Table

3.4. The uniform distribution of the permuted 𝑝-values indicates that the 𝐿0 fusion-adapted

model furnishes an adequate approximation of the functional relationship between epigenetic

age and functional OTCs. If this functional model were not an adequate approximation, the

error term, 𝜖, would carry a substantial proportion of the relationship between the outcome

and covariates, thus resulting in a non-uniform distribution of 𝑝-values in the permutation

analysis.

Under the chosen 𝐾 = 3 model, the estimated activity windows reflect that (i) more time

in the low PA window 𝑐 = [0, 20] is associated with younger AgeBloodSkin (�̂� = 4.17, 𝑝-

value 0.004), and (ii) more time in the extreme window 𝑐 = (290, 300] is associated with older

AgeBloodSkin (�̂� = 13.0, 𝑝-value 0.012). Such findings suggest that more PA is associated

with faster biological aging of blood cells and skin in adolescents.

To facilitate a clinically understandable interpretation of the analysis results in Table 3.4,

we propose an AUC Ratio metric that measures the amount of time an individual spends

within a PA window relative to the maximum amount of time they could spend above that

PA level. That is, it represents a relative activity level of the individual within the detected

window compared to the hypothetical most active person. Computationally, as illustrated in

Figure 3.7, the AUC Ratio is a ratio of the individual’s AUC in the detected activity window

versus the area of the full activity window rectangle, with the latter representing the PA

of an individual who spends all of his or her time above the PA level of this window. The
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Table 3.4: Data Analysis Results obtained by the fusion-adapted 𝐿0 method, where 𝐽 indi-
cates the number of micro-intervals and 𝐾 is a prefixed number of activity windows. Signifi-
cance is measures in two different ways; ’p-val’ represents the p-values from linear regression,
whereas ’perm’ represents empirical p-value when assessing ’p-val’ to the distribution of p-
values attained through 1000 permutations. Cutpoint values are represented as VM/100.

J = 300 J = 60

K=2 K=3 K=2 K=3 K=4

Parameters Est p-val perm. Est p-val perm. Est p-val perm. Est p-val perm. Est p-val perm.

𝛽1 19.50 .03 .04 4.17 .01 .01 4.73 .01 .02 4.21 .01 .01 0.13 .53 .52

𝛽2 −0.07 .53 .54 −0.36 .02 .02 −0.12 .34 .34 −0.37 .02 .02−126.26 < .01 < .01

𝛽3 – – – 13.00 .01 .02 – – – 8.56 .01 .02 62.91 < .01 < .01

𝛽4 – – – – – – – – – – – – −0.54 .70 .70

𝑐1 3 – – 20 – – 15 – – 20 – – 240 – –

𝑐2 – – – 293 – – – – – 290 – – 245 – –

𝑐3 – – – – – – – – – – – – 255 – –

Sex (Male) 15.27 .76 .77 −3.33 .94 .95 6.68 .89 .91 −3.24 .94 0.95 23.50 .64 .64

Chron. Age 0.86 < .01 < .01 0.86 < .01 < .01 0.86 < .01 < .01 0.86 < .01 < .01 0.85 < .01 < .01

Lead −6.44 .39 0.44 −6.39 .39 .43 −6.32 .40 .45 −6.32 .39 .44 −7.03 .34 .37

Puberty −97.10 .29 0.30−88.14 .34 .34−96.39 .30 .31−88.25 .34 .34 −86.86 .35 .35

BIC 5395.9 5393.6 5394.2 5393.7 5394.7
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Figure 3.4: An illustration of the AUC Ratio calculation for Window 1. The shaded green
regions represent the AUC for subject i for 𝑖 = 𝑐(1, 2) within the detected window, or 𝐴𝑖1.
The outlined rectangle represents the area of the full rectangle created by the cutpoints
(𝑐0 = 0, 𝑐1 = 20) of Window 1, deemed 𝑅1, which represents the hypothetical subject
spending 100% of time above this activity level. The AUC Ratio for this first window is
then calculated by AUC Ratio𝑖1 =

𝐴𝑖1
𝑅1

. The interpretation of this ratio depends on the
location of the window. For all but the last sequential window, i.e. for windows 1, · · · , 𝐾−1,
the value 1−AUC Ratio represents what percentage the individual is Less Active than the
hypothetical most active person in that window. For example, in the above figure Subject
1 has a smaller AUC (green shaded region) than Subject 2, representing that Subject 1
spends more time within the cutpoints (𝑐0, 𝑐1) than Subject 2. The value 1−AUC Ratio11,
or 𝑅1−𝐴11

𝑅1
, represents the percentage Subject 1 is less active than the hypothetical most active

person within the first window. This value is greater 1−AUC Ratio21, or
𝑅1−𝐴21
𝑅1

, as can be

visualized by the area of the blue shaded regions. For the 𝐾𝑡ℎ window, the interpretation of
the AUC Ratio𝑖𝐾 represents the percent of time the individual spends within that window
compared the hypothetically most active person. In this case, a higher AUC Ratio𝑖𝐾 value
represents higher PA within the window.
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interpretation of this AUC Ratio depends on its sequential location. For an example of the

first Window 1, a lower AUC Ratio represents more time spent within the specific window,

and less time spent above the window. In contrast, for the last window 𝐾, a higher AUC

Ratio represents more time spent within the specific window.

Let us interpret the results in Table 3.4 for the scenario of 𝐾 = 3, 𝐽 = 300 under model

𝑦 ∼ 𝛽1𝐴1 + 𝛽2𝐴2 + 𝛽3𝐴3 +𝑍𝑇𝛼, where AUC 𝐴𝑘 =
∫ 𝑐𝑘

𝑐𝑘−1
𝑂𝑇𝐶(𝑐)𝑑𝑐, 𝑘 = 1, 2, 3. Here Window

1 has estimated cutpoints [𝑐0, 𝑐1] = [0, 20] with �̂�1 = 4.17 for predictor 𝐴1. For subject 𝑖,

the area of the Window 1 rectangle 𝑅1 = (𝑐1 − 𝑐0) × (1− 0) = 20, and AUC Ratio of Window

1 is 𝐴𝑖1
20 . Correspondingly, the parameter estimate �̂�1 may be adjusted by �̂�1𝑅𝑎𝑡𝑖𝑜 = 20�̂�1

for the interpertability. In the case of Window 1, a lower AUC Ratio reflects more time

spent within the activity cutpoints [0, 20] than the hypothetical “most active individual”

who spends all his or her time above the cutpoint range [0, 20]. Thus, for a subject who

is 1% more active in the activity range of Window 1 compared to the hypothetical “most

active individual”, as reflected by a smaller AUC Ration, this subject’s BloodSkin epigentic

age decreases approximately 80 days. See Figure 3.7 for a schematic of this calculation.

3.8 Discussion

In this chapter we utilize a scalar-on-function model to assess the influence of PA on biolog-

ical age using a proposed methodology of fusion-adapted 𝐿0 regularization. This scalar-on-

function regression naturally accommodates a functional accelerometer predictor with great

flexibility to study similar scientific questions in other populations with various underlying

characteristics and devices. We adopt a mixed integer optimization (MIO) analytic that

can simultaneously detect key cutpoints to define critical windows of activity and estimate

discretized functional association parameters, while accounting for important covariates of

interest.

One advantage of the MIO technique lies on the fully data-driven simultaneous operation

in both cutpoint detection and parameter estimation. This use of functional regression is

notably different from current methods of analyzing accelerometer activity and investigat-

ing windows of activity associated with health outcomes. Unlike methods establishing fixed

cutoff values regardless of specific outcomes under investigation, our analysis takes a new

supervised learning approach that involves the outcome of interest to detect different change

points, which are adaptive to different outcomes of interest and study populations under in-

vestigation. For example, if applied to different age populations, or to analyze data collected

from a different accelerometer device (e.g. Fitbit or iWatch), the functional OTC predictor

would likely form a robust functional PA profile despite the different activity count ranges
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that may be recorded by different populations and devices. Thus, as shown in our numer-

ical analyses, our MIO based optimization approach can deliver reliable and reproducible

findings on activity windows of importance and functional associations in the study of the

influence of PA on human health outcomes. In contrast, existing approaches that apply

pre-set child-specific cutpoints (e.g. Chandler) to an adult population could potentially lead

to biased or even contradicting results.

We perform extensive simulation experiments to numerically demonstrate the high sta-

bility and accuracy of the MIO technique, including a useful finding that the strength of the

results is not overly sensitive to the choice of 𝐽, the starting number of correlated intervals.

Simulation results for 𝐽 = 60 and 𝐽 = 300 were very similar, with computation time slightly

longer for the larger number of intervals. Investigators can choose the number of 𝐽 intervals

based on factors of sample size and data availability without concern that the tuning choice

of 𝐽 will significantly affect the analysis. Such desirable numerical performance confirms the

selection consistency property for the MIO solution under mild regularity conditions.

The proposed framework gives rise to a data analytic toolbox enabling researchers to

explore various questions of interest related to the effect of functional PA features on health

outcomes. For example, some researchers hypothesize that the timing of PA, not only the

relative intensity, is related to specific health outcomes. Through application of this MIO

technique focusing on PA during different time periods of the day, such as morning versus

evening, researchers can investigate if the activity intensity changepoints are dependent on

time of day. Additionally, future extensions can include multiple functional covariates to

assess the longitudinal affect of functional PA profiles on health outcomes, and even longitu-

dinal effects with both repeated outcomes and functional exposures to PA using longitudinal

functional data analysis models.

While this chapter focused on time-series of PA counts from wearable accelerometer de-

vices, the use of Occupation Time Curves (OTCs) to summarize such high-frequency time-

series data can be extended to a myriad of applications. Other forms of data from objective

high-frequency measurements, such as ambulatory blood pressure or glucose level monitor-

ing, can be represented as functional OTCs. In this way, important windows of the blood

pressure or glucose levels to a health outcome of interest can be identified and assessed

for statistical significance and scientific importance. The MIO technique is also flexible to

accommodate different forms and number of covariates with an extension from the current

formulation via little effort. Currently, our analysis of biological age focuses on a continuous

outcome, though future work could extend this data analytic to non-normal and non-linear

models, such as logistic regression with binary outcomes, and Cox regressions with time-to-

event outcomes.
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CHAPTER 4

Supervised Fusion Learning of Physical

Activity Features from Longitudinal

Functional Accelerometer Data

4.1 Introduction

Thus far in this dissertation, we have discussed proposed methodologies for independent

functional data in which a single curve is observed for each of the subjects in the study. In

this chapter we now consider repeated functional data, in which multiple functional curves

are observed from the subjects under consideration. While this chapter focuses on physical

activity (PA) collected from wearable accelerometer devices, and associated longitudinal

outcomes, the proposed methodologies can be applied to alternative types of wearable devices

that collect high-frequency time-series data, such as continuous glucose monitoring (CGM)

devices, heart rate monitors, and toxicant sensors, among others.

4.1.1 Longitudinal Functional Data

In recent years, researchers have begun to consider the methodological challenges related to

longitudinal functional data. Overall, this area of study focuses on analyzing the patterns

and trends in the longitudinal data that are collected repeatedly over time, and can be

classified into a few general categories. Some of the longitudinal FDA techniques consider

Functional Principal Component Analysis (FCPA) and longitudinal FCPA, in which a major

goal is dimension reduction and identifying patterns that contribute to variation across curves

[Ramsay, 2004, 2005, Goldsmith et al., 2015, Yao et al., 2005, Nwanaji-Enwerem et al., 2021,

Lin et al., 2023, Chen and Müller, 2012]. Another focus of longitudinal FDA research is

Functional Data Clustering, which aims to identify groups or clusters of similar functional

curves [Heinzl and Tutz, 2014], while additional research considers Longitudinal Functional
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Regression, which extends the standard regression models to functional data [Reiss et al.,

2017]

In this chapter, we focus on the realm of Longitudinal Functional Regression. In gen-

eral, functional regression models can be classified into three types: (i) scalar-on-function

regression models, which include scalar responses and functional predictors, (ii) function-

on-scalar regression models, which consider functional responses and scalar predictors, and

(iii) function-on-function regression models, which assess the relationship between functional

responses and functional predictors [Ramsay, 2005, Reiss et al., 2017]. We consider the lon-

gitudinal extension of scalar-on-function models. This new setting extends from Chapter

3, in which we develop a longitudinal fusion method to assess population-average effects of

functional predictors on longitudinal continuous scalar outcomes. While other researchers

have studied longitudinal functional fusion methodologies, existing methods are not ap-

propriate to answer our scientific question. These existing methods encompass different

approaches: one subset of methods focus on the fusion of functional parameters in order to

predict categorical outcomes [Adhikari et al., 2019], while others employ fusion techniques

to estimate time-varying effects from non-repeated functional covariates [Yu and Zhong,

2021]. In contrast, our aim is to detect population-average critical activity-intensity win-

dows from repeated functional accelerometer data and their population-average association

with longitudinal outcomes of interest.

We propose a longitudinal fusion learning which extends the regularized MIO approach

from Chapter 3 to a longitudinal functional framework with repeated wearable data in order

to understand the influence of serially measured functional accelerometer data on longitudi-

nal health outcomes. This proposed longitudinal approach invokes the means of Quadratic

Inference Functions (QIF) [Song et al., 2009], with an aim to detect critical PA intensity

windows and assess their population-average effects on children health outcomes. Discussed

in detail in Section 4.3.1, QIF is a powerful tool in statistical modeling, particularly in

the context of estimating complex models with clustered or correlated data. Specifically,

it produces consistent estimators, and is robust to model mis-specfications, even producing

more efficient estimators than competing methods when the model is misspecified. I con-

sider a population-average effects model, and develop a regularized QIF via Mixed Integer

Optimization (MIO) to carry out longitudinal data analysis withing the FDA framework.

4.1.2 Motivating Longitudinal Cohort Data

The motivating longitudinal birth cohort, ELEMENT, was previously introduced in Section

2.2, with details on a single time point discussed. Now we introduce the longitudinal data
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of a second visit. These two time points of data collection are referred to as “T1” and

“T2” respectively, and discussed in detail in review paper [Perng et al., 2019]. Briefly, at T1

researchers collected actigraphy data from 539 children (258 boys and 281 girls) with mean

(SD) ages of 13.9 (2.2), ranging from 9 to 18 years old. This actigraphy data collection was

then repeated approximately two years from the same group of participants. The second

visit data was collected from 496 subject (230 boys, 266 girls), now with mean(sd) age of

16.42(2.11), ranging from 12.45 to 20.68. At both T1 and T2, the participants were directed

to wear a wrist-worn, tri-axial Actigraph GT3X+ (Actigraph LLC) for seven consecutive

days. The tri-axial high-frequency time-series data was processed and summarized from the

raw 30Hz data into epochs of various lengths (e.g. 30 sec, 1 min). In this chapter, we focus

on analyzing repeatedly measured Vector Magnitude activity counts over one-minute epochs.

In addition to PA, the ELEMENT cohort also collected extensive anthropometric mea-

surements to assess the subject’s health status. These measurements include Subscapular

Skin Thickness (SSST), a measure of truncal fat distribution that changes markedly in males

and females during puberty. This study focuses on longitudinal SSST as the health outcome

of interest, and investigates its population-average association with PA. We consider con-

founding covariates, including chronological age, sex, and adult-status based on completing

puberty as determined by a five-category ordinal variable of Tanner staging. Briefly, Tanner

stages reflect pubertal status and progression based observation of secondary sexual char-

acteristics, with Tanner stage 1 indicating pre-pubertal status, T2 pubertal onset and T5

post-puberty, e.g. adult status.

4.1.3 Longitudinal Occupation Time Curves

As in Chapters 2 and 3, we consider PA under the purview of Occupation Time Curves

(OTCs). Discussed in detail in Section 2.3, the OTC provides insights into the behavior

and characteristics of an individual’s PA profile. Here, we introduce a longitudinal aspect,

incorporating a second time point of PA as measured from accelerometers and summarized by

OTCs. Figure 4.1 illustrates the repeated OTCs from three individuals from our motivating

cohort data. This figure demonstrates that some subjects follow very similar PA patterns

at both Time point 1 and Time point 2 (Subjects A and B), whereas others demonstrate

a changing PA profile over time (Subject C). These repeated OTC measurements represent

functional covariates in the longitudinal scalar-on-function regression model.

This chapter is organized as follows: In Section 4.2 we introduce Longitudinal Functional

Data Analysis Models, with Section 4.3 focusing on Constrained Quasi-Estimation methods,

including the proposed MIO formulation of QIF. Relevant theoretical arguments are then
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Figure 4.1: OTCs for three individuals from the motivating ELEMENT cohort at both Time
point 1 (T1) and Time point 2 (T2), collected approximately two years apart. The OTC
curves from both T1 and T2 represent PA during the weekend between 4:00PM-10:00PM.
Subjects A and B demonstrate similar PA patterns across the two time points, whereas
Subject C demonstrates a changing PA profile from T1 to T2.
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introduced in Section 4.4. Section 4.5 discusses the numerical experiments demonstrating

the proposed longitudinal fusion-learning methodology, while Section 4.6 provides a data

analysis with our motivating cohort data, investigating the longitudinal population-average

association between functional OTCs and scalar SSST measures. We end in Section 4.7 with

a discussion on the merits, limitations, and potential extensions of this proposed model.

4.2 Longitudinal Functional Data Analysis Model

To assess the longitudinal functional association between functional PA and our health out-

comes of interest, we consider the marginal model for population-average effect. Of note,

while our study focuses on two repeated measurements at T1 and T2, this framework can

be extended to 𝑚 repeated measures.

4.2.1 Longitudinal Scalar-on-Function Model

In this longitudinal scalar-on-function model, we assume a longitudinal scalar outcome with a

mix of functional and non-functional predictors. More specifically, for an individual subject 𝑖,

we have an 𝑚-sized vector of scalar outcomes 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑚)⊤, with 𝑦𝑖𝑡 representing
the subject’s outcome at time 𝑡 for 𝑡 ∈ {1, 2, . . . , 𝑚}. Additionally, for subject 𝑖 we consider
a set of 𝑚 functional covariates. Here, the functional covariate of interest is the OTC as

defined in Section 2.3, denoted 𝑂𝑇𝐶(𝑐). Thus we invoke the longitudinal FDA model in

Equation (4.1).

𝑦𝑖𝑡 =

∫
𝒞
�(𝑐)𝑂𝑇𝐶(𝑐)𝑖𝑡𝑑𝑐 + 𝒛⊤𝑖𝑡𝜶 + 𝜖𝑖𝑡 for 𝑡 ∈ {1, 2, . . . , 𝑚} and 𝑖 ∈ {1, . . . , 𝑁}, (4.1)

where 𝑦𝑖𝑡 ∈ ℝ1×1 is the scalar outcome of interest; 𝑂𝑇𝐶(𝑐)𝑖𝑡 is the functional OTC variable

at time 𝑡 as defined above with functional parameter �(𝑐); 𝒛 𝑖𝑡 ∈ ℝ𝑞 with 𝒛⊤
𝑖𝑡
a 1 × 𝑞 row

vector represents the relevant scalar confounders at time 𝑡, with associated parameter vector

𝜶 ∈ ℝ𝑞. Here 𝑐 ∈ 𝒞 ∈ ℝ represents the domain of Vector Magnitude activity counts.

Note that in model (4.1) we assume the same population-average functional parameter �(𝑐)
associated with the repeated functional variable 𝑂𝑇𝐶(𝑐), as well as time-invariant confounder

parameter 𝜶 over time. The error terms, 𝜖𝑖𝑡 , 𝑡 ∈ 1, . . . , 𝑚, are assumed to be multivariate

normal with 𝝐𝑖 = (𝜖𝑖1, . . . , 𝜖𝑖𝑚)⊤ ∼ 𝑀𝑉𝑁(0, 𝜎2𝑅) where 𝑅 is an 𝑚 × 𝑚 correlation matrix.

As we aim to estimate PA intensity windows of interest with distinct changepoints, the

goal of the longitudinal scalar-on-function model as defined in (4.1) is to estimate functional
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parameter �(𝑐) as a step-function. In this way, we obtain non-overlapping activity windows,

each with a constant parameter of population-average association with the health outcome

of interest. To achieve this, we first discretize the functional term
∫
𝒞 �(𝑐)𝑂𝑇𝐶(𝑐)𝑖𝑡𝑑𝑐 into

𝐽-many equal-sized, successive, non-overlapping intervals at cut locations 𝑐1, · · · , 𝑐𝐽−1, where
𝑐0 = 0 and 𝑐𝐽 = 𝑚𝑎𝑥(𝑐) (here, 𝑚𝑎𝑥(𝑐) = 30, 000) where J is pre-fixed, such as J=300. Within

each small interval 𝑗 ∈ 𝐽, we assume the associated function �𝑗(𝑐) takes a constant value

�𝑗. That is, we reach the following approximation of the functional parameter leading to

Equation (4.2):

𝑦𝑖𝑡 =

𝐽∑
𝑗=1

∫ 𝑐 𝑗

𝑐 𝑗−1

�(𝑐)𝑂𝑇𝐶(𝑐)𝑖𝑡𝑑𝑐 + 𝒛⊤𝑖𝑡𝜶 + 𝜖𝑖𝑡

≈
𝐽∑
𝑗=1

�𝑗

∫ 𝑐 𝑗

𝑐 𝑗−1

𝑂𝑇𝐶(𝑐)𝑖𝑡𝑑𝑐 + 𝒛⊤𝑖𝑡𝜶 + 𝜖𝑖𝑡

:=

𝐽∑
𝑗=1

�𝑗𝐴𝑖𝑡 𝑗 + 𝒛⊤𝑖𝑡𝜶 + 𝜖𝑖𝑡

, (4.2)

where 𝑂𝑇𝐶(𝑐)𝑖𝑡 , 𝒛, 𝜶 are defined as above and 𝐴𝑖𝑡 𝑗 denotes the AUC over interval (𝑐 𝑗−1, 𝑐 𝑗]
or 𝐴𝑖𝑡 𝑗 =

∫ 𝑐 𝑗

𝑐 𝑗−1
𝑂𝑇𝐶(𝑐)𝑖𝑡 𝑑𝑐, for individual 𝑖 at time 𝑡. Notably, the mean model in Equation

(4.2) takes the form:

�𝑖𝑡 =
𝐽∑
𝑗=1

�𝑗𝐴𝑖𝑡 𝑗 + 𝒛⊤𝑖𝑡𝜶

:=
(
�𝑖1, . . . , �𝑖𝑚

)⊤
.

(4.3)

With the parameters 𝜽 = (�1, · · · , �𝐽)⊤ ∈ ℝ𝐽 and 𝜶 = (𝛼1, · · · , 𝛼𝑞)⊤ ∈ ℝ𝑞, we define the set

of association parameters as 𝜼 = (𝜽⊤, 𝜶⊤)⊤ ∈ ℝ𝐽+𝑞.

In the spirit of distinct activity window detection, our analytic aim in this functional

longitudinal regression is to fuse similar adjacent parameter �𝑗’s together in order to estimate

a 𝐾-group sized step function with group-level parameters 𝛽𝑘 for 𝑘 = 1, · · · , 𝐾. Here, 𝛽𝑘 is the
association parameter related to the AUC of the 𝑘𝑡ℎ activity window over interval (𝑐𝑘−1, 𝑐𝑘].
This results in a final estimate model: 𝑦𝑖𝑡 ∼

∑𝐾
𝑘=1 𝛽𝑘𝐴𝑖𝑡𝑘+𝒛⊤

𝑖𝑡
𝜶, with 𝐴𝑖𝑡𝑘 denoting the AUC

over interval (𝑐𝑘−1, 𝑐𝑘] or 𝐴𝑖𝑡𝑘 =
∫ 𝑐𝑘

𝑐𝑘−1
𝑂𝑇𝐶𝑖𝑡(𝑐)𝑑𝑐 for individual 𝑖 at time 𝑡, with 𝑖 and 𝑡 as

defined above. Note that (𝑐𝑘−1, 𝑐𝑘] is resulting from merging many (𝑐 𝑗−1, 𝑐 𝑗] intervals by the

fusion technique based on MIO.
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4.3 Constrained Quasi-Estimation

We invoke the means of QIF [Song et al., 2009] with proper fusion constraints to estimate

model parameters in that we treat the serial correlation as nuisance and thus do not estimate

it. The competing population-average effect longitudinal methodology of Generalized Esti-

mating Equations (GEE) does require the estimation of this serial correlation, and is thus

not the appropriate quasi-estimation model in our setting. The constrained QIF enables us

to establish our Supervised Fusion Learning (SFL) that is deemed statistically consistent

and computationally efficient.

4.3.1 Quadratic Inference Function (QIF)

Quasi-likelihood models are often used to estimate the marginal population-average effect in

longitudinal models, including GEE [Zeger et al., 1988] and QIF [Song et al., 2009]. While

both GEE and QIF can be leveraged to provide estimation and inference in longitudinal

models, QIF has several advantages in comparison to GEE. First, QIF estimators are more

efficient than GEE estimators when the working correlation structure is unknown or mis-

specfied. The QIF framework also provides a goodness-of-fit BIC-type measurement for the

mean-model specification, which is particularly necessary when comparing models with dif-

ferent number of 𝐾 activity windows. Additionally, only the QIF framework, and not the

GEE framework, incorporates the minimization of a quadratic objection function, which is

integral to the Mixed Integer Optimization (MIO) formulation (discussed further in Section

4.3.2). Furthermore, QIF does not need to estimate the correlation 𝑅 matrix in Equation

(4.1) explicitly.

The QIF model has been previously described in detail [Song et al., 2009]. Briefly, the

methodology is based on minimizing the QIF objective function, analogous to twice the

log-likelihood, defined by:

𝑄𝑛(�) = 𝑛�̄�𝑛(�)⊤�̄�−1
𝑛 (�)�̄�𝑛(�) (4.4)

,

where

�̄�𝑛(�) =
1

𝑛

𝑛∑
𝑖=1

𝑔𝑖(�) ≈
1

𝑛

©«

∑𝑛
𝑖=1( ¤�𝑖)⊤𝑉𝑖(𝑦𝑖 − �𝑖)∑𝑛

𝑖=1( ¤�𝑖)⊤𝑉
1
2

𝑖
𝑀1𝑉

1
2

𝑖
(𝑦𝑖 − �𝑖)

...∑𝑛
𝑖=1( ¤�𝑖)⊤𝑉

1
2

𝑖
𝑀𝐵𝑉

1
2

𝑖
(𝑦𝑖 − �𝑖)

ª®®®®®®¬
(4.5)

.
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The QIF estimator 𝑄𝑛(�) = 𝑎𝑟𝑔𝑚𝑖𝑛
�

𝑄𝑛(�). Here, ( ¤�𝑖) =
𝜕�𝑖
𝜕� , where �𝑖 = (�𝑖1, . . . , �𝑖𝑚)

represents the marginal mean function of Equation (4.3), and 𝑀1, · · · , 𝑀𝐵 are known basis

matrices with 0 or 1 as the components, while 𝑉𝑖 is the diagonal matrix of the marginal

variances, 𝑣𝑎𝑟(𝑦𝑖𝑡), which equals to 𝜎2 in the case of normal errors. Additionally, �̄�−1
𝑛 (�) =

1
𝑛

∑𝑛
𝑖=1 𝑔𝑖(�)𝑔⊤𝑖 (�), the sample covariance matrix of 𝑔𝑖(�)′𝑠. Note that the nuisance parameter

𝑅 is not present in the quadratic objective function (4.4).

In the scenario of two time points, 𝑡 ∈ {1, 2}, under the assumption of compound sym-

metry, we have 𝑀𝑏 ∈ {𝑀0, 𝑀1} with 𝑀0 = 𝐼2×2 and 𝑀1 =

(
0 1

1 0

)
. Under the additional

assumption of constant variance 𝜎2 in normal distribution, 𝜎2 does not affect the minimiza-

tion of 𝑄𝑛(�) in Equation (4.4), so we can set 𝑉𝑖 = 𝐼(2×2). Moreover, we have the following

extended score vector:

𝑔𝑖(�) =
(
( ¤�𝑖)⊤𝑀0(𝑦𝑖 − �𝑖)
( ¤�𝑖)⊤𝑀1(𝑦𝑖 − �𝑖)

)
=

©«
( ¤�𝑖)⊤

(
1 0

0 1

)
(𝑦𝑖 − �𝑖)

( ¤�𝑖)⊤
(
0 1

1 0

)
(𝑦𝑖 − �𝑖)

ª®®®®®¬
, (4.6)

where (𝑦𝑖 −�𝑖) =
(
𝑦𝑖1 − �𝑖1
𝑦𝑖2 − �𝑖2

)
and ( ¤�𝑖) = 𝜕�𝑖

𝜕𝜼 =

( 𝜕�𝑖1
𝜕𝜼
𝜕�𝑖2
𝜕𝜼

)
. Specifically, the longitudinal marginal

mean function �𝑖𝑡 from Equation (4.3) takes the form:

�𝑖𝑡 =
𝐽∑
𝑗=1

�𝑗𝐴𝑖𝑡 𝑗 + 𝒛⊤𝑖𝑡𝜶 =

[
𝐴𝑖𝑡1 𝐴𝑖𝑡2 · · · 𝐴𝑖𝑡𝐽 𝑧𝑖𝑡1 · · · 𝑧𝑖𝑡𝑞

]


�1

�2
...

�𝐽
𝛼1
...

𝛼𝑞


=

(
𝑨⊤
𝑖𝑡 , 𝒛

⊤
𝑖𝑡

) (
𝜽

𝜶

)
:= 𝒙⊤𝑖𝑡𝜼, with 𝒙 𝑖𝑡 ∈ ℝ𝐽+𝑞 , 𝜼 ∈ ℝ𝐽+𝑞 .

Thus,
𝜕�𝑖𝑡
𝜕𝜼 = 𝒙⊤

𝑖𝑡
, a (𝐽 + 𝑞)-dimensional vector.
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With 𝑚 = 2, we have:

�𝑖 =

(
�𝑖1
�𝑖2

)
=

(
𝒙⊤
𝑖1
𝜼

𝒙⊤
𝑖2
𝜼

)
=

(
𝒙⊤
𝑖1

𝒙⊤
𝑖2

)
𝜼 := 𝑿⊤

𝑖 𝜼,

where 𝑿⊤
𝑖
has dimension 2×(𝐽+𝑞) and ¤�𝑖 = 𝜕�𝑖

𝜕𝜼 = 𝑿⊤
𝑖
, which is a 2×(𝐽+𝑞) dimensional matrix.

Thus, the extended score vector of the QIF objective function (4.4) can be represented as

the 2(𝐽 + 𝑞) × 1 vector:

�̄�𝑛(𝜼) =
1

𝑛

𝑛∑
𝑖=1

𝑔𝑖(𝜼)

=
1

𝑛

©«
∑𝑛
𝑖=1(𝑿 𝑖)

(
𝑦𝑖1 − �𝑖1
𝑦𝑖2 − �𝑖2

)
∑𝑛
𝑖=1(𝑿 𝑖)

(
𝑦𝑖2 − �𝑖2
𝑦𝑖1 − �𝑖1

)ª®®®®®¬.
(4.7)

4.3.2 Mixed Integer Optimization Formulation (MIO) for QIF

Here we propose an adaptation of the Bertismas MIO framework [Bertsimas et al., 2016] for a

fusion-adapted longitudinal 𝐿0 constraint formulation. This aim of this proposed framework

is to conduct concurrent parameter fusion and changepoint detection to analyze the mean

model (4.3). The number of groupings is controlled by fixing the number of desired clusters

𝐾, which is tuned by a BIC-type goodness-of-fit measures for QIF models. As an important

element of the MIO constraints, we first consider the window labeling variables 𝜻, which

identify group (or window) membership in each activity window such that:

𝜻𝑘 = (�1𝑘 , �
2
𝑘 , · · · , �

𝐽

𝑘
)⊤ ∈ {0, 1}𝐽×1, 𝑘 = 1, · · · , 𝐾, (4.8)

where �
𝑗

𝑘
= 1 corresponds to the case of 𝛽 𝑗 belonging in activity window 𝑘. Given cutoffs or

edges of windows, 𝑐1, . . . , 𝑐𝐾 with 𝑐𝐾 = 𝐽, such binary group labels take values:

�
𝑗

1 =


1, 𝑗 = 1, · · · , 𝑐1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, �
𝑗

𝑘
=


1, 𝑗 = 𝑐𝑘−1, · · · , 𝑐𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, · · · , � 𝑗
𝐾
=


1, 𝑗 = 𝑐𝐾−1 + 1, · · · , 𝐽
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

(4.9)

For a 𝐾-group model, a fusion-adapted 𝐿0 constrained optimization with 𝐽 original inter-

vals and 𝑞 covariates is represented as:
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min
𝜼,𝜻,𝜷,𝒄

𝑄𝑛(𝜼) = 𝑛�̄�𝑛(𝜼)⊤�̄�−1
𝑛 (𝜼)�̄�𝑛(𝜼)

subject to 𝜼 =

(
𝜽

𝜶

)
;

c = (𝑐1, · · · , 𝑐𝐾−1) ∈ ℕ1×(𝐾−1)

𝑐1 ≥ 1, 𝑐𝑘 ≥ 𝑐𝑘−1 + 1, 𝑐𝐾−1 ≤ 𝐽 − 1, 𝑘 = 1, · · ·𝐾 − 1;

𝜻 = (�𝑘𝑗 )𝐽×𝐾 ∈ ℝ𝐾×𝐽

�𝑗 − 𝛽1 = 0, 𝑗 = 1, · · · , 𝑐1;
�𝑗 − 𝛽2 = 0, 𝑗 = 𝑐1 + 1, · · · , 𝑐2;
...

�𝑗 − 𝛽𝐾 = 0, 𝑗 = 𝑐𝐾−1 + 1, · · · , 𝐽

(4.10)

where 𝜽 = (�1, · · · , �𝐽)⊤ ∈ ℝ𝐽×1, 𝜶 = (𝛼1, · · · , 𝛼𝑞)⊤ ∈ ℝ𝑞×1, and �̄�𝑛(𝜼) is as defined in

Equation (4.7). The above optimization is operated via augmented parameters where labels

𝜻 and cutpoints 𝒄 = (𝑐1, . . . , 𝑐𝐾−1)⊤ do not exist in the original model (4.2) but are added

for parameter fusion. Obviously, group labels 𝜻 and cutpoints 𝒄 are determined in a one-to-

one correspondence fashion, which will be enforced via adequate constraints given below in

(4.11).

4.3.3 Implementation of MIO QIF model

This MIO model can be solved via numerical software such as GUROBI under a system

of constraints. These constraints are set to minimize the objective function by optimizing

cutpoints 𝑐1, · · · , 𝑐𝐾−1 and thus the cluster labels represented by the label variable �𝑘 , , 𝑘 =

1, · · · , 𝐾 defined in (4.8) and (4.9). This set of linear constraints for the 𝐾-group model is

specified as follows:
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�
𝑗

𝑘
(�𝑗 − 𝛽𝑘) = 0, 𝑗 = 1, · · · , 𝐽 , 𝑘 = 1, · · · , 𝐾 (SOS-1 constraints);

𝐾∑
𝑘=1

�
𝑗

𝑘
= 1, 𝑗 = 1, · · · , 𝐽;

𝑐0 = 0, 𝑐1 ≥ 1; 𝑐𝑘 ≥ 𝑐𝑘−1 + 1; and 𝑐𝐾−1 ≤ 𝐽 − 1, for 𝑘 = 2, · · · , 𝐾 − 1;

𝑐𝑘 − 𝑗

𝐽
≤ 1 − �

𝑗

𝑘+1, 𝑗 = 1, · · · , 𝐽 , for 𝑘 = 0, · · · , 𝐾 − 1;

𝑐𝑘+1 − 𝑗

𝐽
×
(𝑗 − 𝑐𝑘)

𝐽
≤ �𝑘+1, 𝑗 = 1, · · · , 𝐽 , for 𝑘 = 0, · · · , 𝐾 − 1;

𝑗 − 𝑐𝑘+1 + 1

𝐽
≤ 1 − �𝑘+1, 𝑗 = 1, · · · , 𝐽 , for 𝑘 = 0, · · · , 𝐾 − 1.

(4.11)

These constraints determine the locality of changepoints and grouping in the QIF-fusion-

adapted MIO formulation of a K-group model. In this chapter, the constraints are imple-

mented in the GUROBI numerical solver package in Python. A recent paper [Wang et al.,

2022] showed that the MIO GUROBI optimization solvers provide the global optimal solu-

tions for a similar homogeneity fusion problem.

The calculation of the inverse of weighting matrix �̄�𝑛(𝜼), the sample covariance matrix

of matrix 𝑔𝑖(𝜼), is an important step in the QIF formulation. Here, we will estimate the

sample covariance matrix based on initial estimates of 𝜼, or 𝜼(0), as estimated from a QIF

formulation under working independence correlation, namely the Identity Matrix �̄�
(0)
𝑛 =

𝐼. Then, we estimate: �̄𝐶𝑛(𝜼(0)) =
�𝑉𝑎𝑟(𝑔𝑖(𝜼(0)) = 1

𝑛

∑𝑛
𝑖=1 𝑔𝑖(𝜼(0))𝑔𝑖(𝜼(0))⊤, a matrix with

dimension 2(𝐽 + 𝑞) × 2(𝐽 + 𝑞). It is important to note that the initial estimator 𝜼(0) is

consistent and QIF does not require a correctly specified sample covariance matrix, though

a more appropriate covariance estimate results in increased efficiency of QIF estimation.

That is, an incorrectly specified covariance matrix does not affect estimation consistency,

though does affect estimation efficiency.

Lastly, to ensure the appropriate format for the GUROBI minimization software, which

requires the minimization of a quadratic objective function, we translate the QIF problem

below into a quadratic form via the means of Single Value Decomposition (SVD). That is,

we have the QIF objective function of the form:

𝑄𝑛(𝜼) = 𝑛�̄�𝑛(𝜼)⊤�̄�−1
𝑛 (𝜼)�̄�𝑛(𝜼)

= 𝑛

©«
1
𝑛

©«
∑𝑛
𝑖=1(𝑿 𝑖)

(
𝑦𝑖1 − �𝑖1
𝑦𝑖2 − �𝑖2

)
∑𝑛
𝑖=1(𝑿 𝑖)

(
𝑦𝑖2 − �𝑖2
𝑦𝑖1 − �𝑖1

)ª®®®®®¬
ª®®®®®¬

⊤

𝑉𝑎𝑟−1(𝑔𝑖(𝜼(0))
©«
1
𝑛

©«
∑𝑛
𝑖=1(𝑿 𝑖)

(
𝑦𝑖1 − �𝑖1
𝑦𝑖2 − �𝑖2

)
∑𝑛
𝑖=1(𝑿 𝑖)

(
𝑦𝑖2 − �𝑖2
𝑦𝑖1 − �𝑖1

)ª®®®®®¬
ª®®®®®¬.

(4.12)
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.

By SVD we have �̄�(𝜼(0))) = 𝑷Λ𝑷⊤, where 𝑷 is a square orthogonal matrix of dimen-

sion 2(𝐽 + 𝑞) × 2(𝐽 + 𝑞), with 𝑃⊤𝑃 = 𝐼 and Λ = 𝑑𝑖𝑎𝑔(�1, . . . ,�2(𝐽+𝑞)). Thus we have

�̄�−1(𝜼(0))) = 𝑷⊤Λ−1𝑷. Consequently, we re-express QIF objective function (4.12) as the

following quadratic form:

𝑄𝑛(𝜼) = 𝑛𝑔𝑛(𝜼)⊤𝑷⊤Λ−1𝑷𝑔𝑛(𝜼)
= 𝑛{𝑷𝑔𝑛(𝜼)}⊤Λ−1{𝑷𝑔𝑛(𝜼)}

= 𝑛

2(𝐽+𝑞)∑
𝑙=1

�−1
𝑙 (𝑷𝑔𝑛(𝜼))2𝑙

(4.13)

where 𝑷𝑔𝑛(𝜼))𝑙 is the 𝑙𝑡ℎ element of the vector (𝑷𝑔𝑛(𝜼)) for 𝑙 = 1, · · · , 2(𝐽 + 𝑞).
In the simplest case with �̄�(𝜼(0))) = 𝐼2(𝐽+𝑞)×2(𝐽+𝑞), we have 𝑄𝑛(𝜼) = 𝑛

∑2(𝐽+𝑞)
𝑙=1

(𝑔𝑛(𝜼))2𝑙 . This
simplified version is leveraged to obtain initial consistent estimates 𝜼(0), thus generating an

estimate of the weighting matrix 𝑉𝑎𝑟−1(𝑔𝑖(𝜼(0)). Of interest, this simplified version can be

re-written using only summary statistics. That is, the expression
∑𝑛
𝑖=1(𝑿 𝑖)

(
𝑦𝑖1 − �𝑖1
𝑦𝑖2 − �𝑖2

)
can

be re-expressed in matrix form as:

𝑿 (𝒀 − �) = 𝑿 (𝒀 − 𝑿⊤𝜼) = 𝑿𝒀 − 𝑿⊤𝑿𝜼. (4.14)

Importantly, both the terms 𝑿𝒀 and 𝑿⊤𝑿 in Equation (4.14) only require summary statistics

from the sample data. Thus, the initial parameter matrix 𝜼(0) can be estimated without

individual level data.

The fusion-adapted 𝐿0 QIF model with associated constraints is utilized to finalize the

the changepoints 𝑐1, · · · , 𝑐𝐾. With these changepoint estimates 𝑐1, · · · , 𝑐𝐾, we further fit

the QIF model 𝑦𝑖𝑡 ∼
∑𝐾
𝑘=1 𝛽𝑘𝐴𝑖𝑡𝑘 + 𝒛⊤

𝑖𝑡
𝜶 using the R Package “qif” [Song et al., 2009] to

determine the final parameter estimations and conduct inference. It is important to note

that the weighting matrix 𝑉𝑎𝑟−1(𝑔𝑖(𝜼(0)) needs to be positive definite in order for optimal

QIF model fit. However, in some cases, such as in the case of compound symmetry or

AR-1 correlation structure, the estimate weighting matrix 𝑉𝑎𝑟−1(𝑔𝑖(𝜼(0)) may be singular.

Thus, strategies as proposed by Hu [Hu and Song, 2012] and Han [Han and Song, 2011] may

be employed to overcome this non-invertible nature in the estimation process and provide

a consistent and asymptotically optimal solution. With an appropriate weighting matrix

employed, the QIF package provides inference measurements for both individual parameters

of interest as well as overall model goodness-of-fit, the latter of which the competing method

of GEE does not provide. Thus, we are able to both determine the model’s compatibility
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with data, and conduct inference on the association of specified PA windows on the health

outcome of interest.

4.4 Theoretical Guarantees

Here we discuss the selection consistency of the MIO estimator of parameter 𝜽 =

(�1, . . . , �𝐽)𝑇 obtained by the constrained QIF optimization given in Equations (4.10) and

(4.11) under some mild regularity conditions. This paves the theoretical basis for large-

sample statistical inference. We follow a similar approach as in Chapter 3 with a few impor-

tant updates to account for the serial dependence in the repeated measurement data. The

theoretical guarantees are again based on arguments given in [Wang et al., 2022].

To present the sufficient conditions for selection consistency, we first introduce the oracle

estimators that represent the parameter estimates under the true number of clusters 𝐾∗ and

cutpoints 𝑐∗ = (𝑐∗1, · · · , 𝑐∗𝐾). We denote the oracle estimates of 𝜷 and 𝜶 as �̂�
𝑜𝑙

and �̂�𝑜𝑙

respectively, which are obtained through the minimizing of the quadratic inference function:

�̂�𝑜𝑙 = (�̂�𝑜𝑙 , �̂�𝑜𝑙) := argmin
𝜷,𝜶

𝑄𝑛(𝜼) = 𝑛�̄�𝑛(𝜼)⊤�̄�−1
𝑛 (𝜼)�̄�𝑛(𝜼),

where 𝜼 = (𝜽⊤, 𝜶⊤)⊤ ∈ ℝ𝐽+𝑞 as defined in Section 4.3.

When these cutpoints are unknown, we propose to use the QIF fusion-adapted MIO

approach to obtain consistent estimators of both the model parameters and cutoff values. In

order to achieve this, we aim to minimize our constrained objective function in Equations

(4.10) and (4.11) in order to estimate cutpoints 𝒄, thereby reducing the 𝐽 individual-level

parameters �𝑗’s into 𝐾 group-level parameters 𝛽𝑘 ’s via suitable constraints. Using a similar

theoretical argument as in Chapter 3, we again adopt a measure of Mean Squared Error

(MSE) sensitivity deemed 𝑐𝑚𝑖𝑛 to quantify the sensitivity of the model to the precision

of clustering, thereby quantifying the minimum increase of MSE due to an inaccurately-

determined set of cutpoints 𝒄. That is, we define:

𝑐𝑚𝑖𝑛 ≡ 𝑐𝑚𝑖𝑛(𝝃∗,𝑨, 𝒛) = min
𝝃

∥𝑨(𝜽 − 𝜷∗) + 𝒛(𝜶 − 𝜶∗)∥22
𝑛 max(𝑑(𝜽, 𝜷∗), 1) ,

subject to Equations (4.10) and (4.11).

(4.15)

with the true values 𝝃∗ = (𝜷∗⊤, 𝜶∗⊤, 𝒄∗)⊤ ∈ ℝ2𝐾−1+𝑞, estimate 𝝃 = (𝜽⊤, 𝜶⊤, 𝒄)⊤ ∈ ℝ𝐽+𝐾+𝑞−1,

and 𝑑(𝜽, 𝜷∗) represents a grouping incongruity measure reflecting the accuracy of the cutpoint

estimation. See more details in [Wang et al., 2022]. In the repeated measures framework
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with data collected at 𝑚 time-points, we extend an 𝑛-dimensional vector of 𝑖.𝑖.𝑑. univariate

normal error terms as in Chapter 3 to an 𝑛 𝑖.𝑖.𝑑. 𝑚-element normally distributed random

vectors with zero mean vector and covariance matrix Σ = 𝜎2𝑅 with 𝑅 ∈ ℝ𝑚×𝑚 being a

correlation matrix and variance 𝜎2 < ∞. Here we assume a well-defined covariance matrix

Σ whose minimal and maximal eigenvalues satisfy 0 < �𝑚𝑖𝑛(𝑅) ≤ �𝑚𝑎𝑥(𝑅) < ∞.

Similar to Chapter 3, we present the selection consistency by first defining a QIF MIO

estimator �̂�𝑴𝑰𝑶 = (�̂�𝑀𝐼𝑂⊤
, �̂�𝑀𝐼𝑂⊤)⊤ of 𝝃∗ with true number of windows 𝐾∗ and associated

estimated cutpoints �̂�𝑀𝐼𝑂 of 𝒄∗. We also define a loss function 𝐿(�̂�𝑴𝑰𝑶 ; 𝝃∗) as the grouping

risk associated with inaccurate grouping and estimates of 𝒄∗ as 𝐿(�̂�𝑴𝑰𝑶 ; 𝝃∗) ≡ ℙ(�̂�𝑴𝑰𝑶 ≠ 𝝃∗).
Under the conditions for covariance matrix Σ with bounded eigenvalues, when 𝐾 = 𝐾∗ < ∞
and for any 𝐽, we can establish a finite sample error bound given by:

𝐿(�̂�𝑴𝑰𝑶 ; 𝝃∗) ≤ (4𝑚) 𝑒𝑥𝑝
[
− 3𝑁

200𝜎2

{
𝑐𝑚𝑖𝑛 −

𝜎2

𝑁
(134 log(𝐽𝐾∗) + 220)

} ]
. (4.16)

This bound in (4.16) implies that when 𝑐𝑚𝑖𝑛 > 𝜎2

𝑁 (134 log(𝐽𝐾∗) + 220), �̂�𝑴𝑰𝑶 consistently

reconstructs 𝝃∗ because 𝑁, 𝐽 → ∞, ℙ(�̂�𝑴𝑰𝑶 ≠ 𝝃∗) → 0. Thus for any finite fixed 𝐽, or

for 𝐽 → ∞, �̂�𝑴𝑰𝑶 consistently reconstructs 𝝃∗ as 𝑁 → ∞. Note that in the former case

of fixed 𝐽, the above condition for 𝑐𝑚𝑖𝑛 holds automatically as 𝑁 → ∞, and thus the

selection consistency can be yielded under very mild conditions. The proof of this sufficient

condition result can be carried out by following the lines of arguments given in the proof

of Theorem 3.4 in [Wang et al., 2022], with some minor adaptations to accommodate the

repeated measurements using Bonferroni inequity. These adaptations are described below.

Proof Adaptations: Let 𝜼 ∈ 𝚯(𝑘) denote the set of all 𝑘-group models. For any MIO estimate

grouping 𝔾(𝜽) such that 𝜼 = (𝜽⊤, 𝜶⊤)⊤ ∈ Θ(𝐾∗), define 𝑷𝔾(�) as the projection matrix

onto the column space of (𝑨, 𝒛). The error matrix is assumed to be 𝑛 × 𝑚 with row-wise

independence. Let 𝜖𝑡 denote the 𝑛-dimensional vector of 𝑖.𝑖.𝑑. cross-sectional normal error

terms at time 𝑡. For any 𝜼 satisfying 𝚯 ∈ (𝐾∗) and 𝔾(𝜽) ≠ 𝔾(𝜽∗), we have by Bonferroni

inequality:
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ℙ

(
𝑚𝑖𝑛

�̃�∈Θ(𝐾∗),𝔾(�̃�)=𝔾(𝜽)
∥𝒀 − (𝑨, 𝒛)�̃�∥22 < ∥𝒀 − (𝑨, 𝒛) ˆ𝜼𝒐𝒍 ∥22

)
=ℙ

(
2

𝑚∑
𝑡=1

𝜖⊤𝑡 (𝑰 − 𝑷𝔾(�)(𝑨, 𝒛)𝜽∗ + ∥(𝑰 − 𝑷𝔾(�)(𝑨, 𝒛)𝜽∗∥22 −
𝑚∑
𝑡=1

𝜖⊤𝑡 (𝑷𝔾(�) − 𝑷𝔾(�∗))𝜖𝑡 < 0
)

≤
𝑚∑
𝑡=1

ℙ

(
2𝜖⊤𝑡 (𝑰 − 𝑷𝔾(�)(𝑨, 𝒛)𝜽∗ + 1

𝑚
∥(𝑰 − 𝑷𝔾(�)(𝑨, 𝒛)𝜽∗∥22 − 𝜖⊤𝑡 (𝑷𝔾(�) − 𝑷𝔾(�∗))𝜖𝑡 < 0

)
:=

𝑚∑
𝑡=1

𝑃𝑡

(P.1)

For each 𝑡 ∈ {1, . . . , 𝑚}, we evaluate each 𝑃𝑡 term. For any 0 < 𝛿𝑡 < 1, we have:

𝑃𝑡 in Equation (P.1) ≤ℙ
(
2𝜖⊤𝑡 (𝑰 − 𝑷𝔾(�)(𝑨, 𝒛)𝜽∗ + 𝛿𝑡

𝑚
∥(𝑰 − 𝑷𝔾(�)(𝑨, 𝒛)𝜽∗∥22 < 0

)
+

ℙ

(
(1 − 𝛿𝑡

𝑚
)∥(𝑰 − 𝑷𝔾(�)(𝑨, 𝒛)𝜽∗∥22 − 𝜖⊤𝑡 (𝑷𝔾(�) − 𝑷𝔾(�∗))𝜖𝑡 < 0

) (P.2)

From the point of (P.2), and by setting suitable 𝛿𝑡 , the proof of this sufficient condition

result can be carried out by following the lines of arguments given in the proof of Theorem

3.4 in [Wang et al., 2022] and thus is omitted here.

4.5 Simulation Experiments

Simulation experiments demonstrate robust, reliable performance of the proposed fusion-

adapted QIF MIO paradigm. In this section we discuss the setup of the conducted numerical

experiments, report on their results, and discuss the computational requirements of this

constrained QIF methodology.

4.5.1 Simulation Setup

4.5.1.1 OTC Data Generation

In order to conduct numerical experiments on our proposed longitudinal QIF MIO func-

tional framework with OTCs, we first simulated repeated accelerometer measures. More

specifically, we simulated 6-hour time-series of VM counts for 500 individuals, each at two

different time points. To achieve this, we created permuted accelerometer time-series data

using the subjects from the ELEMENT dataset, with the simulated data for the first time
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point created from permutations of the ELEMENT Time 1 data (539 subjects), and the

simulated data for second time point created from permutations of the ELEMENT Time 2

data (496 subjects). For each of the 𝑡 = 1, 2 time points, we first divided the time stamped

accelerometer data into non-overlapping 10-minute segments before randomly drawing each

10-minute interval from the pool of candidate segments.

In order to ensure the variability of the simulated datasets reflected the variability of our

motivating ELEMENT dataset, we permuted the time-series VM counts for low, medium,

and high levels of PA. That is, at each T1 and T2 separately, we first classified the subjects

into three groups with low, medium, and high levels of PA respectively, as defined by tertiles

of “Moderate-to-Vigorous” VM counts using the pre-set Chandler cutoffs [Chandler et al.,

2016] before simulating the time-series data within each tertile.

Lastly, with the simulated VM counts for 500 subjects at two different time points, OTC

curves were calculated as described in Section 2.3. For each of the OTCs, we calculated

the 𝐽 = 300 successive integrals (i.e. AUCs) over domain 𝒞 = (0, 30000), with each interval

covering 100 VM counts: (𝑐0 = 0, 𝑐1 = 100, · · · , 𝑐𝐽 = 30000). In this chapter, we will refer to

the 𝑉𝑀/100 values, i.e. 𝒄 = (0/100, · · · , 30000/100)⊤ or 𝒄 = (0, · · · , 300)⊤.

4.5.1.2 Longitudinal Model Generation

In the simulation experiments, we assessed the proposed fusion-adapted 𝐿0 approach’s ability

to detect the true cutoffs and parameter estimates within a QIF framework. We first specified

the true number of 𝐾∗ = 3 groups and corresponding true cutoffs (𝑐∗1, 𝑐∗2, 𝑐∗3) in addition to

𝑐∗0 = 0, and calculated the vector of AUCs, (𝐴∗
𝑖𝑡1
, 𝐴∗

𝑖𝑡2
𝐴∗
𝑖𝑡3
)⊤ for each individual 𝑖 with

𝐴∗
𝑖𝑡𝑘

=
∫ 𝑐𝑘

𝑐𝑘−1
𝑂𝑇𝐶𝑖𝑡(𝑐)𝑑𝑐 at both time points 𝑡 ∈ {1, 2} and scaled the variables to normal

distribution of mean 0 and variance 1. Finally, we generated longitudinal outcome 𝑌𝑖𝑡 from

the zero-intercept longitudinal linear model 𝑌𝑖𝑡 =
∑3
𝑘=1 𝐴

∗
𝑖𝑡𝑘
𝛽∗
𝑘
+ 𝑧𝑖𝑡𝛼∗ + 𝜖𝑖𝑡 , with true effect

sizes (𝛽∗1, 𝛽∗2, 𝛽∗3) and 𝛼∗ as well as a single continuous covariate 𝑧𝑖𝑡
𝑖𝑖𝑑∼ 𝑁(0, 1). To simulate

the correlated error terms in the longitudinal framework, 𝜖𝑖𝑡 were simulated from a bivariate

normal distribution with 𝝐𝑖 =

(
𝜖𝑖1
𝜖𝑖2

)
∼ BivariateNormal

((
0

0

)
, 𝜎2

(
1 𝜌

𝜌 1

))
, with 𝜎 = 10 and

varying 𝜌.

To conduct this assessment under a variety of scenarios, we specified various 3-group mod-

els (𝐾∗ = 3) under a combination of different VM count changepoints (𝑐∗1, 𝑐∗2, 𝑐∗3), to achieve

different window sizes, as well as various effect sizes (𝛽∗1, 𝛽∗2, 𝛽∗3). Specifically, we specified

three scenarios: (A) VM count changepoints (𝑐∗1, 𝑐∗2, 𝑐∗3) = (40, 80, 300) with activity window

parameters (𝛽∗1, 𝛽∗2, 𝛽∗3) = (4, 0,−4), (B) VM count changepoints (𝑐∗1, 𝑐∗2, 𝑐∗3) = (40, 80, 300)
with activity window parameters (𝛽∗1, 𝛽∗2, 𝛽∗3) = (1, 0,−1), and (C) VM count changepoints
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(𝑐∗1, 𝑐∗2, 𝑐∗3) = (40, 120, 300) with activity window parameters (𝛽∗1, 𝛽∗2, 𝛽∗3) = (4, 0,−2). Addi-

tionally, these three scenarios were assessed under different assumptions of correlated longi-

tudinal error terms, with 𝜌 ∈ {0.2, 0.5}.

4.5.2 Simulation Implementation

With the generated data, the simulation experiments were implemented in a 2-step pro-

cess. In Step 1, we apply the MIO-adapted QIF formulation using GUROBI to achieve

estimation of cutpoints 𝑐∗1, 𝑐
∗
2, 𝑐

∗
3 with initial point-estimates of the parameters. This process

involves both an “Initial MIO Estimate” and a “Final MIO Estimate”. The “Initial MIO

Estimate” assumes identity weighting matrix for �̄�𝑛(𝜼) = 𝐼 and garners initial cutpoint esti-

mates (𝑐(0)1 , 𝑐
(0)
2 , 𝑐

(0)
3 ) and consistent parameter estimates 𝜼(0) leading to the estimated sample

variance matrix �̄�(𝜼(0)). The “Final MIO Estimate” then leverages �̄�(𝜼(0)) to achieve a more

efficient estimation of the cuptoints, i.e. the final estimates (𝑐1, 𝑐2, 𝑐3). In Step 2, we fit the

final QIF model 𝑦𝑖𝑡 ∼
∑𝐾
𝑘=1 𝛽𝑘𝐴𝑖𝑡𝑘+𝒛⊤

𝑖𝑡
𝜶 with the estimated cutpoints from Step 1. To assess

the increased efficiency of the “Final MIO Estimate” versus the “Initial MIO Estimate”, we

considered QIF models with both the initial cutpoint estimates (𝑐(0)1 , 𝑐
(0)
2 , 𝑐

(0)
3 ) and the final

cutpoint estimates (𝑐1, 𝑐2, 𝑐3).
The numerical experiments were conducted for two different specifications of 𝐽, the number

of intervals to fuse over, 𝐽 ∈ {60, 300}. The varying 𝐽 represent two different levels of multi-

collinearity among the 𝐴𝑖𝑡 𝑗 variables with 𝐽 = 300 encompassing the most severe multi-

collinearity. The 𝐽 = 300 scenario represents the original 𝐴𝑖𝑡 𝑗 from the simulated OTC curves,

with 𝐽 = 60 calculated by merging every five successive 𝐴𝑖𝑡 𝑗’s. These two specifications of

𝐽 were analyzed to assess the proposed methodology’s sensitivity to the choice of original

𝐽 intervals. Additionally, the simulations were conducted with three different sample sizes

𝑁 ∈ {100, 250, 500} with 𝐽 = 60, and 𝑁 = 500 when 𝐽 = 300. Note that when 𝐽 = 300, the

method is limited to scenarios with 𝐽 < 𝑁 as the fusion-adapted 𝐿0 formulation does not

introduce the true sparsity into the model that allows for 𝐽 > 𝑁 .

4.5.3 Simulation Performance

The simulation results produced by the fusion-adapted 𝐿0 constraint QIF model demon-

strated that this proposed approach provides reliable and efficient change-point detection

and parameter estimation. It has also demonstrated robustness in handling highly corre-

lated AUCs.
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4.5.3.1 Step 1: MIO QIF Method

Tables 4.1 and 4.2 summarize the stability of the change-point detection of Step 1 from 500

rounds of simulations of the 3−group model for the 𝐽 = 300 and 𝐽 = 60 settings, respectively.

These tables additionally report on the stability of the initial parameter estimations based

on these estimated cutpoints via the mean and empircal standard error (ESE) of the point

estimates.

The method maintained its ability to reliably identify changepoints as the sample size N

decreased from 𝑁 = 500 to 𝑁 = 250, though we observed increased ESE when 𝑁 = 100. For

Scenario C with starting number of intervals 𝐽 = 60, true cutpoints (𝑐∗1, 𝑐∗2, 𝑐∗3) = (40, 120, 300)
and 𝑁 = 250, the mean (ESE) estimates of 𝑐∗1 and 𝑐

∗
2 from the Final MIO estimate of this 𝐿0

constrained QIF approach are 40.05(1.75) and 120.10(1.40) when 𝜌 = 0.5. As the longitudinal

correlation parameter 𝜌 decreases to 0.2, we observe similarly strong accuracy and efficiency

of changepoint detection. Similar strong results are repeated in Scenarios A and B.

4.5.3.2 Step 2: Final QIF Method

Tables 4.3 - 4.5 summarize the final QIF model results, when utilizing the activity window

cutpoint estimates of 𝑐∗1, 𝑐
∗
2, 𝑐

∗
3 from Step 1. In addition to reporting mean values for the

point estimates and their empirical standard errors (ESE), as determined by calculating the

standard error of the point estimates achieved from each simulation, Tables 4.3, 4.4, and

4.5 also report the inference measurements of mean p-values and the average standard error

(ASE). These inference parameters were achieved from the R package “qif” using the the

matrix inverse option of “generalized inverse” to estimate the weighting matrix.

In Step 2, we observe very low bias and variability in parameter estimation, both for the

estimates of 𝛽𝑘 as well as 𝛼. As expected, the efficiency of the estimates improves slightly

between the Initial QIF estimates, conducted with initial cutpoint estimates (𝑐(0)1 , 𝑐
(0)
2 , 𝑐

(0)
3 )

and the Final QIF Estimates, conducted with the final cutpoint estimates (𝑐1, 𝑐2, 𝑐3).

4.5.4 Computational Requirements

The proposed method is computationally efficient. In Step 1, in which the fusion adapted

QIF model is solved via GUROBI’s MIO process, a 3-group simulation model with 𝑁 =

500, 𝐽 = 60 computes in ten minutes with the 𝐽 = 300 scenario completing in two hours. The

method is scalable to a reasonable number of windows. When the true 3-group model was

assessed as a 4-group model, the computation times increased to one hour and eight hours

for the 𝐽 = 60, 300 scenarios respectively. Once the estimated changepoints are determined

from Step 1, fitting the final QIF model in Step 2 requires trivial time.
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Table 4.1: Step 1 MIO Results for J=300

𝜌 = 0.5; 𝑁 = 500 𝜌 = 0.2; 𝑁 = 500

Truth Mean ESE Mean ESE

Scenario A

Initial MIO Estimate

𝛽1 4 4.00 0.06 4.12 1.55
𝛽2 0 −0.002 0.29 0.02 0.37
𝛽3 −4 −4.00 0.003 −4.00 0.003
𝑐1 40 39.91 2.15 39.65 3.74
𝑐2 80 80.05 1.38 79.97 1.67
𝛼 3 2.97 0.55 2.98 0.53
Final MIO Estimate

𝛽1 4 4.01 0.07 4.09 1.46
𝛽2 0 −0.002 0.30 0.01 0.34
𝛽3 −4 −4.00 0.003 −4.00 0.003
𝑐1 40 39.88 2.31 39.69 3.34
𝑐2 80 80.06 1.42 79.99 1.55
𝛼 3 2.97 0.55 2.98 0.53

Scenario B

Initial MIO Estimate

𝛽1 1 1.07 0.59 1.07 0.52
𝛽2 0 −0.01 0.27 −0.005 0.27
𝛽3 −1 −1.00 0.003 −1.00 0.003
𝑐1 40 38.50 8.96 38.41 9.02
𝑐2 80 81.14 7.49 81.06 6.96
𝛼 3 2.97 0.54 2.98 0.52
Final MIO Estimate

𝛽1 1 1.11 0.74 1.10 0.73
𝛽2 0 −0.002 0.28 −0.01 0.27
𝛽3 −1.00 −1.00 0.004 −1.00 0.003
𝑐1 40 38.08 9.79 38.31 9.36
𝑐2 80 81.47 12.09 81.10 7.08
𝛼 3 2.97 0.54 2.97 0.52

Scenario C

Initial MIO Estimate

𝛽1 4 4.00 0.05 4.08 1.33
𝛽2 0 0.001 0.04 0.01 0.10
𝛽3 −2 −2.00 0.004 −2.00 0.004
𝑐1 40 39.95 0.88 39.81 2.47
𝑐2 120 120 0.96 119.91 1.54
𝛼 3 2.97 0.56 2.98 0.56
Final MIO Estimate

𝛽1 4 4.22 3.46 4.41 4.74
𝛽2 0 0.01 0.10 0.01 0.14
𝛽3 −2 −2.00 0.004 −2.00 0.005
𝑐1 40 39.81 2.63 39.63 3.58
𝑐2 120 119.93 1.62 119.82 2.12
𝛼 3 2.96 0.60 2.95 0.72
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Table 4.2: Step 1 MIO Results for J=60

𝜌 = 0.5 𝜌 = 0.2

N = 500 N=250 N=100 N = 500 N=250 N=100

Truth Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE

Scenario A

Initial MIO Estimate

𝛽1 4 4.00 0.04 4.00 0.09 4.02 0.16 4.00 0.05 4.00 0.09 4.02 0.16
𝛽2 0 −0.03 0.20 −0.04 0.37 −0.04 0.56 −0.03 0.22 −0.04 0.40 −0.01 0.59
𝛽3 −4 −4.00 0.002 −4.00 0.004 −4.00 0.01 −4.00 0.003 −4.00 0.004 −4.00 0.01
𝑐1 40 40.15 1.30 41.00 2.80 39.85 4.25 40.10 1.55 40.10 2.95 39.65 4.55
𝑐2 80 80.15 1.05 80.25 1.85 80.35 2.80 80.15 1.15 80.30 2.00 80.25 3.00
𝛼 3 2.93 1.60 2.78 2.15 2.96 3.06 2.94 1.58 2.77 2.12 2.96 3.04

Final MIO Estimate

𝛽1 4 4.00 0.10 4.01 0.17 4.04 0.34 4.00 0.09 4.02 0.17 4.05 0.34
𝛽2 0 −0.03 0.34 −0.05 0.48 −0.06 0.68 −0.02 0.33 −0.04 0.54 −0.02 0.69
𝛽3 −4 −4.00 0.003 −4.00 0.004 −4.00 0.01 −4.00 0.003 −4.00 0.004 −4.00 0.01
𝑐1 40 40.00 3.25 40.00 4.00 39.70 5.85 40.00 2.55 39.85 4.50 39.40 6.05
𝑐2 80 80.20 1.65 80.35 2.30 80.50 3.45 80.15 1.65 80.35 2.60 80.35 3.40
𝛼 3 2.98 1.03 2.93 1.58 4.04 0.34 2.99 0.97 2.92 1.57 4.05 0.34

Scenario B

Initial MIO Estimate

𝛽1 1 1.02 0.10 1.04 0.17 1.09 0.34 1.02 0.10 1.05 0.22 1.10 0.37
𝛽2 0 −0.02 0.26 −0.06 0.34 −0.11 0.53 −0.03 0.27 −0.05 0.35 −0.10 0.56
𝛽3 −1 −1.00 0.003 −1.00 0.005 −1.01 0.05 −1.00 0.003 −1.00 0.005 −1.01 0.05
𝑐1 40 39.20 8.10 39.35 10.8 39.30 14.6 39.35 8.15 38.85 11.4 38.8 15.10
𝑐2 80 81.25 6.70 84.05 16.10 93 40.75 81.45 6.90 82.40 16.70 92.75 40.35
𝛼 3 2.94 1.50 2.79 2.04 2.96 2.93 2.96 1.48 2.78 2.02 2.94 2.93

Final MIO Estimate

𝛽1 1 1.06 0.25 1.09 0.31 1.18 0.52 1.04 0.17 1.08 0.32 1.15 0.49
𝛽2 0 −0.04 0.32 −0.05 0.38 −0.08 0.79 −0.04 0.30 −0.09 0.40 −0.12 0.81
𝛽3 −1 −1.00 0.01 −1.00 0.01 −1.00 0.05 −1.00 0.004 −1.00 0.005 −1.00 0.05
𝑐1 40 38.6 11.00 38.15 13.1 38.00 16.80 39.00 10.15 39.05 13.15 38.85 17.05
𝑐2 80 83.50 18.00 85.15 21.85 94.05 44.35 82.90 14.85 85.87 19.60 93.95 43.35
𝛼 3 2.93 0.94 2.87 1.56 1.18 0.52 3.02 0.94 2.81 1.52 1.15 0.49

Scenario C

Initial MIO Estimate

𝛽1 4 4.00 0.03 4.00 0.05 4.00 0.13 4.00 0.04 4.00 0.06 4.01 0.13
𝛽2 0 −0.001 0.03 0.001 0.05 0.003 0.11 −0.001 0.03 0.00 0.05 0.005 0.11
𝛽3 −2 −2.00 0.003 −2.00 0.004 −2.00 0.01 −2.00 0.003 −2.00 0.005 −2.00 0.01
𝑐1 40 40.05 0.50 40.00 0.95 39.95 2.25 40.05 0.60 40.00 1.05 39.90 2.30
𝑐2 120 120.05 0.50 120.00 1.00 120.00 2.35 120.05 0.55 120.05 1.10 119.95 2.40
𝛼 3 2.94 1.64 2.77 2.23 2.97 3.20 2.96 1.61 2.79 2.21 2.93 3.18

Final MIO Estimate

𝛽1 4 4.00 0.05 4.00 0.10 4.01 0.18 4.00 0.05 4.00 0.12 4.00 0.19
𝛽2 0 −0.001 0.04 −0.002 0.07 0.004 0.13 −0.002 0.04 −0.001 0.08 −0.001 0.14
𝛽3 −2 −2.00 0.003 −2.00 0.005 −2.00 0.01 −2.00 0.003 −2.00 0.005 −2.00 0.01
𝑐1 40 40.00 0.85 40.05 1.75 39.90 2.85 40.04 0.85 40.05 1.85 40.05 3.10
𝑐2 120 120.05 0.80 120.10 1.40 120.05 2.65 120.05 0.75 120.05 1.55 120.10 2.90
𝛼 3 2.96 0.98 2.83 1.77 4.01 0.18 2.97 1.04 2.86 1.65 4.00 0.19
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Table 4.3: Step 2 QIF Results for J=300

𝜌 = 0.5; 𝑁 = 500 𝜌 = 0.2; 𝑁 = 500

Truth Mean ESE ASE p Mean ESE ASE p

Scenario A

Initial MIO Estimate

𝛽1 4 4.00 0.07 0.02 0.00 4.05 0.53 0.02 0.00
𝛽2 0 0.00 0.28 0.02 0.04 0.02 0.36 0.02 0.05
𝛽3 -4 -4.00 0.00 0.00 0.00 -4.00 0.00 0.00 0.00
𝛼 3 2.98 0.38 0.39 0.00 2.99 0.34 0.35 0.00

Final MIO Estimate

𝛽1 4 4.01 0.08 0.02 0.00 4.04 0.56 0.02 0.00
𝛽2 0 0.00 0.29 0.02 0.04 0.02 0.33 0.02 0.05
𝛽3 -4 -4.00 0.00 0.00 0.00 -4.00 0.00 0.00 0.00
𝛼 3 2.99 0.38 0.39 0.00 2.99 0.34 0.35 0.00

Scenario B

Initial MIO Estimate

𝛽1 1 1.04 0.22 0.02 0.00 1.04 0.21 0.02 0.00
𝛽2 0 0.00 0.26 0.02 0.05 0.00 0.26 0.02 0.05
𝛽3 -1 -1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00
𝛼 3 2.98 0.38 0.39 0.00 2.98 0.34 0.35 0.00

Final MIO Estimate

𝛽1 1 1.05 0.27 0.02 0.00 1.05 0.26 0.02 0.00
𝛽2 0 0.00 0.27 0.02 0.04 0.00 0.26 0.02 0.05
𝛽3 -1 -1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00
𝛼 3 2.98 0.38 0.39 0.00 2.98 0.34 0.35 0.00

Scenario C

Initial MIO Estimate

𝛽1 4 4.00 0.05 0.01 0.00 4.05 0.85 0.02 0.00
𝛽2 0 0.00 0.04 0.01 0.15 0.01 0.10 0.01 0.14
𝛽3 -2 -2.00 0.00 0.00 0.00 -2.00 0.00 0.00 0.00
𝛼 3 2.98 0.38 0.39 0.00 2.98 0.34 0.35 0.00

Final MIO Estimate

𝛽1 4 4.07 1.01 0.02 0.00 4.14 1.47 0.02 0.00
𝛽2 0 0.01 0.11 0.01 0.14 0.02 0.15 0.01 0.14
𝛽3 -2 -2.00 0.00 0.00 0.00 -2.00 0.00 0.00 0.00
𝛼 3 2.98 0.38 0.39 0.00 2.98 0.37 0.35 0.00
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Table 4.4: Step 2 QIF Results for 𝐽 = 60 with longitudinal correlation parameter 𝜌 = 0.5

𝜌 = 0.5

N = 500 N=250 N=100

Truth Mean ESE ASE pval Mean ESE ASE pval Mean ESE ASE pval

Scenario A

Initial MIO Estimate

𝛽1 4 3.995 0.041 0.018 0.000 3.999 0.094 0.026 0.000 4.010 0.156 0.041 0.000
𝛽2 0 −0.029 0.191 0.020 0.469 −0.037 0.354 0.028 0.403 −0.030 0.539 0.045 0.278
𝛽3 −4 −4.000 0.003 0.002 0.000 −4.000 0.005 0.003 0.000 − 4.001 0.007 0.005 0.000
𝛼 3 2.981 0.379 0.387 0.000 3.003 0.538 0.551 0.001 2.977 0.920 0.876 0.022

Final MIO Estimate

𝛽1 4 4.002 0.097 0.016 0.000 4.008 0.150 0.023 0.000 4.021 0.223 0.038 0.000
𝛽2 0 −0.024 0.326 0.017 0.427 −0.042 0.459 0.025 0.333 −0.043 0.664 0.039 0.233
𝛽3 −4 −4.000 0.003 0.002 0.000 −4.001 0.005 0.003 0.000 −4.001 0.008 0.005 0.000
𝛼 3 2.986 0.382 0.388 0.000 3.004 0.556 0.551 0.001 2.976 0.965 0.870 0.025

Scenario B

Initial MIO Estimate

𝛽1 1 1.012 0.075 0.019 0.000 1.019 0.113 0.028 0.000 1.037 0.178 0.047 0.000
𝛽2 0 -0.017 0.251 0.019 0.089 -0.052 0.330 0.026 0.079 -0.097 0.502 0.040 0.067
𝛽3 -1 -1.000 0.003 0.002 0.000 -1.001 0.005 0.003 0.000 -1.005 0.036 0.007 0.000
𝛼 3 2.982 0.376 0.387 0.000 3.000 0.535 0.549 0.001 2.969 0.916 0.863 0.021

Final MIO Estimate

𝛽1 1 1.029 0.126 0.018 0.000 1.043 0.158 0.026 0.000 1.063 0.215 0.044 0.000
𝛽2 0 -0.029 0.310 0.016 0.069 -0.042 0.371 0.022 0.053 -0.082 0.659 0.039 0.048
𝛽3 -1 -1.001 0.005 0.002 0.000 -1.002 0.009 0.003 0.000 -1.005 0.038 0.007 0.000
𝛼 3 2.983 0.378 0.387 0.000 3.009 0.546 0.546 0.001 2.968 0.946 0.851 0.022

Scenario C

Initial MIO Estimate

𝛽1 4 3.998 0.028 0.015 0.000 4.000 0.052 0.021 0.000 4.004 0.127 0.034 0.000
𝛽2 0 -0.001 0.025 0.009 0.480 0.000 0.046 0.013 0.474 0.004 0.105 0.020 0.369
𝛽3 -2 -2.000 0.003 0.003 0.000 -2.000 0.005 0.004 0.000 -2.000 0.010 0.006 0.000
𝛼 3 2.982 0.374 0.386 0.000 3.004 0.528 0.546 0.001 2.981 0.912 0.863 0.021

Final MIO Estimate

𝛽1 4 4.000 0.047 0.013 0.000 3.999 0.098 0.018 0.000 4.011 0.163 0.030 0.000
𝛽2 0 -0.001 0.039 0.008 0.468 -0.002 0.072 0.011 0.432 0.005 0.123 0.018 0.301
𝛽3 -2 -2.000 0.003 0.002 0.000 -2.000 0.005 0.003 0.000 -2.000 0.010 0.005 0.000
𝛼 3 2.984 0.375 0.385 0.000 3.008 0.544 0.543 0.001 2.976 0.935 0.854 0.022
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Table 4.5: Step 2 QIF Results for 𝐽 = 60 with longitudinal correlation parameter 𝜌 = 0.2

𝜌 = 0.2

N = 500 N=250 N=100

Truth Mean ESE ASE pval Mean ESE ASE pval Mean ESE ASE pval

Scenario A

Initial MIO Estimate

𝛽1 4 3.998 0.050 0.018 0.000 4.000 0.097 0.026 0.000 4.015 0.157 0.042 0.000
𝛽2 0 -0.025 0.209 0.019 0.452 -0.039 0.378 0.028 0.386 -0.008 0.565 0.045 0.262
𝛽3 -4 -4.000 0.003 0.002 0.000 -4.000 0.005 0.003 0.000 -4.000 0.008 0.005 0.000
𝛼 3 2.982 0.338 0.347 0.000 3.001 0.484 0.495 0.000 2.978 0.825 0.792 0.012

Final MIO Estimate

𝛽1 4 4.002 0.084 0.018 0.000 4.012 0.160 0.026 0.000 4.031 0.233 0.042 0.000
𝛽2 0 -0.019 0.313 0.019 0.423 -0.034 0.521 0.028 0.323 -0.010 0.667 0.043 0.215
𝛽3 -4 -4.000 0.004 0.002 0.000 -4.001 0.005 0.003 0.000 -4.001 0.009 0.005 0.000
𝛼 3 2.987 0.340 0.348 0.000 3.010 0.509 0.498 0.000 2.985 0.864 0.790 0.013

Scenario B

Initial MIO Estimate

𝛽1 1 1.012 0.074 0.019 0.000 1.026 0.122 0.029 0.000 1.042 0.182 0.048 0.000
𝛽2 0 -0.023 0.256 0.019 0.095 -0.045 0.339 0.025 0.072 -0.088 0.519 0.039 0.060
𝛽3 -1 -1.000 0.003 0.002 0.000 -1.001 0.005 0.003 0.000 -1.006 0.037 0.007 0.000
𝛼 3 2.983 0.337 0.347 0.000 3.000 0.481 0.492 0.000 2.972 0.822 0.777 0.011

Final MIO Estimate

𝛽1 1 1.021 0.109 0.019 0.000 1.035 0.158 0.029 0.000 1.052 0.222 0.048 0.000
𝛽2 0 -0.029 0.296 0.018 0.076 -0.076 0.390 0.025 0.069 -0.109 0.707 0.045 0.056
𝛽3 -1 -1.001 0.004 0.002 0.000 -1.002 0.006 0.003 0.000 -1.005 0.046 0.007 0.000
𝛼 3 2.986 0.340 0.347 0.000 3.005 0.490 0.491 0.000 2.961 0.855 0.769 0.013

Scenario C

Initial MIO Estimate

𝛽1 4 3.998 0.034 0.015 0.000 4.000 0.058 0.021 0.000 4.007 0.131 0.033 0.000
𝛽2 0 -0.001 0.027 0.009 0.477 -0.001 0.051 0.013 0.466 0.006 0.106 0.020 0.355
𝛽3 -2 -2.000 0.003 0.003 0.000 -2.000 0.005 0.004 0.000 -2.000 0.010 0.006 0.000
𝛼 3 2.984 0.335 0.345 0.000 3.003 0.474 0.489 0.000 2.987 0.817 0.777 0.012

Final MIO Estimate

𝛽1 4 3.997 0.046 0.014 0.000 3.999 0.109 0.020 0.000 4.001 0.181 0.032 0.000
𝛽2 0 -0.002 0.036 0.009 0.468 -0.002 0.077 0.012 0.422 -0.001 0.135 0.020 0.289
𝛽3 -2 -2.000 0.003 0.003 0.000 -2.000 0.006 0.004 0.000 -2.000 0.011 0.006 0.000
𝛼 3 2.986 0.338 0.344 0.000 3.007 0.487 0.488 0.000 2.973 0.843 0.772 0.013
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4.6 Data Analysis

The primary objective of this data analysis was to investigate the population-average asso-

ciation between PA levels and body fat, as measured longitudinally by Sub-Scapular Skin

Thickness (SSST). Research has suggested that higher level of PA may be associated with

lower SSST, though guidelines are less clear on what PA intensity levels have the most sig-

nificant effect on this anthropometric outcome, and how this association varies in males and

females in adolescence. Thus, this analysis focused on assessing the functional relationship

between PA and SSST via longitudinal scalar-on-function regression model to detect distinct

activity intensity windows of interest, estimate the association parameter, and perform in-

ference. I conducted this assessment considering the full sample population, as well as in a

sex-stratified manner.

To use the fusion-adapted 𝐿0 QIF analytic in Section 4.3.2, I began by setting 𝐽 = 300,

with each interval covering 100 VM counts, followed by an augmentation scenario of 𝐽 = 60

by summing every five successive intervals. For ease of interpretation, I considered 𝐾 ∈
{2, 3, 4} critical windows of PA intensity. In Step 1: MIO QIF Model, each setting was

given a budget of 20 hours run-time. If the search did not converge within this time, the

attempt was terminated and the respective combination of (𝐽 , 𝐾) disregarded from reporting.

Additionally, if the search completed, but the GUROBI software reported a “sub-optimal”

convergence, the combination of (𝐽 , 𝐾) was disregarded. In this data analysis example, I

report the successful results for the 𝐽 = 60 scenario. The cutpoints 𝑐1, · · · , 𝑐𝐾 estimated

from Step 1 were used to calculate the AUCs for each activity window 𝐾, 𝐴𝑖𝑡𝑘 , which were

then each scaled to mean 0, variance 1, before performing a final QIF analysis with the zero-

intercept model 𝑦𝑖𝑡 ∼
∑𝐾
𝑘=1 𝛽𝑘𝐴𝑖𝑡𝑘 + 𝒛⊤

𝑖𝑡
𝜶 to achieve parameter estimation and inference.

Model selection was conducted using a combination of BIC goodness-of-fit, coupled with

scientific significance. For example, in the 𝐽 = 60 results in Table 4.6, the BIC measurement

ranks the models with 𝐾 = 2 size model as the best fit, followed by 𝐾 = 3. However, when

assessing the cutpoints of the 𝐾 = 2-group model. we see that the windows are: Window 1:

(0,59] and Window 2: (59,60]. As this model only differentiates between the last potential

cutpoint, encompassing the extreme tail end of the OTCs, it is unlikely to be driven by true

scientific differences, but more likely by statistical anomalies such as outliers. Thus, the

𝐾 = 3 model is selected based on the combination of statistical and scientific significance.

The interpretation of the parameter estimates for each of the detected critical activity

windows depends on the activity window’s sequential location. For the first activity windows,

a lower AUC represents more time spent within the specific window, and less time spent

above the window. Thus, a positive parameter estimate would indicate that more time
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spent within the specific window is associated with a smaller outcome value. In contrast, for

the last window 𝐾, a higher AUC represents more time spent within the specific window.

In this case, a positive parameter estimates suggests that more time spent within the final

activity window is associated with a larger outcome value.

The AUC Ratio metric was introduced in Chapter 3.7 in order to facilitate a clinically

understandable interpretation of analysis results. Briefly, this AUC Ratio metric measures

the amount of time a subject spends within a PA window relative to the maximum amount

of possible time, thereby representing a relative level of activity for the individual within

the detected window compared to the hypothetical most active person. As with the inter-

pretation of the estimated parameter coefficients 𝛽𝑘 ’s, the interpretation of the AUC Ratio

also depends on its sequential location. For example, with the first Window 1, a lower AUC

Ratio represents more time spent within the specific window, and less time spent above the

window. In contrast, for the last window 𝐾, a higher AUC Ratio represents more time spent

within the specific window. I will again interpret the data analysis results under the purview

of this metric, with the relevant computational figures included in Appendix B.

4.6.1 Full Data Analysis

Section 4.1.2 introduced the longitudinal ELEMENT cohort data with repeated measure-

ments at T1 and T2, collected approximately two years apart. From this data, there was

complete accelerometry and covariate data for 429 subjects (197 boys, 232 girls) at the two

distinct time points. At T1, the subjects were of mean(sd) age 14.35(2.09) years, with 18%

having achieved “adult” Tanner staging status. At T2, these time-varying covariates were:

mean(sd) age of 16.30(2.08) years and 48% having completed puberty, e.g. achieved Tanner

stage 5. The mean (sd) increase in age from T1 to T2 was 1.95(0.36) years, with the age

range increasing from (10.72, 18.06) to (12.45, 20.54). These two time points represent a vital

stage in human development, as the subjects transition from adolescence to early-adulthood.

The functional OTCs for the full population at time points T1 and T2 are shown in Figure

4.2. Visually, we can see no significant change between the mean activity profiles between

the first and second time points. This suggests that the same PA windows at T1 and T2 are

acceptable.

Table 4.6 summarizes the results for the full dataset. Based on the combination of sci-

entific and statistical significance, the 𝐾 = 3 model was selected. In this model, we observe

a significantly negative association with Window 3 and SSST outcome; this result suggests

that as individuals spend more time in the activity range (145,300], they have lower SSST

measurement, suggesting lower body fat and a healthier outcome.
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Figure 4.2: OTCs for 429 ELEMENT subjects stratified by longitudinal time point of ac-
celerometer data collection. The relative shape of OTC reflects the subject’s activity profile,
with the red-dotted line representing the mean proportion of time spent above each activity
level across the individuals. The first vertical line, colored blue, represents the first detected
cutpoint, indicating the changepoint between critical activity Windows 1 and 2. Likewise,
the second vertical line in green represents the detected cutpoint 2, signalling the change-
point from critical activity Windows 2 and 3.
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Table 4.6: Full Population Data Analysis Results obtained by the fusion-adapted 𝐿0 QIF
method, where 𝐽 indicates the number of micro-intervals and 𝐾 is a prefixed number of
activity windows. Significance is indicated by ’p-val’, representing the p-values from the
final QIF model. Cutpoint values are represented as VM/100.

J = 60

K=2 K=3 K=4

Parameters Est p-val Est p-val Est p-val

𝛽1 0.001 0.154 0.002 0.367 −0.079 0.644

𝛽2 −0.111 0.113 0.015 0.189 0.078 0.678

𝛽3 – – −0.006 0.009 0.003 0.095

𝛽4 – – – – −0.006 0.028

𝑐1 295 – 95 – 5 –

𝑐2 – – 145 – 10 –

𝑐3 – – – – 190 –

Sex (Male) 4.391 < 0.001 4.415 < 0.001 4.471 < 0.001

Age 0.052 0.791 0.099 0.614 0.112 0.566

Adult 2.133 < 0.001 2.105 < 0.001 2.094 < 0.001

BIC 37.75 53.64 59.00

AIC 17.04 25.21 26.51

GOF pval 0.53 0.13 0.23
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Let us interpret the results in Table 4.6 for the scenario of 𝐾 = 3, 𝐽 = 60 under model

𝑦𝑖𝑡 ∼ 𝛽1𝐴𝑖𝑡1 + 𝛽2𝐴𝑖𝑡2 + 𝛽𝑖𝑡3𝐴3 + 𝒛⊤
𝑖𝑡
𝛼, where AUC 𝐴𝑖𝑡𝑘 =

∫ 𝑐𝑘

𝑐𝑘−1
𝑂𝑇𝐶𝑖𝑡(𝑐)𝑑𝑐, 𝑘 = 1, 2, 3. Here

Window 3 has estimated cutpoints (𝑐2, 𝑐3] = (145, 300] with �̂�1 = −0.006 for predictor 𝐴𝑖𝑡3.

For subject 𝑖, the area of the Window 3 rectangle 𝑅3 = (𝑐3 − 𝑐2) × (1 − 0) = 155, and AUC

Ratio of Window 3 is 𝐴𝑖𝑡3
155 . Correspondingly, the parameter estimate �̂�3 may be adjusted by

�̂�3𝑅𝑎𝑡𝑖𝑜 = 155�̂�3 for interpretability. In the case of Window 3, a lower AUC Ratio reflects

less time spent within the activity cutpoints (145, 300] than the hypothetical “most active

individual” who spends all his or her time at or above the cutpoint range (145, 300]. Thus,
for a subject who is 1% less active in the activity range of Window 3 compared to the

hypothetical “most active individual”, as reflected by a smaller AUC Ration, this subject’s

body fat as measured by SSST increases approximately approximately 0.93mm. See Figure

B.1 in Appendix B for a schematic of this calculation.

4.6.2 Sex-Stratified Data Analysis

The proposed approach was also applied to the sex-stratified ELEMENT data set to deter-

mine if there were sex-specific PA intensity windows associated with the health outcome of

Sub-Scapular Skin Thickness (SSST). In these sex-stratified analyses, we again considered

the covariates of age and “adult” status based on Tanner staging, e.g., had completed Tanner

stage 5. Tables 4.7 and 4.8 summarize the sex-stratified data analysis results for male and

female subjects, respectively.

Male Adolescents: In the male subgroup, 18% of subjects had achieved “adult” status at

T1 with mean(sd) age of 14.28(2.06) years. These variables increased to 49% classified as

“adult” at T2, with mean(sd) age of 16.23(2.02) years. The longitudinal functional OTCs for

the males in this study are shown in Figure 4.3, including the activity curves at both T1 and

T2. Visually, we can see a slight pattern shift in activity profiles for male adolescents between

T1 and T2. The OTC at T1 have slightly higher values after VM Count of 100 versus T2.

This pattern shift demonstrates that the male subjects spend more time in higher levels

of activity at T1 versus T2. This can also be visualized by the T2 curves decaying faster

than the T1 curves, demonstrating that at T2 the male subjects spend a higher proportion

of their time within the less-active activity ranges, and a lower proportion of their time at

more-active activity ranges.

When considering the male-specific model, the results reflect that of the full-population,

with a 𝐾 = 3-group model demonstrating the strongest combination of statistical and scien-

tific significance. Refer to Table 4.7. Here, the Window 3 is similar to that of the 𝐾 = 3-group

full-population model, with cutpoints (190-300]. The negative �̂�3 value again suggests that
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Figure 4.3: OTCs for 197 male ELEMENT subjects stratified by longitudinal time point
of accelerometer data collection. The relative shape of OTC reflects the subject’s activity
profile, with the red-dotted line representing the mean proportion of time spent above each
activity level across the individuals. The first vertical line, colored blue, represents the first
detected cutpoint, indicating the changepoint between critical activity Windows 1 and 2.
Likewise, the second vertical line in green represents the detected cutpoint 2, signalling the
changepoint from critical activity Windows 2 and 3.
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increased time spent in the third activity window is associated with decreased SSST. This

finding demonstrates that more activity in this “moderate-to-vigorous” intensity level has

a beneficial impact on body fat levels. Figure 4.3 illustrates the Window 3 changepoint;

individuals with higher values on their OTC beyond this detected cutpoints spend a higher

proportion of time in this critical activity window.

Table 4.7: Sex-Stratified Data Analysis Results for Male subjects obtained by the fusion-
adapted 𝐿0 QIF method, where 𝐽 indicates the number of micro-intervals and 𝐾 is a prefixed
number of activity windows. Significance is indicated by ’p-val’, representing the p-values
from final QIF model. Cutpoint values are represented as VM/100.

J = 60

K=2 K=3 K=4

Parameters Est p-val Est p-val Est p-val

𝛽1 0.0009 0.453 0.003 0.368 0.006 0.104

𝛽2 −0.134 0.013 0.005 0.345 0.527 0.089

𝛽3 – – −0.013 0.006 1.207 0.055

𝛽4 – – – – −0.015 0.004

𝑐1 290 – 105 – 140 –

𝑐2 – – 190 – 150 –

𝑐3 – – – – 155 –

Age −0.021 0.94 0.059 0.831 0.044 0.871

Adult 2.018 0.001 1.987 0.001 1.881 0.003

BIC 29.99 41.00 46.08

AIC 13.58 21.31 23.10

GOF pval 0.61 0.16 0.25

Let us interpret the results in Table 4.7 in terms of AUC Ration. Consider the scenario

of 𝐾 = 3, 𝐽 = 60 under model 𝑦𝑖𝑡 ∼ 𝛽1𝐴𝑖𝑡1 + 𝛽2𝐴𝑖𝑡2 + 𝛽𝑖𝑡3𝐴3 + 𝒛⊤
𝑖𝑡
𝛼, where AUC 𝐴𝑖𝑡𝑘 =∫ 𝑐𝑘

𝑐𝑘−1
𝑂𝑇𝐶𝑖𝑡(𝑐)𝑑𝑐, 𝑘 = 1, 2, 3. Here Window 3 has estimated cutpoints (𝑐2, 𝑐3] = (190, 300]

with �̂�3 = −0.013 for predictor 𝐴𝑖𝑡3 at both time points 𝑡 ∈ {1, 2}. For subject 𝑖 at time 𝑡, the

area of the Window 3 rectangle 𝑅3 = (𝑐3− 𝑐2)×(1−0) = 110, and the AUC Ratio of Window

3 is 𝐴𝑖𝑡3
110 . Correspondingly, the parameter estimate �̂�3 may be adjusted by �̂�3𝑅𝑎𝑡𝑖𝑜 = 110�̂�3 for

interpretability. In the case of Window 3, a lower AUC Ratio reflects less time spent within

the activity cutpoints (190, 300] than the hypothetical “most active individual” who spends
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all his or her time within or above the cutpoint range (190, 300]. Thus, for a subject who is

1% less active in the activity range of Window 3 compared to the hypothetical “most active

individual”, as reflected by a smaller AUC Ration, this subject’s body fat as measured by

SSST increases approximately approximately 1.43mm. See Figure B.1 in Appendix B for a

schematic of a similar calculation.

Female Adolescents: In the female subgroup, the mean(sd) age at T1 was 14.41(2.13) years,

with 19% of the 232 female subjects having completed puberty, e.g. achieved Tanner stage

5. At the second time point, the mean(sd) age increased to 16.36(2.14) years, with 47% of

the adolescent females reaching adult status. The repeated functional OTCs for the females

in this study are shown in Figure 4.4, including the activity curves at both T1 and T2.

Figure 4.4: OTCs for 232 female ELEMENT subjects stratified by longitudinal time point
of accelerometer data collection. The relative shape of OTC reflects the subject’s activity
profile, with the red-dotted line representing the mean proportion of time spent above each
activity level across the individuals. The vertical blue, represents the first detected cutpoint,
indicating the changepoint between critical activity Windows 1 and 2.

The data analysis for the female-specific model demonstrated less significant results than

either the male-specific or full population models. Here, the 𝐾 = 2-group model achieves

the best goodness of fit, as evidenced by BIC and AIC measures, though neither of the PA
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windows present a statistically significant association with SSST. Furthermore, the small

coefficient sizes are not indicative of clinical significance. As the female-specific results did

not demonstrate statistical or clinical significance in the longitudinal association between

functional PA and SSST, the AUC Ration interpretation is not included here. However, the

calculations would be similar to those detailed in Sections 3.7, 4.1.2, as well as Figure B.1.

Table 4.8: Sex-Stratified Data Analysis Results for Girls obtained by the fusion-adapted 𝐿0
QIF method, where 𝐽 indicates the number of micro-intervals and 𝐾 is a prefixed number
of activity windows. Significance is indicated by ’p-val’, representing the p-values from final
QIF model. Cutpoint values are represented as VM/100.

J = 60

K=2 K=3 K=4

Parameters Est p-val Est p-val Est p-val

𝛽1 < 0.001 0.112 −0.037 0.554 0.003 0.072

𝛽2 < 0.001 0.554 0.241 0.109 −1.921 0.001

𝛽3 – – 0.001 0.383 2.960 < 0.001

𝛽4 – – – – −0.216 0.002

𝑐1 105 – 30 – 265 –

𝑐2 – – 35 – 270 –

𝑐3 – – – – 275 –

Age 0.006 0.808 0.027 0.916 0.044 0.871

Adult 2.183 0.0002 2.209 0.002 2.209 0.0002

BIC 34.28 39.97 45.59

AIC 17.05 19,29 21.46

GOF pval 0.22 0.29 0.38

4.7 Discussion

In this chapter, I extend the 𝐿0 fusion-adapted framework from Chapter 3 to a longitudinal

functional framework with repeated measures captured from wearable devices. To achieve

this statistical methodological extension, I employ the Quadratic Inference Function (QIF)

framework, which considers a population-average effects model, and develop a regularized

QIF via mixed integer optimization (MIO). This methodology detects changepoints in serially
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measured functional accelerometer data to define critical windows of activity intensities

that impact longitudinal health outcomes, while also accounting for covariates of interest.

Such an informatics toolbox can be applied to analyze the relationship of functional digital

features with continuous outcomes. In the data analysis application, I employ the developed

framework to detect critical PA windows and assess their population-average effects on Sub-

Scapular Skin Thickness (SSST) on adolescents from the Early Life Exposure in Mexico to

ENvironmental Toxicants (ELEMENT) cohort. I find that both the full dataset, as well

as the male-stratified dataset, have a negative association between increased levels of high-

intensity activity and SSST.

Through extensive simulation experiments, this chapter numerically demonstrates the

high stability and accuracy of the longitudinal MIO technique via QIF. As in the single-

time point framework of Chapter 3, we again find that the strength of the results is not

overly sensitive to the choice of 𝐽, the starting number of correlated intervals. Simulation

results for 𝐽 = 60 and 𝐽 = 300 were very similar, though the computation time for a larger

number of starting intervals does significantly increase. Investigators can choose the number

of 𝐽 intervals based on factors of sample size and data availability without concern that

the tuning choice of 𝐽 will significantly affect the analysis. In practice, larger choices of

𝐽 do not always provide optimal solutions, as indicated by the MIO software declaring a

“non-optimal” solution path, as in the case of the 𝐽 = 300 scenarios from our data analysis.

In these instances, which are clearly communicated by software results, researchers should

decrease their choice of 𝐽.

While this chapter focused on a data example with two repeated functional measures

and outcomes, the longitudinal 𝐿0 fusion-adapted MIO framework can be easily extended to

more than two time points, with trivial adjustments in the implementation of the QIF-based

objective function by the MIO optimization solver. The methodology can also be extended to

allow for time-varying association parameter estimates. That is, this extension would allow

for the detection and estimation of different critical activity windows at the repeated time

points. Such an analysis would enable researchers to investigate if the effect of the functional

covariate of interest changed over time when the functional predictors vary strongly over

time. For example, perhaps the effect of PA on mental health is more important as subjects

age. To achieve this model, one would need to update the objective function in a less trivial

manner than when increasing the number of repeated measurements. To accommodate the

time-varying effects, a larger � parameter vector is necessary, with associated updates to the

design matrix 𝑋. In the case of two repeated measures with time-varying effects on both

the functional variable discretized into 𝐽 intervals as well as 𝑞 number of covariates, the �

parameter vector would increase from size 𝐽 + 𝑞 to 2(𝐽 + 𝑞). This change would necessitate
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additional adjustment to the QIF objective function 𝑄𝑛. Lastly, future work could extend

the proposed methodology to non-linear outcomes, such a binomial outcomes via logistic

regression or count data via Poisson modelling. As the QIF framework is capable of fitting

such binomial and Poisson models, among others, this extension would involve changes to

the 𝑄𝑛 objective function via the mean function �𝑖𝑡 .

Notably, the proposed methodology also presents the opportunity to extend into Fed-

erated Learning framework, in which summary statistics from different data sources (such

as hospitals or research groups) are combined for analysis, while still maintaining data pri-

vacy. As pointed out in Section 4.3.3, this is possible as the QIF framework does not require

subject-level detail in the optimization to conduct QIF estimation. Rather, one can use sum-

mary statistics from each time-point (or each correlated cluster) to conduct this analysis.

As demonstrated in Equation (4.14), if we assume the simplest QIF case where �̄�(𝜼(0))) = 𝐼,

then the 𝑄𝑛 objective function relies on sample-level summary statistics of 𝑿𝒀 and 𝑿⊤𝑿 ,

rather than individual level data. This simple-case could be used to detect critical activity

windows and MIO-derived-estimates of the parameter vector 𝜼. Though our data analysis

and simulation experiments implemented this simple-case for the initial 𝜼 estimates that were

ultimately updated using an empirical estimate �̄�(𝜼), the simulation results did demonstrate

that the initial MIO-based parameter estimates could have relatively satisfactory results with

low bias and high efficiency (refer to Tables 4.1,4.2). In this case, there would be a trade-

off between efficiency and privacy, which could be determined by the specific research and

security needs.
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CHAPTER 5

Summary and Future Work

In this dissertation, I have presented novel supervised learning frameworks using both 𝐿1

and 𝐿0 regularization methods to conduct functional data analysis (FDA). This work was

motivated by high-frequency time-series data collected from wearable devices, specifically

from accelerometer devices that provide objective measures of physical activity (PA). Overall,

the proposed analytics conduct supervised learning via scalar-on-function regression models

that involve Occupation Time Curves (OTCs) as the functional predictors and assess their

association with specific scalar health outcomes of interest. These proposed approaches free

the dependence on subjective choices of pre-determined PA categorizations in analysis of

high-frequency time-series data from accelerometers, and instead allow the data to adaptively

detect changepoints to define critical windows of activity intensities.

5.1 Summary

In Chapter 2, I present Occupation Time Curves (OTCs), which describe the percentage

of time spent at or above a continuum of activity count levels. The resulting functional

curve is informative to capture time-course individual variability of PA. I introduce the

multi-step adaptive learning algorithm, termed FRACT (Functional Regularized Adaptive

Changepoint-detection Technique), to perform supervised learning via a scalar-on-function

regression model that involves OTC as the functional predictor with the ability to include

other scalar covariates of interest. FRACT focuses on 𝐿1 regularization approaches to deter-

mine activity windows of interest, incorporating a hybrid approach of fused lasso for cluster-

ing, Hidden Markov Model (HMM) for change-point detection, and refinement procedures

and goodness-of-fit measures for final model selection. I show that FRACT has flexibility

and reliability in identifying changepoints/critical windows and can effectively transform

functional accelerometer data collected from wearable devices into knowledge on PA’s effect

on human biological aging. In addition, I demonstrated that different sets of changepoints
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and associated parameters are detected for different epigenetic aging outcomes, highlighting

FRACT’s adaptive ability across different settings. This generalizable role in translating

accelerometer data into scientific knowledge is important to researchers and practitioners

alike.

In Chapter 3, I move from 𝐿1 regularization approaches to those in the 𝐿0 framework. In

this capacity, I investigate functional associations between health outcomes and PA under an

𝐿0 regularization approach by formulating and implementing modern optimization methods

to functional analysis by means of Mixed Integer Optimization (MIO). In this chapter, I

show via numerical experiments and theoretical arguments that the proposed method is able

to detect critical activity intensity windows of interest and provide parameter estimation in

a one-step process, as opposed to the multi-step learning algorithm, FRACT, introduced in

Chapter 2. To the best of my knowledge, I am the first to consider MIO methodologies both

to conduct fusion as well as in a functional data framework.

In Chapter 4, I extend the fusion-adapted MIO methodology to a longitudinal frame-

work. Here, I consider repeated wearable data to understand the influence of serially mea-

sured functional accelerometer data on longitudinal health outcomes again leveraging 𝐿0

regularization techniques. Through a combination of numerical experiments and theoretical

arguments, I demonstrate that the proposed method, which leverages Quadratic Inference

Functions (QIF) to consider a population-average effects model via MIO, produces consistent

results in a time-efficient manner. To the best of my knowledge I am the first to conduct

longitudinal fusion in this manner. To showcase the utility of the method in a real-world

environment, I focus on a longitudinal study of PA patterns from late-adolescence into early

adulthood on Sub-Scapular Skin Thickness (SSST), a measure of truncal fat distribution

that is among the measures of body composition that can be influenced by PA behaviors.

This data analysis determined a moderate-to-high intensity activity window that was associ-

ated with lower SSST measurements in both the full population, and in sex-specific manner.

Notably, the full population and sex-stratified analyses identified unique activity windows

and parameters of association, demonstrating the methodology’s adaptive ability to detect

unique critical windows across different populations.

Importantly, the flexibility of the methodologies proposed in this dissertation demonstrate

their value to the analysis of future wearable devices. In the ever-evolving world of wearable

devices, there are constantly new devices or sensors available. The applications of the pro-

posed methodologies are not restricted to accelerometer sensors; rather they can easily be

applied to other devices including biomedical/smart health devices and environmental toxi-

cant sensors, among others. In such a role, the methodologies proposed in this dissertation

can help translate data collected from existent/future sensors into decision-making knowl-

97



edge. As such physiological and environmental sensors can have a great potential impact

on the future of health-monitoring and intervention, the translational role these proposed

analytics play in turning high-frequency time-series data into decision-making knowledge is

invaluable.

5.2 Future Work

The supervised learning fusion-adapted FDA frameworks I developed provide useful tool-

boxes for analyzing wearable device data. As I continue in this field of research, I am

interested in pursuing this research in multiple different directions. These future projects

are described below.

Future Project I : In this dissertation, I focused on OTCs that summarized the adolescent’s

PA profiles on weekends afternoons. The rationale behind this choice was that during this

time, adolescents have greater control over their activities as they are less constrained by

school or home responsibilities. However, it is important to consider how the choice of time

period for constructing OTCs can impact the analysis. For instance, some adolescents may

be highly active in school sports on weekday afternoons and then use the weekends to rest.

In such cases, the weekend-based OTCs might only reflect their lower levels of activity during

the weekends and fail to capture their high activity levels during the week.

To address this limitation in future research, I intend to explore alternative approaches.

One option is to analyze OTCs summarizing the subject’s PA over an entire week, thereby

capturing their PA data for the entire week. However, this approach may be more sensitive

to periods of missing data. Another alternative could involve identifying each subject’s most

active window of time and using that as the unit of analysis. Determining the most active

window would require careful consideration, and potential measures could include the 4-hour

window with the highest cumulative count level or the windows with the highest intensity

count values. By considering these alternative strategies, I aim to refine the analysis and

ensure a more comprehensive understanding of adolescents’ PA patterns in different contexts.

This will contribute to a more robust interpretation of the data and better inform future

interventions and policies aimed at promoting healthier lifestyles among adolescents.

Future Project II : I am interested in exploring whether the timing of PA, not only the

intensity, is associated with health outcomes. To achieve this, I plan to extend the single-

timepoint fusion-adapted 𝐿0 approach of Chapter 3 to handle multiple functional covariates.

Through application of this extended MIO technique focusing on PA during different time

periods of the day, such as morning versus evening, one can investigate if the activity intensity

changepoints are dependent on time of day. This is distinct from the longitudinal framework
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introduced in Chapter 4 in that it incorporates multiple functional covariates with complex

correlation structures, and not correlated repeated outcomes.

Future Project III : In the future, I plan to extend the fusion-adapted longitudinal model

introduced in Chapter 4 to allow for time-varying association parameter estimates. This

extension would allow for the detection and estimation of different critical activity windows

at the repeated time points when functional predictors vary significantly over time. Such an

analysis would enable researchers to investigate whether the effect of PA on a scalar outcome

changes over time. This assessment would be particularly interesting in our motivating

ELEMENT cohort that follows the subjects from adolescence to early adulthood. In our

data analysis example, it is feasible that the association between PA and body composition,

as measured by SSST, changes as the subjects transition out of childhood into adulthood.

These associations could then be further studied as the subjects continue to age, with research

considering the longitudinal effect from childhood to mature adulthood and beyond.

Future Project IV : The proposed longitudinal functional data model from Chapter 4 presents

the opportunity to extend into the Federated Learning framework, in which summary statis-

tics from different data sources (such as hospitals or research groups) are combined for

analysis. Rather than incorporating multiple functional predictors and associated scalar

outcomes from different time points, one could incorporate these repeated measurements as

coming from various correlated sources, such as different hospitals in similar geographic area.

As the proposed QIF framework does not require subject-level detail to conduct consistent

estimation, these datasets could be combined while still maintaining data privacy by lever-

aging summary statistics from each correlated cluster. I plan on pursuing this extension in

the near future.

Future Project V : The methods proposed in these dissertation chapters give rise to data

analytic toolboxes enabling the exploration of various questions of interest related to the

effect of functional PA features on health outcomes. While this dissertation focuses on linear

relationships between functional OTCs and scalar outcomes, the proposed methodologies

could be extended to non-normal and non-linear models, such as logistic regression with

binary outcomes, and Cox regressions with time-to-event outcomes. For example, with such

extensions, one could investigate questions such as what critical PA intensities impact time

to Cardiovascular Events in patients with diagnosed cardiovascular complications.

Software Development : The dissemination of statistical methodologies through software de-

velopment plays a pivotal role in advancing research, decision-making, and problem-solving.

Software packages that implement statistical methods offer a user-friendly and efficient way

to analyze data, making complex statistical techniques accessible to a broader audience.

Furthermore, software development facilitates the reproducibility and transparency of sta-
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tistical analyses as well as enhancing the methodology’s efficiency and scalability. As such,

I plan on disseminating my novel supervised learning frameworks not only via publication,

but also by the development and publication of related software. For the 𝐿1 regularization

method presented in Chapter 2, I will share my code and relevant examples on my github

page. For the 𝐿0 regularized learning frameworks presented in Chapters 3 and 4, I plan on

developing both R and Python packages for other researchers to easily access.
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Table A.1: Simulation Results of 4-group Model with number of original intervals 𝐽 = 300 to
evaluate the adapted 𝐿0-fusion analytic under a environment with severe multi-collinearity.
Results are summarized over 500 replicates and include average estimate (𝐿0 Mean), empir-
ical standard error (𝐿0 ESE), and Mean from a standard Fused Lasso analysis (FL Mean)
for a sample size of 𝑁 = 500. Cutpoint values are represented as VM/100 for ease of visual-
ization.

Scenario D Scenario E Scenario F

Truth 𝐿0 Mean 𝐿0 ESEFL MeanTruth 𝐿0 Mean 𝐿0 ESEFL MeanTruth 𝐿0 Mean 𝐿0 ESEFL Mean

𝛽1 2 2.00 0.04 1.52 4 4.00 0.04 3.02 8 7.99 0.04 6.01
𝛽2 1 0.98 0.11 0.30 2 2.01 0.12 0.57 4 3.99 0.10 0.99
𝛽3 0 −0.01 0.12 −0.34 0 −0.01 0.10 −0.65 0 −0.01 0.10 −1.35
𝛽4 −1 −1.00 0.01 −0.98 −2 −2.00 0.01 −1.95 −4 −4.00 0.01 −3.91
𝑐1 40 39.82 3.61 77.17 40 40.05 1.59 77.78 40 40.01 0.75 78.39
𝑐2 80 80.39 4.52 97.94 80 80.17 1.90 98.43 80 80.02 0.91 99.28
𝑐3 120 120.31 2.79 117.68 120 120.11 1.24 117.28 120 120.02 0.63 117.22
𝛼 1 1.00 0.43 1.08 1.00 0.98 0.43 0.87 1.00 0.97 0.43 0.45
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Table A.2: Simulation Results of 4-group Model with number of intervals 𝐽 = 60 to evaluate
the adapted 𝐿0-fusion analytic, summarized over 500 replicates. Results include average
estimate (𝐿0 Mean), empirical standard error (𝐿0 ESE), and Mean from a standard Fused
Lasso analysis (FL Mean) as comparison. Cutpoint values are represented as VM/100 for ease
of visualization. Sensitivity for selecting 3-group model based on goodness-of-fit comparisons
was greater than 99% in all scenarios.

N = 500 N=250 N=100

Truth 𝐿0 Mean 𝐿0 ESE FL Mean 𝐿0 Mean 𝐿0 ESE FLMean 𝐿0 Mean 𝐿0 ESE FL Mean

Scenario D
𝛽1 2 2.00 0.04 1.51 2.01 0.07 1.52 2.04 0.22 1.55
𝛽2 1 1.01 0.13 0.23 1.02 0.25 0.30 1.06 0.68 0.33
𝛽3 0 −0.01 0.13 −0.39 −0.03 0.23 0.37 −0.21 0.69 −0.41
𝛽4 −1 −1.00 0.01 −0.97 −1.00 0.01 −0.97 −1.01 0.07 −0.98
𝑐1 40 39.74 3.63 78.12 39.21 6.21 76.93 37.69 11.91 74.05
𝑐2 80 80.13 4.54 100.61 80.43 8.19 99.06 83.01 16.86 100.28
𝑐3 120 120.29 3.01 118.01 121.71 10.54 118.51 135.33 39.14 121.94
age 1 0.98 0.44 1.08 0.99 0.67 1.05 1.01 1.06 1.36

Scenario E
𝛽1 4 3.99 0.04 2.99 4.00 0.06 3.03 4.01 0.10 3.06
𝛽2 2 1.99 0.11 0.43 2.01 0.17 0.47 2.02 0.32 0.63
𝛽3 0 −0.01 0.08 −0.79 −0.01 0.17 −0.72 −0.06 0.35 −0.77
𝛽4 −2 −2.00 0.01 −1.95 −2.00 0.01 −1.94 −2.00 0.02 −1.95
𝑐1 40 40.05 1.40 78.90 39.88 2.45 77.93 39.56 4.60 75.83
𝑐2 80 80.25 1.84 101.80 80.16 2.98 100.37 80.42 6.18 99.31
𝑐3 120 120.08 0.95 117.50 120.05 2.01 118.01 121.73 11.96 119.91
age 1 0.98 0.44 0.86 1.01 0.67 0.91 1.02 1.06 1.09

Scenario F
𝛽1 8 7.99 0.03 5.99 7.99 0.04 6.03 8.00 0.09 6.14
𝛽2 4 4.00 0.04 0.75 4.00 0.09 0.91 4.01 0.27 1.31
𝛽3 0 −0.00 0.03 −1.67 −0.004 0.08 −1.52 −0.03 0.27 −1.51
𝛽4 −4 −4.00 0.00 −3.90 −4.00 0.01 −3.89 −4.00 0.01 −3.89
𝑐1 40 40.00 0.00 78.76 40.04 0.55 78.34 39.87 1.96 75.63
𝑐2 80 80.00 0.00 102.57 80.03 0.74 100.61 80.14 2.51 98.51
𝑐3 120 120.00 0.00 117.73 120.01 0.39 117.80 120.22 1.57 119.73
age 1 0.98 0.44 0.45 1.01 0.66 0.59 1.01 1.06 0.52
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Figure B.1: An illustration of the AUC Ratio calculation for Window 3. The shaded green
regions represent the AUC for subject i at time t for 𝑡 = 𝑐(1, 2) within the detected window,
or 𝐴𝑖3. The outlined rectangle represents the area of the full rectangle created by the
cutpoints (𝑐2 = 145, 𝑐3 = 300) of Window 3, deemed 𝑅3, which represents the hypothetical
subject spending 100% of time at or above this activity level. The AUC Ratio for this first
window is then calculated by AUC Ratio𝑖3 =

𝐴𝑖3
𝑅3

. The interpretation of this ratio depends

on the location of the window. For the 𝐾𝑡ℎ window, the interpretation of the AUC Ratio𝑖𝐾
represents the percent of time the individual spends within that window compared to the
hypothetically most active person. In this case, a higher AUC Ratio𝑖3 value represents
higher PA within the window. We can see that the AUC Ratio𝑖3 at T1 is lower than the
AUC Ratio𝑖3at T2, suggesting a higher outcome at T2 versus T1. In reality, we see an SSST
outcome of 12.0mm at T1, increasing to 12.5mm at T2.
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