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Abstract 

High-energy photon interrogation is a non-destructive technique that is used to detect 

hidden special nuclear materials (SNMs) and characterize nuclear waste. The development of such 

systems is complex and requires Monte Carlo simulations to optimize system performance. Monte 

Carlo simulations rely on various scattering, absorption, and photonuclear cross-section data. The 

scattering and absorption cross-section data for neutrons and photons has been extensively studied 

and validated with experiments because of their importance in nuclear reactor and radiation 

shielding simulations. However, photonuclear cross-sections are not extensively studied and lack 

the desired validation with measured results. The under-prediction by Monte Carlo codes can range 

from 20-30%, and therefore there is a need to validate photonuclear cross-section data with precise 

new measurements.    

The present Ph.D. research provides new measured results for photoneutron count rates 

from various high-Z targets. The measured results were compared with the simulated results 

obtained by Monte Carlo codes. The simulations were performed using the MCNPX-PoliMi 

transport code with the most updated photonuclear cross-section data. For measurements of 

photoneutrons, several high-Z targets were interrogated with bremsstrahlung photons from a 9-

MV electron linac, and fast neutrons were detected with four trans-stilbene organic scintillators. 

The comparative study between measurement and simulation provided a quantitative assessment 

of the under-prediction in the photoneutron count rates by MCNPX-PoliMi. 



 xiv 

During interrogation of targets, the intense bremsstrahlung photons from the linac creates 

significant pulse pile-up in trans-stilbene. The pulse pile-up effect was mitigated by developing 

an artificial neural network (ANN) system for digital processing of scintillation pulses. The 

developed ANN system outperformed traditional pulse shape discrimination methods during an 

active 252Cf measurement. In this measurement, prompt fission neutrons were measured from a 

252Cf spontaneous fission source in the presence of the intense photon flux from the linac, imitating 

a challenging radiation environment for the measurement of fast neutrons. 

Photoneutrons were measured from a SNM surrogate, such as depleted uranium (DU), and 

a non-SNM target, such as lead. The results obtained from the developed ANN system showed a 

5x increase in the photoneutron count rate when lead target was replaced with the DU target. 

Additionally, the light output distribution for lead photoneutrons was softer than the light output 

distribution for DU photoneutrons. This difference in the light output distributions is a new result 

because there exists no prior work in the literature that detected photoneutrons without time-of-

flight and coincidence counting. The DU target was further interrogated in various iron and 

polyethylene shielded configurations. The measured photoneutron count rates decreased with an 

increase in shield wall thickness. This decreasing trend is due to the moderation of photoneutrons 

by polyethylene, and the attenuation of bremsstrahlung radiation by iron.  

The interrogation measurements of DU in bare and shielded configurations were simulated 

using the developed MCNPX-PoliMi framework. For a light output window of 0.28 – 2.67 MeVee 

(1.66 – 6.85 MeV proton recoil energy), the simulated photoneutron count rate under-predicted 

the measured rate by 32.8 ± 3.2%. The findings from this work provide new measured results that 

can help improve photonuclear cross-section data for uranium, which in turn will enhance 

simulation capabilities with existing Monte Carlo codes. 
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Chapter 1 Introduction and Motivation

Active interrogation using high-energy photons is a non-destructive assay technique that is 

used to detect special nuclear materials [1–3] and characterize nuclear waste [4,5]. The 

development of high-energy photon interrogation systems is complex and requires Monte Carlo 

simulations to optimize system performance for a given application. Monte Carlo simulations rely 

on various scattering, absorption, and photonuclear cross-section data. The scattering and 

absorption cross-section data for neutrons and photons has been extensively studied and validated 

with experiments because of their importance in nuclear reactor and radiation shielding 

simulations. However, photonuclear cross-sections are not extensively studied and lack the desired 

validation with measured results [6]. The results obtained from photonuclear simulations are found 

to under-predict measured results, indicating uncertainties in the cross-sections themselves. The 

discrepancy between measurement and simulation can be as high as 20-30% [7], and therefore, 

there is a need for new supporting measured results that can be used to quantify under-prediction 

in these cross-sections.   

Most recently, Sari performed characterizations of photoneutron fluxes emitted by a linear 

accelerator (linac) in the 4-20 MeV energy range using the MCNPX transport code [8]. The author 

identified that the lack of knowledge of photoneutron yield both near the reaction energy threshold 

and at the maximum of the cross-section curve could potentially be the cause of unreliable 

photoneutron fluxes. In a research project coordinated by the International Atomic Energy Agency, 
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Varlamov performed a reliability study of photonuclear cross-section data obtained by Lawrence 

Livermore National Laboratory in the U.S. and Saclay Laboratory in France [9]. The author 

identified disagreements between data from two laboratories for partial reaction cross-sections. 

This disagreement results from the different photoneutron multiplicity sorting methods used by 

the two laboratories. Noticeable uncertainties were reported in the evaluated photonuclear cross-

section data, and therefore, precise measurements of photoneutron yield are needed to validate 

photonuclear cross-section data.   

The measurement of the photoneutron yield from a target is challenging due to the presence 

of the intense photon flux, which causes challenges such as pulse pile-up (i.e., two or more pulses 

occurring within the detection time window), detector saturation, and a poor signal-to-background 

ratio. The interaction of high-energy photons, through photonuclear reactions e.g. (𝛾, 𝑋𝑛) with the 

surrounding high-Z materials creates an elevated neutron background. This “active” background 

reduces the signal-to-background ratio. The pulse pile-up further complicates the measurement 

because if piled-up signals are not eliminated they can cause misclassification of the data, and 

upon elimination of piled-up events there is loss of information. Thus, it is crucial to mitigate these 

challenges during active interrogation.  

In this Ph.D. work, I significantly enhanced digital pulse processing by developing and 

demonstrating an artificial neural network system that can recover neutron and photon pulses from 

piled-up events. Experiments were performed to measure the photoneutron count rate from various 

targets using trans-stilbene organic scintillators and a 9-MV electron linac. Additionally, a 

comparative study was made between the measured and simulated results obtained with the 

MCNPX-PoliMi transport code. The detailed comparison performed in this work provided a 
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quantitative assessment on the under-predictions in the photoneutron count rates obtained by 

Monte Carlo codes. 

1.1 Existing Literature 

1.1.1 Artificial Intelligence in Nuclear Safeguards and Non-proliferation  

Artificial intelligence is a technique that enables computers to mimic human behavior. 

Deep learning is a subset of artificial intelligence that extracts patterns from data using artificial 

neural networks (ANNs). With recent technological advances in computing resources, ANN 

hardware accelerators and deep architectures, ANN technology has gained maturity to learn 

complicated functions that can represent high-level abstractions [10]. The use of ANN technology 

is reaching astonishing heights in several areas of science and technology, and the nuclear 

community is working collaboratively to identify requirements, needs, and opportunities for 

artificial intelligence in nuclear safeguards and non-proliferation. 

Radiation imaging plays a vital role in monitoring, localizing, and characterizing 

radioactive sources for nuclear security and safety. Olesen and colleagues developed a 

convolutional neural network (CNN) encoder-decoder architecture to reconstruct images from the 

rotating scatter mask imaging system [11]. The authors demonstrated that the CNN-based 

reconstruction algorithm outperforms the standard maximum-likelihood expectation–

maximization (ML-EM) algorithm. The relative error of reconstruction was reduced from 145% 

to 33% and precision was increased from 27% to 85%. Additionally, the CNN-based algorithm 

demonstrated a successful reconstruction of the image with minor degradation when the network 

was trained on noisy input data. Similarly, in another study by Zhang et al., the CNN-based 

reconstruction was found to improve the quality of reconstructed images for coded-aperture 

imaging systems under low count conditions [12]. 
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NEutron Detector Array (NEDA) is a state-of-the-art detection system built for safeguards 

applications [13]. NEDA is a versatile device with 331 EJ-301 liquid scintillators that has high 

detection efficiency, excellent particle discrimination, and high-count rate capabilities. Fabian et 

al. developed three different ANN architectures, multi-layer perceptron (MLP), CNN, and long 

short-term memory (LSTM) for neutron and gamma-ray discrimination in the neutron detector of 

NEDA [14]. The authors concluded that all three ANN architectures performed quite similarly, 

and LSTM was found to be robust against time misalignment of the scintillator voltage pulse. 

Another comparative study of ANN architectures was performed by Tambouratzis et al [15]. 

Linear vector quantization (LVQ) and self-organizing maps (SOM) were the two ANN 

architectures that were investigated. The investigation found SOM to have superior overall 

accuracy at all energies.  

To mitigate the effect of pulse pile-up, Belli et al. provide a method for recovery of piled-

up pulses from the NE-213 detector [16]. In this method, the first pulse in a piled-up event is fitted 

with a response function. The response function is specific to the detector, as it is a function of the 

scintillators decay constant, and the time constant of the measuring circuit. The second pulse is 

then recovered after subtracting the first partially fitted pulse from the piled-up event. The 

subtraction process continues until all single pulses from the piled-up event are recovered. The 

process proposed by Belli et al. is non-trivial and quite complex to implement in real time.  

An ANN approach was demonstrated by Kafaee and Saramad to recognize piled-up events 

from a NaI scintillator and recover gamma information [17]. The authors used an MLP with the 

Levenberg–Marquardt backpropagation learning algorithm. The developed ANN consisted of an 

input layer with a dimension of 8, two hidden layers each had a dimension of 20, and an output 

layer with a dimension of 3. The measured gamma energy spectrum was found to have a reduced 
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effect of piled-up events and an increased count in the full-energy photopeak. Additionally, MLP 

was found to outperform hardware-based pile-up rejection methods.   

In 2018, Fu et al. used ANN to recover piled-up pulses [18]. Fully connected neural 

networks (Fc-NN) and recurrent neural networks (RNN) were developed to perform pulse shape 

discrimination and identification of piled-ups produced by organic scintillators. The performance 

of Fc-NN and RNN was tested in a high-radiation environment (100,000 counts per second) that 

had a gamma-ray to neutron ratio of approximately 400-to-1. The authors demonstrated that ANN 

has greater accuracy in identifying piled-up events than traditional charge integration methods. 

Additionally, the capability of ANN in recovering neutron and photon information from piled-up 

events was demonstrated. The authors found that RNN achieved a better classification of 

individual pulses in a piled-up event compared to Fc-NN. In a similar study, Han et al. investigated 

the performance of CNN to classify scintillation pulses from Cs2LiYCl6 (CLYC) detector [19]. 

The authors demonstrated classification of neutron, photon, and piled-up signals with a 

discrimination error of approximately 4%.  

Artificial intelligence has demonstrated its potential in radiation detection; however, there 

is limited literature available on the applicability of neural networks in intense radiation 

environments, such as the bremsstrahlung radiation from the linac, which causes significant pulse 

pile-up. In the present work, I developed and demonstrated an ANN system that can be used in 

such intense radiation environments for scintillation pulse processing. Supporting experiments and 

accompanying simulations were performed to validate the performance of the developed ANN 

system.  

1.1.2   Prompt Photoneutron Detection 
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Numerous systems have been developed that rely on prompt photofission neutrons for the 

detection of hidden SNMs. In 2007, Blackburn et al. demonstrated the detection of prompt 

photofission neutrons from depleted uranium.  In Blackburn’s experiment, high-energy photons 

were produced with a 10-MV electron linac from Varitron operating at 125 Hz. Interrogation 

measurements with a) no material present (active background), b) bismuth, and c) depleted 

uranium were performed and signals that fell under 3 𝜇𝑠 of the accelerator pulse were analyzed. 

An EJ-200 fast plastic scintillator detector was used to monitor photoneutrons. The measured 

integral counts demonstrated successful identification of actinides among other photoneutron 

producing targets, such as bismuth.  

In 2014, Mueller et al. proposed a novel method to discriminate between fissile and non-

fissile contents of SNM [20,21]. The proposed method exploits the difference in the prompt 

neutron yield parallel and perpendicular to the plane of γ-ray beam polarization. This difference in 

prompt neutron yield is referred to as polarization asymmetry. High-energy photons with energies 

between 5.3 and 7.6 MeV were used to interrogate several actinide targets (i.e., 232Th, 233,235,238U, 

237Np, and 239,240Pu) and 18 BC-501A liquid scintillators were used for fast neutron detection. The 

authors found that non-fissile targets had significant polarization asymmetries ranging from 0.2 to 

0.5, whereas fissile targets had asymmetries of nearly zero. The method proposed by Mueller and 

colleagues could be used to simultaneously detect and identify fissile and non-fissile fissionable 

material during active interrogation. Since the asymmetry is much smaller for fissile actinides, this 

method could theoretically be used to determine the enrichment of small samples of SNM 

(approximately 1 g/cm2) to the level of 10% enrichment. Additionally, the authors found that this 

asymmetry was relatively insensitive to moderate amounts of lead, steel, and high-density 

polyethylene shielding. Another study for the applicability of photofission reaction ratios to 
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identify enrichment was performed by Chin et al. [22,23]. The authors demonstrated that by 

calculating the ratio of photofission neutrons produced by a higher photon energy over a lower 

photon energy, quantitative information on uranium enrichment could be obtained.      

An X-ray inspection system has been developed by Passport Systems Inc. to scan cargo 

containers for possible contrabands, anomalies, and nuclear threats  [1,24]. This system utilizes a 

continuous wave 9 MeV rhodotron to induce photofission reactions in SNM. Prompt fission 

neutrons were detected with phenylxylylethane (PXE) liquid scintillation detectors. During the 

initial testing, interrogation measurements with a) depleted uranium, b) heavy water, and c) 

beryllium were performed. Both heavy water and beryllium have defined photoneutron endpoint 

energies at 3.4 MeV and 6.5 MeV respectively for a 9 MeV interrogating photon; however, 

depleted uranium does not have an endpoint energy because of the presence of prompt fission 

neutrons. The X-ray interrogation system developed by Passport Inc. exploits this difference in the 

energy spectra of photoneutrons to reduce false positives and efficiently identify fissionable 

materials. 

Capture-based and scatter-based neutron detectors are often challenged by the intense high-

energy photon source, which causes pulse pile-up. Neutron activation analysis (NAA) is a 

technique in which gamma-rays from (𝑛, 𝛾) reactions are counted to estimate photoneutron yields 

in various targets. The (𝑛, 𝛾) reaction is a threshold-based reaction, and therefore, by selecting 

appropriate isotope foils, the photoneutron spectrum information can be obtained. The physics of 

NAA makes this technique robust against pile-up and is often used to characterize photoneutron 

fluxes emitted from the high-Z X-ray converter target in linacs. Recently, the NAA technique has 

been used to measure photofission yields of 239Pu, 235U, and 238U isotopes [25]. Delarue and 

colleagues used a 17.5 MeV bremsstrahlung photon beam to produce photoneutrons in Pu and U 
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isotopes and a n-type high-purity germanium (HPGe) detector to count gamma-rays from (𝑛, 𝛾) 

reactions in various foils. The various activation foils used were gold, nickel, uranium, zinc, and 

zirconium. In another study by Meert et al., an NAA technique was used to discriminate a SNM 

surrogate, such as depleted uranium, from a non-SNM material, such as lead [26].          

The high-energy photon interrogation systems that rely on prompt photofission neutrons 

are quite promising for the detection of hidden SNMs. However, in a laboratory, it is difficult to 

test the performance of the system for field operations, such as cargo scanning at ports of entry. 

Restricted access to SNM, limited space, and regulatory concerns about high-energy photon 

sources are the limitations in a laboratory. Monte Carlo simulations that rely on photonuclear 

cross-section data are the best tools, which can help predict the response of the developed system 

in a real-like scenario. There is a growing concern about the reliability of results from Monte Carlo 

simulations, and therefore a need to validate photonuclear cross-sections [6,27]. 

1.2 Thesis Overview 

In the current Ph.D. work, measurement of photoneutrons from various high-Z targets were 

performed. Photoneutrons were produced through bombardment of high-energy bremsstrahlung 

radiation from a pulsed source of 9-MV linac and detected with trans-stilbene organic scintillators. 

Lead, which produces photoneutrons through (𝛾, 𝑛) reactions, and depleted uranium (DU), which 

produces photoneutrons through (𝛾, 𝑛) and (𝛾, 𝑓) reactions, were interrogated with the linac. To 

mitigate the effect of pule pile-up during interrogation, I developed and demonstrated an ANN 

system for digital processing of scintillation pulses. The developed ANN system can identify 

single neutron pulses and recover neutron and photon information from piled-up events. The 

measured results were compared with the simulated results, which were obtained using the 

MCNPX-PoliMi [28–30] transport code. This detailed comparison provided a quantitative 
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assessment on the under-predictions in the photoneutron count rates obtained by Monte Carlo 

codes. A brief description of each chapter is provided below:  

Chapter 2:  The physics of photoneutron production is described in this chapter, followed by 

the physics of fast neutron detection with capture-based and scatter-based detectors. I further 

describe the digital acquisition system that is used to readout the scintillation light from 

organic scintillators.  

Chapter 3: An overview of the fundamental concepts and principles of the ANN is provided, 

including their architecture, and learning algorithms. Additionally, common types of ANN are 

briefly described in this chapter.    

Chapter 4: The training of the developed ANN system requires high-quality training data. This 

chapter provides detailed description of steps used to acquire high-confidence neutron and 

photon pulses from a time-of-flight measurement.  Additionally, the chapter describes the 

synthesis of various types of piled-up events using the acquired neutron and photon pulses.  

Chapter 5: In this chapter, I describe the architecture of the developed ANN system. Details 

on acquiring high-confidence neutron, photon, and piled-up pulses are provided, and the 

training process of the ANN system is explained. The ANN system performance was 

demonstrated through an experiment whose details are described. The chapter is concluded 

with a discussion on obtained results and accuracy of the developed ANN system.   

Chapter 6: This chapter includes the measured results for photoneutron count rate from an 

unshielded depleted uranium target that was interrogated with bremsstrahlung photons from a 

9-MV linac. The developed framework for MCNPX-PoliMi simulation is described. I discuss 

my findings from the detailed comparison of the simulated and measured photoneutron count 
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rates. This chapter concludes with a discussion on discrepancies observed between 

measurement and simulation.   

Chapter 7: In this chapter, I present measured results for photoneutron count rates from 

depleted uranium, which was shielded in various iron and polyethylene configurations. The 

experiment was modeled with the developed MCNPX-PoliMi framework. A detailed 

comparison made between the measured and simulated results provided a quantitative 

information on the under-predictions in the photonuclear cross-section data for uranium.  

Chapter 8: This chapter presents the overall summary and conclusions and provide 

recommendations for future work.   

 



 11 

Chapter 2 Photoneutrons: Production and Detection  

The physics of photoneutron production is discussed in this chapter, followed by the 

physics of fast neutron detection with capture-based and scatter-based neutron detectors. 

Additionally, the digital data acquisition system used to readout voltage signals from detectors is 

described. The goal of this chapter is to provide fundamental knowledge about photoneutrons and 

their detection.  

2.1 Photoneutron Production 

Photons with sufficient energy to overcome the neutron binding energy can cause 

photonuclear reactions, such as (𝛾, 𝑋𝑛). The photonuclear reactions are governed by broad 

resonances known as giant dipole resonances, and the probability of the reaction is maximum at 

the resonance peak energy. For a low-Z material like 9Be, the resonance peak is at 20 MeV, and 

for a high-Z material like 208Pb, the resonance peak is at 14 MeV. For most actinides, the 

resonances peak between 10 and 15 MeV.  

There are two possible types of photonuclear reactions i.e., (𝛾, 𝑛) and (𝛾, 𝑓) for photon 

energies below 10 MeV. Figure 2.1 shows the cross-section data for the (𝛾, 𝑛) and (𝛾, 𝑓) reactions. 

The threshold energy for (𝛾, 𝑛) reactions varies with the target element. This threshold is 1.66 MeV 

and 7.37 MeV for 9Be and 208Pb respectively [31]. Special nuclear material (SNM), such as 235U, 

have a threshold of 5.30 MeV for (𝛾, 𝑛) reactions [31]. Additionally, SNM can undergo 

photofission reactions i.e., (𝛾, 𝑓) resulting in the emission of prompt and delayed fission neutrons.    
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Figure 2.1.  TENDL-2019 cross-section data for a) (𝛾, 𝑛) photonuclear reactions and b) (𝛾, 𝑓) photonuclear 
reactions [31].    

Fission reactions have a higher multiplicity than (𝛾, 𝑛) reactions, which have a multiplicity 

of one. For an interrogating gamma-ray energy of 7 MeV, the prompt fission neutron yield is 2.54 

and 2.72 for 235U and 238U isotopes respectively [32,33]. The yield of photofission reaction and 

prompt neutrons increases with photon energy (Figure 2.3 and Figure 2.2).  Additionally, fission 

neutrons and (𝛾, 𝑛) neutrons are emitted with different energy spectra. Figure 2.4 shows the 

difference in the energy spectrum of photoneutrons produced by (𝛾, 𝑓) and (𝛾, 𝑛) reactions. 

Photoneutrons through (𝛾, 𝑛) reactions have a maximum kinetic energy, which is determined by 

the incoming photon energy and the reaction Q-value. For photon energies that exceed the 

minimum threshold energy for (𝛾, 𝑛) reaction, the corresponding photoneutron energy is given by, 

𝐸!(𝜃) ≅
𝑀/𝐸" + 𝑄2
𝑚 +𝑀 +

𝐸"4(2𝑚𝑀)(𝑚 +𝑀)/𝐸" + 𝑄2

(𝑚 +𝑀)# cos	(𝜃) 2-1 
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where 𝜃 = angle between interrogating photon and neutron direction,  

𝐸" = photon energy,  

𝑀 =  mass of recoil nucleus ∗ 𝑐#, and  

𝑚 = mass of neutron ∗ 𝑐#. 
 

However, prompt fission neutrons, emitted with a Watt energy spectrum [34], have energies up to 

10 MeV and beyond.    

 

Figure 2.2. Yield of photofission as a function of bremsstrahlung photon energy [33]. 𝜙!(𝐸) is the energy spectrum 
of bremsstrahlung photons, 𝜎"# is the photofission cross-section, and 𝑌#(𝐸) is the photofission yield.  

 

Figure 2.3. Prompt neutron yield per photofission reaction for photons incident on 234U [7]. 
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Electron linear accelerators (linacs) are commonly used to produce high-energy photons 

for photonuclear reactions. The linac uses electric and magnetic fields to accelerate electrons into 

a conversion target. These fast electrons lose energy by radiative processes as they decelerate in 

the conversion target, resulting in the emission of bremsstrahlung photons. In general, linacs 

operate in pulsed mode, i.e., emitting bremsstrahlung photons in pulses of a duration between a 

few microseconds and a few milliseconds at a given repetition frequency [35]. The pulsed nature 

of the linac can facilitate separation of prompt fission neutrons from delayed neutrons, which are 

produced through 𝛽-decay of photofission fragments. 

 

Figure 2.4. Energy spectrum of photoneutrons produced because of (𝛾, 𝑓) and (𝛾, 𝑛) photonuclear reactions. These 
distributions are simulated using the MCNPX-PoliMi transport code.  

2.2 Photoneutron Detection 

The photoneutrons from (𝛾, 𝑛) and (𝛾, 𝑓) reactions are fast neutrons, which are emitted 

promptly after the incident pulse of high-energy photons. Capture-based detectors e.g., 3He, and 

scatter-based detectors e.g., organic scintillators are widely used for neutron detection. Neutrons 

are neutral particles that are detected through secondary interactions. The choice of neutron 

detectors is based on several factors, which includes cross-section for the secondary interaction, 

the Q-value of the reaction, the ability to discriminate gamma-rays in the detection process, and 
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the efficiency of the detectors. The physics of capture-based and scatter-based neutron detectors is 

described in sections below.    

2.2.1 Capture-based detectors 

In capture-based detectors, the neutron is absorbed by the target nucleus resulting in the 

emission of charged particles. These charged particles are directly detectable with conventional 

radiation detectors, such as gas-filled proportional counters. The commonly used nuclei for 

neutron-capture reactions are 3He, 10B, and 6Li.  

𝐻𝑒#
$ + 𝑛%& → 𝐻&$ + 𝑝&& 												𝑄 = 0.764	𝑀𝑒𝑉 

𝐵'&% + 𝑛%& → I 𝐿𝑖$
( + 𝛼#) 														𝑄 = 2.792	𝑀𝑒𝑉	(𝑔𝑟𝑜𝑢𝑛𝑑	𝑠𝑡𝑎𝑡𝑒)
𝐿𝑖∗$
( + 𝛼												𝑄 = 2.310	𝑀𝑒𝑉#

) 	(𝑒𝑥𝑐𝑖𝑡𝑒𝑑	𝑠𝑡𝑎𝑡𝑒)
 

𝐿𝑖$
+ + 𝑛%& → 𝐻&$ + 𝛼#) 												𝑄 = 4.78	𝑀𝑒𝑉 

Figure 2.5 shows the cross-section data for some reactions of interest in neutron detection. The 

cross-section drops rapidly with increasing neutron energy, and therefore, these detectors are 

mainly used for thermal neutron detection. The photoneutrons from (𝛾, 𝑋𝑛) reactions are fast 

neutrons and require moderation for their efficient detection. The moderating process eliminates 

the information on the neutron energy and further slows down its detection. In intense photon 

environments, reactions with higher Q-values are desired because it is relatively easy to 

discriminate gamma-ray interactions within the detector using simple amplitude discriminator.    

The size of the detector and the amount of moderation present have important 

consequences on the detector design. To capture the full kinetic energy of charged particles, the 

active volume must be large enough to stop these particles within the detector. If one of the charged 

particles escapes the active volume, then wall losses are observed, i.e., partial energy deposition 

by the charged particle. Another consideration is the amount of neutron moderator present around 
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the detector. The slowing-down of the neutron to thermal energies and its lifetime in the moderator 

determines the response time of the detector. The capture-based detectors used for fast neutron 

detection have a typical timing response on the order of microseconds.   

 

Figure 2.5. ENDF/B-VII cross-section data for neutron-capture reactions in various nuclei of interest.  

2.2.2 Scatter-based detectors 

Figure 2.6 shows the cross-section data for neutron elastic scatter on hydrogen, deuterium, 

and helium. At thermal energies, the cross-section for neutron elastic scatter is orders of magnitude 

lower than the neutron capture reaction. This lower cross-section has a direct consequence on the 

detection efficiency. The benefit of scatter-based detectors is their ability to perform spectroscopy. 

The electrical signal that is constituted by the recoil nucleus is directly proportional to the energy 

deposited by incoming neutrons. Additionally, direct detection of fast neutrons without any 

moderation makes detection times relatively faster than capture-based detectors.     

The neutron transfers partial of its initial kinetic energy on elastic scatter with a target 

nucleus, resulting in a recoil nucleus. Hydrogen, deuterium, and helium are preferred target nuclei 

because neutrons can transfer most of their energy in a single elastic scatter. The amount of energy 
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transferred to recoil nucleus depends on the scattering angle and mass number of the target nucleus. 

Equation 2-2 gives the relation for the recoil nucleus energy in terms of its own angle of recoil. 

 

Figure 2.6. ENDF/B-VII cross-section data for neutron elastic scatter.  

𝐸, =
4𝐴

(1 + 𝐴)# . cos
# 𝜃 . 𝐸! 2-2 

where 𝐸, = kinetic energy of the recoil nucleus,  

𝐴 = mass number of target nucleus, 

𝜃 =  scattering angle of the recoil nucleus, and   

𝐸!= kinetic energy of the incoming neutron.  
 

 

The maximum recoil energy is when the incoming neutron undergoes head-on collision 

i.e., 𝜃 = 0 with the target nucleus. Table 2.1 shows the maximum energy transferred by a neutron 

during elastic scatter with target nucleus. For a single scatter on 𝐻&& , neutrons can transfer any 

energy between 0% and 100% and therefore, organic scintillators are best suited for neutron 

spectroscopy. Additionally, organic scintillators have time resolution on the order of 

nanoseconds  [36], which is an added benefit for photoneutron detection.     
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Table 2.1: Maximum energy transferred during elastic scattering of neutron with target nucleus. 

Target nucleus Mass number (A) 
𝐸$!"#
𝐸%

=
4𝐴

(1 + 𝐴)& 

𝐻''  1 1 

𝐻'&  2 0.889 

𝐻&( 𝑒 3 0.750 

𝐻𝑒&
)  4 0.640 

𝐶*'&  12 0.284 

𝑂+'*  16 0.221 

 

2.2.3 Organic scintillators 

Organic scintillators are state-of-the-art fast neutron detectors with spectroscopy 

capabilities and fast timing characteristics. In organic scintillators, the prompt fluorescence (decay 

time of a few nanoseconds) represents most of the scintillation light. However, in many cases 

delayed fluorescence emitted with a decay time of several hundred nanoseconds is observed. This 

fraction of light that appears in the slow component of the scintillation pulse helps differentiate 

between different particles that deposit the same amount of energy in the scintillator i.e., pulse 

shape discrimination (PSD). Figure 2.7 shows the time dependence of the prompt and delayed 

fluorescence in the trans-stilbene scintillator when photons, fast neutrons, and alpha particles 

interact within the scintillator. The slow component of the scintillation pulse originates with the 

excitation of long-lived triplet states along the track of the ionizing particle, and depend on the rate 

of energy loss i.e., 𝑑𝐸/𝑑𝑥 of the exciting particle.   

In the organic scintillator, fast neutrons are detected through elastic scatter (proton and 

carbon recoils) and photons are detected through Compton scatter (electron recoil). PSD is 

commonly achieved using a charge integration technique, which exploits the difference in the slow 
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component of the scintillation pulse for neutron and photon discrimination. The charge integration 

method compares the tail and total integrals of the scintillation pulse to a discrimination line to 

classify each detected event. Figure 2.8a illustrates the charge integration method, and Figure 2.8b 

shows a typical PSD distribution, which is obtained using a 5.08 cm in length and 5.08 cm in 

diameter trans-stilbene crystal coupled to a photomultiplier tube.   

 

Figure 2.7. Time dependence of prompt and delayed fluorescence for different particles in the trans-stilbene 
crystal [37].  

 

Figure 2.8. a) Traditional charge integration method for PSD analysis and b) PSD plot for a 252Cf spontaneous fission 
source (measured with a 5.08 cm in length and 5.08 cm in diameter trans-stilbene detector). 

The fraction of particle energy that is converted to scintillation light depends on the particle 

type i.e., electron versus proton versus carbon, and its energy. Figure 2.9 shows a typical 

scintillation response to electrons, protons, and alpha particles. For electrons, the scintillation 

response is nearly linear. However, for heavy charged particles, such as protons, the scintillation 
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response increases non-linearly with energy. This non-linear response is due to the quenching of 

primary excitation by the high density of ionized and excited molecules. The quenching is greatest 

for particles with large 𝑑𝐸/𝑑𝑥. The Birks function, represented in eq. 2-3, can be used to account 

for the quenching effect in the trans-stilbene scintillator.   

𝐿(𝐸) = [
𝑎

1 + 𝑏 ]𝑑𝐸𝑑𝑥^
𝑑𝐸 2-3 

where 𝐿(𝐸) = light output in MeVee (MeV electron equivalent, i.e., the amount of light 
created by a photon energy deposition in MeV), 

𝑑𝐸/𝑑𝑥 = particle stopping power in the scintillator, and 

𝑎 and 𝑏 =  fitted coefficients.  
 

 

 

Figure 2.9. Scintillation response to electrons, protons, and 𝛼-particles (anthracene organic scintillator) [38].  

2.2.4 Scintillation Light Readout 

Figure 2.10 shows a block diagram to read the scintillation light from organic scintillators. 

The scintillation light is read through a photomultiplier tube (PMT). A PMT consists of a 

photodiode that converts the emitted light to a photoelectron, and an electron multiplier, which 

uses an electric field to accelerate electrons into a dynode. The collision of electrons with the 

dynode releases several new electrons, which are accelerated into another dynode. After 
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amplification through dynodes, there are sufficient electrons to serve as the charge for the original 

scintillation light. This charge is then collected at the anode of the PMT. For all measurements 

performed in the present Ph.D. research, the trans-stilbene crystal coupled to a 5.08 cm in diameter 

PMT from ET Enterprises [39] were used. The trans-stilbene crystals were from Inrad Optics [40] 

and the dimensions were 5.08 cm in length and 5.08 cm in diameter. Figure 2.11 shows the 

photograph of the scintillator and the PMT used in this work.    

 

Figure 2.10. Block diagram for reading scintillation light from trans-stilbene crystals.  

 

Figure 2.11. Photograph of the 5.08 cm in length and 5.08 cm in diameter trans-stilbene crystal and a 5.08 cm in 
diameter photomultiplier tube.  

 The charge from the anode of the PMT is digitized using a high-speed multichannel analog-

to-digital converter (ADC). The digitizer used in this work was a V1730 14-bits, 500 MS/s digitizer 
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from CAEN [41] (Figure 2.12). The 500 MS/s rate samples scintillation pulse data every 2 𝑛𝑠, and 

14-bits provides a vertical resolution of 2&) = 16384 voltage bins. These digitizers have a 

dynamic range of 0 to 2 V, and therefore the voltage bins can be converted from ADC units to 

volts using, 

𝑆-./01 = 𝑆234 ∗ `
2
2&)a. 

2-4 

where 𝑆-./01 = voltage in units of volts, and 

𝑆234  = voltage in units of ADC.  
 

 

All digitized data were transferred to the data acquisition computer (DAQ) using an optical cord 

and was saved locally on the DAQ for future processing.  

 

Figure 2.12. Photograph of the V1730 digitizer from CAEN [41]. 
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Chapter 3 Artificial Neural Networks 

Artificial neural networks (ANNs) are a type of machine learning model inspired by the 

structure and function of the human brain [42]. ANNs have become increasingly popular in recent 

years due to their ability to model complex relationships between inputs and outputs. ANNs consist 

of layers of interconnected nodes, each of which performs a simple computation on its inputs. 

Through training, ANNs can learn to recognize patterns and make predictions on new data. In this 

chapter, an overview of the fundamental concepts and principles of ANNs is provided, including 

their architecture, and learning algorithms. 

3.1 Architecture of Artificial Neural Networks 

An ANN is comprised of an input layer, one or more hidden layers, and an output layer 

(Figure 3.1). Each layer consists of several neurons, which combine an input signal and compare 

its value to a threshold to estimate an output. The input layer receives a set of numerical values 

representing features of the problem being solved. These input data are then passed through a series 

of hidden layers. A simple mathematically model for any layer can be represented using a linear 

regression. 

𝐵 +b𝑤5𝑥5 3-1 
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𝑂𝑢𝑝𝑢𝑡 = 𝑓(𝐿) = e
1	𝑖𝑓	b𝑤5𝑥5 + 𝐵 ≥ 0

0	𝑖𝑓	b𝑤5𝑥5 + 𝐵 < 0	
 3-2 

where 𝑤5 = weight of the neuron, 

𝑥5 = numerical value entering neuron, and 

𝐵 = bias value. 

  
 

 

Figure 3.1 Structure of an artificial neural network inspired from human brain [42]. 

Once a layer is determined, weights are assigned. These weights represent the importance 

of any given variable, with larger ones contributing more significantly to the output compared to 

other inputs. All inputs are then multiplied by their respective weights and then summed (eq. 3-1). 

The solution of eq. 3-1 is passed through an activation function (eq. 3-2), which determines the 

final output. The activation function introduces non-linearity into the network, allowing it to model 
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complex relationships between the input and output data. If the output of the activation function 

exceeds a given threshold, its “fires” (or activates) the neuron, passing data to the next layer in the 

network. This results in the output of one neuron becoming the input of the next neuron.   

 Optimizing the appropriate number of hidden layers for an ANN requires careful 

consideration of the complexity of the problem, the size of the dataset, and prior knowledge of the 

problem domain. The number of hidden layers and the number of neurons in each hidden layer 

can have a significant impact on the performance of the network. Starting with a simple 

architecture, such as a single hidden layer with a few neurons, will help establish the baseline 

performance of the ANN. A validation dataset is used to evaluate the performance of the developed 

architecture. The decision to increase the number of hidden layers and number of neurons is 

informed by the performance of the network on this validation dataset.  

Table 3.1. Mathematical equation for various activation functions used in ANN [43]. 

Function Equation 

Sigmoid 𝑓(𝐿) =
1

1 + 𝑒6(89∑;,<,)
 

Hyperbolic Tangent 𝑓(𝐿) =
𝑒(89∑;,<,) − 𝑒6(89∑;,<,)

𝑒(89∑;,<,) + 𝑒6(89∑;,<,)
 

Softmax 
𝑓(𝐿) =

𝑒(89∑;,<,)

∑ 𝑒(89∑;,<,)->6&
?@%

, 

 
where 𝑀 is the categories of responses 

Softplus  𝑓(𝐿) = lnl1 + 𝑒(89∑;,<,)m 

Rectifier linear unit 𝑓(𝐿) = e
1	𝑖𝑓	 n𝐵 +b𝑤5𝑥5o ≥ 0

0	𝑖𝑓	 n𝐵 +b𝑤5𝑥5o < 0	
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 Choosing the appropriate activation function is also important when designing an ANN. 

The choice of activation function depends on the specific requirements of the problem. The 

decision on a specific function can be made after trying out different activation functions to see 

which one works best for the application. Some commonly used activation functions are 

represented in Table 3.1.  

3.2 Learning Algorithms 

After defining the ANN architecture, it is trained with real data. The training can be 

performed in an unsupervised or a supervised fashion. In unsupervised training, no prior 

knowledge of the output is needed. The network discovers patterns in data without the need for a 

pre-labeled output. In supervised training, a set of pre-labeled input and output data is needed. The 

network learns from the training data by iteratively making predictions on the data and adjusting 

for the correct answer. The self-organizing map (SOP) is a widely used unsupervised training 

method in which an input space of training samples is processed to lower its dimensions by 

clustering of similar samples [44]. The backpropagation algorithm is a widely used supervised 

training method, which is an iterative training process until a threshold criterion is satisfied [44]. 

3.2.1 Self-Organizing Map 

In 1982, Kohonen explained the process of self-organizing maps (SOMs) [45]. One of the 

key features of SOMs is their ability to create a two-dimensional map that preserves the topological 

relationships between the input vectors. This means that similar input vectors are mapped to nearby 

neurons in the SOM, while dissimilar input vectors are mapped to neurons that are further apart. 

This property allows SOM to be used for data visualization and exploration, as the two-



 27 

dimensional map can provide a high-level overview of the input data and reveal hidden structures 

and relationships.  

SOMs are a type of ANN that is commonly used for unsupervised learning tasks, which 

means that they do not require pre-labeled data for training. Unsupervised training makes them 

particularly useful for tasks where labeled data is difficult to obtain. Another advantage of SOM 

is its computational efficiency. SOMs can be trained on large datasets in a reasonable amount of 

time.  

The objective of Kohonen’s learning algorithm is that each neuron learns to specialize in 

different regions of input space. When an input from such a region is fed into the network, the 

corresponding neuron should compute the maximum excitation. This maximum excitation is 

achieved by computing the Euclidean distance between an input 𝑋 and its weight vector 𝑊. 

Kohonen learning uses a function 𝜙(𝑖, 𝑘), which represents the strength of the coupling between 

neuron 𝑖 and neuron 𝑘 during the training process. A simple choice is defining 𝜙(𝑖, 𝑘) = 1 for all 

neuron 𝑖 in a neighborhood of radius 𝑟 of unit 𝑘 and 𝜙(𝑖, 𝑘) = 0 for all other neurons. The learning 

algorithm for Kohonen networks is described below [46]. 

Start: 

The n-dimensional weight vector (𝑤!, 𝑤", … , 𝑤#) of the 𝑚 
computing units are randomly generated. An initial radius 𝑟, 
a learning constant 𝜂, and a neighborhood function 𝜙 are 
selected. 

Step 1: Select an input vector 𝑋 using the desired probability 
distribution over the input space. 

Step 2: The unit 𝑘 with the maximum excitation is selected i.e., the 
distance between 𝑤$ and 𝑋	is minimal, 𝑖 = 1,2, … ,𝑚. 

Step 3: 
The weight vectors are updated using the neighborhood 
function and the update rule, 

𝑤$
	
←𝑤$ + 𝜂𝜙(𝑖, 𝑘)(𝑋 − 𝑤$), 𝑓𝑜𝑟	𝑖 = 1,2, … ,𝑚	 
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Step 4: 
Stop if the maximum number of iterations has been reached; 
otherwise modify 𝜂 and 𝜙, and continue with step 1.  

  
By repeating the above steps several times, a uniform distribution of weight vectors in the 

input space is achieved. During the learning process, both the size of the neighborhood and the 

value of 𝜙 fall gradually, so that the influence of each neuron upon its neighbors is reduced. The 

learning constant controls the magnitude of the weight updates and is also reduced gradually. 

3.2.2 Backpropagation Algorithm  

The backpropagation algorithm is based on the principle of gradient descent, which is a 

method for finding the minimum of a cost function by iteratively adjusting the weights in the 

direction of the steepest descent. The algorithm works by propagating the error (the difference 

between the predicted output and the actual output) backwards through the network, starting from 

the output layer and moving towards the input layer. At each layer, the error is multiplied by the 

derivative of the activation function (which determines the output of each neuron), and then the 

resulting values are used to update the weights of the connections between neurons. This process 

is repeated for each training example, and the weights are adjusted until the error is minimized. 

For a simple ANN with a single input and a single output neutron, the backpropagation algorithm 

can be formulated as follows [46]: 

Consider a network with a single input 𝑥 and activation function 𝐹. 
The derivation 𝐹′(𝑥) is computed in two phases: 

Feed-forward 
The input 𝑥 is fed into the network. The primitive 
functions at the neurons and their derivatives are 
evaluated at each neuron. The derivatives are stored.  
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Backpropagation: 

The constant 1 is fed into the output neuron and the 
network is run backwards. Incoming information to a 
neuron is added and the result is multiplied by the 
value stored in the left part of the neuron. The 
result is transmitted to the left of the neuron. The 
result collected at the input neuron is the 
derivative of the network function with respect to 
𝑥.   

  
Figure 3.2 shows an example of a multilayer ANN for computation of the error function. 

For simplicity, a single input-output pair (𝑜, 𝑡) is considered. Moving from right to left in Figure 

3.2, the quadratic deviation i.e., &
#
(𝑜5

(#) − 𝑡5) for the 𝑖0A component of the output vector is 

computed. Each output neuron 𝑖 in the network produces the output 𝑜5
(#) using the activation 

function 𝑠. Additions of the quadratic deviations give the error function 𝐸. The training of the 

network stops after the value of the error function is reduced below a user-specified value. The 

training can also be stopped if the error between two consecutive epochs, 𝑛 − 1 and 𝑛, is not 

significantly reduced.  

 

Figure 3.2. An example of a multilayer ANN for computation of the error in the propagation algorithm [46].  

Initially, the weights of the network are selected randomly. The backpropagation algorithm 

computes the necessary corrections using the following four steps.  
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1. Feed-forward computation 

2. Backpropagation to the output layer 

3. Backpropagation to the hidden layer 

4. Weight updates 

In the first step, the input vector 𝑜 is presented to the ANN. The output vectors 𝑜(&) i.e., output of 

the hidden layer, and 𝑜(#) i.e., output of the network, are computed. The derivatives of the 

activation function at each neuron are also computed and stored. In the second step, the partial 

derivative of the error function 𝐸 is computed using, 

𝜕𝐸
𝜕𝑤5B

(#) = n𝑜B
(#)]1 − 𝑜B

(#)^]𝑜B
(#) − 𝑡B^o 𝑜5

(&) = 𝛿B
(#)𝑜5

(&). 3-3 

where 𝑤5B
(#) = the weight between hidden layer 𝑖	and output layer 𝑗, and	

𝛿B
(#) = backpropagated error to the output layer.  

  
 

Similarly, in the third step, backpropagated error to the hidden layer is computed using,  

𝜕𝐸
𝜕𝑤5B

(&) = v𝑜B
(&)]1 − 𝑜B

(&)^b𝑤BC
(#)𝛿C

(#)
?

C@&

w 𝑜5	 = 𝛿B
(&)𝑜5	 . 3-4 

where 𝑤5B
(&) = the weight between input layer 𝑖	and hidden layer 𝑗, and	

𝛿B
(&) = backpropagated error to the hidden layer.  

  
 

After computing all partial derivatives, the ANN weights are updated in the negative gradient 

direction. A learning constant 𝛾 defines the step length of the correction. The corrections for the 

weights are given by, 
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Δ𝑤5B
(#) = −𝛾𝑜5

(&)𝛿B
(#), 𝑓𝑜𝑟	𝑖 = 1, . . , 𝑘 + 1; 𝑗 = 1,… ,𝑚 3-5 

and  Δ𝑤5B
(&) = −𝛾𝑜5	𝛿B

(&), 𝑓𝑜𝑟	𝑖 = 1, . . , 𝑛 + 1; 𝑗 = 1,… , 𝑘 3-6 

where 𝑘 = number of hidden layers,	

𝑚 = number of output neurons, and 

𝑛 =  number of input neurons.  

  
 

It is very important to make the corrections to the weights only after the backpropagated error has 

been computed for all neurons in the network. Otherwise, the corrections become intertwined with 

the backpropagation of the error and the computed corrections do not correspond any more to the 

negative gradient direction. 

3.3 Types of Artificial Neural Network 

There are several types of ANNs, each with its unique architecture and functions, such as 

feedforward neural networks, recurrent neural networks, convolutional neural networks, and more. 

The choice of which type of neural network to use depends on the specific task and input data. 

While the list below is not comprehensive, it is representative of the most common types of neural 

networks. 

3.3.1 Feedforward Neural Networks 

Feedforward neural networks (FNN) are the most commonly applied ANN, where 

information flows in one direction, from input to output. It consists of an input layer, one or more 

hidden layers, and an output layer. The sigmoid activation function is commonly used for non-

linearity. Data is fed into these models to train them. FNNs are often used for pattern recognition, 

classification, and regression tasks. FNNs are a powerful and versatile type of neural network that 
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offer several advantages for machine learning and artificial intelligence applications. Their ability 

to handle large and complex data, generalize well, perform parallel processing, perform non-linear 

mapping, and learn quickly make them an essential tool in modern data analysis and predictive 

modeling. 

3.3.2 Convolutional Neural Networks 

Convolutional neural networks (CNN) are primarily used for image and video analysis. 

They have a hierarchical structure consisting of convolutional and pooling layers that help to 

identify patterns in the input data. The hierarchical structure allows them to identify features such 

as edges, textures, and shapes, which can then be used to recognize objects and scenes in the input 

data. CNNs are designed to be invariant to translations in the input data i.e., the network can 

recognize an object in an image regardless of where it appears in the image. This invariance is 

particularly useful for tasks such as object detection and recognition, where the position and 

orientation of an object can vary. Another advantage of CNN is their ability to learn from small 

datasets, which makes them particularly useful in applications where acquiring large amounts of 

training data is difficult. 

3.3.3 Recurrent Neural Networks 

Recurrent neural networks (RNN) are identified by their feedback loops. These learning 

algorithms are primarily leveraged when using time-series data to make predictions about future 

outcomes, such as stock market predictions or sales forecasting. RNNs are a powerful and versatile 

type of neural network that offer several advantages for tasks that involve sequential data. Their 

memory component, flexibility, ability to capture temporal dynamics, parallel processing, and 
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transfer learning capabilities make them an essential tool in modern natural language processing, 

speech recognition, and other sequential data analysis applications. 

3.3.4 Modular Neural Networks 

Modular neural networks (MNN) consist of multiple smaller neural networks that are 

interconnected and work together to solve a larger problem. They are often used in robotics and 

control systems. MNNs can be designed with a modular architecture, reusable modules that can 

be used across different tasks and applications, and interpretable modules. The reusability makes 

MNN effective for applications where similar tasks are performed across different domains. The 

interpretability makes MNN effective for applications such as medical diagnosis, where 

interpretability is critical.
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Chapter 4 Training Data for Artificial Neural Network System 

Artificial neural networks (ANNs) require high-confidence training data that can be used 

by the network to learn and make predictions. The ANN system developed in this dissertation was 

trained with experimental data acquired through dedicated measurements. This chapter provides 

details of the measurement setup and detailed description of steps involved in data processing. The 

goal of this chapter is to provide a framework that can used to create high-quality training dataset 

for ANNs.  

4.1 Time-of-Flight Measurement Setup 

A time-of-flight (TOF) measurement was performed to acquire high-confidence neutron 

and photon scintillation pulses for the training of the ANN system.  Two 5.08 cm in length and 

5.08 cm in diameter trans-stilbene organic crystals coupled to a 5.08 cm in diameter 

photomultiplier tube (PMT) were used for the TOF measurement. The scintillators were placed 

across one another at 1 m. A 252Cf spontaneous fission source was placed very close to the start 

detector in the TOF measurement. Figure 4.1 shows the photograph of the TOF measurement 

setup.   

The 252Cf source decays through 𝛼-decay (branching ratio of 96.91%) and spontaneous 

fission (branching ratio of 3.09%). To reduce the contribution of gamma-rays produced during the 

decay of 252Cf, the detectors were placed in a lead cave. The lead cave was constructed with 

standard 5.08 cm x 10.16 cm x 20.32 cm (2” x 4” x 8”) bricks. Lead is a high-Z material, which 
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shields gamma-rays and has a minimal effect on neutron energy moderation. This lead shielding 

reduces the detection of gamma-rays in the start and stop detectors, which aids in determining the 

particle discrimination line at low tail and total integral values where neutrons and gamma-rays 

overlap (Figure 2.8). The TOF measurement setup was placed in the center of the room and 1.6 m 

from the floor to reduce room-return i.e., scattered neutrons and gamma-rays reflected from room 

surfaces, such as sidewalls, ceiling, and floor. 

 

Figure 4.1. Photograph of the time-of-flight measurement setup that is used to acquire high-confidence neutron and 
photon scintillation pulses.  

 

Figure 4.2. Data format of the output .dat file. Information contained in green boxes are used for data processing. 
𝑟𝑒𝑐𝑜𝑟𝑑𝐿𝑒𝑛𝑔𝑡ℎ is the number of waveform samples in each scintillation pulse.   

5.08cm x 5.08cm 
trans-stilbene 
(start detector)

5.08cm x 5.08cm 
trans-stilbene 
(stop detector)

252Cf source

1m flight path
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Scintillation pulses from the trans-stilbene detector were digitized using a V1730 14-bits, 

500 MS/s digitizer from CAEN [41]. An onboard coincidence logic was setup. The logical AND 

operation would write detection events to file if and only if the start detector and the stop detector 

triggered within 250 ns. The output file was saved in a .dat format, which is a binary format. The 

structure of the output file is shown in Figure 4.2.  

4.2 Data processing 

4.2.1 Time-of-Flight Histogram 

The .dat binary file from the TOF measurement was read using a C++ program. For every 

detected event in the start and stop detectors, the corresponding time tag, channel number, and 

waveform samples were extracted and saved in an array. A fine time stamp was determined using 

the digital constant fraction discrimination (DCFD) method. In this method, a constant fraction 

i.e., 0.5 of the pulse amplitude was used to determine the fine time stamp. The detection time of 

radiation events in the start and stop detectors was obtained by summing the coarse time tag from 

the digitizer and the fine time tag determined using DCFD.  

 

Figure 4.3. a) Raw waveform from CAEN digitizer and b) inverted and baseline corrected waveform.  
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Figure 4.4. Pulse processing algorithm used for the time-of-flight data analysis.   
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The scintillation pulse samples were first converted from ADC units to volts using eq. 2-4. 

The pulses were then inverted from negative polarity to positive polarity using,  

𝑆E.1505FG = (−1) ∗ 𝑆!GHI05FG + 2. 4-1 

where 𝑆E.1505FG = positive polarity waveform sample in units of volts, and 

𝑆!GHI05FG= negative polarity waveform sample in units of volts. 

  
 

Baseline corrections were performed to align the baseline of pulses to zero level. This correction 

was needed to accurately determine the pulse amplitude. The mean of the first five samples was 

subtracted from each pulse sample for baseline corrections. Figure 4.3 shows an example of raw 

pulse and processed pulse from the digitizer.  

Pulse cleaning was implemented in the C++ program. The pulses were cleaned for 

electronic noise, clipping, and pile-up. A threshold of 30 mV was used to eliminate noisy 

waveforms and an upper threshold of 1.9 V was used to eliminate clipped waveforms. Piled-up 

events were identified as those having a second voltage pulse with a leading edge that increased 

by at least 12% of the amplitude of the first voltage pulse in one digitizer step. For every pulse 

eliminated by the pulse cleaning algorithm, its corresponding detection event in the other detector 

was also eliminated.  The entire pulse processing algorithm is described in Figure 4.4.    

The difference between the stop and start detection times were calculated and binned to a 

histogram. The TOF distribution is shown in Figure 4.5. A peak is observed at 3 ns, which 

corresponds to gamma-rays traveling a flight path of 1 m. The wide distribution observed between 

10 ns and 110 ns corresponds to neutrons emitted from the 252Cf source. The prompt fission 

neutrons are emitted with a Watt energy spectrum  [34] and the time neutrons take to travel a flight 
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path of 1 m is dependent on the energy of the emitted neutron. The relation between the neutron 

kinetic energy and travel time is, 

𝐾𝐸 =
1
2𝑚F `

𝑑
Δ𝑡a

#

. 4-2 

where 𝐾𝐸 = kinetic energy of the emitted neutron,  

𝑚F = mass of neutron, 

𝑑 = flight path i.e., 1m, and 

Δ𝑡 = difference between the stop and start detection times.  

  
 

 

Figure 4.5. Histogram of the time differences between the start and stop detection times.  

A neutron region was defined in the TOF distribution. All detection events in the stop detector that 

arrived within 16 ns and 102 ns of the start detector were selected for further processing. Using 

eq. 4-2, the selected region corresponds to neutron energies between 0.5 MeV to 20.4 MeV. The 

0.5 MeV neutron energy is equivalent to 0.05 MeVee light output (eq. 2-3), which was the 

threshold used for pulse shape discrimination to remove gamma-ray contamination in the neutron 
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region. The 20.4 MeV neutron energy was sufficiently high to capture energetic prompt fission 

neutrons from the 252Cf source. 

4.2.2 High-Confidence Neutron and Photon Pulses 

Figure 4.6 shows the tail and total integrals of all pulses that lie in the selected neutron 

region. A gamma contamination was present in this region. The contamination was due to 

accidental coincident radiation events i.e., chance coincident events that were detected in the stop 

detector. The gamma contamination was eliminated by performing pulse discrimination (PSD) 

analysis using the traditional charge integration (CI) method described in section 2.2.3. The 

particle discrimination line for CI method was determined using an auto-slice PSD algorithm 

described by Polack and colleagues [47].  

 

Figure 4.6. Tail and total integrals of all pulses that lie in the neutron region of the time-of-flight distribution.  

The time-tags from the TOF analysis and scintillation events classified as neutrons by the 

traditional CI method provided high-confidence neutron pulses for training of the ANN system. 

The remaining scintillation events from the TOF analysis were labeled high-confidence photon 

pulses. To further improve the voltage pulse signal-to-noise ratio, a 200 mV threshold was applied 
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to high-confidence neutron and photon pulses. Additionally, a 1.9 V upper threshold was applied 

to remove any clipped pulses. The 200 mV threshold corresponded to 0.28 MeVee light output 

and 1.9 V corresponded to 2.67 MeVee light output. The extracted training data therefore had 

neutron and photon pulses of varying light output values ranging from 0.28 MeVee to 2.67 MeVee. 

Figure 4.7 shows the light output distributions for the training data.  

 

Figure 4.7. Light output distribution for high-confidence neutron and gamma pulses extracted from the time-of-flight 
measurement.  

4.3 Synthesis of Piled-Up Events 

The high-confidence neutron and photon pulses were used to synthesize piled-up events. 

The synthesis of piled-up events provided ground truth training data for the ANN system. Four 

categories of events were defined based on the time separation between pulses and the number of 

pulses present in the piled-up event. These categories were labeled close type, split type, cut type, 

and triple/quadruple type piled-up events. The close, split, and cut type piled-up events contain 

two pulses whose amplitudes are separated in time, whereas the triple and quadruple type piled-

up events contain three and four pulses respectively. The developed ANN system only recovers 
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particle information from the close, split, and cut type piled-up events. The occurrence of triple 

and quadruple type piled-up events is rare, and therefore these types of pulses are eliminated.  

 

Figure 4.8. A close type piled-up event in which: a) the second voltage pulse is within 60 ns (too-close type), and b) 
the second voltage pulse is between 60-110 ns. 

 

Figure 4.9. a) Split type piled-up event (second voltage peak is between 111-180 ns), b) cut type piled-up event (second 
voltage peak is past 181 ns), and c) triple/quadruple type pulses.  

A close type piled-up is defined as one in which the amplitude of the second voltage pulse 

lies between 60 ns and 110 ns of the acquisition window. Piled-up events in which the second 

amplitude of the voltage pulse lies within 60 ns of the acquisition window were defined as too-
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close type piled-up events. No information is recovered from too-close type events as the 

scintillation pulses cannot be time-resolved. In the split type piled-up events, the amplitude of the 

second voltage pulse lies between 111 ns and 180 ns. The piled-up events in which the amplitude 

of the second voltage pulse lies past 181 ns of the acquisition window were defined as cut-type 

events. In the cut-type piled-up events, only the first scintillation pulse is recovered. No 

information is recovered from the second pulse due to missing information in the tail of the voltage 

signal. Figure 4.8 and Figure 4.9 show an example of each category of piled-up event.    

 

Figure 4.10. Graphical representation of steps involved in the synthesis of piled-up events.  

The piled-up events were created by randomly selecting a pulse from high-confidence 

neutron dataset and photon dataset. These randomly selected pulses are referred to as pulse A and 

pulse B. The pulse B was then randomly shifted in time. The random time shifting was based on 

the type of piled-up event being synthesized i.e., close, split, or cut. In the final step, pulse A and 
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the time shifted pulse B were added together to create a piled-up event. This method allowed us to 

easily obtain a set of piled-up events with known type of first and second pulse, to precisely control 

the time interval between the two pulses, and to selectively train the ANN system. Figure 4.10 

graphically illustrates steps involved in the synthesis of piled-up events.  

4.4 Summary and Remarks 

The success of machine learning algorithms depends on the quality of training dataset. In 

this chapter, I presented a framework to extract high-confidence neutron and photon pulses using 

TOF and CI method. Additionally, I illustrated the process of creating ground truth piled-up events 

that can be used to by the ANN system to learn about pulse pile-up recovery. The acquired high-

quality training data was used to train the developed ANN system. The next chapter describes the 

architecture of the developed ANN system and its performance in intense radiation environments. 
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Chapter 5 Neural-Network-Based Digital Pulse Processing 

To mitigate the effect of pulse pile-up during measurement of photoneutrons, an artificial 

neural network (ANN) system was developed and demonstrated. This chapter provides details on 

the architecture, high-confidence training data, and the training process of the ANN system. 

Additionally, the performance of the ANN system was demonstrated in intense radiation 

environment, such as the bremsstrahlung radiation from the linac. The results presented in this 

chapter were published in the IEEE Access journal in 2021 

(doi.org/10.1109/ACCESS.2021.3108406).   

5.1 Developed Artificial Neural Network System 

5.1.1 Architecture of the System 

The developed ANN system consists of six neural networks (NNs) that work in conjunction 

to produce the desired classification of voltage pulses. The ANN system represented in Figure 5.1 

is a unique system in which small well-defined NNs are used to perform detailed classifications. 

Using multiple NNs allows the flexibility to add classification results in the future without 

significantly affecting the existing results. Additionally, the ANN system allows for easy 

interpretation of classification results as well as for updates and future improvements. The ANN 

system, in combination with two cleansers, presents a novel approach for classifying single and 

piled-up pulses from a trans-stilbene organic scintillator. 
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Data is pre-processed before it is sent to the ANN system. Pre-processing includes converting 

ADC units to volts (eq. 2-4), flipping the voltage pulse from negative to positive polarity, and 

performing baseline corrections. The rising edge of each voltage pulse is aligned at 24 ns (12th 

digitizer sample) using digital constant fraction discrimination (CFD). 

 

Figure 5.1. Architecture of the ANN system for digital processing of scintillation pulses [48].  

After pre-processing the data, Classify Top NN categorizes single, piled-up (double pulses), 

and triple/quadruple type pulses. The triple/quadruple type pulses are neither recovered nor 

processed for further classification. Following the singles branch in Figure 5.1, Cleanser I provides 

an independent verification of the single pulse classification from Classify Top. The independent 

verification is important because the intense photon flux during interrogation may introduce 

additional noise in the voltage pulse that may result in misclassification from Classify Top. If 

Cleanser I flags pulses as misclass, they are reclassified as piled-up events. If not flagged, these 
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noisy pulses may likely be classified as neutrons by Classify Singles NN because of increased area 

in the tail. The “true” remaining single pulses are determined to either be a gamma or neutron 

pulse, represented in Figure 5.1 with a “G” for gamma/photon and an “N” for neutron, in Classify 

Singles. 

Now considering the piled-ups branch of Figure 5.1, Cleanser II processes the piled-up events 

categorized by Classify Top (and Cleanser I). Cleanser II separates out poor signal-to-noise ratio 

(SNR) pulses from “true” piled-up events. The “true” piled-up events are then fed into Classify 

Pile-Up NN to be classified into three groups (close, split, and cut type piled-up events as defined 

in section 4.3). For each piled-up category, there is a corresponding NN processing that recovers 

neutron and photon information.  

The hidden layers in all NNs were aimed to have the smallest dimension to reduce 

computational complexity while maintaining the performance of the network. The reduced 

complexity is particularly important for real-time data processing using field programable gate 

arrays (FPGA). For each NN, we started with an arbitrarily large dimension of the hidden layer. 

The dimension was gradually reduced, and for each dimension of the hidden layer the NN 

classification accuracy and error were determined. The percent accuracy and error were obtained 

from confusion matrices that were generated for each NN from a pre-labelled test dataset. The 

chosen dimension of the hidden layer is the one at which the percent accuracy is highest, and the 

percent error is the least, except in some cases where the computational complexity cost outweighs 

the marginal increase in accuracy. Table 5.1 summarizes the structure of NNs used in the ANN 

system. Following is a more detailed discussion on each NN.  
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Table 5.1: Structure of neural networks in the ANN system. 

NN Processing 
Dimension 

of input 
layer 

Dimension 
of output 

layer 

Activation 
function at 

output 
layer 

Number 
of hidden 

layers 

Activation function 
at hidden layers 

Dimension 
of hidden 

layers 

Classify Top* 110 3 Softmax 1 Log sigmoid** 30 

Classify Singles* 110 2 Softmax 1 Log sigmoid** 30 

Classify Pile-Up* 110 3 Softmax 1 Tansig 3 

Classify Close* 120 5 Softmax 2 #1: Log sigmoid** 
#2: Tansig 

#1: 30 
#2: 10 

Classify Split 120 4 Softmax 1 Tansig 7 

Classify Cut 120 2 Softmax 1 Tansig 1 

*     Stacked neural network 
**   Encoder layer 

5.1.2 Structure of Neural Networks 

Classify Top is a stacked NN [49] in which an encoder layer is connected to a softmax 

output layer. A log sigmoid activation function was used for the encoder layer. The dimension of 

the encoder layer is 30 and the softmax output layer has a dimension of 3. The input vector to the 

NN consist of 100 Euclidean-normalized samples,  

𝑛𝑜𝑟𝑚(JKL/5MGI!), =
𝑆(-./01),

4∑ 𝑆(-./01).
#!

B@&

	, 
5-1 

where 𝑛𝑜𝑟𝑚(JKL/5MGI!), = Euclidean normalized value at ith sample,  

𝑆(-./01),= ith sample in units of volts, and 

𝑛 =  total number of digitizer sample per voltage pulse.  
 

 

and 10 segmented maximum values. The segmented maximum is found by dividing the Euclidean-

normalized voltage pulse, which consists of 100 normalized samples, into 10 segments of 10 
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samples each. For each segment of 10 samples, the maximum value in the segment is called the 

segmented maximum.  

 Classify Singles is also a stacked NN in which the encoder layer has a dimension of 30 and 

the softmax output layer’s dimension is 2. Classify Singles NN takes in 100 cumulative distribution 

function samples,  

𝐶𝐷𝐹5 =b𝑛𝑜𝑟𝑚(2NGI).

!

B@&

	, 5-2 

where 𝐶𝐷𝐹5 = Cumulative distribution function at ith sample, and 

𝑛𝑜𝑟𝑚(2NGI). = area normalized value at ith sample, which is given by eq. 5-3.  
 

𝑛𝑜𝑟𝑚(2NGI), =
𝑆(-./01),

∑ 𝑆(-./01).
!
B@&

	, 5-3 

 

and 10 segmented maximum values as inputs. Unlike Classify Top NN that uses Euclidean-

normalized samples for segmented maximums, Classify Singles NN uses 100 area normalized 

samples (eq. 5-3).  

 Classify Close NN is a differently stacked NN in which an encoder layer is connected to a 

hidden layer that is then connected to a softmax output layer. The activation function used for the 

hidden layer was a hyperbolic tangent sigmoid function (tansig). A log sigmoid activation function 

was used for the encoder layer that has a dimension of 30. The dimension of tansig hidden layer is 

10 and the dimension of softmax output layer is 5. The input vector to the NN consists of 100 

Euclidean-normalized samples, 10 segmented maximum values, and 10 segmented area values. 

Segmented area is the area of each segment of the Euclidean-normalized voltage pulse.  
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Classify Pile-Up, Classify Split and Classify Cut NNs have a tansig hidden layer connected 

to a softmax output layer. All three NNs take in 100 Euclidean-normalized samples and 10 

segmented maximum values as inputs. In Classify Split and Classify Cut NNs, 10 segmented area 

values are also included in the input vector. The dimension of the tansig hidden layer is 3 for 

Classify Pile-Up NN, 7 for Classify Split NN and 1 for Classify Cut NN. The dimension of softmax 

output layer is 3 for Classify Pile-Up NN, 4 for Classify Split NN and 2 for Classify Cut NN. 

Cleanser I is an autoencoder based cleanser that helps flag pulses with extra noise. The 

autoencoder consists of two fully connected layers; one is an encoder layer and the other is a 

decoder layer. Figure 5.2 provides visualization of the steps performed in Cleanser I. An 

autoencoder, which was trained on clean single pulses, is used as a denoiser to the original 

Euclidean-normalized pulse. The decoder from the autoencoder reconstructs the original 

Euclidean-normalized pulse. There is no noise/ripple present in the reconstructed pulse. The ratio 

of the absolute difference between reconstructed and original pulses to the reconstructed pulse is 

computed using, 

𝑟𝑎𝑡𝑖𝑜 =
|	𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	|

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 	, 5-4 

where 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = decoded pulse, and  

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = Euclidean-normalized pulse.  
 

 If the ratio exceeds a set threshold value, the pulse is flagged as a misclassified single pulse. Both 

the encoder and decoder use a log sigmoid activation function. The encoder layer has a dimension 

of 30 and the decoder layer’s dimension is 100. Cleanser I provides an independent verification to 

the singles classification produced by the Classify Top NN, thereby increasing confidence in the 

neutron and photon classification of a single pulse.  
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Figure 5.2. a) An example of a noisy pulse decoded using the trained autoencoder, and b) Ratio computed on the noisy 
pulse [48]. 

Cleanser II differentiates poor SNR pulses from “true” piled-up events. The second voltage 

pulse in the piled-up event must exceed a set threshold for it to be considered as a “true” piled-up 

event. The threshold is user-specified and all piled-up events that pass the voltage threshold check 

on the second pulse are sent to the Classify Pile-Up NN for further classification.    

5.2 Training of the ANN system 

5.2.1 Training Parameters 

The ANN system was trained using the Deep Learning Toolbox from MATLAB [50]. All 

NNs are fully connected feedforward neural networks that were trained using the scaled conjugate 

gradient learning algorithm [51]. A cross-entropy loss function was implemented to calculate the 

loss during training of NNs. The maximum number of epochs to train was set to 25,000. The 

training was terminated when a loss of 1E-3 was achieved on the training dataset. Additionally, if 

the non-training validation subset loss increased for a consecutive 100 epochs, the network stopped 

training; we call this epoch n. At this point, the network disregards the latest 100 epochs and 

chooses the weights from epoch n-100.  
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All six NNs were trained individually in a supervised fashion. The three stacked NNs, 

Classify Top, Classify Singles and Classify Close were trained in three steps. First step included 

training of hidden layers in an unsupervised fashion using the autoencoder; followed by the 

training of the softmax output layer. In the final step, all layers were joined together to form a 

stacked NN, which was trained for one final time in a supervised fashion.   

 

Figure 5.3. Confusion matrix after training of the ANN system [48].  

A small set of the data (5,000 pulses for each single, close, split, cut and triple/quadruple 

category) was used to test the performance of the trained ANN system. The confusion matrix 

generated from the test dataset is given below in Figure 5.3. The classification of single pulses 

produced by the ANN system is 99.60% accurate. The neutron-photon combinations from close 

and split type piled-up events are identified with an average accuracy of 98.98%. In cut type piled-
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up events, the classification of the primary voltage pulse is 99.85% accurate. An overall 

classification accuracy of 99.50% is obtained for the developed ANN system. 

5.3 Testing the ANN System Across Different Gain Settings 

The ANN system was tested on TOF data collected at a variety of PMT gain settings. The 

PMT gain was calibrated using a 137Cs gamma source (Figure 5.4). A 252Cf spontaneous fission 

source was used in the TOF measurement. Neutron and photon pulses were extracted using the 

steps described in section 4.2. The TOF+CI extracted neutrons and photons i.e., Figure 5.5a and 

Figure 5.5b were fed into the ANN system to test its performance at a variety of PMT gain settings.  

 

Figure 5.4. PMT gain calibration for the TOF measurement using a 137Cs source.   

 

Figure 5.5. Light output distributions for a) TOF+CI extracted neutrons and b) TOF+CI extracted photons.  
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Figure 5.6a and Figure 5.6b shows the ANN classifications when TOF+CI labeled neutrons 

and photons were provided as inputs.  Across a variety of PMT gain settings, the ANN 

classifications were within 1.2% of the TOF+CI labeled pulses. The pulse cleaning technique used 

to eliminate piled-up events in the traditional CI method misclassified certain poor signal-to-noise 

ratio pulses as good electrical signals. The developed ANN system successfully identified these 

kinds of poor SNR ratio pulses. Examples of ANN identifying poor SNR pulses are shown in 

Figure 5.7.  

 

Figure 5.6. ANN classifications when: a) TOF+CI extracted neutrons are provided as inputs and b) TOF+CI extracted 
photons are provided as inputs. 

 

Figure 5.7. Examples of poor SNR pulses identified by the developed ANN system.  

In this test, the ANN system demonstrated its robustness against a wide range of energy 

deposited by the incoming particle (different energy regions of the spectrum). With an ANN 
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system that is invariant to the gain of the measuring circuit and sensitive to a wide range of 

deposited energy, the application space of the network is broadened.   

5.4 Demonstration of the ANN System 

5.4.1 Experimental Setup 

A 252Cf neutron source was measured in the presence of the intense bremsstrahlung flux 

from the linac. The source was placed 4 m off-axis from the beam center line; 4 m prevents any 

radioactivity being induced in the source because of bremsstrahlung bombardment. This 

measurement of the 252Cf in the presence of the bremsstrahlung flux is referred to as the active 

252Cf measurement. Ground truth neutron count rates were established through a passive 252Cf 

measurement i.e., measuring the neutron source without the bremsstrahlung flux from the linac.   

 

Figure 5.8. Experimental setup for the active 252Cf measurement [48].  

Fission neutrons were detected using four trans-stilbene scintillators coupled to PMTs. The 

detectors were placed in a layered lead-tin-copper shield cave, which helps reduce the effect of 

pulse pile-up (pile-up is a function of the radiation flux and voltage pulse width). The tin and 

copper in the shield cave helped shield low energy characteristic K𝛼 and K𝛽 X-rays that are 
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emitted from lead because of high energy photon absorption [52]. Data was acquired with a CAEN 

V1730 digitizer. Figure 5.8 shows the detector setup during the active 252Cf measurement. 

An active background measurement was also performed to account for photoneutrons 

produced in the surrounding high-Z materials. All active measurements i.e., background and 252Cf 

were performed for 4 hours, and the passive 252Cf measurement was performed for 30 minutes.  

5.4.2 Data Analysis 

The linac at the University of Michigan is currently operating in pulsed mode with a pulse 

length of 4 𝜇𝑠 and a repetition rate of approximately 44 Hz. Time gating was performed to separate 

during and in-between linac pulses stilbene detections. The scintillation pulses detected during 

linac pulses were processed with the traditional CI method and the developed ANN system. All 

data were processed with a lower light output threshold of 0.28 MeVee and an upper light output 

threshold of 2.67 MeVee.  

For the traditional CI analysis, particles were discriminated by a line that was obtained 

using an auto-slice PSD algorithm [47] on the passive 252Cf data. A fractional pile-up cleaning 

approach was used to eliminate piled-up events from active measurements. Piled-up events were 

identified as those having a second voltage pulse with a leading edge that increased by at least 

12% of the height of the first voltage pulse in one digitizer step. The CI analysis provides a basis 

for which the performance of the developed ANN system can be compared to that of traditional 

methods.     

5.4.3 Results and Discussion 

Figure 5.9 shows the active background subtracted neutron count rates in all four trans-

stilbene detectors determined using the traditional CI method. Without any pile-up cleaning, net 



 57 

neutron count rates for active 252Cf measurements exceeded ground truth by an average of 38% in 

detectors 0, 1, and 2 (Figure 5.9a). The overestimation is because of misclassification of piled-up 

events as neutrons.  

 

Figure 5.9. Active background subtracted neutron count rates in all four detectors determined using the traditional CI 
method: a) without pile-up cleaning, and b) with pile-up cleaning. (Error bars are from Poisson counting statistics 
and are represented within one standard deviation.) [48] 

The PSD plots represented in Figure 5.10a and Figure 5.10c show that particle 

discrimination capabilities of the scintillator are greatly deteriorated due to the presence of piled-

up events. After pile-up cleaning, there still existed many piled-up events that were misclassified 

as neutrons (Figure 5.10 b and c) resulting in a 27% overestimation of net neutron rates in detectors 

0, 1 and 2 (Figure 5.9b). A lower fractional cleaning percentage can be used to eliminate remaining 

piled-up events; however, that will result in over-cleaning of the active dataset. Figure 5.11 shows 

the PSD contour plot for the ANN attributed single neutron pulses in channel 0. For reference, a 

passive 252Cf PSD and a particle discrimination line are also included. The ANN attributed 

neutrons from active measurements constitute a neutron region in the exact same location as one 

would expect from a passive measurement. The PSD contour verifies the ANN system 

classification of single neutrons.  
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Figure 5.10. Traditional CI PSD plots: a) active background (before pile-up cleaning), b) gross active 252Cf (before 
pile-up cleaning), c) active background (after pile-up cleaning), and d) gross active 252Cf (after pile-up cleaning). Note 
that the neutron region represented in these plots is for illustration purposes only. [48]  

 

Figure 5.11. PSD plots for ANN attributed single neutrons: a) passive 252Cf, b) active background, c) gross active 
252Cf, and d) net active 252Cf  [48].   
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Figure 5.12 shows the breakdown of pulses during active background and active 252Cf 

measurements in detector 0. A significant portion (29%) of the total detected pulses belong to the 

unclassifiable category. This unclassifiable category of pulses includes the too-close type of piled-

up events, triple/quadruple type, and poor SNR pulses. Nearly 29% of the total piled-up events 

(total piled-up events include both classifiable and unclassifiable pulses) were recovered by the 

ANN system. The other three detectors used during active measurements exhibited similar 

breakdown of pulses.        

 

Figure 5.12. Breakdown of scintillation pulses in channel 0 by the ANN system: a) active background and b) active 
252Cf  [48]. 

Figure 5.13 summarizes overall net neutron count rates as determined by the developed 

ANN system. Using only single neutron pulses, the net active 252Cf count rates account for an 

average of 32.55% of the ground truth in all four detectors. After information was recovered from 

piled-up events, the overall net count rate increased to 62.32% of the ground truth. There still exist 

gaps between the ground truth and the measured net active neutrons, which is due to information 

lost to the unclassifiable piled-up events.  
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Figure 5.13. Active background subtracted neutron count rate in all four detectors determined using the ANN system 
(Error bars are from Poisson counting statistics and are represented within one standard deviation.) [48] 

5.5 Summary and Remarks 

The pulse pile-up is inevitable in intense radiation environments. The particle 

discrimination capabilities of the trans-stilbene scintillator are greatly deteriorated due to the 

presence of piled-up events. These piled-up events are often misclassified as neutrons. To mitigate 

the effect of pulse pile-up, I developed an ANN system to classify scintillation pulses as neutrons 

and photons and recover particle information from piled-up events. The architecture of the ANN 

system is robust and can be trained to classify scintillation pulses from any scintillator detector 

coupled to either PMT or silicon photomultiplier tube (SiPM), thereby expanding the use of the 

ANN system.  

An overall classification accuracy of 99.5% was achieved during the training of the ANN 

system. The different normalization methods applied to voltage pulses make the ANN system 

invariant to the gain setting of the measuring circuit. This gain invariance helps classify 

scintillation pulses in different regions of the energy spectrum.  

The overall performance of the ANN system was demonstrated through the active 252Cf 

measurement in which the neutron source was measured in the presence of the bremsstrahlung 
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radiation from the linac. The ANN system was found to outperform traditional methods in the 

intense photon environment. The traditional CI method over-predicted the ground truth neutron 

rate by 27%. This over-prediction was due to misclassification of piled-up events as neutrons. The 

ANN system correctly identified single and piled-up events. Nearly 29% of piled-up events were 

recovered, and the neutron count rate after pile-up recovery was 62% of the ground truth. This 

pile-up recovery provides an efficiency boost for neutron detection. 
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Chapter 6 Interrogation of Bare Depleted Uranium 

For the measurement of photoneutrons, a 5.23 cm thick depleted uranium (DU) target was 

interrogated with bremsstrahlung photons from a 9-MV linac, and fast neutrons were detected with 

four trans-stilbene organic scintillators. This chapter provides details on the experimental setup, 

data analysis, and measured results for the photoneutron count rate from uranium. For simulations 

with Monte Carlo codes, a framework was developed using the MCNPX-PoliMi transport code. 

The developed framework is described, and the simulated results are compared with the measured 

results. The chapter concludes with a discussion on the discrepancy observed between simulation 

and measurement. The results presented in this chapter were accepted for publication in the 

Physical Review Applied journal [53].   

6.1 Photoneutron Detection with Trans-Stilbene Scintillators 

6.1.1 Experimental Setup 

The University of Michigan has a 9-MV electron linac that is currently operating in pulsed 

mode with a pulse length of approximately 4 𝜇𝑠 and a repetition rate of approximately 44 Hz. The 

bremsstrahlung radiation is collimated using a primary and secondary collimator. The primary 

collimator consists of lead backed with tungsten and has a beam spot size of 25 cm. The lead is 83 

cm in diameter and 28 cm thick, whereas tungsten is 48 cm in diameter and 11 cm thick. The 

secondary collimator consists of lead, which is 74 cm square and 41 cm thick. The beam spot size 

is reduced from 25 cm to 5.08 cm at the exit of the secondary collimator.  
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A depleted uranium (DU), which is 99.7 wt% 238U and 0.3 wt% 235U, and lead targets were 

interrogated for an hour with the bremsstrahlung photons. The DU target was a 5.23 cm cube, and 

the lead target had a dimension of 5.08 cm x 5.08 cm x 6.35 cm. Targets were placed in the beam 

27 cm from the secondary collimator. At this location, the beam spot size is large enough to cover 

the entire surface area of the target, which is desired to maximize photoneutron production. The 

lead target produces neutrons through (𝛾, 𝑛) reactions whereas the DU target produces neutrons 

through (𝛾, 𝑛) and (𝛾, 𝑓) reactions [7]. Lead interrogation provides a basis for which photoneutrons 

from an actinide, such as DU, can be compared to photoneutrons from a non-SNM target, such as 

lead. An active background measurement was also performed for an hour to account for 

photoneutrons produced in the collimator.  

 

Figure 6.1. Detailed geometry of the experimental setup for the interrogation of depleted uranium and lead targets. 
(Geometry is defined in MCNPX-PoliMi) [53].  

The same four trans-stilbene detectors setup described in section 5.4.1 was used for the 

detection of photoneutrons. The front and the sides of the cave consisted of 10.16 cm thick lead. 
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There was 5.08 cm thick lead at the top and bottom of the cave. The tin and copper were 0.64 cm 

thick and provided shielding to K𝛼 and K𝛽 X-rays, which are produced in lead because of high-

energy bremsstrahlung absorption [52]. Additionally, the detectors were placed perpendicular to 

the beam axis at 4 m from the front of the shield cave to the edge of the DU cube. This 4 m source-

to-detector distance helped reduce the probability of piled-up events, which is dependent on the 

radiation flux and voltage pulse width. The schematic of the experimental setup is shown in Figure 

6.1. 

6.1.2 Data Analysis 

Time gating was performed to analyze detection events that arrived during the linac pulses. 

This time gating facilitated discrimination of prompt photoneutrons from delayed fission neutron, 

which are emitted through 𝛽-decay of photofission fragments. Additionally, all data were 

processed with a lower light output threshold of 0.28 MeVee and an upper threshold of 2.67 

MeVee. This light output window corresponds to a proton recoil energy of 1.66 – 2.67 MeV.  

Scintillation events that arrived during the linac pulses were processed with the developed 

artificial neural network (ANN) system described in section 5.1. The ANN system identifies 

neutron, photon, and piled-up pulses and recovers neutron and photon information from piled-up 

events. 

6.2 Monte Carlo Simulations with MCNPX-PoliMi 

The measurement was simulated with the MCNPX-PoliMi transport code [29,30] using the 

ENDF/B-VII photonuclear cross-section library [7]. The MCNPX-PoliMi is a well-established 

particle transport code that has been validated with experiments [54,55]. The ENDF/B-VII library 

was selected because it contains updated photonuclear cross-sections for 163 isotopes up to 140 
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MeV photon energies [7]. The evaluations of these cross-sections were performed using 

methodology and modelling tools developed at Los Alamos National Laboratory in collaboration 

with the International Atomic Energy Agency [56].  

The simulation was performed in three steps: 1) electron simulation, 2) photoneutron 

simulation, and 3) detector response simulation. For the electron simulation, 10 MeV 

monoenergetic electrons were modeled in MCNPX-PoliMi. The 10 MeV energy of the electron is 

based on a previous beam quality measurement performed at the University of Michigan [57]. The 

electron source was defined as a point source at a radial distance of 0.05 cm from the x-ray 

converter target. The source electrons were directed in the forward direction i.e., 0° with respect 

to the radial distance. A photon current tally (MCNPX type 1 tally) was used to obtain a 

bremsstrahlung spectrum at the secondary collimator opening. This photon current tally was 

cosine-binned between 0°-90° and 90°-180°; the angle of cosine in MCNPX-PoliMi is defined 

with respect to a vector normal to the surface in the outward direction. The tally result in the 0°-

90° bin provided the energy spectrum of bremsstrahlung photons exiting the secondary collimator.  

The obtained bremsstrahlung spectrum was then used as a source to model photoneutron 

production in the depleted uranium target. For the photoneutron simulation, photon source was 

defined as a spherical source of radius 2.54 cm at the exit of the secondary collimator. The 

photoneutrons exiting the face of depleted uranium towards the detector array was tallied using 

the cosine- and an energy-binned neutron current tally (MCNPX type 1 tally). The cosine bin 

widths were set to 5°, and the energy bin widths were set to 0.1 MeV. The energy-binned tally 

result in the 0°, 5°, 10°,….., 90° cosine bins were used to define photoneutron source term for the 

detector response simulation. The photoneutron source was defined as a planar source at the face 

of depleted uranium towards the detector array. During the detector response simulation, a particle 
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collision file was generated, which included photoneutron collision information in all four trans-

stilbene detectors.   

All three steps of the simulation were performed in a detailed geometry that included 

structural components of the linac, primary and secondary collimation of bremsstrahlung photons, 

beam dump, and details of the laboratory space, such as ceiling, floor, and support columns. The 

screenshot of the geometry is shown in Figure 6.1.  

The MCNPX-PoliMi writes to a dedicated output file the main parameters of each collision 

event that occurs in user-defined cells. The information included in the output file is listed in Table 

6.1 and a screenshot of an example collision file is shown in Figure 6.2. The collision file from 

MCNPX-PoliMi was processed with a post-processing algorithm i.e., MPPost [58]. MPPost is a 

FORTRAN program that simulates detector responses using the information provided in the 

particle collision file. A block diagram illustrating the process of converting energy deposited by 

particles in user-defined cells to detector response is shown in Figure 6.3.  

 

Figure 6.2. Screenshot of the particle collision file from detector response simulation to a 252Cf spontaneous fission 
source using MCNPX-PoliMi.  

The Birks function [59] defined in eq. 2-3 was used to convert energy deposited to light 

output. The MPPost processed data was scaled to photoneutron count rate i.e., 𝐶𝑃𝑆 using, 

𝐶𝑃𝑆 =
𝑁>OO.10
𝑛G?500GM

∗
𝑛G?500GM
𝐵5!L5MG!0

∗
𝐵5!L5MG!0
𝐸G/GL0N.!

∗
𝐼G,EGIQ
𝑞G

∗ 𝐷𝐹. 6-1 

In eq. 6-1, 𝐼G,EGIQ is the peak linac current (97.2 𝑚𝐴), 𝑞G is elementary charge, and 𝐷𝐹 is the duty 

factor of the linac (0.02%). The term 𝐵5!L5MG!0/𝐸G/GL0N.! represents total bremsstrahlung photons 

produced per incident electron, which is the sum of energy-binned photon current tally from the 
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electron simulation. The sum of cosine- and energy-binned neutron tally from step 2 of simulation 

(photoneutron simulation) provided total photoneutrons emitted from depleted uranium per 

incident bremsstrahlung photon i.e., 𝑛G?500GM/𝐵5!L5MG!0. The term 𝑁>OO.10/𝑛G?500GM represents 

total neutrons detected in trans-stilbene detectors per emitted photoneutron, which was calculated 

by MPPost.   

 

Figure 6.3. Block diagram for detector response simulation using MPPost [60]. 
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In eq. 6-1, 𝐼G,EGIQ 	and 𝐷𝐹 are the sources of systematic errors. The average repetition rate 

of the linac was measured to be 44.15 Hz with a standard deviation of 0.09 Hz. This deviation in 

the linac repetition rate was accounted for in the duty factor and the scaled photoneutron count 

rate. The M9 linatron is a robust accelerator, and therefore an uncertainty of 1% was assumed with 

the peak linac current i.e., 𝐼G,EGIQ.  This 1% uncertainty was propagated in the scaled photoneutron 

count rate. The remaining terms in eq. 6-1 are the sources of statistical errors. A large number of 

source particles were sampled during each step of the photonuclear simulation such that the 

statistical uncertainty was less than 0.001%.  

Table 6.1. Particle collision information provided by MCNPX-PoliMi in the output file  [60].   

𝑛𝑝𝑠 Starting event ID 

𝑛𝑝𝑎𝑟 Particle identification number 

𝑖𝑝𝑡 Particle type  
(1 = neutron, 2 = photon, and 3 = electron) 

𝑛𝑡𝑦𝑛 Collision type 

𝑛𝑥𝑠(2, 𝑖𝑒𝑥)  Target nucleus ZAID identification  

𝑛𝑐𝑙(𝑖𝑐𝑙) Cell number where the collision took place 

𝐸𝑛𝑅𝑒𝐶𝑜 Energy deposited in the collision (MeV) 

𝑡𝑚𝑒 Time in shakes 

𝑥𝑥𝑥 𝑥 – coordinate of the position at which 
collision took place 

𝑦𝑦𝑦 𝑦 - coordinate of the position at which 
collision took place 

𝑧𝑧𝑧 𝑧 - coordinate of the position at which 
collision took place 

𝑤𝑔𝑡 Weight of the incident particle 

𝑛𝑔𝑒𝑛 Generation number of incident particle (it 
increases after a fission event) 

𝑛𝑠𝑐𝑎 Number of scatterings (elastic for neutrons 
and Compton for photons) from birth 

𝑛𝑐𝑜𝑑𝑒 Code of the reaction which produced the 
incident particle 

𝑒𝑟𝑔 Doppler broadened energy of incident 
particle 
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6.3 Results and Discussion 

6.3.1 Measurement 

Figure 6.4 shows the detected pulse integrals for lead and depleted uranium interrogations 

before and after the elimination of piled-up events. Figure 6.4 a and c show that there are 

significant piled-up events that greatly deteriorate the neutron and photon detection capabilities of 

the trans-stilbene scintillators. Figure 6.4 b and d show the results after applying the developed 

ANN system. A good separation between neutrons and photons is observed; the ANN system 

successfully identified the piled-up events.  

 

Figure 6.4. Neutron and photon integrals for - a) lead before elimination of piled-up events, b) lead after ANN 
elimination of piled-up events, c) depleted uranium before elimination of piled-up events, and d) depleted uranium 
after ANN elimination of piled-up events [53]. 

Figure 6.5a shows the measured light output distributions for DU and lead. We observed a 

5x increase in the photoneutron count rate when the lead target was replaced with the DU target 
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Additionally, the measured light output distribution for lead photoneutrons is much softer than the 

DU photoneutron light output distribution. This difference in the light output distributions is due 

to the known difference in the photoneutron energy spectra. The DU photoneutrons are emitted 

with two energy spectra i.e., (𝛾, 𝑛) and Watt spectra whereas lead photoneutrons are emitted with 

only (𝛾, 𝑛) spectrum (Figure 2.4).   

 

Figure 6.5. Measured photoneutron light output distributions for lead and depleted uranium- a) absolute comparison 
and b) integral normalized comparison. (Active background is subtracted from each distribution. Error bars are from 
Poisson counting statistics and are represented within one standard deviation.) [53] 

Without any pile-up recovery, the photoneutron count rate is 1.92 ± 0.07 counts per second 

for lead and 8.22 ± 0.11 counts per second for DU. After information is recovered from piled-up 

events, the count rate increases to 2.76 ± 0.08 counts per second for lead and 12.68 ± 0.14 counts 

per second for DU. We observed that the shape of the photoneutron light output distributions 

remains unaffected after recovery of piled-up events (Figure 6.5b). This constant shape implies 

that pile-up recovery provides an efficiency boost of approximately 31% for neutron detection.   

6.3.2 MCNPX-PoliMi  

A passive 252Cf measurement was performed to validate the MCNPX-PoliMi input 

geometry and the trans-stilbene detector response from MPPost. The 252Cf spontaneous fission 
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source was placed 4 m from the front of the lead-tin-copper shield cave, which is the same as the 

DU to shielding distance. The measured data was analyzed with the ANN system.   

Figure 6.6 shows the measured and simulated neutron light output distributions. The simulated and 

measured neutron count rates agree within (8.5 ± 0.9) %. The measured count rates before and 

after recovery of piled-up events are statistically identical, which is expected due to the low activity 

of the 252Cf source i.e., 872 ± 15 𝜇𝐶𝑖 on June 19th, 2022, and a large source-to-detectors distance 

(> 4 m). The passive 252Cf result demonstrates the accuracy of the MCNPX-PoliMi transport code 

and the ability to accurately simulate trans-stilbene detectors response to a fission source.        

 

Figure 6.6. Measured and simulated neutron light output distributions from a 252Cf spontaneous fission source. (Errors 
bars are from Poisson counting statistics and are represented within one standard deviation.) 

Figure 6.7 shows the measured and simulated photoneutron light output distributions for 

DU. For a light output window of 0.28 – 0.60 MeVee, the simulation is found to overestimate the 

measured result. This overestimation is due to the information that is lost to unrecoverable piled-

up events (29.5% of the collected data was eliminated). Nearly 75% of these unrecoverable piled-

up events were voltage signals that have a small amplitude (less than 0.60 MeVee) and a poor 
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voltage signal-to-noise ratio. The developed MCNPX-PoliMi framework does not simulate pulse 

pile-up effect in trans-stilbene scintillators. 

For a light output window of 0.60 – 2.67 MeVee, the simulation was found to under-predict 

the measured result by an average of 33.3 ± 1.2%. The underprediction of simulation versus 

experiment in our result confirms the previously reported underprediction when using ENDF/B-

VII photonuclear cross-section data for uranium [8,9].  

 

Figure 6.7. Measured and simulated photoneutron light output distributions for depleted uranium. (Represented error 
bars are within one standard deviation.) [53] 

Frankl and Macian-Juan [61] performed a photonuclear benchmark study of natural 

uranium with MCNPX using ENDF/B-VII cross-section libraries. In the benchmark study, the 

MCNPX results were compared to measured results that were obtained by Barber and George in 

1959 [62]. The simulation was found to under-predict the measured count rate by 8.7 ± 15.1% for 

a 0.98 cm thick natural uranium target interrogated with bremsstrahlung photons produced by 11.5 

MeV electrons. In the present work, the DU cube was 5.23 cm and was interrogated with 

bremsstrahlung photons produced by 9 MeV electrons. An underestimation of 33.3 ± 1.2% in the 

simulated photoneutron count rate was observed. The underprediction of simulation versus 
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experiment is consistent with the Frankl and Macian-Juan result, and therefore, the result gives 

confidence that the developed ANN system is correctly recovering information from piled-up 

events.  

6.3.3 Time to Detection 

It has been demonstrated in the literature that time-of-flight techniques can be used to 

discriminate fissionable materials from other photoneutron producing targets, such as lead [63]. 

Another technique exploits the difference in the prompt neutron yield parallel and perpendicular 

to the plane of high-energy photon beam polarization. This difference in prompt neutron yield is 

referred to as polarization asymmetry [20,21]. Both time-of-flight and polarization asymmetry 

techniques described in the literature are non-trivial to be implemented in the field for applications, 

such as cargo scanning applications wherein high-energy photon interrogation systems are used 

for SNM detection. 

The observed difference (Figure 6.5) in the photoneutron light output distributions of lead 

and DU can be exploited to discriminate actinides from other non-fissionable neutron producing 

targets. A light output window of 1.00 – 2.67 MeVee is selected. This light output window 

corresponds to a proton recoil energy of 3.68 – 6.85 MeV, which is sufficiently high to eliminate 

(𝛾, 𝑛) photoneutrons. Only prompt photofission neutrons are energetic enough to deposit such high 

energy in the scintillator, and therefore, false positive alarms can be reduced in the field by 

counting neutrons that deposit energies between 3.68 – 6.85 MeV. False positives are of great 

concern in cargo scanning.  

Figure 6.8 shows the photoneutron count rate in the 1.00 – 2.67 MeVee light output 

window as a function of interrogation time. The photoneutron count rate with the presence of DU 

was greater than the active background count rate by three standard deviations during the first 30 
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seconds of interrogation. This result demonstrates that an actinide may be flagged in the field as 

quickly as 30 seconds, which is well within the American National Standard Institute (ANSI) 

standard inspection times for clearing cargo packages  [64].   

 

Figure 6.8. Photoneutron count rates in depleted uranium and lead as a function of interrogation time. (Error bars are 
from Poisson counting statistics and are represented within three standard deviations.) [53] 

6.3.4 Different Masses of Depleted Uranium 

Three different masses of DU i.e., 2.4 kg, 4.8 kg, and 7.2 kg were interrogated with the 9-

MV linac. The goal of this measurement was to study photoneutron count rates with increasing 

mass of SNM surrogate. Each mass of DU was 10.16 cm in height and 10.16 cm in width. The 

thicknesses were 1.27 cm, 2.54 cm, and 3.81 cm. Figure 6.9 shows the photoneutron count rates 

in all three masses of DU. The count rate increased with an increase in the mass of DU, which is 

due to the increased photonuclear reaction rates. The 4.8 kg DU has a photoneutron count rate that 

is approximately 1.4x greater than the 2.4 kg DU. The photoneutron count rate in 7.2 kg DU is 

only 1.1x greater than the count rate in 4.8 kg DU. It appears that the photoneutron count rate 

increases and reaches an asymptote with increasing mass of the DU target.  This asymptote trend 

is because of the mean free path of high-energy photons in DU. The mean free path of a 10 MeV 
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photon in DU is approximately 0.96 cm [65], and therefore increasing the thickness any further 

does not increase photoneutron production significantly. 

 

Figure 6.9. Photoneutron count rates with increasing mass (thickness) of DU.  

6.4 Summary and Remarks 

I presented measured results that demonstrate the detection of prompt photofission 

neutrons from a depleted uranium cube. These neutrons were detected with trans-stilbene organic 

scintillators, state-of-the-art detectors that are spectroscopy capable. The pulse pile-up caused by 

the intense bremsstrahlung photons deteriorated the particle discrimination capabilities of the 

trans-stilbene scintillator. To address the pulse pile-up issue, I applied a neural-network-based 

digital processing of scintillation pulses. The information recovered from neutron piled-up events 

provided an efficiency boost of approximately 31% to the interrogation system. 

I also exploited the difference in the measured photoneutron light output distributions of 

lead and DU to discriminate between (𝛾, 𝑛) and photofission neutrons. By selecting a light output 

window of 1.00 – 2.67 MeVee, I demonstrated that an actinide, such as uranium, can be detected 

as quickly as 30 seconds, and differentiated from a non-fissionable material, such as lead. 
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Additionally, different masses of DU were interrogated, and prompt photofission neutrons were 

successfully detected from the smallest mass i.e., 2.4 kg.  

I further presented a framework that can be used to simulate active interrogation 

experiments with the MCNPX-PoliMi transport code. The MCNPX-PoliMi is a modified version 

of the MCNPX transport code that can accurately model photonuclear and particle detection 

physics (detector responses). The developed framework was validated with measured results using 

a 252Cf source. In the photonuclear experiments, for a light output window of 0.70 – 2.67 MeVee, 

the simulated result was found to under-predict the measured result by 33.27 ± 3.61%. This result 

is expected due to the known under-prediction in the photonuclear cross-section data for uranium. 

Additional work is needed to estimate discrepancies between measurement and simulation for light 

output values below 0.70 MeVee. 
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Chapter 7 Interrogation of Shielded Depleted Uranium 

During the interrogation of bare depleted uranium (DU), nearly 30% of the collected data 

was eliminated because it was unclassifiable by the developed ANN system. Most of the 

eliminated data (approximately 75%) were voltage pulses that had a small amplitude and a poor 

signal-to-noise ratio. Due to the elimination of the data, the simulated results were found to over-

predict the measured results in the 0.28 to 0.60 MeVee light output. To reduce the amount of data 

that is eliminated during interrogation measurements, iron and polyethylene shielding was 

introduced around the DU cube. This chapter provides the details of the measurement setup and 

the measured results from DU when shielded in various iron and polyethylene configurations. The 

measurements were simulated in the MCNPX-PoliMi transport code using the framework 

developed in section 6.3.2. The comparison of the simulated and measured results is presented in 

this chapter, which provides quantitative assessment of the under-prediction in the photonuclear 

cross-section data for uranium. The results presented in this chapter are currently under review in 

the Nuclear Science and Engineering journal [66].  

7.1 Setup and Data Analysis 

The same measurement setup described in section 6.1.1 was used for the interrogation of 

DU in various iron and polyethylene shielded configurations. Four trans-stilbene organic 

scintillators coupled to PMTs, and shielded in a lead-tin-copper shield cave were used for fast 

neutron detection.  
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The interrogation of DU was performed in various iron and polyethylene shielded 

configurations. Both iron and polyethylene shielding were hollow boxes of varying wall 

thicknesses. The iron wall thickness extended up to 6.35 cm and the polyethylene wall thickness 

extended up to 15.24 cm. The distance between DU and collimator opening was constant i.e., 27 

cm, across all configurations. Both iron and polyethylene shielding around DU were studied 

because iron primarily attenuates bremsstrahlung photons, which reduces photoneutron production 

in the target whereas polyethylene primarily attenuates the produced photoneutrons. All 

measurements with DU were performed for one hour. Additionally, a one-hour measurement was 

performed with no target present to quantify photoneutrons produced in the photon collimator. 

This measurement with no target is referred to as the active background. The photograph from the 

interrogation of DU shielded in 5.08 cm thick polyethylene configuration is shown in Figure 7.1.  

 

Figure 7.1. Photographs of the measurement setup for the interrogation of depleted uranium in shielded 
configurations [66].  
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 The analysis of the measured data was performed similarly to the analysis described in 

section 6.1.2. Time gating was performed to separate during and in-between linac pulses trans-

stilbene detections. The scintillation events that were detected during linac pulses were processed 

with the developed ANN system (section 5.1). 

The validated MCNPX-PoliMi framework described in section 6.2 was used to simulate 

various iron and polyethylene shielded configurations of DU. The Briks function was used to 

convert energy deposited to light output (eq. 2-3). The collision file obtained from MCNPX-PoliMi 

was processed with MPPost [58], and the output from MPPost was scaled to photoneutron count 

rate using eq. 6-1.     

7.2 Results and Discussion 

7.2.1 Breakdown of Scintillation Pulses 

Figure 7.2 shows the breakdown of scintillation pulses from the trans-stilbene organic 

scintillators during interrogation of depleted uranium in various shielded configurations. The 

developed ANN system broadly categorized voltage pulses into three broad categories: singles, 

recoverable piled-up events, and unclassifiable piled-up events. The singles and recoverable piled-

up events were further classified as neutrons and photons whereas unclassifiable events were 

eliminated. These unclassifiable piled-up events included triple/quadruple pile-ups and voltage 

pulses that were extremely noisy. The noisy pulses constituted most unclassifiable piled-up events, 

and the ANN system was unable to classify them as neutrons and photons with confidence. 

For both iron and polyethylene shielded configurations, the total scintillation pulses 

decreased with an increase in the shield wall thickness. This decreasing trend is due to the 

attenuation of bremsstrahlung photons by iron and the moderation of neutrons by polyethylene. 

The percentage of voltage pulses categorized as singles increased with an increase in iron wall 
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thickness i.e., from 62% to 83%, This increase in the number of clean signals is due to the 

attenuation of photons, which causes pulse pile-up.  For the polyethylene shielded configurations, 

the singles constituted an average of 60% of the total scintillation pulses across all thicknesses. 

This nearly constant percentage of singles is because a low-Z material like polyethylene has a 

small effect on the bremsstrahlung radiation. 

 

Figure 7.2. Breakdown of scintillation pulses from the trans-stilbene detectors during interrogation of depleted 
uranium: a) iron shielded configurations and b) polyethylene shielded configurations.  

Figure 7.3 and Figure 7.4 shows the tail and total integrals of neutrons and photons detected 

during linac active interrogation of depleted uranium shielded in the least and greatest thicknesses 

of iron and polyethylene with and without the piled-up events. The results shown in Figure 7.3 and 

Figure 7.4 demonstrates the ANN ability to accurately identify singles, and a good separation was 

is observed between neutrons and photons without any piled-up events in the PSD plots.  

7.2.2 Photoneutron Count Rate 

Figure 7.5 shows the bremsstrahlung photon spectrum at the exit of the secondary 

collimator obtained from the electron simulation. The ENDF/B-VII photonuclear cross-section 

data for (𝛾, 𝑛), (𝛾, 2𝑛), and (𝛾, 𝑓𝑖𝑠𝑠𝑖𝑜𝑛) reactions are also represented in Figure 7.5. The Q-value 
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for (𝛾, 𝑛) photonuclear reactions in 238U is 6.2 MeV and the threshold for (𝛾, 𝑓) reactions is 5.5 

MeV.  

 

Figure 7.3. Neutron and photon tail and total pulse integrals for depleted uranium shielded in a) 1.27 cm iron (before 
pile-up recovery), b) 1.27 cm iron (after pile-up recovery), c) 6.35 cm iron (before piled-up recovery), and d) 6.35 cm 
iron (after pile-up recovery) [66]. 

 

Figure 7.4. Neutron and photon tail and total pulse integrals for depleted uranium shielded in a) 2.54 cm polyethylene 
(before pile-up recovery), b) 2.54 cm polyethylene (after pile-up recovery), c) 15.24 cm polyethylene (before piled-
up recovery), and d) 15.24 cm polyethylene (after pile-up recovery) [66].  
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There are no photoneutrons from the (𝛾, 2𝑛) reactions as the endpoint energy of the bremsstrahlung 

radiation is less than the reaction threshold energy in 238U (Q-value for (𝛾, 2𝑛) in 238U is 11.3 

MeV). Approximately 9% of the total bremsstrahlung spectrum is emitted with energies greater 

than 5.5 MeV, and therefore only a fraction of emitted photons induces photonuclear reactions in 

the depleted uranium target.  The rest of the bremsstrahlung photons does not contribute to 

photoneutrons production; however, they constitute an intense photon background and cause pulse 

pile-up issues in trans-stilbene detectors. 

 

Figure 7.5. ENDF/B-VII photonuclear cross-section data [7] for 238U superimposed with the bremsstrahlung photon 
spectrum.  

Figure 7.6a shows the measured and simulated photoneutron count rate for depleted 

uranium shielded in various thicknesses of iron. Both measured and simulated count rates 

decreased with an increase in iron wall thickness. This decreasing trend is expected because the 

attenuation of bremsstrahlung radiation caused by iron reduces (𝛾, 𝑛) and (𝛾, 𝑓𝑖𝑠𝑠𝑖𝑜𝑛) 

photonuclear reaction rates in depleted uranium, which reduces the production of photoneutrons. 

Figure 7.6b shows the measured and simulated photoneutron count rates for depleted uranium 

shielded in various polyethylene configurations. We again observed a decreasing trend in the 

measured and simulated count rates, which is expected because polyethylene is a neutron 

moderator, and therefore, it can reduce the neutron energy below detection thresholds.  
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The pile-up events were processed with the ANN pile-up recovery to restore neutron 

information. For the 1.27 cm thick iron configuration, pile-up recovery constituted nearly 27% of 

the total photoneutron count rate. The percentage of recovered neutrons was reduced to 5% for the 

6.35 cm thick iron configuration. This reduced recovery in neutron information is due to reduced 

pulse pile-up. The simulated photoneutron count rate for this minimally piled-up affected iron 

configuration was found to under-predict the measured count rate by 25.9 ± 3.3%. This thickest 

iron configuration, which has the highest percentage of collected data classified as singles, 

establishes a reference value to quantify the discrepancy between measurement simulation and 

simulation. For the 1.27 cm and 2.54 cm thick iron configurations, the discrepancy between the 

measured and simulated photoneutron count rates improved after pile-up recovery; however, the 

simulated rate is over predicting the measured rate, which is due to the information that is lost to 

unclassifiable piled-up events.  

 

Figure 7.6. Simulated and active background subtracted photoneutron count rates: a) depleted uranium shielded in 
varying thickness of iron and b) depleted uranium shielded in varying thickness of polyethylene. (Error bars are from 
Poisson counting statistics and are represented within one standard deviation.) 

For all six polyethylene configurations, pile-up recovery constituted an average of 32% of 

the total photoneutron count rate. For the 2.54 cm, 5.08 cm, and 7.62 cm thick polyethylene 

configurations, the simulated rate is found to over-predict the measured rate (after pile-up 
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recovery). The discrepancy between simulation and measurement was observed to reach an 

asymptote with increasing polyethylene wall thickness. For the 12.70 cm and 15.24 cm thick 

configurations, the simulated count rate under-predicted the measured rate by 14.7 ± 3.3% and 

16.9 ± 3.9% respectively. This under-prediction is consistent with the reference value obtained 

from the iron shielded configurations.  

In 2015, Frankl and Macian-Juan performed a photonuclear benchmark study using 

MCNPX with ENDF/B-VII cross-section library [61]. The authors used measurement data that 

were obtained by Barber and George in 1959 [62]. For a 0.98 cm thick natural uranium target 

interrogated with a 11.5-MV electron linac, Frankl and Macian-Juan found that the simulated count 

rate under-predicts the measured rate by 8.7 ± 15.1%. In the present work, the depleted uranium 

target is 5.23 cm thick and interrogated with a 9-MV linac. The reference under-prediction value 

obtained from the maximum iron configuration is 25.9 ± 3.3%. This under-prediction is consistent 

with the Frankl and Macian-Juan results. However, due to huge uncertainty in the measured result 

by Barber and George, it cannot be concluded that the under-prediction obtained in the present 

study agrees with the 8.7 ± 15.1%. The ENDF/B-VII provided an integral validation of the 

photonuclear cross-section for 235U [7]. This validation found that the discrepancy between 

measurement and simulation can vary between 20 – 30%.  The reference under-prediction in the 

present work lies between 20 – 30% range, which provides confidence in the obtained result.     

7.2.3 Photoneutron Light Output Distributions 

Figure 7.7 shows the normalized photoneutron light output distribution for depleted 

uranium shielded in 2.54 cm thick iron and 2.54 cm thick polyethylene configurations. For both 

shielded configurations, the measured distributions have the same shape before and after recovery 

of piled-up events. This same shape implies that pile-up recovery provided an efficiency boost for 
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neutron detection i.e., pile-up recovery increased photoneutron counts, thereby providing a higher 

neutron detection efficiency. Additionally, this result helps build confidence in the recovery of 

piled-up events through the ANN system.  

Figure 7.8 shows the measured and simulated photoneutron light output distributions for 

the least and greatest thicknesses of iron and polyethylene tested in this work. For the least 

thicknesses of shielding i.e., 1.27 cm for iron and 2.54 cm for polyethylene, the simulated count 

rate over-predicted the measured count rate in the 0.28 to 0.60 MeVee light output window. This 

over-prediction is due to the information that is lost to unclassifiable piled-up events. Nearly 75% 

of these unclassifiable piled-up events were voltage signals that were noisy and had a small 

amplitude i.e., less than 0.6 MeVee. The simulation was found to under-predict the measurement 

in the 0.70 to 2.67 MeVee light output window by an average of 35.4 ± 2.1%.   

 

Figure 7.7. Normalized photoneutron light output distributions for depleted uranium shielded in a) 2.54 cm thick iron 
and b) 2.54 cm thick polyethylene. (Error bars are represented within one standard deviation.)  

For the greatest thicknesses of shielding i.e., 6.35 cm for iron and 15.24 cm for 

polyethylene, the simulation was under predicting the measured result across the entire light output 

window of 0.28 to 2.67 MeVee. This under-prediction between simulation and measurement is 
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25.9 ± 3.3% for the 6.35 cm thick iron case and 16.9 ± 3.9% for the 15.24 cm thick polyethylene 

case.  

 

Figure 7.8. Simulated and active background subtracted photoneutron light output distributions for the least and 
greatest thickness of a) iron shielding and b) polyethylene shielding. (Errors bars are from Poisson counting statistics 
and are represented within one standard deviation.) 

The discrepancy between results of the thickest iron and polyethylene shielded 

configurations is due to the information that is lost to unclassifiable piled-up events. Nearly 14% 

of the collected data was eliminated from the thickest iron case while 30% was eliminated from 

the thickest polyethylene case. Assuming the eliminated data have the same neutron-to-photon 

ratio as single pulses, the fractional neutrons present in the eliminated data can be estimated. For 

depleted uranium shielded in 6.35 cm thick iron and 15.24 cm thick polyethylene, the measured 

neutron-to-photon ratios are 0.35 and 0.09 respectively. Using these measured ratios, the neutron 

fraction is computed using, 

𝐹! =
𝑅

𝑅 + 1, 
7-1 

where 𝐹! is the neutron fraction and 𝑅 is the measured neutron-to-photon ratio. The neutron 

fractions estimated by eq. 7-1 were used to predict the missing photoneutron count rate in the 

thickest iron and polyethylene shielded configurations. These count rates were 0.22 photoneutrons 

per second for the 6.35 cm thick iron configuration and 0.43 photoneutrons per second for the 
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15.24 cm thick polyethylene configuration. These fractional neutrons from the eliminated data 

were added to the photoneutron count rate after pile-up recovery, and the simulation was found to 

under-predict the measured result by 32.8 ± 3.2% for the thickest iron case and 34.0 ± 3.3% for 

the thickest polyethylene case. These under-predictions obtained after accounting for 

unclassifiable piled-up events agree with the 35.4 ± 2.1% value that was obtained from the least 

thicknesses of iron and polyethylene shielding in the 0.70 –2.67 MeVee light output window. 

7.3 Summary and Remarks 

During the interrogation of the bare DU target, nearly 30% of the collected data was 

eliminated, which was due to the unclassifiable piled-up events. I further mitigated pulse pile-up 

issues by interrogating the DU target in various iron and polyethylene shielded configurations. The 

measured photoneutron count rate obtained from the developed ANN system indicated a 

decreasing trend in the count rates with an increase in shield wall thickness. This decreasing trend 

is due to the attenuation of bremsstrahlung radiation by iron, and moderation of photoneutrons by 

polyethylene. Additionally, the effect of pile-up recovery was reduced with increasing iron wall 

thickness and remained constant across all configurations of polyethylene.  

For the thickest case of the iron shielding, i.e., 6.35 cm, the effect of pulse pile-up was 

minimal. This minimally piled-up affected configuration was used to establish a reference value 

to quantify the discrepancy between measurement and simulation. The MCNPX-PoliMi 

simulation was found to under-predict the measured photoneutron count rate by 25.9 ± 3.3%. A 

significant portion of the collected data, i.e., 14%, was still eliminated due to unclassifiable piled-

up events. Additional analysis was performed to estimate the contribution of unclassifiable piled-

up events to the photoneutron count rate using the measured neutron-to-photon ratio from single 

pulses. After correcting for unclassifiable events, the simulation was found to under-predict 



 88 

measurements by at most 33.8 ± 3.2%. For the thickest polyethylene case, i.e., 15.24 cm, after 

correcting for unclassifiable events, the simulation was found to under-predict the measured result 

by 34.0 ± 3.3%. The results obtained from the thickest iron and polyethylene shielded 

configurations are in good agreement within one standard deviation.   

For the least thicknesses of iron and polyethylene shielded configurations, the discrepancy 

between simulation and measurement improved after recovering neutron information from piled-

up events. For a light output window of 0.70 – 2.67 MeVee, the MCNPX-PoliMi result was found 

to under-predict the measured photoneutron count rate by an average of 35.4 ± 2.1%. This result 

obtained from the most piled-up affected configurations is in good agreement with the result 

obtained from the least piled-up affected configuration.    
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Chapter 8 Summary, Conclusions, and Future Work 

8.1 Summary 

This Ph.D. research provides new measured results, which can help quantify under-

predictions in the photoneutron count rates for uranium by Monte Carlo codes. This quantitative 

assessment was achieved through a comparative study between simulation and measurement. The 

Monte Carlo simulation was performed using the MCNPX-PoliMi transport code with the most 

updated photonuclear cross-section library. For measurement of photoneutrons, a 5.23 cm thick 

depleted uranium (DU) target was interrogated with bremsstrahlung photons from a 9-MV linac, 

and fast neutrons were detected with four trans-stilbene organic scintillators. The intense 

bremsstrahlung flux from the linac creates pulse pile-up in trans-stilbene scintillators, thereby 

posing a measurement challenge for photoneutron detection.    

The pulse pile-up effect was mitigated by developing and demonstrating an artificial neural 

network (ANN) system. The developed ANN system consists of six feed-forward neural networks 

that work in conjunction to classify scintillation pulses as neutrons and photons and recover 

particle information from piled-up events. I demonstrated the performance of the ANN system 

through the active 252Cf measurement in which the neutron source was measured in the presence 

of the bremsstrahlung radiation from the linac. The ANN system outperformed traditional pulse 

shape discrimination methods in the intense photon environment.  

Active interrogation experiments were performed on a DU cube and a lead block. The 

results obtained from the developed ANN system showed a 5x increase in the photoneutron count 
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rate when the lead target was replaced with the DU cube. Additionally, the measured light output 

distribution for lead photoneutrons was softer than the DU photoneutron light output distribution. 

This difference in the light output distributions is due to the differences in the photoneutron energy 

spectra. By selecting a light output window of 1.00 – 2.67 MeVee, the difference in the measured 

distributions was further exploited to demonstrate that an actinide, such as uranium, can be 

detected as quickly as 30 seconds, and differentiated from a non-SNM material, such as lead. 

Performing interrogation measurements in a timely manner is of interest in cargo scanning 

application wherein high-energy photons are used to detect hidden special nuclear materials.  

The interrogation of bare DU was modelled using a developed MCNPX-PoliMi 

framework. The MCNPX-PoliMi simulation was validated with measured results from a 252Cf 

spontaneous fission source. In the photonuclear experiments, the simulation over-predicted 

measurement in the 0.28 – 0.60 MeVee light output window. Possible reason for this under-

prediction in the measured result is the elimination of unclassifiable piled-up events that resulted 

in loss of information.   

The pulse pile-up was further reduced by introducing various iron and polyethylene 

shielding around DU. The minimally piled-up affected iron configuration was used to establish a 

reference value to quantify the discrepancy between measurement and simulation. For the thickest 

case of the iron shielding, i.e., 6.35 cm, after correcting for unclassifiable events, the simulation 

was found to under-predict measurements by at most 33.8 ± 3.2%. For the thickest polyethylene 

case, i.e., 15.24 cm, after correcting for unclassifiable events, the simulation was found to under-

predict the measured result by 34.0 ± 3.3%. The results obtained from the thickest iron and 

polyethylene shielded configurations are in good agreement within one standard deviation.   
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For the least thicknesses of iron and polyethylene shielded configurations, the MCNPX-

PoliMi result was found to under-predict the measured photoneutron count rate by an average of 

35.4 ± 2.1% in the 0.70 – 2.67 MeVee light output window. This result obtained from the most 

piled-up affected configurations is in good agreement with the result obtained from the least piled-

up affected configuration.  

The consistent results obtained from the interrogation of DU in bare and various shielded 

configurations help build confidence in the under-prediction by Monte Carlo codes. The findings 

from this work provide new measured results that can help improve photonuclear cross-section 

data for uranium, which in turn will enhance simulation capabilities with existing Monte Carlo 

codes. 

8.2 Conclusions 

The pulse pile-up is inevitable in intense radiation environments. Neural-network-based 

digital pulse processing algorithms help recover information from such piled-up events, which are 

otherwise eliminated when using traditional pulse processing techniques. The ANN algorithm can 

further process scintillation pulses in real-time by implementing the algorithm on a field 

programmable gate array (FPGA).  

The present work provides a measurement setup that can be used to detect photoneutrons 

in intense radiation environments. This setup does not use any coincidence counting technique, 

which makes the measurement setup robust for cargo scanning and nuclear waste characterization 

applications. The differences in energy spectra of photoneutrons from different materials are 

reflected in the obtained light output distributions. These differences are exploited to flag materials 

of interest from other hoax materials.  
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The present work also provides a detailed framework to simulate photonuclear physics 

using the MCNPX-PoliMi transport code. The developed framework begins with the electron 

simulation, which is the starting point for high-energy bremsstrahlung photons. Modelling 

photonuclear physics from the very start, i.e., electrons help capture most physical quantities of 

interest with fewer approximations, thereby enhancing the overall accuracy of simulated results.  

The discrepancy observed between measurement and simulation is primarily caused by 

under-predicted photonuclear cross-section data for uranium. This result can be concluded because 

the validation of the MCNPX-PoliMi simulation performed with the 252Cf source yielded good 

agreement between measurement and simulation; we can be confident that the discrepancy is not 

due to other cross-section data utilized in the simulation process. Precise photonuclear cross-

sections are needed to accurately study responses of high-energy photon interrogation systems. 

Additionally, correct answers from simulation are of great importance for the design and 

development of interrogation systems for nuclear security and safeguard applications.  

8.3 Future Work 

The ANN system developed in the present work is limited to classify scintillation pulses 

that have light output values between 0.28 – 2.67 MeVee (1.66 – 6.85 MeV proton recoil energy). 

This limitation is due to the voltage thresholds applied to the time-of-flight (TOF) data, which was 

used to train the ANN system. The classification range can be expanded by training the ANN 

system with neutron and gamma-ray pulses that have light output values of less than 0.28 MeVee 

and greater than 2.67 MeVee. The high-confidence training data can be collected using the TOF 

approach discussed in section 4.1. During the TOF experiment, the gain of the measuring circuit 

must be selected appropriately such that neutron and gamma-ray voltage pulses have a good signal-

to-noise ratio for light output values below 0.28 MeVee and above 2.67 MeVee. By expanding the 
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light output window, the ANN system will be able to classify neutrons that deposit energies less 

than 1.66 MeV.  

The ANN architecture developed in the present work is a robust architecture that can be 

used to classify scintillation pulses from any organic scintillators coupled to either photomultiplier 

tubes (PMT) or silicon photomultiplier tubes (SiPM). The current work investigated the ANN 

system for trans-stilbene organic scintillator coupled to a PMT. The trans-stilbene scintillator is a 

crystal, which has limited availability and is further limited in size. Emerging new organic 

scintillators, such as the organic glass can be investigated for use in high-radiation environments. 

The current ANN system can be trained to classify scintillation pulses from organic glass coupled 

to either PMT or SiPM, thereby expanding the use of the ANN system.   

The present Ph.D. research provides an experimental setup for measurement of 

photoneutrons with trans-stilbene detectors and a 9-MV linac. I measured SNM surrogate i.e., DU 

and a non-SNM target i.e., lead. Low-Z elements, such as beryllium and heavy water are of interest 

because of their low threshold energies for photonuclear reactions. Theoretically, these low-Z 

targets can produce photoneutrons up to 7 MeV energies when interrogated with 9 MeV photons. 

For cargo scanning applications, the 3.68 – 6.85 MeV energy window (section 6.3.3) that was used 

to discriminate lead from DU may not be able to discriminate SNMs from low-Z elements. Thus, 

supporting measurements must be performed to identify differences in the photoneutrons light 

output distributions for uranium and low-Z elements.  

The current work further provides a framework to simulate active interrogation 

measurements using Monte Carlo codes, such as the MCNPX-PoliMi. The developed framework 

can be used to predict photoneutron count rates from other common elements such as plutonium, 
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iron, heavy water etc. The comparison of the predicted count rates with measured rates can help 

improve photonuclear cross-section data for other elements of interest in nuclear community.
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