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ABSTRACT

This dissertation presents a comprehensive analysis of human behaviors with applications in de-
tecting distractive driving behaviors, automatic labeling of common driving behaviors, and the
prediction of consumer behavior related to purchasing airline tickets. The findings aim to foster
our understanding of the complexities that drive human behaviors. Emphasis is placed on the
development of practical methods that generate a positive societal impact with regards to driving
safety and business management decisions.

The insights of human behaviors were explored through three major works: (1) automatic
clustering of diverse kinematic driving data patterns to enhance the understanding of drivers’
normal maneuvering behaviors; (2) detecting distracted driving behaviors to enhance human driving
safety through the fusion of kinematic data and driving models; and (3) modeling and predicting
consumers’ behaviors to assist business management decisions in pricing airline tickets. The major
methodological contributions are summarized as follows.

The first work introduces a new multi-model fusion and detection algorithm through effectively
synthesizing three different state-space models, each of which represents a driver’s typical kinematic
motion pattern (i.e. constant velocity, constant acceleration, and constant turn rate and acceleration).
The kinematic motion trajectory can be dynamically updated and predicted by using the Kalman
filtering method. A normalized likelihood is further proposed for model fusion by weighing the
contribution of each kinematic motion model. The results are then used to build two monitoring
control charts. Specifically, both an Exponentially Weighted Moving Average (EWMA) control
chart and a Cumulative Sum (CUSUM) control chart are developed to automatically detect and
assess distracted driving behavior. This work is attractive in that it can be used to generate real-time
warning signals during driving to avoid risky distracted driving behaviors.

The second major work aims to identify typical drivers’ normal maneuvering behaviors from
a collected naturalistic driving dataset. The automatic clustering of time series kinematic driving
data is done by improving the existing Hierarchical Dirichlet Process Hidden Semi-Markov Model
(HDP-HSMM) inference method. In literature, utilizing a Hierarchical Dirichlet Process as a prior
can lead to consistency issues, which can harm the estimation of duration probabilities, transition
probabilities, and the total number of maneuver states. Although many solutions have been proposed
to counter the consistency issues, none have been from the perspective of HDP-HSMMs. For this
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purpose, this research presents an enhanced robust algorithm called rHDP-HSMM, which adds
a state-merging procedure to each iteration of the inference procedure to avoid redundant states.
As a result, the proposed rHDP-HSMM leads to more consistent states, faster convergence, and
better estimations of the emission and duration parameters than the existing HDP-HSMM method.
Therefore, the proposed rHDP-HSMM model can improve the estimation accuracy of the true
number of states of a given time series dataset. This enhances the understanding and inference of
drivers’ maneuvering behaviors. Furthermore, the generated clustering results can be served as a
surrogated model to generate realistic simulation data for testing autonomous vehicles.

The third major work combines concepts from economics and constrained Gaussian Process
(CGP) regression to probabilistically describe consumer purchasing behaviors. Fully modeling
customer buy-down and sell-up behaviors for all different fare groups is often difficult due to
the sparse or lack of customers’ purchasing data in some fare groups. The existing system-wide
aggregation/averaging methods can be used to address this sparsity issue, however, the resulting
customer behavior estimates become uncharacteristic of the original markets of interest. This
work addresses this issue by applying the multitask learning strategy to a CGP model, in which
all fare groups’ data are shared to estimate individual fare group demand simultaneously. The
proposed CGP model enables an accurate estimation of customers’ purchasing behaviors in fare
groups that have limited historical purchasing data. The estimates can be further used to infer
customer buy-down and sell-up probabilities. Specifically, a general CGP model is developed
by adding appropriate airline demand constraints that represent the relationships both within and
between fare groups. The proposed CGP model facilitates an inter-group cross-learning capability
for predicting customer purchasing behaviors. In addition, it is also proposed to adjust a particular
set of airline demand constraints such that the economics concept of price elasticity can be taken
into account. This leads to an improved estimation of customer demand. To further consider the
buy-down and sell-up behaviors, the estimated demand is decomposed into three different states
(cheap, expensive, no longer sold) to consider which fare groups were available at the time of
purchase. This decomposition allows for historical observations to represent different types of
buying behaviors. A case study is presented to demonstrate how demand estimates of the CGP
can be converted into both buy-down and sell-up probabilities that are dependent on selling time.
As such, this work offers both modeling contributions and a better understanding of customer
purchasing behaviors in airline applications.

Collectively, the contributions from all three works presented in this dissertation have advanced
data analytics methods in modeling and inferring human behaviors across the applications of
transportation and business management field. The findings also enrich the understanding of
human behaviors to foster the development of practical solutions in the corresponding application
fields.
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CHAPTER 1

Introduction

1.1 Motivation

In recent years, the advancements in data analytical methods have opened up new possibilities
for understanding human behaviors in various application domains. This dissertation explores the
development of algorithms that delve into distinct but interconnected aspects of human behavior
analysis methods. By utilizing advanced statistical modeling and machine learning techniques, this
dissertation has advanced data analytics methods for understanding and predicting human distracted
driving behavior, naturalistic human driving behaviors, and humanistic buying behavior.

1.1.1 Motivation for Modeling Distracted Driving Behavior

The first major work focuses on the detection of human distracted driving behavior. With the
increasing prevalence of mobile devices and other distractions, there is a growing concern for
driving safety. There is much motivation for developing algorithms that enable the detection of
inattentive driving behaviors. Driver distraction occurs when a driver diverts their attention away
from the task of driving to focus on a secondary task. For example, texting is a common secondary
task performed while driving that causes driver distraction. Much research has been documented
on the topic of driver distraction and can usually be categorized into one of the two different
approaches.

The more common approaches focus on monitoring the drivers directly, as drivers themselves
often display certain patterns when becoming distracted. For example, these patterns can be the
driver reaching for their phone or even displaying an abnormal blink rate. Research based on the
this approach is usually performed via techniques involving face and facial landmark detection,
biomechanical detection and recognition, and measuring cognitive load. However, there are many
practicalities to consider before these techniques can be implemented. For example, additional
sensors are often required to be either installed in the vehicle or equipped to drivers directly.
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Not only does incur additional costs to the drivers of interest, but issues privacy may result from
implementation. Hence in practice, implementation of above type of research is still very limited.

Chapter 2 focuses on analyzing the vehicle’s real-time driving patterns. The idea is that any
secondary task distracting the driver will directly manifest in their vehicle maneuver control.
Hence this approach will focus on using already available kinematic motion signals to predict how
situations will evolve and measure a driver’s deviation from the predicted behavior. The sensors
used in this framework are already embedded in a vehicle measuring information like speed, yaw
rate, and acceleration.

Many well-defined motion models compliment this approach. They are termed motion models
because these models track and predict signals describing the motion of an object. Specifically,
Chapter 2 will utilize kinematic motion models make use of the well-understood physics relation-
ships between the signals of interest. For example, the assumptions of constant velocity (CV),
constant acceleration (CA), or even constant turn rate and acceleration (CTRA) can be be used to
predict the motion of the vehicle. These use the state-space modeling approach in conjunction with
kinematic equations to capture dynamic vehicle motion trajectories.

However, not much literature exists relating the use of kinematic motion models to detect driver
distraction. One paper that comes close is [57], where four motion models with both the extended
Kalman filter and a particle filter are used to detect lane level irregular driving behaviors via fuzzy
logic to output risk types. However their use of GPS signal data presented some challenges in the
quality of measurement data. Even so, [56] notes that most of the irregular driving behavior based
on vehicle-based research is still preliminary and in early stages of development as most literature
does not attempt to quantify performance in terms of correct detection rate. As such, in the field of
detecting driver distraction, most researchers tend to use more visual based methods described by
the first approach.

1.1.2 Motivation for Modeling Naturalistic Human Driving Behaviors

The analysis of vehicle driving styles is prominent to the field of intelligent transportation, vehicle
calibration, and autonomous testing [69, 46]. The term driving style can be referred as a set of
dynamic activities or steps that a driver uses when driving. In other words, vehicle driving styles
describe how humans naturalistically perform various driving maneuvers. Hence, this type of
research impacts eco-driving, road safety, and intelligent vehicles [7, 49, 35]. Chapter 3 seeks to
automatically describe these naturalistic human driving behaviors through the analysis of kinematic
signals.

To describe and model these driving styles, one popular approach is the use of a Hierarchical
Dirichlet Process Hidden Semi-Markov Model (HDP-HSMM) [62]. This model is powerful in that
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it considers the sequential nature of driving kinematic signals, and estimates data segmentation, be-
havior state duration, and state transition probabilities. The HDP-HSMM provides semantical way
for analyzing driver behaviors, and is thus popularly used for describing driving styles. Figure 1.1a
shows an exemplar set of sequential kinematic signals belonging to the trip observed in Figure 1.1b.
The signals are color-coded to reference a state segmentation determined by a HDP-HSMM.

(a) (b)

Figure 1.1: An example trip from Chapter 3 and the kinematic signals belonging to it. Learned states from
an HDP-HSMM are color coded as labels.

The HDP-HSMM is able to describe naturalistic human driving behavior in great detail due to
the structure of the model. The HDP-HSMM utilizes a three-layer structure (shown in Figure 1.2a)
which demonstrates the effects of a Semi-Markovian approach to model the state transitions 𝜋̄𝑧𝑠 .
This structure allows users to model the duration 𝐷𝑠 of each behavior via any discrete distribution,
while allowing the segmentation of each behavior to be directly represented by the hidden states 𝑧𝑠.
Furthermore, the HDP-HSMM is able to infer the number of behaviors represented by data by use
of the Hierarchical Dirichlet Process (HDP). The HDP acts a prior on the transition probabilities to
allow which allows for information to be shared between the different state transition probabilities.
Utilizing this process as a prior to the transition probabilities translates to the number of states also
being determined via a Dirichlet Process type of procedure.

While the HDP-HSMM is powerful, literature outside of the field of transportation details how
the model’s use of an HDP prior can lead to redundant and inconsistent state estimations. This detail
is important as it needs to be considered by researchers attempting to utilize the HDP-HSMM to
describe driving styles. For example, Figure 1.1b clearly has redundant states as seen by the green
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shaded states. The redundant states can make analysis of HDP-HSMM outputs across multiple
datasets difficult for researchers hoping to model naturalistic human driving behaviors.

(a) HMM (b) HSMM

Figure 1.2: A comparison between the structure of a Hidden Markov Model (HMM) and a Hidden Semi-
Markov Model (HSMM). The variables and their descriptions are as follows: 𝑥𝑡 (hidden state at time 𝑡), 𝑦𝑡
(observed data at time 𝑡), 𝜋𝑥 (transition probabilities of state 𝑥), 𝑓 (𝜃𝑥) (probability distribution of state 𝑥),
𝑧𝑠 (state of segment 𝑠), 𝐷𝑠 (state duration of segment 𝑠).

A few works exist that focus on solving this issue for the more simpler Hidden Markov Model
(displayed in Figure 1.2a). [15] discussed HMM’s utilizing a Dirichlet prior, and the assumptions
on the prior required for the consistency. [11] developed the sticky HDP-HMM (sHDP-HMM)
to consider the issue of redundant states. This model adds a bias to the prior on the rows of the
transition matrix which emphasizes self-transitions. This results in an increased state duration for
each learnt state, which allows the sHDP-HMM to avoid redundant states with short state duration.
However, this strategy cannot be applied to HDP-HSMM as the modeling structure of HMM’s
is inherently different from HSMM’s. Outside of HMM and HSMM modeling, [18] focused on
the Dirichlet Process Mixture model, and presented the Merge-Truncate-Merge algorithm, which
guaranteed a consistent estimate to the number of mixture components. This post-processing
procedure takes advantage of the fact that the posterior sample tends to produce a large number of
atoms with small weights, and probabilistically merges atoms together.

Given these approaches, Chapter 3 attempts to address the HDP’s inconsistency problem by
taking inspiration from both the sticky HDP-HMM and the Merge-Truncate-Merge algorithm.

1.1.3 Motivation for Modeling Humanistic Buying Behaviors

In the field of revenue management, understanding consumer behavior is important for capacity
control decisions. Capacity control decisions are any decision impacting the allocation of capacity
of a resource to various consumers. For airline revenue management, airlines consider how much
capacity should be allocated to various fare groups before deciding the price of each seat on a
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plane. This decision impacts the various shopping options customers see when purchasing, which
in turn impacts consumer buying behavior. Customers will respond differently depending on the
options presented before them. The more relevant a product appears to a customer, the higher the
probability of a purchase being made. For example, if an option is within their preferred price
range, a customer may make a purchase. If a product is slightly above their preferred price range,
there is still a chance that a customer may make a purchase. As such, airlines must consider how
their decisions regarding which fare groups to show the customers affect customer buying behavior.

Figure 1.3: Example of airline booking data from different fare groups. Each group is represented by a
different color. The number of samples collected for each fare group is shown in the legend in parenthesis.

The term customer buying behavior implies modeling demand dependencies between different
fare groups. One method for modeling demand dependencies between fare groups is the use of
sell-up rate probabilities. These probabilities are meant to capture the probability of customers
‘selling-up’ between the fares. For example, [21] utilized fare ratios and observed demand to
estimate sell-up rates. [14] provides an alternative sell-up rate calculation using a multinomial logit
model to consider cross-flight effects. Sell-up rates aid the estimation of the dependent component
of demand in that they can convert demand from one fare group to another fare group [66]. However
sell-up rates are generally difficult to obtain as sell-up occurrences are rarely captured during the
booking process [6]. The data used to calculate market-specific sell-up rates is inherently sparse.
System-wide aggregation methods are often used to make use of more data across the entire system.
However estimating sell-up over an entire system results in estimates that are too broad and over-
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generalized. This is problematic as estimating sell-up this way may be uncharacteristic of the
market of interest. Buy-down behavior is case where customers buy down as a cheaper fare class
becomes opened by the airline. Similarly these probabilities are also difficult to calculate in practice
for the same reasons. As such, many optimization methods do not directly use sell-up rates to relate
demand dependencies between fare classes to maximize revenue.

In order to be able utilize information about customer buying behavior, airlines must first be
able to properly quantify these probabilities before determining the availability of various prices.
The availability of various prices can be represented by the amount of selling time 𝜏𝑖, 𝑗 the airline
has allocate to each fare group 𝑗 of flight 𝑖. For each fare group, the demand is dependent on the
availability given to it (Figure 1.3). For certain future flights, airlines often employ selling time
strategies that are similar to their historical selling times. This is because estimation of demand for
scenarios outside of their historical selling time allocations is very difficult. This results in historical
data being biased towards these decisions, which implies demand observations are often censored
according to the airline’s own decisions. This makes the inference of customer buying behavior
very difficult, as often-times different fare groups have no common selling time for comparison.
Hence, to better understand customer buying behavior, an accurate estimation of demand for each
fare group at various selling times is required.

To better estimate demand at common selling times, certain assumptions may be useful for
prediction. For example, one common assumption about demand 𝑦𝑖, 𝑗 (𝑡) is that it decreases as price
𝑝 𝑗 increases. That is, for some common time 𝑡, if groups 𝑗− and 𝑗+ relate with prices 𝑝 𝑗− < 𝑝 𝑗+ ,
then the demand relates to each other as 𝐸 [𝑦𝑖, 𝑗− (𝑡)] ≥ 𝐸 [𝑦𝑖, 𝑗+ (𝑡)]. Within a fare group, the fact that
demand should increase as time increases can also be useful. That is for times 𝑡− and 𝑡+, if the times
relate to one another as 𝑡− < 𝑡+, then the demand relates to each other as 𝐸 [𝑦𝑖, 𝑗 (𝑡−)] ≤ 𝐸 [𝑦𝑖, 𝑗 (𝑡+)].
In Chapter 4, these assumptions are mathematically defined via linear operators and bounds. For
the assumption on demand decreasing as price increases, Chapter 4 provides a methodology for
selecting the lower bound that borrows from the economics formulation of price elasticity.

Building upon these formulations, Chapter 4 also provides a multiple-group Guassian Process
formulation of the data such that the constraints can be communicated to the Gaussian Process
regression. The idea of implementing these constraints within the constrained Gaussian Process is
to allow information to transfer between different fare groups observed at different selling times.

6



Figure 1.4: The results of the multi-fare-multi-state constrained Gaussian Process described in Chapter 4.
The top two graphs shows the CGP’s predictions (indicated by the lines) for data (indicated by the points)
belonging to different types of observable demand states for different fare groups. The demand estimates are
then converted into buy-down and sell-up probabilities and shown in the bottom two graphs.
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1.2 Key Research Objectives and Contributions

This dissertation is motivated to develop new methodologies that model various types of human
behavior. The three main research objectives studied in this dissertation are:

1. Modeling distracted driving behaviors using only kinematic signals belonging to a vehicle.
(Chapter 2)

2. Modeling naturalistic human driving behaviors via kinematic data, and ensuring these char-
acterizations are consistent and meaningful. (Chapter 3)

3. Modeling humanistic demand and customer buying behaviors under censored data conditions.
(Chapter 4)

The research contributions from each research objective are briefly described in the following
subsections.

1.2.1 Contribution from Modeling Distracted Driving Behavior

Chapter 2’s contribution lies in a proposed online approach to detect distracted driving behaviors
based on the fusion of physics-based kinematic state-space models. The proposed method (shown in
Figure 1.5) involves three steps: (1) training multiple kinematic state-space models using historical
normal driving data; (2) fusion of the trained motion models for real-time motion prediction via
a proposed Autonomous Multiple Model (AMM) algorithm; (3) developing a control chart-based
decision strategy by comparing model predictions with the true measurements.

Figure 1.5: Methodology flowchart for detecting distracted driving (from Chapter 2).
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1.2.2 Contribution from Modeling Naturalistic Human Driving Behavior

Building upon the analysis of kinematic signals, Chapter 3 revolves around the labeling of normal
humanistic driving behaviors. Here, an algorithm has been devised to improve the inference behind
the Hierarchical Dirichlet Process Hidden Semi Markov Model (HDP-HSMM). The algorithm
enhances unsupervised learning by emphasizing important driving behaviors while eliminating
redundant ones. The idea is to apply a merging procedure during inference which promotes longer
durations and the avoidance of redundant states. In doing so, Chapter 3’s contributions will include
(1) demonstrating how the HDP-HSMM becomes robust to the inconsistencies brought by the
HDP prior; and (2) demonstrating how this paper’s method can reduce the number of redundant
humanistic driving behaviors shown in Figure 1.1. A brief summary, which describes where
the newly described robust HDP-HSMM fits in relation to the other models described in HMM
literature, is given in Table 1.1.

State Duration
Distribution

Model
Extension

(not sensitive to prior)

Geometric
HDP-HMM

[45]
sticky HDP-HMM

[12]
Any Discrete
Distribution

HDP-HSMM
[23]

robust HDP-HSMM
(Chapter 3 of this dissertation)

Table 1.1: Comparison of various HMM-based models versus Chapter 3’s proposed robust HDP-HSMM
(rHDP-HSMM).

1.2.3 Contribution from Modeling Humanistic Buying Behaviors

Chapter 4’s contribution lies in providing a demand estimation methodology that incorporates
airline domain knowledge into the construction of constrained Gaussian Process (CGP) regression.
In doing so, the intricate relationship between customer demand for different fare groups under
censored data conditions can be modeled to allow for multitask learning to occur. Chapter 4 provides
the methodology to facilitate cross-learning via appropriate airline demand constraints, which in
turn improves demand estimation. Chapter 4 also takes a unique perspective by incorporating
the idea of decomposing demand into different states as to further consider buy-down and sell-up
behaviors. Hence a major contribution of this chapter is that customer buy-down and sell-up
behavior is probabilistically quantified (Figure 1.4) via the outputs of the described constrained
Gaussian Process.
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1.3 Outline of Dissertation

The subsequent chapters of this thesis will delve into each work in detail, discussing the context
and background of the problems addressed, the methodologies employed, the results obtained,
and the implications for the respective domains. Through these endeavors, this dissertation aims
to contribute to the advancement of knowledge in human behavior analysis and provide practical
applications that can enhance road safety and inform business strategies. The organization of the
dissertation is shown in Figure 1.6

Figure 1.6: Outline of dissertation.
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CHAPTER 2

Online Detection of Distracted Driving Through
Fusion of Kinematic State-Space Motion Models

2.1 Introduction

Driving a vehicle may appear an easy task as it has become almost second nature to today’s society.
However, in reality driving is a complex decision-making process involving both the driver, their
vehicle, and the environment around them. In 2013, the World Health Organization’s global status
report indicated 1.24 million traffic-related fatalities occurred worldwide and deemed driving to
be the current leading cause of death for people aged 15 − 29 years [40]. Because of statements
like this, driving safety is an increasing concern in both transportation research and the automotive
industry.

Recently, Driver Assistance Systems (DAS) have been an important focus in the design, devel-
opment, and manufacturing of new vehicles as not only do they aid drivers in driving, but they
also promote safety as well. However there does not yet exist a widely-used DAS capable of
recognizing inattentive driving behaviors. This is an important issue because when it comes to
vehicular accidents, human failure/error has been implicated to be the cause of about 70% of acci-
dents [61, 1]. From this viewpoint, developing a DAS capable of detecting risky driving behaviors
is highly desirable. According to the National Highway Traffic Safety Administration (NHTSA),
risky driving behaviors include drunk driving, inattentive driving, not utilizing seat belts, drug
impaired driving, drowsy driving. To narrow down the scope further, this paper’s focus will be on
the issue of inattentive distracted driving.

There is much motivation for developing an algorithm able to detect inattention. For example,
in the NHTSA’s 100-Car Naturalistic Driving Study, inattention was reported to be 93% of the
conflict related to lead-vehicle crashes and minor collisions [8]. Additionally in the United States
of 2010, driver inattention was reported to be the direct cause of 3092 deaths and 416, 000 injuries
involving accidents [4]. However inattention is also very broadly defined, so this paper will focus
on inattention in the form of driver distraction.
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Driver distraction occurs when a driver diverts their attention away from the task of driving to
focus on a secondary task. For example, texting is a common secondary task performed while
driving that causes driver distraction. Much research has been documented on the topic of driver
distraction and can usually be categorized into one of the two different approaches.

The first approach focuses on monitoring drivers’ behavior directly, as drivers themselves often
display certain patterns when becoming distracted. For example, these patterns can be the driver
reaching for their phone or even displaying an abnormal blink rate. Research based on the this
first approach is usually performed via techniques involving face and facial landmark detection,
biomechanical detection and recognition, and measuring cognitive load. [9] provides a great
overview on much of the work and successes related to this approach; However, there are many
practicalities to consider before the techniques mentioned can be implemented. For example,
additional sensors are often required to be either installed in the vehicle or equipped to drivers
directly. Not only does incur additional costs to the drivers of interest, but issues privacy may result
from implementation. Additionally, sensors such as EEG and ECG electrodes can be intrusive and
uncomfortable to drivers. Hence in practice, implementation of above type of research is still very
limited.

The other approach focuses on analyzing the vehicle’s real-time driving patterns, as any sec-
ondary task distracting the driver has a direct influence on his/her body movements that manifest
in their control of the vehicle. This approach focuses on using already available motion signals to
predict how situations will evolve and measure a driver’s deviation from the predicted behavior.
The sensors used in this framework are often already embedded in a vehicle measuring information
like speed, yaw rate, and acceleration and in turn are more practical than approaches measuring
information directly from the driver.

Motion models are often used in parallel to this second approach. They are termed motion
models because these models track and predict signals describing the motion of an object. Given
this, the structure of a motion model can vary into arguably three different types: (1) data-driven
motion models, (2) dynamic motion models, and (3) kinematic motion models. Each structure has
its advantages and disadvantages.

Having the most loose of structures, data-driven motion models typically take historical driving
data as a training data set to learn typical driving behaviors and maneuvers. For example, [63] used
a hierarchical Dirichlet process with a Hidden Semi-Markov Model (HDP-HSMM) to create a set
of primitives describing the behavior a particular car given its relative distance and relative range
rate to other nearby cars. While data-driven motion models can learn driving patterns directly from
historical data, these models typically assume no prior knowledge is known about the number of
driving patterns expected to learn. This leads to the problem of learning redundant driving patterns
which in turns creates the even greater problem of an incorrect estimation of the duration to each
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driving pattern. This can be problematic when referencing these data-driven motion models to
check for a driver’s deviation to the model’s prediction.

On the other hand, dynamic and kinematic motion models make use of the well-defined rela-
tionships between the signals of interest defined by physics. This avoids the problem of redundant
states and makes the model building process very intuitive. Dynamic motion models are built based
on Lagrange’s equations and consider the complex physics behind many internal parameters of the
vehicle such as longitudinal and lateral tire forces or even the road banking angle.While dynamic
models take into consideration the great deal of forces involved in the motion of vehicles, the level
of motion prediction required for detecting distracted events can be achieved through the much
simpler motion models known as kinematic models.

Kinematic motion models utilize the mathematical relationship between parameters of movement
without having to consider the forces that affect the motion. Although much simpler than dynamic
models, kinematic models are well known, well established, and can also hand various types of
driving assumptions [50]. On the lower end of the scale, linear motion models can be built based on
the assumptions of constant velocity (CV) or constant acceleration (CA). These models are simply
state-space equations utilizing kinematic equations to capture straight motion without considering
rotation. The second level of kinematic models are curvilinear models as they take rotation into
account. Assuming no correlation between velocity and yaw rate, curvilinear models include the
Constant Turn Rate and Velocity (CTRV) model and the Constant Turn Rate and Acceleration
(CTRA) model.

However, not much literature exists relating the use of kinematic motion models to detect driver
distraction. One paper that comes close is [57], where four motion models (CV, CA, CTRV, CTRA)
with both the extended Kalman filter and particle filter are used to detect lane level irregular driving
behaviors via fuzzy logic to output risk types. However their use of GPS signal data presented
some challenges in the quality of measurement data. [56] provided an overview on recent papers
interested in detecting irregular driving and notes that most of the vehicle-based research is still
preliminary and in early stages of development as most do not attempt to quantify performance in
terms of correct detection rate nor provide field tests with robust algorithms to classify different
types of irregular driving styles. The use of kinematic motion models may be popular in the field
of discovering driving primitives, but in the field of detecting driver distraction, most researchers
tend to use more visual based approaches.

We propose an online approach to detect distracted driving behaviors based on the fusion
of physics-based kinematic state-space models. The proposed method involves three steps: (1)
training multiple kinematic state-space models using historical normal driving data; (2) fusion of
the trained motion models for real-time motion prediction; (3) developing a control chart-based
decision strategy by comparing model predictions with the true measurements. In this section, first
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notation, data structure, and the basis of state-space models are introduced. Then, the methodology
and preliminary work applying the method to naturalistic driving based on a straight road driving
will be presented.

2.2 Methodology Overview

A naturalistic driving dataset includes the measured kinematic signals, which are denoted by the
𝑞−dimensional vector 𝑦𝑡 = {𝑦1,𝑡 , ..., 𝑦𝑞,𝑡} ∈ R𝑞. For example, in the IVBSS naturalistic driving
dataset, 𝑦𝑡 includes the lane offset, yaw rate, longitudinal and lateral velocities and the longitudinal
acceleration. At each sample time 𝑡, the state variable is denoted as 𝑥𝑡 = {𝑥1,𝑡 , ..., 𝑥𝑝,𝑡} ∈ R𝑝.
Our objective is to develop a statistical model to predict distracted states based on the available
measurements {𝑦1, ..., 𝑦𝑡}.

The proposed method is divided into three steps. First, the kinematic state-space motion
models to be described in Section 2.2.1 are used to predict driving kinematic signals at time 𝑡 + 1
given measurements {𝑦1, ..., 𝑦𝑡}. Each state-space model represents a different kinematic motion
trajectory which is indexed by C𝑡 at sample time 𝑡. In this research, three possible state-space models
𝐶 = {𝐶𝑉,𝐶𝐴,𝐶𝑇𝑅𝐴} are used, i.e. C𝑡 ∈ 𝐶. Mathematically, the one-step ahead prediction for
each model is denoted as

(
𝑦̂𝑡+1

��𝑦1, ..., 𝑦𝑡 ; Ĉ𝑡+1|𝑡
)
. Second, the state-space models are fused in

Section 2.2.2 to make predictions without knowing the actual state-space motion model in advance.
To do this, we first estimate the likelihood of each state-space motion model P

[
C𝑡+1 = 𝑐

��𝑦1, ..., 𝑦𝑡
]
.

The prediction is then given by the fused model as:

𝑦̂𝑡+1|𝑡 = Ê
[
𝑦𝑡+1

��𝑦1, ..., 𝑦𝑡
]

= EC𝑡+1

[
Ê

[
𝑦𝑡+1

��𝑦1, ..., 𝑦𝑡 , C𝑡+1
] ]

=
∑︁
𝑐∈𝐶
Ê

[
𝑦𝑡+1

��𝑦1, ..., 𝑦𝑡 , C𝑡+1 = 𝑐
]
P

[
C𝑡+1 = 𝑐

��𝑦1, ..., 𝑦𝑡
]
.

(2.1)

Third, the prediction errors are calculated as 𝜖𝑡+1 = 𝑦̂𝑡+1|𝑡 − 𝑦𝑡+1. A control-chart-based decision
strategy is developed in Section 2.2.3 to monitor the prediction errors at every real-world second
𝑖 and hereby label the distraction status {𝜁𝑖}. Notice, 𝑡 reflects 10 Hz frequency updating and 𝑖
reflects 1 Hz updating. Both a binary label and a distracted level will be provided. An illustrative
methodology flowchart describing the steps described is shown in Figure 2.1. Technical details
will be discussed as follows.
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Figure 2.1: Methodology flowchart. Step 1: Three kinematic motion models (Constant Velocity (CV),
Constant Acceleration (CA) and Constant Turn Rate and Acceleration (CTRA) models) are used to predict
driving kinematic signals under different scenarios. Step 2: The kinematic motion models are fused to
produce a prediction when the scenarios are not known. Step 3: A decision strategy is developed to label
𝜖𝑡 ’s based on the prediction errors 𝑦̂𝑡+1 − 𝑦𝑡+1.
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2.2.1 Basis of State-Space Motion Models and Kalman Filter Algorithm

In general, a state-space model specifies the transition function from the driving kinematic state 𝑥𝑡
to state 𝑥𝑡+1 as follows:

𝑥𝑡+1 = 𝑓 (𝑥𝑡) + 𝑤𝑡+1,

where 𝑓 is the known transition function depending on the kinematic motion model constraints,
and 𝑤𝑡+1 is the systematic process noise following the multivariate Gaussian distribution 𝑁 (0, 𝑄).
For each time point 𝑡+1, the measurement 𝑦𝑡+1 is subject to measurement noise 𝑢𝑡+1 that follows the
multivariate Gaussian distribution 𝑁 (0, 𝑅). The relationship between 𝑦𝑡+1 and 𝑥𝑡+1 is determined
by the observation equation as follows:

𝑦𝑡+1 = 𝑔 (𝑥𝑡+1) + 𝑢𝑡+1,

where 𝑔 is the known measurement function. Both 𝑄 and 𝑅 are assumed to be invariant with time.
Given this framework, Kalman filters [29] are often used to predict 𝑦𝑡+1|𝑡 with given measurements
{𝑦1, ..., 𝑦𝑡}.

When 𝑓 and 𝑔 are linear, the state-space model can be written below with 𝐹 and 𝐺 denoting the
transition and measurement matrices respectively:

𝑥𝑡+1 = 𝐹𝑥𝑡 + 𝑤𝑡+1, (2.2)

𝑦𝑡+1 = 𝐺𝑥𝑡+1 + 𝑢𝑡+1. (2.3)

Under this linear case, the conditional distribution 𝑦𝑡+1
��𝑦1, ..., 𝑦𝑡 is still Gaussian and hence 𝑦̂𝑡+1|𝑡

has the following closed form:

𝑦̂𝑡+1|𝑡 = E
[
𝑦𝑡+1

��𝑦1, ..., 𝑦𝑡
]

= 𝐺E
[
𝑥𝑡+1

��𝑦1, ..., 𝑦𝑡
]
,

it is sufficient to derive E
[
𝑥𝑡+1

��𝑦1, ..., 𝑦𝑡
]
, which is the estimation of the expected kinematic states

𝑥𝑡+1 given all the historical measurements {𝑦1, ..., 𝑦𝑡}. A variety of kinematic motion models have
been developed to track vehicle kinematics [50]. The two linear kinematic motion models Constant
Velocity (CV) and Constant Acceleration (CA) are employed in this research. Derivations of the
Kalman filtering updating procedure in these linear cases can be found in Appendix A.2).

When 𝑓 or 𝑔 are not linear, such as in the Constant Turn Rate and Acceleration (CTRA) motion
model, the above conditional distribution is analytically intractable. Numerical approaches such
as Extended Kalman filter [27], Unscented Kalman filter [28] or Particle filter [48] are usually
applied for approximation. In this work, the Extended Kalman filter is used for this nonlinear
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case, which approximates the nonlinear 𝑓 and 𝑔 using their first order derivatives. This makes the
Extended Kalman filter to be easier to realize than the Unscented and Particle filters, which can
save computational time in real-time prediction settings.

In the state-space models, 𝑅 is a diagonal matrix whose diagonal elements are variances of
the measurement errors. These values can be obtained from the knowledge on the measurement
sensors. The systematic process noise covariance matrix 𝑄 describes variability in the difference
between the physical model and the actual process. For example, CV model assumes constant
velocity during each time interval. 𝑄 is related to the error term caused by the constant velocity
assumption. In this research, the covariance matrix is estimated based on the driving kinematic
signals when the cruise control in engaged during straight road driving. See Appendix A.1 for
detailed derivations of 𝑓 , 𝑔, and 𝑄 under each state-space motion model (CV, CA, CTRA).

2.2.2 Prediction based on Fusion of State-Space Motion Models

The Kalman filter algorithm predicts the vehicle kinematic signals under the given state-space
motion models. Since the state-space motion model C𝑡+1 is not known at time 𝑡, we would
like to fuse the predictions using the expectation over all state-space motion models. Model
fusion algorithms have been explored in the existing literature [43]. In this preliminary work, the
Autonomous Multiple Model (AMM) algorithm is applied [34] where each Kalman filter updates
independently in an autonomous manner.

Suppose, given data {𝑦𝑖}𝑖=1:𝑡 and state-space model 𝑐, the predicted distributions of state variable
𝑥𝑡+1 have been generated from the Kalman filter algorithm with mean 𝑥𝑡+1|𝑡,C𝑡=𝑐 and covariance
𝑃𝑡+1|𝑡,C𝑡=𝑐. Denote the prediction of the driving kinematic signals under state-space motion model
𝑐 by 𝑦̂𝑡+1,𝑐, and the prediction error by 𝜖𝑡+1,𝑐 = 𝑦̂𝑡+1,𝑐 − 𝑦𝑡+1. According to the derivation in
Appendix A.1, the prediction error 𝜖𝑡+1,𝑐 follows a Gaussian distribution 𝑁

(
0, 𝑆𝑡+1,𝑐

)
with:

𝑆𝑡+1,𝑐 = 𝑅𝑐 + 𝐺𝑐𝑃𝑡+1|𝑡,𝑐𝐺
′
𝑐 .

𝑅𝑐 and 𝐺𝑐 are the measurement error covariance and transition matrix of the Kalman filter under
state-space motion model 𝑐, respectively. The likelihood of prediction errors under state-space
model 𝑐 is estimated as:

𝐿̂𝑡+1,𝑐 = N
(
𝜖𝑡+1,𝑐

����0, 𝑆𝑡+1,𝑐

)
=

1
2𝜋 |𝑆𝑡+1,𝑐 |1/2 exp

{
−1

2
𝜖′𝑡+1,𝑐𝑆

−1
𝑡+1,𝑐𝜖𝑡+1,𝑐

}
.

The normalized likelihood 𝑤𝑡+1,𝑐 is used to weigh the different kinematic motion models’ fittings,
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resulting in the integrated filtered state:

𝑥𝑡+1|𝑡+1 =

𝐶∑︁
𝑐=1

𝑤𝑡+1,𝑐𝑥𝑡+1|𝑡+1,𝑐,

𝑤𝑡+1,𝑐 =
𝐿̂𝑡+1,𝑐∑
𝑖∈𝐶 𝐿̂𝑡+1,𝑖

,

where 𝑥𝑡+1|𝑡+1,𝑐 is the filtered state under state-space motion model 𝑐. The resultant 𝑥𝑡+1|𝑡+1 is used
to update the Kalman filter in the next iteration. The original weight function:

𝑤𝑡+1,𝑐 =
𝑤𝑡,𝑐 𝐿̂𝑡+1,𝑐∑
𝑖∈𝐶 𝑤𝑡,𝑖 𝐿̂𝑡+1,𝑖

is not recommended because it gives rise to absorbent states while updating - a common case is
that 𝑤𝑡1,𝑐 = 0 leads to 𝑤𝑡2,𝑐 = 0 for any 𝑡2 ≥ 𝑡1.

2.2.3 Monitoring Chart Development

In this research, distracted driving behaviors are characterized on the following two data patterns.
The first is unstable driving patterns reflected by variance of kinematic variables. As lane offset
is a sensitive indicator of driving performance, a Cumulative Sum control chart (CUSUM chart,
[41]) is generated to monitor the variance of the lane offset’s prediction error. The second is
large deviations of lane offset, which is monitored by an Exponentially Weighted Moving Average
control chart (EWMA chart, [37]). These two control charts are combined to provide a multi-level
assessment of distraction severity.

In this research, the kinematic data is sampled at a 0.1 second interval, but the decision is made
at a 1 second interval. Thus, the two control charts are established on non-overlap time windows of
𝑖 = 1, 2, 3, . . . , where each window contains 𝑛 = 10 time points. Let 𝜖𝑡,CTRA,L represents the lane
offset (denoted by L) prediction error at time 𝑡 under state-space motion model CTRA. To monitor
the error variance, a standardized quantity 𝑣𝑖 [20] is computed for each time window 𝑖 as:

𝑣𝑖 =

√︁
| (𝜖𝑖 − 𝜇0)/𝜎0 | − 0.822

0.349
,

𝜖𝑖 =
1
√
𝑛

𝑛𝑖−1∑︁
𝑡=𝑛(𝑖−1)

𝜖𝑡,CTRA,L,

where 𝜇0 and 𝜎0 are normalization parameters that can be estimated as the sample mean and
standard deviation of lane positions taken from data in CTRA scenarios. Since the in-control
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distribution of 𝑣𝑖 is approximately 𝑁 (0, 1), the one-sided standardized scale CUSUM chart can be
established as follows:

𝑆+𝑖 = max
[
0, 𝑣𝑖 − 𝑘 + 𝑆+𝑖−1

]
,

where initial value 𝑆+0 = 0, and 𝑘 reference/allowance/slack value for the CUSUM statistic (often
chosen to be about half of a shift in standard units). The CUSUM statistic 𝑆+

𝑖
is sensitive to variance

changes of 𝑣𝑖, and increases if the standard deviation of 𝑣𝑖 increases. As such, the CUSUM chart
is alarmed at times 𝑖 whenever 𝑆+

𝑖
> ℎ, where ℎ represents the decision threshold of the CUSUM

chart.
The EWMA chart is selected to monitor small mean shifts of lane offsets since it is more robust

for non-Gaussian variables. Suppose 𝑥𝑡,L is the lane position at time 𝑡. For a given window size 𝑛
and a constant 𝜆, the monitoring statistics 𝑥𝑖 at window 𝑖 are updated recursively as:

𝑥𝑖 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑖−1,

where 𝑥𝑖 = 1
𝑛

∑𝑛(𝑖+1)−1
𝑡=𝑛𝑖

𝑥𝑡,L and 𝑥0 = 𝑥1. The 𝐿-width control limits are calculated as:

𝑈𝐶𝐿𝑖 = 𝐿𝜎1

√︂
𝜆

2 − 𝜆
[
1 − (1 − 𝜆)2𝑖

]
,

𝐿𝐶𝐿𝑖 = −𝐿𝜎1

√︂
𝜆

2 − 𝜆
[
1 − (1 − 𝜆)2𝑖

]
,

where 𝜎1 is the standard deviation of lane positions during straight road driving. The EWMA chart
alarms whenever 𝑥𝑖 > 𝑈𝐶𝐿𝑖 or 𝑥𝑖 < 𝐿𝐶𝐿𝑖, alarming only when small shifts in the mean (≤ 1.5𝜎1)
are detected.

By combining the CUSUM and EWMA monitoring results, the distraction is evaluated with
the following five levels (Level 1-5) to reflect the severity of distractions from low to high. The
in-vehicle alarm systems will be designed to indicate different levels of distractions.

• Level 1: The EWMA chart generates an alarm at window 𝑖;

• Level 2: The CUSUM chart generates an alarm at window 𝑖;

• Level 3: Both the two control charts generate alarms at window 𝑖;

• Level 4: The two control charts generate alarms at two consecutive windows 𝑖, 𝑖 − 1;

• Level 5: The two control charts generate alarms at three consecutive windows 𝑖, 𝑖 − 1, 𝑖 − 2.

To avoid continuous alarms due to cumulative large variances in the CUSUM chart, the monitoring
statistic 𝑆+

𝑖
is reset to zero whenever a Level 5 alarm is generated.
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2.3 Case Study

In this section, the effectiveness of the proposed method is demonstrated in several naturalistic
straight-road driving datasets. The model parameters are trained based on 22 non-distracted,
naturalistic, straight-road driving events selected from the IVBSS dataset. In the training set, each
time point is assigned with a binary distraction label where 𝜁𝑡 = 0 means the driver is not distracted
and 𝜁𝑡 = 1 otherwise. The distraction status is manually labelled according to the videos recorded
by the in-vehicle cameras. The trained online detection algorithm is then applied to a different
testing dataset. The detection rates and false alarm rates are calculated for evaluation purpose. In
the datasets, driving signals including velocity, lane position and yaw rate are measured with a
sampling frequency of 10 Hz.

In the algorithm, the 𝑅 matrix is built based on the standard deviations of velocity’s, lane
position’s, and yaw rate’s measurement errors, and were set as 0.45 m/s, 0.01 m and 0.1 degree/s
according to the domain knowledge. The values of trained parameters are listed as follows. The 𝑄
matrix is built based on the standard deviations of longitudinal acceleration, lateral acceleration and
angle acceleration, which were estimated as 0.3 m/s2, 0.1 m/s2 and 0.1 degree/s2 in the training
set. The 𝜇0 and 𝜎0 in the CUSUM chart are set as 0 and 0.0523 m, respectively.

Seven events are selected from the IVBSS datasets to evaluate the detection performance, each
of which has a cell phone use (texting) period. Detection results for two of the selected events
are illustrated in Figures 2.2 and 2.3. Alarms are generated only for Level 5 distractions (shown
in the fifth row of both figures). Figure 2.2 shows a case of misdetection. Even though the driver
was using a cell phone, the lane position signals are still stable, implying that the driver is good at
texting while driving. In this case, the distraction behavior is not considered to be risky. However,
in the Figure 2.3, an alarm is generated during the texting period.

The algorithm is also applied to two other datasets collected from the IVBSS and the SPMD
dataset where no distraction happened to test the false alarm rate. The detection rate is calculated
as the frequency of the detected events divided by the total number of the events. The false alarm
rate (where alarms occur at Level 5 only) is evaluated as the number of false alarms divided by the
total length of time. A summary of the results in all the four datasets is shown in Table 2.1.

The only misdetection (also shown in Figure 2.2) can be explained by the good driving skill of
the distracted driver. The videos recorded by the in-vehicle camera are checked to investigate the
causes of false alarms. One of the main causes is passing vehicles, especially heavy trucks. In fact,
a driver deviates from the lane center and accelerates when trying to pass another vehicle, which
results in increments in variabilities of both lane positions and velocities. These false alarms can
be avoided by either recognizing the vehicle patterns based on data or installing a sensor to detect
surrounding vehicle in the future work.
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Figure 2.2: Detection results based on the CUSUM (third row) and EWMA (fourth row) monitoring results.
Alarms are only generated when a Level 5 (shown in the fifth row) distraction occurs. As the vertical dashed
line represents the start time of the true distraction, it can be observed that the algorithm misses detecting
this distracted event. This is believed to have been caused by the small prediction error (second row).
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Figure 2.3: Detection results based on the CUSUM and EWMA monitoring results. Alarms are only
generated when a Level 5 distraction occurs. The vertical dashed line represents the start time of the true
distraction. In this case, the algorithm detects this distraction 9 seconds past the start of detection, with the
distraction level increasing up to the time of detection.
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Table 2.1: Summarized Results

# Dataset Include
Distraction

Include
Curvature

Include
Lane Changes

Detection
Rate

False alarm
Rate

1 IVBSS
(training) No No No NA 0/692s

2 IVBSS Yes No Yes 6/7 3/470s
3 IVBSS No Yes Yes NA 47/3880s
4 SPMD No No No NA 0/762s

2.4 Discussion

In summary, an online detection algorithm is developed to monitor distractions under the straight
driving kinematic signals. To predict vehicle kinematics, three typical kinematic motion models
are integrated. In the decision layer, two monitoring charts (CUSUM and EWMA) are combined
to provide a multiple level assessment of distraction severity.

In this preliminary work, the algorithm is only applicable for detecting distractions during
straight road driving on highways. To extend the algorithm for curvy road driving, CTRA state-
space models has already been developed. The next step for improvement is to use the HDP-HSMM
to estimate transition probabilities for motion model fusion, and to further use the HDP-HSMM
to handle other driving maneuvers when the state-space models are not applicable. The details of
building this HDP-HSMM will be discussed in Chapter 3.
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CHAPTER 3

Automatic Identification of Driving Maneuver
Patterns using a Robust Hidden Semi-Markov

Models

3.1 Introduction

The analysis of vehicle driving styles is prominent to the field of intelligent transportation and
vehicle calibration [69, 46]. The term driving style can be referred as a set of dynamic activities or
steps that a driver uses when driving. Hence, this type of research impacts eco-driving, road safety,
and intelligent vehicles [7, 49, 35]. To model these driving styles, one popular approach is the use
of a Hierarchical Dirichlet Process Hidden Semi-Markov Model (HDP-HSMM) [62]. This model
is powerful in that it considers the sequential nature of driving kinematic signals, and estimates
data segmentation, behavior state duration, and state transition probabilities. The HDP-HSMM
provides semantical way for analyzing driver behaviors, and is thus popularly used for describing
driving styles. Figure 3.1b shows an exemplar set of sequential kinematic signals belonging to
the trip observed in Figure 3.1a. The signals are color-coded to reference a state segmentation
determined by a HDP-HSMM.

While the HDP-HSMM is powerful, literature outside of the field of transportation details how
the model’s use of an HDP prior can lead to redundant and inconsistent state estimations. This
detail is important as it needs to be considered by researchers attempting to utilize the HDP-HSMM
to describe driving styles. For example, Figure 3.1 clearly has redundant states as seen by the green
shaded states. The redundant states can make analysis of HDP-HSMM outputs across multiple
datasets difficult for researchers hoping to utilize the HDP-HSMM to model driving styles. This
paper addresses this issue by presenting an algorithm that reduces redundant states to improve
consistency while still aligning to the structure of a basic HDP-HSMM. The presented algorithm
results a more robust HDP-HSMM (rHDP-HSMM) that is expected to output a more consistent data
segmentation, behavior state duration, and state transition probabilities than a basic HDP-HSMM.
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(a) (b)

Figure 3.1: An example trip and the kinematic signals belonging to it. Learned states from an HDP-HSMM
are color coded as labels.

This will impact the transportation field in that driving maneuver patterns can be better grouped
together for classification or behavioral studies.

The remainder of this paper is as follows. Section 3.2 will provide the background about
HDP-HSMM’s from a statistical perspective, and highlight the current set of approaches towards
addressing the issues derived from the HDP prior. Section 3.3 will provide the data description
and the model formulation of a basic HDP-HSMM. Section 3.4 discusses the details of inference
for a HDP-HSMM, and how this paper’s algorithm can be included within the inference to produce
a more robust HDP-HSMM. Section 3.5 presents a simulation study, in which the rHDP-HSMM
is compared to the basic HDP-HSMM based on simulated data. Section 3.6 presents a case study
that uses realistic, naturalistic driving data to compare the rHDP-HSMM with the original HDP-
HSMM method on the basis of describing driving patterns. Finally, Section 3.7 summarizes new
contributions and major conclusions of the paper.

3.2 Background

The HDP-HSMM was designed to improve upon the structure of a discrete state-space Hidden
Markov Model (HMM). HMM’s are also popularly used for describing sequential data [12, 67,
33, 32, 58, 30]. In particular, the HMM [53, 45] utilizes a two-layer structure (Figure 3.2a) to
represent sequential data observed at equally spaced time points. In this model, data is assumed to
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be generated from a set of probability distribution functions dependent on corresponding hidden
states. The hidden states determine the data segmentation. Transitions among hidden states are
modeled as a Markov Chain. This allows for the consideration of time sequence information during
inference and further aids in the prediction of future states. One condition of using the Markov
Chain is that the state duration of each hidden state is assumed to be Geometrically distributed.

(a) HMM (b) HSMM

Figure 3.2: A comparison between the structure of a Hidden Markov Model (HMM) and a Hidden Semi-
Markov Model (HSMM). The variables and their descriptions are as follows: 𝑥𝑡 (hidden state at time 𝑡), 𝑦𝑡
(observed data at time 𝑡), 𝜋𝑥 (transition probabilities of state 𝑥), 𝑓 (𝜃𝑥) (probability distribution of state 𝑥),
𝑧𝑠 (state of segment 𝑠), 𝐷𝑠 (state duration of segment 𝑠).

While the HMM is able to define data segmentation and state transitions, its definition of state
duration is severely limited by the model’s structure. This limitation lead to the development
of the Hierarchical Dirichlet Process Hidden Semi-Markov Model (HDP-HSMM) [23] which
provided two key improvements to the HMM. The first improvement was the removal of the HMM’s
assumption of geometrically distributed state duration. As the HDP-HSMM uses a Semi-Markovian
approach to model the state transitions 𝜋̄𝑧𝑠 , this removes self-transitions from the transition matrix.
As a consequence, this frees the geometric distribution restriction on the duration 𝐷𝑠, which leads
to a three-layer structure model as shown in (Figure 3.2b). In other words, users can choose
different models for representing state duration, while allowing the segmentation of hidden states
to be directly represented by 𝑧𝑠.

The second improvement was the introduction of Dirichlet Processes to the model. The Dirichlet
processes is an extension to the Dirichlet distribution, as atoms can be sampled from it based on an
input distribution. However, one key difference is that the Dirichlet Process assigns a probability
of drawing a new atom from the input distribution and a separate probability of drawing an atom
based on the atoms seen in previous samples. The resulting distribution is discrete and similar to
the input distribution, but also has the possibility of having infinite discrete atoms if infinite samples
were drawn. This phenomenon is interesting in the context of HMMs and HSMMs, as the Dirichlet
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process can be used as a prior to the state transition probability vector [3, 60, 23]. Doing this allows
the probability vector length (i.e. models’ number of states) to grow without limit during inference,
which implies the Dirichlet process also acts like a prior on the number of clusters. In the HDP-
HSMM, a Hierarchical Dirichlet Process (HDP) is used as a prior on the state transitions, which
allows all the state transition probabilities to share a similar base distribution. This is beneficial, as
all the states represented in the base distribution are shared between all the different state transition
probabilities, while allowing each transition probability be dependent on the exit state. Hence, for
the context of modeling of driving maneuvers, the HDP-HSMM is preferred as it allows greater
flexibility in defining the relationship between the data and segmentation, state duration, and state
transitions.

While the Dirichlet Process’s clustering properties have been seen as a tool to address the model
selection for Bayesian nonparametric approaches [59, 25], the Dirichlet Process is known to have
inconsistency issues regarding estimation of the true number of states. [36] provided an example
for Dirichlet Process Mixture Models which demonstrates how the posterior does not concentrate
at the true number of components, and instead introduces extra clusters even if they are not needed.
Under the context of HMMs, [26] showed how the Dirichlet Process also leads to the creation
of redundant states, which presents an unrealistic rapid switching between states in the inferred
transition matrices. Under the context of HSMM’s, Figure 3.1 shows how this side effect occurs
even in the HDP-HSMM. However, for the HDP-HSMM, the redundancy issue also affects the
inference of transition probabilities and duration estimation.

A few works exist that focus on solving this issue for HMM’s. [15] discussed HMM’s utilizing
a Dirichlet prior, and the assumptions on the prior required for the consistency. [11] developed the
sticky HDP-HMM (sHDP-HMM) to consider the issue of redundant states. This model adds a bias
to the prior on the rows of the transition matrix which emphasizes self-transitions. This results in an
increased state duration for each learnt state, which allows the sHDP-HMM to avoid redundant states
with short state duration. However, this strategy cannot be applied to HDP-HSMM as the modeling
structure of HMM’s is inherently different from HSMM’s. Outside of HMM and HSMM modeling,
[18] focused on the Dirichlet Process Mixture model, and presented the Merge-Truncate-Merge
algorithm, which guaranteed a consistent estimate to the number of mixture components. This
post-processing procedure takes advantage of the fact that the posterior sample tends to produce a
large number of atoms with small weights, and probabilistically merges atoms together.

Given these approaches, this paper attempts to address the HDP’s inconsistency problem by
taking inspiration from both the sticky HDP-HMM and the Merge-Truncate-Merge algorithm. The
idea is to apply a merging procedure during inference which promotes longer durations and the
avoidance of redundant states. In doing so, this paper’s contribution will include demonstrating
how the HDP-HSMM becomes robust to the inconsistencies brought by the HDP prior and how
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this paper’s method can reduce the number of redundant states to better define driving maneuvers
existing in Figure 3.1a. A brief summary, which describes where our model fits in relation to the
other models described in HMM literature, is given in Table 3.1.

State Duration
Distribution Model Extension

(not sensitive to prior)

Geometric HDP-HMM
[45]

sticky HDP-HMM
[12]

Any Discrete
Distribution

HDP-HSMM
[23]

robust HDP-HSMM
(This paper)

Table 3.1: Comparison of various HMM-based models versus our proposed robust HDP-HSMM (rHDP-
HSMM).

3.3 Problem Formulation

3.3.1 Data Description

In this paper, a sequential dataset consists of a series of observations collected at 𝑇 chronologically
ordered time points. At each time point 𝑡, 𝑦𝑡 ∈ R𝑝 represents the 𝑝−dimensional signal responses.
The sequential data is assumed to follow multiple phases; there exists a partition 1 = 𝑡11 ≤ 𝑡12 ≤ ... ≤
𝑡1
𝑆
= 𝑇 − 𝐷𝑆, such that the elements within the 𝑠−th segment, denoted by 𝑦𝑡1𝑠 :𝑡2𝑠 , are independent

and identically distributed (i.i.d.) for a state duration of 𝐷𝑠 ∈ 1, 2, . . . , 𝑆.
The objective of the data analysis is generalized to (1) identify distributional patterns that

describe each phase, (2) identify the time duration distribution corresponding to each segment, and
(3) identify the probability of transitioning from one distribution to another. The challenge lies
in little information being available relating to the number of states, the states’ durations, and the
transition probability matrix.

3.3.2 Basis of HDP-HSMMs and Notations

The HDP-HSMM accomplishes this objective with the following structure. The multivariate
sequential data is represented by the sequence (𝑦𝑡)𝑡=1:𝑇 := {𝑦𝑡 ∈ R𝑝 : 𝑡 = 1, ..., 𝑇} and is assumed
to transit among 𝐾 different hidden states. The hidden states at each time point 𝑡 are represented
by the sequence (𝑥𝑡)𝑡=1:𝑇 := {𝑥𝑡 ∈ {1, 2, . . . , 𝐾} : 𝑡 = 1, ..., 𝑇}, and can be further divided into
𝑆 segments. Within each data segment 𝑠 ∈ {1, 2, . . . , 𝑆}, all hidden states share the same index
(labeled by the super-state 𝑧𝑠 ∈ {1, 2, . . . , 𝐾}), and the state duration of the segment is denoted
by 𝐷𝑠. As such, the start and end times of each segment 𝑠 are indexed by time stamps 𝑡1𝑠 and 𝑡2𝑠 ,
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respectively. They can be calculated as 𝑡1𝑠 =
∑
𝑠<𝑠 𝐷𝑠 and 𝑡2𝑠 = 𝑡1𝑠 +𝐷𝑠 − 1 where 𝑠 represents all the

segments before segment 𝑠. The state of segment 𝑠 is assumed to be Markovian with a transition
probability 𝜋𝑖, 𝑗 = Pr(𝑧𝑠 = 𝑗 | 𝑧𝑠−1 = 𝑖), where the rows of the transition matrix are denoted as
𝜋𝑖 = [𝜋𝑖,1 𝜋𝑖,2 . . . 𝜋𝑖,𝐾]. However, as each state has a random state duration 𝐷𝑠 ∼ 𝑔(𝜔𝑧𝑠 ), the
HSMM does not permit self-transitions to occur. To consider this, the transition rows of 𝜋𝑖 are
adjusted to 𝜋̄𝑖 with each element being 𝜋̄𝑖, 𝑗 =

𝜋𝑖, 𝑗
1−𝜋𝑖,𝑖 (1 − 𝛿𝑖, 𝑗 ) (where 𝛿𝑖, 𝑗 = 1 if 𝑖 = 𝑗 ; 𝛿𝑖 𝑗 = 0

otherwise).
The relationship between the observation sequence and the segmentation described above can be

seen by the emission distribution functions 𝑓 (𝜃𝑧𝑠 ) and the state duration probability mass functions
𝑔(𝜔𝑧𝑠 ) with parameters 𝜃𝑧𝑠 and 𝜔𝑧𝑠 being dependent on segment 𝑠. The priors on 𝜃𝑧𝑠 and 𝜔𝑧𝑠 are
denoted by 𝐻 and 𝐺 respectively.

A Hierarchical Dirichlet Process (HDP) is used to define a prior on the rows of the transition
matrix (𝜋𝑖) to learn the number of unknown states. The HDP creates a countably infinite state-space
and utilizes a stick-breaking process 𝛽 ∼ Beta(𝛾) [51] to determine the number of unknown states
(𝐾). A smaller 𝛾 (𝛾≥ 0) yields more concentrated distributions, which plays a part in shaping
the transition pattern. Each row of the Markovian transition probability matrix is sampled from a
Dirichlet process (𝜋𝑖

iid∼ DP(𝛼, 𝛽)) and its similarity to the stick-breaking process depends on the
concentration parameter 𝛼 ∈ (0,∞).

The HDP-HSMM is shown in Figure 3.2b and can be formulated as follows:

𝛽 ∼ Beta(𝛾),
𝜋𝑖

iid∼ DP(𝛼, 𝛽) (𝜃𝑖, 𝜔𝑖) iid∼ 𝐻 × 𝐺 𝑖 = 1, 2, . . . ,
𝑧𝑠 ∼ 𝜋̄𝑧𝑠−1

𝐷𝑠 ∼ 𝑔(𝜔𝑧𝑠 ) 𝑠 = 1, 2, . . . ,
𝑥𝑡1𝑠 :𝑡2𝑠 = 𝑧𝑠,

𝑦𝑡1𝑠 :𝑡2𝑠
iid∼ 𝑓 (𝜃𝑧𝑠 ) 𝑡1𝑠 =

∑
𝑠<𝑠 𝐷𝑠 𝑡2𝑠 = 𝑡

1
𝑠 + 𝐷𝑠 − 1.

(3.1)

Typically, Gibbs sampling approaches are used for statistical inference of the model parameters of
the HDP-HSMM, which requires the full conditional distributions of the model parameters [16].
The details of the general Gibbs sampling procedure and how this paper applies a merging algorithm
within it to create a robust HDP-HSMM is presented in the next section.
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3.4 Proposed Robust HDP-HSMM

3.4.1 Inference

The details of the block sampling procedure presented in [23] to infer the parameters for the HDP-
HSMM are discussed here. Additional insight regarding this paper’s proposed changes will also be
included in this section. Assume initial values have been set for the state sequence, the emission
parameters, the duration parameters, and the transition probabilities:

(𝑥𝑡) (0) , {𝜃𝑖}(0) , {𝜔𝑖}(0) , {𝜋𝑖}(0) .

Step 1: The block sampling procedure begins iteration 𝑚 = 1 with the sampling of the
emission, duration, and transition distribution parameters. The distributional parameters can be
sampled independently of one another, conditional on data assigned to each state 𝑖 under the current
state sequence (𝑥𝑡) (𝑚−1) . Assuming distributions with conjugate priors are utilized within the
HDP-HSMM, this step can be simplified significantly into the following statement:

{𝜃𝑖}(𝑚) ∼ ℎ𝜃𝑖 (𝜃𝑖 | (𝑥𝑡) (𝑚−1) , (𝑦𝑡), 𝐻, 𝐺, 𝛽)
{𝜔𝑖}(𝑚) ∼ ℎ𝜔𝑖

(𝜔𝑖 | (𝑥𝑡) (𝑚−1) , (𝑦𝑡), 𝐻, 𝐺, 𝛽)
{𝜋𝑖}(𝑚) ∼ ℎ𝜋𝑖 (𝜋𝑖 | (𝑥𝑡) (𝑚−1) , (𝑦𝑡), 𝐻, 𝐺, 𝛽),

where ℎ𝜃 refers to the updated posterior corresponding to the conditional distribution with parameter
𝜃.

Step 2: Once a new set of parameters have been sampled, it is practical to apply some identifia-
bility constraints to the parameters to help ensure state switching does not occur during the sampling
procedure. State switching is a problem mentioned in literature [22, 54], in which the permutation
of defined states is not considered during the sampling procedure. Identifiability constraints ensure
the order of states does not change between iterations of the sampling procedure, and helps ensure
the posterior chain is not multimodal at the end of the sampling procedure. While many types
of constraints can be applied, such as rearranging the states such that 𝜃1 < 𝜃2 < 𝜃3 < . . . , the
constraints used in this paper are be mentioned in each section directly.

Step 3: After identifiability constraints have been applied, the new state sequence can be
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sampled. [23]’s procedure makes use of the following backwards messages:

𝐵𝑡 (𝑖) :=𝑝(𝑦𝑡+1:𝑇 |𝑥𝑡 = 𝑖, 𝐹𝑡 = 1)
=
∑︁
𝑗

𝐵∗
𝑡 ( 𝑗)𝑝(𝑥𝑡+1 = 𝑗 |𝑥𝑡 = 𝑖)

𝐵∗
𝑡 (𝑖) :=𝑝(𝑦𝑡+1:𝑇 |𝑥𝑡+1 = 𝑖, 𝐹𝑡 = 1)

=

𝑇−𝑡∑︁
𝑑=1

𝐵𝑡+𝑑 (𝑖)𝑝(𝐷𝑡+1 = 𝑑 |𝑥𝑡 = 𝑖)𝑝(𝑦𝑡+1:𝑡+𝑑 |𝑥𝑡+1 = 𝑖, 𝐷𝑡+1 = 𝑑)

+ 𝑝(𝐷𝑡+1 > 𝑇 − 𝑡 |𝑥𝑡+1 = 𝑖)𝑝(𝑦𝑡+1:𝑇 |𝑥𝑡+1 = 𝑖, 𝐷𝑡+1 > 𝑇 − 𝑡)
𝐵𝑇 (𝑖) :=1,

where 𝐹𝑡 = 1 denotes a new segment begins at 𝑡 + 1, and 𝐷𝑡+1 denotes the duration of the segment
that begins at time 𝑡 + 1 [38]. The procedure for obtaining the posterior state sequence begins by
drawing a sample for the first state using the following formula:

𝑝(𝑥1 = 𝑘 |𝑦1:𝑇 ) ∝ 𝑝(𝑥1 = 𝑘)𝐵∗
0(𝑘).

Next, a sample is drawn from the posterior duration distribution by conditioning on sampled initial
state 𝑥1:

𝑝(𝐷1 = 𝑑 |𝑦1:𝑇 , 𝑥1 = 𝑥1, 𝐹0 = 1) = 𝑝(𝐷1 = 𝑑)𝑝(𝑦1 : 𝑑 |𝐷1 = 𝑑, 𝑥1 = 𝑥1, 𝐹0 = 1)𝐵𝑑 (𝑥1)
𝐵∗

0(𝑥1)
.

The rest of the state sequence can be sampled assuming the new initial state has distribution
𝑝(𝑥𝐷1+1 = 𝑖 |𝑥1 = 𝑥1) and repeating the process, until a state is assigned for all indices 𝑡 = 1, . . . , 𝑇 .

Step 4: Once the new state sequence is sampled, the Gibbs sampling procedure normally returns
back to Step 1, increments 𝑚 by 1, and repeats Steps 1 to 3 until posterior convergence. However,
before doing that, this paper propose adding an additional sampling Step 4 that removes redundant
states from the posterior state sequence

(𝛽, 𝑥𝑡) (𝑚) ∼ ℎ(𝑥𝑡 ) ((𝑥𝑡) |{𝜃𝑖}(𝑚) , {𝜔𝑖}(𝑚) , {𝜋𝑖}(𝑚) (𝑥𝑡) (𝑚) , (𝑦𝑡), 𝐻, 𝐺, 𝛽), (3.2)

where ℎ(𝑥𝑡 ) (·) represents a sampling step proposed by this paper to promote robustness.

3.4.2 Implementation of Step 4

The proposed Step 4 is the main contribution of this paper. This section will provide the details
on how to implement Equation 3.2 described in Step 4 above. The procedure is described by first
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defining redundancy between two states:

Definition 3.4.1 In the state sequence (𝑥𝑡)𝑡=1:𝑇 , the states 𝑖 and 𝑗 are identified as redundant states
if D

(
𝑓 (𝜃𝑖), 𝑓 (𝜃 𝑗 )

)
≤ 𝜏, where 𝜏 is the decision threshold and D

(
𝑓 (𝜃𝑖), 𝑓 (𝜃 𝑗 )

)
is a measure of

divergence that gets larger when the distributions 𝑓 (𝜃𝑖) and 𝑓 (𝜃 𝑗 ) are more different from one
another.

Although D
(
𝑓 (𝜃𝑖), 𝑓 (𝜃 𝑗 )

)
can be any measure of divergence satisfying Definition 3.4.1, the re-

mainder of the paper will assume D
(
𝑓 (𝜃𝑖), 𝑓 (𝜃 𝑗 )

)
= | | (𝜃𝑖 − 𝜃 𝑗 ) | |2 is the ℓ2 norm of the difference

in parameters.
Now that redundancy has been defined, the details of Equation 3.2 can be represented by

Algorithm 1. In short, the procedure samples a new state sequence that contains no redundant
states. [23] describes a weak-limit approximation to the Dirichlet Process prior,

𝛽 |𝛾 ∼ Dir(𝛾, . . . , 𝛾)
𝜋 𝑗 |𝛽 ∼ Dir(𝛼𝛽1, . . . , 𝛼𝛽𝐾), 𝑗 = 1, . . . , 𝐾,

as well as an augmentation that introduces auxiliary variables which are added to the 𝛽 vector
to preserve conjugacy. This approximation eases the use of sampling procedures when dealing
Dirichlet Processes [24]. Taking this approach, the 𝛽 vector takes no consideration of redundant
states, which may negatively impact the posterior of 𝜋 𝑗 . The presence of redundant states means
the posterior transition probabilities contain extra transitions to and from redundant states, which
dilute the underlying transition process. To counter this, ℎ(𝑥𝑡 ) (·) aims to adjust the 𝛽 vector in this
step as to discourage transitions to redundant states in future steps, and preserve the true underlying
transition process.

Algorithm 1 describes ℎ(𝑥𝑡 ) (·) entirely. The procedure begins by initializing a new vector 𝛽,
a new state sequence (𝑥𝑡) (𝑚) , and taking the input of a similarity threshold 𝜏. Taking inspiration
from [18], the states order is firstly randomized in which redundancy is checked. This is to ensure
the start of the merging procedure begins at a point close to the “central mass” of the emission
distribution clusters with a high probability. Going through the order, if the state exists within the
new state sequence (𝑥𝑡) (𝑚) , the algorithm proceeds to find similar states based on our similarity
metric and similarity threshold. Weights are then defined which will determine the probability of
retaining a state from the set of redundant states. These weights are determined by the probability
of other non-similar states transitioning to the state of interest and then normalized. The state by
which to retain is selected randomly in accordance to the probabilistic weights, and the rest of the
similar states are erased from the state sequence. Vector 𝛽 is further updated by weakening the
unselected similar states values in the vector.
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Algorithm 1 Sample a State Sequence Containing No Redundant States
Initialize 𝛽 = 𝛽, (𝑥𝑡 ) (𝑚) = (𝑥𝑡 ) (𝑚) , and define similarity threshold 𝜏
Reorder {𝜃𝑖 : 𝑖 ∈ (𝑥𝑡 ) (𝑚) } into new order {𝜃𝐼𝑖 : 𝑖 ∈ (𝑥𝑡 ) (𝑚) } using random sampling without replacement
where

• 𝑖 corresponds to index the unique states existing in (𝑥𝑡 ) (𝑚)

• 𝐼𝑖 corresponds to the new index of state 𝑖 in the new order 𝐼 = {1, 2, 3, . . . }
while 𝐼 is not an empty set do

Let 𝑖 correspond to the first 𝐼𝑖 appearing in the new order 𝐼
Calculate D

(
𝑓 (𝜃𝑖), 𝑓 (𝜃 𝑗)

)
for all 𝑗 ≠ 𝑖 where 𝑗 ∈ (𝑥𝑡 ) (𝑚) ⊲ Similarity metric.

Define set 𝐽 = { 𝑗 : D
(
𝑓 (𝜃𝑖), 𝑓 (𝜃 𝑗)

)
≤ 𝜏} and set 𝐽′ = { 𝑗 : D

(
𝑓 (𝜃𝑖), 𝑓 (𝜃 𝑗)

)
> 𝜏}

for 𝑗 ∈ 𝐽 do
Π 𝑗 =

∑
𝑖∈𝐽 ′ 𝜋𝑖, 𝑗 ⊲ Weights depend on transition probabilities from non-similar states.

end for
Sample 𝑗∗ from P( 𝑗∗) where P( 𝑗∗ = 𝑗) = Π 𝑗/(

∑
𝑗 Π 𝑗) ⊲ 𝑗∗ is the redundant state to keep.

Update 𝛽 𝑗 = 0.1 ∗ 𝛽 𝑗 for all 𝑗 ∈ 𝐽 where 𝑗 ≠ 𝑗∗ ⊲ Influence transition prior.
Update 𝑥𝑡 = 𝑗∗ for all {𝑡 : 𝑥𝑡 ∈ 𝐽} ⊲ Influence data used for inference.
Remove 𝐼 𝑗 from 𝐼 for all 𝑗 ∈ (𝐽 ∪ 𝑖). ⊲ Prevent merging these states in future iterations.

end while
Output final 𝛽 and (𝑥𝑡 ) (𝑚) ⊲ These will be used in next iteration of Gibbs sampling.

After implementing Algorithm 1, the sampling procedure is allowed to return to Step 1. No-
ticeably, every time this step is implemented, the algorithm begins with the originally sampled
𝛽 and (𝑥𝑡) (𝑚) , but ends with a 𝛽 and (𝑥𝑡) (𝑚) that encourages the transition matrix in Step 1 to
promote transitions to non-redundant states and allow larger sample sizes for the available emission
posteriors. Mathematically, the only adjustments made to Step 1 that reflect this dependency is

{𝜃𝑖}(𝑚) ∼ ℎ𝜃𝑖 (𝜃𝑖 | (𝑥𝑡) (𝑚−1) , (𝑦𝑡), 𝐻, 𝐺, 𝛽)
{𝜔𝑖}(𝑚) ∼ ℎ𝜔𝑖

(𝜔𝑖 | (𝑥𝑡) (𝑚−1) , (𝑦𝑡), 𝐻, 𝐺, 𝛽)
{𝜋𝑖}(𝑚) ∼ ℎ𝜋𝑖 (𝜋𝑖 | (𝑥𝑡) (𝑚−1) , (𝑦𝑡), 𝐻, 𝐺, 𝛽),

which preserves the Markov Chain structure of a Gibbs Sampler.

3.5 A Simulation Study

In this section, simulations are used to demonstrate the advantages of the proposed rHDP-HSMM
method. The robustness and modeling accuracy is compared with the existing HDP-HSMM
method. The simulation is designed as follows.

For each simulation, a sequence of observed data is generated with 30 total change points based
on the distributions and parameters in Table 3.2. The emission parameters were specifically selected
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as they feature some small overlap between their distributions.

Emission Duration Transition
Distribution Normal Poisson N/A
Parameter(s) Mean Variance Rate State 1 State 2 State 3
State 1 4 1 6 0 0.3 0.7
State 2 0 1 6 0.8 0 0.2
State 3 -4 1 6 0.4 0.6 0

Table 3.2: The list of the true parameters in the hypothetical dataset with three different states.

The generated sequence begins with a state being randomly selected from the three listed in
Table 3.2. A length of duration is sampled from the selected state’s duration distribution, which
determines how many samples to draw from that state’s emission distribution. Once the emission
samples are collected, they are stored in the sequence, and the next state is sampled according the to
that state’s transition probability. The process is repeated 30 times to create a simulated sequence
of “observed” data. An example of a simulated dataset can be observed in the Figure 3.3.

Figure 3.3: Example of simulated data based on Table 3.2 and it’s corresponding states.

In each simulation, both the HDP-HSMM and the rHDP-HSMM are trained on the observed
data with the same initial distributions and priors. The prior distributional forms were selected
as to allow models to make use of conjugate relationships. Their parameters were selected as to
ensure the true distributional parameters could be inferred with high probability. Each simulation’s
initial parameter values for the HDP-HSMM and rHDP-HSMM were drawn according to the
selected prior. The maximum number of states for both models was set to 20. Each state’s
initial emission distribution was assumed Normal(𝜇, 𝜎2). The mean’s prior distribution was set to
𝜇 ∼ Normal(𝜇0 = 0, 𝜎2

0 = 4). The variance’s prior distribution was set to 𝜎2 ∼ InvGamma(𝑎0 =

2, 𝑏0 = 2). The initial duration distributions were assumed Poisson(𝜆), with prior𝜆 ∼ Gamma(𝑎1 =
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1, 𝑏1 = 7). The transition distributions for each state is assumed to be 𝜋𝑖 ∼ Multinomial(𝑎2), with
the prior 𝑎2 ∼ Dirichlet(𝑎3 = 1

20). Both models had identifiability constraints implemented such
as to order their states in increasing order of the posterior mean of their emission distribution.
Furthermore, both models performed their respective Gibbs procedure over a maximum of 10000
iterations, or until their Gelman-Rubin statistic [17] reached less than 1.1. The burn-in period for
both models was set to 100 iterations. Every 5th iteration of the sampled parameter chains was
collected as to remove autocorrelation (resulting in a chain of 2000 length if convergence was not
met). The rHDP-HSMM threshold for removing redundant states was set to 1.5. The posterior
parameter values for each state was calculated as the mean of the most recent 20% of samples
collected from the posterior parameter chains. The posterior sequence was selected to be the mode
of the most recent 20% of samples collected from the posterior state sequence.

(a)

(b)

Figure 3.4: HDP-HSMM versus rHDP-HSMM emission convergence on simulated data.

The results of a single simulation are shown in Figures 3.4, 3.5, and 3.6. Figure 3.4 compares
the HDP-HSMM and rHDP-HSMM’s emission distribution convergence. The states shown in the
plots are the states appearing in the final learned state sequence for each model. Each state is
indicated by a different color. The true parameters are indicated by the dashed lines. While both
models’ posteriors are concentrated around the true parameters, the HDP-HSMM’s posterior is
multimodal for many states. Figure 3.4a shows how the many states rapidly switch which true
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(a)

(b)

Figure 3.5: HDP-HSMM versus rHDP-HSMM duration convergence on simulated data.

state they want to encapture across sampling iterations. With regards to the duration, Figure 3.5
displays how both models posteriors are concentrated near the true duration. However, the variance
of the HDP-HSMM’s posterior samples is far larger than the variance of the rHDP-HSMM. This
could be due to a large variation of samples being allocated to each state in the HDP-HSMM.
To see this, Figure 3.6 shows the posterior state sequence estimated by both models. While the
rHDP-HSMM distributes samples to each state under the constraint of removing redundant states,
the HDP-HSMM’s redundant states leave many states with very few samples left to estimate their
duration. On a more positive note, both models are able to capture most of the true change
points, however the HDP-HSMM leaves an impression of many more change point occurrences.
Meanwhile, rHDP-HSMM clearly separates each of the 3 states from one another and captures only
the locations of the true change points in the data.

The simulation is repeated 100 times, and the results are shared in Figure 3.7 and Table 3.3.
Looking at the number of estimated states between the HDP-HSMM and the rHDP-HSMM, it is
clear that the rHDP-HSMM’s inference procedure removes states that would be otherwise present in
a standard HDP-HSMM (Figure 3.7). In fact, 80 of the 100 simulations resulted in the rHDP-HSMM
correctly inferring the true number of states. Furthermore, Table 3.3 shows that the rHDP-HSMM
converged on average with fewer iterations than the HDP-HSMM. This table also shows that while

36



(a)

(b)

Figure 3.6: HDP-HSMM versus rHDP-HSMM labeling of simulated data.

both models are able to correctly capture all the true change points, the standard HDP-HSMM tends
to estimate many more change points than the rHDP-HSMM. This is due to the redundancy issue,
which the rHDP-HSMM eliminates through its modified inference procedure.

Figure 3.7: The number of estimated states from 100 simulations comparing both a HDP-HSMM and the
rHDP-HSMM.
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HDP-HSMM rHDP-HSMM
Num. of Converged Simulations 64 80

Avg. Num. of Gibbs Iterations 1372.5 993.5
Avg. Num. of Missed Change Points 1.0 1.3

Avg. Num. of Extra Change Points 15.0 1.5

Table 3.3: The results of 100 simulations. Averaged values are calculated only from the iterations that
converged.

3.6 A Case Study on Naturalistic Driving Data

The benefit of the proposed rHDP-HSMM is demonstrated via the real-world application of mod-
eling vehicle driving maneuver patterns. This type of modeling is useful for the development
intelligent driving assistant systems and autonomous driving vehicles. The dataset analyzed in
this study was collected by University of Michigan’s Transportation Research Institute [39]. Sev-
eral kinematic driving signals were collected from human-driven vehicles during their everyday
activities. This naturalistic dataset is rich with information related to discover common driving
maneuvers and behaviors. [69]. Signals are recorded on trip by trip basis, which begins when the
vehicle is turned-on and ends when the vehicle is turned-off. An example of a trip can be seen in
Figure 3.8.

(a) (b)

Figure 3.8: A different segmentation of the road shown in Figure 3.1 labeled by a rHDP-HSMM under a
threshold of 0.5.

The kinematic signals of interest are acceleration, lane offset, and yaw rate. Acceleration
and lane offset reflect a driver’s intention of moving in the longitudinal and lateral directions
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respectively. Yaw rate captures a driver’s intention of of changing the forward direction of the car.
Together, they form a multivariate time-series sampled at 10 Hz which should be highly correlated
with human-driving behaviors. An example of the collected signals is shown in Figure 3.8. As
maneuvers are expected to switch at a low frequency, the original data is down-sampled to 1 Hz by
averaging every 10 data points.

Both the HDP-HSMM and a 0.5 threshold rHDP-HSMM are applied to trip shown in Figure
3.8 under the following setup. A 3-dimensional multivariate Gaussian distribution is used for the
emission distribution (𝑌 ∼ MVN(𝜇, Σ)). The priors to the emission mean and variance are selected
as

𝜇 ∼ MVN( [0, 0, 0], [[1, 0, 0], [0, 1, 0], [0, 0, 1]])

Σ ∼ Inverse-Wishart(2, [[1, 0, 0], [0, 1, 0], [0, 0, 1]]).

Each state’s duration is assumed Poisson distributed (𝐷 ∼ Poisson(𝜆)) with the prior 𝜆 ∼
Gamma(𝑎 = 1, 𝑏 = 7). The identifiability constraints are constructed as to arrange the states
in the order of smallest to largest mean and duration. The maximum number of states was limited
to 20. The kinematic signals are normalized with respect to the signals observed during the trip.
The learned emission means are transformed back to original space once the training is complete
for analysis purposes.

The colors in Figure 3.8 represent the labeling results after training the 0.5 threshold rHDP-
HSMM. Noticeably, the rHDP-HSMM segments the road into 9 states. Looking deeper at Figure
3.8b, it is clear that each state is primarily dictated by changes in yaw rate. Hence this model is
able to capture portions of the road where various turning maneuvers are intended by the driver
(Figure 3.8a). Comparing Figure 3.8a with the HDP-HSMM segmentation shown in Figure 3.1a, it
is clear how the rHDP-HSMM merged the HDP-HSMM’s 17 states into a more clear representation
of maneuvers used on the road. An example of the rHDP-HSMM’s estimated means versus the
true recorded signals can be seen in Figure 3.9. In this graph, it can be seen the estimated states
correspond mainly to the Yaw Rate signals, as the estimated mean values correspond almost one-
to-one with the true vehicle signal. Considering the confidence intervals, the signal almost always
lies within the interval.
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Figure 3.9: The rHDP-HSMM estimated mean parameters plotted against the true recorded kinematic
signals. The estimated means are the colored points on the graph, with each color corresponding to its
respective state. The dashed line represents a two standard deviation interval around the estimated mean.
The true signal is shown in gray.

The rHDP-HSMM and HDP-HSMM are further compared in Figure 3.10 by using states obtained
from the curved portion of the road marked in Figure 3.8a. Six other trips existed where the same
driver drove on that part of the road. Hence, both the HDP-HSMM and the rHDP-HSMM are
trained again on each of the other trips under the same initial parameters. The learned states from
each model which occurred on the marked portion are analyzed in Figure 3.10. Figures 3.10a and
3.10b shows the emission means and durations learned by the HDP-HSMM and the rHDP-HSMM
respectively. Interestingly, Figure 3.10b shows how the rHDP-HSMM concentrates the emission
means in various quadrants of the graph. These quadrants relay a positive yaw rate, a negative lane
offset, and a positive acceleration in all the learnt means. The concentration of these means in each
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(a)

(b)

Figure 3.10: Emission means corresponding to the kinematic signals from 7 different trips occurring on the
curved portion of road shown in Figure 3.8. Figure 3.10a shows the means from the original HDP-HSMM,
while Figure 3.10b shows the means from the proposed rHDP-HSMM.

quadrant indicate a consistency in maneuvers among the various trips, which translates to a left
turning action intended by the driver. This same conclusion is not easily recognizable in Figure
3.10a, as the HDP-HSMM loses this consistency in the learnt means. The difference in learning
procedure between the HDP-HSMM and the rHDP-HSMM suggests that the HDP-HSMM’s lack
of concentrated means derives from the HDP-HSMM overestimating the number of states. As the
rHDP-HSMM inference procedure merges similar states together, the emission means of each state
can be inferred with a greater amount of data, providing both more consistent estimates and more
consistent conclusions.

3.7 Discussion and Conclusion

The HDP-HSMM is a powerful model for discovering driving maneuver patterns from kinematic
driving data. This paper details an extension to the HDP-HSMM in which this paper refers to
as a robust HDP-HSMM (rHDP-HSMM). This model provides a solution to the inconsistency
problem caused by the HDP prior. Looking through the lens of a weak-limit approximation of the
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HDP prior, the problem typically occurs as the Dirichlet distribution takes no consideration for
redundant states, which dilutes the underlying transition process. The rHDP-HSMM solves this
issue by adjusting the sample from Dirichlet distribution by checking which states can be merged
together. The model then scales down the weights which encourage transitions to redundant states.
As a result, the rHDP-HSMM learns fewer redundant states and estimates longer state durations
when compared to the original HDP-HSMM. This change leads to improved segmentation and
more accurate transition probability representation, which is useful for the application of learning
driving maneuvers.

Two case studies are presented to further demonstrate the ability of the proposed rHDP-HSMM
over the HDP-HSMM. The first study is a simulation which utilizes 1-dimensional normal distribu-
tions for the emission function. The rHDP-HSMM demonstrates a clear improvement with regards
to the posterior chains. The emission parameters converge much faster, the duration posteriors have
far less variance than the HDP-HSMM’s duration posterior, and finally the posterior state sequence
presents far less change points than the HDP-HSMM’s. Over the course of 100 simulations, the
rHDP-HSMM out performs the HDP-HSMM in terms of convergence and having less extra change
points relative to the truth.

The second study demonstrates of the effectiveness of the model in identifying and inferring
driving maneuver patterns from a naturalistic dataset of kinematic signals. It is shown how the
rHDP-HSMM’s merging procedure reduces the number of states to describe a trip from 17 to
9 states when compared to a regular HDP-HSMM. The states are highly interpretable and now
specifically capture portions of the road where various turning maneuvers are intended by the
driver. In addition to this, the study also compares the results from multiple trips occurring on a
curved portion of the road. The results show how the rHDP-HSMM consistently estimates similar
emission distributions from multiple trips when compared to the original HDP-HSMM estimates.

In both studies, the rHDP-HSMM outperforms the HDP-HSMM in terms of estimation and
consistency. This paper concludes that the rHDP-HSMM is worth applying to datasets where an
HDP prior may be generating redundant states. Further inspection as to how to select the threshold
may be required, however it is clear that the merging procedure within the model is still able to
learn consistent and highly interpretable states for the study of driving maneuvers.
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CHAPTER 4

Constrained Gaussian Processes for Airline Demand
Prediction and Customer Behavior Inference

4.1 Introduction

In the field of revenue management, understanding consumer behavior is important for capacity
control decisions. Capacity control decisions are made to optimally allocate the capacity of a
resource to various consumers. For airline revenue management, airlines consider how much
capacity should be allocated to various fare groups before deciding the price of each seat on a
plane. This decision provides customers with various options to choose from when purchasing,
which in turn impacts consumer behavior. Customers will respond differently depending on the
options presented before them. The more relevant a product appears to a customer, the higher
the probability of a purchase being made, i.e., if an option is within their preferred price range, a
customer may make a purchase. Also, if the ticket price is slightly above their preferred range, there
is still a chance for customers to make a purchase decision. It is always of interest for airlines to
maximize their revenue. To take advantage of this probability, airlines can optimize their strategic
decisions when determining the availability of various fares. The allocated availability of different
fares will then impact the amount of purchases the airline might actually observe.

Capacity control decisions in traditional airline revenue management systems usually begin with
a forecast of the customer demand for various fare groups, based on which, the number of seats
to be sold to each fare group is determined through the airline’s optimization process (i.e. how
many seats should be allocated to each fare group). The initial demand forecasting step is of
high importance with regards to the optimization [10]. In fact, the allocation of seats to each fare
group sensitively affects historical customer purchasing data to be biased towards these allocation
decisions. Hence, historical demand observations are often censored according to the airline’s
allocations to each group, and the demand estimation becomes difficult for unobserved scenarios
falling outside of these historical allocation ranges.
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4.2 Literature Review

In order to combat this censoring problem, demand has been modeled in a variety of ways. [19]
classifies most methods into either single-class or multi-class methodologies. The single-class
methodologies assume the demand in each fare group is independent of the demand in other fare
groups. Hence the relationships among different fare groups are not utilized in these methods.
Most of the single-class methodologies are well documented and surveyed in [65, 19, 52, 64,
68]. The notable methods include imputation techniques, Double Exponential Smoothing (DES),
Expected Maximization (EM), and Projection Detruncation (PD). Among these, [68] showed the
EM algorithm and PD methods to be more robust in estimating demand under censored scenarios,
and the EM algorithm required less computational effort compared to the PD method. However,
the EM and PD methods are still being challenged by ongoing research. [13] related the censoring
problem to the field of survival analysis and derived a maximum likelihood method that takes
into consideration the level of censorship in the data. The results showed that survival modeling
was able to produce almost identical results to the EM algorithm, but provided more intuition
behind the relationships between censorship and demand. [44] presented a Gaussian Process (GP)
regression model to learn and extrapolate the demand. The results showed that GP regression to
outperform DES, EM, and PD methods and was able to cope with important characteristics of
realistic demand data, including nonlinear demand trends, variations in the total demand, lengthy
periods of censorship, non-exponential inter-arrival times, and discontinuities/change-points in
demand data.

The single-class methods assume customer behavior of one given fare group is independent
of other fare groups being observed. In practice, this assumption over-simplifies the impact of
airlines pricing decisions on consumer demand correlation among the different fare groups. For
example, passengers will “buy down” if cheaper fares are available. [5] discusses observed demand
being either yieldable demand or priceable demand. Yieldable demand is defined as the observed
demand when the customer purchases the more expensive fare products, even when cheaper fares
exist. Priceable demand is the demand observed from customers who are primarily concerned with
the price, and will always purchase the lowest available fare. This perspective is interesting as it
captures the characteristic of customers being either sensitive or insensitive to price. The difference
is important as each type of customer demand should utilize different forecasting models.

This leads to a research interest in how to model customer demand correlations among different
fare groups. One approach is the use of sell-up rate probabilities. These probabilities aim to
capture the probability of customers ‘sell-up’ behavior, which describes the phenomena of a
customer purchasing a fare outside of their preferred range. For example, [21] utilized fare
ratios and observed demands to estimate sell-up rates. [14] provides an alternative sell-up rate
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calculation using a multinomial logit model to consider cross-flight interactions. Sell-up rates aid
the estimation of the dependent component of demands in that they can convert the demands from
one fare group to another fare group [66]. However sell-up rates are generally difficult to obtain as
sell-up occurrences are rarely captured during the booking process [6]. The data used to calculate
market-specific sell-up rates is inherently sparse. System-wide aggregation methods are often used
to make use of more data across the entire system. However estimating sell-up over an entire system
results in estimates that are uncharacteristic of the market of interest. ‘Buy-down’ is a case where
customers buy a cheaper fare class than they originally intended to buy. These probabilities are
also of interest to calculate in practice for managing risk.

Many multi-class uncensoring methods exist that do not directly use the sell-up rates to model
the demand correlations among fare groups. For example, [55] presented a multivariate linear
mixed effects model for modeling random demands. The model captured both the time dimension
and the pricing dimension of demand and related them through a shock variable. The shock variable
induced correlation across both dimensions. This model estimates the parameters of demand via
classical incomplete data framework and utilizes an EM algorithm to uncensor demand. [31] also
represented the correlation between two different fare-classes via a covariance function. Their work
extended the EM uncensoring algorithm to include correlation in the estimation.

This paper presents an uncensoring methodology which utilizes modern constrained GP regres-
sion [2] to estimate different types of demand for censored fare classes. The results of estimates are
then converted to obtain both sell-up probabilities and buy-down probabilities. Hence, while these
probabilities are generally difficult to obtain as these type of occurrences are rarely captured during
the booking process, the results of this paper will show how a multi-fare constrained Gaussian Pro-
cess model can be used to properly describe these probabilities. The contribution of this work will
highlight a new perspective for more accurate estimation of various types of demand for multiple
fare groups, and show how convert these demand estimates can be used to determine sell-up and
buy-down probabilities.

The remaining sections will discuss the following. Section 4.3 describes the airline demand
setting, and the difficulties involved in estimating demand. Section 4.4 describes the modeling
framework, beginning with Gaussian Process Regression via a single-fare group setup, which
is then improved by presenting a multiple-fare group setup. The constrained Gaussian Process
Regression is presented in this section along with general constraints recommended for improving
estimation. Section 4.5 describes the difficulties of estimating customer buy-down and sell-up
behaviors, and shows how the described constrained Gaussian Process can be used to estimate
these type of behaviors. A simulation example is provided in Section 4.6 to demonstrate how the
constraints change the Gaussian Process predictions, and further highlight important parameters
to the constraints. Section 4.7 demonstrates how the described constraints can be used to estimate
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the demand from realistic airline data. Section 4.8 converts the airline data into the quantities
needed to calculate the customer buy-down and sell-up probabilities, and demonstrates how the
developed constrained Gaussian Process model can help infer these quantities. Finally conclusions
are summarized in Section 4.9.

4.3 Data Structure

4.3.1 Data Structure

For the given flight route, there are multiple flights indexed by 𝑖 (𝑖 = 1, . . . , 𝑛), which contain sales
from different fare groups indexed by 𝑗 ( 𝑗 = 1, . . . , 𝐾). The price of each group is denoted by 𝑝 𝑗
which is ordered 𝑝1 < 𝑝2 < · · · < 𝑝𝐾 ; and their corresponding tickets’ selling times are allocated as
𝜏𝑖, 𝑗 . The amount of demand 𝑦𝑖, 𝑗 corresponding to each fare group is random, but strongly depends
on the amount of selling time 𝜏𝑖, 𝑗 . Figure 4.1 shows a simulated example of the described data. In
order to maximize revenue, airlines are interested in optimizing the amount of selling time 𝜏𝑖, 𝑗 . For
this purpose, this requires an accurate estimation of demand for each fare group at various given
selling times. This is difficult as some fare groups only experience certain types of time allocation
𝜏𝑖, 𝑗 to generate observable demand. For example, some fare groups 𝑗∗ may have 𝜏𝑖, 𝑗∗ = 0 as the
fare group 𝑗∗ was never allocated selling time for flight 𝑖. Thi translates to no available samples of
demand 𝑦𝑖, 𝑗∗ . In Figure 4.1, Groups 1 and 3 only have data where 𝜏 < 10, implying that demand
is unknown beyond that bound. For such fare groups 𝑗∗, it is desirable to infer its demand outside
of its historical bounds by utilizing the information observed from other fare groups ( 𝑗 ≠ 𝑗∗) that
experienced different selling strategies.

In order to relay information from one group to another, certain assumptions are essential. For
example, the demand decreases as price 𝑝 𝑗 increases, i.e., at the same selling time 𝑡, if groups 𝑗− and
𝑗+ relate with prices 𝑝 𝑗− < 𝑝 𝑗+ , then the corresponding demands satisfy 𝐸 [𝑦𝑖, 𝑗− (𝑡)] ≥ 𝐸 [𝑦𝑖, 𝑗+ (𝑡)].
Furthermore, within a fare group, the corresponding demand often increases as time increases, i.e.,
for times 𝑡− < 𝑡+, the corresponding demand are assumed to have 𝐸 [𝑦𝑖, 𝑗 (𝑡−)] ≤ 𝐸 [𝑦𝑖, 𝑗 (𝑡+)]. These
relationships can also be observed in Figure 4.1. The next section will detail how Gaussian Process
regression can incorporate these assumptions in modeling.
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Figure 4.1: Example of response data from different groups. Each group is represented by a different color.
The true underlying function for each group is represented by the corresponding colored lines, while the
observed data is represented by the points. Some groups have many observations at various values of 𝜏,
while other groups like Groups 1 and 3 only have observations at very limited values of 𝜏

4.4 Modeling Customer Demand

4.4.1 Single-Group: Gaussian Process Regression

Starting from a single group, the relationship between 𝑦𝑖, 𝑗 and 𝜏𝑖, 𝑗 is modeled as a Gaussian Process.
To be consistent with standard GP notation, let 𝑥𝑖, 𝑗 = 𝜏𝑖, 𝑗 . All observations from a particular group
𝑗 can be represented by column vector 𝒚 𝑗 ∈ R𝑛 corresponding to column vector 𝒙 ∈ R𝑛, each
of which denotes a vector with 𝑛 observed 𝑦𝑖, 𝑗 and 𝑥𝑖, 𝑗 respectively. The distribution over vector
𝒇 𝑗 ∈ R𝑛 latent values corresponding to 𝒙 is a multivariate Gaussian with

𝒇 𝑗 |𝒙 ∼ N(𝝁 𝑗 (𝒙), 𝑲 𝑗 (𝒙, 𝒙⊺)) (4.1)

where 𝝁 𝑗 (𝒙) ∈ R𝑛 and 𝑲 𝑗 (𝒙, 𝒙⊺) ∈ R𝑛×𝑛 denotes a Gram matrix of a selected kernel applied to the
covariance matrices.
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Given the observed data (𝒙, 𝒚), one can estimate 𝒚∗
𝑗
∈ R𝑛∗ corresponding to unobserved 𝒙∗ ∈ R𝑛∗ .

Assume noise in the GP is represented by 𝜎2. Then the prediction distribution is still Gaussian
with the mean and covariance as

E[𝒚∗𝑗 |𝒙∗, 𝒙, 𝒚 𝑗 ] = 𝝁 𝑗 (𝒙∗) + 𝑲 𝑗 (𝒙∗, 𝒙) [𝑲 𝑗 (𝒙, 𝒙) + 𝜎2𝑰𝑛]−1(𝒚 𝑗 − 𝝁 𝑗 (𝒙))
Cov[𝒚∗𝑗 |𝒙∗, 𝒙, 𝒚 𝑗 ] = 𝑲 𝑗 (𝒙∗, 𝒙∗) − 𝑲 𝑗 (𝒙∗, 𝒙) [𝑲 𝑗 (𝒙, 𝒙) + 𝜎2𝑰𝑛]−1𝑲 𝑗 (𝒙, 𝒙∗)

(4.2)

where 𝒚∗
𝑗
|𝒙∗, 𝒙, 𝒚 𝑗 is the predictive posterior given data (𝒙, 𝒚 𝑗 ) and 𝑰𝑛 is an identity matrix with 𝑛

rows. Note that E[𝒚∗
𝑗
|𝒙∗, 𝒙, 𝒚 𝑗 ] ∈ R𝑛

∗ and Cov[𝒚∗
𝑗
|𝒙∗, 𝒙, 𝒚 𝑗 ] ∈ R𝑛

∗×𝑛∗

For the purpose of modeling airline demand, utilizing GP regression is advantageous because
it can capture non-linear relationships of demand over time. Furthermore, the GP’s predictive
covariance matrix provides uncertainty for risk evaluation. [44] also presented a GP regression
method to predict demand, which was able to outperform popular traditional estimation methods
like Expected Maximization and Projection Detruncation. Different from the single-group GP
regression model, we will form a constrained Gaussian Process (CGP) model to consider the
relationships between different fare groups to facilitate prediction for groups with limited data.

4.4.2 Multiple-Groups: Notation

The single group setup of Gaussian Process regression limits the learning capabilities of the
GP. Specifically, by not considering all groups simultaneously, there is no way to communicate
information between different groups. To remedy this, this section will provide the setup and
notation which will allow the modeling of all groups simultaneously.

Each flight 𝑖 = 1, . . . , 𝑛 provides demand samples for all fare groups 𝑗 = 1, . . . , 𝐾 , even if the
demand observation is 0 due to 𝜏 equating to 0. Hence, we can represent all demand samples into
a single vector

𝒚 =

[
𝑦11, 𝑦12, . . . , 𝑦1𝐾 , 𝑦21, . . . , 𝑦2𝐾 , . . . , 𝑦𝑛1, . . . 𝑦𝑛𝐾

]⊺
(4.3)

where 𝒚 ∈ R𝑛𝐾 . The predictors corresponding to these observations can now be defined via the
matrix

𝑿 =

[
𝒙̃⊺11, 𝒙̃

⊺
12, . . . , 𝒙̃

⊺
1𝐾 , 𝒙̃21⊺ , . . . , 𝒙̃

⊺
2𝐾 , . . . , 𝒙̃

⊺
𝑛1, . . . 𝒙̃

⊺
𝑛𝐾

]⊺
. (4.4)

where 𝑿 ∈ R𝑛𝐾×𝐾 and each row of the matrix is defined by

𝒙̃𝑖, 𝑗 = 𝜏𝑖, 𝑗 ∗ e⊺
𝑗
, (4.5)

where e 𝑗 ∈ R𝐾 denotes a column vector with the 𝑗-th element value being 1 and the rest being 0.
With this structure, 𝒙̃𝑖, 𝑗 ∈ R1×𝐾 is a row vector with the 𝑗-th column being the 𝜏𝑖, 𝑗 allocated to the
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𝑗-th group from observation 𝑖. The rest non- 𝑗 columns are useful in that now the GP has a method
by which to allow communication between the different groups.

4.4.3 Airline Demand Constraints

With the data set up like this, the constraints mentioned in Section 4.3 can now be mathematically
described. First, we define a meaningful 𝑿 (which we denote as 𝑿𝑚) for which demand constraints
must hold. To understand why 𝑿𝑚 is meaningful, assume

𝑿𝑚 = 𝜏 ∗ 𝑰𝐾 (4.6)

where 𝜏 is some predefined time value and 𝑰𝐾 is a R𝐾×𝐾 identity matrix. In this case, the
corresponding rows of the response vector 𝒚𝑚 ∈ R𝐾 corresponds to the demand of each fare
group 𝑗 having time allocation 𝜏. As all fare groups in 𝒚𝑚 share the same level of allocated time,
relationships between fare groups can be mathematically defined around 𝒚𝑚. It should be noted
that data need not be available at these locations, but rather the constraints are assumed to hold true
at these locations.

With meaningful 𝑿𝑚 and 𝒚𝑚 defined, the demand constraints mentioned can be described via a
linear operator L and bounds 𝑎(𝑿𝑚) and 𝑏(𝑿𝑚). The 3 constraints are as follows:

1. Demand Positivity Constraint: This constraint communicates the assumption that 0 ≤ 𝑦 𝑗

for all fare groups 𝑗 . Let 𝑿𝑚1 be defined by Equation 4.6, the bounds and linear operator that
convey these constraints are

𝑎1(𝑿𝑚1 ) = 0𝐾 , 𝑏1(𝑿𝑚1 ) = ∞𝐾 , L1 = 𝑰𝐾 (4.7)

where 0𝐾 represents a vector of 𝐾 zeroes and ∞𝐾 represents a vector of 𝐾 infinity values.
Applying the bounds and linear operator to 𝑦𝑚1 corresponding to 𝑿𝑚1 results in the constraint
0𝐾 ≤ L1𝑦

𝑚
1 .

2. Constraint Between Fare Groups: This constraint relays the assumption that demand
decreases as price increases. Let 𝑿𝑚2 = 𝜏 ∗ 𝑰𝐾−1. The constraint uses the following bounds
and linear operator L2 ∈ R(𝐾−1)×𝐾 on 𝒚𝑚2

𝑎2(𝑿𝑚2 ) = 0𝐾−1, 𝑏2(𝑿𝑚2 ) = ∞𝐾−1, {L2} 𝑗𝑞 =


1 𝑞 = 𝑗

−1 𝑞 = 𝑗 + 𝑝

0 otherwise

(4.8)
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where 𝑗 is the row of the matrix L2, 𝑞 is the column of the matrix L2, and 𝑝 ∈ [1, . . . , 𝐾 − 𝑗]
is a predefined step size. Each element of L2 is conveyed through {L2} 𝑗𝑞. The step size 𝑝
allows for comparison between different fare groups. For example, if 𝑝 = 1, then

L2 =


1 −1 0 0 . . . 0
0 1 −1 0 . . . 0

0 . . .
. . .

. . .
. . .

...

0 . . . 0 0 1 −1


,

and each row 𝑗 of L2𝒚
𝑚
2 represents the difference 𝑦 𝑗 − 𝑦 𝑗+1. Considering the bounds, each

row of 0𝐾−1 ≤ L2𝒚
𝑚
2 communicates the relationship 𝑦 𝑗+1 ≤ 𝑦 𝑗 for all 𝑗 = 1, . . . , 𝐾 − 1.

3. Constraint Within a Fare Group: This constraint is intended to communicate the assump-
tion that for a given fare group 𝑗 , demand should increase as the time allocation 𝜏 increases.
This constraint first requires a small adjustment to Equation 4.6 in that 2 time allocations
values 𝜏− and 𝜏+ are required where 𝜏− < 𝜏+. Let

𝑿𝑚3 =

[
𝜏− ∗ 𝑰𝐾

𝜏+ ∗ 𝑰𝐾

]
. (4.9)

where 𝑿𝑚3 ∈ R2𝐾×𝐾 . With this setup, the corresponding 𝒚𝑚3 has rows 𝑗 = 1, . . . , 𝐾 having
time allocation 𝜏−, and rows 𝑗 = 𝐾 + 1, . . . , 2𝐾 having time allocation 𝜏+. With 𝑿𝑚3 defined,
a linear operator can now be described to communicate the assumption that demand should
increase as the time allocation 𝜏 increases. Define the following bounds and linear operator
L3 ∈ R𝐾×2𝐾 on 𝒚𝑚3

𝑎3(𝑿𝑚3 ) = 0𝐾 , 𝑏3(𝑿𝑚3 ) = ∞𝐾 , {L3} 𝑗𝑞 =


−1 𝑞 = 𝑗

1 𝑞 = 𝑗 + 𝐾

0 otherwise.

(4.10)

where {L3} 𝑗𝑞 represents each element of L3. This results in the linear operator having the
form

L3 =


−1 0 0 0 . . . 1 0 0 . . . 0
0 −1 0 0 . . . 0 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

...

0 . . . 0 0 −1 0 . . . 0 0 1


,

with each row 𝑗 of L3𝒚
𝑚 representing the difference 𝑦 𝑗 (𝜏+) − 𝑦 𝑗 (𝜏−). The bounds and linear
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operator relay the relationship 𝑦 𝑗 (𝜏−) ≤ 𝑦 𝑗 (𝜏+) for all 𝑗 = 1, . . . , 𝐾 .

Each of the constraints above can mathematically describe commonly used airline demand
assumptions. These definitions are useful as they can be used to understand and/or manipulate how
different fare groups relate to one another. For example, while the bounds shown in this section are
generally the either a zero vector or an infinity vector, we can modify the lower bound of Constraint
2 according to the economics concept of price elasticity.

4.4.3.1 Modifying Constraint 2 to Consider Price Elasticity

The price elasticity of demand is an important concept in the field of economics that measures the
responsiveness of the quantity demanded of a product with respect to a change in its price. The
formula for price elasticity of demand is typically represented as:

𝐸 =
%Δ𝑦

%Δ𝑝
=

(𝑦 𝑗2 − 𝑦 𝑗1)/𝑦 𝑗1
(𝑝 𝑗2 − 𝑝 𝑗1)/𝑝 𝑗1

(4.11)

where:

• 𝐸 represents the price elasticity of demand

• %Δ𝑦 denotes the percentage change in quantity demanded between products with demand
𝑦 𝑗1 and 𝑦 𝑗2 respectively

• %Δ𝑝 denotes the percentage change in price between products with prices 𝑝 𝑗1 and 𝑝 𝑗2

respectively.

For the purposes of this constraint, price elasticity can be used to improve estimation of the lower
bound. Airlines typically know both the price is assigned to each fare group, and have an estimate
of the price elasticity 𝐸 . Typically, negative elasticity will be observed as it implies demand will
increase as price decreases. If the elasticity and the price of each group is known, Equation 4.11
can be rearranged to highlight the following:

(𝑦 𝑗2 − 𝑦 𝑗1) ∝
(𝑝 𝑗2 − 𝑝 𝑗1)

𝑝 𝑗1
× 𝐸 (4.12)

where the left hand side of the equation corresponds to the demand difference between two fare
groups. This is analogous to the lower bound of Constraint 2 in Section 4.4.3 where each row 𝑗 of
L2𝒚

𝑚
2 represents the difference 𝑦 𝑗 − 𝑦 𝑗+1. Thus the right hand side of Equation 4.12 can be used to
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also define a clearer lower bound to each row 𝑗 in Constraint 2 that was described in Equation 4.8:

[𝑎2(𝑿𝑚2 )] 𝑗 =
(𝑝𝑞 − 𝑝 𝑗 )

𝑝 𝑗
× 𝐸. (4.13)

4.4.4 Multiple-Groups: Constrained GP Regression

Here we borrow from [2] to combine the notation and constraints described in Sections 4.4.2 and
4.4.3, as they define method by which to constrain a GP with constraints represented by linear
operators and bounds. Let L be a linear operator on realizations of 𝒇 ∼ GP(𝜇(𝑿), 𝐾 (𝑿, 𝑿), and
L 𝒇 is still a GP [47, 42]. For two functions 𝑎(𝑿) and 𝑏(𝑿), where 𝑎(𝑿) ≤ 𝑏(𝑿) for all 𝑿, the
constrained posterior GP on the event that 𝑎(𝑿) ≤ L 𝒇 ≤ 𝑏(𝑿) can be reached approximately by
relaxing the constraint to only hold at a finite set of inputs defined by 𝑿𝑚 where 𝑿𝑚 ∈ R𝑛𝑚×𝐾 . Let
𝐶 (𝑿𝑚) denote the event that the constraint 𝑎(𝑿𝑚) ≤ L𝒚+𝜀𝑚 ≤ 𝑏(𝑿𝑚) where 𝜀𝑚 ∼ N(0𝑛𝑚 , 𝜎2

𝑚 𝑰𝑛𝑚)
represents additive white noise at the finite set of inputs. Then the posterior predictive distribution
of the constrained GP can be estimated using a lemma provided by [2]:

𝒚∗ |𝑿∗, 𝑿, 𝒚, 𝑿𝑚, 𝐶 (𝑿𝑚) ∼ N (𝝁∗ +𝑼(𝑪 − L𝝁𝑚) + 𝑽 (𝒚 − 𝝁),𝚺) (4.14)

𝑪 ∼ TN(L𝝁𝑚 +𝑼1(𝒚 − 𝝁),𝑽1, 𝑎(𝑿𝑚), 𝑏(𝑿𝑚)) (4.15)

where TN(·, ·, 𝑎, 𝑏) is a GaussianN(·, ·) conditioned on hyper-rectangle [𝑎1, 𝑏1]×· · ·× [𝑎𝑛𝑚 , 𝑏𝑛𝑚]
and

𝑼1 = (L𝑲𝒙𝑚,𝒙) (𝑲𝒙,𝒙 + 𝜎2𝑰𝑁 )−1, 𝑽1 = L𝑲𝒙𝑚,𝒙𝑚L⊺ + 𝜎2
𝑚 𝑰𝑛𝑚 −𝑼1𝑲𝒙,𝒙𝑚L⊺

𝑼2 = 𝑲𝒙∗,𝒙 (𝑲𝒙,𝒙 + 𝜎2𝑰𝑁 )−1, 𝑽2 = 𝑲𝒙∗,𝒙∗ −𝑼2𝑲𝒙,𝒙∗

𝑽3 = 𝑲𝒙∗,𝒙𝑚L⊺ −𝑼2𝑲𝒙,𝒙𝑚L⊺

𝑼 = 𝑽3𝑽
−1
1 , 𝑽 = 𝑼2 −𝑼𝑼1, 𝚺 = 𝑽2 −𝑼𝑽⊺3

where the following shortened notation is used: 𝝁∗ = 𝜇(𝑿∗), 𝝁 = 𝜇(𝑿), 𝝁𝑚 = 𝜇(𝑿𝑚), and
𝑲𝒙,𝒙∗ = 𝐾 (𝑿, 𝑿∗). Whenever the the linear operator is used on a vector, it is interpreted as
elementwise. Further implementation calculations based on the lower triangular Cholesky factor
are also provided in [2].

This lemma is powerful in that the Gaussian Process can now estimate under the constraints listed
in Section 4.4.3. This results in a constrained Gaussian Process (CGP), that acknowledges how
demand should behave relative to time and between different fare groups. For the specific scenario
of missing data, these constraints can help guide the prediction to follow assumed relationships
between different groups.
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4.5 Modeling Customer Buy-Down and Sell-Up

4.5.1 Customer Buy-Down and Sell-Up Behaviors

Typically, the time allocation between fare groups overlap in a hierarchical manner, such that a
higher fare group is always allowed to be sold at the times allocated to the lower fare groups. This
implies 𝜏𝑗 ≤ 𝜏𝑗+1 for 𝑗 = 1, . . . , 𝐾 − 1. The hierarchical structuring of fare group availability
allows for buy-down and sell-up information to be made available. To understand this, first let
𝑡0, 𝑡1, . . . , 𝑡𝑀−1 represent 𝑀 change points that indicate a change/shift in selling pattern among any
of the 𝐾 fare groups. Figure 4.2 displays a simulated example of 4 fare groups, where the buying
rate shifts according to the lowest available price. The change points imply 𝑀 non-overlapping
segments, where the same fare groups are kept available within each segment. During each segment
𝑚, each fare group 𝑗 takes on one of three states, which is represented by

𝑍 𝑗 (𝑚) =


E, if group 𝑗 is being sold and considered expensive during segment 𝑚

C, if group 𝑗 is being sold and is the cheapest available group during segment 𝑚

X, if group 𝑗 was not sold during segment 𝑚.
(4.16)

The state 𝑍 𝑗 (𝑚) represents a comparison between group 𝑗’s price with the rest of the fare groups
that are available of a given segment 𝑚. Assuming customer behavior depends solely on what fares
are shown to the customer, state 𝑍 𝑗 (𝑚) indicates which type of buying behavior will occur for
fare group 𝑗 during segment 𝑚. For example, if fare group 𝑗 is the cheapest price available (i.e
𝑍 𝑗 (𝑚) = 𝐶), it will attract much more demand as opposed to if a cheaper fare group was available
(in which case 𝑍 𝑗 (𝑚) = 𝐸). Hence state 𝑍 𝑗 (𝑚) determines the rate at which demand will arrive.

State 𝑍 𝑗 (𝑚) is also useful for understanding customer buy-down and sell-up behavior. Consider
the quantity of customers buying tickets for fare group 𝑗 when 𝑍 𝑗 (𝑚) = 𝐶 by 𝑦C

𝑗
. Demand outflow

can be described via the states. In the scenario that the airline lowered the price to a cheaper
fare group, some portion of 𝑦C

𝑗
may purchase down (buy-down) to the cheaper group, while the

remaining portion may choose to stay in fare group 𝑗 (due to the extra perks belonging to fare
group 𝑗). The portion of demand that would stay in fare group 𝑗 given a cheaper fare is captured
when state 𝑍 𝑗 (𝑚) = 𝐸 , and can thus be represented by 𝑦E

𝑗
. Unfortunately, the remaining portion

that would buy-down to a cheaper fare (call it 𝑦D
𝑗

as they are dependent on the price) can never
be directly observed by airlines, as no state 𝑍 𝑗 (𝑚) is able to capture it. However, the dependent
demand can be solved for based on its relationship to 𝑦C

𝑗
and 𝑦E

𝑗
which is described by the following

equation:
𝑦C
𝑗 (𝜏) = 𝑦E

𝑗 (𝜏) + 𝑦D
𝑗 (𝜏). (4.17)
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Figure 4.2: An example displaying how the state of each fare group 𝑍 𝑗 (𝑚) relates to the lowest available
price for each segment 𝑚 of time. Each segment 𝑚 has 𝑆𝑚 duration, and the value of 𝑍 𝑗 (𝑚) for each fare
group is labeled in the legend. For each segment, the arrival rate changes depending on the state of the fare
group.

Equation 4.17 represents demand outflow from group 𝑗 and only holds true if all demand types
have the same 𝜏 value. Solving for each of these terms is useful as they can be used to calculate
the probability a customer in fare group 𝑗 will buy-down to a cheaper group if it is also shown to
the customer. This probability can be calculated as

P(Group 𝑗 Buying Down |𝜏) =
𝑦D
𝑗
(𝜏)

𝑦C
𝑗
(𝜏)

=
𝑦C
𝑗
(𝜏) − 𝑦E

𝑗
(𝜏)

𝑦C
𝑗
(𝜏)

. (4.18)

Another perspective of the quantity 𝑦C
𝑗

is the demand inflow. That is some portion of its demand
comes from the more expensive fare group 𝑗 + 1 via buy-down, while the remaining portion of
its demand is new external demand that only purchases because they can afford the fare group
𝑗 . The demand that bought down from the next highest fare group can be represented by 𝑦D

𝑗+1.
However, by opening up the cheaper fare group 𝑗 , new demand is attracted as more customers can
now afford this product. The new customers that come because fare group 𝑗 is now available can
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be represented by 𝑦N
𝑗
. By this logic, 𝑦C

𝑗
both takes demand from the fare group above it and brings

in new demand. This relationship can be described via the following equation:

𝑦C
𝑗 (𝜏) = 𝑦D

𝑗+1(𝜏) + 𝑦
N
𝑗 (𝜏). (4.19)

Equation 4.19 represents demand inflow into group 𝑗 and only holds true if all terms share the same
𝜏 value. Noticeably, the term 𝑦D

𝑗+1(𝜏) in Equation 4.19 captures how much demand would actually
sell-up to the next highest fare group 𝑗 + 1 if the airline were to make fare group 𝑗 unavailable to
customers. This is useful as the probability of a customer in fare group 𝑗 selling-up to group 𝑗 + 1
can now be described as:

P(Group 𝑗 Selling Up |𝜏) =
𝑦D
𝑗+1(𝜏)
𝑦C
𝑗
(𝜏)

=
𝑦C
𝑗+1(𝜏) − 𝑦

E
𝑗+1(𝜏)

𝑦C
𝑗
(𝜏)

. (4.20)

where the numerator represented via Equation 4.17. This paper proposes predicting the values
of 𝑦C

𝑗
(𝜏) and 𝑦E

𝑗
(𝜏) at some common 𝜏 value via the use of the presented constrained Gaussian

Process model shown so far in order to estimate Equations 4.18 and 4.20.

4.5.2 Data Definitions for Modeling Buy-Down and Sell-Up

Section 4.4 demonstrated how to use CGPs for modeling airline demand without consideration of
buy-down and sell-up. To employ the model to estimate under buy-down and sell-up assumptions,
we propose representing the time allocations via their respective 𝑍 𝑗 (𝑚) states. Denote each segment
𝑚 = 1, . . . , 𝑀 to have duration time

𝑆𝑚 = 𝑡𝑚 − 𝑡𝑚−1, (4.21)

where 𝑡0 = 0, 𝑡𝑀 = 𝑇 , and
∑𝑀
𝑚=1 𝑆𝑚 = 𝑇 . Assume the historical demand for each fare group 𝑗 can

be segmented additively according the each segment 𝑚 and the state 𝑍 𝑗 (𝑚):

𝑦 𝑗 (𝑇) =
𝑀∑︁
𝑚=1

𝑦
𝑍 𝑗 (𝑚)
𝑗

(𝑆𝑚) (4.22)

where 𝑦𝑍 𝑗 (𝑆𝑚)
𝑗

(𝑆𝑚) represents the observed demand according to state 𝑍 𝑗 (𝑚) that occurred during
segment 𝑚 of group 𝑗 .

Fare groups are only available for sell when 𝑍 𝑗 (𝑚) ∈ {E,C}. When 𝑍 𝑗 (𝑚) = X, then
𝑦
𝑍 𝑗 (𝑚)
𝑗

(𝑆𝑚) = 0. Hence each fare group’s time allocation can be represented by

𝜏𝑗 = 𝜏
E
𝑗 + 𝜏C

𝑗 ,
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where

𝜏E
𝑗 =

𝑀∑︁
𝑚=1

𝑆𝑚 × 𝐼 (𝑍 𝑗 (𝑚) ∈ {E}), (4.23)

𝜏C
𝑗 =

𝑀∑︁
𝑚=1

𝑆𝑚 × 𝐼 (𝑍 𝑗 (𝑚) ∈ {C}), (4.24)

and 𝐼 (Ω) is an indicator function that equals 1 if event Ω is satisfied, and 0 otherwise.
Knowing the 𝜏E

𝑗
and 𝜏C

𝑗
partitions, the demand observations can also be decomposed into the

two states:
𝑦 𝑗 (𝜏𝑗 ) = 𝑦E

𝑗 (𝜏E
𝑗 ) + 𝑦C

𝑗 (𝜏C
𝑗 ), (4.25)

where 𝑦E
𝑗
(𝜏E
𝑗
) and 𝑦C

𝑗
(𝜏C
𝑗
) represent the observed demand under states E and C respectively for

times 𝜏E
𝑗

and 𝜏C
𝑗

. As such, the CGP can be built around the considering the different components.

4.6 Numerical Study

To demonstrate the learning effects of transitioning from a multi-group setup of Gaussian Process
modeling to constrained Gaussian Process modeling, an example is constructed such that a simulated
response variable increases as the group number increases. Samples are generated from the
following function for 2 ≤ 𝜏 ≤ 30 randomly:

𝑦Sim
𝑗 (𝜏) = 𝛽(1 + 𝑟 𝑗 )𝜏 + 𝜀, (4.26)

where 𝛽 = 2 corresponds to the value of 𝑦Sim
𝑗

(0), and 𝑟 𝑗 corresponds to the 𝑗 th element of
[0.101, 0.098, 0.085, 0.035, 0.028], arranged such that smaller 𝑗 will yield higher values of 𝑦Sim

𝑗
(𝜏).

The variable 𝜀 ∼ N(0, 12) represents random noise. If noise is not present, the function is simply
an exponential growth curve, and smaller values of 𝑗 receive larger response values. An example
of the data from different groups can be seen in Figure 4.1.

In Figure 4.1, Groups 1 and 3 only have data for 𝜏 ≤ 10. Hence training an unconstrained
multi-group GP for each will result in extrapolation for these groups (Figure 4.3a). Extrapolating
for values far beyond the observed data will result in estimates converging towards the prior (which
is 0). The Gaussian Process that generated Figure 4.3a was constructed as follows. A radial basis
covariance function is used

𝐾 (𝒙, 𝒙′) = 𝜎2
𝑘 ∗ exp(−||𝒙 − 𝒙′| |2

2ℓ2 ),

where variance is 𝜎2
𝑘
= 1 and the length-scale parameter being ℓ = 5. The prior mean is set to 0,
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(a) Fitted results of the Gaussian Process with no constraints.

(b) Fitted results of a constrained Gaussian Process.

Figure 4.3: Simulation results demonstrating the performance of a Gaussian Process with no constraints
versus a constrained Gaussian Process utilizing only Constraint 2 described in Section 4.4.3.

and the observation’s noise is assumed to be 𝜎2 = 1/3. A GP for each group is trained under the
same parameters using only the available data of the group currently being trained.

To provide more reasonable estimates for Groups 1 and 3, information from other groups can be
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utilized and transferred via Constraint 2. Figure 4.3b demonstrates how implementing a CGP with
only Constraint 2 described in Equation 4.8 greatly improves estimation for these groups. In this
figure, it the constraints only hold at the defined 𝑿𝑚 locations (denoted by the X-markers). Hence,
when 𝜏 = 30, the relationship between Group 1 and 2 inverts as Group 1 attempts tend back towards
the prior. This highlights the importance of defining the meaningful 𝑿𝑚 as your constraints will
only truly hold at these locations.

The constrained Gaussian Process that generated Figure 4.3b was constructed to use the same
parameters as the unconstrained GP. The only additional parameters are defined by the constraint
inputs. The finite set of locations where the constraints are assumed to hold are set up in a manner
similar to Equation 4.9 with 𝜏 ∈ [2, 5, 10, 15, 20, 25], resulting in

𝑿𝑚 =



2 ∗ 𝑰𝐾

5 ∗ 𝑰𝐾

10 ∗ 𝑰𝐾

15 ∗ 𝑰𝐾

20 ∗ 𝑰𝐾

25 ∗ 𝑰𝐾


.

The linear operator L2 defined in Section 4.4.3 is applied to each 𝜏 value and combined into a single
linear operator as to apply the constraint to the different 𝜏 values. The bounds for the constraints
between fare groups are selected to be 𝑎2(𝑿𝑚) = 0 and 𝑏2(𝑿𝑚) = 10000 for each value of 𝜏. The
constraint’s variance is selected to be 𝜎2

𝑚 = 0.001. The constrained GP is trained using all available
data from all groups simultaneously. This one constraint greatly aids the estimation of Groups 1
and 3 for 𝜏 > 10 in Figure 4.3b in comparison to the regular GP in Figure 4.3a. To further improve
estimation, adjustments of the lower bounds can also be made, which will be explored in the next
section.

4.7 Case Study: Airline Demand Estimation

A case study is presented to highlight the capability of the methodology described in Section 4.4.
In this case study, historical airline booking data from a particular customer partition is used train a
CGP under this paper’s constraints. The dataset contains of the amount of bookings purchased from
different fare groups for various flights of the same route. The dataset also contains the respective
amount of time allocated towards selling each fare group of each flight. The times are standardized
to fall between 𝜏𝑖, 𝑗 = 0 (no time allocated towards selling the fare group) and 𝜏𝑖, 𝑗 = 1 (maximum
amount of time possible spent towards selling the fare group). The fare groups 𝑗 are numbered
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Figure 4.4: Example of airline booking data from different fare groups. Each group is represented by a
different color. The number of samples collected for each fare group is shown in the legend in parenthesis.

such that smaller fare group ID’s corresponds to cheaper prices.
An example of the data can be observed in Figure 4.4, where the y-axis is the number of bookings

observed for each fare group of interest, and the x-axis represents the standardized time allocated
to each fare group. In this figure, certain fare groups historically have limited selling strategies
in comparison to other fare groups. For example, Fare Groups 0 and 1 never experience time
allocations greater than 0.3, while Fare Group 2 tends to get allocations ranging anywhere between
0 and 1. In order to make optimal decisions as to how much time should be allocated to each fare
group, airlines need to accurately estimate the amount of demand each fare group can bring at any
time allocation. As can be seen, Fare Groups 0 and 1 require much extrapolation with little-to-no
information available for these groups at times greater than 0.3. To properly estimate demand for
these groups, a CGP will trained utilizing the constraints described in this paper. The constraints
will allow for information from Fare Groups 2 and 3 to help guide the estimation for groups with
little to no information.
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(a) Multi-Fare GP setup with no constraints applied.

(b) Multi-Fare CGP setup with Constraints 1, 2, and 3 listed in Section 4.4.3.

(c) Multi-Fare CGP setup with Constraints 1, 2, and 3 listed in Section 4.4.3, but
the constraint lower bounds are determined according to price elasticity.

Figure 4.5: The results from a multi-fare GP, CGP, and CGP with modified constraints trained on airline
booking data.
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To show the impact of the constraints, first an unconstrained Gaussian Process is trained with
a radial basis covariance function with variance 𝜎2

𝑘
= 1 and the length-scale parameter being

ℓ = 0.3. The assumed observation’s noise is 𝜎2 = 1. The prior mean is set to be 0. Figure 4.5a
demonstrates the estimation curves from the GP using a multi-fare group setup. This figure shows
that Fare Groups 0 and 1 having less demand estimated in comparison to Fare Groups 2 and 3 as
their predictions are tend towards the prior mean. This is unrealistic as Fare Groups 0 and 1 are
cheaper than Groups 2 and 3. Hence the predictions by this GP are nonsensical due to extrapolation
with little-to-no data.

Applying constraints to the Gaussian Process can guide the predictions to be more realistic. To
show this, a CGP is trained using the same parameters as the GP, however constraints 1, 2, and 3
from Section 4.4.3 are applied. The set of locations where the constraints are assumed to hold can
be described to be 0.1 step intervals in a manner similar to Equation 4.9 with 𝜏 values equating to
0, 0.1, 0.2, . . . , 0.9, 1. However, as to ensure 𝜏 = 0 has meaning, the non-diagonal terms of the 𝑿𝑚

matrix are converted to −1, while keeping the diagonal terms providing information related ot 𝜏.
This is done via the following formulation:

𝑿𝑚 =



0 ∗ 𝑰𝐾 − 1 ∗ (1𝐾,𝐾 − 𝑰𝐾)
0.1 ∗ 𝑰𝐾 − 1 ∗ (1𝐾,𝐾 − 𝑰𝐾)
0.2 ∗ 𝑰𝐾 − 1 ∗ (1𝐾,𝐾 − 𝑰𝐾)

...

1 ∗ 𝑰𝐾 − 1 ∗ (1𝐾,𝐾 − 𝑰𝐾)


(4.27)

where 1𝐾,𝐾 denotes a R𝐾×𝐾 matrix of ones. The linear operators and bounds defined in Section
4.4.3 are combined into a single linear operator as to apply each type of constraint to each of the
different 𝜏 values. The constraint’s variance is selected to be𝜎2

𝑚 = 0.001 as to ensure the constraints
are held tightly.

Figure 4.5b shows the results of the described constrained GP. The locations where the constraints
are assumed to hold true can be observed by the x-markers, while each fare group’s prediction is
color coded. Under this setup, Fare Groups 2 and 3 are now positively monotonic with respect to
time as opposed to using the regular GP. Furthermore, Fare Groups 0 and 1’s predictions are now
slightly greater than Fare Group 2’s prediction, as the constraints let the CGP know these values
should be higher than Fare Group 2. This results in more realistic demand estimates for all groups
in general. While the regular GP has only the prior to infer from for groups with little-to-no data,
the CGP utilizes the constraints to relate the observations from Fare Group 2 to aid the estimation
of bookings in other groups.

The modified Constraint 2 described in Section 4.4.3.1 can be used to solve the issue of Figure
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4.5b, in which the resulting GP estimates of Fare Groups 0 and 1 to be almost identical to Fare
Group 2. Assume price elasticity 𝐸 = −1 and assume the price of each fare group is known such
that it increases from Fare Group 0 to Fare Group 5, then the adjustments to the CGP predictions
after using the lower bounds described in Equation 4.13 can be observed in Figure 4.5c. In this
figure, Fare Groups 0 and 1 are relatively more distinguishable from Fare Group 2 in accordance
to the price differences between the groups.

The use of Gaussian Processes for demand estimation also allows for uncertainty to be be
quantified. Equation 4.14 provides details for estimating both the predictive mean and the predictive
covariance matrix as well. The diagonal terms of the covariance matrix can be used to describe
uncertainty of the predictive mean. Figure 4.6 shows demand predictions from Fare Groups 0, 2, 3,
and 5 and alongside a 2-standard deviation confidence interval around the mean. The intervals get
wider as more uncertainty is present and narrower as the uncertainty drops. For example, Figure 4.6
shows how the intervals for Group 0 at 𝜏 > 0.3 increases as little data is available in that region. The
interval is not extremely wide however as the estimation is guided by the data available by Group
2. These confidence intervals are beneficial for airline optimization as uncertainty is valuable for
optimization procedures deciding how much time should be allocated to each fare group.

Figure 4.6: CGP mean predictions and 2-standard deviation confidence intervals around the mean are
shown for each group. The points shown represent each group’s sample average of points calculated within
0.3 distance of the standardized time.
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4.8 Case Study: Airline Customer Buy-Down and Sell-Up Be-
havior

Here, a case study is presented to highlight how the CGPs described can also be used to model
customer buy-down and sell-up behavior (described in Section 4.5). A multi-fare-multi-state CGP
is trained to capture the buying behaviors of states E and C. In other words, the columns of 𝑿

will represent both the fare group and state of the bookings observed. The first 5 columns will
represent value of 𝜏 if 𝑍 𝑗 (𝑚) = E for all fare groups, while the remaining 5 columns will represent
value of 𝜏 if 𝑍 𝑗 (𝑚) = C. Each row will be designed to correspond when the observation is either
𝑦E
𝑗
(𝜏E
𝑗
) or 𝑦C

𝑗
(𝜏C
𝑗
) as to separate the demand arrival behaviors from one another. Each will use

the parameters described in Section 4.7, where all 3 constraints will be applied to both 𝑦E
𝑗
(𝜏E
𝑗
) or

𝑦C
𝑗
(𝜏C
𝑗
) respectively, and Equation 4.12 will be used for the lower bounds of Constraint 2 using

the same prices that Figure 4.5c assumed. One further constraint will be included describing the
condition that 𝑦E

𝑗
(𝜏E
𝑗
) ≤ 𝑦C

𝑗
(𝜏C
𝑗
), which will relay communication between the two states. This

constraint will be useful as to ensure the equations defining the probability of buy-up and sell-down
will also remain true.

The results of the trained CGP can be observed in Figure 4.7. In this figure, the top graph shows
the data broken into states 𝑦E

𝑗
(𝜏E
𝑗
) and 𝑦C

𝑗
(𝜏C
𝑗
), along with the trained CGP predictions to the data.

It is clear that the new constraint 𝑦E
𝑗
(𝜏E
𝑗
) ≤ 𝑦C

𝑗
(𝜏C
𝑗
) is observable, as the predictions from 𝑦C

𝑗
(𝜏C
𝑗
)

are generally higher than 𝑦E
𝑗
(𝜏E
𝑗
)’s predictions. The bottom two graphs show the estimation of the

probability of group buy-down and sell-up respectively versus allocated time. Group 5 is omitted
from these probabilities as the sell-up probability could not be calculated for this group.

Interestingly, both probabilities tend to increase as time increases. This makes sense, as the
chance of a customer buying down or selling up will naturally occur if time approaches infinity.
However, the rates of each probability increasing differ. A 0.5 threshold is also plotted, which
highlights how the probability of buy-down for Groups 3 and 4 is much more likely to occur
in comparison any of the other buy-down and sell-up probabilities of other groups. Hence, this
demonstrates how the outputs of the designed CGP is not only useful in predicting and relating
different types of demand with one another, but also capable of estimating customer behavior
between different groups. Again, this knowledge of probability of buy-down and sell-up is very
useful to know when building optimization procedures to decide how much time should be allocated
to each fare group, and the use of CGPs for estimating demand makes this possible.
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Figure 4.7: The results of the multi-fare-multi-state constrained Gaussian Process. The top two graphs
shows the CGP’s predictions for data belonging to the E and C states respectively. The demand estimates
are then converted into buy-down and sell-up probabilities via Equations 4.18 and 4.20 and shown in the
bottom two graphs.
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4.9 Conclusion

This paper presents a demand setting where a constrained Gaussian Process can be beneficial for
estimation. The demand setting involves estimating demand for different fare groups under the
assumption of customer buy-down and sell-up behavior, which results in the observed data being
partitioned into different states. If this partitioning is considered in conjunction with an airline’s
allocated time towards selling each fare group, this often results expensive fare groups having in
little-to-no data being available for observations coming from the cheap state. Hence, estimation of
demand under a single fare set-up is difficult to perform in practice. This paper avoids this problem
by setting up the problem to consider multiple fare groups together for estimation. The setup is
presented via a constrained Gaussian Process. By including constraints in a Gaussian Process,
information both between and within different fare groups can be used together to estimate demand
for groups with little-to-no data.

This paper also defines three different constraints that can be used in a constrained Gaussian
Process via different linear operators and bounds. The constraints are tested using both simulated
data and realistic airline booking data. In the simulated data example, the CGP is able to nearly
capture the true demand curve of the simulated data. In realistic airline example, the CGP is able to
follow the booking pattern of the test data using the presented constraints. As such, the constraints
presented in this paper can be used to improve estimation of demand with little-to-no data when
other groups with lots of data exist.
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CHAPTER 5

Conclusions and Future Research

5.1 Summary of Contributions

In conclusion, this dissertation unites three significant contributions that collectively contribute to
our understanding of human behavior analysis. By merging insights from the detection of distracted
driving behavior, labeling of normal humanistic driving behaviors, and modeling of humanistic
buying behavior, this dissertation strives to shed light on the complex nature of human behavior in
diverse contexts. Through these endeavors, we hope to pave the way for further advancements in
this field and foster the development of solutions that can positively impact society.

A summary of the major results and new contributions with regard to each chapter is provided
below:

1. A fusion of three different state-space motion models is presented in Chapter 2. The fusion,
called the Autonomous Multiple Model (AMM) algorithm, demonstrates how predictions
errors from the models can be used to fuse the different models together. This likelihood of
the prediction errors weights each model’s predictions allowing for each model to influence
the next predicted state. Chapter 2 also presents a control-chart-based decision strategy to
monitor the prediction errors and label humanistic distraction status. The control charts
combine a Cumulative Sum (CUSUM) control chart and a Exponentially Weighted Moving
Average (EWMA) control chart together to provide multi-level assessment of the human
distraction behavior.

2. An enhanced inference algorithm for the Hierarchical Dirichlet Process Hidden Semi-Markov
Model (HDP-HSMM) is developed to counter the inconsistency issues regarding estimation
of the true number of states. These issues are well known to occur from Dirichlet Processes
in literature, and the enhanced algorithm allows the HDP-HSMM to be more robust to this
issue. The enhanced algorithm presented in Chapter 3 adds a procedure into the inference
algorithm that randomly merges redundant states together before each iteration of the infer-
ence procedure. Chapter 3 demonstrates how the procedure results in faster convergence of
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emission and duration parameters and additionally results in estimating the true number of
states belonging to the data. In the case study with naturalistic driving data, the presented
algorithm is shown to tend to result in more meaningful and consistent emission means.
This implies better interpretability from the modeling that enhances the understanding of
humanistic driving behaviors.

3. The notation and setup of for modeling multiple fare groups’ demand is provided in Chapter
4. Under this notation, three common demand constraints are mathematically defined such
that they can incorporated into a constrained Gaussian Process Regression model to allow for
each group to communicate with one another. Furthermore, the economics’s concept of price
elasticity is utilized to adjust the bounds of the constraints to improve demand estimation.
This dissertation then demonstrates how the results of this modeling can be transformed
into customer buy-down and sell-up probabilities that change with respect to time. This
contributes to the modeling of humanistic buying behavior in that these probabilities are
generally difficult estimate.

5.2 Future Research

While this dissertation makes strides in contributing towards different fields of human behavior
analysis, research is still expected with regards to each work:

• For the context of the Autonomous Multiple Model algorithm, further development of defining
the different level of distractions is still recommended. The algorithm presented in this
dissertation assumes the level of distraction is correlated with the alarms generated by the
EWMA and CUSUM control charts, and the number of consecutive windows in which the
alarms occur. However, the alarms described in this dissertation are only used for binary
decisions as opposed to a more descriptive distraction decision. With that in mind, the work
presented in this paper can naturally be converted to further research, as the EWMA and
CUSUM charts are effective in capturing different process disruptions. EWMA charts are
effective in detecting smaller and gradual shifts, while CUSUM charts are more suitable for
detecting larger and abrupt shifts. Hence these methodologies can potentially allow for users
to be more descriptive of the true cause of alarms. Further development may help improve
the false alarm and detection rates.

• For the context of the described robust HDP-HSMM, further research needs to be done re-
garding demonstrating the accuracy of the transition probability matrices. This dissertation
focuses on demonstrating how the number of estimated states can accurately be inferred,
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which translates into improved change point estimation, improved emission estimation, and
improved duration estimation. However the transition probabilities are never fully discussed
in this work. Further development in demonstrating the accuracy of the transition probabil-
ities may open up possibilities to combine the outputs of the HDP-HSMM with the AMM
discussed in Chapter 2. Lastly, a formal proof which demonstrates convergence in this disser-
tation enhanced block sampling procedure is still necessary for further research. This work
demonstrates through a numerical study that speed of convergence improves greatly, but no
theorems are presented which quantify this improvement.

• For the context of the airline demand modeling via a constrained Gaussian Process, further
development of defining the constraint bounds is still open to research. This work demon-
strates how the concept of price elasticity can be used to better define the demand estimates
from one price group to another, however domain knowledge may help in estimating the other
constraint bounds. Furthermore, the exploration of how to utilize constraints between differ-
ent markets groups may be of interest for aiding estimation for markets with little historical
information. Regarding the estimated of buy-down and sell-up probabilities, it is recom-
mended to explore how these probabilities can change the way optimization is performed
for airline demand allocation. These probabilities allow for optimization procedures to now
have knowledge of how different decisions change consumer behavior, which can allow for
airlines to make more strategic decisions regarding demand allocation.
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APPENDIX A

A.1 Derivations of 𝑄 and 𝑅 matrices in 𝐶𝑉 , 𝐶𝐴 and 𝐶𝑇𝑅𝐴

models

In the Constant Velocity model, 𝑥𝑡 = {𝐿𝑥,𝑡 , 𝐿𝑦,𝑡 , 𝑉𝑥,𝑡 , 𝑉𝑦,𝑡}𝑇 are the kinematic state variables where
each dimension denotes longitudinal position, lane position, longitudinal velocity, and lateral
velocity, respectively. By assuming the velocity is constant within each sampling time interval
Δ𝑡 = 0.1, the dynamic model is written as:

©­­­­­«
𝐿𝑥,𝑡+1

𝐿𝑦,𝑡+1

𝑉𝑥,𝑡+1

𝑉𝑦,𝑡+1

ª®®®®®¬
=

©­­­­­«
𝐿𝑥,𝑡 +𝑉𝑥,𝑡Δ𝑡
𝐿𝑦,𝑡 +𝑉𝑦,𝑡Δ𝑡

𝑉𝑥,𝑡

𝑉𝑦,𝑡

ª®®®®®¬
+ 𝑤.

Since the transition function 𝑓 is linear, the above equation can be rewritten using matrix represen-
tation: ©­­­­­«

𝐿𝑥,𝑡+1

𝐿𝑦,𝑡+1

𝑉𝑥,𝑡+1

𝑉𝑦,𝑡+1

ª®®®®®¬
=

©­­­­­«
1 0 Δ𝑡 0
0 1 0 Δ𝑡

0 0 1 0
0 0 0 1

ª®®®®®¬
©­­­­­«
𝐿𝑥,𝑡

𝐿𝑦,𝑡

𝑉𝑥,𝑡

𝑉𝑦,𝑡

ª®®®®®¬
+ 𝑤.

It is often the case that measurements or estimations of lane position and longitudinal velocity
are available. The relationship between these signals and the state variables are captured by the
observation equation as:

𝑦𝑡+1 =

(
0 0 1 0
0 1 0 0

) ©­­­­­«
𝐿𝑥,𝑡+1

𝐿𝑦,𝑡+1

𝑉𝑥,𝑡+1

𝑉𝑦,𝑡+1

ª®®®®®¬
+ 𝑢 =

(
𝑉𝑥,𝑡+1

𝐿𝑦,𝑡+1

)
+ 𝑢.
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To model the process noise covariance matrix 𝑄, we need to compare the CV model with a
more realistic model where the longitudinal and lateral accelerations 𝑎𝑥,𝑡 and 𝑎𝑦,𝑡 follow normal
distribution with mean zero and unknown standard deviations, which is to assume 𝑎𝑥,𝑡 ∼ 𝑁 (0, 𝜎2

𝑎,𝑥)
and 𝑎𝑦,𝑡 ∼ 𝑁 (0, 𝜎2

𝑎,𝑦). The differences between the two models are calculated as:

𝑤 =

©­­­­­«
𝐿𝑥,𝑡 +𝑉𝑥,𝑡Δ𝑡 + 1

2𝑎𝑥,𝑡Δ𝑡
2

𝐿𝑦,𝑡 +𝑉𝑦,𝑡Δ𝑡 + 1
2𝑎𝑦,𝑡Δ𝑡

2

𝑉𝑥,𝑡 + 𝑎𝑥,𝑡Δ𝑡
𝑉𝑦,𝑡 + 𝑎𝑦,𝑡Δ𝑡

ª®®®®®¬
−

©­­­­­«
𝐿𝑥,𝑡 +𝑉𝑥,𝑡Δ𝑡
𝐿𝑦,𝑡 +𝑉𝑦,𝑡Δ𝑡

𝑉𝑥,𝑡

𝑉𝑦,𝑡

ª®®®®®¬
=

©­­­­­«
1
2𝑎𝑥,𝑡Δ𝑡

2

1
2𝑎𝑦,𝑡Δ𝑡

2

𝑎𝑥,𝑡Δ𝑡

𝑎𝑦,𝑡Δ𝑡

ª®®®®®¬
.

We further assume 𝜎𝑎,𝑥 and 𝜎𝑎,𝑦 are independent, therefore the covariance matrix 𝑄𝐶𝑉 is derived
as:

𝑄𝐶𝑉 =

©­­­­­«
1
4Δ𝑡

4𝜎2
𝑎,𝑥 0 1

2Δ𝑡
3𝜎2

𝑎,𝑥 0
0 1

4Δ𝑡
4𝜎2

𝑎,𝑦 0 1
2Δ𝑡

3𝜎2
𝑎,𝑦

1
2Δ𝑡

3𝜎2
𝑎,𝑥 0 Δ𝑡2𝜎2

𝑎,𝑥 0
0 1

2Δ𝑡
3𝜎2

𝑎,𝑦 0 Δ𝑡2𝜎2
𝑎,𝑦

ª®®®®®¬
.

For the Constant Acceleration model, the state variables are 𝑥𝑡 = {𝐿𝑥,𝑡 , 𝐿𝑦,𝑡 , 𝑉𝑥,𝑡 , 𝑉𝑦,𝑡 , 𝑎𝑥,𝑡 , 𝑎𝑦,𝑡}𝑇 .
By assuming the acceleration is constant within each Δ𝑡, the dynamic model is:

©­­­­­­­­­­«

𝐿𝑥,𝑡+1

𝐿𝑦,𝑡+1

𝑉𝑥,𝑡+1

𝑉𝑦,𝑡+1

𝑎𝑥,𝑡+1

𝑎𝑦,𝑡+1

ª®®®®®®®®®®¬
=

©­­­­­­­­­­«

𝐿𝑥,𝑡 +𝑉𝑥,𝑡Δ𝑡 + 1
2𝑎𝑥,𝑡Δ𝑡

2

𝐿𝑦,𝑡 +𝑉𝑦,𝑡Δ𝑡 + 1
2𝑎𝑦,𝑡Δ𝑡

2

𝑉𝑥,𝑡 + 𝑎𝑥,𝑡Δ𝑡
𝑉𝑦,𝑡 + 𝑎𝑦,𝑡Δ𝑡

𝑎𝑥,𝑡

𝑎𝑦,𝑡

ª®®®®®®®®®®¬
+ 𝑤

=

©­­­­­­­­­­«

1 0 Δ𝑡 0 1
2Δ𝑡

2 0
0 1 0 Δ𝑡 0 1

2Δ𝑡
2

0 0 1 0 Δ𝑡 0
0 0 0 1 0 Δ𝑡

0 0 0 0 1 0
0 0 0 0 0 1

ª®®®®®®®®®®¬

©­­­­­­­­­­«

𝐿𝑥,𝑡

𝐿𝑦,𝑡

𝑉𝑥,𝑡

𝑉𝑦,𝑡

𝑎𝑥,𝑡

𝑎𝑦,𝑡

ª®®®®®®®®®®¬
+ 𝑤
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Similarly, we have the observation equation:

𝑦𝑡+1 =

(
0 0 1 0 0 0
0 1 0 0 0 0

) ©­­­­­­­­­­«

𝐿𝑥,𝑡+1

𝐿𝑦,𝑡+1

𝑉𝑥,𝑡+1

𝑉𝑦,𝑡+1

𝑎𝑥,𝑡+1

𝑎𝑦,𝑡+1

ª®®®®®®®®®®¬
+ 𝑢 =

(
𝑉𝑥,𝑡+1

𝐿𝑦,𝑡+1

)
+ 𝑢.

Instead of the constant acceleration assumption, we still assume the accelerations follow normal
distribution with unknown standard deviations. The process noise covariance matrix is calculated
similarly as:

𝑄𝐶𝐴 =

©­­­­­­­­­­«

1
4Δ𝑡

4𝜎2
𝑎,𝑥 0 1

2Δ𝑡
3𝜎2

𝑎,𝑥 0 1
2Δ𝑡𝜎

3
𝑎,𝑥 0

0 1
4Δ𝑡

4𝜎2
𝑎,𝑦 0 1

2Δ𝑡
3𝜎2

𝑎,𝑦 0 1
2Δ𝑡𝜎

3
𝑎,𝑦

1
2Δ𝑡

3𝜎2
𝑎,𝑥 0 Δ𝑡2𝜎2

𝑎,𝑥 0 Δ𝑡𝜎2
𝑎,𝑥 0

0 1
2Δ𝑡

3𝜎2
𝑎,𝑦 0 Δ𝑡2𝜎2

𝑎,𝑦 0 Δ𝑡𝜎2
𝑎,𝑦

1
2Δ𝑡𝜎

3
𝑎,𝑥 0 Δ𝑡𝜎2

𝑎,𝑥 0 𝜎2
𝑎,𝑥 0

0 1
2Δ𝑡𝜎

3
𝑎,𝑦 0 Δ𝑡𝜎2

𝑎,𝑦 0 𝜎2
𝑎,𝑦

ª®®®®®®®®®®¬
In the CTRA model, the state variables are 𝑥𝑡 = {𝐿𝑥,𝑡 , 𝐿𝑦,𝑡 , 𝜃𝑡 , 𝑉𝑡 , 𝜔𝑡 , 𝑎𝑡}𝑇 where 𝜃𝑡 denotes

vehicle heading, 𝑉𝑡 denotes velocity, 𝜔𝑡 denotes yaw rate and 𝑎𝑡 denotes acceleration. Within each
time interval, the acceleration and yaw rate are assumed to be constant. The transition equation is
written as:

©­­­­­­­­­­«

𝐿𝑥,𝑡+1

𝐿𝑦,𝑡+1

𝜃𝑡+1

𝑉𝑡+1

𝜔𝑡+1

𝑎𝑡+1

ª®®®®®®®®®®¬
= 𝑓

©­­­­­­­­­­«

©­­­­­­­­­­«

𝐿𝑥,𝑡

𝐿𝑦,𝑡

𝜃𝑡

𝑉𝑇

𝜔𝑡

𝑎𝑡

ª®®®®®®®®®®¬

ª®®®®®®®®®®¬
=

©­­­­­­­­­­­«

𝐿𝑥,𝑡 + 𝑉𝑡
𝜔𝑡

(𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡) − 𝑠𝑖𝑛𝜃𝑡) + 𝑎𝑡Δ𝑡

𝜔𝑡
𝑠𝑖𝑛 (𝜃𝑡 + 𝜔𝑡Δ𝑡) − 𝑎𝑡

𝜔2
𝑡

𝑐𝑜𝑠𝜃𝑡 + 𝑎𝑡

𝜔2
𝑡

𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡)
𝐿𝑦,𝑡 + 𝑉𝑡

𝜔𝑡
(𝑐𝑜𝑠𝜃𝑡 − 𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡)) − 𝑎Δ𝑡

𝜔𝑡
𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡) + 𝑎𝑡

𝜔2
𝑡

𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡) − 𝑎𝑡

𝜔2
𝑡

𝑠𝑖𝑛𝜃𝑡

𝜃𝑡 + 𝜔𝑡Δ𝑡
𝑉𝑡 + 𝑎𝑡Δ𝑡

𝜔𝑡

𝑎𝑡

ª®®®®®®®®®®®¬
.
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The Extended Kalman filter approximation is used since the transition function is not linear. The
approximation matrix is calculated as the Jacobian matrix of transition function 𝑓 , which is:

𝐹 =

©­­­­­­­­­­«

1 0 𝑎1 𝑎2 𝑎3 𝑎4

0 1 𝑎5 𝑎6 𝑎7 𝑎8

0 0 1 0 Δ𝑡 0
0 0 0 1 0 Δ𝑡

0 0 0 0 1 0
0 0 0 0 0 1

ª®®®®®®®®®®¬
,

where:

𝑎1 =
𝑉𝑡

𝜔𝑡
(𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡) − 𝑐𝑜𝑠𝜃𝑡) +

𝑎𝑡Δ𝑡

𝜔𝑡
𝑐𝑜𝑠(𝜃𝑡 + 𝜔Δ𝑡) +

𝑎𝑡

𝜔2
𝑡

(𝑠𝑖𝑛𝜃𝑡 − 𝑠𝑖𝑛(𝜃𝑡 + 𝜔Δ𝑡)) ,

𝑎2 =
1
𝜔𝑡

(𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡) − 𝑠𝑖𝑛𝜃𝑡) ,

𝑎3 =
1
𝜔2
𝑡

[𝑉𝑡𝑠𝑖𝑛𝜃𝑡 +𝑉𝑡𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡)𝜔𝑡Δ𝑡 −𝑉𝑡𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡)]

− 1
𝜔2
𝑡

[
𝑎𝑡Δ𝑡

2𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡) − 𝑎𝑡Δ𝑡𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡)
]
+ 2𝑎𝑐𝑜𝑠𝜃𝑡

𝜔3
𝑡

− 1
𝜔4

[
𝑎𝑡𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡)Δ𝑡𝜔2

𝑡 + 2𝑎𝑡𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡)𝜔𝑡
]
,

𝑎4 =
Δ𝑡

𝜔𝑡
𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡) −

1
𝜔2
𝑡

𝑐𝑜𝑠𝜃𝑡 +
1
𝜔2
𝑡

𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡),

𝑎5 =
𝑉𝑡

𝜔𝑡
(𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡) − 𝑠𝑖𝑛𝜃𝑡) +

𝑎𝑡Δ𝑡

𝜔𝑡
𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡) +

𝑎𝑡

𝜔2
𝑡

[𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡) − 𝑐𝑜𝑠𝜃𝑡] ,

𝑎6 =
1
𝜔𝑡

(𝑐𝑜𝑠𝜃𝑡 − 𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡)) ,

𝑎7 =
1
𝜔2
𝑡

[𝑉𝑡𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡) −𝑉𝑡𝑐𝑜𝑠𝜃𝑡 −𝑉𝑡𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡)𝜔𝑡Δ𝑡]

+ 1
𝜔2
𝑡

[
𝑎𝑡Δ𝑡

2𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡) + 𝑎Δ𝑡𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡)
]
+ 2𝑎𝑡𝑠𝑖𝑛𝜃𝑡

𝜔3
𝑡

+ 1
𝜔4
𝑡

[
𝑎𝑡𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡)Δ𝑡𝜔2

𝑡 − 2𝑎𝑡𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡)𝜔𝑡
]
,

𝑎8 = −Δ𝑡
𝜔𝑡
𝑐𝑜𝑠(𝜃𝑡 + 𝜔𝑡Δ𝑡) +

1
𝜔2
𝑡

[𝑠𝑖𝑛(𝜃𝑡 + 𝜔𝑡Δ𝑡) − 𝑠𝑖𝑛𝜃𝑡] .
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Lane position, velocity and yaw rate are measured or estimated in the application, therefore:

𝑦𝑡+1 =
©­­«
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

ª®®¬
©­­­­­­­­­­«

𝐿𝑥,𝑡+1

𝐿𝑦,𝑡+1

𝜃𝑡+1

𝑉𝑡+1

𝜔𝑡+1

𝑎𝑡+1

ª®®®®®®®®®®¬
+ 𝑢 =

©­­«
𝐿𝑦,𝑡+1

𝑉𝑡+1

𝜔𝑡+1

ª®®¬ + 𝑢

To calculate the process noise matrix, we assume the actual acceleration and yaw rate follow normal
distribution with unknown standard deviation 𝜎2

𝑎 and 𝜎2
𝜔. The process noise matrix is written as:

𝑄𝐶𝑇𝑅𝐴 = 𝐴

(
𝜎2
𝑎 0

0 𝜎2
𝜔

)
𝐴𝑇 ,

where:

𝐴 =

©­­­­­­­­­­«

𝑎4 𝑎3

𝑎8 𝑎7

0 Δ𝑡

Δ𝑡 0
0 1
1 0

ª®®®®®®®®®®¬
.

A.2 Updating Algorithm of Kalman Filter

Let 𝑥𝑡+1|𝑡 and 𝑃𝑡+1|𝑡 denote the mean and covariance of prediction (pre-fit mean and covariance)
at time 𝑡 + 1 given all the historical data until 𝑡. When the data at time 𝑡 + 1 comes, the updated
mean and covariance (post-fit mean and covariance) is denoted by 𝑥𝑡+1|𝑡+1 and 𝑃𝑡+1|𝑡+1. Suppose
the transition function is linear with matrix 𝐹 and the observation matrix is 𝐺. The Kalman filter
is updated as follows.

In the prediction step, the pre-fit mean and covariance at time 𝑡 + 1 are generated based on the
post-fit mean and covariance at the previous time point 𝑡 as:

𝑥𝑡+1|𝑡 = 𝐹𝑥𝑡 |𝑡 ,

𝑃𝑡+1|𝑡 = 𝐹𝑃𝑡 |𝑡𝐹
𝑇 +𝑄.
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By comparing the prediction and observation, we obtain the residual and its pre-fit covariance:

𝜖𝑡+1|𝑡 = 𝑦𝑡+1 − 𝐺𝑥𝑡+1|𝑡 ,

𝑆𝑡+1 = 𝑅 + 𝐺𝑃𝑡 |𝑡𝐺𝑇 .

Then the information of time 𝑡 + 1 is used to update the Kalman filter. The updated term is known
as Kalman gain, which is calculated as:

𝐾𝑡+1 = 𝑃𝑡+1|𝑡𝐺
𝑇𝑆−1

𝑡+1.

The Kalman gain is then used to update the post-fit mean and covariance at time 𝑡 + 1. They are:

𝑥𝑡+1|𝑡+1 = 𝑥𝑡+1|𝑡 + 𝐾𝑡+1𝜖𝑡+1|𝑡 ,

𝑃𝑡+1|𝑡+1 = (𝐼 − 𝐾𝑡+1𝐺)𝑃𝑡+1|𝑡 .

The procedure is repeated iteratively till the end of the data stream.
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